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Abstract

A homogeneous depth three circuit C computes a polynomial

f = T1 + T2 + ... + Ts ,

where each Ti is a product of d linear forms in n variables over some underlying field F. Given
black-box access to f , can we efficiently reconstruct (i.e. proper learn) a homogeneous depth
three circuit computing f ? Learning various subclasses of circuits is natural and interesting
from both theoretical and practical standpoints and in particular, properly learning homoge-
neous depth three circuits efficiently is stated as an open problem in a work by Klivans and
Shpilka (COLT 2003) and is well-studied. Unfortunately, there is substantial amount of evi-
dence to show that this is a hard problem in the worst case.

We give a (randomized) poly(n, d, s)-time algorithm to reconstruct non-degenerate homoge-
neous depth three circuits for n = Ω(d2) (with some additional mild requirements on s and the
characteristic of F). We call a circuit C as non-degenerate if the dimension of the partial deriva-
tive space of f equals the sum of the dimensions of the partial derivative spaces of the terms
T1, T2, . . . , Ts. In this sense, the terms are “independent” of each other in a non-degenerate cir-
cuit. A random homogeneous depth three circuit (where the coefficients of the linear forms are
chosen according to the uniform distribution or any other reasonable distribution) is almost
surely non-degenerate. In comparison, previous learning algorithms for this circuit class were
either improper (with an exponential dependence on d), or they only worked for s < n (with a
doubly exponential dependence of the running time on s).

The main contribution of this work is to formulate the following paradigm for efficiently
handling addition gates and to successfully implement it for the class of homogeneous depth
three circuits. The problem of finding the children of an addition gate with large fan-in s is
first reduced to the problem of decomposing a suitable vector space U into a (direct) sum of
simpler subspaces U1, U2, . . . , Us. One then constructs a suitable space of operators S consisting
of linear maps acting on U such that analyzing the simultaneous global structure of S enables us
to efficiently decompose U. In our case, we exploit the structure of the set of low rank matrices
in S and of the invariant subspaces of U induced by S . We feel that this paradigm is novel
and powerful: it should lead to efficient reconstruction of many other subclasses of circuits for
which the efficient reconstruction problem had hitherto looked unapproachable because of the
presence of large fan-in addition gates.
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1 Introduction

Reconstruction of arithmetic circuits is the algebraic analogue of exact learning [Ang88] for Boolean
circuits. It is the following fundamental learning theoretic problem: Given black-box access (i.e.
membership query access) to a multivariate polynomial f that is computable by an arithmetic cir-
cuit of size s, construct a small circuit (ideally, a poly(s)-size circuit) computing f . By definition,
reconstruction is closely related to approximating the minimum circuit1 size and it is expected
to be an inherently hard problem. Research has, therefore, focused on investigating the compu-
tational tractability of reconstruction for restricted (albeit, quite interesting) models of circuits.
Depth three circuits is one such model.

Depth three circuit reconstruction. Bounded depth circuits have alternating layers of plus gates
(Σ layer) and product gates (Π layer). Reconstruction of depth two circuits is either the problem of
sparse polynomial interpolation or the problem of polynomial factorization into linear factors, de-
pending on whether there is a plus gate or a product gate at the top layer. Reconstruction of depth
three ΠΣΠ circuits is the problem of polynomial factorization into sparse factors. The sparse poly-
nomial interpolation problem can be solved in deterministic polynomial time [BT88,GKS94,KS01],
and the polynomial factorization problem in randomized polynomial time [KT90]. Thus, studying
the reconstruction problem for depth three ΣΠΣ circuits is the natural next step towards pushing
the frontier of efficient reconstruction. However, it turns out that reconstruction of ΣΠΣ circuits
is directly linked with reconstruction of general circuits: A polynomial-time reconstruction algo-
rithm for ΣΠΣ circuits implies a sub-exponential time reconstruction algorithm for general cir-
cuits. This follows immediately from the depth reduction result of [GKKS16]. In this article, depth
three circuit(s) would always mean ΣΠΣ circuit(s).

Restricted depth three circuits. A depth three circuit C computes a n-variate polynomial

f (x) = T1 + . . . + Ts ,

where each term Ti is a product of d affine forms. The parameter s is the top fan-in of the circuit.
We will refer to C as a (n, d, s) depth three circuit. Circuit C is a powering circuit if every term is
the d-th power of a linear form2, C is a set-multilinear circuit if there is a partition of the variables
x = x1 ] . . . ] xd such that every term is a product of d linear forms with the j-th form depending
on only xj-variables3, and C is a multilinear circuit if every term computes a multilinear polyno-
mial. If every term is a product of d linear forms then C is a homogeneous depth three circuit – we
are primarily interested in this model in this work.

Previous work on reconstruction of restricted depth three circuits. [BBB+00] gave a randomized
poly(n, d, s) time learning algorithm for depth three powering circuits and set-multilinear depth
three circuits. It was observed in [KS03] that the algorithm gives poly(n, 2d, s) time learning for
general depth three circuits. The learning algorithms in [BBB+00, KS03] are not proper as the

1In this article, circuit means arithmetic circuit unless specified otherwise.
2A linear form is an affine form with constant term zero.
3 One could alternatively define both depth three powering circuits and set-multilinear depth three circuits using

affine forms instead of linear forms. It turns out however that using affine forms instead of linear forms does not signifi-
cantly change the expressive power nor does it change the computational difficulty of the corresponding reconstruction
problem and so for ease of exposition we restrict ourselves to using linear forms in defining these two subclasses.
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output hypothesis is a read-once oblivious branching program (ROABP) and not a depth three
circuit. Over finite fields F, [Shp07] gave a randomized quasi-polynomial in (n, d, |F|) time al-
gorithm to reconstruct depth three circuits with top fan-in two; the running time is poly(n, |F|)
for multilinear depth three circuits with top fan-in two. This learning algorithm4 was derandom-

ized and generalized in [KS09], who gave a poly(n) · |F|(log d)O(s3)
time algorithm to reconstruct

(n, d, s) depth three circuits5; the complexity reduces to (n + |F|)2O(s2)
for multilinear depth three

circuits. Over the field of real numbers6, [Sin16] gave a randomized poly(n, d) time algorithm4

to reconstruct depth three circuits with top fan-in two. There are a few reconstruction algorithms
for depth three powering circuits that are proper, but these algorithms work efficiently only if s
is somewhat small. For instance, the equivalence test for the d-th power symmetric polynomial,
in [Kay11], implies a randomized poly(n, d, s) time reconstruction for depth three powering cir-
cuits with s ≤ n, provided the s linear forms occurring in the circuit are linearly independent.
In [Kay12], a randomized poly(n, slogd s) time reconstruction algorithm was given for random7

depth three powering circuits. For s ≤ (n+1
2 ) and d ≥ 5, [GKP18] gave a randomized poly(n, d)

time algorithm to reconstruct random depth three powering circuits.

Our contribution. To our knowledge, there is no known efficient reconstruction algorithm for the
much stronger homogeneous depth three circuit model. Indeed, this was posed as an open prob-
lem in [KS03]. The existing techniques either give an exponential dependence on d [BBB+00,KS03]
or they work efficiently for substantially small values of s [Shp07,KS09,Sin16]. Our main contribu-
tion is a poly(n, d, s) time reconstruction algorithm for homogeneous depth three circuits, assum-
ing a non-degeneracy condition that holds for almost all circuits from this class. In particular, a ran-
dom homogeneous depth three circuit is non-degenerate with very high probability (in fact, with
probability one in the measure theoretic sense). Qualitatively speaking, a circuit is non-degenerate
if the terms of the circuit are “independent” of each other. Removing the non-degeneracy condi-
tion from our result would imply sub-exponential time reconstruction for general circuits (this
point is discussed further in Section 1.2). We also give poly(n, d, s) time reconstruction algo-
rithms for depth three powering circuits and set-multilinear depth three circuits under similar
non-degeneracy conditions, thereby improving the previous results [Kay12, GKP18] on random
depth three powering circuits. Our reconstruction algorithms are proper. We note that there are
many other reconstruction algorithms for different circuit classes but almost all8 of them either
consider only circuits in which addition gates have constant fan-in (typically fan-in 2) or their
running time degrades very badly in the presence of addition gates with large fan-in. Concep-
tually, our contribution is to formulate a paradigm to efficiently handle addition gates with large
fan-in (when the children are non-degenerate) and implement it in the case of homogeneous depth
three circuits. We elaborate on this further in Section 2 after giving an overview of our technique.

4which is proper, provided the input circuit satisfies a rank condition
5 When the input does not satisfy a certain rank condition, the algorithm in [KS09] outputs a “generalized” (a notion

that augments the depth three circuit model in a certain way) depth three circuit.
6The algorithm of [Sin16] also works over the fields of rational and complex numbers
7The coefficients of the linear forms occurring in the circuit are chosen uniformly at random from a sufficiently

large finite set.
8 Except perhaps some of the ones pertaining to set-multilinear depth three and depth three powering circuits.
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1.1 The results

Notations. Let C be a (n, d, s) depth three circuit computing a polynomial f = T1 + . . . + Ts in
variables x = {x1, . . . , xn}. We fix a few notations before stating our results:

xα := xα1
1 · x

α2
2 . . . xαn

n , where α = (α1, . . . , αn) ∈ Zn
≥0,

|α| := α1 + α2 + . . . + αn,

Let k ≥ 1 be an integer parameter.

