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Abstract

The (block-)composition of two Boolean functions f : {0, 1}m → {0, 1}, g : {0, 1}n → {0, 1}
is the function f � g that takes as inputs m strings x1, . . . , xm ∈ {0, 1}n and computes

(f � g)(x1, . . . , xm) = f (g(x1), . . . , g(xm)) .

This operation has been used several times in the past for amplifying different hardness measures
of f and g. This comes at a cost: the function f � g has input length m · n rather than m or n,
which is a bottleneck for some applications.

In this paper, we propose to decrease this cost by “derandomizing” the composition: instead
of feeding into f �g independent inputs x1, . . . , xm, we generate x1, . . . , xm using a shorter seed.
We show that this idea can be realized in the particular setting of the composition of functions
and universal relations [KRW95, GMWW17]. To this end, we provide two different techniques
for achieving such a derandomization: a technique based on averaging samplers, and a technique
based on Reed-Solomon codes.

1 Introduction

Given two Boolean functions f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1}, their (block-)composition
is the function f � g : ({0, 1}n)m → {0, 1} that is defined by

(f � g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)).

This operation has been a useful tool in proving lower bounds on a variety of complexity measures.
This is usually done by showing that f � g is harder than f and g in some sense, and then using the
composition to construct hard functions with some desired properties. Some important examples
of this idea are the following:

• Depth complexity: The depth complexity of a Boolean function f , denoted D(f), is the
depth of the shallowest circuit that computes it (with fan-in 2). Karchmer, Raz, and Wigder-
son [KRW95] conjectured that

D(f � g) ≈ D(f) + D(g).

Following [GMWW17], we refer to this conjecture as the “KRW conjecture”. [KRW95] showed
that their conjecture, if true, implies super-logarithmic lower bounds on the depth complexity
of an explicit function, thus resolving an outstanding open problem of complexity theory. The
latter explicit function is constructed by a repeated application of the composition operation.
They also showed that this approach can be used to prove such lower bounds in the settings
of monotone circuits.
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supported by the Israel Science Foundation (grant No. 1445/16).

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 146 (2017)



• Lifting theorems: Raz and McKenzie [RM97] showed1 that the composition operation can
be used to “lift” lower bounds from query complexity to communication complexity. Suppose
that we have a query-complexity lower-bound for some function f , and we wish to “lift” it
to communication complexity. [RM97] showed that we can do it by composing f with some
specific function g. Specifically, the composed function f � g has communication complexity
which is roughly the query complexity of f .
[RM97] used this theorem to prove that the monotone NC-hierarchy does not collapse. Re-
cently, such lifting theorems were proved for other models and other choices of g, and were
used to derive a host of new important complexity separations. See [SZ09, She11, GPW15,
Göö15, LRS15, GLM+16, CKLM17, GKPW17, KMR17, WYY17] for some examples.

• Sensitivity measures: The sensitivity, block complexity and certificate complexity of a
Boolean function f are important combinatorial measures, which measure how sensitive f is
to changes in its input. Nisan and Wigderson [NW95] used the composition operation to prove
a separation between the sensitivity of a function and its polynomial degree. Gilmer, Saks,
and Srinivasan [GSS13] used the composition operation to provide an optimal separation
between these block complexity and certificate complexity. Kulkarni and Tal [KT16] used
the composition operation to separate variant of block complexity, namely, fractional block
complexity, from the degree that is required to approximate f as a polynomial. A key tool
in those results is the fact that the fractional block complexity of f � g is the product of the
fractional block complexities of f and g. On a related note, Tal [Tal13] used the composition
operation to resolve a question of Kalai on low-degree functions [MOS04].

The cost of the composition operation is that it increases the length of the input: the input length
of f � g is m · n rather than m or n. This cost is a serious bottleneck for the applications of this
operation. For example, in the application of [KRW95], the composition is used multiple times, and
thus the input length grows exponentially with the number of compositions. This leads to weaker
lower bounds than those that could have been achieved if the input of f �g was shorter, say, m+n.
Similarly, in the applications of composition to lifting theorems, the cost of composition sometimes
weakens the lower bounds that are obtained via lifting.

In this work, we propose an approach for decreasing this cost by defining a “derandomized” com-
position. A derandomized composition is a function that takes as input a string z of length ` where
` � m · n, uses z to generate strings x1, . . . , xm ∈ {0, 1}n, and then outputs (f � g)(x1, . . . , xm).
We refer to this approach as “derandomized composition” since one can think of this construc-
tion as if z is the seed of a “pseudorandom generator” that generates strings x1, . . . , xm that are
indistinguishable from independent strings from the point of view of f � g. This approach fol-
lows2 the derandomizations of Yao’s XOR lemma by Impagliazzo [Imp95], and Impagliazzo and
Wigderson [IW97].

If one could prove that this derandomized composition is roughly as hard as f � g, then one
would be able to use it as a substitute for f � g in the above applications while reducing the cost
from m · n to `. Our main results show that this approach can indeed by realized in the setting
of the composition of functions and universal relations, which is a variant of the KRW conjecture
discussed above. We now describe this setting as well as the relevant background.

1Actually, [RM97] proved it for a specific type of search problems. Later, Göös, Pitassi and Watson [GPW15]
observed that the proof of [RM97] works for every function.

2We note that recently, Razborov [Raz16] used similar ideas to prove very strong trade-offs for the resolution
proof-system.
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1.1 Background

1.1.1 Karchmer-Wigderson relations

Our main tool in studying the KRW conjecture is a framework developed by Karchmer and Wigder-
son [KW90]. They observed an interesting connection between depth complexity and communica-
tion complexity: for every Boolean function f , there exists a corresponding communication prob-
lem KWf , such that the depth complexity of f is equal to the communication complexity3 of KWf .
The communication problem KWf is often called the Karchmer-Wigderson relation of f , and we
will refer to it as a KW relation for short.

The communication problem KWf is defined as follows: Alice gets an input x ∈ f−1(0), and
Bob gets an input y ∈ f−1(1). Clearly, it holds that x 6= y. The goal of Alice and Bob is to find a
coordinate i such that xi 6= yi. Note that there may be more than one possible choice for i, which
means that KWf is a relation rather than a function.

This connection between functions and KW relations allows us to study the depth complexity of
functions using techniques from communication complexity. In the past, this approach has proved
very fruitful in the setting of monotone circuits [KW90, GS91, RW92, KRW95], and in particular
[KRW95] used it to separate the monotone versions of NC1 and NC2.

1.1.2 KW relations and the KRW conjecture

In order to prove the KRW conjecture, one could study the KW relation that corresponds to the
composition f �g. Let us describe how the KW relation KWf�g looks like. Let f : {0, 1}m → {0, 1}
and g : {0, 1}n → {0, 1}. Recall that the input to the composition consists of m strings in {0, 1}n.
In order to streamline the presentation, it is more convenient to represent these m strings as an
m×n binary matrix. For every m×n matrix X, let us denote by g(X) the string in {0, 1}m obtained
by applying g to each row of X, so f � g(X) = f(g(X)). In the KW relation KWf�g, Alice and
Bob get as inputs m× n matrices X,Y , respectively, such that g(X) ∈ f−1(0) and g(Y ) ∈ f−1(1),
and their goal is to find an entry (i, j) such that Xi,j 6= Yi,j .

Let us denote the (deterministic) communication complexity of a problem R by C(R). Clearly,
it holds that

C(KWf�g) ≤ C(KWf ) + C(KWg). (1)

This upper bound is achieved by the following protocol: for every i ∈ [m], let Xi denote the i-th
row of X, and same for Y . Alice and Bob first use the optimal protocol of f on inputs g(X) and
g(Y ), and thus find an index i ∈ [m] such that g(Xi) 6= g(Yi). Then, they use the optimal protocol
of g on inputs Xi and Yi to find a coordinate j on which the i-th rows differ, thus obtaining an entry
(i, j) on which X and Y differ. The KRW conjecture says that the above protocol is essentially
optimal.

1.1.3 The universal relation and its composition

Since proving the KRW conjecture seems difficult, [KRW95] suggested studying a simpler problem
as a starting point. To describe this simpler problem, we first need to define a communication
problem called the universal relation, and its composition with itself. The universal relation Un

is a communication problem in which Alice and Bob get as inputs x, y ∈ {0, 1}n with the sole
guarantee that x 6= y, and their goal is to find a coordinate i such that xi 6= yi. The universal
relation Un is universal in the sense that every KW relation reduces to it, and it is know that
n ≤ C(Un) ≤ n+ 2 (see [KRW95] for the lower bound and [TZ97] for the upper bonds).

3In this paper, we always refer to deterministic communication complexity, unless stated explicitly otherwise.
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The composition of two universal relations Um and Un, denoted Um �Un, is defined as follows.
Alice gets as input an m× n matrix X and a string a ∈ {0, 1}m, and Bob gets as input an m× n
matrix Y and a string b ∈ {0, 1}m. Their inputs satisfy the following conditions:

1. a 6= b.

2. for every i ∈ [m] such that ai 6= bi, it holds that Xi 6= Yi.

Their goal, as before, is to find an entry on which X and Y differ. The vectors a and b are analogues
of the vectors g(X) and g(Y ) in the KW relation KWf�g.

To see why Um � Un is a good way to abstract the KRW conjecture, observe that Um � Un is
a universal version of composition problems KWf�g, in the sense that every composition problem
KWf�g reduces to Um � Un. Moreover, the protocol described above for KWf�g also works for
Um �Un: Alice and Bob first apply the optimal protocol for Um to a and b to find i, and then apply
the optimal protocol for Un to Xi and Yi. In particular, it holds that C(Um �Un) ≤ C(Um)+C(Un).
Thus, a natural variant of the KRW conjecture for this composition would be that the latter protocol
is optimal for Um �Un. Following this reasoning, [KRW95] suggested to prove that

C(Um �Un) ≈ C(Um) + C(Un) ≥ m+ n (2)

as a first step toward proving the KRW conjecture. This challenge was met4 by [EIRS01] up to a
small additive loss, and an alternative proof was given later5 in [HW93].

