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Abstract

We show that static data structure lower bounds in the group (linear) model imply semi-
explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound
of t ≥ ω(log2 n) on the cell-probe complexity of linear data structures in the group model, even
against arbitrarily small linear space (s = (1 + ε)n), would already imply a semi-explicit (PNP)
construction of rigid matrices with significantly better parameters than the current state of art
(Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (t ≥ nδ)
data structure lower bounds against near-optimal space, would imply super-linear circuit lower
bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime
(s = n+ o(n)), we show that any improvement on current cell-probe lower bounds in the linear
model would also imply new rigidity bounds. Our results rely on a new connection between the
“inner” and “outer” dimensions of a matrix (Paturi and Pudlák, 2006), and on a new reduction
from worst-case to average-case rigidity, which is of independent interest.
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1 Introduction

Proving lower bounds on the operational time of data structures has been a long and active research
endeavor for several decades. In the static setting, the goal is to preprocess a database of n elements
into minimum space s (≥ n), so that queries q ∈ Q on the input database can be answered quickly,
in query time t (where the typical and realistic setting is |Q| = poly(n)). The two näıve solutions
to any such problem is to either precompute and store the answers to all queries in advance, which
has optimal query time but prohibitive space (s = |Q|), or to store the raw database using optimal
space (s ∼ n) at the price of trivial query time (t = n). The obvious question is whether the
underlying problem admits a better time-space trade-off. Static data structure lower bounds aim
to answer this question by proving unconditional lower bounds on this trade-off.

The most compelling model for proving such lower bounds is the “cell-probe” model [Yao81], in
which a data structure is simply viewed as a table of s memory cells (w-bit words) and query time is
measured only by the number t of memory accesses (I/Os), whereas all computations on “probed”
memory cells are free of charge. This nonuniform1 model of computation renders time-space trade-
offs as purely information-theoretic question and thereby extremely powerful. Unfortunately, the
abstraction of this model also comes at a price: While a rather straight-forward counting argument
[Mil93] shows that most static data structure problems with m := |Q| queries indeed require either
t ≥ n0.99 time or s ≥ m0.99 space (i.e., the näıve solutions are essentially optimal), the highest
explicit cell-probe lower bound known to date is

t ≥ Ω

(
log(m/n)

log(s/n)

)
. (1)

In the interesting and realistic regime of polynomially many queries (m = nO(1)), this yields a
t & log n lower bound on the query time of linear space (s = O(n)) data structures for several
natural problems, such as polynomial-evaluation, nearest-neighbor search and 2D range counting
to mention a few [Sie04, Pǎt08, PTW10, Lar12]. Proving an ω(log n) cell-probe lower bound on
any explicit static problem in the linear space regime, is a major open problem, and the trade-
off in (1) remains the highest static cell-probe lower bound known to date, even for nonadaptive
data structures (This is in sharp contrast to dynamic data structures, where the restriction to
nonadaptivity enables polynomial cell-probe lower bounds [BL15]).

In an effort to circumvent the difficulty of proving lower bounds in the cell-probe model, several
restricted models of data structures have been studied over the years, e.g., the pointer-machine and
word-RAMs [vEB90] as well as (stronger) algebraic models, most notably, the group model [Fre81,
Cha90, Pǎt07]. Since many important data structure problems involve linear queries over the
database (e.g., orthogonal range counting, partial sums, dictionaries, matrix-vector multiplication
and polynomial evaluation to mention a few), it is natural to restrict the data structure to use only
linear operations as well. More formally, a static linear data structure problem over a field F and
input database x ∈ Fn, is defined by an m×n matrix (i.e., a linear map) M ∈ Fm×n. The m queries
are the rows Mi of M , and the answer to the ith query is 〈Mi, x〉 = (Mx)i ∈ F. An (s, t)-linear
data structure for M is allowed to store s arbitrary field elements in memory P (x) ∈ Fs, and must
compute each query (Mx)i as a t-sparse linear combination of its memory state (we assume the

1Indeed, a nonadaptive cell-probe data structure is essentially equivalent to an m-output depth-2 circuit with
arbitrary gates, “width” s, and a bounded top fan-in t, see [JS11, BL15] and Section 2.5.

1



word-size satisfies w ≥ log |F|, see Section 2.1 for the complete details). This model is a special
case of the static group model, except here the group (field) is fixed in advance.2

While the restriction to the group model has been fruitful for proving strong lower bounds on
dynamic data structures3 ([Aga04, Pǎt07, Lar14]), the static group model resisted this restriction as
well, and (1) remains the highest static lower bound even against nonadaptive linear data structures.

This paper shows that this barrier is no coincidence. We study linear data structures and show
that proving super-logarithmic static lower bounds, even against nonadaptive linear data structures
with arbitrarily small linear space s = (1+ε)n, implies semi-explicit lower bounds on matrix rigidity.
Before stating our main results, we take a moment to introduce the notion of rigidity.

Matrix rigidity The notion of matrix rigidity was introduced by Valiant [Val77] as a possible
approach for proving circuit lower bounds. We say that a matrix A ∈ Fm×n is (r, d)-row rigid, if
decreasing the rank of A below r, requires modifying at least d entries in some row of A. In other
words, for any r-dimensional subspace U of Fn, there exists a row in A that is d-far (in Hamming
distance) from U . We discuss a stronger notion of rigidity called ’global rigidity’ later in the paper
(requiring many rows of A to be far from U) and prove a general reduction from one to the other
(see Theorem 3 below) which may be of independent interest.

The best known bound on matrix rigidity of square matrices (for any rank parameter r) is
Ω(nr log n

r ) [Fri93, PR94, SSS97, Lok09]4. Although matrix rigidity has attracted a lot of attention,
this bound remains the best known for more than two decades.

Matrix rigidity is also studied for rectangular matrices (introduced in [APY09]), where we
allow the number of rows m to be larger than the number of columns. One can thus fix the
parameters r (typically r ≈ εn) and d (the sparsity) and try to minimize the number of rows in
A. One can easily show that a random square matrix is highly rigid (say with r and d both close
to n), but the best explicit constructions of an m × n matrix which is (εn, d)-row-rigid requires
m = n · 2d [APY09, SY11]. This bound (and the related lower bound for square matrices which
is even older) represent, to many experts in the field, a real barrier, and any improvement to
it is likely to require substantially new ideas. Our results below show that this barrier can be
surpassed if one can improve the currently known lower bounds on static data structures by a
slightly super-logarithmic factor.

1.1 Our results

Our first main result is the following (see Theorem 7 for a formal statement):

2In the general (oblivious) group model, the input database consists of n elements from a black-box (commutative)
group, the data structure can only store and manipulate group elements through black-box group operations, and
query-time (t) is measured by the number of algebraic operations (see e.g. [Aga04, Pǎt07] for further details).

3In the dynamic setting, the data structure needs to maintain an online sequence of operations while minimizing
the number of memory accesses for update and query operations. In the group (linear) model, these constraints are
essentially equivalent to a decomposition of a matrix M = AB where both A and B are sparse. In contrast, static
lower bounds only require A to be sparse, hence intuitively such decomposition is much harder to rule out.

4Goldreich and Tal [GT16] also give a “semi-explicit” construction of rigid matrices which uses O(n) bits of

randomness. This construction has (global) rigidity Ω( n2

r2 logn
) for any r ≥

√
n, which improves on the classical

bound for r = o( n
logn log logn

). In particular, since the required number of random bits is only linear, this construction

is in ENP.
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Theorem 1 (Main Theorem, Informal). A data structure lower bound of t ≥ logc n in the group
(linear) model for computing a linear map M ∈ Fm×n, even against data structures with arbitrarily
small linear space s = (1 + ε)n, yields an (εn′, d)-row-rigid matrix M ′ ∈ Fm×n′ with εn′ ≥ d ≥
Ω(logc−1 n). Moreover, if M is explicit, then M ′ ∈ PNP.

