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Abstract. We aim to understand inherent reasons for lower bounds for
QBF proof systems, and revisit and compare two previous approaches in
this direction.
The first of these relates size lower bounds for strong QBF Frege sys-
tems to circuit lower bounds via strategy extraction (Beyersdorff & Pich,
LICS’16). Here we show a refined version of strategy extraction and
thereby for any QBF proof system obtain a trichotomy for hardness:
(1) via circuit lower bounds, (2) via propositional Resolution lower bounds,
or (3) ‘genuine’ QBF lower bounds.
The second approach tries to explain QBF lower bounds through quanti-
fier alternations in a system called relaxing QU-Res (Chen, ICALP’16).
We prove a strong lower bound for relaxing QU-Res, which at the same
time exhibits significant shortcomings of that model. Prompted by this
we propose an alternative, improved version, allowing more flexible or-
acle queries in proofs. We show that lower bounds in our new model
correspond to the trichotomy obtained via strategy extraction.

1 Introduction

Proof complexity studies the question of how difficult it is to prove theorems in
different formal proof systems. The main question is thus: for a given theorem
φ and proof system P , what is the size of the shortest proof of φ in P? This
research has strong and productive connections to several other areas, most no-
tably to computational complexity, with the aim of separating complexity classes
through Cook’s programme [10,13], and to first-order logic (theories of bounded
arithmetic [12,25]). In recent years, progress in practical SAT- and QBF-solving
has been a major motivation for proof complexity, as runs of SAT-solvers corre-
spond to proofs of (un)satisfiability of CNFs. Analysis of the corresponding proof
system provides the framework for understanding the power and the limitations
of the solver [10].

The majority of work in proof complexity has been focused on propositional
proof complexity, on proof systems for classical propositional logic. In particular,
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Resolution [30] has received much attention as it models the approach taken by
many modern SAT-solvers.

QBF proof complexity is a comparatively young field, studying proof systems
for quantified Boolean formulas. Determining the truth of a QBF is PSPACE-
complete, and so has wider ranging applications than SAT-solving, extending to
fields such as formal verification and planning [3,14,29]. Similarly to the propo-
sitional case, several Resolution-based QBF proof systems have been suggested
and analysed [1,5–7,16,21,23,33] to model the approaches taken by QBF solvers.
Of particular importance are Q-Resolution [23] and universal Q-Resolution (QU-
Res) [16], which as analogues of propositional Resolution form the base systems
for conflict-driven clause learning (CDCL) QBF solving [17].

Stronger systems in the form of QBF Frege systems were developed recently
[4]. As in the propositional framework, by restricting the lines in Frege to a
circuit class C we obtain a hierarchy of (QBF) C-Frege systems, corresponding
to the hierarchy of circuit classes.

A conceptually simple but powerful technique for constructing QBF proof
size lower bounds from Boolean circuit lower bounds was developed in [4, 6].
This strategy extraction technique employs the complexity of Herbrand functions
witnessing the universal quantifiers. In [4] the technique was used to show strong
lower bounds for QBF Frege systems, including exponential lower bounds for
QBF AC0[p]-Frege (which is in stark contrast to the situation in propositional
Frege, where lower bounds for AC0[p]-Frege are wide open).

Recent work has tightened the connection to circuit complexity further. In [8]
it has been shown that for natural circuit classes C, a lower bound for proof size
in QBF C-Frege corresponds to either a lower bound for propositional C-Frege, or
a lower bound for the circuit class C. This characterisation points to a distinction
between lower bounds derived from lower bounds on propositional proof systems,
and ‘genuine’ QBF lower bounds.

More widely, understanding the reasons of hardness for QBF proof systems
and solving constitutes a major challenge, which at current is only insufficiently
mastered. Most QBF proof systems use a propositional system such as Resolution
or Frege as their core, implying that on existentially quantified formulas the
QBF system coincides with its classical core system. This leads to the somewhat
disturbing fact that lower bounds for e.g. propositional Resolution trivially lift
to any of the studied QBF Resolution systems.

Motivated by this observation, Chen [11] introduced a new notion of proof
system ensemble, in particular for QU-Res called relaxing QU-Res, with the aim
to distinguish between lower bounds lifted from propositional Resolution and
‘genuine’ QBF lower bounds arising from quantifier alternation of the QBFs.
Quantifier alternation as also been empirically observed as a source of hardness
[26,27], making this a very interesting direction for theoretical study.

Our Contributions The main aim of this paper is to gain a refined under-
standing of the reasons for QBF hardness, both following the strategy extraction
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paradigm [8] and the paradigm via quantifier alternation [11]. We revisit both
models and relate them in their explanatory power.

A. Refinement of formalised strategy extraction. We describe a decompo-
sition of QBF solving into SAT solving and a search for small circuits witnessing
a given QBF. This relies on an improvement of the strategy extraction theorem
from [8] which says that, given polynomial-size QBF C-Frege proofs of QBFs ψn,
one can construct small C circuits witnessing the existential quantifiers in ψn in
such a way that the resulting ‘witnessed’ propositional formulas have polynomial-
size proofs in C-Frege. Here, we show that in fact the witnessed formulas have
polynomial-size proofs even in tree-like Resolution (Theorem 1).

Applying a similar decomposition, we observe that polynomial-size lower
bounds on a sequence of QBFs in any QBF proof system can be categorized
as either (1) a circuit lower bound, (2) a Resolution lower bound, or (3) a gen-
uine QBF lower bound (Theorem 2).

B. Lower bounds for relaxing QU-Res. We revisit relaxing QU-Res, in-
troduced in [11] with the aim of distinguishing propositional bounds from QBF
bounds arising from quantifier alternation. In particular, Chen [11] gives an ex-
ponential lower bound for relaxing QU-Res that applies to quantified Boolean
circuits, however with no small CNF representations (Appendix A). As this is
a somewhat atypical feature in proof complexity, we improve this by presenting
QBFs with CNF matrices that require exponential-size relaxing QU-Res proofs
(Theorem 9). Our formulas use a new construction that combines two false QBFs
Φ and Ψ into their product formula Φ ⊗ Ψ such that each short QU-Res proof
must refute Ψ before it refutes Φ.

These product formulas have another compelling feature: their hardness for
relaxing QU-Res (and QU-Res) rests on the hardness of the pigeonhole principle
for propositional Resolution. Our lower bound therefore suggests that relaxing
QU-Res does not capture ‘genuine’ hardness of QBFs due to quantifier alterna-
tion.

C. New systems for ‘genuine’ QBF hardness. Noting this situation, we
propose new QBF proof systems, Σp

k-QU-Res (Def. 15). The systems bear sim-
ilarities to relaxing QU-Res, particularly in the use of relaxations of quantifiers
and a proof checking algorithm with access to a Σp

k-oracle. The major difference
is that oracle queries in our algorithm may appear at any point in the proof.

It is interesting to relate lower bounds inΣp
1 -QU-Res to our trichotomy shown

in A. In this direction, we prove that Σp
1 -QU-Res admits strategy extraction by

depth-3 Boolean circuits (Lemma 18). Hence QU-Res lower bounds stemming
from circuit lower bounds (case (1) in the trichotomy in A) translate to lower
bounds in Σp

1 -QU-Res. Further, if a QBF is hard for QU-Res due to a Reso-
lution lower bound (case (2) in A), it has short proofs in Σp

1 -QU-Res. We also
demonstrate that a variant of the prominent formulas of Kleine Büning et al. [23]
simultaneously has genuine QBF lower bounds as per case (3) in A (Theorem 4)
and is hard for Σp

k-QU-Res proofs for any constant k (Theorem 22).