1.1.4 The composition of a function with the universal relation

So far we discussed the composition KWf�g, for which no lower bound is known, and the com-
position Um � Un, for which a lower bound is known. In order to bridge the gap between the
two compositions, Gavinsky et. al. [GMWW17] defined a composition KWf�Un between a func-
tion f : {0, 1}m → {0, 1} and a universal relation Un.

The communication problem KWf�Un is defined as follows: Alice gets as input an m × n ma-
trix X and a string a ∈ f−1(0), and Bob gets as input an m× n matrix Y and a string b ∈ f−1(1).
Their inputs are guaranteed to satisfy Condition 2 of Um � Un, i.e., for every i ∈ [m] such that
ai 6= bi, it holds that Xi 6= Yi. Clearly, their inputs also satisfy a 6= b, as in Condition 1 of Um �Un.
The goal of Alice and Bob, as usual, is to find an entry on which X and Y differ.

Note that KWf�Un is universal, in the sense that for any g : {0, 1}n → {0, 1}, the communication
problem KWf�g reduces to KWf�Un . Also, as in the previous variants of the KRW conjecture, it
holds that C(KWf�Un) ≤ C(KWf ) +C(Un). Therefore, a natural analogue of the KRW conjecture
for KWf�Un would be

C(KWf�Un) ≈ C(KWf ) + C(Un) ≥ C(KWf ) + n. (3)

In order to state the result of [GMWW17], let us denote by L(f) the formula complexity of f (see
Section 2.1). The quantity log L(f) is closely related6 to the depth complexity D(f), and hence to
the communication complexity C(KWf ). Now, [GMWW17] proved the following result.

4In fact, they only consider the case where m = n, but their argument also works in the case where m 6= n.
5We note that we cite here the journal versions of those works, and therefore [KRW95] and [EIRS01] look as if

they appeared after [HW93]. However, the conference versions of [KRW95] and [EIRS01] appeared in 1991.
6Formally, the quantity log L(f) is always linear in D(f). Moreover, all the lower bounds we have for D(f) hold for

log L(f) as well. In particular, the lower bounds of [GMWW17, KM18] hold for log L(KWf�Un), for an appropriate
definition of this quantity.
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Theorem 1.1 ([GMWW17]). Let m,n ∈ N, and let f : {0, 1}m → {0, 1} be a non-constant
function. Then,

C(KWf�Un) ≥ log L(f) + n−O(1 +
m

n
) · logm.

Again, since log L(f) is closely related to C(KWf ) , this result is closely related to the conjecture
of Equation 3. In a recent work, Koroth and the author [KM18] improved the above bound and
obtained the following result.

Theorem 1.2 ([KM18]). Let m,n ∈ N be such that m < 2
n
6 ., and let f : {0, 1}m → {0, 1} be a

non-constant function. Then,

C(KWf�Un) ≥ log L(f) + n−O (log∗(m)) .

1.2 Our results

In this work we present two different ways to “derandomize” the composition KWf�Un . That is,
we define two variants of the composition KWf�Un that have significantly shorter input length, and
prove that their complexity is close to that of KWf�Un .

In order to motivate our definitions of these variants, let us first define the notion of derandomiz-
ing the standard composition f �g. We define a generator to be a function φ : {0, 1}` → {0, 1}m×n,
where ` < m · n and {0, 1}m×n denotes the set of m × n binary matrices. Intuitively, we think
of φ as a “pseudorandom generator” that uses a short seed in order to generate inputs for f � g.
The “derandomized composition” that corresponds to φ will simply be the function (f � g) ◦ φ
(where ◦ denotes the standard function composition). We think of the generator φ as “good” (or
“pseudorandom”) if the function (f � g) ◦ φ is roughly as hard as the function f � g.

The corresponding KW relation KW(f�g)◦φ is the following communication problem: Alice and

Bob get strings x, y ∈ {0, 1}`, and they use them to generate matrices X = φ(x), Y = φ(y) and
strings a = g(X), b = g(Y ). The parties are guaranteed that a ∈ f−1(0) and b ∈ f−1(1) , and their
goal is find a coordinate k ∈ [`] such that xk 6= yk. Observe that, as before, for every i ∈ [m] such
that ai 6= bi, it holds that Xi 6= Yi.

We now define the derandomized composition of f with the universal relation in an analogous
way. Let φ : {0, 1}` → {0, 1}m×n be a generator. The derandomized composition KW(f�Un)◦φ is

defined as follows: Alice and Bob receive as inputs strings x, y ∈ {0, 1}` and strings a ∈ f−1(0),
b ∈ f−1(1). We denote X = φ(x), Y = φ(y). Then, Alice and Bob are guaranteed that for every
i ∈ [n] such that ai 6= bi, it holds that Xi 6= Yi, and their goal is to find a coordinate k ∈ [`] such
that xk 6= yk. It is not hard to see that for any generator φ, it holds that

C(KW(f�Un)◦φ) ≤ C(KWf ) + C(Un),

as in the case of the non-derandomized composition. Our goal is to find generators φ for which this
upper bound is close to be tight.

In this work, we present two specific generators φ : {0, 1}` → {0, 1}m×n, and show that the
corresponding problemsKW(f�Un)◦φ are almost as hard as the non-derandomized problemKWf�Un .
Our first generator is based on sampling: the generator φ maps a string x to a matrix X whose
rows are projections of x to certain subsets of coordinates, where these subsets sample the set [`]
well (see Section 2.6 for the definition of sampling). For this generator, we prove the following
result.
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Theorem 1.3. There exists a universal constant q ∈ N such that the following holds. Let ε > 0

be an arbitrary constant, and let m,n ∈ N be such that log n ≥ q · log3
(

logm
ε

)
. Then, for every

f : {0, 1}m → {0, 1} there exists an explicit generator φ : {0, 1}` → {0, 1}m×n such that ` =
max

{
C(KWf )/ε2, n

}
and such that

C(KW(f�Un)◦φ) ≥
(

1− q

ε4 · n

)
· C(KWf ) + (1− 3ε) · n− 2 logm− 1.

Remark 1.4. The above theorem states that the generator φ depends on the function f . However,
our construction of the generator depends only on the complexity C(KWf ) (since we wish to set
` = max

{
C(KWf )/ε2, n

}
). Given the choice of `, the generator φ is independent of f .

Remark 1.5. In the above theorem, it may be surprising that the seed length ` may be as small
as n. However, note that in this case the lower bound holds vacuously, since in this case it must
hold that n ≥ C(KWf )/ε2 and therefore the loss of O(ε · n) exceeds C(KWf ).

Remark 1.6. In the above theorem, the restriction log n ≥ q · log3
(

logm
ε

)
comes from the limita-

tions of the known explicit samplers. If we used non-explicit samplers, we could have obtained a
(non-explicit) generator with a milder restriction of n ≥ q · log logm

ε2
.

Remark 1.7. Note that in the above theorem the lower bound depends on C(KWf ) whereas in the
previous work of [GMWW17] it depends on log L(f). In a sense, this is an improvement, since the
KRW conjecture refers to C(KWf ) rather than log L(f). In fact, our techniques could also be used
to prove a lower bound on the non-derandomized composition KWf�Un that depends on C(KWf )
rather than log L(f).

Our second generator is based on Reed-Solomon codes: the generators φ views the string x as
a vector over the finite field F of size 2n, and the matrix X as a vector in Fm. Taking this view,
the matrix X is the encoding of the string x via a Reed-Solomon code. In other words, the string x
is viewed as representing the coefficients of a univariate polynomial p of degree at most `/n − 1
over F, and every row of X consists of the evaluation of p at some fixed points in F (see Section 2 for
additional information on Reed-Solomon codes). For this generator, we have the following result.

Theorem 1.8. Let m,n ∈ N be such that m < 2n. Then, there exists an explicit generator φ :
{0, 1}` → {0, 1}m×n such that ` ≤ 5 ·m+ n, and such that for every f : {0, 1}m → {0, 1}n it holds
that

C(KW(f�Un)◦φ) ≥ log L(f) + n− 4 · (1 +
m

n
) · logm.

Comparison between the two generators. Roughly speaking, Theorem 1.3 is stronger when
m is large compared to n, whereas Theorem 1.8 is stronger when m is close to n or smaller.

1.3 Our techniques

In this section we provide a high-level description of the analysis of our generators (i.e., proofs of
Theorems 1.3 and 1.8). In both proofs, we use a slightly different definition of KW(f�Un)◦φ: In the
modified definition, we do not promise the parties that the inputs satisfy that Xi 6= Yi whenever
ai 6= bi. Instead, we allow the inputs to violate this promise, in which case the parties are allowed
to reject the inputs (but not to output a wrong answer). It is not hard to show that this version
of the problem is not much harder than the original definition we presented (see Section 2.4 for
details). In both proofs, the lower bound is based on choosing the inputs such that the parties
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always reject. This means that the task of the parties becomes the task of certifying that there
exists an index i ∈ [m] such that ai 6= bi but Xi = Yi. Our goal in both proofs is to lower bound
the amount of communication that is needed to accomplish this task.

1.3.1 Sampling-based generator

We begin by discussing the proof of Theorem 1.3. In order to construct the generator of this
theorem, we fix a sequence of sets S1, . . . ,Sm ⊆ [`] of size n that constitute a good averaging
sampler of [`] (i.e., every subset of [`] intersects most of the sets S1, . . . ,Sm with roughly the right
proportion). The generator φ is now defined as follows: given a string x ∈ {0, 1}`, the generator
outputs the m× n matrix X whose i-th row is x|Si .

