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Abstract

One of the prominent current challenges in complexity theory is the attempt to
prove lower bounds for T C0, the class of constant-depth, polynomial-size circuits with
majority gates. Relying on the results of Williams (2013), an appealing approach to
prove such lower bounds is to construct a non-trivial derandomization algorithm for
T C0. In this work we take a first step towards the latter goal, by proving the first
positive results regarding the derandomization of T C0 circuits of depth d > 2.

Our first main result is a quantified derandomization algorithm for T C0 circuits with a
super-linear number of wires. Specifically, we construct an algorithm that gets as input
a T C0 circuit C over n input bits with depth d and n1+exp(−d) wires, runs in almost-
polynomial-time, and distinguishes between the case that C rejects at most 2n1−1/5d

inputs and the case that C accepts at most 2n1−1/5d
inputs. In fact, our algorithm works

even when the circuit C is a linear threshold circuit, rather than just a T C0 circuit (i.e.,
C is a circuit with linear threshold gates, which are stronger than majority gates).

Our second main result is that even a modest improvement of our quantified deran-
domization algorithm would yield a non-trivial algorithm for standard derandomization
of all of T C0, and would consequently imply that NEXP 6⊆ T C0. Specifically, if
there exists a quantified derandomization algorithm that gets as input a T C0 circuit
with depth d and n1+O(1/d) wires (rather than n1+exp(−d) wires), runs in time at most
2nexp(−d)

, and distinguishes between the case that C rejects at most 2n1−1/5d
inputs and the

case that C accepts at most 2n1−1/5d
inputs, then there exists an algorithm with running

time 2n1−Ω(1)
for standard derandomization of T C0.
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1 Introduction

The standard problem of derandomization of a circuit class C is the following: Given a
circuit C ∈ C, deterministically distinguish between the case that the acceptance prob-
ability of C is at least 2/3 and the case that the acceptance probability of C is at most
1/3. When C = P/poly, this problem can be solved in polynomial time if and only if
promise-BPP = promise-P . However, at the moment we do not know how to solve the
problem in polynomial time even if C is the class of polynomial-sized CNFs.

The derandomization problem for a circuit class C is tightly related to lower bounds
for C. Relying on the classic hardness-randomness paradigm [Yao82, BM84, NW94], suffi-
ciently strong lower bounds for a class C imply the existence of pseudorandom generators
with short seed for C (which allow to derandomize C; see, e.g., [AB09, Chp. 20], [Gol08,
Chp. 8.3]). On the other hand, the existence of a non-trivial derandomization algorithm for
a circuit class C typically implies weak lower bounds for C. Specifically, for many specific
classes C (e.g., C = P/poly), the existence of a derandomization algorithm for C running in
time 2n/nω(1) implies that NEXP 6⊆ C (see [Wil13, SW13], which build on [IW98, IKW02]);
and for essentially any class C of polynomial-sized circuits, the existence of such a deran-
domization algorithm implies that ENP 6⊆ C (see, e.g., [BV14, Thm. 1.4]).

Following Williams’ proof that ACC does not contain NEXP [Wil11], one of the promi-
nent current challenges in complexity theory is the attempt to prove similar lower bounds
for the complexity class T C0 (i.e., the class of constant-depth, polynomial-sized circuits
with majority gates, which extends ACC). Even after extensive efforts during the last few
decades (and with renewed vigor recently), the best-known lower bounds for T C0 are for
functions that require a slightly super-linear number of wires (e.g., the parity function), or a
linear number of gates (see Section 2 for further details).

Since derandomization algorithms imply lower bounds in general, an appealing ap-
proach to prove lower bounds for T C0 is to construct a non-trivial derandomization al-
gorithm for this class. Moreover, Santhanam and Williams [SW13] proved that non-trivial
derandomization of T C0 would separate T C0 from NEXP (and not just from ENP ). Ac-
cordingly, the problem of derandomizing T C0 was recently suggested as a central open
problem both by Williams [Wil14] and by Aaronson [Aar17]. 1

A first step towards tackling this problem was recently undertaken by Servedio and
Tan [ST17], who considered the problem of derandomizing T C0 circuits of depth two; we
describe their results in Section 2.2. In this work we take one step further, by proving the
first positive results regarding the derandomization of T C0 circuits of any constant depth d ≥ 2.
As far as we know, the current work is the first to study the problem of derandomizing
T C0 circuits of depth larger than two.

1.1 Our results

Our two main results lie within the framework of quantified derandomization. Quantified de-
randomization, which was introduced by Goldreich and Wigderson [GW14], is the relaxed
derandomization problem of distinguishing between a circuit that accepts 1− o(1) of its
inputs and a circuit that rejects 1− o(1) of its inputs (where the 1− o(1) term replaces the
original 2/3 term in standard derandomization).

On the one hand, this relaxation potentially allows to construct more efficient deran-
domization algorithms. But on the other hand, the standard derandomization problem

1See the first open problem in the Conclusions section in [Aar17], and Section 4.2 in [Wil14].
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can be reduced to quantified derandomization, by applying strong error-reduction within the
relevant circuit class (such that a circuit with acceptance probability 2/3 is transformed
to a circuit with acceptance probability 1− o(1)). Of course, a main goal underlying this
approach is to reduce standard derandomization to a parameter setting for which we are
able to construct a corresponding algorithm for quantified derandomization.

1.1.1 A quantified derandomization algorithm

Our first result is a quantified derandomization algorithm for T C0 circuits with a slightly super-
linear number of wires. Loosely speaking, we construct an algorithm that gets as input a
T C0 circuit C over n input bits of depth d with n1+exp(−d) wires, runs in almost-polynomial-
time, and distinguishes between the case that C accepts all but B(n) = 2n1−1/O(d)

of its inputs
and the case that C rejects all but B(n) of its inputs.

Our quantified derandomization algorithm works not only for T C0, but also for the
class of linear threshold circuits. While in T C0 circuits each gate computes the majority
function, in linear threshold circuits each gate computes a linear threshold function (i.e., a
function of the form g(x) = sgn

(
∑i∈[n] wi · xi − θ

)
, for w ∈ Rn and θ ∈ R; see Section 4.2

for definitions). Towards stating our first result, denote by Cn,d,w the class of linear threshold
circuits over n input bits of depth d and with at most w wires.

Theorem 1.1 (quantified derandomization of linear threshold circuits). There exists a deterministic
algorithm that, when given as input a circuit C ∈ Cn,d,n1+2−10d , runs in time nO(log log(n))2

, and
satisfies the following:

1. If C accepts all but at most B(n) = 2n1−1/5d
of its inputs, then the algorithm accepts C.

2. If C rejects all but at most B(n) = 2n1−1/5d
of its inputs, then the algorithm rejects C.

Observe that as d grows larger, the algorithm in Theorem 1.1 solves a more difficult
derandomization task (since B(n) is larger), but only has to handle circuits with fewer
wires (i.e., n1+exp(−d)). Also note that the algorithm in Theorem 1.1 is “whitebox”: That
is, the algorithm gets as input an explicit description of a specific linear threshold circuit C,
and uses this description when estimating the acceptance probability of C. 2 The actual
algorithm that we construct works for a more general parameter regime, which exhibits
a trade-off between the number B(n) = 2n1−δ

of exceptional inputs for C and the number
n1+δ·exp(−d) of wires of C (see Theorem 5.1 for a precise statement).

The limitation on the number of wires of C in Theorem 1.1 (i.e., n1+exp(−d)) essentially
matches the best-known lower bounds for linear threshold circuits (see Section 2.1 for details).
This is no coincidence: Our algorithm construction follows a common theme in the design
of circuit-analysis algorithms (e.g., derandomization algorithms or algorithms for satisfia-
bility), which is the conversion of techniques that underlie lower bound proofs into algo-
rithmic techniques (see, e.g., [Wil14]). In this case, we observe that certain proof techniques
for correlation bounds for a circuit class C can yield algorithmic techniques for quantified
derandomization of C (see Section 3.1.1). In particular, to construct the algorithm in The-
orem 1.1, we leverage the techniques underlying the recent proof of Chen, Santhanam,
and Srinivasan [CSS16] of correlation bounds for linear threshold circuits. A high-level
description of our algorithm appears in Section 3.1.

2The algorithm in Theorem 1.1 works in any reasonable model of explicitly representing linear threshold
circuits; see Section 4.2 for a brief discussion.
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1.1.2 A reduction of standard derandomization to quantified derandomization

Our second result reduces the standard derandomization problem of T C0 to the quantified
derandomization problem of T C0 circuits with a super-linear number of wires. In fact, we
show that even a modest improvement of Theorem 1.1 would yield a non-trivial algorithm
for standard derandomization of all of T C0.

Theorem 1.2 (a reduction of standard derandomization to quantified derandomization). Assume
that there exists a deterministic algorithm that, when given as input a circuit C ∈ Cn,d,n1+O(1/d) , runs

in time at most T(n) = 2n1/4d
, and for the parameter B(n) = 2n1−1/5d

satisfies the following: If C
accepts all but at most B(n) of its inputs then the algorithm accepts C, and if C rejects all but at
most B(n) of its inputs then the algorithm rejects C.

Then, there exists an algorithm that for every k ∈ N and d ∈ N, when given as input a circuit
C ∈ Cm,d,mk , runs in time 2m1−Ω(1)

, and satisfies the following: If C accepts at least 2/3 of its inputs
then the algorithm accepts C, and if C rejects at least 2/3 of its inputs then the algorithm rejects C.

The gap between the algorithm constructed in Theorem 1.1 and the algorithm assumed
in the hypothesis of Theorem 1.2 is very small: Specifically, the algorithm in Theorem 1.1
works when the number of wires in the input circuit C is n1+exp(−d), whereas the algorithm
in the hypothesis of Theorem 1.2 is required to work when the number of wires is n1+O(1/d).
Moreover, Theorem 1.2 holds even if this improvement (in the number of wires) comes at
the expense of a longer running time; specifically, the conclusion of Theorem 1.2 holds even
if the algorithm runs in (sufficiently small) sub-exponential time.

As mentioned in the beginning of Section 1, a non-trivial derandomization of T C0

implies lower bounds for this class. Specifically, combining Theorem 1.2 with a recent
result of Santhanam and Williams [SW13, Thm 1.5], we obtain the following corollary:

Corollary 1.3 (quantified derandomization implies lower bounds for T C0). Assume that there
exists a deterministic algorithm as in the hypothesis of Theorem 1.2. Then, NEXP 6⊆ T C0.

The result that we actually prove is stronger and more general than the one stated in
Theorem 1.2 (see Theorem 6.10). First, the result holds even if we limit ourselves only
to the class T C0, rather than to the class of linear threshold circuits (i.e., if we interpret
the class Cn,d,nk as the class of T C0 circuits over n inputs of depth d and with nk wires).
And secondly, the hypothesis of the theorem can be modified via a trade-off between the
number of exceptional inputs in the circuit C and the number of wires of C.

The proof of Theorem 1.2 is based on developing a very efficient method for error-
reduction within T C0. Loosely speaking, we construct a seeded extractor (equivalently,
an averaging sampler) that gets n input bits, outputs n.01 bits, works for min-entropy n.99,
has seed length t = 1.01 · log(n), and satisfies the following: There exists a T C0 circuit
that gets input x ∈ {0, 1}n and outputs the 2t evaluations of the extractor with input x
on all seeds (i.e., outputs the n1.01 strings {E(x, z)}z∈{0,1}t ) using only a super-linear num-
ber of wires. As far as we know, this is the first construction of a seeded extractor that
is specific to T C0; the construction extends the study of randomness extraction in weak
computational models, which has so far focused on AC0, on AC0[⊕], and on streaming al-
gorithms [BYRST02, Vio05, Hea08, GVW15, CL16]. The extractor construction is described
in high-level in Section 3.2, and a precise statement appears in Proposition 6.9.
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1.1.3 Restrictions for sparse T C0 circuits: A potential path towards NEXP 6⊆ T C0

Recall that the best-known lower bounds for T C0 circuits of arbitrary constant depth d are
for circuits with n1+exp(−d) wires. Our results imply that a certain type of analysis of T C0

circuits with only n1+O(1/d) wires, which is common when proving correlation bounds (i.e.,
average-case lower bounds), might suffice to deduce a lower bound for all of T C0.

Specifically, a common technique to prove correlation bounds for a circuit C is the
“restriction method”, which (loosely speaking) consists of proving the existence of certain
subsets of the domain on which C “simplifies” (i.e., C agrees with a simpler function on the
subset; see Section 3.1.1 for a detailed description). We pose the following open problem:
Construct a deterministic algorithm that gets as input a T C0 circuit C with n1+O(1/d) wires,
runs in sufficiently small sub-exponential time, and finds a subset S of size larger than
2n1−1/5d

such that the acceptance probability of C�S can be approximated in sufficiently small
sub-exponential time (see Open Problem 1 in Section 7 for a precise statement). In Section 7
we show that a resolution of the foregoing problem would imply that NEXP 6⊆ T C0.

1.2 Organization

In Section 2 we provide some useful background on T C0 circuits, on linear threshold cir-
cuits, and on lower bounds and derandomization algorithms for such circuits. We also
include some background on quantified derandomization.

In Section 3 we give high-level overviews of the proofs of Theorems 1.1 and 1.2. After
presenting preliminary formal definitions in Section 4, we prove Theorem 1.1 in Section 5
and Theorem 1.2 in Section 6. Finally, in Section 7 we pose the open problem that was
mentioned in Section 1.1.3.

2 Background and previous work

A linear threshold function (or LTF, in short) Φ : {−1, 1}n → {−1, 1} is a function of the
form Φ(x) = sgn(〈x, w〉 − θ), where w ∈ Rn is a vector of real “weights”, and θ ∈ R

is a real number (the “threshold”), and 〈x, w〉 = ∑i∈[n] xi · wi denotes the standard inner-
product over the reals. Indeed, the majority function is the special case where the weights
are identical (e.g., wi = 1 for all i ∈ [n]) and the threshold is zero (i.e., θ = 0).

Recall that T C0 is the class of constant-depth, polynomial-sized circuits with majority
gates. A common theme in the study of T C0 is the use of an equivalent definition for
the class, in which each gate in the circuit computes an LTF. We will use the name linear

threshold circuits to denote constant-depth, polynomial-sized circuits with LTF gates. For
some fixed sizes and depths, linear threshold circuits are known to be stronger than circuits
with majority gates; however, linear threshold circuits can be simulated by circuits with
majority gates with a polynomial size overhead and with one additional layer (see [GHR92,
GK98]). Thus, the class T C0 as a whole equals the class of linear threshold circuits.

2.1 Lower bounds for linear threshold circuits

The best-known lower bounds for computing explicit functions by linear threshold circuits
of a fixed small depth have been recently proved by Kane and Williams [KW16]. Specifi-
cally, they showed that any depth-two linear threshold circuit computing Andreev’s func-
tion requires Ω̃(n3/2) gates and Ω̃(n5/2) wires. They also showed correlation bounds (i.e,.
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average-case lower bounds with respect to the uniform distribution) for such circuits with
Andreev’s function. Extending their worst-case lower bounds to depth three, they proved
that any depth-3 circuit with a top majority gate that computes a specific polynomial-time
computable function also requires Ω̃(n3/2) gates and Ω̃(n5/2) wires (the “hard” function is
a modification of Andreev’s function).

For linear threshold circuits of arbitrary constant depth d ≥ 2, the best-known lower
bounds on the number of wires required to compute explicit functions are only slightly
super-linear. Specifically, Impagliazzo, Paturi, and Saks [IPS97] proved that any linear
threshold circuit of depth d requires at least n1+exp(−d) wires to compute the parity function;
Chen, Santhanam, and Srinivasan [CSS16] strengthened this by showing correlation bounds
for such circuits with parity (as well as with the generalized Andreev function). These
lower bounds for parity are essentially tight, since Beame, Brisson, and Ladner [BBL92]
(and later [PS94]) constructed a linear threshold circuit with n1+exp(−d) wires that computes
parity. We also mention that linear lower bounds on the number of linear threshold gates
required to compute explicit functions (e.g., the inner-product function) have been proved
in several works during the early ‘90s, and these gate lower bounds apply even for circuits
of unrestricted depth (see [Smo90, GT91, ROS94, Nis93]).

2.2 Derandomization of LTFs and of functions of LTFs

There has been an intensive effort in the last decade to construct pseudorandom generators
for a single linear threshold function. This problem was first considered by Diakonikolas et
al. [DGJ+10], and the current state-of-the-art, following [MZ13, Kan11, Kan14, KM15], is the
pseudorandom generator of Gopalan, Kane, and Meka [GKM15], which ε-fools any LTF
with n input bits using a seed of length Õ(log(n/ε)). Harsha, Klivans, and Meka [HKM12]
considered a conjunction of linear threshold functions, and constructed a pseudorandom
generator for a subclass of such functions (i.e., for a conjunction of regular LTFs; see Sec-
tion 4.2 for a definition). Gopalan et al. [GOWZ10] constructed pseudorandom generators
for small decision trees in which the leaves are linear threshold functions.