Organisation. In Sec. 2 we detail necessary background. Section 3 refines
formalised strategy extraction and the characterisation of QBF lower bounds
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from [8]. In Sec. 4 we show the lower bound for relaxing QU-Res. Section 5 con-
tains the definition of Σp

k-QU-Res and a comparison of lower bounds in these
systems with the characterisation in Sec. 3. In Sec. 6, we analyse the hardness
of several QBF families in these proof systems.

2 Preliminaries

Quantified Boolean Formulas. A (prenex normal form) quantified Boolean
formula (QBF) Φ = Q1x1 . . .Qnxn.φ(x1, . . . , xn) consists of a propositional for-
mula φ, usually expressed as a CNF, and a quantifier prefixQ1x1 . . .Qnxn, where
each Qi ∈ {∃,∀} ranges over {0, 1}.

The semantics of such a QBF can be considered as a game between players
∃ and ∀. On the ith turn, the player corresponding to Qi assigns a 0/1 value to
xi. After all the variables have been assigned, the ∃ player (resp. ∀ player) wins
the game if φ evaluates to 1 (resp. 0).

Given a variable xi, a strategy for xi is a function σi : {x1, . . . , xi−1} → {0, 1}.
A winning strategy for the ∃ (resp. ∀) player, consists of a strategy for each
existential (resp. universal) variable which wins all possible games on Φ. A QBF
is false (resp. true) if and only if there is a winning strategy for the ∀ player
(resp. ∃ player).

The quantifier complexity of a QBF is described by inductively defined classes
Σb
i and Πb

i , counting the number of quantifier alternations. By Σp
i (resp. Πp

i )
we denote the ith level of the polynomial hierarchy, for which deciding truth of
Σb
i (resp. Πb

i ) formulas is complete.

Proof Complexity. A proof system for a language L is a polynomial-time
computable surjective function f : {0, 1}∗ → L [13]. If f(π) = φ, we say π is an
f -proof of φ. Given proof systems P and Q for L, P p-simulates Q if there is a
polynomial-time function t with P (t(π)) = Q(π) for any π. Two proof systems
are p-equivalent if they p-simulate each other.

Here we consider proof systems for propositional tautologies and fully quan-
tified true QBFs. We also consider proof systems for unsatisfiable formulas and
false QBFs and use the words proof and refutation interchangeably.

Resolution [30] is one of the best studied propositional proof systems [32].
Given two clauses C ∨ x and D ∨ ¬x, Resolution can derive the clause C ∨D.
A Resolution proof that a CNF φ is unsatisfiable is a derivation of the empty
clause ⊥ using the resolution rule.

QU-Resolution (QU-Res) [16] is a natural extension of Resolution to QBFs.
Given a QBF Φ = Q1x1 . . .Qnxn.φ, where φ is a CNF, a QU-Res refutation of
Φ is a derivation of ⊥ from the clauses of φ. It uses the Resolution rule (with
the extra condition that deriving tautological clauses is not allowed) and the
∀-reduction rule, which from a clause C ∨ l with literal l on universal variable xi
(i.e., l = xi or l = ¬xi) can derive the clause C provided C contains no literals
on xi+1, . . . , xn.

A proof in Resolution (and QU-Res, and other proof systems) can be repre-
sented as a directed acyclic graph (dag) with a root labelled by ⊥, and input
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vertices labelled with clauses from the CNF. If we restrict the dag to be a tree,
we define tree-like Resolution, which we denote by R∗. Tree-like Resolution is
known to be weaker than Resolution [9].

Frege Systems. Frege systems are common ‘textbook’ proof systems comprised
of a set of axiom schemes and inference rules [13]. Lines of a Frege proof are
formulas in propositional variables and Boolean connectives ∧,∨,¬. A Frege
proof of φ is a sequence of formulas, ending with φ, in which each formula is
either a substitution instance of an axiom, or is inferred from previous formulas
by a valid inference rule. We also consider refutational Frege systems, in which
we start with the formula ¬φ and derive a contradiction.

For a given circuit class C, we define C-Frege, as in [22], to be a Frege system
which works with lines consisting of circuits in C and a finite set of derivation
rules. If C consists of all Boolean circuits, then C-Frege is p-equivalent to extended
Frege (EF). If C is restricted to Boolean formulas, i.e. C = NC1, then NC1-Frege
is Frege as defined above.

An elegant method for extending C-Frege systems to QBF was shown in [4].
The QBF proof system C-Frege+∀-red is a refutational proof system working
with circuits from C. The inference rules of C-Frege+∀-red are those of C-Frege,

along with the ∀-red rule
Lj(u)
Lj(u/B) where u is quantified innermost among the

variables of the proof line Lj with respect to the quantifier prefix, and the circuit
B does not contain any variables to the right of u. Restricting the circuit B in
the ∀-red rule to the constants 0, 1 results in a p-equivalent system [8].

3 Strategy extraction and reasons for hardness

A QBF proof system P has the strategy extraction property if for any P -proof
π of a QBF ψ of the general form ∀x1∃y1 . . . ∀xn∃yn. φ(x1, . . . , xn, y1, . . . , yn),
where φ is a propositional formula, there are |π|O(1)-size circuits Ci witnessing
the existential quantifiers in ψ, i.e.

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ φ(x1, . . . , xn, y1, . . . , yn). (1)

The strategy extraction is Q-formalised if, in addition, the propositional for-
mulas (1) have |π|O(1)-size proofs in a propositional proof system Q.

For any QBF ψ, either there is a propositional formula as in (1) equivalent to
ψ, or there are no (small) circuits Ci witnessing the existential variables, and so
no QBF proof system with the strategy extraction property can prove ψ feasibly.

The task of QBF solving based on proof systems admitting strategy extraction
is thus reducible to the task of finding the witnessing circuits Ci, and then SAT
solving of the witnessed formula. Alternatively, we can speak about a reduc-
tion of QBF solving to Σb

2-formulas with existentially quantified witnessing cir-
cuits: ∃C1 . . . Cn∀x1 . . . xn y1 . . . yn.

∧n
i=1 (yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) →

φ(x1, . . . , xn, y1, . . . , yn)

5



We will show that all QBF proof systems P p-simulated by EF+∀-red3 have
R∗-formalized strategy extraction. More precisely, we improve the formalised
strategy extraction for EF+∀-red from [8] by observing that the witnessing cir-
cuits can encode extension variables, which allows us to replace the EF proof of
the witnessed formula with an R∗ proof.

Consequently, instead of determining whether there is a short P -proof of ψ,
one can solve the equivalent problem of whether there are small circuits Ci and
a short R∗-proof of (1). As R∗ is quasi-automatisable (i.e., R∗ refutations for
a given CNF can be constructed in quasi-polynomial time in the size of the
smallest R∗ proof [2]), the problem is essentially reduced to the search for the
right witnessing circuits Ci.

Theorem 1. Let C be the circuit class NC1 or P/poly.4 Given a C-Frege+∀-red
refutation π of a QBF ∃x1∀y1 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn) where φ ∈ Σb

0,
we can construct in time |π|O(1) an R∗ refutation of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ φ(x1, . . . , xn, y1, . . . , yn) (2)

for some circuits Ci ∈ C.