∂k
α f :=

∂k f
∂xα

,

U := F-span
{

∂k
α f : |α| = k

}
,

Ui := F-span
{

∂k
α Ti : |α| = k

}
,

where F is the underlying field having characteristic 0 or greater than ds2. We will assume that
univariate polynomial factorization over F can be done in randomized polynomial time which is
indeed the case for finite fields and Q [Ber70, LLL82]. For a better clarity, we will think of F = Q

in this article.

Non-degeneracy condition. We choose k =
⌈

log s
log n

ed

⌉
. Let Ti = `i1 · `i2 . . . `id be a product of d linear

forms. A (n, d, s) homogeneous depth three circuit C = T1 + . . . + Ts is non-degenerate if it satisfies
the following condition: For every i ∈ [s], there are 2k + 1 linear forms `ir1 , . . . , `ir2k+1 such that

dim

 ∑
j∈[s]\{i}

Uj mod 〈`ir1 , . . . , `ir2k+1〉

 = (s− 1) ·
(

d
k

)
,

where 〈`ir1 , . . . , `ir2k+1〉 is the F-linear space spanned by `ir1 , . . . , `ir2k+1 . It is easy to check that the
condition implies U = U1 ⊕ . . .⊕Us and dim(Ui) = (d

k) for every i ∈ [s]. Hence, dim(U) = s · (d
k).

Theorem 1 (Homogeneous depth three circuit reconstruction). Let n, d, s ∈ N, n ≥ (3d)2 and
s ≤ ( n

3d )
d
3 . There is a randomized poly(n, d, s) = poly(n, s) time algorithm which takes as input black-

box access to a polynomial f that is computable by a non-degenerate (n, d, s) homogeneous depth three
circuit and outputs a non-degenerate (n, d, s) homogeneous depth three circuit computing f .

The algorithm works even if the input is evaluations of f and the k-th order partial derivatives
of f at poly(n, s) number of points chosen uniformly at random from a sufficiently large subset
of Fn. We show in Appendix A that a homogeneous depth three circuit is non-degenerate with
high probability if the coefficients of the linear forms occurring in the circuit are chosen uniformly
and independently at random from an arbitrary set of size (nds)4. In fact, degenerate circuits
correspond to a proper algebraic variety and so a random homogeneous depth three circuit is
non-degenerate with probability one in the measure theoretic sense.

Reconstruction of subclasses. It is worth mentioning what we get for the two interesting sub-
classes of homogeneous depth three circuits – set-multilinear depth three circuits and depth three
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powering circuits. We state the result for set-multilinear depth three circuits, a very similar state-
ment also holds for depth three powering circuits. Suppose the set of variables x admits a partition
into d sets: x = x1 ] x2 ] · · · ] xd. For simplicity, assume |x1| = |x2| = . . . = |xd|. A set-multilinear
depth three circuit is a homogeneous depth three circuit in which every term Ti is of the form

Ti = `i1(x1) · `i2(x2) · . . . · `id(xd), (1)

where each `ij is a linear form over the indicated variable set xj. The polynomial computed by
any such term (and therefore also by the circuit) has the property that every monomial in the
support contains exactly one variable from each set xj. Such a polynomial f is referred to as a
set-multilinear polynomial and also as a tensor, and the minimal number s of terms of the above
form required to sum up to f is called the rank of the tensor. Because of its relevance to a wide
variety of problems, including the complexity of matrix multiplication, tensor rank and tensor
decomposition have been intensely studied. We state our result for this subclass by postponing
the statement of the precise non-degeneracy condition to Section 5.

Theorem 2 (Set-multilinear depth three circuit reconstruction). Let n, d, s ∈ N, and s ≤ ( n
d )

d
3 .

There is a randomized poly(n, d, s) = poly(n, s) time algorithm which takes as input black-box access
to a polynomial f that is computable by a non-degenerate (n, d, s) set-multilinear depth three circuit and
outputs a non-degenerate (n, d, s) set-multilinear depth three circuit computing f .

We obtain a very similar result for depth three powering circuits where the maximum top fan-in
that can be handled is s ≤ (n+ d

3−1
n ).

1.2 Evidence for the hardness of reconstruction

It is natural to wonder if the non-degeneracy condition can be removed from the above results. In
particular, can we get rid of the non-degeneracy condition and the degree restriction (n ≥ (3d)2)
from Theorem 1? We collect some evidence which indicates that this is likely a hard problem.

1. NP-hardness of reconstructing subclasses. Finding the smallest depth three powering circuit
computing a given polynomial is NP-hard [Shi16]; it amounts to computing the symmetric-
rank. The same is also true for finding the smallest set-multilinear depth three circuit com-
puting a set-multilinear polynomial [Hås90]; it is the problem of computing the tensor-rank.
One might now expect (perhaps somewhat naively) that the reconstruction problem for a
more expressive circuit class C should be at least as difficult as the corresponding problem
for a less expressive subclass, and this is then some sort of heuristic evidence that the optimal
circuit reconstruction version of the problem for homogeneous depth three circuits is likely
a hard one in the worst-case. We now give some evidence that even when we are allowed
to output an approximately minimal circuit from the class C of homogeneous depth three
circuits, the problem is likely very challenging.

2. Reconstruction of general circuits. Suppose we are able to prove Theorem 1 without any kind
of non-degeneracy and degree restrictions, and output a poly(s) size homogeneous depth
three circuit. Then, a simple homogenization trick gives a poly(n, d, s) time reconstruction
algorithm for general depth three circuits: If f is computable by a (n, d, s) depth three cir-
cuit then zd · f (z−1x1, . . . , z−1xn) is computable by a (n + 1, d, s) homogeneous depth three
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circuit. This, in turn, implies a nO(
√

d) time reconstruction algorithm for poly(n) size general
circuits computing n-variate polynomials of degree d = nO(1), owing to the depth reduction
to depth three results [GKKS16, Tav13, Koi12, AV08]. In other words, we would get a sub-
exponential time reconstruction algorithm for general circuits if Theorem 1 holds without
non-degeneracy and degree restrictions.

3. Reconstruction implies lower bound. Reconstruction is harder than proving lower bounds.
In [FK09], it was shown that a randomized polynomial-time reconstruction algorithm for
an arithmetic circuit class C implies the existence of a function in BPEXP that does not have
polynomial size circuits from C 9. Also, a deterministic polynomial-time reconstruction al-
gorithm for C can be used to construct a function in EXP that does not have polynomial size
circuits from C [Vol16]. Thus, dispensing with non-degeneracy and degree restrictions en-
tirely from Theorem 1 would give a super-polynomial lower bound for general depth three
circuits (via the homogenization trick mentioned above). Proving such a lower bound is a
long standing open problem in algebraic complexity [SW01, Wig07], the current best being
only a nearly cubic lower bound [KST16, BLS16, Yau16].

Nevertheless, it may be possible to relax the non-degeneracy condition by a more careful applica-
tion of existing techniques and the technique introduced here. It may also be possible to weaken
the degree restriction substantially10.

1.3 Do natural lower bound proofs imply reconstruction?

As reconstruction implies lower bound, research on reconstruction has focused on models for
which non-trivial lower bounds are known. Do lower bound proofs, particularly natural lower
bound proofs, lead to learning? This question has been asked and investigated before for Boolean
circuits by multiple prior work. A natural lower bound proof for a circuit class C has (as a part of
it) a “separator” algorithm that distinguishes functions computable by small C-circuits from other
functions efficiently. This is the constructivity feature of natural proofs [RR97, FSV17, GKSS17].
It is an intriguing possibility that such a separator has enough structure to imply an efficient
learning algorithm for C. Indeed, an interesting result [CIKK16] on Boolean circuits showed
that the natural lower proof for AC0[p] circuits can be used to give a quasi-polynomial time PAC
learning algorithm (with membership queries and under the uniform distribution) for the same
class. Prior to this work, similar results were known for AC0 circuits [LMN93], and AC0 circuits
with poly-logarithmic number of majority gates [JKS02]. We note that the learning algorithms
in [CIKK16, LMN93, JKS02] are not proper.

It would be really nice to have such ‘natural lower bound to learning algorithm’ translations for
arithmetic circuit classes. However, there are a few aspects of arithmetic circuits that make this
task very demanding. First, we are forced to do exact learning (instead of PAC learning) as two
distinct polynomial functions differ at a large fraction of points. Second, there are the issues of ho-
mogenization and depth reduction: A ( n

d )
Ω(d) lower bound is known for homogeneous depth

9The result in [FK09] is stated for randomized zero-error learning algorithms and hard functions in ZPEXPRP, but
the same argument applies to two-sided error randomized learning and hard functions in the bigger class BPEXP.

