
NP-Completeness, Proof Systems, and Disjoint NP-Pairs

Titus Dose and Christian Glaßer
Julius-Maximilians-Universität Würzburg

20th March 2019

Abstract

The article investigates the relation between three well-known hypotheses.

Hunion: the union of disjoint ≤p
m-complete sets for NP is ≤p

m-complete

Hopps: there exist optimal propositional proof systems

Hcpair: there exist ≤pp
m -complete disjoint NP-pairs

The following results are obtained:

• The hypotheses are pairwise independent under relativizable proofs, except for the
known implication Hopps ⇒ Hcpair.

• Answers to questions by Pudlák in terms of an oracle relative to which ¬Hcpair, ¬Hopps,
UP has ≤p

m-complete sets, but NP ∩ coNP has no ≤p
m-complete sets (i.e., in Pudlák’s

notation: DisjNP 6⇒ UP, CON 6⇒ UP, and NP ∩ coNP 6⇒ UP).

• The converse of Köbler, Messner, and Torán’s implication NEE ∩ TALLY ⊆
coNEE ⇒ Hopps fails relative to an oracle, where NEE

df
= NTIME(2O(2n)).

• New characterizations of Hunion and two variants in terms of coNP-completeness and
P-producibility of the set of hard formulas of propositional proof systems.

1 Introduction

The three hypotheses studied in this paper came up in the context of fascinating questions.
The first one states a simple closure property for the class of NP-complete sets. The second one
addresses the existence of optimal propositional proof systems. It is equivalent to state that one
can prove the finite consistency of axiomatized theories by proofs of polynomial length [KP89].
The third hypothesis is motivated and also implied by the second one.

Below we explain the context in which these hypotheses came up and discuss further connec-
tions to complete sets for promise classes like UP, to the security of public-key cryptosystems,
and to complete functions for NPSV, the class of single-valued functions computable by NP-
machines. At the end of this section we summarize our results.

Hypothesis Hunion: unions of disjoint ≤p
m-complete sets for NP are ≤p

m-complete
The beauty of hypothesis Hunion lies in its simplicity. It states that the class of NP-complete
sets is closed under unions of disjoint sets. The question of whether Hunion holds was raised by
Selman [Sel88] in connection with the study of self-reducible sets in NP.1

1The analog of Hunion in computability theory holds [Tra07], since the many-one complete c.e. sets are creative
[Myh55].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 50 (2019)

An interesting example for a union of disjoint NP-complete sets is the Clique-Coloring pair,
which is due to Pudlák [Pud03]:

C0 = {(G, k) | G is a graph that has a clique of size k}
C1 = {(G, k) | G is a graph that can be colored with k − 1 colors}

The sets are NP-complete and disjoint, since a clique of size k cannot be colored with k − 1
colors. C1 and C2 are P-separable [Pud03], which means that there exists an S ∈ P, the
separator, such that C1 ⊆ S and C2 ⊆ S. The P-separability of C1 and C2 is a result based on
deep combinatorial arguments by Lovász [Lov79] and Tardos [Tar88]. It implies that C1 ∪ C2

is NP-complete.
Glaßer et al. [GPSS06, GSTW08] give several equivalent formulations of Hunion (cf. Corol-

lary 3.7) and show that the union of disjoint sets that are ≤p
m-complete for NP is complete with

respect to strongly nondeterministic, polynomial-time Turing reducibility. Moreover, the union
is also nonuniformly polynomial-time many-one complete for NP under the assumption that
NP is not infinitely-often in coNP. Moreover, Glaßer et al. [GHPT14] provide sufficient and
necessary conditions for Hunion in terms of certain refuters that distinguish languages L ∈ NP
with SAT ∩ L = ∅ from SAT.

Hypothesis Hopps: there exist optimal propositional proof systems
Cook and Reckhow [CR79] defined a propositional proof system (pps) as a polynomial-time
computable function f whose range is TAUT, the set of tautologies. A pps f is simulated
by a pps g, if proofs in g are at most polynomially longer than proofs in f . We say that
f is P-simulated by g, if additionally for a given proof in f we can compute in polynomial
time a corresponding proof in g. A pps g is optimal (resp., P-optimal) if it simulates (resp.,
P-simulates) each pps.

The question of whether Hopps holds was raised by Kraj́ıcek and Pudlák [KP89] in an exciting
context:2 Let ConT (n) denote the finite consistency of a theory T , which is the statement that
T has no proofs of contradiction of length ≤ n. Kraj́ıcek and Pudlák [KP89] showed that Hopps

is equivalent to the statement that there is a finitely axiomatized theory S which proves the
finite consistency ConT (n) for every finitely axiomatized theory T by a proof of polynomial
length in n. In other words, Hopps expresses that a weak version of Hilbert’s program (to prove
the consistency of all mathematical theories) is possible [Pud96].

Kraj́ıcek and Pudlák [KP89] also show that NE = coNE implies Hopps and that E = NE
implies the existence of P-optimal pps. The converses of these implications do not hold relative
to an oracle constructed by Verbitskii [Ver91]. Köbler, Messner, and Torán [KMT03] prove
similar implications with weaker assumptions and reveal a connection to promise classes. For
EE

df
= DTIME(2O(2n)) and NEE

df
= NTIME(2O(2n)) they show that NEE ∩ TALLY ⊆ coNEE

implies Hopps, which in turn implies that NP ∩ SPARSE has ≤p
m-complete sets. Moreover,

NEE∩TALLY ⊆ EE implies the existence of P-optimal pps, which in turn implies that UP has
≤p

m-complete sets.
Sadowski [Sad02] proves that Hopps is equivalent to the statement that the class of all easy

subsets of TAUT is uniformly enumerable. Beyersdorff [Bey04, Bey06, Bey07, Bey10] investi-
gates connections between disjoint NP-pairs and pps, and in particular studies the hypotheses
Hcpair and Hopps. Pudlák [Pud96, Pud17] provides comprehensive surveys on the finite con-
sistency problem, its connection to propositional proof systems, and related open questions.
In a recent paper, Khaniki [Kha18] shows new relations between the conjectures discussed in
[Pud17] and constructs two oracles that separate several of these conjectures. Relative to the

2The analog of Hopps in computability theory holds trivially, since there the notion of simulation has no bounds
for the length of proofs and hence each proof system is optimal.

2

first oracle, E = NE and there are no ≤pp
m -complete disjoint coNP-pairs. Relative to the second

oracle, TFNP = FP and there is no (nonuniform) P-optimal pps.