Proof. By the formalised strategy extraction theorem for C-Frege systems [8],
there is a C-Frege proof of the witnessed formula (2). This means there is an R∗

refutation of

Ext ∧
n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ φ(x1, . . . , xn, y1, . . . , yn)

where Ext is a set of extension axioms defining C formulas built on variables
x1, . . . , xn, y1, . . . , yn. With the exception of those depending on yn, these axioms
can be encoded into circuits Ci with each extension variable represented by
a possibly redundant gate of a circuit Ci. In order to remove the extension
variables depending on yn, we construct two independent R∗ refutations, one
with all occurrences of yn in clauses of Ext substituted by 0 and the other with
occurrences of yn in Ext substituted by 1. This results in two R∗ derivations,
both at most as large as the original, one concluding with {yn} and the other
with {¬yn}. Resolving on these two clauses we obtain the needed R∗ derivation
without the extension variables depending on yn. ut

The reduction of QBF solving to SAT solving presented above is also of use
for proving QBF proof complexity lower bounds. In [8] it was shown that any
super-polynomial lower bound on EF+∀-red is either a super-polynomial circuit

3 This includes all commonly studied Resolution-based QBF systems.
4 The result easily generalises to further ‘natural’ circuit classes C such as AC0 or
TC0, but we will focus here on the two most interesting cases NC1 and P/poly
leading to Frege and EF systems, respectively.
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lower bound or a super-polynomial lower bound on EF. Here we generalise this
phenomenon to other QBF proof systems.

Let P be a refutational QBF proof system operating on clauses of matrices of
QBFs (given in a prenex form with CNF matrices) which contains a resolution
rule that allows resolution on both existential and universal variables. We say
that a set of clauses C defines a formula Ci(x) = z for a circuit Ci with input
variables x and output variable z if z appears in a literal of some clause in C
and for any assignment of the input variables there is exactly one assignment of
the remaining variables satisfying all clauses in C.

Whenever a QBF ψ as above is hard for a QBF proof system P it is for one
of the following reasons:

1. the existential quantifiers in ψ cannot be witnessed by circuits Ci such that
formulas

∧
i Ci(x1, . . . , xi, y1, . . . , yi−1) = yi have |φ|O(1)-size P -derivations

from ¬φ.
2. the existential quantifiers in ψ are witnessable as in 1. but the witnessed

formula
∧n
i=1 (yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ ¬φ(x1, . . . , xn, y1, . . . , yn)

is hard for Resolution.

This characterisation can be specified further.

Theorem 2. Let P be a refutational QBF proof system as above admitting strat-
egy extraction by C circuits. If ψn = ∀x1∃y1 . . . ∀xn∃yn. φn(x1, . . . , xn, y1, . . . , yn)
are QBFs with propositional CNF φn, which do not have polynomial-size proofs
in P , then one of the following holds:

1. Circuit lower bound. The existential variables in ψn are not witnessable
by C circuits.

2. Resolution lower bound. Condition 1. does not hold, but for all C circuits
witnessing ψn, the witnessed formulas require super-polynomial size Resolu-
tion refutations.

3. Genuine QBF hardness. There are circuits Ci ∈ C witnessing ψn so that
the witnessed formulas have polynomial-size Resolution refutations, but for
all such circuits Ci it is hard to derive

∧
i Ci(x1, . . . , xi, y1, . . . , yi−1) = yi

from ¬φn in P . ut

Proof. If the existential variables in ψn are not witnessable by C circuits, we are
done. We therefore assume that there are C circuits witnessing the existential
variables.

Suppose that there are some circuits Ci ∈ C such that the witnessed formula
(2) has a polynomial-size Resolution refutation. If this is not the case, we are
done as we are in case 2.

We can construct a refutation of ¬ψn in P by first deriving∧
i Ci(x1, . . . , xi, y1, . . . , yi−1) = yi from ¬φn, and then refuting

∧
i(Ci ↔ yi) ∧

¬φn. Since the refutation of
∧
i(Ci ↔ yi)∧¬φ is assumed to have a polynomial-

size refutation, but any refutation of ¬ψn requires super-polynomial-size, it must
be the case that for the circuits Ci ∈ C, the derivation of

∧
i(Ci ↔ yi) from ¬φn

requires super-polynomial size (case 3). ut
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This means that any QBF lower bound on P is either a circuit lower bound,
a propositional proof complexity lower bound, or it is a ‘genuine’ QBF proof
complexity lower bound in the sense that P cannot derive efficiently some circuits
witnessing the existential quantifiers in the original formula and whenever it can
do that for some other witnessing circuits, the witnessed formula is hard for
Resolution.

The last possibility does not happen in the case of strong systems like EF+∀-
red [8]. The situation is, however, more delicate with weaker systems, where we
can indeed encounter ‘genuine’ QBF lower bounds. We give an example.

Definition 3 (Kleine Büning et al. [23]). The QBFs KBKFn are defined as

∃y0y1y′1∀x1 . . . ∃yky′k∀xk . . . ∀xn∃yn+1 . . . yn+n.
∧2n
i=1 Ci ∧ C ′i, where

C0 = {¬y0} C ′0 = {y0,¬y1,¬y′1}
Ck = {yk,¬xk,¬yk+1¬y′k+1} C ′k = {y′k, xk,¬yk+1,¬y′k+1}

Cn = {yn,¬xn,¬yn+1, . . . ,¬yn+n} C ′n = {y′n, xn,¬yn+1, . . . , yn+n}
Cn+t = {xt, yn+t} C ′n+t = {¬xt, yn+t}

This family of QBFs is known to require proofs of size 2Ω(n) in Q-Resolution
[6,23]. Although KBKFn have polynomial-size refutations in QU-Res, the exponential-
size lower bound can be lifted to QU-Res using the formulas KBKF′n, obtained
by adding new universal variables zk, quantified at the same level as xk, and
adding the literal zk or ¬zk to each clause containing xk or ¬xk, respectively [1].
This lower bound is a ‘genuine’ QBF proof complexity lower bound.

Theorem 4. The formulas KBKF′n are hard for QU-Res due to genuine QBF
hardness (case 3 in Theorem 2).

Proof. It is clear that playing the variables xk and zk identical to y′k is a winning
strategy for the universal player, and so there are circuits Ci as described in
Theorem 2 which are of constant size.

Looking now at the witnessed formula
∧n
i=1((xi ↔ y′i) ∧ zi ↔ y′i)) ∧ φ, we

show this can be refuted by a linear-size proof. By resolving on each xi and zi
to replace these with the relevant literal on y′i, we obtain the clauses y′i ∨ yn+i
and ¬y′i ∨ yn+i. Resolving on each yn+i gives y′n, yn ∨¬y′n and consequently yn.
For each i, we use yi and y′i to deduce yi−1 and y′i−1 and finally y0, completing
the refutation.