The premise of Theorem 1 would imply a (semi-explicit) construction of an m×n matrix which
is d ∼ logc−1(m/n)-rigid (i.e., requires modifying at least d entries in some row to decrease the
rank below, say, n/4). In comparison, the aforementioned best known explicit constructions only
yield an Ω(log(m/n))-rigid matrix [APY09, SY11], which is only Ω(log n) when m = poly(n). In
particular, Theorem 1 asserts that proving a t ≥ ω(log2 n) data structure lower bound against
arbitrarily small linear space, would already yield an asymptotic improvement on (rectangular)
rigid matrix construction.5

Theorem 1 indicates a “threshold” in data structure lower bounds, since for succinct data
structures (which are constrained to use only s = n+o(n) space), polynomial lower bounds (t ≥ nε)
are known on the query time (e.g., [GM07, BL13]), even in the general cell-probe model.

Our second main result concerns implications of data structure lower bounds on square matrix
rigidity (see Theorem 7, item 3 for a formal statement):

Theorem 2 (Implications to Square Rigidity, Informal). For any δ > 0, a data structure lower
bound of t ≥ log3+δ n in the group (linear) model, for computing a linear map M ∈ Fm×n, even
against arbitrarily small linear space s = (1 + ε)n, yields a square matrix M ′ ∈ Fn′×n′ which is(
r, ω(n

′

r log n′

r )
)

-rigid, for some r = o(n). Moreover, if M is explicit, then M ′ ∈ PNP.

Since the highest rigidity bound known to date for square matrices (and any rank parameter
r) is Ω(n

′

r log n′

r ) [Fri93], the premise of Theorem 2 would imply an asymptotic improvement over
state-of-art lower bounds (the precise factor is given in the formal statement, see Theorem 7).

Our main result has further significant implications to other time-space regimes. In the succinct
space regime, we show that any asymptotic improvement on the current best cell-probe lower bounds
mentioned above, would yield improved rigidity bounds for near-square matrices, and vice versa. In
particular, a corollary of this connection yields a logarithmic improvement on succinct lower bounds
(in the group model): We exhibit an (explicit) data structure lower bound of t · r ≥ Ω(n log(n/r))
for linear data structures using space s = n+ r, which is a logarithmic-factor improvement on the
aforementioned bounds of [GM07, BL13] for a problem with linear number of queries m = O(n).

Finally, we show that ‘holy-grail’ polynomial (t ≥ nδ) data structure lower bounds against near-
trivial space (s ∼ m/ log logm), would imply superlinear circuit lower bounds (see Theorem 8). We
discuss all of these implications in Section 4.

1.2 Technical Overview

It is not hard to see that a (nonadaptive) (s, t)-linear data structure for a linear problem M ∈ Fm×n
is nothing but a factorization of M as a product of two matrices M = AB, where A is a t-sparse
(m × s) matrix (with ≤ t non-zeros in each row), and B is an arbitrary matrix with only s rows
(see Section 2.1). As such, proving a lower bound on (s, t) linear data structures is equivalent to
finding an (explicit) matrix M ∈ Fm×n which does not admit such factorization, or equivalently,

5Although here we state Theorem 1 for the lowest probe complexity that is interesting, it actually gives a smooth
trade-off: a lower bound on the linear data structure query time t implies rigidity t

logn
.
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showing that M is “sumset-evasive”, in the sense that the m rows of M (viewed as points Mi ∈ Fn)
are not contained in the t-span6 of any fixed set of s points in Fn (see Section 2.3 below for the
formal definition of (s, t)-sumset evasive sets).

In contrast, matrix rigidity is the problem of finding an (explicit) matrix M ∈ Fm×n which
cannot be factorized as the sum (rather than product) M = A + B of a t-row-sparse matrix A
plus a low rank matrix, say, rkF(B) ≤ r. For brevity, unless otherwise stated, we say below that a
matrix is (r, d)-rigid to mean that is is d-row-rigid, and that it is t-sparse to mean t-row-sparse.

We establish a new relationship between these two (seemingly disparate) factorizations. A key
step in showing this relationship is to re-interpret the two factorization problems above as two
(respective) “geometric” measures on the column space of M , i.e., viewing the matrix M ∈ Fm×n
as an n-dimensional subspace VM ⊂ Fm spanned by its columns. Informally, the inner dimension
of VM is the maximal dimension dM ≤ n of the intersection of VM with any t-sparse subspace7

A of the same dimension n (in other words, VM has small inner dimension dM (t) if it has low-
dimensional intersection with any n-dimensional t-sparse subspace, see Definition 2 below). The
outer dimension of VM is the minimal dimension DM ≥ n of a t-sparse subspace A that contains
VM (Definition 3). We first prove the following characterization (Lemmas 4 and 2):

• M is strongly8 (r, t)-rigid if an only if VM has small inner dimension (dM (t) < n− r).

• M is (s, t) sumset-evasive if and only if VM has large outer dimension (DM (t) > s).

(We note that the nontrivial direction of the first statement was already shown by [PP06] for a
subtly different notion of inner/outer dimensions, we provide an alternative proof in Appendix C).
In this terminology, proving that lower bounds on linear data structures imply lower bounds on
(row) rigidity, is essentially equivalent to showing that large outer dimension implies small inner
dimension (perhaps of a related explicit matrix). Indeed, our first main technical contribution is
establishing the following relationship between these two measures on submatrices of M , which is
the heart of the proof of Theorem 1.

Lemma 1 (Large outer dimension implies small inner dimension, Theorem 5, Informal). If DM (t) ≥
(1 + ε)n, there exists an m× n′ submatrix M ′ ⊆M for which dM ′(t/ log n) ≤ (1− ε)n′.

Indeed, by the characterization above, the last inequality implies that M ′ is (εn′, t/ log n)-rigid.
The high level idea of the proof is a simple recursive procedure that, given a matrix M with high
outer dimension DM (t), ‘finds’ a submatrix with low inner dimension. The heart of each iteration is
as follows: If our current matrix (which is initially M itself) is rigid (i.e., has low inner dimension,
which can be checked with an NP oracle), then we are done. Otherwise, the NP oracle together
with the characterization above, gives us a sparse subspace V (of only n dimensions) that has large
intersection with the column space of M . After a change of basis (of the column space) we can
essentially, partition the columns of M into the part covered by V and the remaining columns. We
then apply the same argument on the remaining columns. At each iteration we ‘accumulate’ an
additional sparse V (whose dimension is small – merely the dimension of the residual space) and
so, at the end, we must show that these can be pasted together to give a low-dimensional ‘cover’

6I.e., the union of all t-dimensional subspaces generated by any fixed set S ⊂ Fn of size s. We borrow the term
“sumset evasive” by analogy from additive combinatorics, but caution that this definition allows arbitrary linear
combinations and not just sums.

7We say that a subspace U ⊆ Fm is t-sparse if it is the column-space of a t-row-sparse matrix
8A matrix M is strongly-rigid if it remains (row) rigid in any basis of its column-space VM , see Definition 6.
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of the column-space V of the original matrix M (i.e., a small space data structure for M). Thus,
the final sparsity grows by a factor proportional to the number of iterations, which is logarithmic.
This implies that the process must end prematurely, resulting in a (semi-) explicit rigid submatrix.

Square Matrix Rigidity (Theorem 2). One caveat of Theorem 1 is that it may produce a
highly skewed (rectangular) m× n′ matrix, where m� n′ (this is because we only recurse on the
column-space of M but never on the row-space). While this already yields a significant improvement
over current-best rectangular rigidity results (e.g., when n′ = poly log(n)), this argument does not
seem to imply anything about rigidity for square matrices.

A trivial idea to turn the rectangular (m×n′)-row-rigid matrix M ′ produced by Lemma 1 into a
square matrix while preserving rigidity (at the expense of decreasing the relative rank parameter), is
to “stack” m/n′ identical copies of M ′ side by side. Clearly, the rank of the resulting m×m matrix
M ′′ remains unchanged (bounded by n′, so the relative rank parameter may decrease significantly
relative to m) 9, but on the other hand, the hope is that M ′′ remains Ω(m)-row-rigid. Indeed,
Lemma 1 guarantees that M ′ is (say) (n′/10, n′/2)-row-rigid, and therefore in order to decrease the
rank of M ′′ below (n′/10), one would need to decrease the rank of each of the m/n′ blocks below
n′/10, which requires modifying ∼ (m/n′) · (n′/2) = m/2 row entries in total. The problem, of
course, is that these rows may be different in each block, which completely dooms the argument.
Note that this is a direct consequence of working with row-rigidity : If M ′ were globally rigid (i.e.,
at least 10% of its rows need to be modified in at least ∼ t entries in order to decrease the rank
below n′/10), this simple trick would have gone through flawlessly.