10There is a 2Ω(n) lower bound known for homogeneous depth three circuits for d up to 2o(n) [KST16]. Based on the
‘lower bound to learning’ theme discussed later, it is conceivable that there is an efficient reconstruction algorithm for
non-degenerate homogeneous depth three circuits for d up to 2o(n).
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three circuits for d ≤ n [NW97], and a 2Ω(n) lower bound is known for the same model for
any d ≥ n [KST16]. These lower bound proofs are natural. But, as mentioned before, efficient
reconstruction of homogeneous depth three circuits (particularly, for d = nO(

√
n)) implies effi-

cient reconstruction of general depth three circuits via homogenization which further implies sub-
exponential time reconstruction for general circuits via depth reduction. Thus, an unconditional
translation from natural lower bound to reconstruction for arbitrary arithmetic circuit classes is
probably quite difficult. However, it is conceivable that a natural lower bound framework for an
arithmetic circuit class can be used to efficiently reconstruct almost all circuits from the class; the
notion of ‘almost all circuits’ is formally captured by a non-degeneracy condition that holds with
probability one in the measure theoretic sense. Our work here fits in the theme of ‘natural lower
bound to learning’ (under non-degeneracy condition) and shows that this is indeed true for the
class of homogeneous depth circuits 11. Could this also hold for other circuit classes, like homo-
geneous depth four circuits or constant depth multilinear circuits, for which exponential natural
lower bounds are known? We leave these as open problems.

2 Overview of our techniques

How can a lower bound proof (an impossibility result) lead to an efficient learning algorithm? We
begin by first sketching a weak implication/connection of this nature. We address rank methods,
which have long been recognized as encompassing and abstracting almost all known arithmetic
circuit lower bounds to-date. Roughly speaking, we first observe that if a rank method yields a
lower bound for circuit class C then we can do reconstruction given the output polynomial of a
circuit C ∈ C together with an additional information pertaining to the space spanned by some of the in-
ternal nodes of C. This weak connection leads almost immediately to efficient learning of the two
subclasses – set-multilinear depth three circuits and depth three powering circuits. However, it
falls short of directly yielding an efficient reconstruction algorithm for homogeneous depth three
circuits. For this general model, we build on the intuition gained from the weak connection and
reduce the problem of finding children of the top addition gate with large fan-in to decomposing
a certain vector space U into a (direct) sum of simpler subspaces. We then show how to do this
decomposition efficiently using a carefully chosen operator space acting on U.

Lower bounds via rank methods. For most arithmetic circuit classes C for which a lower bound
is known, the proof is along the following lines. One first shows that a circuit C from C computes
a polynomial in the following way:

f (x) = T1 + T2 + . . . + Ts , (2)

where T1, T2, . . . , Ts are simple polynomials (typically simpler in the sense that Ti admits a non-
trivial factorization wherein the factors are computed by lower depth subclasses of C). Lower

11On a related note, the authors of this work and Nair [KNS18] have given an efficient reconstruction algorithm for
low-width (in particular, constant-width) homogeneous algebraic branching programs (ABP), under a non-degeneracy
condition that holds with high probability. A modest linear width lower bound is known for homogeneous ABP
[Kum17]. If we could drop the non-degeneracy condition from [KNS18] then that would imply (via homogenization)
efficient reconstruction for constant-width general ABP, which is exactly the class of arithmetic formulas [BC92]. The
results in [FK09] would then give a super-polynomial lower bound for arithmetic formulas, thereby solving a long-
standing open problem. This then underscores the difficulty of removing non-degeneracy entirely from the result
in [KNS18].
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bounds for C are then tantamount to showing that the number of simple summands s required
to express some explicit polynomial h(x) ∈ F[x] is large. Rank-based methods achieve it in the
following way: one devises a linear map µ : F[x] 7→ Fr×c such that for every simple polynomial T,
rank(µ(T)) is relatively small as compared to rank(µ(h)). Since rank is sub-additive, this yields
the lower bound s ≥ rank(µ(h))

rank(µ(T)) .

From lower bounds to reconstruction - recovering a basis of simple polynomials. For recon-
struction of C, it suffices to solve the following problem: given a polynomial f which admits an
expression of the form (2), can we efficiently recover the simple summands (i.e. the individual
Ti)? We observe that if instead of just one polynomial f ∈ F-span(T1, T2, . . . , Ts), we have an
entire basis of F-span(T1, T2, . . . , Ts) and if the Ti’s are also µ-independent in the sense that

ρ := rank(µ(T1 + T2 + . . . + Ts)) = rank(µ(T1)) + rank(µ(T2)) + . . . + rank(µ(Ts)), (3)

then this can be done efficiently. This is the weak connection (or the elementary approach) we were
alluding to before. Let M = F-span(µ(T1), µ(T2), . . . , µ(Ts)) ⊆ Fr×c be the vector space of matri-
ces spanned by the µ(Ti). Given a basis of F-span(T1, T2, . . . , Ts), we can construct M by applying
µ to these basis polynomials and taking their F-span. Now viewing M as the ambient space, the
set of matrices in M of rank at most (ρ− 1) forms an algebraic variety which has a particular nice
structure when the non-degeneracy condition (3) is satisfied: it is simply the union of s hyper-
planes12. Moreover, these hyperplanes can be computed efficiently (in poly(r · c)-time) and the
equations of these hyperplanes enable us to efficiently recover T1, T2, . . . , Ts.

The structure of µ and reduction to a vector space decomposition problem. The elementary
approach sketched above for reconstruction from lower bounds requires the knowledge of a basis
of F-span(T1, T2, . . . , Ts) which we do not have a priori. But, we observe that in our case this issue
can be alleviated to some extent by the linear map µ that gives us access to a basis of the F-span
of another set of simple polynomials13 {T′1, T′2, . . . T′s′} for s′ = poly(s). The map µ used to prove
lower bounds for homogeneous depth three circuits has some additional structure that we now
describe. It turns out that almost all the known lower bound proofs are via the construction of a
finite set of linear operators

D = {ψ1, ψ2, . . . , ψc}, where each ψi : F[x] 7→ F[x]

is a linear map. The matrix µ( f ) referred to above has c columns, the i-th column simply being
the coefficient vector of ψi( f ) so that the rank of µ( f ) is precisely the dimension of the vector
space spanned by {ψ1( f ), ψ2( f ), . . . , ψc( f )}. For homogeneous depth three circuits, Nisan and
Wigderson [NW97] employed the differential operators of a suitable order k ≥ 1

D :=
{

∂k
α : α ∈ Zn

≥0 and |α| = k
}

.

When we apply this set of linear operators to the identity (2) we obtain

U ⊆ U1 + U2 + . . . + Us, where U := F-span(D ◦ f ) and Ui := F-span(D ◦ Ti).

12 This is captured more precisely in its algebraic version given in Claim 5.1.
13that are related to T1, T2, . . . , Ts
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Now it turns out that generically (i.e. when T1, T2, . . . , Ts are independently chosen products of
random linear forms), this containment is in fact an equality and the vector space on the right is
in fact a direct sum of the Ui, i.e.

U = U1 ⊕ . . .⊕Us or equivalently: dim(U) = dim(U1) + dim(U2) + . . . + dim(Us). (4)

Furthermore, in this generic/non-degenerate situation, each Ui has a basis consisting of products
of some subset of the linear forms in Ti; we denote such a product by T′j . Given the output poly-
nomial f , a basis of the space U = F-span(D ◦ f ) = F-span(T′1, T′2, . . . , T′s′), where s′ = poly(s),
can be efficiently computed so that in the non-degenerate case captured by condition (4), it suffices
to efficiently compute the above decomposition of U. We now sketch how to do this decomposition.

Decomposing U for the two subclasses of homogeneous depth three circuits. Let us focus on set-
multilinear depth three circuits, essentially the same approach works for depth three powering cir-
cuits as well. We observe that in implementing the strategy of decomposing U for set-multilinear
depth three circuits in Section 5 (but with a slightly different choice of the space of linear operators
D), each Ui = F-span(D ◦ Ti) that we get is in fact a one-dimensional vector space consisting of
scalar multiples of a simple polynomial T′i (simple in the sense of being a product of linear forms).
Moreover, in the generic case, these simple polynomials T′1, . . . , T′s are µ-independent (as in Equa-
tion (3)). This reduces the problem of decomposing U = F-span(T′1, T′2, . . . , T′s) to the problem of
finding a basis of simple polynomials of the space U which can then be tackled using the elemen-
tary approach mentioned before. This process of decomposing U can also be viewed as recovering
low rank matrices in an operator space S acting on U.

Decomposing U in the general case. For homogeneous depth three circuits, each Ui will generi-
cally have a basis of simple polynomials so that U itself has a basis of simple polynomials {T′1, T′2, . . . , T′s′}.
Unfortunately however, T′1, T′2, . . . , T′s′ do not satisfy the µ-independence condition given by Equa-
tion (3) and hence we cannot directly apply the elementary approach outlined before to decom-
pose U. This is the main difficulty that we show how to handle in Section 4. The new idea behind
the decomposition of U is to choose a space S of linear operators acting on U such that the non-
degeneracy condition implies that Ui is an invariant subspace of U induced by S for every i ∈ [s].
Then, certain ‘nice properties’ of S ensure that U1, . . . , Us are in fact the only irreducible invariant
subspaces of U induced by S , and bases of these subspaces can be found efficiently from a basis
of U by computing S-closures of appropriately chosen vectors in U. Our choice of S is the shifted
differential operator space (which is defined in Section 4.2), and the main technical work involves
showing that this S has the required ‘nice properties’ (as stated in Claim 4.2 and 4.3) that aid in
the decomposition of U into irreducible invariant subspaces.