Since KBKF′n is known to require exponential size proofs in QU-Res [1], by
Theorem 2, it must satisfy one of the three conditions given. We have established
that there are small witnessing circuits, and that the witnessed formula is easy
to refute, and so it must be the case that it is hard to derive the witnessing
circuits. ut

4 Hardness due to quantifier alternation

The characterisation of QBF proof system lower bounds given above is a very
natural one. We now show that other suggested reasons for hardness correspond
with it.
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An alternative characterisation of QBF lower bounds that has previously
been suggested is based on the alternation of quantifiers in the quantifier prefix.
Most studied QBF proof systems build on a propositional proof system (e.g.
Resolution) and on Σb

1 formulas just coincide with the propositional base sys-
tem. Therefore we can obtain QBF lower bounds directly from the propositional
lower bounds. Characterising lower bounds by quantifier alternation aims to
distinguish between such propositional lower bounds and ‘genuine’ QBF lower
bounds arising from the alternation of quantifiers. Relaxing QU-Res has been
put forward as a proof system to determine hardness due to quantifier alterna-
tion [11].

Definition 5 (Chen [11]). A Relaxing QU-Res proof of a QBF Φ uses the same
deduction rules as QU-Res, but can introduce any axiom from the set H(Φ,Πb

k),
defined below, for some constant k.

For a quantifier prefix Π = Q1x1 . . .Qnxn, if π is a permutation such that
π(i) < π(j) whenever i < j and Qi = ∀ and Qj = ∃, then the prefix Π ′ =
Qπ(1)xπ(1) . . .Qπ(n)xπ(n) is a relaxation. Intuitively, a relaxation involves ‘mov-

ing ∀-variables to the left’. If Π ′ is a Σb
k-prefix, we call Π ′ a Σb

k-relaxation.

Let Φ = Π.φ be a QBF. For a clause A, let α be the minimal assignment
falsifying A. Construct Π[α] by removing all variables in α, and replacing any
∀-quantifers left of a variable in α by ∃. If there is some Πb

k-relaxation Π ′[α] of
Π[α] such that Π ′[α].φ[α] is false, then A ∈ H(Φ,Πb

k).

For some families of QBFs, such as the pigeonhole principle, other proposi-
tional formulas or indeed any QBF with a prefix with constant alternation, relax-
ing QU-Res has polynomial-size proofs, whereas QU-Res may require exponential-
size proofs.

However, lower bounds for both tree-like and dag-like relaxing QU-Res were
also shown in [11]. The lower bound for dag-like relaxing QU-Res in [11] is
rather unconventional as the proof system works with clauses, whereas the lower
bound applies to circuits without polynomial-size CNF representations (cf. Ap-
pendix A). Here we present formulas with polynomially many clauses that require
exponential-size proofs in relaxing QU-Res.

Furthermore, the lower bounds we show on the size of QU-Res proofs of
these formulas are clearly due to lower bounds on Resolution proofs of the pi-
geonhole principle, rather than alternation of quantifiers, or any other ‘genuine’
QBF reasons. It follows that this is the case for relaxing QU-Res as well. This
demonstrates that relaxing QU-Res is not an adequate formalism to distinguish
propositional lower bounds from genuine QBF lower bounds.

To begin, we present a method of combining two false QBFs to produce
another false QBF. This method might also be of independent interest for the
creation of hard QBFs.

Definition 6. Let Φ = Λ(x) ·
∧n
i=1 Ci(x) and Ψ = Π(z) ·

∧m
j=1Dj(z) be QBFs

consisting of quantifier prefixes Λ and Π over the disjoint sets of variables x
and z respectively, and of clauses Ci and Dj over the corresponding variables.
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Then define

Φ⊗ Ψ := Λ(x)Π(z1) . . . Π(zn) ·
n∧
i=1

m∧
j=1

(Ci(x) ∨Dj(zi))

where each zi is a fresh copy of the variables z, distinct from x, for each i =
1, . . . , n.

The new formula Φ ⊗ Ψ is false if and only if Φ and Ψ are both false. We
can combine a winning strategy for the universal variables of Φ with a winning
strategy for the universal variables of Ψ to construct a strategy which must falsify
some Ci(x) and, for each i, will falsify some Dj(zi). It is therefore the case that
the strategy will falsify some Ci(x) ∨ Dj(zi). Similarly, a winning strategy for
the existential player for either Φ or Ψ will give a winning strategy for Φ⊗ Ψ .

The proof size for Φ⊗Ψ is bounded by the size of proofs required by Φ and Ψ .

Lemma 7. Let Φ = Q.
∧n
i=1 Ci and Ψ = S.

∧m
j=1Dj be minimally unsatisfiable

QBFs. Let SP (Φ) be the size of the smallest P -proof for Φ (and similarly for
other formulas). Then

max(SP (Φ), SP (Ψ)) ≤ SP (Φ⊗ Ψ) ≤ SP (Φ) + n · SP (Ψ).

Moreover, if P is QU-Res, then SP (Φ⊗ Ψ) = SP (Φ) + n · SP (Ψ).

Proof. All clauses of Φ⊗Ψ are necessary for a refutation. By assigning variables
from Φ or the copies of Ψ appropriately, the lines in the proof can be restricted
to a refutation of Φ or Ψ , and so max(SP (Φ), SP (Ψ)) ≤ SP (Φ⊗Ψ). Since Φ⊗Ψ
can be refuted by first deriving each clause Ci from

∧m
j=1(Ci(x)∨Dj(zi)), which

can be done in SP (Ψ), and then refuting
∧n
i=1 Ci(x) with size SP (Φ), we can

find a refutation of Φ⊗ Ψ of size SP (Φ) + n · SP (Ψ).
As noted, by restricting the variables we can construct a refutation of Φ(x)

and each Ψ(zi) assigning variables. In QU-Res, each resolution step or ∀-reduction
step can only be performed on one variable, and so will only remain in one of
these proofs, being replaced by a weakening or trivial step in all others. Any
QU-Res proof of Φ ⊗ Ψ must therefore have size at least SP (Φ) + n · SP (Ψ).
Equality comes from the upper bound above. ut

We use this method to construct a family of false QBFs that require exponential-
size proofs in QU-Res. These QBFs are the product of propositional formulas
hard for Resolution and of QBFs easy for QU-Res, so the hardness of the prod-
uct is clearly derived from the propositional lower bound. Yet, these product
formulas are also hard for relaxing QU-Res. The QBF is obtained by taking the
product of the pigeonhole principle, defined below, and the formulas by Kleine
Büning et al. [23] as defined in Definition 3 above.

Definition 8. The pigeonhole principle for m pigeons and n holes, denoted
PHPmn , is the CNF

m∧
i=1

(xi,1 ∨ · · · ∨ xi,n) ∧
m∧
j=1

∧
1≤i1<i2≤n

(¬xi1,j ∨ ¬xi2,j)

10



.

For m > n, this is unsatisfiable, and for m = n+ 1 it has been shown that 2Ω(n)

clauses are required to refute it in Resolution, and indeed in any constant-depth
Frege system [18,24,28].

Theorem 9. The QBFs Φn := PHPn+1
n ⊗ KBKFn require relaxing QU-Res

proofs of size 2Ω(n).

Since QU-Res when restricted to a propositional formula is equivalent to
Resolution, and PHPn+1

n requires proofs of size 2Ω(n) in Resolution [18], we
know that PHPn+1

n requires QU-Res proofs of size at least 2Ω(n). In QU-Res,
it is known that the formulas KBKFn have linear-size proofs [16]. Given the
proof size bounds on Φn given by Lemma 7, this QU-Res lower bound for Φn is
unambiguously due to the lower bound for PHPn+1

n in Resolution.
We first show that any relaxation of the quantifier prefix of KBKFn is true.

Lemma 10. Any relaxation of the quantifier prefix of KBKFn to a Πb
t -prefix

results in a true QBF, for any t < n.