In order to bypass this obstacle, we prove the following black-box reduction from row-rigidity
to global-rigidity. Our reduction uses Locally Decodable Codes (LDCs) in a way reminiscent of the
way LDCs are used in worst-case to average-case hardness amplification results [IW01].

Theorem 3 (Row to Global Rigidity). Let E : Fm 7→ Fm′ be a linear q-query locally decodable code
(LDC) against constant noise δ, and let E(A) ∈ Fm′×n be the application of E to each column of
A ∈ Fm×n. Then if A is (r, t)-row-rigid, then E(A) is (r, δtm′/q)-globally rigid.

To prove the theorem, we use the following crucial property of linear LDCs, originally observed
by Goldreich et. al [GKST02]: If E : Fm 7→ Fm′ is a q-query linear LDC (applied on the columns of
A ∈ Fm×n), then for any subset S of at most δm′ rows of E(A), and any row Aj of A, there exist q
rows of E(A) that lie outside S and span Aj . (See Section 3.2 for a formal argument). Now, suppose
towards contradiction, that E(A) is not (r, d)-globally rigid, for d := tδm′/2q. This means that
there is some r-dimensional subspace L ⊂ Fn which is at most (tδ/2q)-far (in Hamming distance)
from an average row of E(A), hence by a Markov argument, at most δm′ of the rows of E(A) are
> (t/2q)-far from L. Let B denote this set of rows. Since |B| ≤ δm′, the LDC property above
asserts that every row of A is a linear combination of at most q rows in E(A) \ B, each of which is
(t/2q)-close to L by definition of B. But this means that every row of A is at most (t/2q) · q = t/2
far from L, which is a contradiction since A was assumed to be t-row-rigid (hence there must be
at least one row that is t-far from L). The complete proof can be found in Theorem 6.

Since there are explicit linear q = log1+ε(n)-query LDCs with polynomial rate (m′ ≈ m1/ε),
Theorem 3 now completes the proof of Theorem 2 using the aforementioned program (stacking
copies of M ′ next to each other), at the price of an extra logarithmic loss in sparsity. To the
best of our knowledge, Theorem 3 establishes the first nontrivial relationship between rectangular

9The ratio between n′ and m depends on the the postulated data structure lower bound on M , determining n′.
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and square (row) rigidity, hence it may be of independent and general interest to rigidity theory
(as the notion of row-rigidity is potentially much weaker than global rigidity). We also remark
that Theorem 3 applies in the same way to reduce worst-case to average-case data-structure lower
bounds for linear problems.

2 Setup and Preliminaries

2.1 Linear Data Structures (Static Group Model)

A linear data structure problem with |Q| = m queries over a field F and an input database of n
elements is defined by an m×n matrix (i.e., a linear map) V ∈ Fm×n. The queries are the rows Vi of
V , and for any input database x ∈ Fn, the answer to the ith query is given by 〈Vi, x〉 = (V x)i ∈ F.

An (s, t) nonadaptive data structure D for the problem V in the cell-probe model is a pair
D = (P,Q), where P is a preprocessing function P : Fn 7→ Fs that encodes the database x ∈ Fn
into s memory cells, and a query algorithm Q : Fs 7→ Fm that correctly answers every query of V
by probing at most t memory cells10, i.e., such that Q(P (x)) = (V x)i, for every x ∈ Fn and every
query i ∈ [m].
D is a linear data structure for the (linear) problem V if both P and Q only compute linear

functions over F .We observe that it suffices to require Q to be linear: if a linear problem V is
solved by a data structure D with a linear query function Q, then D can be transformed into an
equivalent data structure with the same parameters s and t where both P and Q are linear.

Proposition 1 (Lemma 2.5 [JS11], Ex. 13.7 [Juk12]). Given an (s, t)-data structure D computing
a linear transformation V x for V ∈ Fm×n, x ∈ Fn with linear query function Q, one can efficiently
construct an equivalent (s, t)-data structure where both the query function Q and the preprocessing
function P are linear.

2.2 Inner and Outer Dimensions

We state our main technical results in terms of Paturi-Pudlák dimensions [PP06, Lok09], and then
show that they imply new connections between data structure lower bounds and matrix rigidity.
While Paturi-Pudlák dimensions are defined w.r.t. column sparsity, for our applications we need to
consider an analogous definition w.r.t. row sparsity (this difference is important in this context).

Definition 1 (Sparse subspaces). A matrix M ∈ Fm×n is t-globally sparse if it has t non-zero
elements, and M is t-row sparse if each of its rows has at most t non-zero entries. A subspace
V ⊆ Fm is t-sparse if it is the column space of a t-row sparse matrix.

Definition 2 (Inner dimension [PP06]). Let V ⊆ Fm be a subspace, and t be a sparsity parameter.
Then the inner dimension dV (t) of V is

dV (t) = max
U
{dim(V ∩ U) : dim(U) ≤ dim(V ), U is t-sparse} .

Definition 3 (Outer dimension [PP06]). Let V ⊆ Fm be a subspace, and t be a sparsity parameter.
Then the outer dimension DV (t) of V is

DV (t) = min
U
{dim(U) : V ⊆ U, U is t-sparse} .

10the indices of memory cells are only function of the query index
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By abuse of notation, for a matrix M ∈ Fm×n we denote by dM (s) and DM (s) the inner and
outer dimensions of the column space of M .

2.3 Sumset Evasive Sets

For an integer t and a set of points S ⊆ Fn, tS denotes the t-span of S, i.e., the union of all t-sparse
linear combinations of S :

tS := {w1 · s1 + . . .+ wt · st : ∀i, wi ∈ F, si ∈ S} .11

Definition 4 (Sumset evasive sets). For integers s and t we say that a set M ⊆ Fn of size |M | = m
is (s, t)-sumset evasive if for any set S ⊆ Fn of size |S| = s, it holds that12

|tS ∩M | < m .

The next lemma asserts that linear data structure lower bounds, sumset evasive sets and sub-
spaces of high outer dimension are all equivalent.

Lemma 2. Let M ⊆ Fn be a set of size |M | = m, let A ∈ Fm×n be a matrix composed of the
vectors of M , and let V ⊆ Fm be the column space of A. The following are equivalent:

(1) There is an (s, t) linear data structure computing A.

(2) DV (t) ≤ s.

(3) M is not (s, t)-sumset evasive.

Proof. (2) =⇒ (1): Since DV (t) ≤ s, there exists a t-sparse subspace U ⊆ Fm of dim(U) ≤ s
such that V ⊆ U . Then let Q ∈ Fm×s be a t-row sparse matrix whose columns generate U . Since
V ⊆ U , each column of A is a linear combination of columns from Q. Therefore, there exists a
matrix P ∈ Fs×n such that A = Q · P . We show that there exists an (s, t) linear data structure D
which computes A. Indeed, let the preprocessing function of D be the linear transformation defined
by P , and let the query algorithm be the linear function defined by Q. Since Q is t-row sparse, and
P ∈ Fs×n, D is an (s, t) linear data structure.

(3) =⇒ (2): Since M is not (s, t)-sumset evasive, there exists a set S ⊆ Fn of size |S| = s such
that M ⊆ tS. Let P ∈ Fs×n be a matrix composed of the vectors of S. Since M ⊆ tS, there exists
a t-row sparse matrix Q ∈ Fm×s such that A = Q · P . Let U ⊆ Fm be the column space of Q. We
have that V ⊆ U and dim(U) ≤ s.

(1) =⇒ (3): Let D be an (s, t) linear data structure which computes A. Let P ∈ Fs×n be
the linear transformation computed by its preprocessing function, and Q ∈ Fm×s be the linear
transformation computed by its query function. Let S ⊆ Fn be the set of s rows of P . Since Q is
t-row sparse, the set tS contains the set M which contradicts sumset evasiveness of M .

11We note that the t-sum of S is often defined as the set {s1 + . . .+ st : ∀i, si ∈ S}. We abuse the notation by using
the term t-sum for all linear combinations of length t of the vectors from S.

12We shall see that the definition of sumset evasive sets exactly captures the hardness of linear data structure
problems. One can extend the definition of sumset evasive sets to capture the hardness of approximating a linear
problem by a linear data structure. Since the main focus of this work is exact data structures, we omit this extended
definition.
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2.4 Rigidity

Definition 5 (Rigidity). A matrix M ∈ Fm×n is (m,n, r, t)-row rigid if any matrix which differs
from M in at most t elements in each row, has rank at least r. M is (m,n, r, t)-globally rigid if
any matrix which differs from M in at most t elements has rank at least r.