Hypothesis Hcpair: there exist ≤pp
m -complete disjoint NP-pairs

Even, Selman, and Yacobi [EY80, ESY84] showed that the security of public-key cryptosystems
depends on the computational complexity of promise problems. The latter can be written
as disjoint NP-pairs, i.e., pairs (A,B) of disjoint sets A,B ∈ NP. The Clique-Coloring pair
mentioned above is an interesting example for a P-separable disjoint NP-pair. Even, Selman,
and Yacobi [EY80, ESY84] conjectured that every disjoint NP-pair has a separator that is not
≤p

T-hard for NP. If the conjecture holds, then there are no public-key cryptosystems that are
NP-hard to crack. Grollmann and Selman [GS88] observed that secure public-key cryptosystems
exist only if P-inseparable disjoint NP-pairs exist.

The question of whether Hcpair holds was raised by Razborov [Raz94] in the context of pps.3

To explain this connection we need the notions of reducibility and completeness for disjoint
NP-pairs. (A,B) polynomial-time many-one reduces to (C,D), written as (A,B)≤pp

m (C,D), if
there is a polynomial-time computable h such that h(A) ⊆ C and h(B) ⊆ D. A disjoint NP-
pair (A,B) is ≤pp

m -complete, if each disjoint NP-pair ≤pp
m -reduces to (A,B). Razborov [Raz94]

defined for each pps f a corresponding disjoint NP-pair, the canonical pair of f . It is shown
that the canonical pair of an optimal pps is a ≤pp

m -complete disjoint NP-pair, which proves

Hopps ⇒ Hcpair. (1)

This means that the open question of whether optimal pps exist can be settled by proving that
≤p

m-complete disjoint NP-pairs do not exist. As we will see, (1) is the only nontrivial implication
that relativizably holds between the three hypotheses Hunion, Hopps, Hcpair and their negations.
For the relationship between Hcpair and Hopps this is shown by Glaßer et al. [GSSZ04] who
construct two oracles such that Hcpair holds relative to both oracles, but Hopps holds relative to
the first one and ¬Hopps relative to the second one.

Pudlák [Pud03] further investigates the connection between pps and disjoint NP-pairs and
shows that the canonical pair of the resolution proof system is symmetric. Glaßer, Selman,
and Sengupta [GSS05] characterize Hcpair in several ways, e.g., by the uniform enumerability of
disjoint NP-pairs and by the existence of ≤p

m-complete functions in NPSV. Glaßer, Selman, and
Zhang [GSZ07] prove that disjoint NP-pairs and pps have identical degree structures. Moreover,
they show the following statement, which connects disjoint NP-pairs, pps, and Hunion [GSZ09]:
If NP 6= coNP and each disjoint NP-pair (SAT, B) is strongly polynomial-time many-one equiv-
alent to the canonical pair of a pps, then Hunion holds.

Our Contribution
The results of this paper improve our understanding on the three hypotheses and their relation-
ships in the following way.

1. Relativized independence of the hypotheses. We show that Hunion, Hopps, and Hcpair

are pairwise independent under relativizable proofs, except for the known implication
Hopps ⇒ Hcpair. For any two of these hypotheses and any combination of their truth values
there exists an appropriate oracle, except for Hopps ∧ ¬Hcpair which is impossible. The rela-
tivized relationships between Hopps and Hcpair were settled by Glaßer et al. [GSSZ04]. The
remaining ones are obtained from an oracle by Ogiwara and Hemachandra [OH93], an oracle
by Homer and Selman [HS92], and three oracles constructed in the present paper. The oracle
built in Theorem 7.1 is our most sophisticated result.

2. Answers to questions by Pudlák. The oracle O in Theorem 4.1 answers questions by
Pudlák [Pud17], who lists several hypotheses and asks for oracles showing the corresponding

3The analog of Hcpair in computability theory holds [Rog67, Ch. 7., Thm XII(c)].

3

relativized hypotheses to be different. We separate several pairs of these hypotheses. Relative to
the aforementioned oracle O it holds ¬Hcpair and UP has ≤p

m-complete sets, i.e., DisjNP 6⇒ UP
in the notation of [Pud17]. In particular, relative to this oracle there are no P-optimal pps, but
UP has ≤p

m-complete sets, i.e., CON 6⇒ UP. This is of particular interest, since CON ⇐ UP
is a theorem [KMT03]. Moreover, relative to the same oracle, UP has ≤p

m-complete sets, but
NP ∩ coNP has not, i.e., NP ∩ coNP 6⇒ UP.

3. Possibility of Hopps without NEE ∩ TALLY ⊆ coNEE. The oracle constructed in Theo-
rem 7.1 shows that the converses of the following implications by Kraj́ıcek and Pudlák [KP89]
and Köbler, Messner, and Torán [KMT03] fail relative to an oracle. For the implications (a)
and (b) this was known by Verbitskii [Ver91], for the other implications this is a new result. It
tells us that Hopps might be true under an assumption weaker than NEE ∩ TALLY ⊆ coNEE.

(a) [KP89] NE = coNE ⇒ Hopps

(b) [KP89] E = NE ⇒ there exist P-optimal pps

(c) [KMT03] NEE ∩ TALLY ⊆ coNEE ⇒ Hopps, where NEE
df
= NTIME(2O(2n))

(d) [KMT03] NEE∩TALLY ⊆ EE ⇒ there exist P-optimal pps, where EE
df
= DTIME(2O(2n))

4. Characterization of Hunion. We characterize Hunion and two variants (one is weaker,
the other one stronger) in several ways. For instance, Hunion (resp., its stronger version) is
equivalent to the statement that for each propositional proof system, the set of hard formulas
is coNP-complete (resp., P-producible). The latter notion was introduced by Hemaspaandra,
Hemaspaandra, and Hempel [HHH05] for the study of inverses of NP-problems.

The paper is organized as follows: Section 2 contains the preliminaries. In section 3 we
characterize Hunion and two variants. The sections 4–7 contain oracle constructions. Section 8
provides a table summarizing the properties of several oracles. Section 9 concludes the paper
and states open questions.

