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Abstract

We study entropy flattening : Given a circuit CX implicitly describing an n-bit source X (namely,
X is the output of CX on a uniform random input), construct another circuit CY describing a
source Y such that (1) source Y is nearly flat (uniform on its support), and (2) the Shannon
entropy of Y is monotonically related to that of X. The standard solution is to have CY evalu-
ate CX altogether Θ(n2) times on independent inputs and concatenate the results (correctness
follows from the asymptotic equipartition property). In this paper, we show that this is optimal
among black-box constructions: Any circuit CY for entropy flattening that repeatedly queries
CX as an oracle requires Ω(n2) queries.

Entropy flattening is a component used in the constructions of pseudorandom generators
and other cryptographic primitives from one-way functions [HILL99, Rom90, Hol06, HHR06,
HRVW09, HRV13, HHR+10, VZ12]. It is also used in reductions between problems complete
for statistical zero-knowledge [Oka00, SV97, GSV99a, Vad99]. The Θ(n2) query complexity is
often the main efficiency bottleneck. Our lower bound can be viewed as a step towards proving
that the current best construction of pseudorandom generator from arbitrary one-way functions
by Vadhan and Zheng (STOC 2012) has optimal efficiency.
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1 Introduction

A flat source X is a random variable that is uniform on its support; equivalently, its Shannon
entropy, min-entropy, and max-entropy are all equal:

Hsh (X) = Ex∼X [log(1/Pr [X = x])] ,

Hmin (X) = minx log(1/Pr [X = x]),

Hmax (X) = log |SuppX|.

These can be far apart for non-flat sources, but we always have Hmin (X) ≤ Hsh (X) ≤ Hmax (X).

Entropy flattening is the following task: Given a circuit CX implicitly describing an n-bit
source X (namely, X is the output of CX on a uniform random input), efficiently construct another
circuit CY describing a “flattened” version Y of X. The goal is to have the output source Y (or
a small statistical modification of it) be such that its min- and max-entropies are monotonically
related to the Shannon entropy of X. Concretely, one interesting range of parameters is:

− if two input sources X and X ′ exhibit a 1-bit Shannon entropy gap, Hsh (X ′) ≥ Hsh (X) + 1,

− then the two respective output sources Y and Y ′ must witness Hmin (Y ′) ≥ Hmax (Y ) + 1
(modulo a small modification to Y and Y ′).
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Entropy flattening is used as an ingredient in constructions of pseudorandom generators and
other cryptographic primitives from one-way functions [HILL99, Rom90, Hol06, HHR06, HRVW09,
HRV13, HHR+10, VZ12] and in reductions between problems complete for (non-interactive) sta-
tistical zero-knowledge [Oka00, SV97, GSV99a, Vad99]. See Section 1.2 for a detailed discussion.

A solution: repeat X. The standard strategy for entropy flattening is to construct Y as the
concatenation Xq of some q i.i.d. copies of the input source X. That is, in circuit language,
CY (x1, . . . , xq) = (CX(x1), . . . , CX(xq)). The well-known asymptotic equipartition property in infor-
mation theory states that Xq is ε-close1 to having min- and max-entropies closely approximated by
q · Hsh (X). (It is common to say that Xq has a certain ε-smooth min- and max-entropy [RW04].)

1Random variables Z1 and Z2 are ε-close if dTV (Z1, Z2) ≤ ε where dTV (Z1, Z2) is the usual statistical (or total
variation) distance, given by dTV (Z1, Z2) = maxT⊆Z |Pr [Z1 ∈ T ]− Pr [Z2 ∈ T ]|.
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Lemma 1.1 ([HILL99, HR11]). Let X be an n-bit random variable. For any q ∈ N and ε > 0 there
is an nq-bit random variable Y ′ that is ε-close to Xq such that

Hmin

(
Y ′
)
, Hmax

(
Y ′
)
∈ q · Hsh (X)±O

(
n
√
q log(1/ε)

)
.

In particular, it suffices to set q = Θ̃(n2) in order to flatten entropy in the aforementioned
interesting range of parameters (1-bit Shannon gap implies at least 1-bit min/max gap). The
analysis here is also tight by a reduction to standard anti-concentration results: it is necessary to
have q = Ω(n2) in order for the construction Y = Xq to flatten entropy.

1.1 Our Result

We show that any black-box construction for entropy flattening—that is, a circuit CY which
treats CX as a black-box oracle—requires Ω(n2) oracle queries to CX . This is formalized in Theo-
rem 1.1 below.

In particular, the simple “repeat-X” strategy is optimal among all black-box constructions.
Besides querying CX on independent inputs, a black-box algorithm has the freedom to perform
adaptive queries, and it can produce outputs that are arbitrary functions of its query/answer
execution log (rather than merely concatenating the answers). For example, this allows the use of
hash functions and randomness extractors, which is indeed useful for variations of the flattening
task (e.g., Lemma 2.1 below).

Query model. In our black-box model, the input source is now encoded as the output distribution
of an arbitrary function f : {0, 1}n → {0, 1}m where m = Θ(n) (not necessarily computed by a
small circuit); namely, the input source is f(Un) where Un denotes the uniform distribution over
n-bit strings. We consider oracle algorithms Af that have query access to f . Given an n′-bit input
w (thought of as a random seed) to Af , the algorithm computes by repeatedly querying f (on
query x ∈ {0, 1}n it gets to learn f(x)), until it finally produces some m′-bit output string Af (w).
We denote by Af : {0, 1}n′ → {0, 1}m′ the function computed by Af . Thus Af (Un′) is the output
source.

Inputs/outputs. Our input sources come from the promise problem Entropy Approximation
(EA); the circuit version of this problem is complete for the complexity class NISZK (non-
interactive statistical zero-knowledge), as shown by Goldreich, Sahai, and Vadhan [GSV99a]. The
EA promise problem is (here τ ∈ N is a threshold parameter):

• YES input: (f, τ) such that Hsh (f(Un)) ≥ τ + 1.

• NO input: (f, τ) such that Hsh (f(Un)) ≤ τ − 1.

The goal of a flattening algorithm Af (which also gets τ as input, but we supress this in our
notation) is to produce an output distribution that is statistically close to having high min-entropy
or low max-entropy depending on whether the input source f is a YES or a NO instance. We say
that Af is an (ε,∆)-flattening algorithm if (here κ = κ(τ) is a parameter that Af gets to choose):

• If (f, τ) is a YES input, then Af (Un′) is ε-close to a distribution ZH with Hmin (ZH) ≥ κ+∆.

• If (f, τ) is a NO input, then Af (Un′) is ε-close to a distribution ZL with Hmax (ZL) ≤ κ−∆.
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The result. Our main result is the following.

Theorem 1.1. There exist constants ε,∆ > 0 such that every (ε,∆)-flattening algorithm for n-bit
oracles f requires Ω(n2) oracle queries.

In fact, our proof yields an even more fine-grained lower bound. Suppose we allow ε and ∆
to vary subject to n/25 ≥ ∆ ≥ log(1/ε). Then our lower bound becomes Ω(n2 log(1/ε)), which is
tight in both n and ε.

1.2 Relevance to Cryptographic Constructions

Pseudorandom generators from one-way functions. The use of flattening in complexity-
based cryptography originates with the celebrated work of H̊astad, Impagliazzo, Levin, and Luby
(HILL) [HILL99], which showed how to construct a pseudorandom generator from any one-way
function. The first step of their construction is to show how to obtain, from any one-way function,
a pseudoentropy generator. That is, a polynomial-time computable function f : {0, 1}n → {0, 1}m
such that f(Un) is computationally indistinguishable from a random variable Y such that Hsh (Y )
is noticeably higher than Hsh (f(Un)). In other words, for some threshold τn and a nonnegligible
gap parameter ∆n ≥ 1/ poly(n) it holds that:

1. f(Un) is computationally indistinguishable from a random variable Y with Shannon entropy
at least τn + ∆n, and

2. f(Un) has Shannon entropy at most τn −∆n.

Notice that if ∆n = 1, then Condition 2 says that the pair (fn, τn) is a NO instance of EA (where
fn is the restriction of f to instances of length n). On the other hand, Condition 1 says that
(fn, τn) appears to be a YES instance of EA to computationally bounded algorithms (that get to
observe an output of fn on a uniformly random input). In the HILL construction, it turns out that
∆n = Θ̃(1/n) (rather than ∆n = 1), corresponding to an appropriate variant of EA.

Given the similarity with EA, it is natural that the next step of the HILL construction is
flattening. Specifically evaluating f on many independent inputs yields a distribution that is
close to having low max-entropy yet is computationally indistinguishable from having high min-
entropy. Since ∆n is not 1, but rather Θ̃(1/n), the number of copies needed for flattening becomes
q = Õ(n/∆n)2 = Θ̃(n4).