In other words, M is rigid if it cannot be written as a sum M = A + B of a sparse matrix A
and a low rank matrix B.

Now we define a stronger notion of rigidity which is invariant under basis changes.

Definition 6 (Strong rigidity). A subspace U ⊆ Fm of dimension n = dim(U) is (m,n, r, t)-
strongly row rigid if U cannot be written as a sum U = A + B of a t-sparse subspace A ⊆ Fm
of dim(A) ≤ n and a subspace B ⊆ Fm of dimension < r. We abuse the notation by saying that
a matrix M ∈ Fm×n is (m,n, r, t)-strongly row rigid if its column space is (m,n, r, t)-strongly row
rigid. Similarly, we say that U is (m,n, r, t)-strongly globally rigid if U cannot be written as a sum
U = A+B of a subspace A ⊆ Fm generated by a t-globally sparse matrix, and a subspace B ⊆ Fm
of dimension < r.13

Lemma 3 (Strong rigidity implies rigidity). If M ∈ Fm×n is (m,n, r, t)-strongly row rigid, then
M is (m,n, r, t)-row rigid.

Proof. Assume that M is not (m,n, r, t)-row rigid. Then, by Definition 5, there exist matrices
A,B ∈ Fm×n, where A is t-sparse, and rk(B) < r, such that M = A + B. Let VM , VA, and
VB be the column spaces of M , A, and B, respectfully. We have that VM ⊆ VA + VB. This
implies thay VM = V ′A + V ′B for some V ′A ⊆ VA and V ′B ⊆ VB. Since VA is t-sparse, so is V ′A, and
dim(V ′B) ≤ dim(VB) < r, which contradicts the definition of strong rigidity of M .

Friedman [Fri93] defines strong rigidity in the same way as inner dimension. Now we show
that this definition is equivalent to the definition above. The following simple lemma (which is a
modified version of Proposition 3 from [PP06]) will play a key role in our proof of Theorem 1. It
asserts that if a matrix M is non-rigid, then there must be some sparse subspace with a significant
intersection with the column space of M .

Lemma 4 (Inner dimension is equivalent to strong rigidity). Let V ⊆ Fm be a subspace of dim(V ) =
n. V is (m,n, r, t)-strongly row rigid if and only if dV (t) ≤ n− r.

Proof. Assume that V is not (m,n, r, t)-strongly row rigid. Then, by Definition 6, there exist
subspaces A,B ⊆ Fm, where A is t-sparse, dim(A) ≤ n and dim(B) < r, such that V = A + B.
From V = A+B we have that A+ V = A+B which gives us that

dim(A) + dim(V )− dim(A ∩ V ) = dim(A+ V ) = dim(A+B) ≤ dim(A) + dim(B)

and

dim(A ∩ V ) ≥ dim(V )− dim(B) > n− r ,
13We remark that while strong rigidity is interesting for rectangular matrices, and many of the known constructions

of rigid matrices are actually strongly rigid (see, e.g., Proposition 4 in Appendix A), this definition is meaningless
for square matrices. Indeed, any subspace U ⊆ Fn of dim(U) = n equals I + 0 where I is generated by the 1-sparse
identity matrix, and rk(0) = 0.
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p1 p2 . . . ps/2 . . . ps−1 ps

q1 q2 . . . qm/2 . . . qm−1 qm

unbounded

t tt
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q1 q2 . . . qn−1 qn

unbounded

t t

(b)

Figure 1: (a) A (nonadaptive) static data structure as a depth-2 circuit. The n input nodes feed
s ≥ n memory cells, and we do not pose any restrictions on linear functions computed in memory
cells. Each query (or output gate) depends only on t memory cells. In a typical scenario, t is as
low as t = (log n)O(1) or t = nε. (b) Depth-2 circuit resulting from Valiant’s reduction. The n
inputs feed only s = O(n/ log log n) middle layer gates. Again, we do not pose any restrictions on
the linear functions computed in the middle layer gates. Each of the n output gates depends only
on t < nε inputs and middle layer gates.

which implies that dV (t) ≥ dim(A ∩ V ) > n− r.
In the other direction: Assume that dV (t) > n−r. Then, by Definition 2, there exists a t-sparse

subspace U ⊆ Fm of dim(U) ≤ n, such that dim(U ∩ V ) > n − r. Thus, there exists a subspace
W ⊆ Fm of dim(W ) < r such that V = U +W.

2.5 Circuit Lower Bounds

A long-standing open problem in circuit complexity is to prove a super-linear lower bound on the
size of circuits of depth O(log n) computing an explicit function [Val77, AB09, Frontier 3]. The
same question remains open for linear circuits (i.e., circuits where each gate computes a linear
combination of two of its inputs) computing an explicit linear map f : {0, 1}n → {0, 1}n. Using a
classical graph-theoretic result [EGS75], Valiant [Val77] reduced this problem to a problem about
depth-2 circuits of a special kind: there are only O(n/ log logn) gates in the middle layer which
depend on the n inputs, and each output gate depends on nε input and middle layer gates (for an
arbitrary constant ε). Note that a static data structure can be thought of as a depth-2 circuit with
n inputs, m outputs, s middle layer gates which depend on inputs, where each output depends on
t gates in the middle layer. Figures 1 (a) and (b) illustrate the depth-2 circuits corresponding to
static data structures and Valiant’s reduction.

From Valiant’s reduction (see Figure 1 (b)) one can conclude that if a linear-size log-depth
linear circuit computes a linear map M ∈ Fn×n, then M can be written as M = A+ C ·D, where
A,C, and D encode the dependence of outputs on inputs, the dependence of outputs on the middle
layer, and the dependence of the middle layer on inputs, respectfully. Note that since every output
has fan-in t, we can conclude that the matrices A and C are t-sparse. Formally, Valiant gave the
following decomposition:

Theorem 4 ([Val77]). Let m ≥ n. For every c, ε > 0, there exists δ > 0 such that any linear map
M ∈ Fm×n computable by a circuit of size cm and depth c logm, can be decomposed as

M = A+ C ·D ,
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where A ∈ Fm×n, C ∈ Fm×s, D ∈ Fs×n, A and C are t-sparse. There are two decompositions:

• s = εm, t = 2(logm)1−δ ;

• s = δm
log logm , t = mε.

In particular, from the dimensions of C and D, C ·D has rank at most s. Thus, M = A + B
for a t-sparse A and rk(B) ≤ s.

Corollary 1. An (n, n, εn, nδ)-row rigid matrix (for arbitrary constants ε, δ) does not have linear-
size log-depth circuits.

The best known (row) rigidity lower bound for the regime of r = εn is only t ≥ Ω(1). If we
relax the requirement of matrices to be (almost) square, then for m = poly(n) we know examples
of m× n matrices with t ≥ Ω(log n) [APY09, SY11].

The problem of finding non-trivial circuit lower bounds and rigid matrices is open not only in
P, but also in larger uniform classes like PNP or even ENP.

3 Main Building Blocks

This section contains our two main tools for converting data structure lower bounds into rigidity
lower bounds. In Section 3.1, we show that a rectangular matrix M ∈ Fm×n which is hard for linear
data structures contains a rectangular submatrix of high row-rigidity. In Section 3.2, we show that
a rectangular matrix of high row-rigidity can be transformed in a rigid square matrix (with some
loss in the relative rank parameter but almost no loss in the relative sparsity parameter).

3.1 Connection Between Outer and Inner Dimensions

In this section we shall prove that every matrix either has small outer dimension or contains a
matrix of small inner dimension. From Lemmas 2 and 4, this implies that every matrix which cannot
be computed by efficient data structures (has large outer dimension) contains a rigid submatrix
(submatrix of low inner dimension). We start with the following auxiliary lemma.

Lemma 5. Let m,n, k be positive integers. If M ∈ Fm×n has dM (t) ≥ rk(M)− k, then M can be
decomposed as

M = A ·B +M ′ · C ,

where M ′ ∈ Fm×k is a submatrix of M , A ∈ Fm×n is t-row sparse, B ∈ Fn×n, C ∈ Fk×n.
Moreover, if F is a finite field of size 2m

O(1)
, such a decomposition can be found in time

poly(n,m) with an NP oracle.