Proof. To produce a Πb
t -relaxation of the quantifier prefix, for t < n, there must

be some k such that either xk is quantified existentially, or xk is quantified to
the left of yk and y′k. In either case, we can construct a winning strategy for the
existential player.

If some xk is now quantified existentially, then a winning strategy for the
existential player is to play yi = 0, y′i = 1 for each i ≤ k, and to play yj = y′j = 1
for each j > k. Finally, playing yn+i = 1 for each i then satisfies every clause
apart from yk−1∨¬xk∨¬yk+1∨¬y′k+1, which can be satisfied by playing xk = 0.

If some xk is universally quantified to the left of yk, y
′
k, then the strategy for

the existential variables is as above, except on the variables yk and y′k. When
assigning these variables, the existential strategy looks at the value of xk. If
xk = 0, then play yk = 0, y′k = 1. If xk = 1, then play yk = 1, y′k = 0. This
strategy will then satisfy all clauses. ut

Any clause in the variables of Φn can be written as X ∨Z1 ∨ · · · ∨Zm where
X is a clause in the variables of x, and Zi is a clause in the variables of zi. We
use the terms Z-variables and X-variables to refer to any variables in z1, . . . ,zm
and x respectively. Similarly, given a clause C, we use X-clause and Z-clause
to refer to the restriction of C to the X-variables and Z-variables, and denote
these restrictions by CX and CZ .

To prove Theorem 9, we first show that, for any clause A derived as an axiom
by relaxing QU-Res, if AX requires at least c clauses from PHPn+1

n to prove, then
it must also contain at least c existentially quantified Z-variables (Lemma 11).

We then establish an upper bound on the size of a proof of an X-clause
derived from c axioms of PHPn+1

n which depends only on c (Lemma 12). Using
this, we conclude that any relaxing QU-Res axiom where the corresponding X-
clause requires proofs of size 2k must contain Ω(k) Z-variables (Corollary 13).

11



Lastly, we show that given any relaxing QU-Res proof, for each assignment to
the Z-variables, we can find an axiom containing Ω(n) Z-variables which agrees
with the given Z-assignment (Lemma 14). From this, we conclude that the proof
must contain 2Ω(n) axioms.

Lemma 11. Suppose that the clause A = AX ∨ AZ is derived as an axiom of
Φn by relaxing QU-Res. Let Zi1 , . . . , Zil be such that all the existential variables
in AZ are in some Zij . Then the clause AX is a semantic consequence of the
pigeonhole principle axioms Ci1 , . . . , Cil , i.e. Ci1 ∧ · · · ∧ Cil |= AX .

Proof. Suppose that Ci1 ∧ · · · ∧ Cil 6|= AX . Let α be an assignment to the
X-variables which falsifies AX but satisfies each Cij . We can extend α to the
minimal assignment α′ which falsifies A. We show that for any Πb

t -relaxation of
Φn, for t < n, we can extend α′ to a winning strategy for the existential player.

Given a Πb
t -relaxation of Φn, with quantifier prefix Q′, we show by induction

that for each k, we can construct a strategy σk on the existential variables of X
and Z1, . . . , Zk which extends α′ and is a winning strategy for

Q′ ·
k∧
i=1

m∧
j=1

(Ci(x) ∨Dj(zi))

Let σ0 := α′. This clearly satisfies the empty conjunction. For each k, we
extend the strategy σk−1 which satisfies

∧k−1
i=1

∧m
j=1(Ci(x) ∨ Dj(zi)). It there-

fore suffices to find a strategy for the unassigned Zk variables which satisfies∧m
j=1(Ck(x) ∨Dj(zk)). We divide into two possible cases:

– Suppose k = ij for some 1 ≤ j ≤ l. Then α′, and hence σk−1, already satisfies
Ck(x). Therefore σk−1 also satisfies each clause Ck(x) ∨ D(zi) for any D,
and we define σk = σk−1 on the variables where σk−1 is defined. We can
define σk arbitrarily on the remaining variables of Zk.

– Suppose k 6= ij for any 1 ≤ j ≤ l. Then AZ does not contain any existential
variables in Zk so α′, and hence σk−1, are not defined on any existential
variables in Zk. Any Πb

t -relaxation of KBKFn is true, by Lemma 10. Let τk
be a strategy for the existential variables of Zk which is a winning strategy
for Q′ ·

∧m
j=1Dj(zk), and so also for Q′ ·

∧m
j=1 Ck ∨Dj(zk).

As σk−1 is not defined on any existential variables from Zk, τk and σk−1 are
strategies for disjoint sets of variables. We extend our strategy σk−1 with τk
to give σk, a winning strategy for Q′ ·

∧k
i=1

∧m
j=1(Ci(x) ∨Dj(zi)).

The final strategy σn is therefore a winning strategy for the existential vari-
ables of the Πb

t -relaxation of Φn, and σn extends the assignment α′. This suffices
to show that the relaxation of Φn[α′] is true. Since α′ extends β, the mini-
mal assignment falsifying A, with assignments to existential variables only, the
procedure detailed here will construct a winning existential strategy for any Πb

t -
relaxation of Φ[β], and so any Πb

t -relaxation of Φ[β] is true. This does not satisfy
the axiom derivation rules of relaxing QU-Res, and so A cannot be derived as
an axiom in this system. ut

12



This is enough to show that if we use relaxing QU-Res to derive an axiom
A, and AX requires at least l axioms from PHPn+1

n in any proof, then A must
contain existential variables from at least l different Zi. In particular, A contains
at least l distinct Z-variables.

The next lemma gives an upper bound for the size of Resolution proofs from
a fixed number of axioms from PHPn+1

n . This upper bound also applies to the
length of a Resolution proof of the X-clause of an axiom containing a small
number of Z-variables.

Lemma 12. Suppose C is a clause derived by Resolution from PHPn+1
n , and

there exist axioms C1, . . . , Ct from PHPn+1
n such that C1 ∧ · · · ∧ Ct |= C. Then

there is a Resolution proof of C of size at most 18t.

Combining this with Lemma 11 shows that any relaxing QU-Res axiom A for
which AX requires a large QU-Res derivation from the axioms of the pigeonhole
principle must also contain a large number of Z-variables.

Corollary 13. Let A be an axiom derived from Φn by relaxing QU-Res. Let
S(AX) be the size of the smallest Resolution derivation of AX from PHPn+1

n .
Then A must contain at least 1

log 18 logS(AX) existential Z-variables.

Proof (Lemma 12). We show that without weakening, which can be done in one
step at the end if needed, there are at most 18t clauses that can be derived by
Resolution from t axioms of PHPn+1

n . This upper bound is far from tight, but is
sufficient for the proof of Theorem 9.

Given t clauses from PHPn+1
n , all negative literals are in clauses of size 2.

Thus there are at most 2t variables xi which appear in both positive and negative
literals in the clauses C1, . . . , Ct. There remain at most t blocks Yj of pure
positive literals or pure negative literals, at most one corresponding to each Ci.
Any clause derived by Resolution from C1, . . . , Ct must contain each variable
xi as a positive literal, a negative literal or not at all, and must contain some
subset of the blocks of pure literals. Thus the total number of clauses derivable
in Resolution from C1, . . . , Ct is at most 32t ·2t = 18t. Any Resolution derivation
of C from C1, . . . , Ct therefore has size at most 18t. ut

The last result we need to prove Theorem 9 is to show that for any existential
Z-assignment α, the restriction of a proof of Φn by α results in a refutation of
(X-axioms derived from) PHPn+1

n .