After flattening, universal hashing (or randomness extraction) is applied to obtain a pseudoran-
dom generator Gf : {0, 1}n′ → {0, 1}m′ , where Gf (Un′) is computationally indistinguishable from
Um′ (i.e. indistinguishable from min-entropy at least m′) yet has max-entropy at most n′ ≤ m′− 1
(due to having a seed length of n′). (This step is a computational analogue of Lemma 2.1 below.)

As described, the pseudorandom generator Gf makes q = Θ̃(n4) queries to the pseudoentropy
generator f and hence to the one-way function. The actual HILL construction is more complex
and inefficient, due in part to the fact that the entropy threshold τn is not known. To deal with
the latter issue, they enumerate all t = Θ(n/∆n) = Θ̃(n2) possibilities for the threshold τn to
within precision ∆n, construct a pseudorandom generator for each choice, and then combine the
generators (which has a further cost in efficiency).

A series of subsequent works [Hol06, HHR06, HRV10, VZ12] improved the efficiency of the HILL
construction. The state-of-the-art constructions [HRV10, VZ12] replace “pseudoentropy” with a
more relaxed computational analogue of Shannon entropy (“next-bit pseudoentropy”) and thereby
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obtain ∆n = 1 (or even ∆n = log n), reducing the cost of flattening to q = Θ̃(n/∆n)2 = Θ̃(n2). In
these constructions, the entropy threshold τn is also known (in fact τn = n), but there still is an
analogous cost of Θ̃(n) due to the fact that we don’t know how the entropy is spread out among
the bits of the output of the next-bit pseudoentropy generator f .

Overall, with the most efficient constructions to date, the pseudorandom generator makes Θ̃(n3)
queries to the one-way function, of which a Θ̃(n2) factor is due to flattening. This complexity
renders the constructions too inefficient for practice, and thus it is important to know whether a
more efficient construction is possible.

Lower Bounds. The work of Gennaro, Gertner, Katz, and Trevisan [GGKT05] gave the first
lower bound on constructing pseudorandom generators from one-way functions. Specifically they
proved that any “black-box” construction of a pseudorandom generator Gf : {0, 1}n′ → {0, 1}m′

from a one-way function f : {0, 1}n → {0, 1}m requires Ω((m′−n′)/ log n) queries to f . Thus, many
queries are needed to construct a pseudorandom generator with large stretch. However, their lower
bound says nothing about the number of queries needed to obtain a pseudorandom generator with
small stretch (i.e., where m′ = n′ +O(log n)), and indeed it applies even to one-way permutations
f , where no flattening is needed and a pseudorandom generator with small stretch can be obtained
with a single query to the one-way function [GL89].

For constructing pseudorandom generators with small stretch from one-way functions, Holen-
stein and Sinha [HS12] proved that any black-box construction requires Ω̃(n) queries. Their lower
bound also does not tell us about flattening, as it applies even to regular one-way functions, which
directly (with one query) give a separation between pseudo-min-entropy and max-entropy. Rather,
their lower bound corresponds to the efficiency costs coming from not knowing the entropy thresh-
olds τn mentioned above (or how the entropy is spread across the bits in the case of next-bit
pseudoentropy).

Our lower bound for flattening (Theorem 1.1) can be viewed as a first-step towards proving that
any black-box construction of pseudorandom generators from one-way functions requires Ω̃(n2)
queries. One might hope to also combine this with [HS12] and obtain a lower bound of Ω̃(n3)
queries, which would match the best-known construction of [VZ12].

Seed length. Another important and well-studied efficiency criterion for pseudorandom genera-
tor constructions is how the seed length n′ of the pseudorandom generator Gf : {0, 1}n′ → {0, 1}m′

depends on the input length n of the one-way function f : {0, 1}n → {0, 1}m. The standard method
for flattening (Lemma 1.1) requires independent samples from the distribution being flattened, and
thus the query complexity of flattening contributes a multiplicative factor to the seed length of the
pseudorandom generator. For example, the construction of [VZ12] gives a pseudorandom generator
with seed length Θ̃(n2) · n = Θ̃(n3), as Θ̃(n2) independent evaluations of the one-way function (or
corresponding pseudoentropy generator) are used for flattening. An interesting open problem is to
show that independent evaluations are indeed necessary, and extend our lower bound on query com-
plexity to a lower bound on the input length n′ of the flattening algorithm Af : {0, 1}n′ → {0, 1}m′ .
This could be a first step towards proving a superlinear lower bound on the seed length of pseudo-
random generators constructed (in a black-box way) from one-way functions, a long-standing open
problem. We note that the existing lower bounds on query complexity of [GGKT05, HS12] cannot
be turned into seed length lower bounds, as there are constructions of large-stretch pseudorandom
generators from regular one-way functions with seed length Õ(n) [HHR06]. That is, although those
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constructions make polynomially many queries to the one-way functions, the queries are highly
correlated (and even adaptive).

Other Cryptographic Primitives. Flattening is also an efficiency bottleneck in the construc-
tions of other cryptographic primitives from arbitrary one-way functions, such as universal one-way
hash functions [Rom90, KK05, HHR+10] and statistically hiding commitment schemes [HNO+09,
HRVW09]. In both cases, the state-of-the-art constructions begin by constructing a function f
where there is a gap between its output entropy H(f(Un)) and a computational analogue of Shan-
non entropy (namely, a form of “inaccessible entropy”). Then flattening is applied, after which
some (possibly interactive) hashing techniques are used to obtain the final cryptographic primitive.
Again, our lower bound on flattening can be viewed as a first step towards proving an efficiency
lower bound on black-box constructions.

We note that there was a very fruitful interplay between this sequence of works on constructions
of cryptographic primitives from one-way functions and general results about SZK and NISZK,
with inspirations going in both directions (e.g., [NV06, HNO+09, OV08, HRVW09]). This reinforces
the feeling that our lower bound for Flattening the NISZK-complete problem EA can help in
understanding the aforementioned constructions.

2 Proof Overview

Our proof builds on the recent result of Lovett and Zhang [LZ17], who showed that there is no effi-
cient black-box reduction (making polynomially many queries) from EA to its complement, thereby
giving evidence that NISZK is not closed under complement and hence that NISZK 6= SZK. The
result of [LZ17] a qualitative one, whereas here we are concerned with a quantitative question: What
is the exact query complexity of flattening? Nevertheless, we use a similar construction of hard
instances as [LZ17] and make use of a variation of their key lemma.

2.1 Simplification: The SDU Problem

We find it convenient to work with a slightly simplified version of the flattening task, having one
fewer parameter to worry about.

Definition 2.1 (Statistical distance from uniform (SDU)). We say an algorithm Af : {0, 1}n′ →
{0, 1}m′ is a k-SDU algorithm if for all f : {0, 1}n → {0, 1}m, we have

• If (f, τ) is a YES input to EA, then Af (Un′) is 2−k-close to Um′.

• If (f, τ) is a NO input to EA, then
∣∣Supp(Af (Un′))

∣∣ ≤ 2m
′−k.

Note that a k-SDU algorithm is a (2−k, k/2)-flattening algorithm (with threshold κ = m′−k/2).
Conversely, we can transform any flattening algorithm to a SDU algorithm using hashing similar
to [GSV99a]:

Lemma 2.1. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for function
f : {0, 1}n → {0, 1}m with query complexity q, then there exists a k-SDU algorithm Af : {0, 1}n′′ →
{0, 1}n′′−3k where n′′ = O(n′ +m′) for function f : {0, 1}n → {0, 1}m with query complexity q and
k = Ω(min{∆, log(1/ε)}). In particular, there exists such a k-SDU algorithm with query complexity
O(k ·min{n,m}2).
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Remark 2.2. Note that Lemma 2.2 guarantees not only that A is a k-SDU algorithm but also that
its output length is only 3k bits shorter than its input length. This additional property will be useful
in our proof.

Here for our main result (Theorem 1.1), it suffices to prove an Ω(kn2) query lower bound for
any k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ with m′ = n′ − 3k and k ≤ n/25.

Theorem 2.1. Let k ≤ n. Every k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function f :
{0, 1}n → {0, 1}m has query complexity Ω(kn2).

2.2 Hard Instances

We consider two input distributions DH and DL over functions f : {0, 1}n → {0, 1}3n such that the
entropies of most functions in DH and DL are at least τ + 1 and at most τ − 1 (where τ = Θ(n)),
respectively. To sample a function from DH , we randomly partition the domain of f into many
blocks B1, B2, . . . , Bs, each of size 2n/s where s = 23n/4. For each block Bi,

• with probability 1/2+Θ(1/n) we insert a high-entropy block: f |Bi will be a uniformly random
mapping from Bi to {0, 1}3n; and

• with the remaining probability 1/2 − Θ(1/n), we insert a low-entropy block: all elements of
Bi are mapped to the same random element of {0, 1}3n.