2 Preliminaries

Throughout this paper let Σ be the alphabet {0, 1}. We denote the length of a word w ∈ Σ∗

by |w|. Let Σ≤n = {w ∈ Σ∗ | |w| ≤ n} and Σ[m,n] = {w ∈ Σ∗ | m ≤ |w| ≤ n}. The empty
word is denoted by ε and the i-th letter of a word w for 0 ≤ i < |w| is denoted by w(i), i.e.,
w = w(0)w(1) · · ·w(|w| − 1). For k ≤ |w| let prk(w) = w(0) · · ·w(k − 1) be the length k prefix
of w. If v is a prefix of w, then we write v v w. Let id : Σ∗ → Σ∗ with id(x) = x.

The set of all (resp., positive, negative) integers is denoted by Z (resp., Z+, Z−). Moreover, N
denotes the set of natural numbers and N+ denotes the set of positive natural numbers. The set
of primes is denoted by P = {2, 3, 5, . . .}, the set of primes ≥ k by P≥k = {n ∈ P | n ≥ k}. The
logarithm function log denotes the function N+ → N defined by n 7→ max({k ∈ N | 2k ≤ n}).

We identify Σ∗ with N via the polynomial-time-computable, polynomial-time-invertible bi-
jection w 7→

∑
i<|w|(1 + w(i))2i, which is a variant of the dyadic encoding. Hence notations,

relations, and operations for Σ∗ are transferred to N and vice versa. In particular, |n| denotes the
length of n ∈ N. We eliminate the ambiguity of the expressions 0i and 1i by always interpreting
them over Σ∗.

Let 〈·〉 :
⋃

i≥0 Ni → N be an injective, polynomial-time-computable, polynomial-time-
invertible pairing function such that |〈u1, . . . , un〉| = 2(|u1|+ · · ·+ |un|+ n).

Given two sets A and B, A − B (resp., A4B) denotes the set difference (resp., symmetric
difference) between A and B. The complement of a set A relative to the universe U is denoted
by A = U −A. The universe will always be apparent from the context.

4

Let Pol denote the set of univariate polynomials with coefficients from N. FP, P, and NP
denote standard complexity classes [Pap81]. Define coC = {A ⊆ Σ∗ | A ∈ C} for a class C.
Let UP denote the set of problems that can be accepted by a nondeterministic polynomial-time
Turing machine that on every input x has at most one accepting path and that accepts if and
only if there exists an accepting path. We adopt the following notions from Köbler, Messner,
and Torán [KMT03] with the remark that in the literature there exist inequivalent definitions
for the double exponential time classes EE and NEE. To avoid confusion we will recall these
definitions where appropriate.

E
df
= DTIME(2O(n)) EE

df
= DTIME(2O(2n))

NE
df
= NTIME(2O(n)) NEE

df
= NTIME(2O(2n))

TALLY denotes the class {A | A ⊆ {0}∗}.
If A,B ∈ NP and A ∩B = ∅, then we call (A,B) a disjoint NP-pair. The set of all disjoint

NP-pairs is denoted by DisjNP.
We also consider all these complexity classes in the presence of an oracle O and denote

the corresponding classes by FPO, PO, NPO, and so on. We consider the usual oracle model
where the length of queries is not bounded, e.g., exponential-time machines can ask queries of
exponential length.

A sequence (Mi) is called standard enumeration of nondeterministic, polynomial-time oracle
Turing machines, if it has the following properties:

1. All Mi are nondeterministic, polynomial-time oracle Turing machines.

2. For all oracles D and all inputs x the computation MD
i (x) stops within |x|i + i steps.

3. For every nondeterministic, polynomial-time oracle Turing machine M there exist in-
finitely many i ∈ N such that for all oracles D it holds that L(MD) = L(MD

i).

4. There exists a nondeterministic, polynomial-time oracle Turing machine M such that for
all oracles D and all inputs x it holds that MD(〈i, x, 0|x|i+i〉) simulates the computation
MD

i (x) in the following sense: Each computation path of MD
i (x) simulates a single path of

MD(〈i, x, 0|x|i+i〉) by computing its sequence of configurations (i.e., internal state, content
of the tapes, positions of the heads).

For every oracle D, the sequence (Mi) represents an enumeration of languages in NPD. Analo-
gously we define standard enumerations of nondeterministic, polynomial-time Turing machines
and deterministic, polynomial-time oracle Turing transducers.

Note that these requirements ensure that KD = {〈0i, 0j , x〉 |MD
i (x) accepts within j steps}

is in NPD for each oracle D.
We define several reducibilities. Let A,B ⊆ Σ∗. Then A≤p,O

m B if there exists an f ∈ FPO

such that x ∈ A⇔ f(x) ∈ B for all x ∈ Σ∗. We also say A≤p,O
m B via f . Furthermore A≤p,O

m,liB

if A≤p,O
m B via some f ∈ FPO such that |f(x) > |x| for all x ∈ Σ∗. In this case we say A≤p,O

m,liB
via f .

For disjoint pairs we define specific reducibilities. Let A,B,C,D ∈ Σ∗ such that A ∩ B =
C ∩D = ∅. Then (A,B)≤pp,O

m (C,D) (resp., (A,B)≤pp,O
m,li (C,D)) if there exists f ∈ FPO (resp.

f ∈ FPO with |f(x)| > |x| for all x ∈ Σ∗) with f(A) ⊆ C and f(B) ⊆ D. Here we also say
(A,B)≤pp,O

m (C,D) (resp., (A,B)≤pp,O
m,li (C,D)) via f .

In the following we define a stronger reducibility for disjoint pairs: (A,B)≤p,O
sm (C,D) (resp.,

(A,B)≤p,O
sm,li(C,D)) if there exists f ∈ FPO (resp. f ∈ FPO with |f(x)| > |x| for all x ∈ Σ∗)

such that (A,B)≤pp,O
m (C,D) (resp., (A,B)≤pp,O

m,li (C,D)) via f and f(A ∪B) ⊆ C ∪D.

5

When we consider these reducibilities without the presence of an oracle O, then we omit O.
We use A≤pp

m (C,D) as an abbreviation for (A,A)≤pp
m (C,D).

For a complexity class C and some problem A, we say that A is ≤-hard for C if for all B ∈ C it
holds B ≤ A, where ≤ is some reducibility. A is called ≤-complete for C if A is ≤-hard for C and

A ∈ C. Let NPCp
m (resp., NPCp

m,li, NPC
io-p/poly
m) be the set of problems that are ≤p

m-complete

(resp., ≤p
m,li-complete, ≤io-p/poly

m -complete) for NP, where the reducibility ≤io-p/poly
m is given in

Definition 2.6 below.
If for all A ∈ NP it holds A≤pp

m (C,D), then we say that (C,D) is ≤pp
m -hard for NP. The

analogous holds for the other reducibilities.
Let SAT denote the set of satisfiable formulas and TAUT the set of tautologies. Without

loss of generality we assume that each word over Σ∗ encodes a propositional formula.