Summary. There are many subclasses of circuits which admit lower bounds via rank methods.
But the presence of addition gates of large fan-in in such circuits had hitherto made efficient re-
construction look unapproachable. The main conceptual novelty/contribution of this work is to
formulate the following paradigm for efficiently handling addition gates and to successfully im-
plement it for the class of homogeneous depth three circuits. The problem of finding the children
of an addition gate with large fan-in s is first reduced to the problem of finding a decomposition
of a suitable vector space U into a (direct) sum of simpler subspaces U1, U2, . . . , Us. One then con-
structs a suitable space of operators S consisting of linear maps acting on U such that analyzing
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the simultaneous global structure14 of S enables us to efficiently decompose U. We feel that this
paradigm is novel and powerful: by enabling us to handle large addition gates, it should lead to
efficient reconstruction of many other such subclasses of circuits. In implementing this paradigm,
our conceptual contribution is the construction of the particular S that works for the class of ho-
mogeneous depth three circuits.

3 Basic defintions and facts

We record a few basic definitions and facts which will be used in the arguments later. A n-variate
polynomial of degree-d will be called a (n, d) polynomial.

Fact 1 (Computing partial derivatives). Given black-box access to a (n, d) polynomial f and a monomial
xα, a black-box access to ∂k

α f can be computed in deterministic poly(n, dk) time.

This follows from the fact that black-box access to a first-order derivative of f can be computed in
deterministic polynomial time from black-box access to f .

Fact 2 (Space of linear dependencies). Given black-box access to (n, d) polynomials g1, . . . , gr, a basis
of the space G⊥ := {(c1, . . . , cr) ∈ Fr : ∑i∈[r] cigi = 0} can be computed in randomized poly(n, d, r)
time. As a corollary, we have that black-box access to the elements of a basis of F-span{g1, . . . , gr} can be
computed in randomized poly(n, d, r) time from black-box access to g1, . . . , gr.

The above can be proved by applying the Schwartz-Zippel lemma [Sch80,Zip79] and reducing the
problem to solving a system of linear equations over F.

Definition 3.1 (Invariant subspace). Let U be a vector space and S a space of linear operators on
U. A subspace V ⊆ U is called an invariant subspace of U induced by S if SV ⊆ V. An invariant
subspace V 6= 0 is irreducible if V cannot be expressed as V = V1 ⊕ V2, where V1 and V2 are
invariant subspaces properly contained in V.

Definition 3.2 (Closure of a vector). Let U be a vector space and S a space of linear operators on
U. The closure of a vector v ∈ U with respect to S is the smallest invariant subspace of U induced
by S that contains v.

The following fact states that the closure of a vector can be computed efficiently. Suppose U is a
vector space of dimension m over F. Once we fix a basis of U, it can be identified with Fm and a
linear operator on U with a matrix in Fm×m. Thus, a basis of a space S of linear operators on U
can be given as a list of matrices {M1, . . . , Mt} in Fm×m.

Fact 3 (Computing closure of a vector). Given a v ∈ Fm and a list of matrices {M1, . . . , Mt} in Fm×m,
the closure of v with respect to F-span{M1, . . . , Mt} can be computed in deterministic poly(m) time.

We refer the reader to Algorithm 4 in [KNST17] for a proof of the above fact.

14 In this case, it is the structure of the set of low rank matrices in S and of invariant subspaces of U induced by S .
There is a high-level similarity between our approach for reconstruction of homogeneous depth three circuits and the
approach in [KNST17] for reconstruction of full rank algebraic branching programs. In [KNST17], the ambient space Fn

is decomposed into irreducible invariant subspaces of the Lie algebra (which is a certain space of linear operators on Fn)
of the iterated matrix multiplication polynomial, whereas in this work, the partial derivative space U is decomposed
into irreducible invariant subspaces of a shifted differential operator space (which is a space of linear operators on U).
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4 Homogeneous depth three circuits: Proof of Theorem 1

We follow the outline given in Section 2 for reconstruction of homogeneous depth three circuits
and fill in the details here.

The algorithm. We state the algorithm and argue the correctness and complexity of its steps. As
in the statement of Theorem 1, assume that n ≥ (3d)2 and s ≤ ( n

3d )
d
3 , and let m := s · (d

k). We
record a few relations among the parameters n, d, s and k in the following easy to verify remark.

Remark 1. If n ≥ (3d)2, s ≤ ( n
3d )

d
3 and k =

⌈
log s

log n
ed

⌉
then the following relations hold: k ≤ d

3 + 1, s ≤
( n−2k−1

d )k+1, (n+k−1
k ) ≥ s · (d

k), dk ≤ d · s and nk ≤ n · s2.

Clearly, m ≤ d · s2. In this section, we will assume that a basis of a vector space is an ordered set.

Algorithm 1 Reconstruction of non-degenerate homogeneous depth three circuits
Input: Black-box access to a f that is computed by a non-degenerate (n, d, s) homogeneous
depth three circuit T1 + . . . + Ts.
Output: A non-degenerate (n, d, s) homogeneous depth three circuit computing f .

1. Compute black-box access to a basis of U, the k-th order partial derivative space of f .
2. Decompose U = U1 ⊕ . . . ⊕ Us, i.e., compute black-box access to elements of bases of

U1, . . . , Us, the k-th order partial derivative spaces of T1, . . . , Ts, using Algorithm 2.
3. Obtain the terms T1, . . . , Ts from the bases of U1, . . . , Us.

4.1 Step 1: Computing a basis of U

Observation 4.1. From black-box access to f , we can compute black-box access to the elements of a basis
Γ = (g1, g2, . . . , gm) of U in randomized poly(n, s) time.

Proof. The number of k-th order derivatives in n variables is (n+k−1
k ) ≤ n · s2, by Remark 1.

Using Fact 1, we get black-box access to all the k-th order derivatives of f in poly(n, dk, s) =
poly(n, s) time (by Remark 1 again). A basis of the derivatives can then be computed in random-
ized poly(n, s) time using Fact 2.

4.2 Step 2: Decomposing U = U1 ⊕ . . .⊕Us

Notations. Let us fix a few notations and terminologies.

• Norm(k) := {α ∈ Zn
≥0 : |α| = k}.

• For a polynomial T ∈ F[x], coeffβ(T) is the coefficient of the monomial xβ in T.

• Recall Ti = `i1 · `i2 . . . `id is a product of d linear forms. Let

TiA := ∏
j∈A

`ij, for A ∈
(
[d]
k

)
,

TiB := ∏
j∈B

`ij, for B ∈
(

[d]
d− k

)
.
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• The set Λ :=
{

TiB : i ∈ [s] and B ∈ ( [d]
d−k)

}
is the canonical basis of U. Think of Λ as an

ordered set in which the elements {TiB : B ∈ ( [d]
d−k)}, which is a basis of Ui, precede the

elements {Ti+1 B : B ∈ ( [d]
d−k)}, which is a basis of Ui+1, for every i ∈ [s− 1].

• Let Γ = (g1, g2, . . . , gm) be a basis of U and S a space of linear operators on U. Then, U can
be naturally identified with Fm, a subspace Ui ⊆ U can be identified with a subspace Ui,Γ ⊆
Fm and an operator ψ ∈ S can be identified with a matrix MΓ(ψ) ∈ Fm×m. Conversely,
a subspace W ⊆ Fm can be identified with a subspace Γ ·W ⊆ U, which consists of all
polynomials (g1 g2 . . . gm) ·w for w ∈W. Observe that Γ ·Ui,Γ = Ui.

• For B, B′ ∈ ( [d]
d−k), the distance between them is defined as dist(B, B′) := (d− k)− |B ∩ B′|.

The shifted differential operator space. The following operator space SDk,U plays a vital role in
our algorithm and its analysis. Let

SDk := F-span
{

xβ · ∂k
α : α, β ∈ Norm(k)

}
, and

SDk,U := {ψ ∈ SDk : ψ(U) ⊆ U} .

Observe that dim(SDk) = (n+k−1
k )

2
= poly(n, s), by Remark 1, and SDk,U is a vector space over F.

The shifted differential operators in SDk act linearly on polynomials and hence SDk,U is a space
of linear operators on U. We will refer to SDk,U as S for brevity.

Observation 4.2. We can compute a basis (ψ1, . . . , ψt) of S in randomized poly(n, s) time from black-box
access to the elements of a basis Γ = (g1, g2, . . . , gm) of U. 15

Proof. An operator ∑α,β ∈ Norm(k) cα,β · xβ · ∂k
α , where cα,β ∈ F, is in S if and only if the following

holds for every i ∈ [m].

∑
α,β ∈ Norm(k)

cα,β · xβ · ∂k
α gi = ∑

j∈[m]

dij · gj, for some dij ∈ F.

From black-box access to gi, we get black-box access to xβ · ∂k
α gi, for all α, β ∈ Norm(k), in

poly(n, s) time using Fact 1 and Remark 1. Then, we compute a basis of the space G⊥i of linear
dependencies of the polynomials {xβ · ∂k

α gi : α, β ∈ Norm(k)} ∪ {gj : j ∈ [m]} in randomized
poly(n, s) time using Fact 2. By treating cα,β and dij as formal variables, the coordinates of a vector
in G⊥i can be naturally indexed by these variables. Restrict the vectors in the basis of G⊥i to coor-
dinates indexed by the cα,β variables and call the space spanned by these restricted vectors Ci. It
is easy to observe that a basis of C1 ∩ . . . ∩ Cm gives a basis of S directly.