The distribution DL is the same, except we swap the two 1/2±Θ(1/n) probabilities.
Note that since the range {0, 1}3n is so much larger than the domain {0, 1}n, with high proba-

bility f will be injective on the high-entropy blocks and will also have no collisions between different
blocks. Under this condition, if we let B(x) denote the block containing x (which is determined by
f(x)) and p be the fraction of high entropy blocks, we have

Hsh (f(Un)) = Hsh (B(Un)) + Hsh (f(Un) | B(Un)) (2.1)

= log2 s+ p · log2

(
2n

s

)
+ (1− p) · 0 =

3n

4
+ p · n

4
. (2.2)

Under DH we have p = 1
2 + Θ( 1

n) whp, and under DL we have p = 1
2 − Θ( 1

n) whp, which yields a
constant gap in Shannon entropies, as desired.

2.3 Basic Intuition—and a Warning!

The first natural instinct—but too naive, we argue—is that since the bias between observing a
high-entropy block versus a low-entropy block is only Θ(1/n), an anti-concentration bound should
imply that distinguishing the two distributions takes Ω(n2) queries.

This intuition indeed applies to simple bounded-error randomized decision trees (which output
just a 1-bit answer). Concretely, suppose for simplicity that our input is just an n2-bit string x
(instead of an exponentially large oracle f): each bit xi represents either a high-entropy block
(xi = 1) or a low-entropy block (xi = 0). We are given the following gap-majority promise: the
relative Hamming weight |x|/n2 is either 1/2 + 1/n or 1/2− 1/n. It is a well-known fact that any
bounded-error query algorithm needs Ω(n2) queries to distinguish these two cases.
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But surprisingly enough, there does exist2 a flattening/SDU algorithm Ax that solves the gap-
majority promise problem with only O(n) queries! This suggests that any superlinear lower bound
must somehow hide from the algorithm the type (high vs. low) of a queried block. Our choice
of distributions DH and DL does indeed achieve this: since there are so many blocks, a single
run of the algorithm is unlikely to query more than one point in a single block, and the marginal
distribution of such a single query is the same in both DH and DL. The more precise way in which
we exploit the hidden type of a block is in invoking the main result of [LZ17]: when switching
a high-entropy block in an f to a low-entropy block, the support of an SDU algorithm’s output
distribution, Supp

(
Af (Un′)

)
, cannot increase by much.

2.4 Technical Outline

Recall that Af (Un′) is almost-uniform when f ∼ DH has high entropy. For almost all z ∈ {0, 1}m′ ,
most of the high-entropy functions f make the algorithm Af output z (on some random seed):

Pr
f∼DH

[
∃w ∈ {0, 1}n′ , Af (w) = z

]
≥ 1− 2−Ω(k). (2.3)

On the other hand, since the support of Af (Un′) is small when f has low entropy, there should be
many z such that when we sample f from DL, with high probability Af (w) does not output z:

Pr
f∼DL

[
∃w ∈ {0, 1}n′ , Af (w) = z

]
≤ 2−Ω(k). (2.4)

To connect the high-entropy and low-entropy cases, we essentially prove that for many z ∈ {0, 1}m′

and every algorithm A making o(kn2) queries, we have

Pr
f∼DH

[
∃w ∈ {0, 1}n′ , Af (w) = z

]
≤ 2o(k) · Pr

f∼DL

[
∃w ∈ {0, 1}n′ , Af (w) = z

]
+O(2−k). (2.5)

As long as there exists z such that Equation (2.3), (2.4) and (2.5), the combination of those
equations contradict inequality (2.5).

Our inequality (2.5) is similar to the key lemma of Lovett and Zhang [LZ17] except the inequality
is reversed, we have an extra multiplicative factor of 2o(k) and our lemma (necessarily) only applies
to algorithms making o(kn2) queries (where the [LZ17] lemma applies even to exponentially many
queries).

One key step toward the inequality (2.5) is to reverse the direction of the inequality by the

2Consider the following algorithm Ax on input a random seed w: query a sequence of random positions i (according
to w) until a position with xi = 1 is found. Output Ax(w) = i. It is easy to verify that this is an (0,Θ(1/n))-flattening
algorithm with expected query complexity O(1). Repeating the algorithm some Θ(n) many times yields an (0,Ω(1))-
flattening algorithm with expected query complexity O(n). Finally, we can make the algorithm abort if any run
exceeds the expected query complexity by a large constant factor; this results in an (ε,Ω(1))-flattening algorithm of
worst-case query complexity O(n).
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following trick. We name elements of {0, 1}n′ as w1, . . . , w2n′ in some arbitrary fixed order. Then

Pr
f

[
∃w ∈ {0, 1}n′ , Af (w) = z

]
=

2n
′∑

`=1

Pr
f

[
Af (w`) = z and @w ∈ {w1, . . . , w`−1}, Af (w) = z

]

=
2n
′∑

`=1

(
1− Pr

f

[
∃w ∈ {w1, . . . , w`−1}, Af (w) = z | Af (w`) = z

])
· Pr
f

[
Af (w`) = z

]
.

Having a negative sign, now we wish to relate the probability of

Pr
f

[
∃v ∈ {w1, . . . , w`−1}, Af (w) = z | Af (w`) = z

]
over DH and DL in the same direction as [LZ17]. It is not a direct application of their lemma due
to the fact that the block size is constant in their construction and our probability is conditioned
on the event Af (w`) = z, but we prove a generalization (Lemma A.2) of their lemma that suffices.
In fact, the proof we provide in Appendix B is simpler than the one in [LZ17] and yields better
parameters.

Like in [LZ17], instead of considering the event ∃w,Af (w) = z in all the probabilities above, we
further impose the restriction that Af (w) queries each block Bi of the domain at most once, since
this event happens with high probability. Furthermore (unlike [LZ17]), we also restrict to the case
that the number of high-entropy block queries is in the range q ·

(
1/2± (O(1/n) +O(1/

√
q)
)

out
of a total of q queries, which also occurs with high probability.

3 The Hard Distribution

Let Af : {0, 1}n′ → {0, 1}m′ be a potential k-SDU algorithm for functions f : {0, 1}n → {0, 1}m.
Throughout, we will consider a fixed oracle algorithm Af with query complexity q, and will omit
the dependency of A in most notations. For a vector ~X, we use ~X(j) to denote the j-th element of
~X, and X means the unordered set { ~X(j) : j ∈ [| ~X|]}.

It is equivalent to interpret an element {0, 1}n as an integer in [N ] where N = 2n, since we do
not make a use of any structure in {0, 1}n. Under this notation, we are considering a fixed oracle
algorithm Af : [N ′] → [M ′] for functions f : [N ] → [M ] where N ′ = 2n

′
,M ′ = 2m

′
, N = 2n and

M = 2m. Actually, we will allow N,M,N ′ and M ′ to be arbitrary positive integers, not necessary
power of 2.

Partition. Given parameters s, t ∈ N where st = N , and a function f : [N ] → [M ], we will
partition the domain [N ] into s blocks X1, . . . , Xs each of size t. We will also fix an order for the
blocks and the elements in each block: ~X = ( ~X1, . . . , ~Xs). So ~Xi(j) denotes the j-th element of the
i-th block. Given a vector ~Yi ∈ [M ]t, we use the shorthand f( ~Xi) = ~Yi to mean f( ~Xi(j)) = ~Yi(j),
for all j ∈ [t]. Therefore, once vectors ~Y1, . . . , ~Ys ∈ [M ]t and a partition ~X are determined, the
function f is fully defined as f( ~Xi) = ~Yi for all i ∈ [s].
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Distributions.

• Let Xs be a uniform distribution over an ordered partitions ~X = ( ~X1, . . . , ~Xs) of [N ] where
| ~Xi| = N/s = t for all i ∈ [s].

• Let Y0 and Y1 be distributions on vectors ~Y ∈ [M ]t defined as follows,

For Y0, uniformly sample an element y
M←, and output ~Y (1) = · · · = ~Y (t) = z.

For Y1, uniformly and independently sample ~Y (1), . . . , ~Y (t) from [M ].

• Given a vector ~b ∈ {0, 1}s and a partition ~X = ( ~X1, . . . , ~Xs) of [N ], we define the distribution
F(~X,~b) of function f : [N ] → [M ] such that f( ~Xi) = ~Yi where ~Yi ← Y~b(i). Essentially, ~b

indicates whether each block is “high entropy” or “low entropy”.

• For 0 ≤ α ≤ 1, let Bα be a distribution over vectors ~b ∈ {0, 1}s, so that each entry of ~b is
sampled from Bern(α) independently.

• For 0 ≤ α ≤ 1, Dα is a distribution on functions f : [N ] → [M ], a partition ~X, and an
indicator vector ~b, where (f,~b, ~X) ∼ Dα means that ~b ∼ Bα, ~X ∼ Xs and f ∼ F(~X,~b).