Definition 2.1 ([CR79]) A function f ∈ FP is called proof system for the set ran(f). For
f, g ∈ FP we say that f is simulated by g (resp., f is P-simulated by g) denoted by f ≤ g (resp.,
f ≤p g), if there exists a function π (resp., a function π ∈ FP) and a polynomial p such that
|π(x)| ≤ p(|x|) and g(π(x)) = f(x) for all x. A function g ∈ FP is optimal (resp., P-optimal),
if f ≤ g (resp., f ≤p g) for all f ∈ FP with ran(f) = ran(g). Corresponding relativized notions
are obtained by using PO, FPO, and ≤p,O in the definitions above. A propositional proof system
(pps) is a proof system for TAUT.

Remark 2.2 The notion of a propositional proof system has no canonical relativization. How-
ever, in view of Corollary 2.4 below, it is reasonable to use the following convention. We say
that there exist PO-optimal (resp., optimal) pps relative to an oracle O, if there exists a ≤p,O

m -
complete A ∈ coNPO that has a PO-optimal (resp., optimal) proof system.

The following proposition states the relativized version of a result by Köbler, Messner, and
Torán [KMT03], which they show with a relativizable proof.

Proposition 2.3 ([KMT03]) For every oracle O, if A has a PO-optimal (resp., optimal) proof
system and B≤p,O

m A, then B has a PO-optimal (resp., optimal) proof system.

Corollary 2.4 For every oracle O, if there exists a ≤p,O
m -complete A ∈ coNPO that has a PO-

optimal (resp., optimal) proof system, then all sets in coNPO have PO-optimal (resp., optimal)
proof systems.

Definition 2.5 For f ∈ FP and a polynomial q, a word y ∈ ran(f) is q-hard w.r.t. the proof
system f if there exists no x ∈ Σ≤q(|y|) such that f(x) = y. The set of elements that are q-hard
w.r.t. the proof system f is denoted by fq, i.e., fq = {y ∈ ran(f) | y is q-hard w.r.t. f}.

2.1 Infinitely Often P/poly Reducibility

We introduce ≤io-p/poly
m -reducibility, which is used in subsection 3.3 to define the following

weakened variant of Hunion: the union of disjoint ≤p
m-complete sets for NP is ≤io-p/poly

m -complete.

Although ≤io-p/poly
m is not transitive (cf. Remark 2.8), we show that the corresponding NP-

hardness and NP-completeness notions are robust concepts (cf. Proposition 2.12).
P/poly is the class of sets A ⊆ Σ∗ for which there exist a B ∈ P and a function h such

that |h(n)| is polynomially bounded in n and for all x it holds that x ∈ A ⇔ (x, h(|x|)) ∈ B.
FP/poly is the class of total functions f : Σ∗ → Σ∗ for which there exist a g ∈ FP and a function
h such that |h(n)| is polynomially bounded in n and for all x it holds that f(x) = g(x, h(|x|)).
Two total functions f, g : Σ∗ → Σ∗ agree infinitely often, written as f

io
= g, if for infinitely many

n it holds that ∀x ∈ Σn, f(x) = g(x). Two sets A,B ⊆ Σ∗ agree infinitely often, written as

6

A
io
=B, if their characteristic functions agree infinitely often. For a class C of functions or sets

let io-C = {A | ∃B ∈ C, A io
=B}.

For this section fix a standard enumeration M0,M1, . . . of deterministic, polynomial-time
oracle Turing machines.

Definition 2.6 A set A ⊆ Σ∗ is infinitely often P/poly reducible to a set B ⊆ Σ∗, written as

A≤io-p/poly
m B, if there exists f ∈ io-FP/poly such that for all x it holds that x ∈ A ⇔ f(x) ∈ B.

It should be mentioned at this point that ≤io-p/poly
m is an artificial reducibility notion,

which emerged from the attempt to express the right-hand side of the known implication
Hunion ⇒ NP 6= coNP as a variant of Hunion. In Theorem 3.8 we show that this is possible

with ≤io-p/poly
m reducibility.

Remark 2.8 shows that ≤io-p/poly
m is not transitive, but the following weaker property holds.

Proposition 2.7 For sets A, B, and C with A≤io-p/poly
m B and B≤p

mC it holds A≤io-p/poly
m C.

Proof Let f ∈ io-FP/poly and g ∈ FP such that A≤io-p/poly
m B via f and B≤p

mC via g. Then

there exists f ′ ∈ FP/poly with f
io
= f ′. For h with h(x) = g(f(x)) it holds x ∈ A⇔ h(x) for all

x ∈ Σ∗. Furthermore, for h′ with h′(x) = g(f ′(x)) it holds that h′ ∈ FP/poly and h
io
=h′. 2

Remark 2.8 The reducibility ≤io-p/poly
m is not transitive, which is seen as follows: Assume for

the moment that there exists a set H ⊆ Σ∗ such that H /∈ io-P/poly. We show H≤io-p/poly
m HH

and HH≤io-p/poly
m {1}, but H 6≤io-p/poly

m {1}.
H≤io-p/poly

m HH via the function f(x) = xx, which belongs to FP ⊆ io-FP/poly. Let g be
the characteristic function of HH. Note that g agrees with the function g′(w) = 0 on all words

of odd length. Hence g
io
= g′ ∈ FP ⊆ io-FP/poly and thus HH≤io-p/poly

m {1} via g ∈ io-FP/poly.

Assume H≤io-p/poly
m {1} via some h ∈ io-FP/poly. Let h′ ∈ FP/poly such that h

io
=h′. Note that

H ′ = {x | h′(x) = 1} ∈ P/poly and H
io
=H ′. Therefore, H ∈ io-P/poly, which contradicts our

assumption. This shows H 6≤io-p/poly
m {1}.

It remains to show the existence of a set H /∈ io-P/poly. For n ≥ 0, i ≤ n, and v ∈ Σ≤n
logn

let H(n, i, v) = {w ∈ Σn | Mi(w, v) accepts, which is the set of words of length n that are
accepted by Mi with advice v. For sufficiently large n, the number of sets H(n, i, v) is at most

(n + 1) · 2 · 2nlogn
< 22n, where the latter is the number of subsets of Σn. Hence there exists a

set Hn ⊆ Σn that differs from all H(n, i, v) for i ≤ n and v ∈ Σ≤n
logn

. Let H =
⋃

nHn and
observe that H /∈ io-P/poly.