Henceforth, the correctness of the decomposition step proceeds by proving three important claims
– Claim 4.1, 4.2 and 4.3. We state these claims below and prove them in Section 6.

Three claims and two corollaries.

Claim 4.1. For every i ∈ [s], Ui is an invariant subspace of U induced by S .

15The exact expression for t, as a function of n and s, is not relevant for our analysis.
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The claim is proved using the non-degeneracy condition. The next two claims would help us
infer that Ui is in fact an irreducible invariant subspace of U induced by S and a basis of it can
be computed in polynomial time using Algorithm 2. The proofs of these two claims also use the
non-degeneracy condition, in particular the fact that dim(U) = s · (d

k).

Claim 4.2. There is an operator ψ ∈ S such that

ψ(TiB) = ρiB · TiB, where ρiB ∈ F,

for every i ∈ [s] and B ∈ ( [d]
d−k). Furthermore, the field elements {ρiB : i ∈ [s] and B ∈ ( [d]

d−k)} are distinct.

The claim implies that there is a ψ ∈ S such that MΛ(ψ) is a diagonal matrix with distinct diagonal
entries. As MΛ(ψ) and MΓ(ψ) are similar matrices, we have the following corollary.

Corollary 4.1. There is a ψ ∈ S such that MΓ(ψ) has distinct eigenvalues, where Γ is a basis of U.

Claim 4.3. For every i ∈ [s] and B, B′ ∈ ( [d]
d−k) with dist(B, B′) = 1, there is a ψ ∈ S such that

ψ(TiB) = ρiBB′ · TiB′ , where ρiBB′ ∈ F \ {0}.

The above three claims imply the following corollary, which we prove in Section 6.

Corollary 4.2. For every i ∈ [s] and v ∈ Ui, the closure of v with respect to S is Ui. So, U1, . . . , Us
are irreducible invariant subspaces of U induced by S . Further, these are the only irreducible invariant
subspaces of U induced by S .

Algorithm 2 Finding bases of U1, . . . , Us

Input: Black-box access to the elements of a basis Γ = (g1, g2, . . . , gm) of U.
Output: Black-box access to the elements of bases of U1, . . . , Us.

1. Compute a basis (ψ1, . . . , ψt) of S from Γ using Observation 4.2. Derive the m× m matrices
MΓ(ψ1), . . . , MΓ(ψt).

2. Pick a random MΓ = r1 ·MΓ(ψ1) + . . .+ rt ·MΓ(ψt), where r1, . . . , rt are chosen independently
and uniformly at random from [m3].

3. Compute the characteristic polynomial h(y) of MΓ. Output ‘Fail’ if h is not square-free. Oth-
erwise, factorize h = h1 · h2 . . . hl into irreducible factors over F.

4. Find bases of the null spaces N1, . . . , Nl of h1(MΓ), . . . , hl(MΓ) respectively.
5. For every j ∈ [l], pick a vector v from the basis of Nj and compute the closure of v with respect

to F-span{MΓ(ψ1), . . . , MΓ(ψt)} (using Fact 3).
6. Let {W1, . . . , Wp} be the list of the closure spaces after removing repetitions. If p 6= s, return

‘Fail’. Else, return black-box access to the bases of {Γ ·W1, . . . , Γ ·Ws}.

Analysis of Algorithm 2.

Steps 1 and 2 of the algorithm are self-explanatory. In step 3, the characteristic polynomial h(y)
can be computed in deterministic poly(m) time using interpolation.

12



Observation 4.3. Polynomial h(y) is square-free with probability at least 1− 2
m .

Proof. As h is a monic polynomial, the resultant resy(h, ∂h
∂y ) is non-zero if and only if h is square-

free. For a moment, think of r1, . . . , rt as formal variables in step 2. Then, h is a monic polynomial
whose coefficients are polynomials in r1, . . . , rt of degree at most m, implying that the degree of
resy(h, ∂ f

∂y ) as a polynomial in r1, . . . , rt is at most 2m2. By Corollary 4.1, resy(h, ∂ f
∂y ) is a non-zero

polynomial in r1, . . . , rt, and hence an application of the Schwartz-Zippel lemma implies that h is
square-free with probability at least 1− 2

m over the random choices of r1, . . . , rt in step 2.

We have assumed that univariate degree-m polynomials over F can be factored into irreducible
factors in poly(m) time. So, step 3 can be executed in poly(n, s) time. Computing a basis of the
null space of a matrix reduces to solving a system of linear equations and hence, step 4 also takes
poly(n, s) time.

Claim 4.4. At step 5, the following holds : For every j ∈ [l], Nj ⊆ Ui,Γ for some i ∈ [s]. Also, for every
i ∈ [s], there is a j ∈ [l] such that Nj ⊆ Ui,Γ.

Assuming the claim, it follows from Corollary 4.2 that the set of spaces {W1, . . . , Ws} is in fact
{U1,Γ, . . . , Us,Γ} in step 6. The correctness of the algorithm follows by noting that Γ ·Ui,Γ = Ui.

Proof. Recall that Λ is the canonical basis of U. Let D ∈ GLm(F) be the basis-change matrix from
Γ to Λ, i.e. MΓ(ψ) = D−1 ·MΛ(ψ) · D for every operator ψ ∈ S .

MΓ = ∑
i∈[t]

ri ·MΓ(ψi) = D−1 ·
(

∑
i∈[t]

ri ·MΛ(ψi)

)
· D = D−1 ·MΛ · D,

where MΛ := ∑i∈[t] ri ·MΛ(ψi), implying that the characteristic polynomial of MΛ is h(y). By
Claim 4.1, MΛ is a block-diagonal matrix,

MΛ =


R1

R2
. . .

Rs

 ,

where each Ri is a (d
k) × (d

k) matrix. Let pi(y) be the characteristic polynomial of Ri. Then,
h = p1 · p2 · · · ps, and the polynomial hj (for j as in step 5) divides pi for some i ∈ [s].

Suppose v ∈ Nj. Then, hj(MΓ) · v = 0 implying pi(MΓ) · v = 0 and hence pi(MΛ) ·Dv = 0, where

pi(MΛ) =


pi(R1)

pi(R2)
. . .

pi(Rs)

 .

Split the column vector Dv ∈ Fm into s continuous chunks of size (d
k) each, and call the vector

defined by the q-th chunk vq ∈ F(d
k) for q ∈ [s]. Thus, we have pi(Rq) · vq = 0 for every q ∈ [s].
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Observe that pi and pq are coprime for i 6= q, as h is square-free at step 5. Hence, for i 6= q, there
exist two polynomials e1(y), e2(y) ∈ F[y] such that

e1(y) · pi(y) + e1(y) · pq(y) = 1,
⇒ e1(Rq) · pi(Rq) = Im (the m×m identity matrix), as pq(Rq) = 0,

⇒ e1(Rq) · pi(Rq) · vq = vq,
⇒ vq = 0.

Therefore, Dv ∈ Ui,Λ implying v ∈ Ui,Γ. The second part of the claim follows easily from the
above proof.

4.3 Step 3: Obtaining the terms T1, . . . , Ts from bases of U1, . . . , Us

From step 2 of Algorithm 1, we have black-box access to the elements of a basis (gi1, . . . gi(d
k)
) of Ui

for every i ∈ [s]. Now, for every α ∈ Norm(k), we solve for cα i1, . . . , c
α i(d

k)
∈ F such that

∑
i∈[s]

cα i1 · gi1 + . . . + c
α i(d

k)
· gi(d

k)
= ∂k

α f .

This can be done efficiently using Fact 2. Observe that such a solution satisfies

cα i1 · gi1 + . . . + c
α i(d

k)
· gi(d

k)
= ∂k

α Ti,

for every i ∈ [s], as U = U1 ⊕ . . . ⊕Us. A black-box for Ti can be obtained from the following
classical, easy-to-verify identity that holds for any degree-(d− k) homogeneous polynomial Ti:

Ti =
(d− 2k)!
(d− k)!

· ∑
α=(α1,...,αn) ∈ Norm(k)

(
k

α1, . . . , αn

)
· xα · ∂k

α Ti.

Finally, we obtain Ti by an application of the black-box polynomial factorization algorithm [KT90].

5 Set-multilinear depth three circuits: Proof of Theorem 2

We follow the outline and the notation given in Section 2 and in this section, we fill in some
more details for the subclasses of homogeneous depth three circuits corresponding to tensors and
depth three powering circuits. Following the discussion in Section 2, we formulate precisely the
problem of recovering a simple basis of a given space of polynomials. For a moment, let us not
worry about the exact representation of polynomials (which will be black-box in the subsequent
applications). Let us also ignore the size of the matrix associated with the linear map µ which need
not be poly(n, d, s). We will see how to handle these issues in the two subsequent applications.

Problem 1. Finding a simple basis. Let µ : F[x] 7→ Fr×c be a linear map. Given (a basis of) the
vector space of polynomials

V = F-span(T1, T2, . . . , Ts),

where each Ti is a simple polynomial in the sense that rank(µ(Ti)) is small can we recover T1, T2, . . . , Ts
(up to scalar multiples)?
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We show how this can be done efficiently under the following non-degeneracy condition.