Very recently, Servedio and Tan [ST17] considered the problem of derandomizing lin-
ear threshold circuits. For every ε > 0, they constructed a pseudorandom generator that
1/poly(n)-fools any depth-2 linear threshold circuit with at most n2−ε wires, using a seed of
length n1−δ, where δ = δε > 0 is a small constant that depends on ε. This yields a deran-
domization of depth-2 linear threshold circuits with n2−ε wires in time 2n1−Ω(1)

.

2.3 Quantified derandomization

The quantified derandomization problem, which was introduced by Goldreich and Wigder-
son [GW14], is a generalization of the standard derandomization problem. For a circuit
class C and a parameter B = B(n), the (C, B)-derandomization problem is the following:
Given a description of a circuit C ∈ C over n input bits, deterministically distinguish be-
tween the case that C accepts all but B(n) of its inputs and the case that C rejects all but
B(n) of its inputs. Indeed, the standard derandomization problem is represented by the
parameter value B(n) = 1

3 · 2n. Similarly to standard derandomization, a solution for the
quantified derandomization problem of a class C via a “black-box” algorithm (e.g., via a
pseudorandom generator) yields a corresponding lower bound for C (see Appendix A).

Prior to this work, quantified derandomization algorithms have been constructed for
AC0, for subclasses of AC0[⊕], for polynomials over F2 that vanish rarely, and for a sub-
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class of MA. On the other hand, reductions of standard derandomization to quantified
derandomization are known for AC0, for AC0[⊕], for polynomials over large finite fields,
and for the class AM (both the algorithms and the reductions appear in [GW14, Tel17]). In
some cases, most notably for AC0, the parameters of the known quantified derandomiza-
tion algorithms are very close to the parameters of quantified derandomization to which
standard derandomization can be reduced (see [Tel17, Thms 1 & 2]).

3 Overviews of the proofs

3.1 A quantified derandomization algorithm for linear threshold circuits

The high-level strategy of the quantified derandomization algorithm is as follows. Given
a circuit C : {−1, 1}n → {−1, 1}, the algorithm deterministically finds a set S ⊆ {−1, 1}n

of size |S| � B(n) on which the circuit C simplifies; that is, C agrees with a function
from some “simple” class of functions on almost all points in S. If C accepts all but B(n)
of its inputs, then the acceptance probability of C�S will be very high, and similarly, if C
rejects all but B(n) of its inputs, then the acceptance probability of C�S will be very low.
The algorithm then distinguishes between the two cases, by enumerating the seeds of a
pseudorandom generator for the “simple” class of functions.

3.1.1 Quantified derandomization, correlation bounds, and the restriction method

When using the foregoing strategy, the main challenge is to deterministically find a suitable
set S. The key observation that allows us to do so is that there exists a connection between
quantified derandomization and certain proof techniques that are common when proving correlation
bounds (i.e., average-case lower bounds). This connection is implicit in [GW14, Tel17]), and
we now explain the connection, in general.

A common technique to prove correlation bounds of a circuit C : {−1, 1}n → {−1, 1}
with some “hard” function f can be called the restriction method: This method consists of
showing the existence of a “uniform” cover S1, ..., Sm of {−1, 1}n (i.e., a collection of subsets
covering {−1, 1}n such that every point is covered the same number of times) such that for
almost all i ∈ [m] it holds that C�Si

can be computed (or approximated) by a function from
some “simple” class Csimple, and that functions in Csimple have a poor correlation with f on
Si. (The cover S1, ..., Sm may depend on the specific circuit C.)

Two crucial points when proving correlation bounds using the restriction method are
that the sets Si will be as large as possible, and that the functions in the class Csimple will
be as simple as possible (these two points are typically useful in order to deduce that
functions in Csimple have a poor correlation with f on Si). Similarly, two analogous goals
are also crucial when using the strategy for quantified derandomization that was described
above: In quantified derandomization we also want that the set S will be as large as possible
(in order to maximize B(n)) and that C�S will be as “simple” as possible (to “fool” it using
a pseudorandom generator with short seed).

The key difference between the two settings is that in quantified derandomization, we
only need one suitable set S, and we need an algorithm that deterministically and efficiently
finds the set S. Thus, leveraging a proof that uses the restriction method to a quantified de-
randomization algorithm calls for efficient “derandomization”; that is, for the construction
of a deterministic algorithm that efficiently finds a suitable set S = Si.
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3.1.2 Derandomizing the restriction algorithm of [CSS16]

To obtain our quantified derandomization algorithm for linear threshold circuits, we lever-
age the techniques that underlie the recent correlation bounds of Chen, Santhanam, and
Srinivasan [CSS16]. In their argument there is an implicit randomized “whitebox” algorithm
that gets as input a depth-d linear threshold circuit, and gradually transforms it to a single
linear threshold function, by restricting more and more variables and iteratively reducing
the depth of the circuit. We call this algorithm a restriction algorithm; our main task is thus
to efficiently derandomize the restriction algorithm of [CSS16]. 3

Let us now describe both how the restriction algorithm works and how we are able to
derandomize it. We begin with the main structural lemma that underlies the algorithm,
which (loosely speaking) asserts that any single LTF is likely to become very biased under
a random restriction.

Derandomizing the main structural lemma of [CSS16]. Let Φ = (w, θ) be an LTF over
n input bits, and consider a random restriction ρ that keeps each variable alive with prob-
ability p = n−Ω(1). Peres’ theorem (see, e.g., [O’D14, Sec. 5.5]) implies that the expected
distance of Φ�ρ from a constant function is approximately

√
p. 4 The main structural lemma

in [CSS16] shows a concentration of measure for this distribution; specifically, their result
asserts that with probability at least 1− pΩ(1) it holds that Φ�ρ is exp(−p−Ω(1))-close to a
constant function.

As a first step towards proving our theorem, we prove that this result holds also when
the restriction is chosen pseudorandomly, rather than uniformly. Along the way, we also
refine the quantitative bound in the original result. As an illustrative example, consider
the majority function Φ(x) = sgn(∑i∈[n] xi). In this case, for any t ≥ 1, with probability
roughly 1− t · √p it holds that Φ�ρ is exp(−t2)-close to a constant function (see Fact 5.3).
We construct a distribution over restrictions that can be sampled using Õ(log(n)) random
bits such that for any LTF Φ, and any t ≥ p−1/8, with probability at least 1− Õ(t2) · √p
it holds that Φ�ρ is exp(−t2)-close to a constant function. (The actual statement that we
prove is more general; see Proposition 5.8 for exact details.)

A high-level technical description of the proof appears in Section 5.1.1. Let us now
briefly mention a few key ideas in the original proof and in our derandomized version.
We say that an LTF Φ = (w, θ) is t-balanced if |θ| ≤ t · ‖w‖2; indeed, if an LTF is not
t-balanced, then it is exp(−t2)-close to a constant function (by Hoeffding’s inequality).
Therefore, to show that a restricted LTF Φ�ρ is exp(−t2)-close to a constant function, with
high probability, it suffices to show that Φ�ρ is not t-balanced, with high probability.

Denote by I ⊆ [n] the set of variables that the restriction ρ keeps alive, and by z[n]\I ∈
{−1, 1}[n]\I the values that ρ assigns to the fixed variables. Then, the restricted function is
of the form Φ�ρ =

(
wI , θ −

〈
w[n]\I , z[n]\I

〉)
, and the restricted function is t-balanced if and

only if the sum
〈

w[n]\I , z[n]\I

〉
falls in the interval θ ± 2t · ‖wI‖2; the proof boils down to

showing that the sum
〈

w[n]\I , z[n]\I

〉
is unlikely to fall in an interval of length O(t · ‖wI‖2).

The original proof of [CSS16] relied on a technical case analysis that is reminiscent of case

3We mention that in [CSS16, Sec. 5] this restriction algorithm is used to construct a randomized algorithm
for satisfiability of sparse linear threshold circuits.

4Peres’ theorem is usually phrased in terms of the noise sensitivity of Φ, but the latter is propotional to its
expected bias under a random restriction; for further details see [CSS16, Prop. 8].
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analyses in several previous proofs regarding LTFs (e.g., in [Ser07, DGJ+10]), and is based
on the notion of a critical index of a vector w ∈ Rn (see Definitions 4.3 and 4.4).

To construct a pseudorandom distribution of restrictions for which the lemma still
holds we rely on two main observations. We say that a distribution z over {−1, 1}n is
ε-pseudorandomly concentrated if for any w ∈ Rn and any interval J ⊆ R, the probability
that 〈w, z〉 falls in J is ε-close to the probability that 〈w, un〉 falls in J (where un is the
uniform distribution over {−1, 1}n). Our first observation is that the original case analysis
of [CSS16] can be modified such that the analysis only relies on the following properties of the
distribution of restrictions: For ε = 1/poly(n), the distribution of variables to keep alive is
ε-almost O(log(1/ε))-wise independent, the distribution of values for the fixed variables
is ε-pseudorandomly concentrated, and we sample from these two distributions indepen-
dently. The second observation is that being ε-pseudorandomly concentrated is essentially
equivalent to being ε-pseudorandom for LTFs (see Claim 4.11). 5 Thus, we can choose val-
ues for the fixed variables using known pseudorandom generators for LTFs; we will use
the generator of Gopalan, Kane, and Meka [GKM15], which has seed length Õ(log(n/ε)).

Lifting the derandomized structural lemma to a restriction algorithm. The next step is
to use the derandomized structural lemma in order to iteratively reduce the depth of a
linear threshold circuit, until we obtain a single linear threshold function. Since this part of
our argument is very similar to the corresponding part in [CSS16], let us now only briefly
explain how to do so; full details appear in Section 5.1.2.

Consider the bottom layer of gates in a depth-d circuit (we indeed assume that the
circuit is layered; see Section 4.2). We restrict the variables using the lemma above with the
parameters p = nΩ(1) and t = p−Ω(1). With high probability, after the restriction, 1− n−Ω(1)

of the gates become very close to constants; we replace these gates by the corresponding
constants, and obtain a circuit that almost always agrees with the original circuit. As for
the n−Ω(1) fraction of gates that did not become close to constants, the expected number
of wires incoming into such gates after the restriction is small (since there are few such
gates, and the fan-in of each gate is expected to decrease by a factor of p, and the initial
number of wires in the circuit is small). In particular, one can show that it is possible to
apply an additional restriction that keeps n1−Ω(1) live variables and decreases the fan-in of
each living gate to be at most one (see the proof of Proposition 5.9). After this additional
restriction, we can simply replace each living gate in the bottom layer by the corresponding
variable, and reduce the depth of the circuit by one. Iterating this construction d− 1 times,
we obtain a circuit of depth one, which is just a linear threshold function.

Preserving the closeness of the circuit to its approximations. There remains a key chal-
lenge in the above approach that is subtle and that we have not addressed yet. In the
argument above, whenever we reduce the depth of the circuit C, we actually replace the
circuit by another circuit C̃ that approximates C (this happens when we replace the gates
that became close to constants by the corresponding constants). The circuit C̃ disagrees
with C on at most 2n−nΩ(1)

points, where n is the number of living variables. However, in
subsequent iterations (when we further reduce the depth of the circuit) we fix additional
variables, such that the number of points in the final subcube (i.e., 2n1−Ω(1)

) is much smaller
than the number of points on which C and C̃ potentially disagree. This implies that C and
C̃ might not be close at all in the final subcube.

5This observation was communicated to us by Rocco Servedio, and is attributed to Li-Yang Tan.
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We thus want to choose all our restrictions such that with high probability C and C̃
will remain close even after applying the restriction. In fact, we will choose each restriction
ρ such that the following holds: For every gate Φ that was replaced by a constant σ ∈
{−1, 1}, with high probability it holds that Φ�ρ is still 1

poly(n) -close to σ (the claim that

C and C̃ remain close with high probability follows by a union-bound on the gates). To
do so, for any fixed choice of a set I ⊆ [n] of variables to keep alive, we will choose the
values for the fixed variables from a distribution that “fools” a test that checks whether or not
Φ�ρ ≈ σ. That is, consider a test T that gets as input values z ∈ {−1, 1}[n]\I for the fixed
variables, and decides whether or not Φ remains close to σ in the subcube corresponding
to ρ = ρI,z. Observe that when z is chosen uniformly, then Φ�ρ remains close to σ, with
high probability; thus, any distribution over {−1, 1}[n]\I that is pseudorandom for T also
yields, with high probability, values z ∈ {−1, 1}[n]\I such that Φ�ρI,z

remains close to σ.
A deterministic test T for the task above might be very inefficient, since it needs to

evaluate Φ on all points in the subcube corresponding to ρ = ρI,z (and thus we might
not be able to construct a pseudorandom generator with short seed to “fool” the test). To
overcome this challenge, we use the following general technique that was introduced in
our previous work [Tel17], which is called randomized tests.

Loosely speaking, a lemma from our previous work implies the following: Assume that
there exists a distribution T over tests {−1, 1}[n]\I → {−1, 1} such that for every fixed input
z for which Φ�ρI,z

is very close to σ it holds that T(z) = 1, with high probability, and for
every fixed input z for which Φ�ρI,z

is far from σ it holds that T(z) = 0, with high probability.
That is, the distribution T constitutes a “randomized test” that distinguishes, with high
probability, between “excellent” z’s (such that Φ�ρI,z

is very close to σ) and “bad” z’s (such
that Φ�ρI,z

is far from σ). Also assume that almost all tests T : {−1, 1}[n]\I → {−1, 1} in the
support of T are “fooled” by a pseudorandom generator G. Then, with high probability
over choice of seed for the pseudorandom generator G, the generator outputs z such that
Φ�ρI,z

is not far from σ (see Lemma 5.12 for a precise and general statement). The main
point is that the distribution T, which may have very high entropy, is only part of the analysis;
the actual algorithm that generates z is simply the pseudorandom generator G.

The distribution T that we will use is equivalent to the following random process: Given
z ∈ {−1, 1}[n]\I , uniformly sample poly(n) points in the subcube corresponding to ρI,z, and
accept z if Φ evaluates to the constant σ on all the sample points. We show that any distri-
bution that is (1/poly(n))-pseudorandom for LTFs is also (1/poly(n))-pseudorandom for
almost all tests in the support of the distribution T (see the proof of Lemma 5.13). Thus,
if whenever we fix variables we choose their values them according to a distribution that
is (1/poly(n))-pseudorandom for LTFs, with high probability the approximating circuit C̃
will remain close to the original circuit C after applying the restriction.

3.2 Reduction of standard derandomization to quantified derandomization

Given a T C0 circuit C of depth d over m input bits, our goal is to construct a T C0 circuit
C′ of depth d′ > d over n = poly(m) input bits such that if C accepts (resp., rejects) at
least 2/3 of its inputs then C′ accepts (resp., rejects) all but B(n) = 2n0.99

of its inputs. 6

The circuit C′ will use its input in order to sample inputs for C by a seeded extractor, and
then compute the majority of the evaluations of C on these inputs. Specifically, fixing an

6Throughout the overview we will be somewhat informal with respect to the precise parameter values, e.g.
we will use the value B(n) = 2n0.99

instead of the more precise B(n) = 2n1−1/5d
.
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extractor E : {0, 1}n × {0, 1}t → {0, 1}m, the circuit C′ gets input x ∈ {0, 1}n, and outputs
the majority of the values {C(E(x, z)) : z ∈ {0, 1}t}.

The main technical challenge underlying this strategy is to construct an extractor E such
that the mapping of input x ∈ {0, 1}n to the 2t outputs of the extractor on all seeds (i.e.,
the mapping x 7→ {E(x, z)}z∈{0,1}t ) can be computed by a T C0 circuit with as few wires as
possible. Specifically, the number of output bits of this T C0 circuit is 2t · m ≈ n1.01, and
we want that the number of wires in the circuit will also be super linear (i.e., only slightly
larger than n1.01). Indeed, a crucial point in our construction is that we will efficiently
compute the outputs of the extractor on all seeds in a “batch”, rather than compute the
extractor separately for each seed.

3.2.1 Our starting point: A construction of C′ with n3.01 wires

As our starting point, let us construct a suitable circuit C′ that has n3.01 wires and relies
on Trevisan’s extractor [Tre01]. Given an input x ∈ {0, 1}n and seed z ∈ {0, 1}t, Trevisan’s
extractor first computes an encoding x̄ of x by an ε-balanced error-correcting code (i.e., a
code in which every non-zero codeword has relative Hamming weight 1/2± ε). 7 Fixing a
suitable combinatorial design of m sets S1, ..., Sm of size |Si| = log(|x̄|) in a universe of size
t, the output of E(x, z) is the m bits of x̄ in the coordinates specified by z�S1

, ..., z�Sm
.

A key observation is that the circuit C′ only needs to compute the encoding x̄ of x
once, and then each of the 2t copies of C can take its inputs directly from the bits of x̄ (i.e.,
each copy of C corresponds to a seed z, and takes its inputs from locations in x̄ that are
determined by z and by the fixed combinatorial design). This is indeed a form of “batch
computation” of the extractor on all seeds.