Block-Compatibility. When an algorithm A runs with input w ∈ [N ′] and oracle f : [N ]→ [M ],
let Queryf (w) ⊆ [N ] be the set of the queries made by the algorithm Af (w) to f . We say w is block-
compatible with (f,X) if |Queryf (w) ∩X| ≤ 1 for all blocks X ∈ X. The set of block-compatible
inputs with (f,X) is denoted

BC(f,X) = {w : w is block-compatible with (f,X)}

Construction. Set m = 3n, so M = N3. Also, set s = 23n/4 = N3/4 and t = 2n/4 = N1/4.

Let the high entropy distribution be DH
def
= D1/2+5/n and the low entropy distribution be DL

def
=

D1/2+5/n. We claim that with high probability, a function f from DH and DL has entropy at least
τ + 1 and at most τ − 1 for τ = 7n/8.

Lemma 3.1. Let the parameters be as above. Then we have

Pr
(f,~b,~X)∼DH

[Hsh (f) ≥ τ + 1] ≥ 1− 2−0.9n

Pr
(f,~b,~X)∼DL

[Hsh (f) ≤ τ − 1] ≥ 1− 2−0.9n

Proof. For any pair of independent and random mappings to M , the collision probability is 1/M .
There are no more than N2 pairs of inputs, so with probability at least 1 − N2/M = 1 − 2−n,
there is no collision when two images are sampled independently. Under that condition, as shown
by Equation (2.1), let p be the fraction of high entropy blocks, namely p is the hamming weight of
~b divided by s, the entropy of the function f is

Hsh (f(Un)) =
3n

4
+ p · n

4
.
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Recall that when we sample ~b from DH , ~b(i) ∼ Bern(1/2 + 5/n) for all i ∈ [s]. By the Chernoff
bound,

Pr
(f,~b,~X)∼DH

[
p ≥ 1

2
+

4

n

]
≥ 1− 1

4
2s·(1/n)2 ,

which implies

Pr
(f,~b,~X)∼DH

[
Hsh (f) ≥ 3n

4
+

(
1

2
+

4

n

)
· n

4
=

7n

8
+ 1

]
≥ 1− 2−

1
4
·s·(1/n)2 − 2−n = 1− 2−0.9n.

Similarly, when sampling from DL,

Pr
(f,~b,~X)∼DL

[
Hsh (f) ≤ 3n

4
+

(
1

2
− 4

n

)
· n

4
=

7n

8
− 1

]
≥ 1− 2−

1
4
·s·(1/n)2 − 2−n = 1− 2−0.9n.

Taking τ = 7n
8 concludes the lemma.

4 Query Lower Bound for SDU Algorithms

4.1 Proof Strategy

Let Af be a k-SDU algorithm making q queries. We may assume wlog that the algorithm makes
exact q oracle queries to f , and all the query positions are distinct. (It is useless to query the same
positions, and if the number of queries is less than q, we simply make some dummy queries.) We
derive the lower bound (Theorem 2.1) from the following two lemmas.

Lemma 4.1. Let Af be a k-SDU algorithm making q queries. For every n > 25k and z ∈ [M ′]
that satisfies

E
(f,~b,~X)∼DH

[∣∣∣{w : Af (w) = z}
∣∣∣] ≤ 24k, (4.1)

we have

Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2

O
(
q

n2
+
√

kq

n2

)
· Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
+O(2−k)

(4.2)

Lemma 4.2. There exists a universal constant c > 0 such that for every sufficiently large n and
k ≤ n, there is an output z ∈ [M ′] that satisfies

1. Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−ck ≥ 1

2
.

2. Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−ck.

3. E
(f,~b,~X)∼DH

[∣∣∣{w : Af (w) = z}
∣∣∣] ≤ 24k

11



Theorem 2.1 follows by plugging z that satisfies the inequalities in Lemma 4.2 into Inequal-
ity (4.2). If q = o(kn2), then the exponent is o(k), which yields a contradiction.

In the following section, we prove that most inputs are block-compatible and hence we can only
consider the block-compatible inputs rather than the whole domain [N ′]. Then we prove Lemma 4.1
and 4.2 in Section 4.3 and 4.4, respectively.

4.2 Block-Compatible Inputs

As in [LZ17], we only consider block-compatible inputs, where each block is queried at most once. In
that case, it is easier to compare the behavior of the SDU algorithms. Since there are exponentially
many blocks but only polynomially many queries, intuitively, the probability of having block-
compatible property is overwhelming if we randomly partition the domain of f . Formally,

Lemma 4.3. For every w ∈ [N ′] and α ∈ [0, 1],

Pr
(f,~b,~X)∼Dα

[w /∈ BC(f,X)] ≤ q2

s
≤ 2−0.6n.

Proof. In order to handle adaptive algorithms, we consider the following procedure to sample
(f,~b, ~X), which is equivalent to sampling from Dα. Specifically, we sample the parts that are
related to w first.

Procedure 4.1

1. Initially, ~Xi(j) = ∗ and ~b(i) = ∗ for all i ∈ [s], j ∈ [t].

2. Simulate Af (w) handling the r-th oracle query xr as follows. For r = 1, . . . , q,

(a) Based on previous queries and results as well as w, let the r-th query be xr.
Select (i, j) uniformly at random from [s]× [t] subject to Xi(j) = ∗ and assign
~Xi(j) = xr.

(b) If ~b(i) = ∗, then assign ~b(i) ∼ Bern(α) and ~Yi ∼ Y~b(i).

(c) Set f(xr) = Yi(j) and return f(xr) as the answer to the query.

3. Assign the rest of the vectors ~X and ~b by executing Step 2(a)–2(c) for all x ∈ [N ] \
{x1, . . . , xq}.

By the principle of deferred decisions, it can be verified that the joint distribution of (f, ~X,~b)
is identical to Dα.

Notice that w ∈ BC(f, ~X,~b) if and only if the sequence of q values of i selected in Step 2(a) are
all distinct. The probability that the (r+ 1)st value of i is the same one comparing to the previous
r values is at most rt/(st− r) ≤ q/s, since r ≤ q− 1 and qr ≤ st. So the probability that there are
any repetitions is at most q2/s.

By Markov’s inequality, almost all inputs are block-compatible.

Corollary 4.1. For every α ∈ [0, 1],

Pr
(f,~b,~X)∼Dα

[
|BC(f,X)| > N ′ · (1− 2−0.3n)

]
≥ 1− 2−0.3n
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4.3 Proof of Lemma 4.1

Lemma 4.1. Let Af be a k-SDU algorithm making q queries. For every n > 25k and z ∈ [M ′]
that satisfies

E
(f,~b,~X)∼DH

[∣∣∣{w : Af (w) = z}
∣∣∣] ≤ 24k, (4.1)

we have

Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2

O
(
q

n2
+
√

kq

n2

)
· Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
+O(2−k)

(4.2)

Proof. Define the set
Wz(f,X) = {w : w ∈ BC(f,X), Af (w) = z}.

Let w1, · · · , wN ′ be all possible inputs sorted in arbitrary but fixed order. The first step is to break
the event ∃w ∈Wz(f,X) to the events that w` is the “first” one in Wz(f,X) for all ` ∈ [N ′].

Pr
(f,~b,~X)∼Dα

[∃w ∈Wz(f,X)]

=
N ′∑
`=1

Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X) ∧ w1, . . . , w`−1 /∈Wz(f,X)]

=
N ′∑
`=1

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)] · Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X)]

Our goal is to switch the distribution from DH to DL and see how the probability changes. We do
the switch using the following two claims.

Claim 4.1. For every w` ∈ [N ′], Pr
(f,~b,~X)∼Dα [w` ∈Wz(f,X)] does not depend on α ∈ [0, 1]. In

particular,
Pr

(f,~b,~X)∼DH
[w` ∈Wz(f,X)] = Pr

(f,~b,~X)∼DL
[w` ∈Wz(f,X)] .

Claim 4.2. For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f,~b,~X)∼DH

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2
O
(
q

n2
+
√

kq

n2

)
· Pr

(f,~b,~X)∼DL
[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)] +O

(
q2

s

)
+ 2−5k

The intuition behind Claim 4.1 is that as long as w` is block-compatible, the query results are
independently uniform over [M ] in both DH or DL case. Note that unlike Lemma 4.1, Claim 4.2
refers to non-membership in Wz(f,X), which allows us to use the main lemma of Lovett and
Zhang [LZ17], which provides an inequality in the opposite direction of Lemma 4.1. The formal
proofs of these Claims are given in Section 4.3.1 and 4.3.2.
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Once we have the above claims, we can prove the lemma:

Pr
(f,~b,~X)∼DH

[∃w ∈Wz(f,X)]

≤ 2
O
(
q

n2
+
√

kq

n2

)
· Pr

(f,~b,~X)∼DL
[∃w ∈Wz(f,X)] +

(
O

(
q2

s

)
+ 2−5k

)
·

2n
′∑

`=1

Pr
(f,~b,~X)∼DH

[w` ∈Wz(f,X)]

≤ 2
O
(
q

n2
+
√

kq

n2

)
· Pr

(f,~b,~X)∼DL
[∃w ∈Wz(f,X)] +

(
O
(

2−n/5
)

+ 2−5k
)
· E

(f,~b,~X)∼DH

[∣∣∣{w : Af (w) = z}
∣∣∣]

≤ 2
O
(
q

n2
+
√

kq

n2

)
· Pr

(f,~b,~X)∼DL
[∃w ∈Wz(f,X)] +O(2−k).