We would like to prove a lower bound of roughly C(KWf )+(1−ε) ·n on KW(f�Un)◦φ. Our proof
uses an adversary argument: we describe an adversary that takes a protocol that is “too efficient”,
and constructs a transcript in which the protocol errs. Specifically, the adversary simulates the
protocol by choosing messages for the parties, until the protocol ends and outputs some output.
Then, the adversary “wins” if it can choose inputs that are consistent with the messages that were
sent, but on which the output of the protocol is wrong.

In particular, the adversary will construct a transcript that rejects the inputs. In order to show
that this transcript errs, the adversary will construct inputs (x, a) and (y, b) that are consistent with
the transcript and should not be rejected. That is, those inputs will satisfy that for every i ∈ [m],
if ai 6= bi then Xi 6= Yi. To this end, observe that if, for some i ∈ [m], the parties transmitted less
than n bits of information “about” the i-th row by the end of the protocol, then the adversary can
choose inputs for which Xi 6= Yi. Intuitively, the reason is that the communication complexity of
equality is n, and therefore the parties have to transmit n bits of information about the i-th row
in order to certify that Xi = Yi. The goal of the adversary, therefore, is to make sure that when
the protocol ends, for every i ∈ [m] one of the following holds:

• either ai = bi,

• or the parties have transmitted less than n bits of information “about” the i-th row.

We now describe the adversary in more detail. Suppose that the adversary is given a protocol that
is too efficient, i.e., it transmits significantly less than C(KWf ) + (1 − ε) · n bits. The adversary
partitions the protocol into two stages, where the first stage consists of somewhat less than C(KWf )
bits and the second stage consists of less than (1− ε) · n bits. The adversary starts by simulating
the first stage of the protocol. After the first stage ends, we partition the rows of the matrices
X and Y into two types:

• “Revealed rows”: Rows about which at least ε · n bits of information have been transmitted
so far.

• “Unrevealed rows”: Rows about which less than ε·n bits of information have been transmitted
so far.

Now, on the unrevealed rows the adversary has already won: the reason is that in the remaining
part of the protocol, the players are only going to transmit less than (1− ε) · n bits. Hence, by the
end of the protocol, less than n bits of information are going to have been transmitted on each of
the unrevealed rows, which is what the adversary wants.

It remains to deal with the revealed rows. This is done as follows: When the first stage ends,
the adversary “discards” some of the inputs that are still legal at this point. The remaining inputs
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have the property that for every revealed row i it holds that ai = bi, so the adversary wins on those
rows as well. Then, the adversary runs the second stage only on those remaining inputs. When the
protocol ends, the adversary wins on every row, since for the revealed rows it holds that ai = bi,
and on each of the unrevealed rows the parties have transmitted less than n bits of information.

We still need to show that it is possible to discard inputs in this manner without discarding too
many inputs. The argument here consists of two points:

• The adversary can discard inputs so as to force ai = bi on a small number of the rows.

• The number of revealed rows is small.

Together, these two items imply that adversary can force the equality ai = bi on all the revealed
rows. We conclude the overview by explaining why each of the foregoing items is correct:

• The reason that the adversary can force ai = bi on a small number of rows is that during the
first stage, the parties transmitted somewhat less than C(KWf ) bits. Hence, they have not
finished solving KWf , and they do not know any index i on which ai 6= bi. Therefore, there
are many possible inputs that satisfy ai = bi on any small set of rows.

• To see why the number of revealed rows is small, recall that the parties transmitted less
than C(KWf ) bits in the first stage, and that C(KWf ) ≤ ε · ` (by the choice of ` in the
theorem). This means that the parties transmitted less than ε · ` bits of information about
their inputs, and therefore they transmitted less than ε · n bits about the average row. Now,
since S1, . . . ,Sm constitute a good sampler, this means that the players have transmitted
about ε · n bits of information about almost all the rows.

This concludes the proof. The strategy of this proof was originally developed by Edmonds et.
al. [EIRS01] in order to prove a lower bound on Um � Un (in which case ` = m · n and the
sets S1, . . . ,Sm are disjoint), and was extended recently by Dinur and Meir [DM16] to the com-
position of certain functions. Our contribution is observing that this argument can be extended
to the case where the sets S1, . . . ,Sm are not disjoint but form a good sampler. This requires,
among other things, using a somewhat stronger information-theoretic tools compared to [EIRS01]
(see Lemma 2.22).

1.3.2 Reed-Solomon-based generator

We turn to discuss the proof of Theorem 1.8. The generator φ of this theorem takes as an input
a string x ∈ {0, 1}` and interprets it as a vector in F`/n where F is the finite field of size 2n. The
generator φ maps x to the matrix X ∈ {0, 1}m×n that corresponds to the encoding of x via the
Reed-Solomon code when viewed as a vector in Fm.

The crux of the proof is the following “agreement property” of Reed-Solomon codes, which we
prove in Section 4.1: Consider the communication problem in which each of Alice and Bob gets
codeword of Reed-Solomon of degree d, and their goal is to verify that their codewords agree on
at least h coordinates where h ≤ d+ 1. Then, the communication complexity of this problem is at
least h · log |F|.

The proof of the lower bound proceeds as follows. Given a protocol for KW(f�Un)◦φ, we invoke
it on inputs (x, a) and (y, b) where x = y. Obviously, on such inputs the protocol must reject, and
therefore the players have to certify the existence of a violation, i.e., the existence of an index i ∈ [m]
such that ai 6= bi but Xi = Yi. We now consider two cases:
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• The protocol does not solve KWf on (a, b): In this case, when the protocol ends, the
parties do not know any specific index i for which ai 6= bi. At best, they can confine the
search for the index i to at most t rows (where t is a parameter that should be optimized).
This means that in order to become convinced that Xi = Yi and ai 6= bi for some index i, they
have to certify that X and Y agree on at least t rows. We now use the foregoing agreement
property with h = t to argue that in order to perform the latter task, the parties must
transmit at least t · n bits. This is larger than our desired lower bound for an appropriate
choice of t.

• The protocol solves KWf on (a, b): In this case, when the protocol ends, the players
know some index i for which ai 6= bi, but they must have transmitted at least log L(f) ≈
C(KWf ) bits in order to find it. In addition, we know that in order to detect a violation,
the players must certify that Xi′ = Yi′ for some index i′ (which may or may not be equal
to i). We show that certifying this requires the parties to transmit at least n bits by using
the foregoing agreement property (with h = 1).
In short, the players must transmit log L(f) bits for performing the first task, and n bits for
the latter task. Using a double-counting argument, we show that the two quantities (log L(f)
and n) add up, and thus we get a lower bound of ≈ log L(f) + n bits, as required.

Actually, a protocol does not need to belong to one of the foregoing cases, but may consist of some
combination of them: the protocol may solve KWf for some seeds x and avoid solving it on others.
Thus, in our actual proof, we partition the seeds x according to the case to which they belong, and
combine the lower bounds from both cases. The details of this argument are provided in Section 4.

We note that the above proof strategy were developed by [GMWW17] for the (non-derandomized)
composition KWf�Un . In particular, [GMWW17] used the fact that the set of all m × n matrices
satisfies the foregoing agreement property. Our contribution is observing that this property is also
satisfied by the set of matrices that correspond to Reed-Solomon codewords, and extending the
argument to this setting.

Remark 1.9. The aforementioned “agreement property” of Reed-Solomon codes is inspired by
the work of Dinur et. al. [DHSV15], who proved a robust variant of this property for Reed-Muller
codes. They view this property as a derandomization of graph products.

2 Preliminaries

We reserve bold letters for random variables, and calligraphic letters for sets. We use [n] to denote
the set {1, . . . , n}. We denote the set of m × n binary matrices by {0, 1}m×n. For every binary
m× n matrix X, we denote by Xi ∈ {0, 1}n the i-th row of X.

Reed-Solomon codes. Let F be an arbitrary finite field, and let α1, . . . , αm be arbitrary distinct
elements of F (where m ≤ |F|). For every d ∈ N such that d ≤ m, the Reed-Solomon code C of
degree d is the subset of Fm is defined as follows: A vector c ∈ Fm belongs to C if and only if there
exists a degree-d polynomial p(x) such that c = (p(α1), . . . , p(αm)) ∈ Fm. The elements of C are
called codewords. It is well-known that C is a linear subspace of dimension d + 1, and that every
non-zero codeword has at most d coordinates that are equal to 0. See [MS78] for more details.

9



2.1 Formulas

Definition 2.1. A (de-Morgan) formula φ is a binary tree, whose leaves are identified with literals
of the forms xi and ¬xi, and whose internal vertices are labeled as AND (∧) or OR (∨) gates. A
formula φ computes a Boolean function f : {0, 1}n → {0, 1} in the natural way. The size of a
formula is the number of its leaves (which is the same as the number of its wires up to a factor
of 2). We note that a single input coordinate xi can be associated with many leaves.

Definition 2.2. The formula complexity of a Boolean function f : {0, 1}n → {0, 1}, denoted L(f),
is the size of the smallest formula that computes f . The depth complexity of f , denoted D(f), is
the smallest depth of a formula that computes f .

The following definition generalizes the above definitions from functions to promise problems,
which will be useful when we discuss Karchmer-Wigderson relations.

Definition 2.3. Let X ,Y ⊆ {0, 1}n be disjoint sets. We say that a formula φ separates X and Y if
φ(X ) = 0 and φ(Y) = 1. The formula complexity of the rectangle X ×Y, denoted L(X ×Y), is the
size of the smallest formula that separates X and Y. The depth complexity of the rectangle X ×Y,
denoted D(X × Y), is the smallest depth of a formula that separates X and Y.