Let us now see why this construction uses n3.01 wires. The encoding x̄ of x relies on
an ε-balanced code, with ε = Θ(1/m2); we can use known polynomial-time constructions
of suitable linear codes that map n bits to n · poly(1/ε) < n1.01 bits (e.g., [NN93, ABN+92,
TS17]; the inequality is since m = nΩ(1)). Since the code is linear in x ∈ {0, 1}n, each bit
of x̄ ∈ {0, 1}n1.01

can be computed by a T C0 circuit with n1.01 wires. Therefore, the number
of wires that we use to compute x̄ is n2.02. Now, in our setting of parameters, we want
the extractor to work with min-entropy k = n0.99 (since the number B(n) of exceptional
inputs for C′ will be upper-bounded by 2k, and we want to have B(n) = 2n0.99

). Relying
on Trevisan’s proof and on standard constructions of combinatorial designs, the required
seed length is t < 3 · log(n). 8 Therefore, the number of copies of C in C′ is 2t = n3, and
the overall number of wires in C′ is n2.02 + n3 · poly(m) < n3.01.

3.2.2 The actual construction of C′ with n1.01 wires

There are two parts in the construction above that led us to use a large number of wires:
First, the seed length of the extractor is t = 3 · log(n), which yields 2t = n3 copies of C; and
secondly, the number of wires required to compute the encoding x̄ of x is super-quadratic,
rather than super-linear. Let us now describe how to handle each of these two problems,
and obtain a construction with only n1.01 wires.

7Trevisan’s extractor only needs a (1/2−O(1/m), poly(m))-list-decodable code, but we will not rely on
this potential relaxation.

8Trevisan’s proof requires a design such that |Si ∩ Sj| ≤ log(k/2m) (see [Tre01, Sec. 3.3]). Relying on
standard constructions of combinatorial designs (see, e.g., [Tre01, Lem. 8]), a suitable design can be constructed

with a universe size of t = eln(m)/ log(2k/m)+1 · log2(|x|)
log(k/2m)

≈ 1.01 · e · log(n) < 3 · log(n).
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To reduce the seed length t of the extractor, we follow the approach of Raz, Reingold,
and Vadhan [RRV02]. They showed that Trevisan’s extractor works even if we replace
standard combinatorial designs by a more relaxed notion that they called weak designs (see
Definition 6.1). Indeed, weak designs can be constructed with a smaller universe size t,
which yields a smaller seed length for the extractor. Their construction yields t = 2 · log(n),
and we show a modified construction of weak designs that for our setting of parameters
yields t = 1.01 · log(n) (see Lemma 6.2).

The second challenge is to construct an ε-balanced error-correcting code that maps n
bits to n · poly(1/ε) bits, and can be computed by a T C0 circuit with n1.01 wires (this is the
code that we will use to compute x̄ from x). To describe the code, we describe the encoding
process of x ∈ {0, 1}n, which has two steps: First we encode x by a code with constant rate
and constant relative distance, and then we amplify the distance of the code to 1/2− ε.

Computing a code with distance Ω(1). In the first step, we encode x by a linear error-
correcting code that has distance Ω(1), instead of 1/2− ε, and also has rate Ω(1) and can
be computed in T C0 with n1.01 wires. This will be done using tensor codes that are based
on any (arbitrary) initial good linear error-correcting code.

To see why tensor codes are helpful, assume that n = r2, for some r ∈ N, and fix a
linear code ECC that maps r bits to O(r) bits and has constant relative distance. Thinking of
the input x ∈ {0, 1}n as an r× r matrix, we first encode each row of the matrix x using ECC,
to obtain an r×O(r) matrix x′, and then encode each column of x′ using ECC, to obtain an
O(r)×O(r) matrix x̂. By well-known properties of tensor codes, this yields a linear error-
correcting code with constant rate and constant relative distance. Moreover, computing the
code in T C0 only requires n1.51 wires: This is because the strings that we encode with ECC

(which are the rows of x in the first step and then the columns of x′ in the second step) are
each of length r =

√
n. Thus, each of the O(n) bits in x̂ is a linear function of

√
n bits, and

the latter can be computed by T C0 circuit with n.51 wires.
To obtain a code with n1.01 wires instead of n1.51 wires we can use a tensor code of

higher order. Specifically, assume that n = rc, for some large constant c, and think of x as a
tensor of dimensions [r]c. The encoding process will consist of c = O(1) iterations, and in
each iteration we encode strings of length r in the tensor by ECC. The final codeword will
be of length (O(r))c = O(n), will have constant relative distance, and can be computed by
a T C0 circuit with only O(n) · r1.01 < n1+2/c wires. (See Section 6.2 for further details.)

Amplifying the distance from Ω(1) to 1/2− ε. Assume that the previous step mapped
the input x ∈ {0, 1}n to x̂ ∈ {0, 1}n̂, where n̂ = O(n). If x was a non-zero message, then x̂
has relative Hamming weight Ω(1). Our goal now is to increase the Hamming weight of
x̂ to 1/2− ε, using as few wires as possible. To do so we rely on the strategy of Naor and
Naor [NN93], which is based on expander random walks. (This strategy was also recently
used by Ta-Shma [TS17] to construct almost-optimal ε-balanced codes.)

Specifically, fix a graph G on n̂ vertices with constant degree and constant spectral gap.
Associate the n̂ vertices of G with the coordinates of x̂, and consider a random walk on G
that starts at a uniformly-chosen vertex and walks ` = O(log(1/ε)) steps. With probability
at least ε, such a walk meets the set of coordinates in which x̂ is non-zero (since this set
has constant density). Thus, if we take such a random walk on the coordinates of x̂, and
output the parity of a random subset of the bits of x̂ that we encountered, with probability
at least 1/2− ε we will output one.
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The encoding x̄ of x̂ is thus the following. Every coordinate in x̄ is associated with
a specific walk W of length ` on G and with a subset S ⊆ [`]; thus, x̄ has 2log(n)+O(`) =
n · poly(1/ε) coordinates. The bit of x̄ at a coordinate associated with a walk W and with a
subset S ⊆ [`] is the parity of the S bits of x̂ encountered in the walk W. By the preceding
paragraph, if x̂ has Hamming weight Ω(1) then x̄ has Hamming weight at least 1/2− ε.
Also, each coordinate in x̄ is the parity of at most ` = O(log(1/ε)) = O(log(n)) bits, so
computing x̄ from x̂ only requires n · poly(1/ε) · `1.01 wires. Recall that in our setting we
need ε = 1/m2 = n−Ω(1); the number of wires is thus at most n1.01.

4 Preliminaries

Throughout the paper, the letter n will always denote the number of inputs to a function
or a circuit. We denote random variables by boldface letters, and denote by un the uniform
distribution on n bits.

We are interested in Boolean functions, represented as functions f : {−1, 1}n → {−1, 1}.
We say that a function f : {−1, 1}n → {−1, 1} accepts an input x ∈ {−1, 1}n if f (x) = −1.
For two Boolean functions f and g over a domain D, we say that f and g are δ-close if
Prx∈D[ f (x) = g(x)] ≥ 1− δ.

For a vector w = (w1, ..., wn) ∈ Rn, we denote by ‖w‖2 the standard `2-norm ‖w‖2 =√
∑i∈[n] w2

i . For h < n, we denote w>h = (wh+1, ..., wn) ∈ Rn−h and w≥h = (wh, ..., wn) ∈
Rn−h+1. For two vectors w, x ∈ Rn, we denote 〈w, x〉 = ∑i∈[n] wi · xi.

4.1 Two probabilistic inequalities

We will rely on two standard facts from probability theory that assert concentration and
anti-concentration bounds for certain distributions. Specifically, we will need a standard
version of Hoeffding’s inequality, and a corollary of the Berry-Esséen theorem:

Theorem 4.1 (Hoeffding’s inequality; for a proof see, e.g., [DP09, Sec. 1.7]). Let w ∈ Rn, and let
z be a uniformly-chosen random vector in {−1, 1}n. Then, for any t > 0 it holds that

Pr [| 〈w, z〉 | ≥ t · ‖w‖2] ≤ exp(−Ω(t2)) .

Theorem 4.2 (a corollary of the Berry-Esséen theorem; see, e.g., [DGJ+10, Thm 2.1, Cor 2.2]).
Let w ∈ Rn and µ > 0 such that for every i ∈ [n] it holds that |wi| ≤ µ · ‖w‖2, and let z be a
uniformly-chosen random vector in {−1, 1}n. Then, for any θ ∈ R and t > 0 it holds that:

Pr [〈w, z〉 ∈ θ ± t · ‖w‖2] ≤ 2 · (t + µ) .

4.2 Linear threshold functions and circuits

A linear threshold function, or LTF in short, is a function Φ : {−1, 1}n → {−1, 1} of the
form Φ(x) = sgn(〈w, x〉 − θ), where w ∈ Rn and θ ∈ R; we typically describe such a
function by the pair Φ = (w, θ). 9 The following are standard definitions regarding LTFs:

9When dealing with LTFs we can assume, without loss of generality, that 〈w, x〉 6= θ for every x ∈ {−1, 1}n

(because for every Boolean function over {−1, 1}n that is computable by an LTF there exists an LTF that
computes the function such that 〈w, x〉 6= θ for every x ∈ {−1, 1}n).
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Definition 4.3 (regularity). For ε > 0, we say that a vector w ∈ Rn is ε-regular if for every
i ∈ [n] it holds that |wi| ≤ ε · ‖w‖2. An LTF Φ = (w, θ) is ε-regular if w is ε-regular.

Definition 4.4 (critical index). When w ∈ Rn satisfies |w1| ≥ |w2| ≥ ... ≥ |wn|, the ε-critical
index of w is defined as the smallest h ∈ [n] such that w>h is ε-regular (and h = ∞ if no such
h ∈ [n] exists). The critical index of an LTF Φ = (w, θ) is the critical index of w′, where w′ ∈ Rn is
the vector that is obtained from w by permuting the coordinates in order to have |w′1| ≥ ... ≥ |w′n|.

Definition 4.5 (balanced LTF). For t ∈ R, we say that an LTF Φ = (w, θ) is t-balanced if
|θ| ≤ t · ‖w‖2; otherwise, we say that Φ is t-imbalanced.

We will be interested in linear threshold circuits, which are circuits that consist only of
LTF gates with unbounded fan-in and fan-out. We assume that linear threshold circuits
are layered, in the sense that for each gate Φ, all the gates feeding into Φ have the same
distance from the inputs. For n, d, m ∈ N, let Cn,d,m be the class of linear threshold circuits
over n input bits of depth d ≥ 1 and with at most m wires.

Representation of linear threshold circuits The algorithm in Theorem 1.1 gets as input an
explicit representation of a linear threshold circuit C, where the weights and thresholds of
the LTFs in C may be arbitrary real numbers. Throughout the paper we will not be specific
about how exactly C is represented as an input to the algorithm, since the algorithm works
in any reasonable model. In particular, the algorithm only performs addition, subtraction,
and comparison operations on the weights and thresholds of the LTFs in C.

Explicitly suggesting one convenient model, one may assume that the weights and
threshold of each LTF are integers of unbounded magnitude (since the real numbers can
be truncated at some finite precision without changing the function). In this case, the circuit
C has a binary representation, and the required time to perform addition, subtraction, and
comparison on these integers is linear in the representation size. 10

4.3 Pseudorandomness

We need the following two standard definitions of pseudorandom distributions and of
pseudorandom generators (or PRGs, in short).

Definition 4.6 (pseudorandom distribution). For ε > 0 and a domain D, we say that a distribution
z over D is ε-pseudorandom for a class of functions F ⊆ {D→ {−1, 1}} if for every f ∈ F it
holds that Prz∼z [ f (z) = −1] ∈ Prz∈D [ f (z) = −1]± ε.

Definition 4.7 (pseudorandom generator). Let F =
⋃

n∈N Fn, where for every n ∈ N it holds
that Fn is a set of functions {−1, 1}n → {−1, 1}, and let ε : N → [0, 1] and ` : N → N. An
algorithm G is a pseudorandom generator for F with error parameter ε and seed length ` if for
every n ∈N, when G is given as input 1n and a random seed of length `(n), the output distribution
of G is ε-pseudorandom for Fn.

We will rely on the following recent construction of a pseudorandom generator for
LTFs, by Gopalan, Kane, and Meka [GKM15]:

10It is well-known that every LTF over n input bits has a representation with integer weights of magnitude
2Õ(n) (for proof see, e.g., [Hås94]), and therefore the circuit C actually has a representation of size poly(n).
However, we do not know of a polynomial-time algorithm to find such a representation for a given circuit C.
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Theorem 4.8 (a PRG for LTFs; [GKM15, Cor. 1.2]). For every ε > 0, there exists a polynomial-
time pseudorandom generator for the class of LTFs with seed length O

(
log(n/ε) · (log log(n/ε))2).

A distribution z over {−1, 1}n is δ-almost t-wise independent if for every S ⊆ [n] of size
|S| = t it holds that zS is δ-close to the uniform distribution over {−1, 1}t in statistical
distance. We will need the following standard tail bound for such distributions.

Fact 4.9 (tail bound for almost t-wise independent distributions). Let t ≥ 4 be an even number,
and let δ : N→ [0, 1]. Let x1, ..., xn be variables in {0, 1} that are δ(n)-almost t-wise independent,
and denote µ = E

[
1
n ·∑i∈[n] xi

]
. Then, for any ζ > 0 it holds that Pr

[∣∣∣ 1
n ·∑i∈[n] xi − µ

∣∣∣ ≥ ζ
]
<

8 ·
(

t·µ·n+t2

ζ2·n2

)t/2
+ (2 · n)t · δ(n).

In particular, for t = Θ(1) and ζ = µ/2 and δ(n) = 1/p(n), where p(n) is a sufficiently large
polynomial, we have that

Pr

[
1
n
· ∑

i∈[n]
xi ∈ µ± (µ/2)

]
= O

(
(µ · n)−t/2

)
.

We now define the notion of a distribution that is ε-pseudorandomly concentrated, and
show that it is essentially equivalent to the notion of being ε-pseudorandom for LTFs. The
equivalence was communicated to us by Rocco Servedio, and is attributed to Li-Yang Tan.

Definition 4.10 (ε-pseudorandomly concentrated distribution). For n ∈N and ε > 0, we say that
a distribution z over {−1, 1}n is ε-pseudorandomly concentrated if the following holds: For every
w ∈ Rn and every a < b ∈ R it holds that Pr [〈w, z〉 ∈ [a, b]] ∈ Pr [〈w, un〉 ∈ [a, b]]± ε.

Claim 4.11 (being pseudorandomly concentrated is equivalent to being pseudorandom for LTFs).
Let z be a distribution over {−1, 1}n. Then,

1. If z is ε-pseudorandom for LTFs, then z is (2ε)-pseudorandomly concentrated.

2. If z is ε-pseudorandomly concentrated, then z is ε-pseudorandom for LTFs.

Proof. Let us first prove Item (1). Fix w ∈ Rn and I = [a, b] ⊆ R. For any fixed z ∈
{−1, 1}n, exactly one of three events happens: Either 〈w, z〉 ∈ I, or 〈w, z〉 < a, or 〈w, z〉 > b.
Since the event 〈w, z〉 < a can be tested by an LTF (i.e., by the LTF Φ(z) = sgn(a −
〈w, z〉)), this event happens with probability Prz∈{−1,1}n [〈w, z〉 < a] ± ε under a choice of
z ∼ z. Similarly, the event 〈w, z〉 > b happens with probability Prz∈{−1,1}n [〈w, z〉 > b]± ε
under a choice of z ∼ z. Thus, the probability under a choice of z ∼ z that 〈w, z〉 ∈ I is
Prz∈{−1,1}n [〈w, z〉 ∈ I]± 2ε.

To see that Item (2) holds, let Φ = (w, θ) be an LTF over n input bits, and let M =
‖w‖1 = ∑i∈[n] |wi|. Then, for every z ∈ {−1, 1}n it holds that Φ(z) = −1 if and only if
z ∈ [−M, θ]. Thus, Pr[Φ(z) = −1] = Pr[z ∈ [−M, θ]] ∈ Pr[un ∈ [−M, θ]]± ε = Pr[Φ(un) =
−1]± ε.

4.4 Restrictions

A restriction for functions {−1, 1}n → {−1, 1} is a subset of {−1, 1}n. We will be interested
in restrictions that are subcubes, and such restrictions can be described by a string ρ ∈
{−1, 1, ?}n in the natural way (i.e., the subcube consists of all strings x ∈ {−1, 1}n such
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that for every i such ρi 6= ? it holds that xi = ρi). We will sometimes describe a restriction
by a pair ρ = (I, z), where I = {i ∈ [n] : ρi = ?} is the set of variables that the restriction
keeps alive, and z = (ρi)i∈([n]\I) ∈ {−1, 1}[n]\I is the sequence of values that ρ assigns to
the variables that are fixed.

We identify strings r ∈ {−1, 1}(q+1)·n, where n, q ∈ N, with restrictions ρ = ρr ∈
{−1, 1, ?}n, as follows: Each variable is assigned a block of q + 1 bits in the string; the
variable remains alive if the first q bits in the block are all 1, and otherwise takes the
value of the (q + 1)th bit. When we refer to a “block” in the string that corresponds to a
restriction, we mean a block of q + 1 bits that corresponds to some variable. When we say
that a restriction is chosen from a distribution r over {−1, 1}(q+1)·n, we mean that a string
is chosen according to r, and interpreted as a restriction.