Lemma 14. Given a relaxing QU-Res proof π and an assignment α to the ex-
istential Z-variables of Φn, π|Xα contains a sound Resolution refutation of the
X-axioms corresponding to axioms agreeing with α.

Proof. Consider π|α, the result of restricting π to those clauses which agree

with α. We show by induction that π|αX is a Resolution refutation from the
X-axioms, of size at most f(n).

– The empty clause is the root of the Resolution proof on the X-variables, and
clearly agrees with α.
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– Suppose a clause C is derived by a ∀-red step on a Z-variable u. Then
clearly C ∨ u agrees with α if C agrees with α, since α does not assign u.
Also CX = (C ∨ u)

X
, so this is a sound step in a Resolution refutation.

– Suppose C agrees with α and C is derived from C1 and C2 by resolving on
an X-variable x. Then CZ1 , C

Z
2 ⊆ CZ , and so both C1 and C2 agree with

α since C does so. Observe also that CX is derived from CX1 and CX2 by a
single Resolution step on x.

– Suppose C agrees with α and C is derived from C1 and C2 by resolving on a
Z-variable z. Then at least one of C1 and C2 must agree with α, depending
on the value of α(z). As CX1 , C

X
2 ⊆ CX , we can derive CX by a weakening

step from whichever agrees with the Z-assignment, or both if z is universally
quantified.

This completes our induction, and proves that the X-clauses of the clauses
in π which agree with α are a valid Resolution proof. ut

We are now ready to use these lemmas to prove our lower bound for relaxing
QU-Res.

Theorem 9. The QBFs Φn := PHPn+1
n ⊗ KBKFn require relaxing QU-Res

proofs of size 2Ω(n).

Proof. Suppose that π is a relaxing QU-Res proof of Φn with |π| = f(n). Given
an assignment α to the existential Z-variables, π|Xα is a sound Resolution refu-
tation of the X-axioms (Lemma 14), and has at most f(n) axioms. Since any
Resolution refutation of PHPn+1

n requires proofs of size at least 2kn for some
constant k, some X-axiom B in π|Xα requires a Resolution derivation of size

at least 2kn−f(n)
f(n) = 2kn

f(n) − 1. By Corollary 13, there is an axiom A in π such

that AX = B, and so A contains at least c(kn − log f(n)) =: g(n) existential
Z-variables, which agree with α.

For every assignment α to the existential Z-variables, we can find such an
axiom containing at least g(n) existential Z-variables and agreeing with a. As
each of these axioms can agree with at most a 2−g(n) proportion of the possible
assignments α, π must contain at least 2g(n) axioms. As a proof cannot contain
more axioms than its length, we conclude that 2g(n) ≤ f(n), i.e.

2ckn ≤ f(n)2c log f(n) = f(n)
c+1

and so f(n) = 2Ω(n). ut

We have shown that PHPn+1
n ⊗ KBKFn requires proofs of size 2Ω(n) in re-

laxing QU-Res, despite consisting of a propositional formula which is hard for
Resolution combined with a QBF which is easy for QU-Res.

5 An alternative definition of hardness from alternation

In this section, we define a new set of proof systems which better characterise
whether a QBF lower bound is due to the alternation of quantifiers, or due to
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a propositional lower bound. In these proof systems, PHPn+1
n ⊗ KBKFn has

linear-size proofs.

Definition 15. A Σp
k-QU-Res proof of a QBF Φ is a derivation of the empty

clause by any of the rules of QU-Res, or the Σp
k-derivation rule

C1 . . . Cl
D

for any l, where there is some Σb
k-relaxation Π ′ of the quantifier prefix Π such

that Π ′.
∧l
i=1 Ci |= Π ′.D ∧

∧l
i=1 Ci.

In the context of these proof systems, we define a Σb
k-relaxation of a quantifier

prefix as in Definition 5, i.e. any movement of universally quantified variables to
the left. We also allow replacing any ∀ quantifier by ∃. Allowing this replacement
is not necessary, but as shown in Lemma 19, it allows us to restrict our attention
to Σp

2k+1-QU-Res, eliminating the need for a similarly defined Πp
m-QU-Res.

It is straightforward to define Σp
k-P similarly for any QBF proof system P

which works with proof lines, and several of the following results will hold for
any suitable P . For simplicity, we state and prove these results only for QU-Res.

The completeness of Σp
k-QU-Res is clear since any QU-Res proof is also a

Σp
k-QU-Res proof. To demonstrate the soundness, note that QU-Res (with weak-

ening) is both sound and inferentially complete [16]. Thus we can replace any
Σp
k-derivation with a QU-Res derivation consistent with the Σb

k-relaxation. This
QU-Res derivation will therefore also be consistent with the original quanti-
fier prefix, and so from any Σp

k-QU-Res refutation, we can construct a QU-Res
refutation. Since QU-Res is known to be sound, Σp

k-QU-Res is also sound.

We can now suggest our definition of hardness due to quantifier alternation.

Definition 16. A family of QBFs is hard due to quantifier alternation if it
requires superpolynomial-size Σp

1 -QU-Res refutations.

A QBF family has alternation hardness Σp
k if it has polynomial-size proofs

in Σp
k-QU-Res, but requires superpolynomial-size proofs in Σp

k−1-QU-Res.

The proof complexity of formulas inΣp
1 -QU-Res is of particular interest, as recent

success in SAT solving has resulted in some QBF solvers embedding a SAT solver
as a black box [20,31]. The oracle access to Σp

1 models this technique, and may
provide some insight as to the power and limitations of such QBF solvers.

As noted in Section 4, the formulas PHPn+1
n ⊗KBKFn require QU-Res proofs

of size 2Ω(n) due to the lower bound on Resolution. Here we show that these
formulas have polynomial-size proofs in Σp

1 -QU-Res, even using only a single
Σp

1 -derivation, and so are not hard for QU-Res due to quantifier alternation.
This is in sharp contrast with the lower bound shown in Theorem 9 for relaxing
QU-Res, despite this proof system also making use of oracles for Σp

k .

Theorem 17. PHPn+1
n ⊗KBKFn have Σp

1 -QU-Res proofs of length O(n3).
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Proof. Define the clauses Ci and Dj such that PHPn+1
n =

∧
i Ci and KBKFn =

Π ·
∧
j Dj , and so the clauses of PHPn+1

n ⊗ KBKFn are Ci(x) ∨ Dj(zi) for all
i, j.

Since there is an O(n)-length refutation of KBKFn in QU-Res, we know that
QU-Res can derive Ci(x) from

∧
j Ci(x)∨Dj(zi) in O(n) lines. There are O(n2)

clauses Ci in PHPn+1
n , so there is a QU-Res derivation of

∧
i Ci(x) in O(n3)

lines. All the variables in x are existentially quantified, and PHPn+1
n is false,

thus from
∧
i Ci(x), the empty clause can be derived in a single Σp

1 -derivation
step. ut

Any clause derived as an axiom of Φ using a Σp
k-oracle by relaxing QU-Res

can also be derived from the clauses of Φ by a single Σp
k-derivation in Σp

k-QU-
Res. It is easy to see from this that Σp

k-QU-Res p-simulates relaxing QU-Res.
Tbeorem 17 shows an exponential separation.