Remark 2.4. Note that we define here the depth complexity of a function as the depth of a formula
that computes f , while in the introduction we defined it as the depth of a circuit with fan-in 2 that
computes f . However, for our purposes, this distinction does not matter, since every circuit with
fan-in 2 can be converted into a formula with the same depth.

2.2 Communication complexity

Let X , Y, and Z be sets, and let R ⊆ X ×Y×Z be a relation. The communication problem [Yao79]
that corresponds to R is the following: two players, Alice and Bob, get inputs x ∈ X and y ∈ Y,
respectively. They would like to communicate and find z ∈ Z such that (x, y, z) ∈ R. At each round,
one of the players sends a bit that depends on her/his input and on the previous messages, until
they find z. The communication complexity of R is the minimal number of bits that is transmitted
by a protocol that solves R. More formally, we define a protocol as a binary tree, in which every
vertex represents a possible state of the protocol, and every edge represents a message that moves
the protocol from one state to another:

Definition 2.5. A (deterministic) protocol that solves a relation R ⊆ X ×Y×Z is a rooted binary
tree with the following structure:

• Every node of the tree is labeled by a rectangle Xv × Yv where Xv ⊆ X and Yv ⊆ Y. The
root is labeled by the rectangle X × Y. Intuitively, the rectangle Xv × Yv is the set of pairs
of inputs that lead the players to the node v.

• Each internal node v is owned by Alice or by Bob. Intuitively, v is owned by Alice if at
state v, it is Alice’s turn to speak, and same for Bob.

• Every edge of the tree is labeled by either 0 or 1.

• For every internal node v that is owned by Alice, the following holds: let v0 and v1 be the
children of v associated with the out-going edges labeled with 0 and 1, respectively. Then,

– Xv = Xv0 ∪ Xv1 , and Xv0 ∩ Xv1 = ∅.
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– Yv = Yv0 = Yv1 .

Intuitively, when the players are at the vertex v, Alice transmits 0 if her input is in Xv0 and 1
if her input is in Xv1 . An analogous property holds for nodes owned by Bob, while changing
the roles of X and Y.

• For every leaf `, there exists a value z such that X` × Y` × {z} ⊆ R. Intuitively, z is the
output of the protocol at `.

Definition 2.6. The communication complexity of a protocol Π, denoted C(Π), is the depth of
the protocol tree. In other words, it is the maximum number of bits that can be transmitted in an
invocation of the protocol on any pair of inputs (x, y). For a relation R, we denote by C(R) the
minimal communication complexity of a (deterministic) protocol that solves R.

Definition 2.7. Given a protocol Π, the transcript Π(x, y) is the string that consists of the messages
of Alice and Bob in the protocol when they get the inputs x and y, respectively. More formally,
observe that for every (x, y) ∈ X × Y, there is a unique leaf ` such that (x, y) ∈ X` × Y`. The
transcript Π(x, y) is the string that is obtained by concatenating the labels of the edges on the path
from the root to the leaf ` . We will sometimes identify Π(x, y) with the leaf ` itself.

We now define a notion of protocol size that is analogous to the notion of formula size.

Definition 2.8. We define the size of a protocol Π to be its number of leaves. Note that this is
also the number of distinct transcripts of the protocol. We define the protocol size of a relation R,
denoted L(R), as the size of the smallest protocol that solves it (this is also known as the protocol
partition number of R).

2.3 Karchmer-Wigderson relations

In this section, we define KW relations formally, and state the correspondence between KW relations
and formulas. We start by defining KW relations for general rectangles, and then specialize the
definition to functions.

Definition 2.9. Let X ,Y ⊆ {0, 1}n be two disjoint sets. The KW relation KWX×Y ⊆ X ×Y × [n]
is defined by

KWX×Y
def
= {(x, y, i) : xi 6= yi} .

Intuitively, KWX×Y corresponds to the communication problem in which Alice gets x ∈ X , Bob
gets y ∈ Y, and they would like to find a coordinate i ∈ [n] such that xi 6= yi (note that x 6= y since
X ∩ Y = ∅).

Definition 2.10. Let f : {0, 1}n → {0, 1} be a non-constant function. The KW relation of f ,

denoted KWf , is defined by KWf
def
= KWf−1(0)×f−1(1).

We are now ready to state the connection between formulas and KW relations. We state the
connection for general rectangles, and the specialization to functions is straightforward.

Theorem 2.11 (Implicit in [KW90]7). Let X ,Y ⊆ {0, 1}n be two disjoint sets. Then, for every
formula φ that separates X and Y, there exists a protocol Πφ that solves KWX×Y , whose underlying
tree is the same as the underlying tree of φ. In the other direction, for every protocol Π that solves
KWX×Y there exists a formula φΠ that separates X and Y, whose underlying tree is the same as
the underlying tree of Π.

7This fact is discussed explicitly in [Raz90, KKN95, GMWW17].

11



Corollary 2.12 ([KW90]). For every two disjoint sets X ,Y ⊆ {0, 1}n it holds that D(X × Y) =
C(KWX×Y), and L(X × Y) = L(KWX×Y). In particular, for every non-constant f : {0, 1}n →
{0, 1}, it holds that D(f) = C(KWf ), and L(f) = L(KWf ).

2.3.1 Relaxed Karchmer-Wigderson problems

In this section, we review the notion of “relaxed KW problems”, defined by [GMWW17]. Intuitively,
these are KW relations that only require that the players “almost” find a coordinate i such that
xi 6= yi. This relaxation turns out to be useful at a certain point in our proof of Theorem 1.8,
where we want to argue that the players have to “almost” solve a KW relation.

More formally, given a (non-constant) Boolean function f : {0, 1}n → {0, 1} and a number
t ∈ N, the relaxed KW problem KWf (t) is a communication problem in which Alice wants to find
a set I ⊆ [n] of size less than t such that x|I 6= y|I . This relaxes the definition of KW relations in
two ways:

1. Unlike the standard KW relation, Alice is not required to know a particular coordinate i
such that xi 6= yi. Instead, she only needs to isolate it to a “small” set I. The parameter t
measures the amount of Alice’s uncertainty about the coordinate i.

2. Moreover, unlike a standard KW relation, we do not require that at the end of the protocol,
both players know the set I. Instead, we only require that Alice knows the set I.

The second relaxation above implies that a “relaxed KW problem” cannot be defined as a relation,
in the same way we defined communication problems until this point. This leads us to the following
definition of the relaxed KW problem.

Definition 2.13. Let f : {0, 1}n → {0, 1} be a non-constant function and let t ∈ N. Let Π be a
protocol whose root is labeled by the rectangle f−1(0)× f−1(1). We say that Π solves the relaxed
KW problem KWf (t) if it satisfies the following requirement:

• For every leaf ` of Π that is labeled by a rectangle X`×Y`, and for every x ∈ X`, there exists
a set I ⊆ [n], |I| < t, such that for every y ∈ Y` it holds that x|I 6= y|I .

Remark 2.14. Note that in Definition 2.13, the fact that I is determined by both ` and x means
that Alice knows the set I, but Bob does not necessarily know it.

The following proposition, due to [GMWW17], says that the relaxed KW problem KWf (t) is
not much easier than the original KW relation KWf .

Proposition 2.15 ([GMWW17]). Let f : {0, 1}n → {0, 1} be a non-constant function, and let
t ∈ N. Then,

C(KWf (t)) ≥ C(KWf )− t · (log n+ 2)

L(KWf (t)) ≥ 2−t·(logn+2) · L(KWf ).

2.4 The universal relation and the derandomized composition

In this section, we define the universal relation and its derandomized composition formally. We use
a slightly different definition than the one given in the introduction: In the definition given in the
introduction, the players were promised that x 6= y. On the other hand, in the following definition,
they are not given this promise, but are allowed to reject if the promise does not hold. This variant,
which was suggested by [HW93], is usually more convenient to work with. It is also not hard to
see that this modification does not change the complexity of the universal relation by much.
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Definition 2.16. The universal relation Un is defined as follows:

Un
def
= {(x, y, i) : x 6= y ∈ {0, 1}n , i ∈ [n] , xi 6= yi} ∪ {(x, x,⊥) : x ∈ {0, 1}n} .

This corresponds to the communication problem in which Alice and Bob get strings x and y,
respectively, and are required to output a coordinate i on which x and y differ, or the special
rejection symbol ⊥ if x = y.

Following [GMWW17], we also define the derandomized composition KW(f�Un)◦φ using this
“rejection” variant. Let f : {0, 1}m → {0, 1} be a non-constant Boolean function, and let φ :
{0, 1}` → {0, 1}m×n. The relation KW(f�Un)◦φ corresponds to the following communication prob-

lem: Alice gets as input strings x ∈ {0, 1}` , a ∈ f−1(0), Bob gets strings y ∈ {0, 1}` , b ∈ f−1(1).
We define the matrices X = φ(x) and Y = φ(y). The goal of Alice and Bob is to find a coordinate k
on which x and y differ, but they are allowed to reject if there exists an index i ∈ [m] such that
ai 6= bi but Xi = Yi. Formally,

Definition 2.17. Let f : {0, 1}m → {0, 1} be a non-constant function, and let φ : {0, 1}` →
{0, 1}m×n. The relation KW(f�Un)◦φ is defined by

KW(f�Un)◦φ
def
=

{
((x, a), (y, b), k) : x, y ∈ {0, 1}` , a ∈ f−1(0), b ∈ f−1(1), xk 6= yk

}
∪
{

((x, a), (y, b),⊥) : x, y ∈ {0, 1}` , a ∈ f−1(0), b ∈ f−1(1), ∃i : ai 6= bi, φ(x)i = φ(y)i

}
.