In addition, we will sometimes identify a pair of strings y ∈ {−1, 1}q·n and z ∈ {−1, 1}n

with a restriction ρ = ρy,z. In this case, the restriction ρ = ρy,z is the restriction ρr that is
obtained by combining y and z to a string r in the natural way (i.e., appending a bit from
z to each block of q bits in y). Note that the string y determines which variables ρ keeps
alive, and the string z determinse the values that ρ assigns to the fixed variables.

4.5 Seeded extractors and averaging samplers

We recall the standard definitions of seeded extractors and of averaging samplers, and state
the well-known equivalence between the two. In this context it will be more convenient to
represent Boolean functions as functions {0, 1}n → {0, 1}.

Definition 4.12 (seeded extractors). A function f : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-
extractor if for every distribution x on {0, 1}n such that maxx∈{0,1}n [Pr[x = x]] ≤ 2−k it holds
that the distribution f (x, ut) is ε-close to the uniform distribution on um in statistical distance.

Definition 4.13 (averaging samplers). A function f : {0, 1}n×{0, 1}t → {0, 1}m is an averaging

sampler with accuracy ε > 0 and error δ > 0 if it satisfies the following. For every T ⊆ {0, 1}m, for
all but a δ-fraction of the strings x ∈ {0, 1}n it holds that Prz∈{0,1}t [ f (x, z) ∈ T] = |T|/2m ± δ.

Proposition 4.14 (seeded extractors are equivalent to averaging samplers). Let f : {0, 1}n ×
{0, 1}t → {0, 1}m. Then, the following two assertions hold:

1. If f is a (k, ε)-extractor, then f is an averaging sampler with accuracy ε and error δ = 2k−n.

2. If f is an averaging sampler with accuracy ε and error δ, then f is an (n− log(ε/δ), 2ε)-
extractor.

For a proof of Proposition 4.14 see, e.g., [Vad12, Cor. 6.24]. In the current paper we will
only use the first item of Proposition 4.14.

5 A quantified derandomization algorithm for linear threshold
circuits

Let us now state a more general version of Theorem 1.1 and prove it.

Theorem 5.1 (Theorem 1.1, restated). Let d ≥ 1, let ε > 0, and let δ = d · 30d−1 · ε. Then, there
exists a deterministic algorithm that for every n ∈ N, when given as input a circuit C ∈ Cn,d,n1+ε ,
runs in time nO(log log(n))2

, and for the parameter B(n) = 1
10 · 2n1−δ

satisfies the following:
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1. If C accepts all but at most B(n) of its inputs, then the algorithm accepts C.

2. If C rejects all but at most B(n) of its inputs, then the algorithm rejects C.

To obtain the parameters of Theorem 1.1, for any d ≥ 1 let ε = 2−10d. Then, the
algorithm from Theorem 5.1 works when the number of exceptional inputs of C is at most
B(n) = 1

10 · 2n1−δ
> 2n1−1/5d

. The deterministic algorithm from Theorem 5.1 is based on
the following pseudorandom restriction algorithm, whose construction and proof appear in
Section 5.1.

Proposition 5.2 (pseudorandom restriction algorithm). Let d ≥ 1, let ε > 0 be a sufficiently
small constant, and let δ = d · 30d−1 · ε. Then, there exists a polynomial-time algorithm that for
every n ∈ N, when given as input a circuit C ∈ Cn,d,n1+ε and a random seed of length O(log(n) ·
(log log(n))2), with probability at least 1− n−ε/2 satisfies the following:

1. The algorithm outputs a restriction ρ ∈ {−1, 1, ?}n that keeps at least n1−δ variables alive.

2. The algorithm outputs an LTF Φ : {−1, 1}ρ−1(?) → {−1, 1} such that Φ is 1/10-close to
C�ρ (i.e., Prx∈{−1,1}ρ−1(?) [C(x) = Φ(x)] ≥ 9/10).

Let us now prove the main result (i.e., Theorem 5.1) relying on Proposition 5.2.

Proof of Theorem 5.1. We iterate over all seeds for the algorithm from Proposition 5.2. For
each seed that yields both a restriction ρ that keeps at least n1−δ variables alive and an LTF
Φ over {−1, 1}ρ−1(?), we estimate the acceptance probability of Φ up to an error of 1

5 ; this is
done by iterating over the seeds of the pseudorandom generator from Theorem 4.8 (instan-
tiated with error parameter 1/5). If for most of the seeds, our estimate of the acceptance
probability of Φ is at least 3

5 , then we accept C; and otherwise we reject C. The running
time of the algorithm is 2O(log(n)·(log log(n))2) = nO(log log(n))2

.
Recall that all but O(n−ε) of the seeds yield ρ and Φ such that ρ keep at least n1−δ >

log(10 · B(n)) variables alive and such that Φ is 1/10-close to C�ρ; we call such seeds
good seeds. Now, if C accepts all but at most B(n) inputs, then for every good seed, the
acceptance probability of C�ρ is at least 9/10, and thus the acceptance probability of Φ is at
least 4

5 , which implies that our estimate of the latter will be at least 3/5. Thus, the algorithm
will accept C. On the other hand, if C rejects all but at most B(n) inputs, then by a similar
argument for all good seeds it holds that the estimate of the acceptance probability of Φ
will be at most 2/5, and thus the algorithm will reject C.

5.1 Pseudorandom restriction algorithm

We prove Proposition 5.2 in three steps. The first step, in Section 5.1.1, will be to prove that
a suitably-chosen pseudorandom restriction turns any single LTF to be very biased, with
high probability. The second step, in Section 5.1.2, will leverage the first step to construct
an algorithm that gets as input a linear threshold circuit, and applies pseudorandom re-
strictions to reduce the depth of the circuit by one layer. And the final step, in Section 5.1.3,
will be to iterate the construction of the second step in order to prove Proposition 5.2.
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5.1.1 Pseudorandom restrictions and a single LTF

As mentioned in the introduction, an illustrative example for the effects of restrictions on
LTFs is the majority function Φ(x) = sgn(∑i∈[n] xi). For p ∈ (0, 1), denote by Rp the
distribution of restrictions on n variables such that for every i ∈ [n] independently it holds
that the ith variable remains alive with probability p, and is otherwise assigned a uniform
random bit. Then, we have the following:

Fact 5.3 (a random restriction and the majority function). Let Φ(x) = sgn(∑i∈[n] xi), and let
p = n−Ω(1). Then, for every t ≥ 1, with probability at least 1−O(t · √p) over ρ ∼ Rp it holds
that Φ�ρ is t-imbalanced

Proof. Let I ⊆ [n] be the set of variables that ρ keeps alive. With probability 1− exp(−nΩ(1))
it holds that ‖wI‖2 ∈

√
pn±√pn/2. Conditioned on ‖wI‖2 ≤ 2 · √pn, it also holds that∥∥∥w[n]\I

∥∥∥
2
≥
√

n/2, which implies that for every i ∈ ([n] \ I) it holds that |wi| = 1 ≤

(2/
√

n) ·
∥∥∥w[n]\I

∥∥∥
2
. In this case, by the Berry-Esséen theorem (i.e., by Theorem 4.2), for any

t ≥ 1, the probability that
〈

w[n]\I , z[n]\I

〉
falls in the interval ±4t · √p ·

∥∥∥w[n]\I

∥∥∥
2

(which

contains the interval ±t · ‖wI‖2) is at most O(t · √p + 2√
n ) = O(t · √p).

Our goal in this section is to prove a statement that is similar to Fact 5.3, but that holds
for an arbitrary LTF Φ, and holds also when the restriction ρ is sampled pseudorandomly,
rather than uniformly. For simplicity, we only state the proposition informally at the mo-
ment (for a formal statement see Proposition 5.8):

Proposition 5.4 (pseudorandom restriction lemma for a single LTF; informal). Let n ∈ N, let
p = n−Ω(1), and let t = p−Ω(1). Let y be a distribution over {−1, 1}log(1/p)·n that is p-
almost O(log(1/p))-wise independent, and let z be a distribution over {−1, 1}n that is pΩ(1)-
pseudorandomly concentrated. Then, for any LTF Φ over n input bits, the probability over choice of
restriction ρ ∼ (y, z) that Φ�ρ is t-balanced is at most pΩ(1).

A high-level description of the proof. Let Φ = (w, θ) be an LTF over n input bits, and
without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Recall that Φ�ρ is t-balanced

if and only if the sum
〈

w[n]\I , z[n]\I

〉
falls in the interval θ ± t · ‖wI‖2, where I ⊆ [n] is the

set of variables that y keeps alive. The proof is based on a modification of the case analysis
that appears in [CSS16, Lem. 34, Sec. 4.2, Apdx. C.]. Specifically, for µ = Ω(1/t) and
k = Õ(t2), we will consider two separate cases.

Case 1: The µ-critical index of Φ is at most k. Let h ≤ k be the µ-critical index of Φ, and denote
T = [n] \ [h]. We first claim that with probability 1− pΩ(1) over choice of y ∼ y it holds that
‖wI‖2 ≤ pΩ(1) · ‖wT‖2. This is the case since with probability at least 1− h · p = 1− pΩ(1),
all the first h variables are fixed by ρ, and since the expected value of ‖wI∩T‖2 is

√
p · ‖wT‖2.

Condition on any fixed choice of y ∼ y such that ‖wI‖2 ≤ pΩ(1) · ‖wT‖2. We will
prove that with probability 1 − pΩ(1) over a uniform choice of z ∈ {−1, 1}n it holds that〈

w[n]\I , z[n]\I

〉
does not fall in the interval θ ± t · pΩ(1) · ‖wT‖2 (which contains the interval

θ ± t · ‖wI‖2). Since z is pΩ(1)-pseudorandomly concentrated, it will follow that this event
also holds with probability 1− pΩ(1) under a choice of z ∼ z.
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To prove the claim about a uniform choice of z ∈ {−1, 1}n, condition any arbitrary fixed
values z[h] ∈ {−1, 1}h for the first h variables. Then, the probability that

〈
w[n]\I , z[n]\I

〉
falls

in the interval θ± t · pΩ(1) · ‖wT‖2 (which is what we want to bound) equals the probability

that
〈
wT\I , zT\I

〉
2

falls in the interval θ′ ± t · pΩ(1) · ‖wT‖2, where θ′ = θ−
〈

w[h], z[h]
〉

. Since

h is the µ-critical index of w we have that wT is µ-regular; also, since ‖wI‖2 ≤ pΩ(1) · ‖wT‖2,
it follows that wT\I is also (2µ)-regular and that ‖wT‖2 ≈

∥∥wT\I
∥∥

2
. By the Berry-Esséen

theorem, the probability that
〈
wT\I , zT\I

〉
falls in an interval of length t · pΩ(1) ·

∥∥wT\I
∥∥

2
is

at most O(t · pΩ(1) + µ) = pΩ(1) (see Lemma 5.5).

Case 2: The µ-critical index of Φ is larger than k. Similarly to the previous case, with prob-
ability at least 1− pΩ(1) it holds that all the first k variables are fixed by ρ. Condition on
any fixed y ∼ y that fixes all the first k variables. What we will show is that with high
probability over z ∼ z, the sum

〈
w[n]\I , z[n]\I

〉
falls outside the interval θ ± (1/4µ) ‖w>k‖2,

which contains the interval θ ± t · ‖wI‖2 (since I ⊆ ([n] \ [k]) and µ = Ω(1/t)).
As before, we first analyze the case in which z is chosen uniformly in {−1, 1}n. To do

so we rely on a lemma of Servedio [Ser07], which asserts that the weights in w decrease
exponentially up to the critical index. Intuitively, since the critical index is large (i.e., more
than k), the exponential decay of the weights implies that ‖w>k‖2 is small. Thus, when

uniformly choosing z ∈ {−1, 1}n, the sum
〈

w[n]\I , z[n]\I

〉
is unlikely to fall in the small

interval θ ± (1/4µ) · ‖w>k‖2; specifically, this happens with probability at most µ = pΩ(1)

(see Claim 5.7.1 for a precise statement).
Since the event

〈
w[n]\I , z[n]\I

〉
∈ θ ± (1/4µ) · ‖w>k‖2 happens with probability pΩ(1)

when z ∈ {−1, 1}n is chosen uniformly, and the distribution z is pΩ(1)-pseudorandomly
concentrated, the event also happens with probability at most pΩ(1) over a choice of z ∼ z.

The full proof. We will first prove an auxiliary lemma, which analyzes the effect of
uniformly-chosen restrictions on regular LTFs (see Lemma 5.5). Then, we will prove a ver-
sion of Proposition 5.4 that only holds for LTFs with bounded critical index (see Lemma 5.6),
and a version of Proposition 5.4 that only holds for LTFs with large critical index (see
Lemma 5.7). Finally, we will formally state a more general version of Proposition 5.4
and prove it (see Proposition 5.8).

The following auxiliary lemma considers a regular vector w ∈ Rm, a fixed set of vari-
ables I ⊆ [m] that will be kept alive, and a uniformly-chosen assignment z ∈ {−1, 1}m for
the fixed variables. The lemma will be used in the proof of Lemma 5.6.

Lemma 5.5 (pseudorandom restriction lemma for regular LTFs). Let m ∈ N, let µ ∈ (0, 1), and
let λ ≤ 3/4. Let w′ ∈ Rm be a µ-regular vector, and let I ⊆ [m] such that ‖w′I‖2 < λ · ‖w′‖2.
Then, for any θ′ ∈ R and t > 0, the probability over uniform choice of z ∈ {−1, 1}m that〈

w′[m]\I , z[m]\I

〉
∈ θ′ ± t · λ · ‖w′‖2 is at most O(t · λ + µ).

Proof. Note that
∥∥∥w′[m]\I

∥∥∥2

2
> ‖w′‖2

2 /4; this is the case because ‖w′I‖
2
2 < λ · ‖w′‖2

2 ≤ 3
4 ·

‖w′‖2
2. It follows that w′[m]\I is 2µ-regular, since for every i ∈ [m] we have that

∣∣∣w′i∣∣∣ ≤
µ · ‖w′‖2 ≤ 2µ ·

∥∥∥w′[m]\I

∥∥∥
2
. It also follows that the interval θ ± t · λ · ‖w′‖2 is contained in
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the interval θ ± 2t · λ ·
∥∥∥w′[m]\I

∥∥∥
2
. By the Berry-Esséen theorem (i.e., by Theorem 4.2), the

probability over a uniform choice of z ∈ {−1, 1}m that the sum
〈

w[m]\I , z[m]\I

〉
falls in a

fixed interval of length 2t · λ ·
∥∥∥w[m]\I

∥∥∥ is at most O(t · λ + µ).

The following lemma asserts that a suitably-chosen pseudorandom restriction turns
every LTF with bounded critical index to be very biased, with high probability. The specific
parameters that are chosen for the lemma will be useful for us when proving the general
case (i.e., Proposition 5.8, which holds for arbitrary LTFs).

Lemma 5.6 (pseudorandom restriction lemma for LTFs with small critical index). Let n ∈ N, let
p ∈ [0, 1] be a power of two, let c ∈ N be a constant, and let t ≤ p−1/(3c−2) and µ = 1/4tc. Let y
be a distribution over {−1, 1}log(1/p)·n that is p-almost O(log(1/p))-wise independent, and let z
be a distribution over {−1, 1}n that is µ-pseudorandomly concentrated. Then, for any LTF Φ over
n input bits with µ-critical index at most k = 103 · µ−2 · log2(1/µ), the probability over choice of
ρ ∼ (y, z) that Φ�ρ is t-balanced is at most Õ(t1+c/2) · √p + O(t−c).

Proof. Let Φ = (w, θ) be an LTF gate over n input bits with critical index h ≤ k, and
without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Let I ⊆ [n] be the random
variable that is the set of live variables under y; then, it holds that:

Claim 5.6.1. With probability at least 1−O(µ + p · k) over y ∼ y it holds that I ⊆ ([n] \ [h])
and that ‖wI‖2 ≤

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
.

Proof. Since y is p-almost O(log(1/p))-wise independent, each variable is kept alive with
probability at most 2p. Thus, the probability over y ∼ y that the first h variables are all

fixed is at least 1− 2p · h. Also, the expected value of
∥∥∥wI∩([n]\[h])

∥∥∥2

2
is at most 2p ·

∥∥∥w[n]\[h]

∥∥∥2

2
,

and hence with probability at least 1− 2µ it holds that
∥∥∥wI∩([n]\[h])

∥∥∥
2
≤
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2
.