In order to compare this characterisation of lower bounds by quantifier al-
ternation with the characterisation given in Section 3, we first show that Σp

1 -
QU-Res still has the same strategy extraction property as QU-Res. Analogous
results apply for C-Frege+∀-Red systems with strategy extraction in the appro-
priate circuit classes.

Lemma 18. Σp
1 -QU-Res has strategy extraction by depth-3 Boolean circuits.

Proof. QU-Res is known to have strategy extraction by depth-3 Boolean circuits
[4]. We extend this result to Σp

1 -QU-Res by showing that Σp
1 -derivations do not

contain any information on the strategy for the universal player.
From any Σp

k-QU-Res proof we can construct a QU-Res proof by replacing
the Σp

k-derivation steps with a QU-Res derivation of the clauses. This is possible
by the inferential completeness of QU-Res, and furthermore each Σp

k-derivation
can be replaced by a QU-Res derivation consistent with the Σb

k-relaxation.
In the case of Σb

1, the relaxation of the prefix treats all variables as existential.
A QU-Res proof constructed in this way, while potentially much larger than
the Σp

1 -QU-Res proof, does not contain any additional ∀-reduction steps that
were not in the Σp

1 -QU-Res proof. Strategy extraction for QU-Res constructs a
strategy which is polynomial in the number of ∀-reduction steps of the proof,
as noted in [4]. Given any Σp

1 -QU-Res proof, it is therefore possible to extract
a strategy for the universal variables as a depth-3 Boolean circuit with size
polynomial in the length of the proof. ut

As a consequence of Lemma 18, QBFs hard for QU-Res by item 1 of The-
orem 2 (hardness due to strategy extraction) are therefore still hard for Σp

1 -
QU-Res. Intuitively, we expect lower bounds due to strategy extraction to also
be lower bounds due to alternation, as strategy extraction is a technique which
inherently relies on universally quantified variables and the order of the quan-
tification.

Consider now QBFs hard for QU-Res by item 2 in Theorem 2. There are
polynomial-size strategies for the universal variables, but for all of these, the
witnessed formulas require superpolynomial-size proofs in Resolution. Using the
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normal form for proofs described in [8], we can construct short proofs of these
QBFs in Σp

1 -QU-Res, deriving the witnessed formula, and then using a Σp
1 -

derivation to derive ⊥. This demonstrates that QBFs in the second category are
not hard due to alternation of quantifiers.

For sufficiently strong proof systems, such as Frege+∀-red, these are the
only two possible reasons for hardness [8]. As Lemma 18 extends naturally to
Σp

1 -Frege+∀-red, the characterisation of hardness for QBF Frege systems in [8]
(circuit lower bounds vs propositional Frege lower bounds) therefore coincides
with our characterisation via quantifier alternation.

6 Alternation Hardness of Specific Formulas

In this section we determine the precise alternation hardness of specific families
of QBFs. We consider three different families, one from each of the categories
defined in Theorem 2. While not all formulas from the same category will neces-
sarily have the same alternation hardness, the bounds shown here reinforce the
distinctions shown in Theorem 2.

The first step in establishing the alternation hardness of these formulas is
to understand which levels are necessary to consider. Since the definition of
relaxation allows replacing universal quantifiers with existential quantifiers, we
can limit the proof systems under consideration to Σp

k-QU-Res for odd k.

Lemma 19. If a family of QBFs has proofs of size s(n) in Πp
m-QU-Res or Σp

2k-
QU-Res, then it has proofs of size n · s(n) in Σp

m−1-QU-Res or Σp
2k−1-QU-Res

respectively.
In particular, given a family of QBFs Φn, if the alternation hardness of Φn

is precisely C, then C = Σb
2k+1 for some integer k.

Proof. We begin by demonstrating that from a Πp
m-QU-Res refutation of Φn of

size s(n), we can construct a Σp
m−1-QU-Res refutation of size O(s(n)).

Consider the outermost block of universal variables in a Πb
m-relaxation. A

Σb
m−1-relaxation can be obtained by quantifying the variables in this block exis-

tentially. If a Πp
m-derivation does not derive the empty clause, then all possible

clauses derived by the Πp
m-derivation contain at least one variable quantified

existentially in the Πb
m-relaxation. Thus we can still derive the same clauses

using the Σb
m−1 relaxation, as at no point would any QU-Res proof consistent

with the Πb
m-relaxation contain a ∀-reduction step on these universal variables.

If the Πp
m-derivation does derive the empty clause, then it is possible in the

Σb
m−1-relaxation to derive a clause containing only variables which were uni-

versally quantified in the first block in the Πb
m-relaxation. As these variables

must be universally quantified in the original QBF, there is a proof using a
Σb
m−1-relaxation of size ≤ p(n) + n, which replaces the Πp

m-deduction with a
Σp
m−1-deduction and at most n ∀-reduction steps.

Given a Σb
2k-relaxation of the quantifier prefix, the innermost block of vari-

ables is universally quantified. By the definition of relaxation, these variables
must also have been innermost in the original quantifier prefix. The first step in
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a Σp
2k−1-QU-Res proof is to ∀-reduce these variables in each axiom. The Σp

2k-
QU-Res proof is then followed, with the innermost variables removed from the
clauses. At each Σp

2k-derivation, the innermost variables are not present in any
of the clauses, and so the Σb

2k-relaxation can be replaced by a Σb
2k−1-relaxation

with these variables also existentially quantified. ut

If the definition of relaxation were restricted to that of relaxing QU-Res,
then the simulation of Πp

m-QU-Res by Σp
m−1-QU-Res would not hold. With the

exception of Σp
2 -QU-Res, it would still be possible to reduce a Σp

2k-QU-Res proof
to a Σp

2k−1-QU-Res proof by moving the innermost universal variables outwards
to another block of universal quantifiers.

Lemmas 18 and 19 allow us to determine the precise alternation hardness of
QParityn, which were introduced in [6] as examples of formulas which are hard
due to strategy extraction (item 1 in Theorem 2).

Definition 20 ([6]). The formulas QParityn consist of the quantifier prefix
∃x1 . . . xn∀z∃t2 . . . tn and clauses expressing that t2 ≡ x1 ⊕ x2, tk ≡ tk−1 ⊕
xk for each 3 ≤ k ≤ n, and z ≡ ¬tn.

The QBFs are false, and the only winning strategy for the ∀ player is to play
z ≡

⊕n
i=1 xi. However, the parity function is hard to compute for depth-3 circuits

[15,19], and so any QU-Res proof requires length Ω(2n). The formulas QParityn
are therefore hard due to strategy extraction as defined in Theorem 2.

Corollary 21. The formulas QParityn have Σb
3-alternation hardness.

The fact that the formulas QParityn have Σb
3-alternation hardness shows

that they are hard for QU-Res due to the alternation of quantifiers.

Proof. It is clear that QParityn has short proofs in Σp
3 -QU-Res, as their quanti-

fier prefix is Σb
3. By Lemma 19, we need only show that QParityn does not have

polynomial size proofs in Σp
1 -QU-Res. By Lemma 18, Σp

1 -QU-Res has strategy
extraction by depth-3 circuits. Since any depth-3 circuit for the parity function
requires exponential size [15,19], any Σp

1 -QU-Res refutation of QParityn requires
exponential size. ut

It is clear that all formulas which fall into the second category of Theorem 2,
of being hard only due to a lower bound on Resolution, have polynomial-size
proofs in Σ1-QU-Res, and so have Σp

1 -alternation hardness.
The last family of QBFs we consider is KBKF′n. By Theorem 4, the formulas

KBKF′n are hard for QU-Res due to a genuine QBF lower bound. As their
hardness does not originate from a Resolution lower bound, we might expect
them to be hard due to alternation. In fact, we can go further than this and
show that the formulas KBKF′n are hard for Σp

k-QU-Res for all k.