Remark 2.18. We now explain why allowing inputs that violate the promise does not increase
the complexity of the problem by much. Suppose that we have a protocol that solves the problem
only on inputs that satisfy the promise. Then, we can construct a protocol that solves the problem
on all inputs as follows: Alice and Bob run the original protocol on their inputs, thus obtaining a
coordinate k. They then send each other the values xk, yk. If xk 6= yk, then k is a valid answer and
they are done. If xk = yk, then this means that the original protocol failed, and therefore their
inputs must violate the promise. Hence, the parties may safely reject.

The new protocol only sends two more bits than the original protocol. Hence, the complexity
of the problem over all inputs is larger by at most two bits than the complexity of the promise
problem.

2.5 Min-entropy

Given a random variable x that takes values from a finite set X , its min-entropy H∞(x) is defined
as the largest number h such that Pr [x = x] ≤ 2−h for every x ∈ X . In other words,

H∞(x) = min
x∈X

{
log

1

Pr [x = x]

}
.

The following simple facts are useful.

Fact 2.19. Let x be a random variable that takes values from a finite set X . Then H∞(x) ≤ log |X |.

Fact 2.20. Let x be a random variable, and let E be an event. Then H∞(x|E) ≥ H∞(x)− log 1
Pr[E] .

Proof. For every value x it holds that

Pr [x = x|E ] =
Pr [x = x ∧ E ]

Pr [E ]
≤ Pr [x = x]

Pr [E ]
≤ 2

−H∞(x)+log 1
Pr[E] .

It therefore follows that H∞(x|E) ≥ H∞(x)− log 1
Pr[E] , as required. �
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Fact 2.21. Let x,x′ be independent random variables. Then Pr [x = x′] ≤ 2−H∞(x).

Proof. It holds that

Pr
[
x = x′

]
= Ex←x′ [Pr [x = x]] ≤ max

x∈X
{Pr [x = x]} = 2−H∞(x),

as required. �

The following lemma says that if a random string x ∈ {0, 1}n has close-to-full min-entropy, then
it is possible to fix a few “bad” bits of x such that all projections of the good bits have close-to-full
min-entropy. Similar lemmas were proved in [GLM+16, DM16, KMR17].

Lemma 2.22. Let x be a random variable taking values from {0, 1}n such that H∞(x) ≥ n − t.
Then, for every b ∈ N, there exists a set B ⊆ [n] of “bad coordinates” of size at most b and an
event E such that for every S ⊆ [n]− B it holds that

H∞(x|S | E) ≥
(

1− t

b

)
|S| . (4)

Proof. Let B be a a maximal set of coordinates that violates Inequality 4, i.e., a maximal set such
that

H∞(x|B) <

(
1− t

b

)
|B| .

Then, there exists some value xB ∈ {0, 1}|B| such that

Pr [x|B = xB] > 2−(1− t
b)|B|.

Let E be the event that x|B = xB. We show that these choices of B, E satisfy the requirements of
the lemma. Let S ⊆ [n] − B. We show that S satisfies Inequality 4. Suppose otherwise. Then,

there exists a value xS ∈ {0, 1}|S| such that

Pr [x|S = xS |E ] > 2−(1− t
b)|S|,

and therefore

Pr [x|B = xB ∧ x|S = xS ] = Pr [x|B = xB] · Pr [x|S = xS |E ] > 2−(1− t
b)(|B|+|S|).

It follows that

H∞(x|B∪S) <

(
1− t

b

)
|B ∪ S| ,

contradicting the minimality of B. Thus, S satisfies Inequality 4.
We turn to show that |B| ≤ b. Suppose otherwise. Observe that H∞(x|[n]−B|E) ≤ n − |B| and

hence there exists a value x[n]−B such that

Pr
[
x|[n]−B = x[n]−B|E

]
≥ 2−(n−|B|).

Then, it follows that

Pr
[
x|B = xB ∧ x|[n]−|B| = x[n]−|B|

]
= Pr [x|B = xB] · Pr

[
x|[n]−|B| = x[n]−|B||E

]
> 2−[(n−|B|)+(1− t

b)|B|]

= 2−(n− tb ·|B|)

(Since we assumed |B| > b) > 2−(n−t),

contradicting the assumption that H∞(x) ≥ n− t. Thus, |B| ≤ b, as required. �
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2.6 Averaging Samplers

Intuitively, an averaging sampler [Zuc97] is a family of subsets S1, . . . ,Sm of some universe [`], such
that for every function f : [`] → [0, 1], the average value of f on [`] is well-approximated by the
average value of f on a typical set Si. In the following definition, we restrict ourselves to Boolean
functions f : [`]→ {0, 1}, since this is all we need in this paper. We view such a function f as the
indicator function of some set R ⊆ [`].

Definition 2.23. Let ` ∈ N, and let F = {S1, . . . ,Sm} be a family of subsets of [`] of size n. We

say that F is an (α, ε)-averaging sampler of [`] if for every set R ⊆ [`] of density δ
def
= |R|

` , it holds
for all but α fraction of the sets Si in F that

δ − ε ≤ |R ∩ Si|
n

≤ δ + ε.

Averaging samplers are equivalent to (seeded) randomness extractors [NZ96, Zuc97]. Using the
known explicit constructions of extractors, we obtain the following construction of averaging sam-
plers.

Theorem 2.24 (Follows from [Zuc97, RRV02]). There exists a universal constant q such that
the following holds: there is an algorithm that when given as input `,m, n, ε such that log n ≥ q ·
log3

(
logm
ε

)
, runs in time poly(`,m, n, 1/ε) and outputs an (α, ε)-averaging sampler F = {S1, . . . ,Sm}of [`]

where the sets are of size n and where

α =
q

ε2
· `

m · n
.

We derive Theorem 2.24 from known constructions of extractors in Appendix A.

3 Derandomizing Composition via Samplers

In this section we prove Theorem 1.3, restated next.

Theorem 1.3. There exists a universal constant q ∈ N such that the following holds. Let ε > 0

be an arbitrary constant, and let m,n ∈ N be such that log n ≥ q · log3
(

logm
ε

)
. Then, for

every f : {0, 1}m → {0, 1} there exists a generator φ : {0, 1}` → {0, 1}m×n such that ` =
max

{
C(KWf )/ε2, n

}
and such that

C(KW(f�Un)◦φ) ≥
(

1− q

ε4 · n

)
· C(KWf ) + (1− 3ε) · n− 2 logm− 1.

To this end, we prove the following theorem, which implies Theorem 1.3 as a corollary:

Theorem 3.1. Let f : {0, 1}m → {0, 1} be a function, let n ∈ N, let ε > 0, and let ` =
max

{
C(KWf )/ε2, n

}
. Let F = {S1, . . . ,Sm} be an (α, ε)-averaging sampler of [`] where the

sets S1, . . . ,Sm are of size n, and let φ : {0, 1}` → {0, 1}m×n be the generator that maps a string
x ∈ {0, 1}` to the m× n matrix X whose i-th row is x|Si for every i ∈ [m]. Then

C(KW(f�Un)◦φ) ≥ C(KWf )− 2α ·m+ (1− 3ε) · n− 2 logm− 1
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Proof of Theorem 1.3 from Theorem 3.1. Let q′ be the universal constant from the construc-

tion of averaging samplers in Theorem 2.24, and let q
def
= 2 · q′. Let m,n ∈ N, ε > 0 be such

that log n ≥ q · log3
(

logm
ε

)
. Let f : {0, 1}m → {0, 1}, let ` = max

{
C(KWf )/ε2, n

}
, and let

F = {S1, . . . ,Sm} be an (α, ε)-averaging sampler of [`] where the sets S1, . . . ,Sm are of size n and
where

α =
q′

ε2
· `

m · n
(such an averaging sampler exists by Theorem 2.24). Finally, let φ : {0, 1}` → {0, 1}m×n be the
generator defined in Theorem 3.1 with respect to F .

We now consider two cases: either ` = C(KWf )/ε2 or ` = n. If ` = C(KWf )/ε2, then
Theorem 3.1 implies that

C(KW(f�Un)◦φ) ≥ C(KWf )− 2α ·m+ (1− 3ε) · n− 2 logm− 1

= C(KWf )− 2q′

ε2
· `

m · n
·m+ (1− 3ε) · n− 2 logm− 1

= C(KWf )− q

ε2
·
C(KWf )/ε2

m · n
·m+ (1− 3ε) · n− 2 logm− 1

=
(

1− q

ε4 · n

)
· C(KWf ) + (1− 3ε) · n− 2 logm− 1,

as required.
On the other hand, if ` = n, then in this case the lower bound we wish to prove is at most n.

We prove this lower bound by direct reduction from the universal relation: Given a protocol for
C(KW(f�Un)◦φ), we can solve the universal relation Un as follows. We fix some a ∈ f−1(0), b ∈
f−1(1) that disagree on exactly one coordinate, and denote this coordinate by i. Given inputs x, y ∈
{0, 1}n for Un, the parties construct inputs x′, y′ ∈ {0, 1}` for φ by setting the i-th rows Xi, Yi to
x, y respectively. The parties now invoke the protocol for KW(f�Un)◦φ on inputs (x′, a) and (y′, b),
thus obtaining either a coordinate on which x and y differ or a rejection (in which case they
reject). Note that the complexity of this protocol is exactly the complexity of the original protocol
for KW(f�Un)◦φ. �

In the rest of this section we focus on proving Theorem 3.1. Let f : {0, 1}m → {0, 1} be a
function, let n ∈ N, let ε > 0, and let ` = max

{
C(KWf )/ε2, n

}
. Let F = {S1, . . . ,Sm} be an

(α, ε)-sampler and let φ : {0, 1}` → {0, 1}m×n be a generator as in Theorem 3.1. Suppose that
there is a protocol Π that solves KW(f�Un)◦φ and is “too efficient”, i.e.,

C(Π) < C(KWf )− 2 · α ·m+ (1− 3 · ε) · n− 2 · logm− 1.