The second inequality is by the assumption of n > 25k, and the last inequality is by Inequality (4.1).

4.3.1 Proof of Claim 4.1

Claim 4.1. For every w` ∈ [N ′], Pr
(f,~b,~X)∼Dα [w` ∈Wz(f,X)] does not depend on α ∈ [0, 1]. In

particular,
Pr

(f,~b,~X)∼DH
[w` ∈Wz(f,X)] = Pr

(f,~b,~X)∼DL
[w` ∈Wz(f,X)] .

Proof. We factorize the probability into two parts and prove both of them are independent of α.

Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X)] = Pr
(f,~b,~X)∼Dα

[
Af (w`) = z | w` ∈ BC(f,X)

]
· Pr

(f,~b,~X)∼Dα
[w` ∈ BC(f,X)]

We use Procedure 4.1 to sample (f,~b, ~X). We will prove the second factor is independent of
α by induction over r. Conditioning on the first (r − 1) values of i selected in Step 2(a) being
all distinct, that is, the block-compatible property has not been violated in the first r rounds, we
have ~b(i) = ∗ at the beginning of Step 2(b) in the r-th round. Thus no matter what α is and
what ~b(i) is assigned, Yi(j) is uniform over [M ] in the r-th round. Therefore, under the assumed
condition, the distribution of xr and f(xr) are independent of α and the probability of maintaining
the block-compatible property in the r-th round is independent of α. By induction, we know that
the probability of maintaining the block-compatible property in all q rounds is independent of α.

For the first factor, as discussed above, conditioning on the block-compatible property, the
distributions of xr and f(xr) are independent of α, so the probability of getting z as the output of
Af (w`) is also independent of α.

4.3.2 Proof of Claim 4.2

Claim 4.2. For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f,~b,~X)∼DH

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2
O
(
q

n2
+
√

kq

n2

)
· Pr

(f,~b,~X)∼DL
[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)] +O

(
q2

s

)
+ 2−5k
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Proof. We consider the following sampling procedure which is equivalent to sampling (f,~b, ~X) from
Dα conditioned on w` ∈ Wz(f,X) (Namely, Af (w`) = z and w` ∈ BC(f,X)). We denote such a
distribution as (f,~b, ~X) ∼ Dα(w`, z). It follows the same idea as in Procedure 4.1 — sampling the
blocks that are queried by Af (w`) first, and uses the rejection sampling to handle the condition
w` ∈Wz(f,X).

Procedure 4.2

1. Initially, ~Xi(j) = ∗ and ~b(i) = ∗ for all i ∈ [s], j ∈ [t] and f(x) = ∗ for all x ∈ [N ].

2. Simulate Af (w`) handling the r-th oracle query xr as follows. For r = 1 . . . , q,

(a) Based on previous queries and results as well as w, let the r-th query be xr.
Select (i, j) uniformly at random from [s]× [t] subject to Xi(j) = ∗ and assign
~Xi(j) = xr.

(b) If ~b(i) = ∗, then assign ~b(i) ∼ Bern(α) and ~Yi ∼ Y~b(i).

(c) Set f(xr) = Yi(j) and return f(xr) as the answer to the query.

3. If q values of i in Step 2(a) are not all distinct, or Af (w`) 6= z, restart.

4. For all (i, j) such that ~b(i) 6= ∗ and ~Xi(j) = ∗, randomly sample x ∈ [N ] that has
not been assigned to any partition. Set ~Xi(j) = x and f(x) = Yi(j).

5. Denote the partially assigned (some of them are mapped to ∗) function and vectors
sampled so far as f∗,~b∗, (~X∗) ∼ D∗α(w`, z).

6. Assign the rest of the vectors ~X, ~b and the mapping f by executing Step 2(a)–(c) for
all x ∈ [N ] \ {x1, . . . , xq} (instead of xr).

Notice that until Step 5, information (including the partition ~X∗, function mapping f∗ and the
indicator ~b∗) on exactly q blocks is decided.

The probability we consider then can be written as

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

= Pr
(f,~b,~X)∼Dα(w`,z)

[w1, . . . , w`−1 /∈Wz(f,X)]

=
∑

(f∗,~b∗,~X∗)

Pr
(f,~b,~X)∼Dα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X) | (f∗,~b∗, ~X∗)

]
× Pr
D∗α(w`,z)

[
(f∗,~b∗, ~X∗)

]
Now we introduce a property of a partial indicator. We say a partial indicator is balanced if the
number of zeros (low entropy block) and ones (high entropy block) are about the same.

Definition 4.2 (Balance). Let ~b∗ ∈ {0, 1, ∗}s be a “partial” indicator vector where there are q
non-star entries. We say it is balanced if the number of 1s is in [q · (1/2−5/n−

√
25k/q), q · (1/2+

5/n+
√

25k/q)].
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According to Procedure 4.2, each non-star entry of ~b∗ is sampled uniformly and independently
from Bern(α). When α ∈ [1/2− 5/n, 1/2 + 5/n], by Chernoff bound, we have

Pr
f∗,~b∗,(~X∗)∼D∗α(w`,z)

[
~b∗ is balanced

]
≥ 1− 2−5k.

And thus we can sum over only balanced ~b∗ by paying an additive term.

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2−5k +
∑

(f∗,~b∗,~X∗)

where ~b∗ is balanced

Pr
(f,~b,~X)∼Dα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X) | (f∗,~b∗, ~X∗)

]

× Pr
Dα(w`,z)∗

[
(f∗,~b∗, ~X∗)

]
(4.3)

Now we use the following two claims (proved in the later paragraphs) to connect the high
entropy case (DH) and the low entropy case (DL) on those two factors.

Claim 4.3. For every w` ∈ [N ′], z ∈ [M ′] and every possible (f∗,~b∗, ~X∗) from D∗H(w`, z), we have

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

≤ Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q2

s

) (4.4)

Claim 4.4. For every w` ∈ [N ′], z ∈ [M ′] and every (f∗,~b∗, ~X∗) where ~b∗ is balanced,

Pr
D∗H(w`,z)

[
(f∗,~b∗, ~X∗)

]
≤ 2

O
(
q

n2
+
√

kq

n2

)
· Pr
D∗L(w`,z)

[
(f∗,~b∗, ~X∗)

]
(4.5)

Inserting Inequalities (4.4) and (4.5) to Equation (4.3) with α = 1/2 + 5/n, we conclude the
claim.

Proof of Claim 4.3

Claim 4.3. For every w` ∈ [N ′], z ∈ [M ′] and every possible (f∗,~b∗, ~X∗) from D∗H(w`, z), we have

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

≤ Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q2

s

) (4.4)

Proof. We will use a variation of the main lemma (Lemma 3) in [LZ17].
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Lemma 4.4. Let Âf̂ : [N̂ ′] → [M̂ ′] be an algorithm making at most q oracle queries to f̂ : [N̂ ] →
[M̂ ]. Let D̂H = D̂1/2+5/n and D̂L = D̂1/2−5/n be the distribution over a function f̂ : [N̂ ] → [M̂ ],

a partition
~̂
X ∈ ([N̂ ]t̂)ŝ, and an indication vector

~̂
b ∈ {0, 1}ŝ defined in Section 3. Then for all

z ∈ [N̂ ′],

Pr
(f̂ ,
~̂
b,
~̂
X)∼D̂L

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
− Pr

(f̂ ,
~̂
b,
~̂
X)∼D̂H

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
≤ O(q2)

ŝ

Proof. See Appendix A.1.

For a fixed (f∗,~b∗, ~X∗), apply the above lemma in the following way:

• Let ŝ = s− q, t̂ = t, and so N̂ = ŝ · t̂ = N − qt.

• Let S = {x | f∗(x) = ∗} ⊆ [N ], I = {i | ~b∗(i) = ∗} ⊆ [s] and πX : S → [N̂ ], πI : I → [ŝ] be

arbitrary bijection mappings. Then we define f̂ ,
~̂
X and

~̂
b as follows.

∀ x̂ ∈ [N̂ ] , f̂(x̂)
def
= f(π−1

X (x̂))

∀ (̂i, ĵ) ∈ [ŝ]× [t̂] ,
~̂
Xî(ĵ)

def
= πX( ~Xπ−1

I (̂i)(ĵ))

∀ î ∈ [ŝ] ,
~̂
b(̂i)

def
= ~b(π−1

I (̂i))

.