Theorem 22. The formulas KBKF′n require proofs of size 2Ω(n) in Σp
k-QU-Res

for any constant k.
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Proof. Throughout this proof, we refer only to universal variables xi. The vari-
ables xi and zi cannot be resolved until a ∀-reduction on the other has taken
place, and both are quantified together. Thus whenever there is a ∀-reduction
step on xi, we can assume zi is also ∀-reduced, and so xi and zi appear together
with the same polarity. In the case of a relaxation of the quantifier prefix, xi
refers to the variable of xi and zi which is quantified furthest left.

QU-Res (with weakening) is implicationally complete, and so from any Σp
k-

QU-Res proof we can construct a QU-Res proof by replacing each Σk-derivation
with an appropriate series of QU-Res steps. The ∀-reduction steps replacing
a given Σp

k-derivation are consistent with some Σb
k-relaxation of the quantifier

prefix. We show a lower bound on the size of a Σp
k-QU-Res refutation of KBKF′n

by examining the QU-Res proof we obtain in this way. As all universal variables
in KBKF′n appear with another universal variable of the same polarity, at no
point can there be a resolution step on universal variables. Thus once a clause
contains a universal variable, the only way it can be removed from descendants
of this clause is by ∀-reduction.

As observed in [23], before a ∀-reduction step on any clause is possible, the
clause must contain a literal on all universal variables. Furthermore, all possible
sets of literals on all universal variables are necessary for the QU-Res refutation.
This observation can be extended to show that for the first ∀-reduction step on
xi, the clause contains literals on all previous universal literals.

Lemma 23. If a clause derived from KBKF′n contains a literal on xi, and the
derivation does not contain a ∀-reduction step on xi, then it contains yj or y′j
for some i ≤ j ≤ 2n.

A further effect of Lemma 23 is to show that whenever the first ∀-reduction
step is performed on the variable xi, the clause must contain either yi or y′i.

Now suppose that π is a Σp
k-QU-Res proof of KBKF′n. Let α be one of the 2n

possible assignments to the universal variables of KBKF′n which the universal
player may be required to play. We show that there is some clause in π which
contains at least n− k literals on universal variables and agrees with α.

Let π′ be a QU-Res proof obtained by expanding the Σp
k-derivations of π.

From the observations in [23], given an assignment α, there is some clause Cn−k ∈
π′ which is derived by a ∀-reduction step on xn−k, such that Cn−k is not preceded
by any ∀-reduction steps on x1, . . . , xn−k, and the universal literals in Cn−k agree
with α. In particular, this means that Cn−k contains literals on all universal
variables left of xn−k.

We look now at the derivation of Cn−k in π′. There must be some clause
Cn−k+1 derived by a ∀-reduction on xn−k+1 with no preceding such ∀-reduction.
Construct clauses Cn−k+2, . . . , Cn. Consider now the path through π′ from Cn
to Cn−k through each Ci. Since Cn contains literals on all universal variables,
and the universal literals of Cn−k agree with α, all clauses on this path must
contain literals on x1, . . . , xn−k−1 agreeing with α.

We show that at least one clause in this path must also be in π. If this were
not the case, then Cn, . . . , Cn−k are all in the expansion of a single Σp

k-derivation.
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By the choice of Ci, each Ci contains a literal on yi or y′i by Lemma 23. The
derivation of Ci by a ∀-reduction is therefore only possible if the corresponding
Σb
k-relaxation quantifies xi universally and to the right of yi, y

′
i. However if this

were the case for each n − k ≤ i ≤ n, the relaxation would require at least 2k
alternations of quantifiers. Thus there is some clause D on the path from Cn to
Cn−k such that D ∈ π and D contains literals on x1, . . . , xn−k−1 agreeing with
α.

There are 2n−k−1 possible assignments to x1, . . . , xn−k−1 that α could define,
and for each there is a clause in π which contains literals on all of these variables
agreeing with α. The size of any Σp

k-QU-Res proof is therefore at least 2Ω(n). ut

Proof (Lemma 23). No resolution steps on xi are possible, so assume that the
literal on xi is a positive literal. The case for ¬xi is similar.

Suppose that the axiom introducing xi is xi∨yn+i. In this case, all existential
variables are quantified to the right of xi. No resolution steps on universal pivots
are possible, and the only axiom which contains existential variables quantified
both sides of xi is y′i∨xi∨¬yi+1∨y′i+1. We can therefore assume that the literal
xi is introduced by this axiom.

Consider a clause derived from y′i ∨ xi ∨ ¬yi+1 ∨ ¬y′i+1. The only axioms
which contain the literal ¬y′i also contain ¬yi. The only axiom containing yi also
contains ¬xi. Given a clause C containing xi, derived from y′i∨xi∨¬yi+1∨¬y′i+1

without any ∀-reduction steps on xi, it cannot also be derived from yi ∨ ¬xi ∨
¬yi+1 ∨ ¬y′i+1, as then C would contain both xi and ¬xi. Therefore, C must
contain a literal on yi or y′i. ut

7 Conclusion

We have undertaken an analysis of strategies and alternation as underlying rea-
sons for the size of proofs in QBF proof systems. In the search for ‘genuine’ QBF
lower bounds, these are the two characterisations which have received the most
attention. We have shown that, for sufficiently strong proof systems (Frege and
above), these two criteria are equivalent, and proposed a system for which all
lower bounds are such proper QBF lower bounds.

A natural question is whether for weaker Resolution-based systems, QBFs
from the third category of Theorem 2 are always hard due to alternation. Here
we have only shown this for the special case of KBKF′n. We also leave open the
question of finding formulas which have alternation hardness precisely Σb

k for
odd k > 3.
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A Chen’s lower bound for relaxing QU-Res

Define Ψn = Qn · ψn to be the quantified Boolean circuit consisting of the
quantifier prefix Qn := ∃x1∀y1 . . . ∃xi∀yi . . . ∃xn∀yn and a (polynomial-sized)
Boolean circuit ψn defined such that

ψn ↔
n∑
i=1

(xi + yi) 6≡ 0 mod 3.

The quantified Boolean circuits Ψn then provide a lower bound for relaxing QU-
Res.

Theorem 24 (Chen [11]). Relaxing QU-Res requires proofs of size Ω(2n) on
Ψn.

Lines in the relaxing QU-Res proof system are clauses, however there is no
polynomial-size CNF equivalent to ψn.

Lemma 25. Any CNF φn(x,y) equivalent to ψn(x,y) must contain Ω(2n)
clauses.

Proof. The circuit ψn has 2n input variables. For any assignment to 2n − 1 of
these, the corresponding restriction of the circuit is not equivalent to 0. Any
clause in an equivalent CNF must therefore contain literals on all 2n variables.

For each clause C in φn, there is therefore a unique assignment to x,y which
falsifies C. As each of the Ω(2n) assignments on which ψn evaluates to 0 must
falsify a clause, φn must contain Ω(2n) clauses. ut
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