Infinitely often P/poly reducibility can be characterized as follows.

Proposition 2.9 For A,B ⊆ Σ∗ with ∅ 6= B 6= Σ∗ it holds that

A≤io-p/poly
m B ⇐⇒ ∃f ∈ FP/poly∃∞n ∈ N∀x ∈ Σn(x ∈ A ⇔ f(x) ∈ B).

Proof “⇒”: There exists an f ∈ io-FP/poly such that for all x it holds that x ∈ A ⇔ f(x) ∈ B.

Let f ′ ∈ FP/poly such that f ′
io
= f . Hence for infinitely many n it holds that ∀x ∈ Σn, f ′(x) =

f(x). Thus for infinitely many n it holds that ∀x ∈ Σn(x ∈ A ⇔ f ′(x) ∈ B).
“⇐”: Let f ∈ FP/poly and n1 < n2 < · · · such that for all i ≥ 1 it holds that ∀x ∈ Σni(x ∈

A ⇔ f(x) ∈ B). Choose b0 /∈ B, b1 ∈ B, and define f ′ as follows: If |x| = ni for some i, then

f ′(x) = f(x); otherwise if x /∈ A, then f ′(x) = b0; otherwise f ′(x) = b1. Hence f ′
io
= f and

f ′ ∈ io-FP/poly. Moreover, for all x ∈ Σ∗ it holds that x ∈ A ⇔ f(x) ∈ B. 2

7

In the following we argue that ≤io-p/poly
m -hardness for NP and hence also ≤io-p/poly

m -
completeness for NP are robust notions. For this purpose, in Proposition 2.12 we show several

characterizations of ≤io-p/poly
m -hardness for NP. We start with the definition of paddability and

a related notion.

Definition 2.10 ([BH77]) A set A is paddable if there exists a polynomial-time computable,
polynomial-time invertible p(·, ·) such that for all x, y it holds that (x ∈ A ⇔ p(x, y) ∈ A). Let
Pad = {A | A is paddable}.

Mahaney and Young [MY85] showed that two paddable sets are ≤p
m-equivalent if and only if they

are P-isomorphic (i.e., A≤p
mB via a polynomial-time computable, polynomial-time invertible

bijection f). Hence the paddable ≤p
m-complete sets for NP are those that are P-isomorphic

to SAT. Paddability implies that we can increase the length of an instance without changing
its membership. The following notion captures the property that the length can be precisely
increased without changing membership.

Definition 2.11 A set A is homogeneous, if there exists h ∈ FP such that for all x, y it holds
that (x ∈ A ⇔ h(x, y) ∈ A) and |h(x, y)| = |x|+ |y|. Let Hom = {A | A is homogeneous}.

It is clear that SAT is paddable, but the question of whether SAT is homogenous crucially
depends on its specific encoding. The following variant of the canonical NP-complete problem
is both, paddable and homogeneous. (Paddability is seen as follows: reduce an instance of K
to SAT, use the padding property of SAT, and finally express the satisfiability of the obtained
formula by an instance of K.)

K = {0i1j0k1x | i, j, k ∈ N, x ∈ {0, 1}∗,Mi accepts x within j steps}

We characterize ≤io-p/poly
m -hardness for NP in several ways. Afterwards we explain why in

this characterization one statement is missing.

Proposition 2.12 For a set B, the following statements are equivalent:

1. B is ≤io-p/poly
m -hard for NP.

2. ∃A ∈ NPCp
m∩Hom ∃f ∈ FP/poly ∃∞n ∈ N ∀x ∈ Σn (x ∈ A ⇔ f(x) ∈ B)

3. ∀A ∈ NP ∃f ∈ FP/poly ∃∞n ∈ N ∀x ∈ Σn (x ∈ A ⇔ f(x) ∈ B)

4. ∃A ∈ NPCp
m∩Pad ∀q ∈ Pol ∃f ∈ FP/poly ∃∞n ∈ N ∀x ∈ Σ[n,q(n)] (x ∈ A ⇔ f(x) ∈ B)

5. ∃A ∈ NPCp
m∩Hom ∀q ∈ Pol ∃f ∈ FP/poly ∃∞n ∈ N ∀x ∈ Σ[n,q(n)] (x ∈ A ⇔ f(x) ∈ B)

6. ∀A ∈ NP ∀q ∈ Pol ∃f ∈ FP/poly ∃∞n ∈ N ∀x ∈ Σ[n,q(n)] (x ∈ A ⇔ f(x) ∈ B)

Proof The implications 6⇒ 3⇒ 2, 6⇒ 5⇒ 2, and 6⇒ 4 are trivial. Moreover, observe that
the implications 1 ⇔ 3 follow from Proposition 2.9.

We show 4 ⇒ 3. Choose A4 ∈ NPCp
m ∩ Pad according to statement 4. Let p(·, ·) be a

padding function for A4, which is invertible in time r ∈ Pol. To show statement 3, let A3 ∈ NP.
Choose g ∈ FP such that A3≤p

mA4 via g. Let

g′(x) = p(g(x), 0r(|x|)+1)

and observe that g′ ∈ FP and A3≤p
mA4 via g′. Moreover, |g′(x)| > |x|, since otherwise

|p(g(x), 0r(|x|)+1)| ≤ |x| contradicting the fact that p is invertible in time r. Choose q ∈ Pol
such that |g′(x)| ≤ q(|x|). According to statement 4, for A4 and q there exists an f4 ∈ FP/poly
with the properties mentioned there. Let f3(x) = f4(g′(x)), which is in FP/poly. For infinitely
many n,

∀x ∈ Σ[n,q(n)] (x ∈ A4 ⇔ f4(x) ∈ B).

8

For each of these n it holds that

∀x ∈ Σn (g′(x) ∈ Σ[n,q(n)] ∧ (x ∈ A3 ⇔ g′(x) ∈ A4) ∧ (g′(x) ∈ A4 ⇔ f4(g′(x)) ∈ B).

Hence, for infinitely many n,

∀x ∈ Σn (x ∈ A3 ⇔ f3(x) ∈ B).