• For ŵ ∈ [N̂ ], define Âf̂ (ŵ) to simulate Af (w) and w ∈ {w1, . . . , w`−1} in the following way. It
first check that if w /∈ {w1, . . . , w`−1}, output something not equal to z. Otherwise simulate
Af (w) and when A makes a query x ∈ X∗, Â hardwire the result f(x) as the answer. When
x ∈ S, return f̂(πX(x)) as the answer.

By the above mapping, we have

Pr
(f,~b,~X)∼Dα(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

= Pr
(f̂ ,
~̂
b,
~̂
X)∼D̂α

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
.

By Lemma 4.4,

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

= 1− Pr
DH(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

= 1− Pr
(f̂ ,
~̂
b,
~̂
X)∼D̂H

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
≤ 1− Pr

(f̂ ,
~̂
b,
~̂
X)∼D̂L

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
+O

(
q2

ŝ

)
= 1− Pr

DL(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q2

s

)
= Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q2

s

)
.
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Proof of Claim 4.4

Claim 4.4. For every w` ∈ [N ′], z ∈ [M ′] and every (f∗,~b∗, ~X∗) where ~b∗ is balanced,

Pr
D∗H(w`,z)

[
(f∗,~b∗, ~X∗)

]
≤ 2

O
(
q

n2
+
√

kq

n2

)
· Pr
D∗L(w`,z)

[
(f∗,~b∗, ~X∗)

]
(4.5)

Proof. The only difference between DL(w`, z) and DH(w`, z) is when sampling~b∗. Recall that a bal-

anced partial indicator means the hamming weight is within the range q ·
(

1/2±
(

1/n+
√

25k/q
))

.

Since we only consider the cases where ~b∗ is balanced, the ratio can be bounded as follows.

PrD∗H(w`,z)

[
(f∗,~b∗, ~X∗)

]
PrD∗L(w`,z)

[
(f∗,~b∗, ~X∗)

] ≤ ( 1
2 + 5

n
1
2 −

5
n

)q( 1
2

+
(

1
n

+
√

25k
q

))(
1
2 −

5
n

1
2 + 5

n

)q( 1
2
−
(

1
n

+
√

25k
q

))

≤
(

1 +
10

n

)2q
(

1
n

+
√

25k
q

)(
1− 10

n

)−2q
(

1
n

+
√

25k
q

)

≤ 2
O
(
q

n2
+
√

kq

n2

)
(4.6)

4.4 Proof of Lemma 4.2

Lemma 4.2. There exists a universal constant c > 0 such that for every sufficiently large n and
k ≤ n, there is an output z ∈ [M ′] that satisfies

1. Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−ck ≥ 1

2
.

2. Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−ck.

3. E
(f,~b,~X)∼DH

[∣∣∣{w : Af (w) = z}
∣∣∣] ≤ 24k

Proof. In this proof, we abuse notation by denoting BC(f,X) also to be the uniform distribution
over the set BC(f,X). We will show that that for a random z sampled from [M ′], it satisfies each
property with probability at least 1 − 2−Ω(k), and hence by the union bound, it satisfies all three
properties with probability at least 1 − 2−Ω(k). In particular, there exists z ∈ [M ′] satisfying all
three conditions simultaneously.

1.

Pr
z∼{0,1}m′

[
z /∈ Af (BC(f,X)

]
= 1−

∣∣Supp(Af (BC(f,X)))
∣∣

[M ′]

≤ dTV

(
Af (BC(f,X)), Um′

)
≤ dTV

(
Af (Un′), Um′

)
+ dTV (BC(f,X), Um′)

= dTV

(
Af (Un′), Um′

)
+ 1− |BC(f,X)|

[N ′]

(4.7)
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Take the expectation over (f,~b, ~X) from DH for Equation (4.7). By Lemma 3.1, Definition 2.1
and Corollary 4.1 we have

Pr
(f,~b,~X)∼DH ,z∼[M ′]

[
z /∈ Af (BC(f,X))

]
≤ Pr

(f,~b,~X)∼DH
[Hsh (f) < τ + 1] + 2−k + 2−0.3n (4.8)

≤ 2−0.9n + 2−k + 2−0.3n ≤ 2−0.2k (4.9)

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−0.1k

]
≥ 1− 2−0.1k.

2. By Lemma 3.1 and Definition 2.1, we have

Pr
(f,~b,~X)∼DL,z∼[M ′]

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ Pr

(f,~b,~X)∼DL,z∼[M ′]

[
∃w ∈ [N ′], Af (w) = z

]
≤ Pr

z∼[M ′]

[
∃w ∈ [N ′], Af (w) = z | Hsh (f) ≤ τ − 1

]
+ Pr

(f,~b,~X)∼DL
[Hsh (f) > τ − 1]

≤ 2−k + 2−0.9n ≤ 2−0.8k.

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−0.1k

]
≥ 1− 2−0.7k.

3. Since m′ = n′ + 3k,

E
z∈[M ′]

[∣∣∣{w : Af (w) = z}
∣∣∣] = Pr

z∈[M ′]

 ∑
w∈[N ′]

I(Af (w) = z)

 = 2n
′ · 2−m′ = 23k.

In particular,

E
(f,~b,~X)∼DH ,z∈[M ′]

[∣∣∣{w : Af (w) = z}
∣∣∣] = 23k.

By the Markov inequality,

Pr
z∼[M ′]

[
E

(f,~b,~X)∼DH

[∣∣∣{w : Af (w) = z}
∣∣∣] ≤ 24k

]
≥ 1− 2−k.
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Theory, 2004. ISIT 2004. Proceedings. International Symposium on, page 233. IEEE,
2004.

[SV97] Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-
knowledge. In 38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 448–457, 1997.

[Vad99] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Citeseer,
1999.

21



[VZ12] Salil P. Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In Proceedings of the 44th Symposium on The-
ory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 817–836, 2012.

A Missing Proofs

A.1 Proof of Lemma 4.4

We restate the lemma as follows. Note that it is unnecessarily that N = 2n or being a power of
two (and similarly for M,N ′ and M ′).

Lemma A.1. Let Af : [N ′]→ [M ′] be an algorithm making at most q oracle queries to f : [N ]→
[M ]. Let DH = D1/2+5/n and DL = D1/2−5/n be the distribution over a function f : [N ] → [M ], a

partition ~X ∈ ([N ]t)s, and the indication vector ~b ∈ {0, 1}s as defined in Section 3. Then for all
z ∈ [N ],

Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q2)

s
.

Besides the parameters difference, a key difference between Lemma A.1 and the key lemma
in [LZ17] is that in our construction, the indicator vectors b consist of s independent Bernoulli
random variables, while in their case, the number of ones, namely the Hamming weight is fixed.
Formally, they consider the following distribution.

Definition A.1. For i ∈ [s], D̃i is the distribution over functions f : [N ] → [M ] and partitions
~X defined as follows. Let ~bi = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0︸ ︷︷ ︸
s−i

). Then (f, ~X) ∼ D̃i denotes that ~X ∼ Xs and

f ∼ F(~X, ~bi).

A more direct analogue of the key lemma in [LZ17] (with improved parameters and a simplified
proof) can be stated using our notation:

Lemma A.2. Let Af : [N ′] → [M ′] be an algorithm, which makes at most q queries to its oracle
f : [N ]→ [M ]. If 2q2 < i, then for all z ∈ {0, 1}m′,

Pr
(f,~X)∼D̃i−1

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃i

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q2)

i2
.

We provide a simpler proof of Lemma A.2 below. First we prove Lemma A.1 using Lemma A.2.

Proof of Lemma A.1. By telescoping over i in Lemma A.2, we get that for 1
4 ≤ α < β ≤ 1 where

αs and βs are integers, we have

Pr
(f,~X)∼D̃αs

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃βs

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q2(β − α))

s
.

Conditioning on the Hamming weight of ~b being αs when we sample D1/2−4/n or D1/2+4/n, the

probability of the event ∃w ∈ BC(f,X), Af (w) = z is same as sampling from D̃αs, because this
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event is invariant to permuting the indices of the s blocks, so the vector ~b = (1, . . . , 1︸ ︷︷ ︸
αs

, 0, . . . , 0︸ ︷︷ ︸
s−αs

) is

equivalent to any other vector of the same Hamming weight. Hence, we have

Pr
(f,~b,~X)∼D1/2±4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
=

s∑
h=0

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2± 4/n) = h] ,

where Bin is the binomial distribution. By the Chernoff bound,

Pr
(f,~b,~X)∼D1/2−4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~b,~X)∼D1/2+4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−Ω(s) +

∑
s/4<h<3s/4

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2 + 4/n) = h]

−
∑

s/4<h<3s/4

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2− 4/n) = h]

Then by symmetry (Pr [Bin(s, p) = h] = Pr [Bin(s, 1− p) = s− h]) and the bound we got at the
beginning by telescoping, the difference is bounded by

∑
s/4<h<3s/4

(
Pr

(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃s−h

[
∃w ∈ BC(f,X), Af (w) = z

])
× Pr [Bin(s, 1/2− 4/n) = h] + 2−Ω(s)

≤
∑

s/4<h<s/2

O
(
q2(s− 2h)/s

)
s

· Pr [Bin(s, 1/2− 4/n) = h] + 2−Ω(s)

≤ O(q2)

s
.