Definition 5.1. Let µ : F[x] 7→ Fr×c be a linear map. We say that a set of polynomials {T1, T2, . . . , Ts}
are µ-independent if

ρ := rank(µ(T1 + T2 + . . . + Ts)) = rank(µ(T1)) + rank(µ(T2)) + . . . + rank(µ(Ts)). (5)

Clearly, if {T1, T2, . . . , Ts} are µ-independent then they are also F-linearly independent.

Algorithm 3 Reconstruction of individual terms from their F-span.
Input: A basis f = ( f1, f2, . . . , fs) of the vector space V = F-span(T1, T2, . . . , Ts).
Output: The vector (T1, T2, . . . , Ts) (up to permutation and scalar multiples).

1. Compute Mi := µ( fi). Form the matrix M(z) := z1 ·M1 + z2 ·M2 + . . . + zs ·Ms.
2. Let ρ be the rank of M(z) for a random choice of z. Compute g(z) := gcd(Minors(M(z)), ρ)

and factor it using the algorithm in [KT90].
3. If g(z) does not factor into a power of products of s linear forms, abort. Else let

g(z) :=
s

∏
j=1

`j(z)rj

be the factorization of g(z). Let A = (aij)i,j∈[s] ∈ Fs×s, where aij is the coefficient of zi in `j.
Output f · A−1.

The correctness of the algorithm follows almost immediately from the following claim.

Claim 5.1. Let M̃i = µ(Ti) have rank ri ∈ Z≥1. Let M̃(u) := u1 · M̃1 + u2 · M̃2 + . . . + us · M̃s and
ρ = r1 + r2 + . . . + rs. If the non-degeneracy condition (5) is satisfied then

gcd(Minors(M̃), ρ) = ur1
1 · u

r2
2 · . . . · urs

s .

In step 2, we are computing the gcd of all ρ × ρ minors of M(z). This can be done efficiently
by choosing two random matrices R1 ∈ Fρ×r and R2 ∈ Fc×ρ and computing the determinant of
R1 ·M(z) · R2. Indeed, gcd(Minors(M(z)), ρ) = det(R1 ·M(z) · R2) with high probability.

5.1 Application: tensor decomposition

We now specify the choice of parameters mentioned in Section 2 as applicable to this setting. Let
k ≤ d

3 be an integer and denote the union of the first k sets of variables by y, i.e.

y := x1 ] x2 ] . . . ] xk.

We denote the space of operators that we choose as Dy and it is the following set of differential
operators of order k supported only over the variable set y, i.e.

Dy :=

{
∂k

∏y∈A ∂y
: A ⊆ y, and |A ∩ xi| = 1 for all i ∈ [k]

}
.
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In this case, each F-span(Dy ◦ Ti) has dimension one so that F-span(Dy ◦ f ) has dimension at most
s. To see this, for a term Ti of the form (1), let us define

Pi := ∏
j∈[k]

`ij and Qi := ∏
j∈[d]\[k]

`ij so that Ti = Pi(y) ·Qi(x \ y). (6)

Each F-span(Dy ◦ Ti) is then simply F-span(Qi) so that we have:

Observation 5.1. For f = T1 + T2 + . . .+ Ts, where Ti is of the form (6), it holds that F-span(Dy ◦ f ) ⊆
F-span(Q1, Q2, . . . , Qs).

If k ≤ d
3 is the smallest integer such that ( n

d )
k ≥ s then this containment is in fact an equality

generically. Specifically, we have:

Proposition 5.1. Let k be chosen as above. For i ∈ [s] and j ∈ [k], if the forms `ij are chosen independently
at random then with high probability it holds that Q1, Q2, . . . , Qs are F-linearly independent and

F-span(Dy ◦ f ) = F-span(Q1, Q2, . . . , Qs).

We can compute a basis ( f1, f2, . . . , fs) of F-span(Dy ◦ f ) using Fact 1, and then call Algorithm 3
on this basis. The polynomials Q1, Q2, . . . , Qs, which are µ-independent in the generic case, play
the role of T1, T2, . . . , Ts in the algorithm. The linear map µ is as follows: let y′ := xk+1 ] . . . ] x2k
and define Dy′ just like Dy. Suppose ψ1, . . . , ψc be the c = ( n

d )
k operators in Dy′ . Then, µ( f ) is a

matrix with c columns, the j-th column being the coefficient vector of ψj( f ). Observe that ρ = s.
Instead of working with µ( f ) in Algorithm 3 which is a large matrix, we work with the ρ× c matrix
µ̃( f ) := (ψj( f )(ai))i∈[ρ],j∈[c] for randomly chosen points a1, . . . , aρ ∈ Fn. This also addresses the
fact that f is given as a black-box. The algorithm returns Q1, . . . , Qs (up to scaling) which we factor
into products of linear forms. The linear forms in Pi can be similarly obtained by interchanging the
roles of Dy and Dy′ and calling Algorithm 3 again. This process gives us T1, . . . , Ts up to scaling;
the scaling factors can then be retrieved by solving a system of linear equations.

5.2 Application: Depth three powering circuits

In a depth three powering circuit each term Ti = `i(x)d, i.e.,

f = `1(x)d + `2(x)d + . . . + `s(x)d, (7)

where each `i(x) is a linear form. These circuits correspond to symmetric tensors and the approach
for reconstructing general tensors carry over in a similar fashion. In particular, let k ≤ (d/3) and
e = (d− k). Let D be the space of differential operators of order k as defined in Section 2.

Observation 5.2. If f is of the form (7) then F-span(D ◦ f ) ⊆ F-span(`e
1, `e

2, . . . , `e
s).

If k ≤ d
3 is the smallest integer such that (n+k−1

n ) ≥ s then this containment is in fact an equality
generically. Specifically,

Proposition 5.2. Let k be chosen as above. For i ∈ [s], if the forms `i are chosen independently at random
then with high probability it holds that `e

1, `e
2, . . . , `e

s are F-linearly independent and

F-span(D ◦ f ) = F-span(`e
1, `e

2, . . . , `e
s).

The remaining argument is very similar to that of tensor decomposition after we replace the set of
operators Dy and Dy′ by D.
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6 Proofs of three claims and a corollary from Section 4

6.1 Proof of Claim 4.1

Fix a i ∈ [s], a B ∈ ( [d]
d−k) and an operator ψ ∈ S arbitrarily. It is sufficient to show that ψ(TiB) ∈ Ui.

Let ψ = ∑α,β ∈ Norm(k) cα,β · xβ · ∂k
α , where cα,β ∈ F. As ψ(U) ⊆ U, we have

ψ(TiB) = ∑
α,β ∈ Norm(k)

cα,β · xβ · ∂k
α TiB = ∑

j∈[s], C∈( [d]
d−k)

γjC · TjC, for some γjC ∈ F. (8)

The non-degeneracy condition states that there are 2k + 1 linear forms `ir1 , . . . , `ir2k+1 such that

dim

 ∑
j∈[s]\{i}

Uj mod 〈`ir1 , . . . , `ir2k+1〉

 = (s− 1) ·
(

d
k

)
.

Observe that the expression ∂k
α TiB in Equation (8) is zero modulo 〈`ir1 , . . . , `ir2k+1〉. Thus, we get

∑
j∈[s]\{i}, C∈( [d]

d−k)

γjC · TjC = 0 mod 〈`ir1 , . . . , `ir2k+1〉.

The non-degeneracy condition implies that {TjC mod 〈`ir1 , . . . , `ir2k+1〉 : j ∈ [s] \ {i}, C ∈ ( [d]
d−k)}

is a basis of the space ∑j∈[s]\{i}Uj mod 〈`ir1 , . . . , `ir2k+1〉. Hence, γjC = 0 for all j ∈ [s] \ {i} and

C ∈ ( [d]
d−k). Therefore,

ψ(TiB) = ∑
C∈( [d]

d−k)

γiC · TiC ∈ Ui.

6.2 Proof of Claim 4.2

Let ψ = ∑α,β ∈ Norm(k) cα,β · xβ · ∂k
α be an operator in S . Let us treat cα,β as formal variables that

take values from F. For every i ∈ [s] and B ∈ ( [d]
d−k),

ψ(TiB) = ∑
α,β ∈ Norm(k)

cα,β · xβ · ∂k
α TiB

= ∑
β ∈ Norm(k)

xβ · ∑
α ∈ Norm(k)

cα,β · ∂k
α TiB

= ∑
β ∈ Norm(k)

xβ · ∑
α ∈ Norm(k)

cα,β · ∑
A∈(B

k)

(∂k
α TiA) · TiB\A

= ∑
β ∈ Norm(k)

xβ · ∑
A∈(B

k)

(
∑

α ∈ Norm(k)
cα,β · ∂k

α TiA

)
· TiB\A

= ∑
β ∈ Norm(k)

xβ · ∑
A∈(B

k)

qiA(cβ) · TiB\A, (9)

where qiA(cβ) := ∑α ∈ Norm(k) cα,β · ∂k
α TiA is a linear form in the cβ := {cα,β : α ∈ Norm(k)}

variables.
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Observation 6.1. The linear forms
{

qiA(cβ) : i ∈ [s] and A ∈ ([d]k )
}

in the cβ variables are F-linearly
independent.