By a union-bound, with probability at least 1−O(µ + p · h) > 1−O(µ + p · k) it holds that
I ⊆ ([n] \ [h]) and that ‖wI‖2 =

∥∥∥wI∩([n]\[h])

∥∥∥
2
≤
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2
. �

Fix any y ∼ y such that the first h variables are all fixed, and such that ‖wI‖2 ≤√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
. Our goal will be to prove that with high probability over z ∼ z it

holds that
〈

w[n]\I , z[n]\I

〉
/∈ θ± t ·

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
; this suffices to prove the lemma, since

t ·
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥ ≥ t · ‖wI‖2. To do so, we first analyze the setting in which z ∈ {−1, 1}n

is chosen uniformly, rather than from the distribution z:

Claim 5.6.2. The probability over a uniform choice of z ∈ {−1, 1}n that
〈

w[n]\I , z[n]\I

〉
∈ θ ± t ·√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2

is at most O(t ·
√

p/µ + µ).

Proof. The claim is trivial for µ ≤ 2p, so it suffices to prove the claim under the assumption
that µ > 2p. Condition on any arbitrary assignment z[h] ∈ {−1, 1}h for the first h variables,
and note that the vector w>h ∈ {−1, 1}n−h is µ-regular (since h is the µ-critical index of Φ).

Let T = [n] \ [h]. Observe that when conditioning on z[h], the event
〈

w[n]\I , z[n]\I

〉
∈

θ± t ·
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2

happens if and only if the event
〈
wT\I , zT\I

〉
∈ θ′± t ·

√
p/µ · ‖wT‖2
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happens, where θ′ = θ −
〈

w[h], z[h]
〉

. Since wT is µ-regular, we can invoke Lemma 5.5 with

w′ = wT and with λ =
√

p/µ ≤ 3/4 (the inequality is since µ > 2p), and deduce the
probability of the event

〈
wT\I , zT\I

〉
∈ θ′ ± t ·

√
p/µ · ‖wT‖2 is at most O(t ·

√
p/µ + µ). �

Since z is µ-pseudorandomly concentrated, it follows from Claim 5.6.2 that the proba-
bility over z ∼ z that

〈
w[n]\I , z[n]\I

〉
∈ θ ± t ·

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2

is at most O(t ·
√

p/µ + µ).

Thus, the probability over choice of ρ ∼ (y, z) that Φ�ρ is t-balanced is at most O(t ·
√

p/µ+

µ + p · k) = Õ(t1+c/2) · √p + O(t−c), where the last equality relied on the hypothesis that
t ≤ p−1/(3c−2).

The following lemma is similar to Lemma 5.6, but holds for LTFs with large critical index.

Lemma 5.7 (pseudorandom restriction lemma for LTFs with large critical index). Let n ∈ N, let
p ∈ [0, 1] be a power of two, and let µ > 0. Let y be a distribution over {−1, 1}log(1/p)·n that
is p-almost O(log(1/p))-wise independent, and let z be a distribution over {−1, 1}n that is µ-
pseudorandomly concentrated. Then, for any LTF Φ over n input bits with µ-critical index larger
than k = 103 · µ−2 · log2(1/µ), the probability over choice of ρ ∼ (y, z) that Φ�ρ is (1/4µ)-
balanced is Õ(µ−2) · p + O(µ).

Proof. Let Φ = (w, θ) be an LTF gate over n input bits with µ-critical index larger than k,
and without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Also, let I ⊆ [n] be
the random variable that is the set of live variables under y. Note that the probability over
y ∼ y that I ∩ [k] 6= ∅ is at most 2p · k = Õ(µ−2) · p (since y keeps each variable alive with
probability at most 2p).

Condition on any arbitrary y ∼ y such that [k] ∩ I = ∅. Our goal now is to show
that the probability over z ∼ z that Φ�ρ is (1/4µ)-balanced is O(µ). We will actually
prove a stronger claim: We will show that with probability at least 1−O(µ) it holds that〈

w[n]\I , z[n]\I

〉
/∈ θ ± (1/4µ) · ‖w>k‖2 (this claim is stronger, since I ⊆ ([n] \ [k]), which

implies that ‖w>k‖2 ≥ ‖wI‖2). To prove this assertion we will rely on the following claim,
which is essentially from [CSS16, Prop. 45] and generalizes [DGJ+10, Lem. 5.8]. (Since the
proof is sketched in [CSS16], we include a full proof.)

Claim 5.7.1. Let µ > 0, let r ∈ N, and let kr,µ = 4r·ln(3/µ2)
µ2 . Let Φ = (w, θ) be an LTF over

n input bits with µ-critical index larger than kr,µ such that |w1| ≥ ... ≥ |wn|, and let J ⊆ [n]
such that J ⊇ [kr,µ]. Then, the probability under uniform choice of z ∈ {0, 1}n that 〈wJ , zJ〉 ∈
θ ± (1/4µ) ·

∥∥∥w>kr,µ

∥∥∥
2

is at most 2−r.

Proof. Since the critical index of Φ is larger than kr,µ, a lemma of Servedio [Ser07, Lem. 3]
asserts that for any 1 ≤ i < j ≤ kr,µ it holds that

|wj| ≤
∥∥w≥j

∥∥
2 ≤

(
1− µ2)(j−i)/2 · ‖w≥i‖2 ≤

(
1− µ2)(j−i)/2 · |wi|/µ . (5.1)

(For an equivalent statement of the lemma see [DGJ+10, Lem. 5.5].) In particular, fixing
γ = 2 ln(3/µ2)

µ2 , for any i ∈N such that i · γ < kr,µ it holds that |wi·γ| < |w1|/3i.
Let R = 1, γ, ..., r · γ < kr,µ, and consider any arbitrary fixed value of zJ\R. Then,

by a claim of Diakonikolas et al. [DGJ+10, Clm. 5.7], there exists at most a single value

20



zR ∈ {−1, 1}r such that 〈wR, zR〉 ∈
(
θ −

〈
wJ\R, zJ\R

〉)
± |wr·γ|/4. Thus, the probability

under a uniform choice of z ∈ {0, 1}n that 〈wJ , zJ〉 ∈ θ ± |wr·γ|/4 is at most 2−r.

The claim follows since
∥∥∥w>kr,µ

∥∥∥
2
≤
∥∥∥w≥(r+1)·γ

∥∥∥
2
≤ µ · |wr·γ|, where the first inequality

is since kr,µ > (r + 1) · γ and the second inequality is due to Eq. (5.1). �

We invoke Claim 5.7.1 with the value r = log(1/µ) and with the set J = [n] \ I, while
noting that the critical index of Φ is indeed larger than k ≥ kr,µ. Since the interval θ ±
(1/4µ) · ‖w>k‖2 is contained in the interval θ ± (1/4µ) ·

∥∥∥w>kr,µ

∥∥∥
2

(because k ≥ kr,µ), we

deduce that the event
〈

w[n]\I , z[n]\I

〉
∈ θ ± (1/4µ) · ‖w>k‖2 happens with probability at

most µ under a uniform choice of z ∈ {0, 1}n. Since z is µ-pseudorandomly concentrated,
this event happens with probability at most O(µ) also under a choice of z ∼ z.

Finally, we are ready to state a more general version of Proposition 5.4 and to prove it.
The proof will rely on Lemmas 5.6 and 5.7.

Proposition 5.8 (pseudorandom restriction lemma for an arbitrary LTF). Let n ∈N, let p ∈ [0, 1]
be a power of two, let c ∈ N be a constant, and let t ≤ p−1/(3c−2). Let y be a distribution over
{−1, 1}log(1/p)·n that is p-almost O(log(1/p))-wise independent, and let z be a distribution over
{−1, 1}n that is (1/4tc)-pseudorandomly concentrated. Then, for any LTF Φ over n input bits, the
probability over choice of ρ ∼ (y, z) that Φ�ρ is t-balanced is at most Õ(t1+c/2) · √p + O(t−c).

To obtain the parameters that were stated in Section 3.1.2, invoke Proposition 5.8 with
c = 2. (When c = 2, the hypothesis that t ≤ p−1/(3c−2) = p−1/4 is not required, since for
t > p−1/4 the probability bound in the lemma’s statement is trivial.)

Proof of Proposition 5.8. Let Φ = (w, θ) be an LTF gate over n input bits, let µ = 1/4tc,
and let k = 103 · µ−2 · log2(1/µ). If the µ-critical index of Φ is at most k, the asserted
probability bound follows immediately from Lemma 5.6. On the other hand, if the µ-
critical index of Φ is larger than k, we can rely on Lemma 5.7. The lemma asserts that the
probability that Φ�ρ is (1/4µ)-balanced is at most Õ(µ−2) · p + O(µ) < Õ(t1+c/2) · √p +

O(t−c), where the inequality relies on the hypothesis that t ≤ p−1/(3c−2). Since (1/4µ) ≥ t,
whenever Φ�ρ is (1/4µ)-imbalanced it is also t-imbalanced.

5.1.2 Pseudorandom restriction algorithm for a “layer” of LTFs

The next step is to construct a pseudorandom restriction algorithm that transforms a depth-
d linear threshold circuit into a depth-(d− 1) linear threshold circuit. The key part in this
step is an application of Proposition 5.8.

Proposition 5.9 (pseudorandom restriction algorithm for a “layer” of LTFs). For every three con-
stants d ≥ 2 and ε > 0 and c > 0, there exists a polynomial-time algorithm that gets as input a
circuit C ∈ Cn,d,n1+ε and a random seed of length O(log(n) · (log log(n))2), and with probability
at least 1− n−ε outputs the following:

1. A restriction ρ ∈ {−1, 1, ?}n that keeps at least n′ = Ω(n1−24·ε) variables alive.

2. A circuit C̃ ∈ Cn′,d−1,(n′)1+30ε that agrees with C on at least 1 − n−c of the inputs in the
subcube that corresponds to ρ (i.e., Prx∈{−1,1}|ρ−1(?)| [C�ρ(x) = C̃(x)] > 1− n−c).
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High-level overview of the proof. The key step of the algorithm is to apply Proposi-
tion 5.8 with parameters p = n−β and c = 1 and t = p−1/5, where β = O(ε). The
lemma asserts that, in expectation, all but approximately n−β/5 of the gates will become t-
imbalanced (for simplicity, ignore polylogarithmic factors for now). Such imbalanced gates
are extremely close to a constant function, so we can replace the gates by the corresponding
constants and get a circuit that agrees with the original circuit on almost all inputs.

As for the other n−β/5-fraction of the gates, we expect that the number of wires feeding
into them will decrease by a factor of p after the restriction. Specifically, assume that indeed
the fan-in of each gate decreased by a factor of at least p; then, the expected number of
wires feeding into the balanced gates after the restriction is at most

∑
Φ gate

Pr[Φ balanced] · p · (# wires incoming to Φ) ≤ n−β/5 · p · n1+ε . (5.2)

Thus, with probability at least 1− n−β/10, the number of wires feeding into balanced gates
is at most (nε−β/10) · p · n, which is much smaller than the expected number of living
variables (i.e., than p · n) if β > 10ε. When this happens, we can afford to simply fix all the
variables that feed into balanced gates, making those gates constant too.

The argument above relied on the assumption that the fan-in of each gate Φ decreased
by a factor of at least p. We can argue that this indeed holds with high probability for all
gates with fan-in at least nα, where α > β, but we will need to separately handle gates with
fan-in at most nα. This will be done in two steps: The first is an initial preprocessing step
(before applying Proposition 5.8), in which we fix every variable with fan-out more than
2 · nε; since there are at most n1+ε wires, this step fixes at most n/2 variables. Then, after
applying Proposition 5.8 and fixing the variables that feed into balanced gates with fan-in at
least nα, we show that there exists a set I of variables of size approximately n−(α+ε) · (p · n)
such that after fixing all variables outside I, each gate with fan-in at most nα has fan-in at
most one (see Claim 5.10.1). Thus, we can fix the variables outside I, and then replace each
gate with fan-in at most nα with the corresponding variable (or with its negation). At this
point all the gates in the bottom layer have been replaced by constants or by variables.

Proof of Proposition 5.9. Let G = {Φ1, ..., Φr} be the set of gates in the bottom layer of C.
For α = 12ε, let S ⊆ G be the set of gates with fan-in at most nα, and let L = G \ S be the
set of gates with fan-in more than nα.

The restriction ρ will be composed of four restrictions ρ1, ..., ρ4. When describing the
construction of each restriction, we will always assume that all previous restrictions were
successful (we will describe exactly what “successful” means for each restriction). Also,
after each restriction, we fix additional variables if necessary, in order to obtain an exact
number of living variables in the end of the step.

Let z be a distribution over {−1, 1}n that is (1/q(n))-pseudorandom for LTFs, where q
is a sufficiently large polynomial. We mention in advance that for each i ∈ [4], the values
for variables that are fixed by ρi will always be decided by sampling from z.

The first restriction ρ1: Reduce the fan-out of input gates. We sample z ∼ z, and fix all
variables with fan-out more than 2 · nε to values according to z. Since the number of wires
between the bottom-layer gates and the input variables is at most n1+ε, and each fixing of
a variable eliminates 2 · nε wires, we will fix no more than n/2 variables in this step. Let
n1 = n/2 be the number of living variables after the first step.
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The second restriction ρ2: Applying Proposition 5.8. We use Proposition 5.8 with the val-
ues p = n−β, where β = 11ε, and c = 1, and t = p−1/5. 11 The distributions that we use are
a (1/poly(n))-almost O(log(1/p))-wise independent distribution y over {−1, 1}log(1/p)·n

and the aforementioned distribution z over {−1, 1}n.
Let E be the event in which ρ2 keeps at least (p · n1)/2 variables alive, and for every

gate Φ ∈ L it holds that fan-in(Φ�ρ2
) ≤ 2p · fan-in(Φ). We claim that E happens with

probability at least 1 − 1/poly(n). To see that this is the case, note that the expected
number of living variables is p · n1 = nΩ(1), and that for each gate Φ ∈ G, the expected
fan-in of Φ�ρ2

is nα−β = nΩ(1). Since the choice of variables to keep alive is 1
poly(n) -almost

O(1)-independent, we can use Fact 4.9 to deduce that Pr[E ] ≥ 1− 1
poly(n) .

Now, assume without loss of generality that L = {Φ1, ..., Φr′}, for some r′ ≤ r. For any
i ∈ [r′], denote by Bi the event that Φi is t-balanced. Note that when conditioning on E ,
the probability of each Bi is at most Õ(n−β/5). Therefore, conditioned on E , the expected
number of wires feeding into t-balanced gates in L after the restriction is

E

[
∑

i∈[r′]
1Bi · fan-in(Φi�ρ2

)
∣∣∣E] = ∑

i∈[r′]
Pr[Bi|E ] ·E[fan-in(Φi�ρ2

)|E ,Bi]

≤ ∑
i∈[r′]

Õ(n−β/5) · (2p · fan-in(Φi))

= Õ(n−β/5) · p · n1+ε .

Hence, conditioned on E , the probability that the number of wires feeding into t-
balanced gates in L after the restriction is more than Õ(n−β/10) · p · n1+ε = Õ(nε−β/10) · n1−β

is at most O(n−β/10). We consider the restriction ρ2 successful if E happens and if the num-
ber of wires between t-balanced gates in L and input gates is at most Õ(nε−β/10) · n1−β. In
this case, the number of currently-living variables is n2 = p · n1/2 = 1

4 · n1−β.
After applying ρ2, we replace any t-imbalanced gate Φi ∈ L with its most probable

value σi ∈ {−1, 1}. Note that by Theorem 4.1, each t-imbalanced gate Φi is (exp(−nΩ(1)))-
close to σi in the subcube that corresponds to the currently-living variables.

The third restriction ρ3: Eliminate L-gates that remained unbiased. In this step we
sample z ∼ z again, and fix all the variables that feed into t-balanced gates accord-
ing to z. Assuming that ρ2 was successful, the number of such variables is at most
Õ(nε−β/10) · n1−β = o(n2), where we used the fact that β > 10ε. Denote the restriction
applied in this step by ρ3, and note that the number of living variables after applying ρ3 is
n3 = Ω(n2) = Ω(n1−11ε).

Our goal now is to claim that for each gate Φi that was replaced by a constant σ ∈
{−1, 1} prior to applying ρ3, it still holds that Φi is close to σ in the subcube {−1, 1}ρ−1

3 (?).
To do so we will rely on a lemma that asserts the following: If an LTF Φi is δ-close to a
constant function, then with probability 1− γ over choice of z ∼ z it holds that Φi�ρ is
δ′-close to the same constant function, as long as δ ≤ poly(δ′, γ) and that z is poly(γ)-
pseudorandom for LTFs.

11For simplicity, we assume that p = n−11ε is a power of two. Otherwise, we can choose β to be a value very
close to 11ε such that p will be a power of two, with no meaningful change to the rest of the proof (the proof
only relies on the fact that 10ε < β < α).

23



Lemma 5.10 (bias preservation lemma). Let n ∈ N, and let δ, δ′, γ > 0 such that δ ≤ (γ · δ′)10.
Let Φ = (w, θ) be an LTF over n input bits that is δ-close to a constant function σ ∈ {−1, 1}, let
I ⊆ [n], and let z be a distribution over {−1, 1}[n]\I that is (δ′ · γ2)-pseudorandom for LTFs. Then,
with probability 1−O(γ) over choice of z ∼ z it holds that Φ�(I,z) is δ′-close to σ.