We show 2 ⇒ 6. Choose A2 ∈ NPCp
m ∩ Hom and f2 ∈ FP/poly according to statement 2.

Let h ∈ FP such that for all x, y it holds that (x ∈ A ⇔ h(x, y) ∈ A) and |h(x, y)| = |x| + |y|.
To show statement 6, let A6 ∈ NP and q ∈ Pol, where we may assume q(n) > n. Choose g ∈ FP
and r ∈ Pol with r(n) > n such that |g(x)| ≤ r(|x|) and A6≤p

mA2 via g. By assumption, there
exist pairwise distinct n0, n1, . . . ∈ N such that (x ∈ A2 ⇔ f(x) ∈ B) for all i and all x ∈ Σni .
We may assume n0 ≥ r(q(1)) and ni+1 ≥ r(q(ni + 1)). Let mi = max{m | r(q(m)) ≤ ni} and
observe that m0 < n0 < m1 < n1 < · · · . The following function is used as advice for f6.

a(n) =

{
ni if mi ≤ n ≤ q(mi) for some i
0 otherwise.

Note that ni < r(q(mi + 1)) and hence a(n) ∈ nO(1) and |a(n)| ∈ O(log n). Let

f6(x) =

{
f2(h(g(x), 0a(|x|)−|g(x)|)) if a(|x|) > 0
0 otherwise.

Hence f6 ∈ FP/poly. It remains to show (x ∈ A6 ⇔ f6(x) ∈ B) for all i and all x ∈ Σ[mi,q(mi)].
For such x it holds that mi ≤ |x| ≤ q(mi) and |g(x)| ≤ r(q(mi)) ≤ ni = a(|x|). Hence
f6(x) = f2(h(g(x), 0ni−|g(x)|)) and

x ∈ A6 ⇔ g(x) ∈ A2 ⇔ h(g(x), 0ni−|g(x)|) ∈ A2.

From |h(g(x), 0ni−|g(x)|)| = ni it follows that

h(g(x), 0ni−|g(x)|) ∈ A2 ⇔ f6(x) ∈ B,

which shows (x ∈ A6 ⇔ f6(x) ∈ B). 2

Remark 2.13 The following statement cannot appear in Proposition 2.12.

∃A ∈ NPCp
m∩Pad ∃f ∈ FP/poly ∃∞n ∈ N ∀x ∈ Σn (x ∈ A ⇔ f(x) ∈ B) (2)

The statement actually holds for all B (N, which is seen as follows. Choose some z /∈ B and
let A = {ww | w ∈ K}, where K is the canonical NP-complete problem defined above. Observe
that A is paddable and ≤p

m-complete for NP. The function f(x) = z belongs to FP and for
all x of odd length it holds that (x ∈ A ⇔ f(x) ∈ B). Therefore, if (2) is equivalent to the

statements in Proposition 2.12, then the set B = ∅ is infinitely often ≤p/poly
m -hard for NP. But

this is not true, since for A = N ∈ NP, for all total functions f : N → N, and all x ∈ N it
holds that (x ∈ A 6⇔ f(x) ∈ B). This shows that (2) is not equivalent to the statements in
Proposition 2.12.

9

2.2 Basic Notations and Results for Constructing Oracles

The domain and range of a function t are denoted by dom(t) and ran(t), respectively. The
support supp(t) of a real-valued function t is the subset of the domain that consists of all
values that t does not map to 0. We say that a partial function t is injective on its support if
t(i, j) = t(i′, j′) ∈ supp(t) implies (i, j) = (i′, j′). If a partial function t is not defined at point
x, then t ∪ {x 7→ y} denotes the continuation of t that at x has value y.

Let M be a Turing machine. MD(x) denotes the computation of M on input x with D as
an oracle. LD(M) = {x | MD(x) accepts} denotes the languages accepted by M with D as
an oracle. For a deterministic polynomial-time Turing transducer, depending on the context,
FD(x) either denotes the computation of F on input x with D as an oracle or the output of
this computation.

If A is a set, then A(x) denotes the characteristic function at point x, i.e., A(x) is 1 if x ∈ A,
and 0 otherwise. An oracle D ⊆ N is identified with its characteristic sequence D(0)D(1) · · · ,
which is an ω-word. (In this way, D(i) denotes both, the characteristic function at point i and
the i-th letter of characteristic sequence, which are the same.) A finite word w describes an
oracle that is partially defined, i.e., only defined for natural numbers x < |w|. We can use w
instead of the set {i | w(i) = 1} and write for example A = w ∪ B, where A and B are sets.
For nondeterministic oracle Turing machines M and deterministic oracle Turing transducers
F we use the following phrases: A computation Mw(x) definitely accepts (within t steps), if
it contains a path that accepts (within t steps) and the queries on this path are < |w|. A
computation Mw(x) definitely rejects (within t steps), if all paths reject (within t steps) and all
queries are < |w|. A computation Mw(x) is defined, if it definitely accepts or definitely rejects.
A computation Fw(x) is defined, if all queries are < |w|.

For any finite set Y ⊆ Σ∗, let `(Y)
df
=
∑

w∈Y |w|. For a path P of some nondeterministic
computation, P yes (resp., P no) denotes the set of oracle queries that are answered positively
(resp., negatively) along P . Let P all = P yes ∪ P no, and denote the length of P by |P |.

The following lemma and its corollary hold for any standard enumerations of nondetermin-
istic, polynomial-time oracle Turing machines M0,M1, . . . and deterministic, polynomial-time
oracle Turing transducers F0, F1,

Lemma 2.14 For all i, j ∈ N, and almost all n ∈ N and all D ⊆ Σ∗ there exist an even x ∈ Σn

and an odd y ∈ Σn such that at least one of the following statements holds.

1. M
D∪{x}
i (0n) rejects

2. M
D∪{y}
j (0n) rejects

3. M
D∪{x,y}
i (0n) and M

D∪{x,y}
j (0n) accept

Proof Assume that the assertion is wrong, i.e., there are i, j ∈ N such that for all n0 ∈ N there
is an n ≥ n0 and an oracle D ⊆ Σ<n such that for all even x ∈ Σn and all odd y ∈ Σn all three
statements are wrong. Fix machines Mi and Mj guaranteed by this assumption.

Let p be a monotone polynomial limiting the running time of Mi and Mj . Choose n0 such
that 22n0−3 > 2n0 · p(n0). Let n ≥ n0 and D ⊆ Σ<n such that for all even x ∈ Σn and all odd
y ∈ Σn the three statements are wrong.