Proof. Let V be the column space of M . By Definition 2, there exists a t-sparse subspace U ⊆
Fm, dim(U) ≤ dim(V ) ≤ n, s.t. dim(V ∩ U) ≥ rk(M)− k. Let A ∈ Fm×n be a t-row sparse matrix
generating U .

Let us now extend A with at most k column vectors from M to generate the column space of
M , and let M ′ ∈ Fm×k be a matrix formed by these columns. Since the columns of A ∈ Fm×n and
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M ′ ∈ Fm×k together generate the column space of M , there exist matrices B ∈ Fn×n, C ∈ Fk×n
such that

M = A ·B +M ′ · C .

Let INNER-DIM be the language of triples (M, t, d) such that the matrix M has inner dimension
(with the sparsity parameter t) dM (t) ≥ d. Since there is a polynomial-size witness (a t-row sparse
matrix whose column space intersects with M in at least d dimensions) which can be verified in
polynomial time, INNER-DIM ∈ NP. Now we apply the standard search-to-decision reduction.
Namely, we define NP languages so that we could use binary search to find each coordinate of a
matrix A witnessing high inner dimension of M . For a field of size 2m

O(1)
, this can be done with

poly(m,n) queries to the NP oracle. Now, we can just use Gaussian elimination (running in time
poly(n,m)) to find a matrix M ′, and then the matrices B and C.

We are now ready to present the main result of this section.

Algorithm 1 Find a Submatrix with Low Inner Dimension in a Matrix with High Outer Dimension

Input: Parameters ε, k, t, and a matrix M ∈ Fm×n with DM (tk + nεk) ≥ n
1−ε .

Output: A submatrix M ′ ∈ Fm×n′ of M with dM ′(t) < rk(M ′)− εn′ and n′ ≥ nεk.
Let ni := nεi for every 0 ≤ i ≤ k
Let M0 = M

1: for i = 0 to k − 1 do
2: if Mi ∈ Fm×ni has dMi(t) < rk(Mi)− εni then
3: return Mi

4: Let k = εni = ni+1, dMi(t) ≥ rk(Mi)− k
5: By Lemma 5, there exist t-row sparse Ai ∈ Fm×ni , Mi+1 ∈ Fm×ni+1 , Bi ∈ Fni×ni , and
Ci ∈ Fni+1×ni , where Mi+1 is a submatrix of Mi, such that:

AiBi +Mi+1Ci = Mi (2)

Theorem 5. Let t and k be positive integers, and let 0 < ε < 1. If M ∈ Fm×n is a matrix of outer
dimension

DM

(
tk + nεk

)
≥ n

1− ε
,

then for some n′ ≥ nεk, M contains a submatrix M ′ ∈ Fm×n′ of inner dimension

dM ′(t) ≤ rk(M ′)− εn′ .

Moreover, if F is a finite field of size 2m
O(1)

, such a submatrix M ′ can be found in time poly(n,m)
with an NP oracle.

Proof. We prove that Algorithm 1 must return a submatrix of M of the claimed size with low
inner dimension. Assume towards a contradiction that the algorithm did not return a matrix Mi
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in Step 3 in any of the iterations 0 ≤ i ≤ k − 1. Then, from Equation (2), we have

M = M0 = A0B0 +M1C0

= A0B0 + (A1B1 +M2C1)C0

= A0B0 +A1B1C0 +M2C1C0

= A0B0 +A1B1C0 +A2B2C1C0 +M3C2C1C0

. . .

= A0B0 +A1B1C0 + . . .+MkCk−1Ck−2 . . . C0

=
k−1∑
i=0

AiBi

0∏
j=i−1

Cj +Mk

0∏
j=k−1

Cj

=
[
A0 A1 . . . Ak−1 Mk

]
·


D0

D1

. . .
Dk−1
Dk

 ,
where

Di :=

{
Bi ·

∏0
j=i−1Cj , for 1 ≤ i < k∏0

j=k−1Cj , for i = k .

Now, recall that each Ai is t-sparse, and that Mk ∈ Fm×nk where nk = nεk. Thus, we have that
M = AB where A has at most tk + nk = tk + nεk non-zero entries per row, and B ∈ Fs×n for
s =

∑k
i=0 ni =

∑k
i=0 nε

i < n
1−ε . This implies that the columns of M can be generated by the

columns of a
(
tk + nεk

)
-row sparse matrix A ∈ Fm×n′ , which contradicts the assumption about the

outer dimension of M .
Now we show that one can implement Algorithm 1 in time polynomial in n and m with an NP

oracle. Since the language INNER-DIM (the language of triples (M, t, d) such that dM (t) ≥ d) is
in NP, Step 2 can be done with an NP oracle. Step 5 can be performed in polynomial time (with
an NP oracle) by Lemma 5.

We conclude this section with an application of Theorem 5 to data structures.

Lemma 6. Let ε > 0 be a constant. If the linear map given by a matrix M ∈ Fm×n cannot be

solved by an
(

n
1−ε , (t+ 1) · log(n/t)log(1/ε)

)
linear data structure, then M contains an (m,n′, εn′, t)-row

rigid submatrix M ′ ∈ Fm×n′ for some n′ ≥ t.

Proof. Since M cannot be solved by the claimed data structure, by Lemma 2,

DM

(
(t+ 1) · log(n/t)

log(1/ε)

)
>

n

1− ε
.

Let us set k = log(n/t)
log(1/ε) . Then, by Theorem 5, M contains a submatrix M ′ ∈ Fm×n′ with dM ′(t) ≤

rk(M ′)− εn′ for

n′ ≥ nεk = nε
log(n/t)
log(1/ε) = n · t

n
= t .
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By Lemma 4, the column space of M ′ is (m,n′, εn′, t)-strongly row rigid. Now, by Lemma 3, M ′ is
(m,n′, εn′, t)-row rigid.

3.2 Row Rigidity to Global Rigidity

One drawback of Theorem 5 is that the recursive algorithm produces skewed matrices (as we only
recurse on the column space). To remedy this limitation, in this subsection we exhibit a reduction
from worst case to average case rigidity, which will allow us to translate our results to square matrix
rigidity with some loss in the rank parameter (thereby proving Theorem 2). The main ingredient
of our reduction is the use of locally decodable codes:

Definition 7 (Locally Decodable Codes). A mapping E : Fn 7→ Fm is a (q, δ, ε) locally decodable
code (LDC) if there exists a probabilistic procedure D : [n]× Fm → F such that

• For every i ∈ [n] and y ∈ Fm, D(i, y) reads at most q positions of y;

• For every i ∈ [n], x ∈ Fn and v ∈ Fm such that |v| ≤ δm,

Pr[D(i, E(x) + v) = xi] ≥ 1− ε .

An LDC is called linear if the corresponding map E is linear. In this case we can identify the code
E with its generating matrix E ∈ Fm×n.

There are constructions of LDCs over all fields with m = poly(n), q = (log n)1+α for arbitrarily
small α > 0, and constant δ and ε (based on Reed-Muller codes).

Lemma 7 ([Dvi11], Corollary 3.14). Let F be a finite field. For every α, ε > 0 there exists δ =
δ(ε) > 0 and an explicit family of ((log n)1+α, δ, ε)-linear LDCs M ∈ Fm×n for m = nO(1/α).

We will use the following property of linear LDCs.

Lemma 8 (Implicit in [GKST02, DS07]). Let E ∈ Fm×n be a (q, δ, 3/4) linear LDC, and let R be
a set of at least (1− δ)m rows of E. For any i ∈ [n], there exists a set of q rows in R which spans
the ith standard basis vector ei.

We are now ready to present the main result of this section.

Theorem 6. Let M ∈ Fm×n be a matrix, E ∈ Fm′×m be a (q, δ, 3/4)-linear LDC, and let A = EM
(i.e., the matrix obtained by applying E to each column of M).

• If M is (m,n, r, t+ 1)-row rigid, then A is (m′, n, r, δtm
′

q )-globally rigid.

• If M is (m,n, r, t+ 1)-strongly row rigid, then A is (m′, n, r, δtm
′

q )-strongly globally rigid.

Proof.