Proof. Recall m = s · (d
k). The coefficient matrix of the linear forms

{
qiA(cβ) : i ∈ [s] and A ∈ ([d]k )

}
is a m× (n+k−1

k ) matrix M with rows indexed by the set {(i, A) : i ∈ [s], A ∈ ([d]k )} and columns
indexed by {α : α ∈ Norm(k)}. The ((i, A), α)-th entry of M is ∂k

α TiA; note that the entries of M
are field elements. We argue that M has rank m.

Let τ be a row vector whose columns are indexed by {(i, A) : i ∈ [s], A ∈ ([d]k )}, the (i, A)-th entry
is Ti[d]\A. Let δ be a row vector whose columns are indexed by {α : α ∈ Norm(k)}, the α-th entry
is ∂k

α f . The α-th entry of the product τ ·M is

∑
i∈[s], A∈([d]k )

Ti[d]\A · ∂k
α TiA = ∑

i∈[s]
∂k

α Ti = ∂k
α f , and so τ ·M = δ.

If rank(M) < m then there is a D ∈ GLm(F) such that the last row of D ·M has all zero entries. As
τD−1 ·DM = δ, every entry of δ is in the F-span of the first m− 1 entries of the row vector τD−1.
But, this contradicts dim(U) = m, since U is the space spanned by the entries of δ.

The observation implies, we can choose values for the cβ variables such that

qiA(cβ) = eiA · coeffβ(TiA), for all i ∈ [s] and A ∈
(
[d]
k

)
,

where eiA are field elements. The values of eiA will be specified later, so it is best to think of
{eiA : i ∈ [s], A ∈ ([d]k )} as distinct variables for the moment. From Equation (9),

ψ(TiB) = ∑
β ∈ Norm(k)

xβ · ∑
A∈(B

k)

eiA · coeffβ(TiA) · TiB\A

= ∑
A∈(B

k)

eiA · ∑
β ∈ Norm(k)

xβ · coeffβ(TiA) · TiB\A

= ∑
A∈(B

k)

eiA · TiA · TiB\A

=

 ∑
A∈(B

k)

eiA

 · TiB.

The linear forms {∑A∈(B
k)

eiA : i ∈ [s], B ∈ ( [d]
d−k)} are distinct. So, by the Schwartz-Zippel lemma, a

random assignment of the eiA variables to field elements makes

∑
A∈(B

k)

eiA = ρiB ∈ F,

such that {ρiB : i ∈ [s], B ∈ ( [d]
d−k)} are distinct field elements. Therefore, ψ(TiB) = ρiB · TiB and this

completes the proof of the claim.
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6.3 Proof of Claim 4.3

Fix a i ∈ [s] and B, B′ ∈ ( [d]
d−k) with dist(B, B′) = 1 arbitrarily. There exist distinct r, r′ ∈ [d]

such that TiB = `ir · h and TiB′ = `ir′ · h, where h is a product of (d − k − 1) linear forms and
gcd(`ir, h) = gcd(`ir′ , h) = 1. Let ψ = ∑α,β ∈ Norm(k) cα,β · xβ · ∂k

α be an operator in S . As before,
treat cα,β as variables that take values from F. By Equation (9),

ψ(TjC) = ∑
β ∈ Norm(k)

xβ · ∑
A∈(C

k)

qjA(cβ) · TjC\A , for every j ∈ [s] and C ∈
(

[d]
d− k

)
.

Setting the qjA linear forms. The linear forms {qjA(cβ) : j ∈ [s] and A ∈ ([d]k )} are linearly
independent, by Observation 6.1. Hence, we can choose values for the cβ variables such that the
following conditions are satisfied:

1. qjA(cβ) = 0, for every j ∈ [s] \ {i}.

2. qiA(cβ) = 0, if r 6∈ A.

3. qiA(cβ) = eiA · coeffβ(T′iA), if r ∈ A, where T′iA := TiA
`ir
· `ir′ and eiA are field elements. Note

that T′iA need not be square-free. The values of eiA will be chosen appropriately later, so it is
best to think of {eiA : i ∈ [s], A ∈ ([d]k )} as distinct variables for the moment.

Hence,

ψ(TjC) = 0, for all j ∈ [s] \ {i} and C ∈
(

[d]
d− k

)
, and

ψ(TiC) = 0, if r 6∈ C.

Suppose r ∈ C. Then

ψ(TiC) = ∑
β ∈ Norm(k)

xβ · ∑
A∈(C

k)

qiA(cβ) · TiC\A

= ∑
β ∈ Norm(k)

xβ · ∑
A∈(C

k) : r∈A

eiA · coeffβ(T′iA) · TiC\A

= ∑
A∈(C

k) : r∈A

eiA · ∑
β ∈ Norm(k)

xβ · coeffβ(T′iA) · TiC\A

= ∑
A∈(C

k) : r∈A

eiA · T′iA · TiC\A

= ∑
A∈(C

k) : r∈A

eiA ·
TiA

`ir
· `ir′ · TiC\A

= ∑
A∈(C

k) : r∈A

eiA ·
TiC

`ir
· `ir′ . (10)

The notation “A ∈ (C
k) : r ∈ A” means the sum runs over all A ∈ (C

k) with r ∈ A. We analyze the
last equation for two different cases:
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Case 1: Suppose r′ 6∈ C. By Equation (10),

ψ(TiC) =

 ∑
A∈(C

k) : r∈A

eiA

 · TiC′ ,

where C′ = (C \ {r}) ] {r′} and TiC′ is square-free. For C = B, we have C′ = B′ and

ψ(TiB) =

 ∑
A∈(B

k) : r∈A

eiA

 · TiB′ .

This means, we need to assign values to the variables {eiA : A ∈ ([d]k ), r ∈ A} in such a way that
the following condition is satisfied.

Condition 1. ∑A∈(B
k) : r∈A eiA = ρiBB′ ∈ F \ {0}.

Case 2: Suppose r′ ∈ C. By Equation (10),

ψ(TiC) =

 ∑
A∈(C

k) : r∈A

eiA

 · TiC

`ir
· `ir′ .

As TiC
`ir
· `ir′ is not square-free, we desire to assign values to the variables {eiA : A ∈ ([d]k ), r ∈ A} in

such a way that the following condition is satisfied.

Condition 2. For every C ∈ ( [d]
d−k) satisfying r, r′ ∈ C, ∑A∈(C

k) : r∈A eiA = 0.

Observe that if the above two conditions are satisfied then ψ is indeed an operator in S satisfying
the statement of Claim 4.3. The following lemma completes the proof of the claim.

Lemma 6.1. There exists an assignment of the variables
{

eiA : A ∈ ([d]k ), r ∈ A
}

to field elements such
that both Condition 1 and 2 are satisfied.

Proof. Let us focus on Condition 2 first. Consider the (d−2
k ) × (d−1

k−1) incidence matrix M whose

rows are indexed by C ∈ ( [d]
d−k) such that r, r′ ∈ C, and columns indexed by A ∈ ([d]k ) such that

r ∈ A. The (C, A)-th entry of M is 1 if A ⊂ C, otherwise the entry is 0. Assume the following
ordering among the columns of M: The (d−2

k−1) columns that are indexed by A ∈ ([d]k ) with r′ 6∈ A
precede the (d−2

k−2) columns that are indexed by A ∈ ([d]k ) with r′ ∈ A.

Let M1 be the sub-matrix of M defined by the first (d−2
k−1) columns of M, and M2 the sub-matrix

defined by the last (d−2
k−2) columns of M.

Observation 6.2. The (d−2
k )× (d−2

k−1) matrix M1 has full rank, i.e., it has rank (d−2
k−1).

20



Proof. Matrix M1 is identical to an incidence matrix J whose rows are indexed by S ∈ ( [d−2]
d−k−2) and

columns are indexed by T ∈ ([d−2]
k−1 ), the (S, T)-th entry of J contains 1 if T ⊂ S, otherwise the entry

is 0. It was shown in [Got66] that J has full rank, which is (d−2
k−1) as k ≤ d−1

2 by Remark 1.

Observation 6.3. Every column of M2 is in the F-span of the columns of M1.

Proof. Pick a column from M2. Suppose that the column is indexed by {r, r′} ] A2, where A2 ∈
([d]\{r,r′}

k−2 ). Consider all those columns in M1 that are indexed by {r} ] A1, where A1 ∈ ([d]\{r,r′}
k−1 )

and A2 ⊂ A1. There are d− k such columns in M1. It is easy to verify that the sum of these d− k
columns in M1 is d− 2k times the column picked from M2.

By Observation 6.3, there is a (d−1
k−1) × (d−1

k−1) matrix D whose rows and columns are indexed by

A ∈ ([d]k ) with r ∈ A (in the same order as the columns of M) such that D is of the form

D =

[
I
(d−2

k−1)
E

0 I
(d−2

k−2)

]
, where E is a

(
d− 2
k− 1

)
×
(

d− 2
k− 2

)
matrix, and

M · D =
[

M1 0
]

. (11)

Note that D−1 is of the form

D−1 =

[
I
(d−2

k−1)
−E

0 I
(d−2

k−2)

]
. (12)

Let e be the column vector whose rows are indexed by A ∈ ([d]k ) with r ∈ A (in the same order as
the columns of M). The A-th entry of e is the variable eiA. The solution space of the eiA variables
defined by the following linear system exactly captures those assignments of the eiA variables that
satisfy Condition 2,

M · e = 0
⇒ M · D · D−1 · e = 0

⇒
[

M1 0
]
· D−1 · e = 0.