As the first statement is wrong, for all even x ∈ Σn the computation M
D∪{x}
i (0n) accepts.

Since the second statement is wrong as well, for all y ∈ Σn the computation M
D∪{y}
j (0n) accepts.

Consider the directed graph G = (Σn, E1 ∪ E2) with

E1 = {(x, z) ∈ (Σn)2 | x even, x 6= z, the least accepting path of M
D∪{x}
i (0n) asks z}

E2 = {(y, z) ∈ (Σn)2 | y odd, y 6= z, the least accepting path of M
D∪{y}
j (0n) asks z}

10

Observe |E1 ∪ E2| ≤ 2n · p(n). Assume that for all even x ∈ Σn and all odd y ∈ Σn it holds
(x, y) ∈ E1∪E2 or (y, x) ∈ E1∪E2. Then |E1∪E2| ≥ 2n−1·2n−1/2 = 22n−3 > 2n·p(n) ≥ |E1∪E2|,
a contradiction.

Thus there exist an even x ∈ Σn and an odd y ∈ Σn such that (x, y) /∈ E1 ∪ E2 and

(y, x) /∈ E1 ∪ E2. As M
D∪{x}
i (0n) accepts by the assumption that statement 1 is wrong and

the least accepting path of this computation does not ask y (otherwise (x, y) ∈ E1 ∪ E2),

the computation M
D∪{x,y}
i (0n) accepts. Similarly we obtain that M

D∪{x,y}
j (0n) accepts. This

contradicts our assumption that statement 3 is wrong and completes the proof. 2

Corollary 2.15 For all i, j ∈ N, and almost all n ∈ N and all D ⊆ Σ∗ there exist an even
x ∈ Σn and an odd y ∈ Σn such that at least one of the following statements holds.

1. F
D∪{x}
r (0n) /∈ L(M

D∪{x}
i)

2. F
D∪{y}
r (0n) /∈ L(M

D∪{y}
j)

3. F
D∪{x,y}
r (0n) ∈ L(M

D∪{x,y}
i) ∩ L(M

D∪{x,y}
j)

Proof The statement follows by applying Lemma 2.14 to the machines Ni (resp., Nj) that
first compute Fr(0

n) and then simulate Mi (resp., Mj) on input Fr(0
n). 2

3 Are Unions of Disjoint NP-Complete Sets NP-Complete?

It is difficult to find out whether Hunion is true or not, since any outcome solves a long standing
open problem:

Hunion is true ⇒ NP 6= coNP

Hunion is false
3.1⇒ P-inseparable disjoint NP-pairs exist if and only if P 6= NP

As we expect the right hand sides of both implications to be true, they do not provide evidence
for or against Hunion. Therefore, researchers approach hypothesis Hunion by proving equivalent,
necessary, and sufficient conditions. This section continues this program as follows. In subsec-
tion 3.1 we investigate a stronger variant of Hunion, in subsection 3.2 the original hypothesis, and
in subsection 3.3 a weaker variant. We characterize Hunion and its variants in several ways (e.g.,
in terms of P-producibility or coNP-completeness of the set of hard formulas of pps) and sum-
marize the corresponding state of knowledge. In particular, within a subsection all hypotheses
are equivalent and hence the following implications hold in general.

hypotheses in subsect. 3.1 ⇒ hypotheses in subsect. 3.2 ⇒ hypotheses in subsect. 3.3

m m
Hunion NP 6= coNP

Note that under the assumption that all sets in NPCp
m are complete w.r.t. length-increasing

reductions (which holds for example under the Berman-Hartmanis conjecture), all hypotheses
in the subsections 3.1 and 3.2 are equivalent.

Before starting with the proofs of the equivalences, we show the aforementioned implication
that under the assumption ¬Hunion it holds that P-inseparable disjoint NP-pairs exist if and
only if P 6= NP.

11

Proposition 3.1 If Hunion is false, then P-inseparable disjoint NP-pairs exist if and only if
P 6= NP.

Proof If P = NP, then all disjoint NP-pairs are P-separable. It remains to show P = NP under
the assumption that Hunion is false and all disjoint NP-pairs are P-separable: By [GPSS06],
there exists a B ∈ NP that is disjoint from SAT such that SAT∪B is not ≤p

m-complete for NP.
Moreover, there exists an S ∈ P such that SAT ⊆ S ⊆ B. We claim that B = SAT. Otherwise,
there exists some w ∈ SAT ∪B. Hence SAT≤p

mSAT ∪ B via the reduction that on input x
outputs x if x ∈ S and outputs w otherwise. This contradicts the fact that SAT ∪ B is not
≤p

m-complete. Thus B = SAT and therefore, NP = coNP. By assumption, for each L ∈ NP,
the disjoint NP-pair (L,L) is P-separable and hence L ∈ P. This shows P = NP. 2

3.1 Length-Increasing Polynomial-Time Reducibility

We consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤p
m,li-complete

for NP. This is equivalent to say that the union of disjoint sets from NPCp
m,li is ≤p

m,li-complete
for NP. We prove several characterizations of this hypothesis, e.g., one in terms of the P-
producibility of the set of hard formulas of pps.

Let us define the notion of P-producibility, which was introduced by Hemaspaandra, Hemas-
paandra, and Hempel [HHH05], and the notion of a refuter, which was introduced by Kabanets
[Kab01].

Definition 3.2 ([HHH05]) A set A is p-producible if and only if there is some f ∈ FP with
|f(x)| ≥ |x| and f(x) ∈ A for all x.

Definition 3.3 ([Kab01]) A refuter is a deterministic Turing machine that on an input of
length n outputs a string of length at least n. A refuter R almost everywhere distinguishes a
language L from a language L′ if for all but finitely many n, R(1n) outputs a string from L∆L′.

In the following theorem, the equivalence 1 ⇔ 4 was shown in [GHPT14].

Theorem 3.4 The following statements are equivalent:

1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp
m,li.

2. For all A,B ∈ NPCp
m,li with A ∩B = ∅ it holds A ∪B ∈ NPCp

m,li.

3. fq is P-producible for all pps f and all polynomials q.

4. For every language L ∈ NP that is disjoint from SAT, there is a polynomial-time refuter
that almost everywhere distinguishes L from SAT.