• Assume towards a contradiction that A is not (m′, n, r, δtm
′

q )-globally rigid. Then A = L+S,

where rk(L) ≤ r and S is δtm′

q -globally sparse. Let S′ be the set of rows of S with at most
t
q non-zero elements. By Markov’s inequality there are at least (1 − δ)m′ rows in S′, let L′

be the corresponding rows of L. By row-rigidity of M , some row i of M is (t + 1)-far from
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the space generated by the rows of L (that it, the Hamming distance between this row and
any vector in the span of the rows of L is at least t + 1). By Lemma 8, there are q rows in
L′ + S′ which span the ith row of M . In particular, the ith row of M has distance at most
q · tq from the rowspan of L′, which contradicts the assumption that this row is (t + 1)-far
from the space generated by the rows of L.

• In order to show that the resulting matrix A is strongly rigid, it suffices to show that the
application of linear LDC commutes with basis changes. Assume towards a contradiction
that the resulting matrix A is not strongly globally rigid. This implies that there exists an
invertible matrix U ∈ Fn×n such that

AU = (EM)U = E(MU)

is not (m′, n, r, δtm
′

q )-globally rigid. Notice that from strong rigidity of M , we have that MU

is (m,n, r, t+ 1)-row rigid. Thus, by the first item of this theorem, AU is also (m′, n, r, δtm
′

q )-
globally rigid.

We remark that the same argument as in the proof of Theorem 6 can be also used to give
a worst-case to average-case reduction for linear data-structures (with a similar loss of (log n)1+α

factor in the number of probes).
We next show that given a rectangular m × n matrix and row rigidity t, one can efficiently

produce a square matrix of size m′ ×m′ for m′ = nO(1/α) with row rigidity m′

n ·
t

(logn)1+α
(for the

same rank parameter). That is, one can increase the rigidity proportionally to the increase in size
with a loss of only (log n)1+α factor.

Corollary 2. For every constant α > 0, there is a polynomial-time algorithm which given
an (m,n, r, t + 1)-row rigid matrix M ∈ Fm×n, outputs a square matrix A ∈ Fm′×m′

which is
(
m′,m′, r, m

′2

n ·
t

(logm)1+α

)
-globally rigid for m′ = mO(1/α). In particular, A is(

m′,m′, r, m
′

n ·
t

(logm)1+α

)
-row rigid.

Proof. Let E ∈ Fm′×m be a ((logm)1+α/2, δ, 34)-linear LDC (whose efficient construction is guar-

anteed by Lemma 7) for constant δ, and let m′ = mO(1/α) be a multiple of n. Then we construct
A ∈ Fm′×m′ by stacking side by side (m′/n) copies of EM .

By Theorem 6, EM is (m′, n, r, tm′

(logm)1+α
)-globally rigid. In order to reduce the rank of A to r,

one needs to reduce the rank of each copy of EM to at most r. Therefore, one needs to change at
least tm′

(logm)1+α
· m′n = m′2

n ·
t

(logm)1+α
entries in A in order to get rank at most r. This implies that

A has global rigidity m′2

n ·
t

(logm)1+α
and row rigidity m′

n ·
t

(logm)1+α
for the rank parameter r.

4 Data Structures and Rigidity

In Section 2 we showed that a strong upper bound on the inner dimension of a matrix implies
that the matrix has non-trivial rigidity, and that a strong lower bound on the outer dimension
implies that the corresponding linear transformation cannot be computed by an efficient linear
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data structure. In this section we use the relations between inner and outer dimensions, to show
that any improvement on rigidity lower bounds will lead to higher data structures lower bounds
(against linear space), while improvements (on (1)) in data structure lower bounds would yield new
rigidity lower bounds. We state these (different) implications in various space regimes.

4.1 Linear Space

We will make use of the following known relation between inner and outer dimensions.

Proposition 2 ([PP06]). dV (t) +DV (t) ≥ 2 dimV.

This proposition directly yields the following connection between rigidity and data structure
lower bounds.

Corollary 3. If a matrix M ∈ Fm×n is (m,n, r, t)-strongly row rigid, then the corresponding linear
map cannot be computed by an (n+ r − 1, t) linear data structure.

We remark that this corollary works for any function r = r(n), including the regimes where
r = O(n) and r = o(n).

Proof. From Lemma 4, we have that dM (t) ≤ n− r. By Proposition 2, this gives us that DM (t) ≥
n+ r. Now Lemma 2 gives us that no (n+ r − 1, t) linear data structure can compute M .

In particular, an (m,n, (1 + ε)n, t)-strongly row rigid matrix implies a lower bound of t on the
query time of linear data structures with linear space s = (1+ε)n. We remark that the best known
rigidity bound in this regime for m = poly(n) is t = Ω(log n) which matches the best known lower
bound for linear space data structures. Any improvement to t = ω(log n) on the known rigidity
construction would lead to a new data structure lower bound (against data structures with small
linear space).

Now we use Lemma 6 to show that the opposite direction (with a slight change of parameters)
also holds for a submatrix of M .

Theorem 7.

1. (Poly-logarithmic Lower Bounds) Let ε > 0 and c ≥ 1 be constants. If the linear map given

by a matrix M ∈ Fm×n cannot be solved by an
(

n
1−ε , (log n)c

)
linear data structure, then

M contains an (m,n′, εn′, α · (log n)c−1)-row rigid submatrix M ′ ∈ Fm×n′ for some constant
α > 0 and n′ ≥ α · (log n)c−1.

2. (Polynomial Lower Bounds) Let ε, δ > 0 be constants. If the linear map given by a matrix

M ∈ Fm×n cannot be solved by an
(

n
1−ε , n

δ
)

linear data structure, then M contains an

(m,n′, εn′, nα)-row rigid submatrix M ′ ∈ Fm×n′ for any α < δ and some n′ ≥ nα.

3. (Square Rigidity) Let ε > 0, γ > 0 and c > 2 be constants. If the linear map given by a matrix

M ∈ Fm×n cannot be solved by an
(

n
1−ε , (log n)c

)
linear data structure, then there is a square

matrix M ′ ∈ Fm′×m′ for m′ = mO(1), such that M ′ is (m′,m′, r, m
′(logn)c−2−γ

r )-row rigid for
some r (which depends on n).
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Moreover, if |F| = 2m
O(1)

and M ∈ PNP, then the family of matrices M ′ of high rigidity belongs to
the class PNP = DTIME[poly(m)]NP.14

Proof.

1. Let us set t = (logn)c−1

log 1/ε − 1. Now have that M cannot be solved by an
(

n
1−ε , (t+ 1) · log(n/t)log(1/ε)

)
linear data structure. This, together with Lemma 6, implies that M contains an

(m,n′, εn′, (logn)
c−1

log 1/ε − 1)-row rigid submatrix.

2. Here we set t = nδ

log(1/ε) log(n) − 1. Again, Lemma 6 implies that M contains an (m,n′, εn′, t)-

row rigid submatrix for n′ ≥ t.

3. From the first bullet of this theorem, we get an (m,n′, εn′, α · (log n)c−1)-rigid submatrix
M ′ ∈ Fm×n′ . Now we apply Corollary 2 to get an m′ × m′ matrix which has row rigidity

m′ · (logn)
c−2−γ

n′ for the rank parameter r = εn′.

We note that a data structure lower bound of t ≥ ω
(
(log n)2

)
will lead to a new bound on

rigidity of rectangular matrices. Moreover, by the last bullet of this theorem, we have that a lower
bound of of t ≥ Ω

(
(log n)3+ε

)
will lead to a new bound on rigidity of square matrices: it will give

us a matrix which is (n, n, r, s)-row rigid for s ≥ Ω
(
n
r ·

t
(logn)2+ε/2

)
(which is better than the known

bound of s ≥ Ω
(
n
r log n

r

)
).

4.2 Super-linear Space

Recall that any data structure problem has two trivial solutions: s = n, t = n, and s = m, t = 1.
A simple counting argument (see Appendix B) shows that for any s < 0.99m, a random linear
problem requires t = Ω(n/ log s) query time. Here we show that near-optimal data structure lower
bound, against space s ≥ ω(m/ log logm), would imply a super-linear circuit lower bound.

Theorem 8. Let M ∈ Fm×n be a matrix for m ≥ n. If for some constant ε > 0 and every constant
δ > 0

• M cannot be computed by
(

δm
log logm + n,mε

)
linear data structures,

• or M cannot be computed by
(
εm+ n, 2(logm)1−δ

)
linear data structures,

then M cannot be computed by linear circuits of size O(m) and depth O(logm).