.

B Proof of Lemma A.2

Lemma A.2. Let Af : [N ′] → [M ′] be an algorithm, which makes at most q queries to its oracle
f : [N ]→ [M ]. If 2q2 < i, then for all z ∈ {0, 1}m′,

Pr
(f,~X)∼D̃i−1

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃i

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q2)

i2
.

Proof. Distributions D̃i−1 and D̃i differ only on the block ~Xi. So an equivalent way to sample both
distributions is that we can first sample the partition ~X, and the mapping except on the set Xi.
In particular, we sample ~Y1, . . . , ~Yi−1 ∼ Y0 and ~Yi+1, . . . , ~Ys ∼ Y1. After that, for fixed ~X and
~Y1, . . . , ~Yi−1, ~Yi+1, . . . , Ys, we sample ~Yi from Y1 or Y0 for distribution D̃i or D̃i−1, respectively.
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For notational convenience, we define

~X−i
def
= ( ~X1, . . . , ~Xi−1, ~Xi+1, . . . , ~Xs)

~X≤i
def
= ( ~X1, . . . , ~Xi)

~X>i
def
= ( ~Xi+1, . . . , ~Xn)

Now the difference of the probabilities can be written as

∆i = E
~Y−i,~X

[
Pr
~Yi∼Y0

[
∃w ∈ BC(f,X), Af (w) = z

]]
− E

~Y−i,~X

[
Pr

~Yi∼Y1

[
∃w ∈ BC(f,X), Af (w) = z

]]
.

(B.1)

If the block Xi is not queried, then Af (w) behaves identically under the two distributions.
Thus, to compare two probabilities better, we refine the event ∃w ∈ BC(f,X), Af (w) = z based on
the block Xi. For given f, ~X and z, we define the following events.

∀j ∈ [t] , E
f,~X,z

(j)
def
=
[
∃w ∈ BC(f,X) s.t. Af (w) = z ∧ ~Xi(j) ∈ Queryf (w)

]
E
f,~X,z

(⊥)
def
=
[
∃w ∈ BC(f,X) s.t. Af (w) = z ∧ Queryf (w) ∩Xi = ∅

]
,

where Queryf (w) is the set of the queries made by the algorithm Af (w) to the f with input w.
The main events that we care about is the union of the above events we defined, so for Y ∈

{Y0,Y1}

Pr
~Yi∼Y

[∃w ∈ BC(f,X)] = Pr
~Yi∼Y

E
f,~X,z

(⊥) ∨

 t∨
j=1

E
f,~X,z

(j)


= Pr

~Yi∼Y

[
E
f,~X,z

(⊥)
]

+ Pr
~Yi∼Y

¬E
f,~X,z

(⊥) ∧

 t∨
j=1

E
f,~X,z

(j)

 .
An important observation is that the event E

f,~X,z
(⊥) does not depend on f(Xi), so sampling ~Yi

from Y0 or Y1 does not affect the probability of the event. Hence, Equation (B.1) can be written
as

∆i = E
~Y−i,~X

 Pr
~Yi∼Y0

¬E
f,~X,z

(⊥) ∧

 t∨
j=1

E
f,~X,z

(j)


− E

~Y−i,~X

 Pr
~Yi∼Y1

¬E
f,~X,z

(⊥) ∧

 t∨
j=1

E
f,~X,z

(j)

 .
Now, for the probability over Y0 part, we apply the union bound.

E
~Y−i,~X

 Pr
~Yi∼Y0

¬E
f,~X,z

(⊥) ∧

 t∨
j=1

E
f,~X,z

(j)

 ≤ E
~Y−i,~X

 t∑
j=1

Pr
~Yi∼Y0

[
¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j)
]
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For the Y1 part, we bound the probability via the inclusion-exclusion principle.

E
~Y−i,~X

 Pr
~Yi∼Y1

¬E
f,~X,z

(⊥) ∧

 t∨
j=1

E
f,~X,z

(j)


≥ E

~Y−i,~X

 t∑
j=1

Pr
~Yi∼Y1

[
¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j)
]
− Pr

~Yi∼Y1

[
∃j 6= j′,¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j) ∧ E

f,~X,z
(j′)
]

Observe that Af (w) only queries Xi at most once for all w ∈ BC(f,X), and the marginal distribu-
tions of the mapping on ~Xi(j) for every j ∈ [t] are the same in both Y1 and Y0 cases, so for every
j ∈ [t]

Pr
~Yi∼Y0

[
¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j)
]

= Pr
~Yi∼Y1

[
¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j)
]

Therefore, the difference between two cases is bounded as

∆i ≤ E
~Y−i,~X

[
Pr
~Yi∼Y1

[
∃j 6= j′,¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j) ∧ E

f,~X,z
(j′)
]]

= Pr
(f,~X)∼D̃i

[
∃j 6= j′,¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j) ∧ E

f,~X,z
(j′)
]
. (B.2)

To bound the term, we consider another way to sample (f, ~X) from D̃i. Given (f, ~X), we define
B : X≤i → [i] by

B(x) = the block that x is in = the unique i′ ≤ i s.t. ∃j, ~X ′i(j) = x.

We will re-sample the “B part” after getting (f, ~X). Namely, we will sample B given fixed f and
~X>i) using principle of deferred decisions. Note that conditioned on f and ~X>i, B is a uniformly
random regular mapping from ~X≤i to [i] where regular means that all preimage sets B−1(i′) are of
size t.

Along the way of sampling B, B : ~X≤i → [i] ∪ {∗} where “∗” represent values not yet determined

as before. Initially, B(x) = ∗ for all x ∈ ~X≤i. For an input w ∈ [N ′], we say w is partially block

compatible, written as w ∈ PBC(f, ~X>i, B) if Af (w) queries each block (defined by ~X>i or B) at
most once (among the queries whose block is determined).

The procedure for sampling B given fixed f and ~X>i is as follows.

Procedure B.1

1. Set B(x) = ∗ for all x ∈ [N ] \X>i.

2. While ∃w s.t. w ∈ PBC(f, ~X>i, B) and Af (w) = z,

(a) Randomly assign B on undetermined element of Queryf (w) conditional on as-
signment to B so far. That is, for each x ∈ Queryf (w) s.t. B(x) = ∗ set B(x) = i′

with probability t−|{x′:B(x′)=i′}|
it−|{x′:B(x′)6=∗}| .

3. Randomly assign B on all undetermined elements conditioned on assignment to B
so far.
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By considering the above sampling procedure, let w` be the value of w chosen in the `-th iteration
of the while loop (Step 2). Then we define the following events for ` ∈ N.

E
(0)
` =

[
None of the new assignments to B in `-th iteration equal i

∧ after `-th iteration, w` 6= PBC(f, ~X>i, B).
]

E
(1)
` = [Exactly one of the new assignments to B in `-th iteration equals i.]

E
(≥2)
` = [At least two of the new assignments to B in `-th iteration equals i.]

Denote the assignments of B after the first `−1 rounds in the while loop as B`−1. Suppose q` ≤ it/2
and q2 ≤ i/2, then we have

Pr
[
E

(0)
` | B`−1

]
≤
(
q

2

)
· t

it− q · (`− 1)
≤ 1

2

Pr
[
E

(1)
` | B`−1

]
≤ q · t

it− q · (`− 1)
≤ 2q

i

Pr
[
E

(≥2)
` | B`−1

]
≤

q∑
j=2

(
q

j

)
·
(

t

it− q · (`− 1)

)j
≤ 2q

i3

≤
q∑
j=2

(q
2

)j (2

i

)j
≤

q∑
j=2

(q
i

)j
≤ 2q2

i2

(B.3)

Let L be a parameter to be chosen later. The event in Equation (B.2) happens only if the event
E(1) happens at least twice in the while loop and for the rest of the while loops, E(0) or E(≥2)

happens. We focus on the sampling procedure for the first L rounds. Then Equation (B.2) can be
bounded as

Pr
(f,~X)∼D̃i

[
∃j 6= j′,¬E

f,~X,z
(⊥) ∧ E

f,~X,z
(j) ∧ E

f,~X,z
(j′)
]

≤
∑

0<`1<`2≤L
Pr
[(
E

(0)
1 ∧ · · · ∧ E(0)

`1−1

)
∧ E(1)

`1
∧
(
E

(0)
`1+1 ∧ · · · ∧ E

(0)
`2−1

)
∧ E(1)

`2

]
(B.4)

+
∑

0<`≤L
Pr
[(
F1 ∧ · · · ∧ E(0)

`−1

)
∧ E(1)

` ∧
(
E

(0)
`+1 ∧ · · · ∧ E

(0)
L

)]
(B.5)

+
∑

0<`≤L
Pr
[(
E

(0)
1 ∧ · · · ∧ E(0)

`−1

)
∧ E(≥2)

`

]
(B.6)

+ Pr
[
E

(0)
1 ∧ · · · ,∧E(0)

L

]
(B.7)
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As long as qL ≤ it/2, we can bound Equation (B.4), (B.5), (B.6) and (B.7) using Equation B.3:

Equation (B.4) ≤
∑

0<`1<`2≤L

1

2`2−2
· 4q2

i2
≤ 16

∑
0<`2≤L

`2
2`2
· q

2

i2
= O

(
q2

i2

)
Equation (B.5) ≤

∑
0<`≤L

1

2L−1
· 2q

i
= O

(
2−L

)
Equation (B.6) ≤

∑
0<`≤L

1

2`−1
· 2q2

i2
= O

(
q2

i2

)
Equation (B.5) ≤ O

(
2−L

)
If we choose L = 2 log(i/q) (which satisfies qL ≤ it/2q), then all Equation (B.4), (B.5), (B.6) and
(B.7) is at most O

(
q2/i2

)
, and so is ∆i.