We show how to find a transcript π and inputs (x, a), (y, b) on which the protocol errs. To this
end, we will invoke the protocol on inputs of the form (x, a), (x, b), i.e., the seeds of the parties are
identical. As described in Section 1.3.1, we partition the protocol to two stages, where the first
stage ends when the players transmitted C(KWf )−α ·m− logm−1 bits. The first step of the proof
is to show that when the first stage ends, the parties have not solved KWf yet, and also that they
have not transmitted more than ε2 · ` bits of information about x. Then, we perform a “clean-up”
step which restricts the set of possible inputs such that it satisfies the following properties:

• On all but α fraction of the rows of X = φ(x), the parties transmitted at most 3·ε·n+α·m bits
of information.

• On each of the remaining rows, it holds that ai = bi.
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The last step in the proof is to use the latter two properties to show that when the second stage
ends, we can find inputs on which the protocol errs. The rest of this section is organized as follows:
The analysis of the first stage is provided in Section 3.1, the clean-up step is described in Section 3.2,
and the second stage is analyzed in Section 3.3.

3.1 The first stage

Our goal in the analysis of the first stage is to show that there is a transcript of this stage in which
the parties do not solve KWf and do not transmit too much information about their inputs. In
order to formalize this notion, we introduce some notation. For every partial transcript π of the
protocol, recall that we denote by Xπ × Yπ the rectangle that consists of the inputs (x, a), (y, b)
that are consistent with π. Given a string x ∈ {0, 1}`, we denote by Aπ,x × Bπ,x the rectangle of
inputs to KWf that is obtained by fixing x to be the seed of both parties. Formally,

Aπ,x
def
=
{
a ∈ f−1(0)

∣∣ (x, a) ∈ Xπ
}

Bπ,x
def
=
{
b ∈ f−1(1)

∣∣ (x, b) ∈ Yπ} .
We denote by C(Aπ,x×Bπ,x) the communication complexity of the residual KW relation on Aπ,x×
Bπ,x, namely, KWAπ,x×Bπ,x . The following definition captures the properties that we require from
the transcript of the first stage.

Definition 3.2. We say that a partial transcript of the protocol is alive if for at least 2−ε
2·` fraction

of the strings x ∈ {0, 1}` it holds that

C(Aπ,x × Bπ,x) ≥ α ·m+ logm+ 1. (5)

We now prove that the adversary can find a live transcript for the first stage.

Lemma 3.3. There exists a live transcript π1 of length min {C(Π),C(KWf )− α ·m− logm− 1}.

Proof. Let c = min {C(Π),C(KWf )− α ·m− logm− 1} . For every x ∈ {0, 1}`, we denote by
Πx the protocol that is obtained by hard-wiring x as the seed of both parties in the protocol Π.
We will prove that for every x ∈ {0, 1}`, there is a transcript πx of Πx of length c that satisfies
Inequality 5. Since there are at most 2c transcripts of length c, we will conclude that at least one
of the transcripts πx is “good” for at least 2−c fraction of the seeds. Details follow.

We first prove that every seed x ∈ {0, 1}` there is a corresponding transcript πx. Let x ∈ {0, 1}`.
Suppose for the sake of contradiction that all the partial transcripts of Πx of length c do not satisfy
Inequality 5. Then, we can obtain from Πx a protocol that solves KWf using less than C(KWf ) bits:
the new protocol would simulate Πx for c bits, thus reaching some partial transcript π, and then
proceed with the optimal protocol for the rectangle Aπ,x×Bπ,x. Therefore there must exist at least
one transcript of Πx that satisfies Inequality 5, and we denote it by πx.

Next, since all these transcripts πx are of length c, there are at most 2c distinct transcripts πx.
This implies that there exists some partial transcript π1 such that π1 = πx for at least 2−c fraction
of the seeds. Since 2−c ≥ 2−ε

2·` (by the choice of `), it follows that π1 is alive and of length c, as
required. �

3.2 The clean-up

Let π1 be the live transcript from Lemma 3.3, and let T1 be the set of strings x ∈ {0, 1}` for which
the rectangle Aπ1,x × Bπ1,x satisfies Inequality 5. Our goal in the clean-up step is to construct a
subset of T1 and corresponding inputs (a, b) to KWf that satisfy the following properties:
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• On all but α fraction of the rows of X = φ(x), the parties transmitted at most 3ε·n+α·m bits
of information.

• On each of the remaining rows, it holds that ai = bi.

We start by constructing a subset T2 ⊆ T1 that satisfies a slightly stronger version of the first
property by proving the following result.

Lemma 3.4. There exists a subset T2 ⊆ T1 and a set of rows R ⊆ [m] of size at most α ·m such
that the following holds: Let x be a random variable that is uniformly distributed over T2, and let
X = φ(x). Then, for every i ∈ [m]−R it holds that H∞(Xi) ≥ n− 3ε · n.

Proof. Let x1 be a random variable that is uniformly distributed over T1. Observe that

H∞(x1) = log |T1| ≥ `− ε2 · `.

By applying Lemma 2.22 with b = ε · `, it follows that there is a set B of “bad coordinates” of size
at most ε · ` and an event T2 ⊆ T1 such that for every S ⊆ [`]− B it holds that

H∞(x1|S
∣∣x1 ∈ T2) ≥ (1− ε2 · `

ε · `
) · |S| = (1− ε) · |S| .

Let x be a random variable that is uniformly distributed over T2, so for every S ⊆ [`]− B it holds
that H∞(x|S) ≥ (1− ε) · |S|. Recall that we denote by F = {S1, . . . ,Sm} the (α, ε)-sampler that is
used to construct the generator φ. Then, by the property of the sampler it follows that for at least
(1− α) fraction of the indices i ∈ [m] it holds that

|Si ∩ B| ≤ (
|B|
`

+ ε) · n ≤ 2 · ε · n.

Let R ⊆ [m] be the set of indices that violate the latter equality. The set R correspond to the
“revealed rows” of X, i.e., the rows on which too much information was revealed. Then, for every
i ∈ [m]−R it holds that

H∞(Xi) = H∞(x|Si)
≥ H∞(x|Si−B)

≥ (1− ε) · |Si − B|
≥ (1− ε) · |Si| − |Si ∩B|
≥ (1− ε) · n− 2 · ε · n
= n− 3 · ε · n,

as required. �

We now restrict the inputs further in order to make sure that a and b agree on the coordinates
in R.

Lemma 3.5. There exist a set T3 ⊆ T2 and strings ax ∈ f−1(0), bx ∈ f−1(1) for every x ∈ T3 such
that the following properties hold:

• For every x ∈ T3, the inputs (x, ax), (x, bx) are consistent with the transcript π1 (i.e., ax ∈
Aπ1,x and bx ∈ Bπ1,x).
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• For every x, y ∈ T3 it holds that ax|R = by|R.

• If x is a random variable that is uniformly distributed over T3, and X = φ(x), then for every
i ∈ [m]−R it holds that

H∞(Xi) ≥ n− 3 · ε · n− α ·m.

Proof. We first claim that for every x ∈ T2, there exist strings ax ∈ Aπ1,x, bx ∈ Bπ1,x such that
ax|R = bx|R: To see why, recall that by the definition of T1 it holds that

C(Aπ1,x × Bπ1,x) ≥ α ·m+ logm+ 1. (6)

On the other hand, if such strings ax, bx did not exist, then it would mean that for every a ∈
Aπ1,x, b ∈ Bπ1,x it holds that a|R 6= b|R. In such case, Alice and Bob could solve KWAπ1,x×Bπ1,x
using α · m + logm bits as follows: On inputs a, b, Alice would send a|R to Bob, and then Bob
would reply with a coordinate i ∈ R such that ai 6= bi. This would imply that

C(Aπ1,x × Bπ1,x) ≤ α ·m+ logm,

contradicting Inequality 6.
Let us fix some choice of the latter strings ax, bx for every x ∈ T2 . Now, let us label every

x ∈ T2 with the label ax|R, and let r ∈ {0, 1}|R| denote the most popular label. Let T3 be the set
of seeds x ∈ T2 that are labeled with r, so ax|R = bx|R = r. Then, for every x, y ∈ T3 it holds that
ax|R = by|R, as required by the lemma. Furthermore, it holds that

|T3| ≥ 2−|R| · |T2| ≥ 2−α·m · |T2| .

Now, let x be a random variable that is uniformly distributed over T3, and let x2 be a random
variable that is uniformly distributed over T2. Observe that the distribution of x is exactly the
distribution of x2|x2 ∈ T3. Let X = φ(x) and X2 = φ(x2). Now, by Lemma 3.4, it holds for every
i ∈ [m]−R that

H∞(X2
i ) ≥ n− 3 · ε · n.

Moreover, it holds that Pr
[
x2 ∈ T3

]
≥ 2−α·m. Hence, by Fact 2.20, for every i ∈ [m] −R it holds

that

H∞(Xi) = H∞(X2
i

∣∣x2 ∈ T2)

≥ H∞(X2
i )− log

1

Pr [x2 ∈ T3]

≥ n− 3 · ε · n− α ·m,

as required. �

3.3 The second stage

Our goal in the analysis of the second stage is to construct a suffix π2 such that π
def
= π1 ◦π2 is a full

transcript of the protocol that errs on some inputs. To this end, let T3 and R be as in Lemma 3.5
and let x be a uniformly distributed seed in T3. We invoke the protocol on inputs (x, ax) and
(x, bx) starting at the end of the first stage (i.e., after the parties transmitted π1), and run it until
the protocol ends. Let π2 be the most likely suffix, i.e., π2 is the strings of bits that has the highest
probability to be transmitted after π1.
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Observe that π
def
= π1 ◦ π2 is a transcript in which the parties reject the input (i.e., they

output ⊥). The reason is that this transcript was obtained by giving the parties identical seeds
x, y, and therefore they are unable to find a coordinate on which their seeds differ. We would like to
show that this transcript errs on some inputs. To this end, we need to show that there exist inputs
(x, ax) and (y, by) that are consistent with π but must not be rejected. Namely, those inputs should
satisfy the property that for every i ∈ [m], if (ax)i 6= (by)i then Xi 6= Yi. Since it always holds that
ax|R = by|R, it suffices to show that there exist inputs (x, ax) and (y, by) such that Xi 6= Yi for
every i ∈ [m]−R. We now show that such inputs exist.