As M1 has full rank (by Observation 6.2), the solution space is defined by the vanishing of the first
(d−2

k−1) rows of D−1 · e. Hence, by the form of D−1 in Equation (12), the solution space is defined by[
I
(d−2

k−1)
−E

]
· e = 0. (13)

Clearly, this solution space has dimension (d−2
k−2), and the variables {eiA : A ∈ ([d]k ) and r, r′ ∈ A}

are the free variables. Every solution in this solution space satisfies Condition 2.

Now, let us turn to Condition 1. We wish to show the existence of a solution in the above solution
space that satisfies Condition 1. This is argued next.

Consider adding all those rows of M that are indexed by C ∈ ( [d]
d−k) with r, r′ ∈ C such that

C \ {r′} ⊂ B. There are d − k − 1 such rows. Call the resulting sum w, a row vector whose
columns are indexed by A ∈ ([d]k ) with r ∈ A (in the same order as the columns of M). It is easy to
verify that w has the following structure:
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• If r ∈ A, r′ 6∈ A and A ⊂ B then the A-th entry of w is d− 2k.

• If r, r′ ∈ A and A \ {r′} ⊂ B then the A-th entry of w is d− 2k + 1.

• The remaining entries of w are zero.

Let Q := {A : A ∈ ([d]k ) and r, r′ ∈ A and A \ {r′} ⊂ B}. Any solution in the space defined by
Equation (13) also satisfies

w · e = 0
⇒ (d− 2k) · ∑

A∈(B
k) : r∈A

eiA + (d− 2k + 1) · ∑
A∈Q

eiA = 0

⇒ ∑
A∈(B

k) : r∈A

eiA = −
(

d− 2k + 1
d− 2k

)
· ∑

A∈Q
eiA.

The eiA variables in the RHS of the above equation belong to the set of free variables of the system
defined by Equation (13). Surely, these variables can be chosen in such a way that ∑A∈Q eiA 6= 0,
thereby implying ∑A∈(B

k) : r∈A eiA 6= 0. In other words, there is a solution in the space defined by
Equation (13) that satisfies Condition 1.

This finishes the proof of the lemma thereby completing the proof of Claim 4.3.

6.4 Proof of Corollary 4.2

The statement of the corollary does not depend on the choice of basis of U. We will work with the
canonical basis Λ of U. Let uj ∈ Fm be the unit vector with 1 at the j-th coordinate and 0 elsewhere.

It follows from the ordering of the elements in Λ that
{

uj : j ∈ [(i− 1) · (d
k) + 1, i · (d

k)]
}

is a basis
of Ui,Λ ⊂ Fm for every i ∈ [s]. Let {ψ1, . . . , ψt} be a basis of S .

Observation 6.4. Let v = ∑j∈[m] ρj · uj ∈ Fm, where ρj ∈ F. For every j ∈ [m], if ρj 6= 0 then uj belongs
to the closure of v with respect to F-span{MΛ(ψ1), . . . , MΛ(ψt)}.

Proof. Let us abuse notation slightly and denote F-span{MΛ(ψ1), . . . , MΛ(ψt) by S . By Claim 4.2
and Corollary 4.1, there is a diagonal matrix MΛ = diag(a1, . . . , am) ∈ S , where a1, . . . , am ∈ F

are distinct. Thus, the closure of v with respect to S contains vl := ∑j∈[m] al
j · ρj · uj for all l ∈ N.

Suppose ρj 6= 0. It is easy to verify that we can find c1, . . . , cm ∈ Fm such that ∑l∈[m] cl · vl = uj by
solving a system of linear equations which involves a Vandermonde coefficient matrix.

The above observation implies that the closure of every v ∈ Ui with respect to S is Ui if and only
if for every j ∈ [(i − 1) · (d

k) + 1, i · (d
k)] the closure of the unit vector uj ∈ Ui,Λ with respect to

F-span{MΛ(ψ1), . . . , MΛ(ψt)} is Ui,Λ. The following observation completes the argument.

Observation 6.5. For every i ∈ [m] and j ∈ [(i − 1) · (d
k) + 1, i · (d

k)], the closure of the unit vector
uj ∈ Ui,Λ with respect to F-span{MΛ(ψ1), . . . , MΛ(ψt)} is Ui,Λ.
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Proof. Fix i ∈ [m] and j ∈ [(i − 1) · (d
k) + 1, i · (d

k)] arbitrarily. Let us abuse notation again and
denote F-span{MΛ(ψ1), . . . , MΛ(ψt) by S . The unit vector uj corresponds to a term TiB for some
B ∈ ( [d]

d−k). Let ul 6= uj be another unit vector in Ui,Λ, and TiC be the term corresponding to ul for

some C ∈ ( [d]
d−k). Suppose dist(B, C) = ∆. By Claim 4.3, there are ∆ matrices M1, . . . , M∆ ∈ S such

that M1 ·M2 . . . M∆ · uj = ρ · ul , where ρ ∈ F \ {0}. As ul 6= uj is chosen arbitrarily, the closure of
uj with respect to S is indeed Ui,Λ.

From the above two observations, it follows readily that U1, . . . , Us are the only irreducible invari-
ant subspaces of U induced by S .
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A Non-degeneracy of random circuits

In a random (n, d, s) homogeneous depth three circuit C = T1 + . . . + Ts, the coefficients of the
linear forms in the terms T1, . . . , Ts are chosen independently and uniformly at random from a
sufficiently large finite set S ⊆ F. We will call C a random (n, d, s) homogeneous depth three
circuit over S. As there are a total of nds number of coefficients, every (n, d, s) homogeneous depth
three circuit can be identified with a point in Fnds. A random homogeneous depth three circuit
over S is a random point in Snds. We show that a random homogeneous depth three circuit is non-
degenerate with high probability. In fact, it follows from the proof of the next claim that degenerate
(n, d, s) homogeneous depth three circuits correspond to points in Fnds that lie in a proper algebraic
variety. So, a random homogeneous depth three circuit is non-degenerate with probability one in

26



the measure theoretic sense. This also means that we can define random homogeneous circuits
with regard to other reasonable distributions and the implication of ‘non-degenerate with high
probability’ will still hold.

Claim A.1. Let S ⊆ F be a finite set. A random (n, d, s) homogeneous depth three circuit over S is
non-degenerate with probability at least 1− 2d2s3

|S| .

Proof. Let C = T1 + · · ·+ Ts be a random (n, d, s) homogeneous depth three circuit over S, where
Ti = `i1 . . . `id is a product of d linear forms. Fix a i ∈ [s] arbitrarily. The linear forms `i1, . . . , `id
are linearly independent with probability at least 1− d

|S| (by the Schwartz-Zippel lemma). As the
coefficients of the linear forms in {Tj : j ∈ [s] \ {i}} are chosen independent of the coefficients of
`i1, . . . , `id (which we can now assume to be linearly independent), the probability of the event

dim

 ∑
j∈[s]\{i}

Uj mod 〈`i1, . . . , `i 2k+1〉

 = (s− 1) ·
(

d
k

)
, (14)

equals the probability of the event

dim

 ∑
j∈[s]\{i}

Uj mod 〈x1, . . . , x2k+1〉

 = (s− 1) ·
(

d
k

)
.

Let ˜̀ jr be the linear form derived from `jr by setting the variables x1, . . . , x2k+1 to zero, T̃j :=
˜̀ j1 · ˜̀ j1 . . . ˜̀ jd and T̃jB := ∏r∈B

˜̀ jr for B ∈ ( [d]
d−k). The probability of the above event equals the prob-

ability that the polynomials in P := {T̃jB : j ∈ [s] \ {i}, B ∈ ( [d]
d−k)} are F-linearly independent.

Keeping in mind the relations among n, d, s and k from Remark 1, the number of polynomials
in P is (s − 1) · (d

k) ≤ ds2. The probability that these polynomials are linearly independent is at

least 1− (ds)2

|S| (by an application of the Schwartz-Zippel lemma), if we can show that there exists
a setting of the coefficients of the linear forms in T̃jB such that the polynomials in P (after the set-
ting) are linearly independent. The existence of such a setting of the coefficients follows from the
Nisan-Wigderson design polynomial family.

The Nisan-Wigderson design polynomial NW is a multilinear, homogeneous n-variate polynomial
of degree d such that any pair of monomials in NW has at most k variables in common. We refer the
reader to [KSS14, KLSS17] for an explicit version of the Nisan-Wigderson design polynomial that
has ( n

d )
k+1 monomials. In our case, we are left with n− (2k+ 1) variables after setting x1, . . . , x2k+1

to zero. By Remark 1, we have ( n−2k−1
d )k+1 ≥ s. So, we can set the coefficients of the linear forms

in T̃j in such a way that the terms {T̃j : j ∈ [s] \ {i}}map to distinct monomials of NW. Under this
setting, the polynomials in P map to distinct monomials (as k < d

2 by Remark 1) and hence they
are linearly independent.

Thus, for an arbitrarily fixed i ∈ [s], the condition in Equation (14) is satisfied with probability at
least 1− (ds)2+d

|S| . By applying union bound over all i ∈ [s], it follows that a random circuit C is

non-degenerate with probability at least 1− 2d2s3

|S| .
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