The proof of Lemma 5.10 is deferred to Section 5.2. We invoke Lemma 5.10 with I being
the set of variables that are kept alive by ρ3, and δ = exp(−nΩ(1)), and γ = 1/poly(n), and
δ′ = n−10·(2+4ε+c). After union-bounding over at most r ≤ n1+ε gates that were replaced
by constants, with probability 1 − 1/poly(n) it holds that all these gates are δ′-close to
constants in the subcube {−1, 1}ρ−1

3 (?).

The fourth restriction ρ4: Eliminate gates with small fan-in. We will rely on the follow-
ing claim, which is an algorithmic version of [CSS16, Prop. 36]:

Claim 5.10.1. For k′ = 2 · nα+ε, we can deterministically find in poly(n) time a set I of at least
n3/k′ living variables such that when fixing all variables not in I to any arbitrary values, the fan-in
of each gate in S is at most one.

Proof. Consider the graph in which the vertices are the input gates x1, ..., xn3 , and two
vertices xi and xj are connected (in the graph) if and only if there exists a gate Φi ∈ S that
is connected (in the circuit) to both xi and xj. Note that this graph has degree at most k′,
since every living variable has fan-out at most 2 · nε, and every gate in S has fan-in at most
nα. Therefore, we can greedily construct an independent set I in the graph of size at least
n3/k′, which is indeed the set of variables that we wanted. �

The algorithm finds a set I using Claim 5.10.1, samples z ∼ z, and fixes all the variables
outside I according to z. This yields a restriction that reduces the fan-in of each gate in S to
one. Thus, each gate Φ ∈ S now simply takes the value of an input gate (or its negation),
which implies that the gates that are connected to Φ (in the layer above it) can be connected
immediately to the corresponding input gate, and we can remove Φ from the circuit. The
number of living variables is n4 = n3/k′ = Ω(n1−24ε).

To conclude, we claim that the gates that were previously replaced by constants are
still close to constants in the new subcube. This is done by invoking Lemma 5.10 with I
being the aforementioned set of size n4, and with parameter values δ = n−10·(2+4ε+c), and
γ = n−(1+3ε), and δ′ = n−(c+1+ε). After union-bounding over the gates that were replaced
by constants, with probability at least 1− n−2ε it holds that all these gates are δ′-close to
constants in the final subcube. It follows that the original circuit is δ′′-close to the new
circuit in the final subcube, where δ′′ ≤ δ′ · n1+ε ≤ n−c.

Accounting for the parameters. We obtained a circuit in C̃ ∈ Cn4,d−1,n1+ε . Since n1+ε =

O(n
1+ε

1−24ε

4 ) < n(1+ε)(1+25ε)
4 ≤ n1+30ε

4 , we have that C̃ ∈ Cn4,d−1,n1+30ε
4

. To sample the restriction
ρ = ρ4 ◦ ... ◦ ρ1, we sampled from the distribution z four times, and from the distribution y
a single time. A sample from y can obtained with seed length O(log(n)), and relying on
Theorem 4.8, each sample from z can be obtained with seed length O(log(n) · (log log(n))2).

Finally, let us account for the error probability. The first step is deterministic and always
succeeds. In the second step, the algorithm is unable to simplify the circuit if the event
E does not happen, or if the number of wires between t-balanced gates in L and input
gates is too large. Denoting the latter event by E ′, the probability of error is at most

24



Pr[¬E ] + Pr[E ′|E ] ≤ O(n−β/10). The last type of error to account for is the probability that
C̃ is not n−c-close to C in {−1, 1}ρ−1(?); as detailed above, this happens with probability at
most n−2ε. The overall error is thus O(n−β/10 + n−2ε) < n−ε.

5.1.3 Pseudorandom restriction algorithm for linear threshold circuits

We are now ready to construct the pseudorandom restriction algorithm that simplifies any
linear threshold circuit to a single LTF gate (i.e., Proposition 5.2). The proof will consist of
d− 1 applications of Proposition 5.9. In each application, we will use Lemma 5.10 to claim
that all the approximations in previous applications of Proposition 5.9 still hold.

Proposition 5.11 (Proposition 5.2, restated). Let d ≥ 1, let ε > 0 be a sufficiently small constant,
and let δ = d · 30d−1 · ε. Then, there exists a polynomial-time algorithm that for every n ∈ N,
when given as input a circuit C ∈ Cn,d,n1+ε and a random seed of length O(log(n) · (log log(n))2),
with probability at least 1− n−ε/2 satisfies the following:

1. The algorithm outputs a restriction ρ ∈ {−1, 1, ?}n that keeps at least n1−δ variables alive.

2. The algorithm outputs an LTF Φ : {−1, 1}ρ−1(?) → {−1, 1} such that Φ is 1/10-close to
C�ρ (i.e., Prx∈{−1,1}ρ−1(?) [C(x) = Φ(x)] ≥ 9/10).

Proof. We repeatedly invoke Proposition 5.9, for d − 1 times. For i ∈ [d − 1], let ρ(i)

be the restriction that is obtained in the ith invocation of Proposition 5.9, and let ρ =
ρ(d−1) ◦ ... ◦ ρ(1) be the final restriction. Let C0 = C, and for i ∈ [d − 1], let Ci be the
circuit that is obtained after the ith invocation of Proposition 5.9. Also let ε0 = ε and
εi = 30 · εi−1 = 30i · ε, and let n0 = n and ni = Ω

(
(ni−1)

1−24εi−1
)
.

We say that an invocation of Proposition 5.9 is successful if the two items in the proposi-
tion’s statement are satisfied (i.e., the algorithm outputs a restriction that keeps sufficiently
many live variables, and a circuit of smaller depth that agrees with the original circuit on
almost all inputs). Assuming all invocations of Proposition 5.9 are successful, for each
i ∈ [d− 1] it holds that Ci ∈ Cni ,d−i,n

1+εi
i

, and in particular Cd−1 is a single LTF Φ. Also, in

this case, the number of living variables after all invocations is

nd−1 = nΠd−2
i=0 (1−24εi) > n1−24·∑d−2

i=0 εi > n1−24·d·εd−2 > n1−δ . (5.3)

The required seed length for the d− 1 invocations of Proposition 5.9 is Õ(log(n)). To
bound the probability of error, for each i ∈ [d − 1], assume that all previous i − 1 invo-
cations were successful, and note that the probability that the ith invocation of Proposi-
tion 5.9 fails is at most n−εi−1

i−1 < (n1−δ)−ε (the inequality is since we assumed that the
previous invocations of Proposition 5.9 were successful, which implies that ni−1 ≥ n1−δ,
by a calculation similar to Eq. (5.3)). Thus, the accumulated probability of error is at most
d · (n1−δ)−ε < n−ε/2, where the inequality relied on the fact that ε is sufficiently small.

Condition on all the d− 1 invocations of Proposition 5.9 being successful. Recall that
in this case, for every i ∈ [d − 1] it holds that Ci is n−c-close to Ci−1�ρ(i) ; we now claim
that, with high probability, this approximation continues to hold even in the subcube that
corresponds to the final restriction ρ.

Claim 5.11.1. For every i ∈ [d − 1], with probability 1− 1/poly(n) it holds that (Ci−1) �ρ is
1/10d-close to (Ci) �ρ.
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Proof. For each j ∈ {i, ..., d− 1}, recall that ρ(j) is the composition of four restrictions, de-
noted by ρ

(j)
1 , ..., ρ

(j)
4 . Fix i ∈ [d− 1], condition on any fixed choice for ρ

(i)
1 and ρ

(i)
2 , and let

C′ = (Ci−1)�ρ
(i)
1 ,ρ(i)2

. Recall that immediately after applying ρ
(i)
2 , the algorithm from Proposi-

tion 5.9 replaces a set of m ≤ n1+εd−(i−1) LTF gates, denoted Φ1, ..., Φm, with a corresponding
set of constants σ1, ..., σm ∈ {−1, 1}. Let C̃′ be the circuit that is obtained from C′ by the
aforementioned replacement. Finally, note that for every choice of final restriction ρ it holds
that (Ci−1) �ρ = C′�ρ and (Ci) �ρ = C̃′�ρ.

Our goal now will be to show that for every fixed k ∈ [m], with probability 1 −
1/poly(n) over choice of ρ it holds that (Φk)�ρ is 1/(10dm)-close to σk. This suffices to
conclude the proof, since it follows (by a union-bound over the m gates) that with prob-
ability 1− 1/poly(n), for every k ∈ [m] it holds that (Φk)�ρ is 1/(10dm)-close to σk; and
whenever the latter event happens we have that C′�ρ is 1/(10d)-close to C̃′�ρ.

Towards the aforementioned goal, fix k ∈ [m], and recall that Φk is δ0-close to some con-
stant function σk ∈ {−1, 1}, where δ0 = exp

(
n−Ω(1)

i−1

)
= exp

(
n−Ω(1)

)
, where the inequality

is since ni−1 = nΩ(1) (recall that we conditioned on all invocations of Proposition 5.9 being

successful). Observe that the final restriction ρ is composed of t def
== 4 · (d− i− 1) + 2 ad-

ditional restrictions on the domain of Φk: Two additional restrictions ρ
(i)
3 and ρ

(i)
4 in the ith

invocation of Proposition 5.9, and for each j ∈ {i + 1, ..., d− 1}, four restrictions ρ
(j)
1 , ..., ρ

(j)
4

in the jth invocation of Proposition 5.9. Recall that each of the t restrictions is chosen by first
choosing (deterministically or pseudorandomly) a set of variables to keep alive, and then
independently choosing values for the fixed variables. Therefore, we will now repeatedly
use Lemma 5.10, to claim that each restriction preserves the closeness of Φk to σk.

For convenience, rename the t restrictions ρ
(i)
3 , ρ

(i)
4 , ρ

(i+1)
1 , ..., ρ

(i+1)
4 , ..., ρ

(d−1)
1 , ..., ρ

(d−1)
4 ,

and denote them by ρ′(1), ..., ρ′(t). Let γ = n−c for a sufficiently large constant c > 1.
Note that δ0 < n−102t·c, and for every r ∈ [t] let δr = δ1/102

r−1 ; it follows that for every r ∈ [t]
it holds that δr−1 ≤ (γ · δr)10. We prove by induction on r ∈ [t] that with probability at
least 1 − O(n−c) it holds that (Φk)�ρ′(1)◦...◦ρ′(r) is δr-close to σk. For the base case r = 1
we rely on the hypothesis that Φk is δ0-close to σk, and use Lemma 5.10 with the values
δ = δ0 and δ′ = δ1 and γ = n−c as above. For the induction step r > 1, we condition on
(Φk)�ρ′(1)◦...◦ρ′(r−1) being δr−1-close to σk, and again use Lemma 5.10 with the values δ = δr−1

and δ′ = δr and γ = n−c. Hence, with probability at least 1−O(n−c) it holds that (Φk) �ρ

is δt-close to σk, where δt = n−c < 1/(10dm). �

Thus, with probability 1 − 1/poly(n), for every i ∈ [d − 1] it holds that (Ci−1)�ρ is
1/10d-close to (Ci)�ρ. Whenever this holds, by a union-bound it follows that C�ρ = (C0)�ρ

is 1/10-close to (Cd−1)�ρ = Cd−1 = Φ.

5.2 Proof of the bias preservation lemma

In this section we prove Lemma 5.10. Loosely speaking, the lemma asserts that an LTF Φ
that is close to a constant σ ∈ {−1, 1} remains close to σ when the domain is restricted by a
restriction ρ in which the values for the fixed variables are chosen from a distribution that
is pseudorandom for LTFs. For the proof we will need the following lemma from [Tel17,
Lem. 15] (the original notations are adapted for the current context).
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Lemma 5.12 (randomized tests). Let n ∈N, and let ε1, ε2, ε3, ε4, ε5 > 0 be error parameters.

• Let G ⊆ {−1, 1}n, and let E ⊆ G such that Prz∈{−1,1}n [z ∈ E] ≥ 1− ε1.

• Let T be a distribution over functions T : {−1, 1}n → {−1, 1} such that for every z ∈ E it
holds that PrT∼T[T(z) = −1] ≥ 1− ε2, and for every z /∈ G it holds that PrT∼T[T(z) =
1] ≥ 1− ε3.

• Let z be a distribution that is ε5-pseudorandom for all but an ε4-fraction of the tests in T; that
is, the probability over T ∼ T that

∣∣∣Pr[T(un) = −1]− Pr[T(z) = −1]
∣∣∣ > ε5 is at most ε4.

Then, the probability that z ∈ G is at least 1− (ε1 + ε2 + ε3 + 2ε4 + ε5).

Fix a set I ⊆ [n] of variables that the restriction keeps alive. Relying on Lemma 5.12,
the proof idea for Lemma 5.10 is to design a distribution T over tests that gets as input
z ∈ {−1, 1}[n]\I , and tests whether or not Φ is close to σ in the subcube corresponding to
the restriction ρ = ρI,z.

Lemma 5.13 (Lemma 5.10, restated). Let n ∈ N, and let δ, δ′, γ > 0 such that δ ≤ (γ · δ′)10.
Let Φ = (w, θ) be an LTF over n input bits that is δ-close to a constant function σ ∈ {−1, 1}, let
I ⊆ [n], and let z be a distribution over {−1, 1}[n]\I that is (δ′ · γ2)-pseudorandom for LTFs. Then,
with probability 1−O(γ) over choice of z ∼ z it holds that Φ�(I,z) is δ′-close to σ.

A high-level description of the proof. For every z ∈ {−1, 1}[n]\I , consider the corre-
sponding subcube Cz = {y ∈ {−1, 1}n : ∀i ∈ ([n] \ I), yi = zi}. Our goal is to show that
with high probability over z ∼ z it holds that Φ is close to σ in Cz. To do so, we will
construct a distribution T of tests such that for any fixed z ∈ {−1, 1}[n]\I , the distribution
T(z) is equivalent to the following random process: Sample t = poly(n) random points
y(1), ..., y(t) in Cz, and accept if and only if Φ(y(i)) = σ for every i ∈ [t].

To construct the distribution T, for every x ∈ {−1, 1}|I| we define a corresponding
test Tx as follows: The test Tx gets input z ∈ {−1, 1}[n]\I , extends z to an n-bit string
y ∈ {−1, 1}n using the values specified in x (i.e., yi = xi for every i ∈ I, and yi = zi
otherwise), and accepts z if and only if Φ(y) = σ. Observe that Tx simply computes an LTF
of its input z (see Eq. (5.4)). Also note that for any fixed input z ∈ {−1, 1}[n]\I , a uniform
choice of x ∈ {−1, 1}|I| yields a uniform point y ∈ Cz. Each test in T corresponds to a tuple
x̄ = (x(1), ..., x(t)) ∈ {−1, 1}t·|I|, and computes the function Tx̄(z) = ∧i∈[t]Tx(i)(z).

Assume that Φ is initially δ-close to σ, for δ ≤ 1/poly(n). We say that an input z ∈
{−1, 1}[n]\I is excellent if Φ is

√
δ-close to σ in Cz, and we say that z is bad if Φ is not

δ′-close to σ in Cz, where δ′ = δΩ(1). Let E be the set of excellent inputs, and let B be the
set of bad inputs. If we choose the parameter t (i.e., the number of sample points) such
that O(log(n))

δ′ < t < 1√
δ·poly(n)

, then the distribution T accepts every z ∈ E with probability

1− 1/poly(n), and rejects every z ∈ B, with probability 1− 1/poly(n).
What remains to show is that a distribution z that is (1/poly(n))-pseudorandom for

LTFs is also (1/poly(n))-pseudorandom for almost all tests in the support of T. To do
so, note that almost all inputs z ∈ {−1, 1}[n]\I are excellent, and each excellent input is
accepted with high probability by a random test Tx̄ ∼ T. Thus, almost all of the residual
deterministic tests Tx̄ in the support of T accept almost all of their inputs; in particular, at
least 1− 1/poly(n) of the residual tests have acceptance probability at least 1− 1/poly(n).
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Every such test is the conjunction of t = poly(n) LTFs, and each of these LTFs has accep-
tance probability at least 1− 1/poly(n). By a union-bound over the t LTFs, the acceptance
probability of such Tx̄ under z is also 1− t · (1/poly(n)) = 1− 1/poly(n).

Proof of Lemma 5.13. Without loss of generality, assume that Φ is δ-close to the constant
σ = −1. For any Boolean function f over a domain D, let acc( f ) = Prx∼D[ f (x) = −1].
Also, denote J = [n] \ I and n′ = |J|, and for any z ∈ {0, 1}n′ , denote by ρz the restriction
ρz = (I, z) (i.e., we suppress I in the notation ρz, since I is fixed).

Let G =
{

z ∈ {0, 1}n′ : acc(Φ�ρz
) ≥ 1− δ′

}
. Our goal is to show that Prz∼z[z ∈ G] ≥

1−O(γ). Let E =
{

z ∈ {0, 1}n′ : acc(Φ�ρz
) ≥ 1−

√
δ
}

. Note that when z ∈ {−1, 1}n′ is

chosen uniformly it holds that Ez∈{−1,1}n′

[
acc(Φ�ρz

)
]
= Prx∈{−1,1}n [Φ(x) = −1] ≥ 1− δ.