Let T4 ⊆ T3 be the event in which π2 is transmitted, i.e., T4 is the set of seeds x ∈ T3 such that
the protocol transmits π2 on inputs (x, ax), (x, bx). We prove a lower bound on the probability of T4

and use it to show that the protocol errs. Recall that we assumed that the protocol Π transmits
less than

C(KWf )− 2 · α ·m+ (1− 3 · ε) · n− 2 · logm− 1

bits. Moreover, in the first stage the parties transmitted

min {C(Π),C(KWf )− α ·m− logm− 1}

bits. Therefore, in the second stage the parties transmit less than

(1− 3 · ε) · n− α ·m− logm

bits. Hence,
Pr [x ∈ T4] > 2−[(1−3·ε)·n−α·m−logm].

Let X = φ(x). By Lemma 3.5 and Fact 2.20, it follows that for every i ∈ [m]−R it holds that

H∞(Xi|x ∈ T4) ≥ H∞(Xi)− log
1

Pr [x ∈ T4]

> n− 3 · ε · n− α ·m
− [(1− 3 · ε) · n− α ·m− logm]

≥ logm.

Now, let y be a random variable that is independent and identically distributed to x, and let Y =
φ(y). Then, for every i ∈ [m]−R, the random variables

Xi|x ∈ T4,Y i|y ∈ T4

are independent and identically distributed, and therefore the probability that they are equal is at
most

2−H∞(Xi|x∈T4) <
1

m

by Fact 2.21. By the union bound, it follows that with non-zero probability, it holds that Xi 6= Y i

for every i ∈ [m]−R conditioned on x,y ∈ T4, and therefore there exist particular choices x, y ∈ T4

of such inputs. Finally, observe that the inputs (x, ax), (y, by) satisfy that for every i ∈ [m], if
(ax)i 6= (by)i then Xi 6= Yi, and therefore they should not be rejected. However, the protocol Π
rejects those inputs, and therefore the protocol errs.

We reached a contradiction, and therefore a “too efficient” protocol does not exist. It follows
that

C(KW(f�Un)◦φ) ≥ C(KWf )− 2α ·m+ (1− 3ε) · n− 2 logm− 1,

as required.
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4 Derandomizing Composition via Reed-Solomon Codes

In this section we prove Theorem 1.8, restated next.

Theorem 1.8. Let m,n ∈ N be such that m < 2n. Then, there exists a generator φ : {0, 1}` →
{0, 1}m×n such that ` ≤ 5 ·m+ n, and such that for every f : {0, 1}m → {0, 1}n it holds that

C(KW(f�Un)◦φ) ≥ log L(f) + n− 4 · (1 +
m

n
) · logm.

As described in the introduction, the generator φ : {0, 1}` → {0, 1}m×n of the theorem is defined as

follows. Let m,n ∈ N be such that m < 2n, and let d
def
=
⌈
3 · mn

⌉
. Let F be the finite field of size 2n,

and let α1, . . . , αm ∈ F be distinct elements. Let C ⊆ Fm be the corresponding Reed-Solomon of
degree d, and recall that C is a linear space of dimension d+1 so |C| = |F|d+1 = 2(d+1)·n. We choose

`
def
= (d+ 1) ·n, and choose the generator to be some bijection from {0, 1}` to C — for example, one

can choose the Reed-Solomon encoding described in Section 1.2.
Fix a protocol Π for KW(f�Un)◦φ. We prove that

log L(Π) ≥ log L(f) + n− 4 · (1 +
m

n
) · logm,

and since it always holds that C(Π) ≥ log L(Π) the required result will follow. To this end, we
analyze the behavior of the protocol when Alice and Bob get identical seeds as inputs. The following
definition is useful.

Definition 4.1. Let π be a (full) transcript of Π, and let Xπ ×Yπ be the corresponding rectangle.

• We say that the transcript π supports a seed x ∈ {0, 1}` if x can be given as an input to
both parties at π. Formally, π supports x if there exist a, b ∈ {0, 1}m such that (x, a) ∈ Xπ
and (x, b) ∈ Yπ. We also say that X is supported by π and a, or by π and b. Note that the
transcript π must be a transcript that outputs ⊥, since the parties cannot find a coordinate
on which their seeds differ.

• We say that the transcript π supports a ∈ f−1(0) if a can be given as input to Alice at π.
Formally, π supports a if there exists a seed x ∈ {0, 1}` such that (x, a) ∈ X`. A similar
definition applies to strings b ∈ f−1(1).

In order to prove lower bound on L(Π), we double-count the number of pairs (π, x), where π is a
transcript that outputs ⊥, and x ∈ {0, 1}` is a seed that is supported by π. Specifically, we prove
the following lemmas.

Lemma 4.2. The number of pairs (π, x) is at most L(Π) · |F|d.

Lemma 4.3. The number of pairs (π, x) is at least 2−4·(1+m
n

)·logm · |F|d+1 · L(f).

By combining the two lemmas, we get:

L(Π) · |F|d ≥ 2−4·(1+m
n

)·logm · |F|d+1 · L(f)

L(Π) ≥ 2−4·(1+m
n

)·logm · |F| · L(f)

log L(Π) ≥ log L(f) + n− 4 · (1 +
m

n
) · logm,

as required. The rest of this section is organized as follows: We start by proving a useful combi-
natorial lemma about Reed-Solomon codes in Section 4.1. We then prove Lemmas 4.2 and 4.3 in
Sections 4.2 and 4.3 respectively.
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4.1 A combinatorial lemma

In this section we prove a combinatorial lemma about Reed-Solomon codes. In order to motivate
this lemma, consider the communication problem in which each of Alice and Bob gets codeword
of Reed-Solomon of degree d, and their goal is to verify that their codewords agree on at least
h coordinates where h ≤ d + 1. Then, our lemma implies that the communication complexity
of this problem is at least h · log |F|. In order to formulate the lemma, we define the following
agreement property.

Definition 4.4. Let F be a finite field, let m ∈ N, and let T ⊆ Fm. We say that T satisfies the
h-agreement property if every two vectors in T agree on at least h coordinates.

What is the largest set of codewords of C that has the h-agreement property? If h ≤ d+ 1, then
there is an easy way to construct such a set: we fix the first h coordinates of a codeword arbitrarily,
and take all the codewords that agree with this fixing. It is not hard to show that this construction
yields as set of size |F|d+1−h. Our lemma says that this construction is optimal.

Lemma 4.5. Let h ≤ d + 1, and let Let T ⊆ C be a set with the h-agreement property. Then
|T | ≤ |F|d+1−h.

Proof. Suppose for the sake of contradiction that |T | > |F|d+1−h. Let R be the Reed-Solomon
code of degree h − 1. Recall that C is a linear space of dimension d + 1, and that R is a linear
subspace of C of dimension h. Therefore, there are d+1−h cosets of the form c+R in C/R. By the
pigeonhole principle, there are two distinct codewords c1, c2 ∈ T that belong to the same coset, i.e.,
c1 +R = c2 +R. This implies that c1−c2 ∈ R, so c1−c2 contains at most h−1 zeroes. On the other
hand, since c1, c2 ∈ T , it holds that c1 and c2 agree on at least h coordinates, and therefore c1− c2

contains at least h zeroes. We have reached a contradiction, and therefore |T | ≤ |F|d+1−t. �

Lemma 4.5 can be viewed as a type of an Erdős-Ko-Rado theorem for sets of Reed-Solomon
codewords. A similar lemma for sets of arbitrary tuples was proved by [FT99], and our proof
generalizes a proof of [GMWW17] for sets of arbitrary vectors.

4.2 Proof of Lemma 4.2

In this section we prove Lemma 4.2, that is, we would like to prove that the number of pairs (π, x)
where π supports x is at most L(Π) · |F|d. To this end, we prove that every rejecting transcript π
can support at most |F|d seeds x. Fix a rejecting transcript π, and let T be the set of matrices that
correspond to seeds that are supported by x. We prove that |T | ≤ |F|d. Intuitively, the reason for
this upper bound is that since π is a rejecting transcript, Alice and Bob must be convinced that
their matrices agree on at least one row and by Lemma 4.5, this requires them to communicate
log |F| bits. This intuition is formalized as follows.

Claim 4.6 ([GMWW17]). Every two matrices in T agree on at least one row.

Proof. We use a standard “fooling set” argument. Let Xπ × Yπ denote the rectangle that corre-
sponds to π. Suppose, for the sake of contradiction, that there exist two seeds x, y whose corre-
sponding matrices X,Y do not agree on any row. By the definition of T , it follows that there exist
a ∈ f−1(0) and b ∈ f−1(1) such that (x, a) ∈ Xπ and (y, b) ∈ Yπ. In particular, this means that if
we give to Alice and Bob the inputs (x, a) and (y, b), respectively, the protocol will transmit the
transcript π.