Proof. Assume towards a contradiction that M can be computed by a circuit of size cm and depth
c logm for a constant c. Then, by Theorem 4, M = A+C ·D, where A ∈ Fm×n, C ∈ Fm×s, D ∈ Fs×n,
A and C are t-row sparse. In particular, the column space of M is spanned by the column spaces
of t-row sparse matrices A and C. That is, DM (t) ≤ n+ s. By Lemma 2, M can be computed by
an (n+ s, t) linear data structure.

14When we say that a matrix M belongs to PNP, we mean that there exists a family of matrices Mn ∈ Fm(n)×n for
infinitely many values of n such that each Mn can be computed by a polynomial time algorithm with an NP oracle.
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While the bounds given in this theorem are interesting in the regime m, s� n , they also give
a curious corollary for m = O(n). For example, in the regime of m = O(n) for s = δm

log logm + n
we know a lower bound of t ≥ Ω(log n) [Lar12]. An improvement of this bound to sub-polynomial

2(logn)
1−δ

would give a super-linear circuit lower bound.

Corollary 4. Let m = O(n). If for some constant ε > 0 and every constant δ > 0 a linear map

M ∈ Fm×n cannot be solved by
(
n(1 + ε), 2(logn)

1−δ
)

linear data structures, then M cannot be

computed by linear circuits of size O(m) and depth O(logm).

4.3 Succinct Space

In the succinct regime, data structures can only use space s = n + o(n). In this regime we know
strong lower bounds for data structures. Namely, if s = n+r for r = o(n), then the best know lower
bound over F2 is t ≥ n

r [GM07]. We will show that the succinct case corresponds exactly to the
case of strong rigidity in the regime r = o(n), and will use this connection to improve the known
data structure lower bound by a logarithmic factor. We remark that one can extract the same
lower bound of t ≥ n logn

r from [Lar12] for a problem with polynomially many queries m = Ω(n1+ε),
while our simple construction gives it for linear number of queries m = O(n).

Theorem 9. Let 1 ≤ r(n) ≤ n1−ε and (log n)δ ≤ t(n) ≤ n be non-decreasing and time-constructible
functions for some constant ε, δ > 0. Then15

• An (m,n, r(n), t(n))-strongly row rigid matrix M ∈ Fm×n cannot be computed by (n+ r(n)−
1, t(n)) linear data structures.

• If there exists a constant µ > 0, such that M ∈ Fm×n cannot be computed
by (n+ (1 + µ)r(n), (1 + µ)t(n)) linear data structure and M ∈ PNP, then there is
(m,n′, r(n′), t(n′))-strongly row rigid M ′ ∈ PNP = DTIME[poly(m)]NP for some n′ ≥
µt(n)/2.

Proof. The first item of the Theorem follows directly from Corollary 3. For the other direction, we
will run Algorithm 1 with slightly modified parameters.

For a positive integer i, let r(i) denote the composition of r with itself i times:

r(i)(n) = r ◦ · · · ◦ r︸ ︷︷ ︸
i times

(n) .

Let k be the smallest number such that nε
k ≤ µt(n)/2. We define n0 = n, then ni = r(ni−1) for

0 < i < k, and nk = µt(n)/2. For 0 ≤ i ≤ k, we define ti = t(ni) and ri = r(ni). Let us now run
Algorithm 1. In Step 2, the algorithm will check whether dMi(ti) < rk(Mi)− ri. If this inequality
is satisfied, then the algorithm returns an (m,n′, r(n′), t(n′))-strongly row rigid matrix M ′. Again,
as in the proof of Theorem 5, this algorithm can be implemented in polynomial time with an NP
oracle.

If the algorithm does not return a matrix Mi for any 0 ≤ i ≤ k− 1, then we get a factorization
M = AB, where the matrix A has at most t′ =

∑k−1
i=0 tk+nk non-zero entries per row, and B ∈ Fs×n

for s′ =
∑k

i=0 ni. In particular, M can be computed by an (s′, t′) linear data structure.

15This lemma applies to the whole spectrum of r = o(n), but for the ease of presentation we restrict our attention
to the regime of r ≤ n1−ε.
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From ni = r(ni−1) ≤ (ni−1)
1−ε, we have s′ ≤ n+ (1 +µ)r(n) for large enough values of n. Now,

from r(n) ≤ n1−ε and t(n) ≥ (log n)δ, we have

ti = t(ni) = t(r(ni−1)) ≤ (1− ε)δ · t(ni−1) = (1− ε)δ · ti−1 .

Thus,

t′ =

k−1∑
i=0

tk + nk ≤ t(n) · 1

1− (1− ε)δ
+ µt(n)/2 ≤ (1 + µ)t(n)

for µ = 2
1−(1−ε)δ . This contradicts the assumption that M cannot be computed by (n + (1 +

µ)r(n), (1 + µ)t(n)) linear data structure.

We remark that one can also apply Corollary 2 here to obtain square rigid matrices (see, e.g.,
Corollary 6).

We claim that the best known rigidity lower bound t = Ω
(
n
r log n

r

)
gives us the same lower

bound on strong rigidity, and, thus, improves the known succinct data structures lower bounds by
a logarithmic factor.

In the following we will make use of error-correcting codes with constant rate and constant
relative distance (see, e.g., Justesen and Goppa codes).

Proposition 3 ([MS77, LG88, VL12]). For any finite field F there exists an explicit family of linear
error correcting codes with rate 1/4 and constant relative distance δ = Θ(1).

In Appendix A we modily the proof of Friedman [Fri93] to get strong rigidity.

Proposition 4 ([Fri93]). Let F be a finite filed of size |F| = q, and let M ∈ Fn×n/4 be a transposed
generator matrix of a code with constant relative distance δ. That is, the columns c1, . . . , cn/4 ∈ Fn
of M form a basis of a linear code. Then M is (n, n/4, r, t)-strongly row rigid for any r ≥ log n
and any

1 ≤ t ≤ O
(n
r

(
logq

(n
r

)
+ logq(q − 1)

))
= O

(n
r
·max

(
logq

(n
r

)
, 1
))

.

As a corollary of Theorem 9 and Proposition 4, we get a new data structure lower bound for
the succinct case.

Corollary 5. Let F be a finite filed of size |F| = q, and let M ∈ F4n×n be a transposed generator
matrix of a code with constant relative distance. Then for any log n ≤ r ≤ n1−ε and any 1 ≤ t ≤
O
(
n
r

(
logq

(
n
r

)
+ logq(q − 1)

))
, M cannot be computed by a linear (n+ r, t) data structure for large

enough n.

We also note that improving this data structure lower bound for s = n + 2(log logn)
ω(1)

would
resolve a big open problem in communication complexity.

Proposition 5 ([Raz89, Wun12]). If M ∈ Fn×n is (r, t)-row rigid for r = 2(log logn)
ω(1)

and t =

n/2(log logn)
O(1)

, then the language L corresponding to M is not in the polynomial hierarchy for
communication complexity L 6∈ PHcc.

Theorem 9, Proposition 5, and Corollary 2 give us the following result.

18



Corollary 6. If M ∈ Fm×n cannot be computed by (n+ r, t) linear data structures for m = nO(1),

r = 2(log logn)
ω(1)

and t = n/2(log logn)
O(1)

, and M ∈ PNP, then there exists a language L ∈ PNP

such that L 6∈ PHcc.

Proof. By Theorem 9, M contains an (m,n′, r(n′), t(n′))-row rigid submatrix M ′. Now Corollary 2
gives us a matrix A which is (m′,m′, r(n′),m′ t

n((logm)1+α)
)-row rigid. From m′ = nO(1), we have

that A is (m′,m′, 2(log logm
′)ω(1) ,m′/2(log logm

′)O(1)
)-row rigid, which finishes the proof.
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A Omitted Proofs

In this appendix we give proofs of some known statements adjusted to our definitions. Propositions 2
and 4 were proven in [PP06] and [Fri93] for definition concerning column sparsity rather than row
sparsity (which matters in this context), Proposition 1 was proven in [JS11] for linear depth-2
circuits rather than for linear data structures. We remark that the proofs in this appendix are not
new, but are rather adjustments of the known proofs to our framework.