Therefore, Prz∈{−1,1}n′ [z ∈ E] ≥ 1−
√

δ.

We now construct a distribution T over tests {−1, 1}n′ → {−1, 1} that distinguishes,
with high probability, between z ∈ E and z /∈ G. For x ∈ {0, 1}|I|, let Tx be the function
that gets as input z ∈ {0, 1}n′ , and outputs the value Φ(y), where yJ = z and yI = x.
Note that for any fixed z ∈ {−1, 1}n′ , when uniformly choosing x ∈ {−1, 1}|I| it holds that
Pr [Tx(z) = −1] = acc(Φ�ρz

). Also, Tx is an LTF of its input z, because

Tx(z) = sgn (〈y, w〉 − θ) = sgn (〈z, wJ〉 − (θ − 〈x, wI〉)) . (5.4)

For t = O
(

log(1/γ)
δ′

)
and x̄ = (x(1), ..., x(t)) ∈ {0, 1}t·|I|, let Tx̄ : {−1, 1}n′ → {−1, 1} be

the function such that Tx̄(z) = −1 if and only if for every i ∈ [t] it holds that Tx(i)(z) = −1
(i.e., Tx̄ is the conjunction ∧i∈[t]Tx(i)). Our distribution T is the uniform distribution over

the set
{

Tx̄ : x̄ ∈ {0, 1}t·|I|
}

. Observe that:

• For any fixed z ∈ E it holds that PrTx̄∼T [Tx̄(z) = −1] ≥ 1− t ·
√

δ.

• For any fixed z /∈ G it holds that PrTx̄∼T [Tx̄(z) = −1] ≤ γ.

We want to show that almost all of the tests {Tx̄}x̄∈{0,1}t·|I| in the support of T accept
almost all of their inputs. To see that this is the case, observe that

Ex̄ [acc(Tx̄)] = Pr
x̄,z
[Tx̄(z) = −1] ≥ Pr

z
[z ∈ E] ·min

z∈E

{
Pr̄
x
[Tx̄(z) = −1]

}
,

which is lower-bounded by 1− ξ2, where ξ2 = (t + 1) ·
√

δ. Therefore, the fraction of tests
Tx̄ that reject more than ξ of their inputs is at most ξ.

Now, let Tx̄ be a test such that acc(Tx̄) ≥ 1− ξ. Since Tx̄ is a conjunction of Tx(1) , ..., Tx(t) ,
for each i ∈ [t] it holds that acc(Tx(i)) ≥ 1− ξ. Also, for each i ∈ [t] it holds that z is η-
pseudorandom for Tx(i) , where η ≤ (γ2 · δ′), and therefore Prz∼z[Tx(i)(z) = −1] ≥ 1− ξ − η.
It follows that Prz∼z[Tx̄(z) = −1] ≥ 1− t · (ξ + η).

We invoke Lemma 5.12 with the parameters ε1 =
√

δ, ε2 = t ·
√

δ, ε3 = γ, ε4 = ξ, and
ε5 = t · (ξ + η), and deduce that

Pr
z∼z

[z /∈ G] ≤ (t + 1) ·
√

δ + γ + 2 ·
√

t + 1 · δ1/4 + t · (
√

t + 1 · δ1/4 + η)

= O
(

γ + t3/2 · δ1/4 + t · η
)

= O
(

γ + (γ · δ′)−3/2 · δ1/4 + η/(γ · δ′)
)

,
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which is O(γ) since η ≤ (γ2 · δ′) and by our hypotheses regarding γ, δ, and δ′.

6 Reduction of standard derandomization to quantified deran-
domization

In this section we prove Theorem 1.2. The core of the proof is the construction of a suitable
averaging sampler (equivalently, seeded extractor) that is computable by a T C0 circuit with
a super-linear number of wires. We therefore start by describing this construction. In the
current section, as in Section 4.5, it will be more convenient to represent Boolean functions
as functions {0, 1}n → {0, 1}, rather than {−1, 1}n → {−1, 1}.

In Section 6.1 we recall the definition of weak combinatorial designs, and construct such
designs that are suitable for our parameter setting. In Section 6.2 we show how to compute
a code with distance 1/2− o(1) by a T C0 circuit with a super-linear number of wires. In
Section 6.3 we combine the two preceding ingredients to construct an averaging sampler
in T C0. Finally, in Section 6.4 we prove Theorem 1.2.

6.1 Weak combinatorial designs for Trevisan’s extractor

Let us recall the notion of weak combinatorial designs, which was introduced by Raz,
Reingold, and Vadhan [RRV02].

Definition 6.1 (weak designs). For positive integers m, `, t ∈ N and an integer ρ > 1, an
(m, `, t, ρ) weak design is a collection of sets S1, ..., Sm ⊆ [t] such that for every i ∈ [m] it holds
that |Si| = ` and ∑j<i 2|Si∩Sj| ≤ (m− 1) · ρ.

Raz, Reingold, and Vadhan [RRV02] showed a construction of weak designs with uni-
verse size t =

⌈
`

ln(ρ)

⌉
· `. In our parameter setting we will have log(ρ) ≈ 0.99 · `, and for

such value the construction in [RRV02] yields t = 2 · `. We want to have t ≈ 1.01 · `, and
therefore now show a more refined construction.

Lemma 6.2 (constructing weak designs). There exists an algorithm that gets as input m ∈ N

and ` ∈ N and ρ ∈ N such that log(ρ) = (1− α) · `, where α ∈ (0, 1/4), and satisfies the
following. The algorithm runs in time poly(m, 2`) and outputs an (m, `, t, ρ) weak design, where
t = d(1 + 4α) · `e.

Proof. Let t = d(1 + 4α) · `e. The algorithm constructs the sets S1, ..., Sm ⊆ [t] in iterations.
In each iteration i ∈ [m] the algorithm finds Si such that ∑j<i 2|Si∩Sj| ≤ (i − 1) · ρ. To
do so, the algorithm initially fixes a partition of [t] into ` blocks. The first t − ` blocks,
denoted B1, ..., Bt−`, are each comprised of two elements (i.e., for j ∈ [t − `] it holds that
Bj = {2j − 1, 2j}). The remaining 2` − t blocks, denoted Bt−`+1, ..., B`, each consist of a
single element (i.e., for j ∈ {t− `+ 1, ..., `} it holds that Bj = {t− `+ j}).

For i ∈ [m], let us describe the ith iteration, after S1, ..., Si−1 were already chosen in
previous iterations. Consider a set Si that is chosen by independently choosing one random
element from each of the ` blocks to include in Si. 12 For j ∈ [i − 1] and k ∈ [`], let Yj,k

be the indicator variable of whether the element from the kth block that is included in Sj is

12That is, for each k ∈ [`] let Xk be a random element from the block Bk, such that for k 6= k′ ∈ [`] it holds
that Xk and Xk′ are independent. Then, Si = ∪k∈[`]Xk.
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also included in Si (i.e., Yj,k = 1 iff Bk ∩ Sj ∩ Si 6= ∅). Note that for k 6= k′ ∈ [m] it holds
that Yj,k and Yj,k′ are independent. Thus, the expected value of ∑j<i 2|Si∩Sj| is

E

[
∑
j<i

2|Si∩Sj|
]
= ∑

j<i
E
[
2∑k∈[`] Yj,k

]
= ∑

j<i
E

[
∏

k∈[`]
2Yj,k

]
= ∑

j<i
∏

k∈[`]
E
[
2Yj,k

]
= (i− 1) · (3/2)t−` · 22`−t , (6.1)

where the last equality is because for every k ∈ [t − `] it holds that Pr[Yj,k = 1] = 1/2
(since |Bk| = 2), and for every k ∈ {t − ` + 1, ..., `} it holds that Yj,k ≡ 1 (since Bk is a

singleton). Now, plugging-in t = d(1− 4α) · `e and ` = log(ρ)
1−α into Eq. (6.1), we can upper-

bound the expression by (i − 1) · ρ. 13 Hence, the algorithm can find a set Si such that
∑j<i 2|Si∩Sj| ≤ (i− 1) · ρ by trying out all 2t−` < 2` possibilities.

As shown in [RRV02], Trevisan’s proof [Tre01] that the Nisan-Wigderson construc-
tion [NW94] yields an extractor also extends to the setting when the combinatorial design
is a weak design as in Definition 6.1. Specifically:

Theorem 6.3 (extractors from weak designs [RRV02, Prop. 10]). Let m < k < n be three integers,
and let ε > 0. Let ECC : {0, 1}n → {0, 1}n̄ be a code such that in every Hamming ball of radius
1/2− δ in {0, 1}n̄ there exist at most 1/δ2 codewords, where δ = ε/4m. Let S1, ..., Sm ⊆ [t] be an
(m, `, t, ρ) weak design with ` = log(n̄) and ρ = k−3·log(m/ε)−t−3

m .
Then, the function E : {0, 1}n × {0, 1}t → {0, 1}m that is defined by E(x, z) =

(ECC(x)zS1
, ..., ECC(x)zSm

) is a (k, ε)-extractor.

By combining Theorem 6.3 and Proposition 4.14, we obtain the following:

Corollary 6.4 (samplers from weak designs). Let m < k < n be three integers, and let ε > 0. Let
ECC : {0, 1}n → {0, 1}n̄ be a code such that in every Hamming ball of radius 1/2− δ in {0, 1}n̄

there exist at most 1/δ2 codewords, where δ = ε/4m. Let S1, ..., Sm ⊆ [t] be an (m, `, t, ρ) weak
design with ` = log(n̄) and ρ = k−3·log(m/ε)−t−3

m .
Then, the function Samp : {0, 1}n × {0, 1}t → {0, 1}m that is defined by Samp(x, z) =

(ECC(x)zS1
, ..., ECC(x)zSm

) is an averaging sampler with accuracy ε and error 2k−n.

6.2 An ε-balanced code in sparse T C0

Following Corollary 6.4, our goal now is to construct a T C0 circuit with a super-linear
number wires that computes an error-correcting code that is list-decodable up to distance
1/2− δ with list size poly(1/δ) and rate poly(1/δ). We will do this by constructing a code
with distance 1/2− ε, where ε = δ2, and then relying on the Johnson bound. In fact, we

13Denoting c = log(e)/2 and t = (1 + 4β) · `, where β ≥ α, we have that 22`−t · (3/2)t−` < 22`−t · e(t−`)/2 =

22`−t+c·(t−`) ≤ 2
1−4(1−c)·β

1−α ·log(ρ) < ρ.
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will actually construct an ε-balanced code (i.e., a linear code such that all codewords have
relative Hamming weight 1/2± ε).

As described in the introduction, the construction will consist of two parts. We will
first construct a code with constant relative distance, and then show how to amplify the
distance from Ω(1) to 1/2− ε.

Proposition 6.5 (a code with constant relative distance in sparse T C0). There exists a polynomial-
time algorithm that is given as input 1n and a constant d ∈ N, and outputs a T C0 circuit C that
satisfies the following:

1. The circuit C maps n input bits to n̂ = O(n) input bits.

2. For every x ∈ {0, 1}n such that x 6= 0n, the relative Hamming weight of C(x) is at least 3−d.

3. Each output bit of C is a linear function of the input bits.

4. The circuit C has depth 2d and n1+O(1/d) wires.

Proof. Assume that n is of the form rd, for r ∈ N (if necessary, pad the input with zeroes
such that the input length will be a power of 2d). Fix a linear code ECC that maps strings
of length r to strings of length r̄ = O(r) and has relative distance at least 1/3 (e.g., we can
use the ε-balanced codes of [NN93, TS17]).

Let x ∈ {0, 1}n be an input for the circuit C. We think of x as a tensor M(0) of dimensions
[r]d; that is, for every~t ∈ [r]d, the~tth entry of M(0) is denoted by M(0)

~t
∈ {0, 1}. The circuit

C will iterative compute a sequence M(1), ..., M(d) of tensors, and the message x = M(0)

will be mapped to the final codeword x̂ = M(d).
For each i ∈ [d], the tensor M(i) is defined as follows. The dimensions of M(i) are

[r̄]i × [r]d−i. For every pair ( ~t≤i−1, ~t≥i+1) ∈ [r̄]i−1 × [r]d−i, we denote by M(i−1)
~t≤i−1,?,~t≥i+1

the

r-bit vector M(i−1)
~t≤i−1,?,~t≥i+1

def
== M(i−1)

(~t≤i−1,1,~t≥i+1)
, ..., M(i−1)

(~t≤i−1,m,~t≥i+1)
∈ {0, 1}r. Then, for every ~t ∈

[r̄]i × [r]d−i, we think of~t as a triplet~t = (~t≤i−1, u,~t≥i+1) ∈ [r̄]i−1 × [r̄]× [r]d−i, and define
M(i)

~t
=
(
ECC

(
M(i−1)

~x≤i−1,?,~x≥i+1

))
v

(i.e., M(i)
(~t≤i−1,v,~t≥i+1)

is the vth coordinate of the encoding of

M(i−1)
~t≤i−1,?,~t≥i+1

by ECC).

The final codeword x̂ = M(d) is of dimensions [r̄]d, which means that it represents a
string of length n̂ = (O(r))d = O(n). The fact that every non-zero message x ∈ {0, 1}n is
mapped to a codeword x̂ ∈ {0, 1}n̂ with relative Hamming weight at least (1/3)d follows
from the properties of ECC and from well-known properties of tensor codes; for complete-
ness, we include a proof in Appendix B. Also note that each bit of x̂ is indeed a linear
function of x, because ECC is linear (which means that in each iteration i ∈ [d], every bit of
M(i) is a linear function of M(i−1)).

Finally, let us fix i ∈ [d], and describe how to compute M(i) from M(i−1) in depth two
with O(n · r2) wires. Since ECC is linear, for each~t = (~t≤i−1, v,~t≥i+1) ∈ [r̄]i−1 × [r̄]× [r]d−i it
holds that M(i)

~t
= ECC

(
M(i−1)

~t≤i−1,?,~t≥i+1

)
v

is a linear function of the r-bit string M(i−1)
~t1,?,~t2

∈ {0, 1}r.

Thus, each entry of M(i) can be computed from M(i−1) by a depth-2 T C0 circuit with O(r2)
wires (see, e.g., [PS94, Sec. 3]), which means that M(i) can be computed from M(i−1)

by a depth-2 T C0 circuit with O(n · r2) wires. Overall, the final circuit C is of depth 2d
(since it is comprised of d circuits of depth two), and the number of wires in C is at most
O(n · r2) < n1+O(1/d).
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We now show how to amplify the distance of the code from Proposition 6.5 from Ω(1)
to 1/2− ε.

Proposition 6.6 (amplifying the distance of the code from Proposition 6.5). There exists a polynomial-
time algorithm that is given as input 1n̂, a constant ρ > 0, and ε = ε(n̂) > 0, and outputs a T C0

circuit C such that:

1. The circuit C maps n̂ input bits to n̄ = n̂ · (1/ε)O(1/ρ) output bits.

2. For every x̂ ∈ {0, 1}n̂ with relative Hamming weight at least ρ, the relative Hamming weight
of x̄ = C(x̂) is between 1/2− ε and 1/2.

3. Each output bit of C is a linear function of the input bits.

4. The circuit C has depth two and n̂ · (1/ε)O(1/ρ) wires.

Proof. The algorithm first constructs an expander graph G on n̂ vertices; that is, a dG-
regular graph over the vertex-set [n̂] vertices with constant spectral gap. 14 Consider a
random walk that starts from a uniform i ∈ [n̂] and walks ` − 1 steps, where ` = cG

ρ ·
log(1/ε) and cG is a sufficiently large constant that depends only on G. By the hitting
property of expander random walks (see, e.g., [Gol08, Thm 8.28]), with probability at least
1− ε such a walk hits i ∈ [n̂] such that xi 6= 0 (this is because the set {i ∈ [n̂] : xi 6= 0} has
density at least ρ). Thus, if we first take such a random walk, and then output a random
parity of the values of x̂ at the coordinates corresponding to the vertices in the walk, the
output will equal one with probability at least 1/2− ε and at most 1/2.

The mapping of x̂ to x̄ = C(x̂) is obtained by considering all the possible outcomes
of the random process above. Specifically, for every random walk W =

(
i(W)
1 , ..., i(W)

`

)
of

length `− 1 on G, and every subset S ⊆ [`], we have a corresponding coordinate (W, S) in
C(x̂). The value of C(x̂) at coordinate (W, S) is the parity of the bits of x̂ in the locations
corresponding to S in walk W; that is, C(x̂)(W,S) = ⊕j∈S x̂

i(W)
j

.

Note that the length of C(x̂) is n̂ · (dG)
`−1 · 2` = n̂ · (1/ε)c′G/ρ, where c′G is a large

constant that only depends on G. Also, the mapping of x̂ to C(x̂) is linear, and moreover
every coordinate of C(x̂) is the parity of ` coordinates of x̂. Thus, C(x̂) can be computed
by a T C0 circuit of depth two using at most n̂ · (1/ε)c/ρ · `2 < n̂ · (1/ε)2c/ρ wires.