B.1 Proof of Lemma 2.1

Lemma 2.1. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for function
f : {0, 1}n → {0, 1}m with query complexity q, then there exists a k-SDU algorithm Af : {0, 1}n′′ →
{0, 1}n′′−3k where n′′ = O(n′ +m′) for function f : {0, 1}n → {0, 1}m with query complexity q and
k = Ω(min{∆, log(1/ε)}). In particular, there exists such a k-SDU algorithm with query complexity
O(k ·min{n,m}2).

Claim B.1. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for function
f : {0, 1}n → {0, 1}m with query complexity q, then there exists an k-SDU algorithm Bf : {0, 1}n′′ →
{0, 1}m′′ where n′′ = O(n′+m′) and m′′ = O(n′+m′) for function f : {0, 1}n → {0, 1}m with query
complexity q and k = Ω(min{∆, log(1/ε)}).

Claim B.2. If there exists a k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function f : {0, 1}n →
{0, 1}m with query complexity q, then there exists an (k−1)-SDU algorithm Bf : {0, 1}n′′ → {0, 1}m′′

where n′′ = O(n′) and m′′ = n′′ − 3k for function f : {0, 1}n → {0, 1}m with query complexity q.

proof of Claim B.1. This proof mostly follows the idea in [GSV99b]. It suffices to prove the exis-
tence of Ω(k)-SDU algorithm for k = min{∆, log(1/ε)}. Let Ha,b be a family of 2-universal hash
function from a bits to b bits. We sample hash functions h1 and h2 from Hm′,κ and ∼ Hn′,n′−κ−k/3,

respectively, where κ is the parameter chosen by the flattening algorithm Af . We will show that

Bf (w, h1, h2) =
(
h1, h1(Af (w)), h2, h2(w)

)
is a Ω(k)-SDU algorithm. We denote the output of Bf (w, h1, h2) as a jointly distributed random
variables (H1, Z1, H2, Z2) when w ∼ Un′ , h1 ∼ Hm′,κ and h2 ∼ Hn′,n′−κ−k/3.

1. When (f, τ) ∈ EAY , there exists a distribution ZH with Hmin (ZH) ≥ κ + ∆ such that
dTV

(
Af (Un′), ZH

)
≤ ε. First, we show that (H1, Z1) is close to uniform. By the Leftover

Hash Lemma, dTV ((H1, H1(ZH), (H1, Uκ)) ≤ 2−∆/3, and so

dTV

(
(H1, Z1), (H1, Uκ)

)
≤dTV

(
Af (Un′), ZH

)
+ dTV

(
(H1, H1(ZH), (H1, Uκ)

)
≤2−∆/3 + ε ≤ 2−Ω(k).
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For the (H2, Z2) of part, we will show that with high probability over sampling (h1, z1) from
(H1, Z1), the distribution (H2, Z2) conditioned on (h1, z1) is close to uniform. Since (H1, Z1)
is 2−Ω(k)-close to uniform, by the Markov inequality, with probability at least 1− 2−Ω(k) over
choosing (h1, z1) from (H1, Z1), we have

Pr
[
h1(Af (Un′)) = z1

]
= Pr [Z1 = z1 | H1 = h1] ≥ 1

2
· 2−κ.

Thus, except for 2−Ω(k) probability over (h1, z1), the number of w such that h1(Af (w)) = z1

is at least 2n
′−κ−1. Again, by the Leftover Hash Lemma, (H2, Z2) is 2−Ω(k)-close to uniform

conditioned on any such (h1, z1). We then can conclude that (H1, Z1, H2, Z2) is 2−Ω(k)-close
to uniform.

2. When (f, τ) ∈ EAN , there exists a distribution ZL with Hmax (ZL) ≤ κ − ∆ such that
dTV

(
Af (Un′), ZL

)
≤ ε. For every fixed h1 and h2, we will bound the support size of

(Z1, H2, Z2) conditioned on H1 = h1 and H2 = h2. We divide Supp(Z1, Z2) into three
subset according to z1 ∈ Supp(Z1).

S1 = {(z1, z2) : z1 ∈ Supp(ZL)}
S2 = {(z1, z2) : Pr [Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)}
S3 = {(z1, z2) : Pr [Z1 = z1] < 2−κ−2k/3 and z1 /∈ Supp(ZL)}

Since, Supp(Z1, Z2) = S1∪S2∪S3, it suffices to show that |Si| ≤ 2−Ω(k)·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣

for all i = 1, 2, 3.

(a) For S1, by definition, Hmax (ZL) ≤ κ−∆ implies that |Supp(ZL)| / |{0, 1}κ| ≤ 2−∆, and
so

|S1| ≤ 2−∆ ·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣ ≤ 2−Ω(k) ·

∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣ .
(b) For S2, since dTV

(
Af (Un′), ZL

)
≤ ε,

∑
z1 /∈Supp(ZL) Pr [Z1 = z1] ≤ ε. Each z1 such that

Pr [Z1 = z1] ≥ 2−κ−2k/3 contributes at least 2−κ−2k/3 towards ε, so∣∣∣{z1 : Pr [Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)}
∣∣∣ ≤ ε · 2κ+2k/3.

Then we have |S2| ≤ 2−Ω(k)
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣, since k ≤ log(1/ε).

(c) For S3, if Pr [Z1 = z1] < 2−κ−2k/3, then the number of w ∈ {0, 1}n′ such that h1(Af (w)) =
z1 is at most 2n

′−κ−2k/3, which is at most a 2−k/3 fraction of {0, 1}n′−κ−k/3. Therefore,

|S3| ≤ 2−Ω(k) ·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣.

Thus, we conclude that Bf is a Ω(k)-SDU algorithm.

proof of Claim B.2.
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Definition B.1 (average min-entropy [DORS08]). Let (X,Y ) be jointed distributed random vari-
ables. The average min-entropy of X conditioned on Z is

Hmin (X|Y )
def
= log

(
1

Ey←Y [maxx Pr [X = x|Y = y]]

)

Lemma B.1 (Generalized Leftover Hash Lemma [DORS08]). Let (X,Y ) be a jointed distributed
random variables such that Hmin (X|Y ) ≥ k. Let Hn,m = {h : {0, 1}n → {0, 1}m} be a family of
universal hash function where h can be described in (n+m) bits and m = k− 2 log(1/ε) + 2. Then

dTV ((h(X), Y, h), (Um, Y, h)) ≤ ε

where Um is a uniform m bits string.

Let Hn′,n′−m′−3k = {h : {0, 1}n → {0, 1}m} be a family of universal hash function where h can
be described in d = 2n′−m′−3k bits. Based on the given k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ ,
we define the algorithm Bf : {0, 1}n′+d → {0, 1}n′+d−3k as

Bf (w, h)
def
= (Af (w), h(w), h).

By the chain rule of average min-entropy ([DORS08, Lemma 2.2b])

Hmin(w|A(w)) ≥ Hmin(w)− |A(w)| = n′ −m′,

and hence
dTV((A(w),Ext(w, v)), (A(w), Un′−m′+d−2k−O(1))) ≤ 2−k.

Therefore, when Hsh (f) ≥ τ + 1

dTV

(
Bf (Un′+d), Un′+d−3k

)
= dTV

(
(Af (w), h(w), h), (Um′ , Un′−m′+d−3k)

)
= dTV

(
Af (w), Um′

)
+ dTV

(
(Af (w), h(w), h), (Af (w), Un′−m′+d−3k)

)
≤ 2−k + 2−k = 2−(k−1).

The last inequality is by the property of k-SDU algorithm and Lemma B.1.
On the other hand, if Hsh (f) ≤ τ − 1,∣∣∣Supp(Bf (Un′+d))

∣∣∣ ≤ 2m
′−k · 2n′−m′+d−3k ≤ 2(n′+d−3k)−k.

Therefore, Bf is an (k − 1)-SDU algorithm with desired parameter.
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