However, this is a contradiction: on the one hand, π is a rejecting transcript. On the other
hand, the players are not allowed to output ⊥ on inputs (x, a), (y, b), since X and Y differ on all
their rows, and in particular differ on the all the rows i for which ai 6= bi. The claim follows. �
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Claim 4.6 says that T satisfies the 1-agreement property, and therefore Lemma 4.5 implies that
|T | ≤ |F|d, as required.

4.3 Proof of Lemma 4.3

In this section we prove Lemma 4.3, that is, we would like to prove that the number of pairs (π, x)
where π supports x is at least 2−5·(1+m

n
)·logm · |F|d+1 · L(f). To this end, we partition the set of

seeds x into “good seeds” and “bad seeds”, where good seeds are seeds on which the protocol
almost solves KWf . We will show that every good seed x contributes almost L(f) pairs (π, x),
and that the number of bad seeds of very small, which implies that the number of good seeds is
almost |F|d+1. Together, the two bounds will imply the lemma. In order to define the notion of
“the protocol almost solves KWf”, we use the following notation, that was also used in Section 3.

Definition 4.7. Let x ∈ {0, 1}` be a seed. The protocol Πx is the protocol that is obtained from Π
by fixing the seed of both players to be x. More specifically, the protocol Πx is the protocol that
is obtained from Π be replacing, for each partial transcript π, the rectangle Xπ × Yπ with the
rectangle Aπ,x × Bπ,x defined by

Aπ,x
def
=
{
a ∈ f−1(0)

∣∣ (x, a) ∈ Xπ
}

Bπ,x
def
=
{
b ∈ f−1(1)

∣∣ (x, b) ∈ Xπ} .
We now define the notion of good and bad seeds as follows.

Definition 4.8. Let t
def
=
⌈

3·m
n

⌉
+ 1. A seed x ∈ {0, 1}` is called good if Πx is a protocol that solves

the relaxed KW problem KWf (t) (see Section 2.3.1). Otherwise, we say that x is bad.

The following proposition says that good seeds contribute almost L(f) pairs (π, x), and follows
immediately from the fact that KWf (t) is not much easier than the KW relation KWf .

Proposition 4.9. For every good seed x there are at least 2−t·(logm+2) · L(f) pairs (π, x).

Proof. Let x be a good seed. The protocol Πx solves KWf (t), and therefore by Proposition 2.15
has at least

L(KWf (t)) ≥ 2−t·(logn+2) · L(KWf ) = 2−t·(logn+2) · L(f)

distinct full transcripts. Each of these transcripts participates in a pair with x, so the result
follows. �

The following proposition, which is proved in Section 4.3.1 below, says that the number of bad
seeds is very small.

Proposition 4.10. The number of bad seeds is at most 2−m · |F|d+1. Thus, the number of good
seeds is at least (1− 2−m) · |F|d+1.

By combining Propositions 4.9 and 4.10, we get that the number of pairs is at least

(1− 2−m) · |F|d+1 · 2−t·(logm+2) · L(f)

≥ 2−t·(logm+2)−1 · |F|d+1 · L(f)

= 2−(d 6·mn e+1)·(logm+2)−1 · |F|d+1 · L(f)

≥ 2−8·(1+m
n

)·logm · |F|d+1 · L(f),

as required.
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4.3.1 Proof of Proposition 4.10

The intuition for the proof is the following: recall that Alice and Bob reject, and this means that
they have to be convinced that their matrices agree on some row i for which ai 6= bi. However,
when x is a bad seed, Alice and Bob do not know an index i such that ai 6= bi at the end of the
protocol. This means that they have to be convinced that they agree on many rows, as otherwise
they run the risk of rejecting a legal pair of inputs. But verifying that they agree on many rows is
very costly, so they can only afford it for few seeds. Details follow.

First, recall that a seed x is bad if and only if Πx does not solve the relaxed KW problemKWf (t).
This implies that there exists some transcript π of Πx, which is labeled with a rectangle Aπ,x×Bπ,x,
and a string a ∈ Aπ,x, such that the following holds:

• For every I ⊆ [m] such that |I| < t, there exists b ∈ Bπ,x such that a|I = b|I .
Viewing π as a transcript of the original protocol Π, it follows that there is a string a ∈ f−1(0),
such that the following hold:

• (x, a) ∈ Xπ.

• For every I ⊆ [m] such that |I| < t, there exists b ∈ f−1(1) such that a|I = b|I and
(x, b) ∈ Yπ.

Now, without loss of generality, we may assume that

L(Π) ≤ L(f) · 2n ≤ 2m+n,

since otherwise Theorem 1.8 would follow immediately. Therefore, it suffices to prove that every
transcript π and string a are “responsible” for at most 2−(3·m+n) · |F|d+1 bad seeds. This would
imply that there are at most 2−m · |F|d+1 bad d+1, by summing over all transcripts of Π (at most
2m+n) and all strings a (at most 2m).

To this end, fix a transcript π of Π and a string a ∈ f−1(0). Let T ⊆ C be the set of matrices
corresponding to bad seeds that are supported by π and a. We prove that |T | ≤ 2−(3·m+n) · |F|d+1.
The key idea is that since Alice does not know any small set I such that a|I 6= b|I , Alice and Bob
must be convinced that their matrices agree on at least t rows. This intuition is made rigorous in
the following statement.

Claim 4.11 ([GMWW17]). The set T satisfies the t-agreement property.

Proof. We need to show that every two matrices X,Y ∈ T agree on at least t rows. Let X,Y ∈ T ,
let x, y be the corresponding seeds, and and let I be the set of rows on which X and Y agree. By
definition of T , it holds that (x, a), (y, a) ∈ Xπ. Suppose that |I| < t. Then, by the assumption on
π and a, there exists b ∈ f−1(1) such that (y, b) ∈ Yπ and a|I = b|I .

Next, observe that if we give the input (x, a) to Alice and the input (y, b) to Bob, the protocol
will reach the transcript π. Now, π is a rejecting transcript, and therefore there must exist some
index i ∈ [m] such that ai 6= bi but Xi = Yi. However, we know that a|I = b|I , and therefore i /∈ I.
It follows that X and Y agree on a row outside I, thus contradicting the definition of I. �

Finally, by combining Claim 4.11 and Lemma 4.5, we conclude that |T | ≤ |F|d+1−t. Wrapping up,
it follows that

|T | ≤ |F|d+1−t

= 2−t·n · |F|d+1

≤ 2−( 3·m
n

+1)·n · |F|d+1

=
1

23·m+n
· |F|d+1 ,
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as required.
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A Construction of Samplers

In this appendix, we prove Theorem 2.24, restated next.

27



Theorem 2.24. There exists a universal constant q such that the following holds: there is an algo-

rithm that when given as input `,m, n, ε such that log n ≥ q·log3
(

logm
ε

)
, runs in time poly(`,m, n, 1/ε)

and outputs an (α, ε)-averaging sampler F = {S1, . . . ,Sm}of [`] where the sets are of size n and
where

α =
q

ε2
· `

m · n
.

In order to prove the theorem, we use randomness extractors. An (seeded) extractor is an
algorithm that transforms a distribution with high min-entropy into one that is close to the uniform
distribution using a few additional uniformly distributed bits. It is defined as follows.

Definition A.1. A function E : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if for every random
variable x ∈ {0, 1}n such that H∞(x) ≥ k it holds that E(x,y) is ε-close to the uniform distribution,
where y is a random variable that is uniformly distributed over {0, 1}d and is independent of x
(the input x is called the source and the input y is called the seed).
We say that E is a strong extractor if, when given input (x, y), its output begins with the string y.
We say that E is explicit if it can be computed in polynomial time.

Zuckerman [Zuc97] observed that every extractor yields an averaging sampler:

Lemma A.2 ([Zuc97]). Let E : {0, 1}n × {0, 1}d → {0, 1}m be a strong (k, ε)-strong extractor.
We identify {0, 1}m with [2m], and consider the following family F of subsets of [2m]: for every
string x ∈ {0, 1}n, we have a subset in the family that consists of all the possible outputs of E(x, ·).
Then, F is a (2−(n−k)+1, ε)-averaging sampler.

Remark A.3. In Lemma A.2, we require E to be strong only in order to guarantee that all the
possible outputs of E(x, ·) are distinct. Without this requirement, the family F is still a sampler
when viewed as a family of multisets.

We use the following theorem due to [RRV02].

Theorem A.4 ([RRV02, Theorem 4]). For every n, k ∈ N and ε > 0 such that k ≤n there are
(k, ε)-explicit strong extractors E : {0, 1}n × {0, 1}d → {0, 1}m with

d = O
(

log2(
n

ε
) · log k

)
m = k + d− 2 log(1/ε)−O(1) (7)

We note that one can also construct extractors as in Theorem A.4 for larger values of d: If d
is larger than is required by Theorem A.4, the extractor can output all the bits of the seed except
for the last O

(
log2(nε ) · log k

)
bits, and then run the extractor of A.4 using the remaining bits of

the seed.
We turn to prove Theorem 2.24. Given values `,m, n as in the theorem, the algorithm takes

the extractor of Theorem A.4, and turns into a sampler using Lemma A.2. The algorithm runs
in polynomial time since the extractor is explicit. The parameters of the extractor are chosen as
follows:

n = logm

d = log n

m = log `

ε = ε,
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and the choice of k is derived from these choices using Equation 7. We choose the universal
constant q of Theorem 2.24 such that d = log n is sufficiently large to for Theorem A.4 to hold,
and such that the O(1) term in the choice of m in Theorem A.4 is at most log q − 1, so

k = log `− log n+ 2 log(1/ε) + log q + 1.

By Lemma A.2, the resulting sampler that our algorithm outputs is an (α, ε)-averaging sampler for

α = 2−(logm−k)+1

= 2− logm+log `−logn+2 log(1/ε)+log q

=
q

ε2
· `

m · n
,

as required.
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