By combining Propositions 6.5 and 6.6 we obtain the following:

Proposition 6.7 (an ε-balanced code in sparse T C0). There exists a polynomial-time algorithm
that gets inputs 1n and ε = ε(n) and a constant d ∈N, and outputs a T C0 circuit such that:

1. The circuit computes a linear code that maps messages of length n to codewords of length
n̄ = n · (1/ε)O(3d) such that every codeword has relative Hamming weight 1/2± ε.

2. The circuit has depth 2d and n1+O(1/d) · (1/ε)O(3d) wires.

Relying on the Johnson bound, we obtain the list-decodable code that is needed for
Corollary 6.4 as a corollary of Proposition 6.7:

14For a suitable construction see, e.g., [Gol08, Thm E.10]. This specific construction requires n̂ to be a square,
so we might need to pad the input x ∈ {0, 1}n̂ with zeroes such that it will be of length 4k = (2k)2, for k ∈ N.
Since such a padding will not affect the rest of the argument, we ignore this issue.

32



Corollary 6.8 (a list-decodable code in sparse T C0). There exists a polynomial-time algorithm that
gets inputs 1n and δ = δ(n) and a constant d ∈N, and outputs a T C0 circuit such that:

1. The circuit computes a linear code mapping messages of length n to codewords of length
n̄ = n · (1/δ)O(3d) such that in any Hamming ball of radius 1/2− δ in {0, 1}n̄ there exist at
most O(1/δ2) codewords.

2. The circuit has depth 2d and n1+O(1/d) · (1/δ)O(3d) wires.

Proof. We invoke Proposition 6.7 with ε = δ2. The code that the circuit computes has
distance 1/2− δ2. Relying on the Johnson bound (see, e.g., [AB09, Thm 19.23]), in such a
code every Hamming ball of radius δ contains at most 1/δ2 codewords.

6.3 An averaging sampler in sparse T C0

We now combine Lemma 6.2, Corollary 6.4, and Corollary 6.8, to get an averaging sampler
that can be computed by a T C0 circuit with a super-linear number of wires. The sampler
will get an input of length n, and for two constants 0 < γ� β < 1, the sampler will output
m = nγ bits and will have accuracy 1/m and error 2nβ−n.

Proposition 6.9 (an averaging sampler in sparse T C0). There exists a polynomial-time algorithm
that gets inputs 1n and ε = ε(n) and three constants d ∈ N and γ ≤ 1

c·d·3d (where c > 1 is some
universal constant) and β ≥ 4/5, and outputs a T C0 circuit C that satisfies the following:

1. The circuit C gets input x ∈ {0, 1}n and outputs 2t < n(1+O(1/d))·(5−4β) strings of length
m = nγ.

2. The function Samp : {0, 1}n × {0, 1}t → {0, 1}m such that Samp(x, i) = C(x)i (i.e.,
Samp(x, i) ∈ {0, 1}m is the ith output string of C(x)) is an averaging sampler with accuracy
ε = 1/m and error δ = 2nβ−n.

3. The depth of C is 2d + 1 and its number of wires is at most n(1+O(1/d))·(5−4β).

In particular, if β ≥ 1− 1/5d, then both the number of outputs of C (i.e., 2t) and the number of
wires in C are less than n1+O(1/d).

Proof. We first use Corollary 6.8 with the parameter value δ = ε/4m to construct a cir-
cuit C0 of depth 2d that encodes its input x ∈ {0, 1}n to a codeword x̄ of length n̄. Then,
we use Lemma 6.2 to construct an (m, `, t, ρ) weak design S1, ..., Sm ⊆ [t] with the follow-
ing parameters: For α = 1 − β + (c · 3d+1) · γ < 1/4 (the inequality is since β > 4/5
and γ is sufficiently small), we construct a design with ` = log(n̄) and ρ = 2(1−α)·` and
t = d(1 + 4α) · `e. Now, define a function Samp : {0, 1}n × {0, 1}t → {0, 1}m as in Corol-
lary 6.4; that is, for x ∈ {0, 1}n and z ∈ {0, 1}t, the m-bit string Samp(x, z) is the projection
of x̄ to the coordinates zS1 , ..., zSm . The circuit C outputs the 2t strings corresponding to
{Samp(x, z)}z∈{0,1}t , where each output string is a projections of m bits of x̄.

Let k = nβ. An elementary calculation shows that ρ = 2(1−α)·` < k−3·log(m/ε)−t−3
m . 15

Thus, relying on Corollary 6.4, the function Samp is an averaging sampler with accuracy

15To see that this holds, let c′ > 1 be the universal constant such that n̄ ≤ n · (m/ε)c′ ·3d
. Then, note that

α = 1− β + (c′ · 3d+1) · γ >
1−β+(2c′ ·3d+1)·γ

1+2c′ ·γ·3d = 1− β−γ
1+2c′ ·γ·3d . It follows that log(ρ) = (1− α) · ` < log(k/2m),

since 1− α <
β−γ−1/ log(n)

1+2c′ ·γ·3d . We can thus deduce that ρ ≤ k/2m <
k−3·log(m/ε)−t−3

m .
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ε and error 2k−n. The depth of C is 2d + 1 (since the depth of C0 is 2d, and the 2t outputs
are projections of x̄). Finally, the number of wires in C0 is at most n1+O(1/d) · (m/ε)O(3d) =

n1+O(1/d+γ·3d) = n1+O(1/d), and the number of wires between x̄ and the outputs is 2t ·m =

2d(1+4α)·log(n̄)e ·m = n(1+O(γ·3d))(1+4α) = n(1+O(1/d))·(5−4β).

6.4 Proof of Theorem 1.2

Let us now formally state Theorem 1.2 and prove it using the averaging sampler from
Proposition 6.9. Towards stating the theorem, for any n, d, k ∈ N, denote by Cn,d,nk either
the class of linear threshold circuits over n input bits of depth d and with at most nk wires.

Theorem 6.10 (Theorem 1.2, restated). Assume that for every d ∈N and for some β = βd ≥ 4/5
there exists an algorithm that gets as input a circuit C′ ∈ Cn,d,n(1+O(1/d))·(5−4β) , runs in time T(n),
and satisfies the following: If C′ rejects all but at most 2nβ

of its inputs, then the algorithm rejects
C′, and if C′ accepts all but at most 2nβ

of its inputs, then the algorithm accepts C′.
Then, there exists an algorithm that for every k ∈ N and d ∈ N, when given as input a circuit

C ∈ Cm,d,mk , runs in time T(mO(k·d·3d)) (where the O-notation hides some fixed universal constant),
and satisfies the following: If C accepts at least 2/3 of its inputs then the algorithm accepts C, and
if C rejects at least 2/3 of its inputs then the algorithm rejects C.

To obtain the parameters of Theorem 1.2, use the value βd = 1− 1/5d, in which case the
number of wires of C′ is n1+O(1/d); and for every k ∈N, we can assume that d is sufficiently
large such that O(k · d · 3d · 4−d) < 1, in which case the running time of the algorithm is at

most T(mO(k·d·3d)) = 2m1−Ω(1)
(due to the hypothesis that T(n) = 2n1/4d

).

Proof of Theorem 6.10. Let C ∈ Cm,d,mk be an input to the algorithm, let γ = 1/c · k · d · 3d

for a sufficiently large universal constant c > 1, and let β = β3d+2. We will construct a
circuit C′ ∈ Cn,3d+2,n(1+O(1/d))·(5−4β) , where n = m1/γ, such that the following holds: If C rejects

at least a 2/3 fraction of its inputs, then C′ rejects all but at most 2nβ
inputs; and if C accepts

at least a 2/3 fraction of its inputs, then C′ accepts all but 2nβ
of its inputs. Then, we can use

the quantified derandomization algorithm for C′, which runs in time T(n) = T
(

mc·k·d·3d
)

,
to decide whether the acceptance probability of C is at least 2/3 or at most 1/3.

To construct C′, we first use Proposition 6.9 to construct a T C0 circuit Samp : {0, 1}n ×
{0, 1}t → {0, 1}m that is an averaging sampler with the following properties: The input
length is n, the output length is m = nγ, the accuracy is ε = nΩ(1) < 1/100, and the error
is δ = 2nβ−n; the number of wires in Samp is at most n(1+O(1/d))·(5−4β), and its depth is
2d + 1. The circuit C′ first computes the sampler Samp, then evalutes C in parallel on each
of the 2t < n(1+O(1/d))·(5−4β) outputs of the sampler, and finally computes the majority of
the 2t evaluations of C. That is, C′(x) = MAJz∈{0,1}t [C(Samp(x, z))]. The circuit C′ is of
depth (2d+ 1) + d+ 1 = 3d+ 2, and its number of wires is at most n(1+O(1/d))·(5−4β) +mk =
n(1+O(1/d))·(5−4β), where we relied on the fact that mk < n.

Note that for any x ∈ {0, 1}n such that Prz∈{0,1}t [C(Samp(x, z)) = 1] ∈ Pr[C(un) =
1]± ε, we have that C′(x) outputs the most frequent value of C. Since the accuracy of the
sampler is 2nβ−n, the number of strings in {0, 1}n such that Prz∈{0,1}t [C(Samp(x, z)) = 1] /∈
Pr[C(un) = 1]± ε is at most 2nβ

. Thus, the number of strings x ∈ {0, 1}n such that C′(x)
does not output the most frequent value of C is at most 2nβ

.
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Observe that the circuit C′ that we constructed in the proof of Theorem 6.10 consists of
the sampler from Proposition 6.9, which only uses majority gates; of copies of the initial
circuit C; and of an additional majority gate. Thus, the statement of Theorem 6.10 holds
even if we interpret Cn,d,w as the class of circuits with majority gates (rather than linear
threshold circuits) over n input bits of depth d and with at most w wires.

7 Restrictions for sparse T C0 circuits: A potential path towards
NEXP 6⊆ T C0

Recall that the best currently-known lower bounds for T C0 circuits of arbitrary constant
depth d are for circuits with n1+exp(−d) wires. We now present an open problem that
involves restrictions for T C0 circuits with only n1+O(1/d) wires, and show that a resolution
of this open problem would imply that NEXP 6⊆ T C0.

Towards presenting the problem, fix some class Csimple of “simple” functions such that
the following holds: There exists a deterministic algorithm that gets as input C′ ∈ Csimple,
runs in sufficiently small sub-exponential time, and distinguishes between the case that the
acceptance probability of C′ is at least 2/3 and the case that the acceptance probability of
C′ is at most 1/3. Then, the problem is the following:

Open Problem 1 (deterministic restriction algorithm for sparse T C0 circuits). Construct a de-
terministic algorithm that gets as input a T C0 circuit C : {−1, 1}n → {−1, 1} of depth d with

n1+O(1/d) wires, runs in time at most 2n1/4d
, and finds a set S ⊆ {−1, 1}n and C′ ∈ Csimple such

that |S| ≥ 10 · 2n1−1/5d
and C�S is (1/10)-close to C′.

To see that a resolution of Open Problem 1 would imply that NEXP 6⊆ T C0, recall that
(as explained in the beginning of Section 3.1) a resolution of Open Problem 1 would imply
that there exists an algorithm for quantified derandomization of T C0 circuits of depth d
with n1+O(1/d) wires and B(n) = 2n1−1/5d

exceptional inputs that runs in sufficiently small

sub-exponential time (i.e., in time 2n1/4d
). Relying on Corollary 1.3, the existence of such a

quantified derandomization algorithm implies that NEXP 6⊆ T C0.
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Appendix A Quantified derandomization and lower bounds

In this appendix we prove that “black-box” quantified derandomization of a class C yields
lower bounds for C, in the same way that standard derandomization does. For simplicity,
we focus on the case of derandomization with one-sided error. Let us first recall the notion
of a hitting-set generator, which yields a “black-box” quantified derandomization with
one-sided error of a circuit class.

Definition A.1 (hitting-set generator). Let F =
⋃

n∈N Fn, where for every n ∈ N it holds that
Fn is a set of functions {0, 1}n → {0, 1}, and let ` : N → N. An algorithm H is a hitting-set

generator for F with seed length ` if for every n ∈N and every f ∈ Fn there exists s ∈ {0, 1}`(n)
such that f (H(s)) = 1.

In the following proposition, we assume that there exists a hitting-set generator with
non-trivial seed length `(n) < n for circuits with B(n) ≥ 2` exceptional inputs, and show
that this implies lower bounds for the corresponding circuit class.

Proposition A.2 (quantified derandomization implies lower bounds). Let ` : N → N such that
`(n) < n, and let B : N → N such that B(n) ≥ 2`(n). Let C be a circuit class, and let C≤B ⊆ C
be the subclass of circuits that reject at most B(n) of their inputs. Assume that there exists a 2O(`)-
time computable hitting-set generator H with seed length ` for C≤B. Then, there exists a function
in DTIME(2O(`(n))) that cannot be computed by any circuit in C.

Proof. The “hard” function for C, denoted f , is the indicator function of {0, 1}n \ {H(s) :
s ∈ {0, 1}`(n)}; that is, f (x) = 0 if and only if there exists s ∈ {0, 1}`(n) such that x = H(s).
Note that any C ∈ C that computes f rejects at most 2` ≤ B(n) inputs, and thus C ∈ C≤B.
However, this means that H is a hitting-set generator for C, and so there exists s ∈ {0, 1}`(n)
such that C(H(s)) = 1. Since f (H(s)) = 0, we obtain a contradiction to the hypothesis that
C computes f .
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Appendix B Proof of a technical claim from Section 6

In the proof of Proposition 6.5, we omitted the proof of the following claim: For every
x ∈ {0, 1}n such that x 6= 0n, the relative Hamming weight x̂ = C(x) is at least (1/3)d. The
proof of this claim, which we now detail, follows from a standard property of tensor codes:
If a code ECC has distance δ > 0, then the tensor code of order d that is based on ECC has
distance δd.

Claim B.1. Let C be the circuit constructed in the proof of Proposition 6.5, and let x ∈ {0, 1}n

such that x 6= 0n. Then, the relative Hamming weight x̂ = C(x) is at least (1/3)d.

Proof. Recall that the code ECC maps any non-zero message of length m to a codeword of

length m̄ with at least r def
== m̄/3 non-zero entries. Our hypothesis is that x = M(0) is not

the all-zero message, and we will now prove that for each i ∈ [d] it holds that M(i) has at
least ri non-zero entries. The proof is by induction, and will rely on a stronger induction
hypothesis: We prove that for each i ∈ {0, ..., d} there exists ~x≥i+1 ∈ [m]d−i such that the
number of vectors ~x≤i ∈ [m̄]i for which M(i)

~x≤i ,~x≥i+1
6= 0 is at least ri.

For the base case i = 1, note that by our hypothesis there exists ~x ∈ [m]d such that
M(0)

~x 6= 0. Therefore, the m-bit vector M(0)
?,~x≥2

= M(0)
1,~x2,...,~xd

, ..., M(0)
m,~x2,...,~xd

is non-zero. By the

properties of ECC it holds that ECC
(

M(0)
?,~x≥2

)
has at least r non-zero entries. The bits of

ECC
(

M(0)
?,~x≥2

)
appear in M(i) in locations (1,~x2, ...,~xd), ..., (m̄,~x2, ...,~xd). Therefore, the claim

is proved for i = 1 with the vector ~x≥2 = ~x2, ...,~xd ∈ [m]d−1.
For the induction step, let i ≥ 2. By the induction hypothesis, for some ~x≥i ∈ [m]d−(i−1)

there exist at least ri−1 vectors ~x(1)≤i−1, ...,~x(r
i−1)
≤i−1 ∈ [m̄]i−1 such that M(i−1)

~x(j)
≤i−1,~x≥i

6= 0 for all

j ∈ [ri−1]. Fix j ∈ [ri−1]. Since M(i−1)

~x(j)
≤i−1,~x≥i

6= 0, it follows that the string M(i−1)

~x(j)
≤i−1,?,~x(j)

≥i+1

=

M(i−1)

~x(j)
≤i−1,1,~x(j)

≥i+1

, ..., M(i−1)

~x(j)
≤i−1,m,~x(j)

≥i+1

∈ {0, 1}m is non-zero. Thus, by the properties of ECC, the

string ECC

(
M(i−1)

~x(j)
≤i−1,?,~x(j)

≥i+1

)
contains at least r non-zero entries.

Now, for every j ∈ [ri−1], let ~X(j) def
==

{(
~x(j)
≤i−1, 1,~x(j)

≥i+1

)
, ...,

(
~x(j)
≤i−1, m̄,~x(j)

≥i+1

)}
be the

set of m̄ locations in M(i) in which the string ECC

(
M(i−1)

~x(j)
≤i−1,?,~x(j)

≥i+1

)
appears. Note that for

every j 6= j′ ∈ [ri−1] it holds that all locations in X(j) and X(j′) are distinct; that is, for every
k, k′ ∈ [m̄] it holds that

(
~x(j)
≤i−1, k,~x(j)

≥i+1

)
6=
(
~x(j′)
≤i−1, k′,~x(j)

≥i+1

)
. Since for each j ∈ [ri−1] it

holds that X(j) contains at least r locations in which M(i) is non-zero, we deduce that M(i)

has at least ri non-zero entries.
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