Proposition 1 (Lemma 2.5 [JS11], Ex. 13.7 [Juk12]). Given an (s, t)-data structure D computing
a linear transformation V x for V ∈ Fm×n, x ∈ Fn with linear query function Q, one can efficiently
construct an equivalent (s, t)-data structure where both the query function Q and the preprocessing
function P are linear.

Proof. Let P : Fn → Fs be the preprocessing function of D, and let Q ∈ Fm×s be a linear transfor-
mation computed by the query function of D. Let e1, . . . , en be the unit vectors in Fn. Consider
a new linear data structure D′ where the preprocessing function computes a linear transformation,
which for a vector x =

∑n
i=1 xiei outputs P ′(x) =

∑n
i=1 xiP (ei), and the query function stays the

same: Q′(x) = Q(x).
Since the original data structure D computes the linear transformation V , it holds that:

∀x ∈ Fn : V x = Q · P (x) .

Now, by the linearity of matrix-vector products, the new data structure computes

Q′ · P ′(x) = Q ·

(
n∑
i=1

xiP (ei)

)
=

n∑
i=1

xiQ · P (ei) =

n∑
i=1

xiV ei = V ·

(
n∑
i=1

xiei

)
= V x .
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Proposition 2 ([PP06]). dV (t) +DV (t) ≥ 2 dimV.

Proof. Let U ⊇ V be a t-sparse subspace of dimension DV (t) (the existence of U is guaranteed by
the definition of outer dimension). Let AU be a t-sparse matrix generating U , and let AW be the
first dim(V ) columns of AU . Now let W be the column space of AW . Clearly AW and W are also
t-sparse. From the definition of the inner dimension, we have that dV (t) ≥ dim(V ∩W ).

On the other hand, U contains V and W . Thus,

DV (t) = dim(U) ≥ dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W ) ≥ 2 dim(V )− dV (t) .

Proposition 4 ([Fri93]). Let F be a finite filed of size |F| = q, and let M ∈ Fn×n/4 be a transposed
generator matrix of a code with constant relative distance δ. That is, the columns c1, . . . , cn/4 ∈ Fn
of M form a basis of a linear code. Then M is (n, n/4, r, t)-strongly row rigid for any r ≥ log n
and any

1 ≤ t ≤ O
(n
r

(
logq

(n
r

)
+ logq(q − 1)

))
= O

(n
r
·max

(
logq

(n
r

)
, 1
))

.

Proof. By Lemma 4, it suffices to show that dM (t) ≤ n/4−r. Let B ∈ Fn×n/4 be a t-sparse matrix,
and let C = (c1, . . . , cn/8) ∈ Fn×n/8 be the n/8 sparsest columns of B. Note that by Markov’s
inequality, each column of C has at most 8t non-zero entries. Let V be the column space of M ,
and U be the column space of C. We will show that dim(U ∩ V ) ≤ n/8 − r, which will finish the
proof.

Let

W =

w = (w1, . . . , wn/8) ∈ Fn/8 :

n/8∑
i=1

wici ∈ U

 .

Assume towards a contradiction that dim(W ) = dim(U ∩ V ) > n/8 − r. This implies that W
contains a non-zero point of Hamming weight at most a for any a such that∣∣∣Hamming ball of radius a/2 in Fn/8

∣∣∣ ≥ qr .
In particular, there is a point of Hamming weight at most a for a satisfying(

n/8

a/2

)
(q − 1)a/2 ≥ qr .

On the other hand, a point of Hamming weight a in W , gives a non-zero codeword of Hamming
weight at most a · 8k. Since we know that all non-zero codewords have Hamming weight at least
δn, we get a ≥ δn

8k . Now we have

r ≥ logq

((
n/8

a/2

)
(q − 1)a/2

)
≥ a

2
logq

( n
4a

)
+
a

2
logq(q − 1)

≥ δn

16t

(
logq

(
2t

δ

)
+ logq(q − 1)

)
= Ω

(n
t

(
logq(t) + logq(q − 1)

))
.

Or, equivalently, t ≥ Ω
(
n
r

(
logq

(
n
r

)
+ logq(q − 1)

))
, which leads to a contradiction.
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B Complexity of Random Problems

Lemma 9. Let F be a finite field of size |F| = q, and let ε > 0 be a constant.

• For any n ≤ s ≤ (1 − ε)m, there exists a linear problem M ∈ Fm×n that can only be solved

by (s, t) linear data structures with t ≥ Ω
(

min
(
n, n log q

log s

))
.

• For any s ≥ n1+ε, every linear problem M ∈ Fm×n can be solved by an (s, t) linear data

structure with t ≤ O
(

min
(
n, n log q

log s

))
.

Proof.

• The total number of homogeneous linear functions of n arguments is qn. There are qsn ways
to choose s linear functions computed in the memory cells. For a fixed choice of s functions,
there are at most st · qt different functions which can be computed as linear compositions of
t out of s elements. Thus, there are at most

qsn · (st · qt)m

m-tuples of linear functions which can be computed by data structures with s memory cells.
On the other hand, there are qnm distinct m-tuples of linear functions. Therefore, as long as

qsn+mtsmt < qnm ,

there is a linear data structure problem with m outputs which cannot be computed by a
data structure with s memory cells and query time t. Let us take t = εn log q

2 log(qs) . Then, from

s ≤ (1− ε)m, we have

qsn+mtsmt ≤ q(1−ε)nm(qs)mt = q(1−ε)nm(qs)
εnm log q
2 log(qs) = q(1−ε)nmqεnm/2 < qnm .

In particular, there is a linear data structure problem which requires

t >
εn log q

2 log(qs)
≥ Ω

(
min

(
n,
n log q

log s

))
.

• Let µ = 1 + 1
ε . It is trivial to see that any data structure can be solved with space s = n and

query time t = n. Thus, it suffices to show that if log s > 2µ log q, then M can be solved by

a data structure with t ≤ O
(
n log q
log s

)
. Let

t =

⌈
n

log s
µ log q − 1

⌉
. (3)

Let us partition the n inputs into t parts each of size bn/tc or dn/te. Let the preprocessing
function P : Fn → Fs compute all qdn/te homogeneous linear combinations of the inputs of
each part. In order to store this, we need s′ = t · qdn/te memory cells. Now, every query can
be computed as a sum of at most t memory cells. It remains to show that s′ ≤ s:

s′ = t · qdn/te ≤ n · qdn/te ≤ n · q
log s
µ log q = n · s

1
µ ≤ s

1
1+ε

+ 1
µ ≤ s ,

where the first inequality follows from (3) and log s > 2µ log q, the second inequality is due
to (3), the third inequality follows from s ≥ n1+ε, and the last one is due to the choice of
µ = 1 + 1

ε .
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C Rigidity Implies Low Inner Dimension

In this appendix we give an alternative (more constructive) proof of Lemma 4 (with a small loss in
the upper bound on the inner dimension).

Lemma 10. Let M ∈ Fm×n be a matrix of rank n, and V ⊆ V m be its column space. If M is
(m,n, r, t)-row rigid, then dV (t) < n− 2r.

Proof. Assume towards a contradiction that M is not (m,n, r, t)-row rigid. Then, by Definition 5,
there exist matrices A,B ∈ Fm×n, where A is t-sparse, and rk(B) ≤ r, such that M = A+B.

Let L ∈ Fm×m be a matrix representing a linear map which vanishes on V : ker(L) = V .
To construct such an L, one can take a basis (v1, . . . , vk) of V , and extend it to a basis
(v1, . . . , vk, w1, . . . , wm−k) of Fm. Then define L(vi) = 0 for 1 ≤ i ≤ k, and L(wj) = wj for
1 ≤ j ≤ m− k, and extend L by linearity.

Now, observe that if we apply L to the equality M = A+B, we have 0 = LM = LA+LB, and,
in particular, rk(LA) = rk(LB). Note that the rank of the matrix on the right side is rk(LB) ≤
rk(B) ≤ r. By subadditivity of rank, we have rk(A) ≥ rk(M)− rk(B) ≥ n− r.

Let U be the column space of t-sparse matrix A. From rk(A) ≥ n− r and rk(LA) ≤ r, we have
that dim(U ∩ ker(L)) = dim(U ∩ V ) ≥ n− 2r, which finishes the proof.
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