Proof The equivalence 1 ⇔ 4 was shown in [GHPT14].
1 ⇒ 2: Let A,B ∈ NPCp

m,li be disjoint and f ∈ FP length-increasing such that SAT≤p
m,liA

via f . Then B′ = f−1(B) is in NP since B′≤p
m,liB ∈ NP via f . Thus, by 1 it follows SAT∪B′ ∈

NPCp
m,li. Moreover, SAT ∪B′≤p

m,liA ∪B via f . Hence we obtain A ∪B ∈ NPCp
m,li.

By assumption, NP 6= coNP. Let f be a pps, q a polynomial, and define

B = {ϕ | f(y) = ¬ϕ for some y with |y| ≤ q(|¬ϕ|)}.

B ∩ SAT = ∅ and SAT ∪ B (Σ∗. For A′ = 0SAT ∪ 1B and B′ = 1SAT ∪ 0B it holds
A′ ∩ B′ = ∅ and A′, B′ ∈ NPCp

m,li. By 2, A′ ∪ B′ = {0, 1}(SAT ∪ B) ∈ NPCp
m,li. In particular

12

SAT≤p
m,li{0, 1}(SAT ∪B). As SAT ∪B (Σ∗, this implies SAT≤p

mSAT ∪B via an FP-function
h1 with |x| ≤ |h1(x)| for all x ∈ Σ∗. Let h2 be a length-increasing FP-function ensuring
SAT≤p

m,liSAT. Then SAT≤p
m,liSAT∪B via h with h(x) = h1(h2(h2(x))). We claim that fq is P-

producible via the length-increasing function g(x) = ¬h(x∧¬x): As h(x∧¬x) /∈ SAT∪B, g(x) is
a tautology. If g(x) /∈ fq, then there exists y with |y| ≤ q(|g(x)|) and f(y) = g(x) = ¬h(x∧¬x).
Hence h(x ∧ ¬x) ∈ B, a contradiction. Thus g(x) ∈ fq.

3 ⇒ 1: Choose B according to 1. Consider

B′ = {x | x ∈ B or ∃z |z| ≤ |x| and x ∨ z ∈ B}

and observe B′ ∈ NP, B ⊆ B′, and B′ ∩ SAT = ∅. Let M be an NP-machine with L(M) = B′

and running time q for a polynomial q.
Let f be defined as follows and observe that f is a pps.

〈x, z〉 7→

{
x M accepts ¬x on path z or (|z| ≥ 2|x| and x is a tautology)

True otherwise.

Let q′ be a polynomial such that |¬x| ≤ q′(|x|) for every x. Moreover, choose r(n) =
2 · (q(q′(n)) + n + 1). By 3, fr is P-producible via some g ∈ FP with |g(x)| ≥ |x|. for
all x. Consider the length-increasing function h ∈ FP with h(x) = ¬g(x) ∨ x. We show
SAT≤pp

m,li(SAT, SAT ∪B) via h, which implies SAT≤p
m,liSAT ∪B via h.

As g(x) is a tautology, x ∈ SAT⇔ h(x) ∈ SAT. It remains to show that x /∈ SAT⇒ h(x) /∈
B.

Let x /∈ SAT. If h(x) = ¬g(x) ∨ x ∈ B, then due to |x| ≤ |¬g(x)| it holds ¬g(x) ∈ B′.
Hence, there is some path z such that M accepts ¬g(x) on path z. Thus |z| ≤ q(q′(|g(x)|)).
Consequently, f(〈g(x), z〉) = g(x) and |〈g(x), z)〉| ≤ r(|g(x)|), in contradiction to g(x) ∈ fr. 2

The following corollary summarizes the state of knowledge on the hypothesis studied in this
subsection. It contains the statements from Theorem 3.4 and further equivalent formulations.
The statement 3.5.6 is interesting, as it says that all sets in NP can be ≤p

m,li-reduced to SAT

in a way that avoids values in B. We do not have a similar characterization in the case of ≤p
m

reducibility. Moreover, statement 3.5.9 shows a connection to the hardness of certain disjoint
NP-pairs. As mentioned before, the equivalence 1 ⇔ 11 was shown in [GHPT14].

Corollary 3.5 The following statements are equivalent:

1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp
m,li.

2. There exists A ∈ NPCp
m,li such that for all B ∈ NP with A∩B = ∅ it holds A∪B ∈ NPCp

m,li.

3. For all A ∈ NPCp
m,li and all B ∈ NP with A ∩B = ∅ it holds A ∪B ∈ NPCp

m,li.

4. For all A,B ∈ NPCp
m,li with A ∩B = ∅ it holds A ∪B ∈ NPCp

m,li.

5. fq is P-producible for all pps f and all polynomials q.

6. For all B ∈ NP with SAT ∩B = ∅ the pair (SAT, SAT ∪B) is ≤pp
m,li-hard for NP.

7. There exists A ∈ NPCp
m,li such that for all B ∈ NP with A∩B = ∅ the pair (A,A ∪B) is

≤pp
m,li-hard for NP.

8. For all A ∈ NPCp
m,li and all B ∈ NP with A∩B = ∅ the pair (A,A ∪B) is ≤pp

m,li-hard for
NP.

13

9. For all A ∈ NPCp
m,li and all B ∈ NP with A ∩B = ∅ it holds (SAT, ∅)≤p

sm,li(A,B).

10. All disjoint NP-pairs (A,B) with A ∈ NPCp
m,li are ≤p

sm,li-hard for NP× {∅}.

11. For every language L ∈ NP that is disjoint from SAT, there is a polynomial-time refuter
that almost everywhere distinguishes L from SAT.

Proof The statements 1, 4, 5, and 11 are equivalent by Theorem 3.4. Moreover, the proof
of the implication 3 ⇒ 1 of Theorem 3.4 consists of proofs for the implications 5 ⇒ 6 and 6
⇒ 1 of this corollary. The following implications are trivial: 2 ⇒ 1, 3 ⇒ 2, 7 ⇒ 2, 8 ⇒ 3,
and 8 ⇒ 7. It holds 9 ⇔ 10 as (SAT, ∅) is ≤p

sm,li-complete for NP × {∅}. Moreover, 8 ⇔ 9

holds as SAT is ≤p
m,li-hard for NP and SAT≤pp

m,li(A,A ∪B) via some function f if and only if

(SAT, ∅)≤p
sm,li(A,B) via the same function f .

Thus it suffices to prove 6 ⇒ 8. Let A ∈ NPCp
m,li and B ∈ NP be disjoint. Then

SAT≤p
m,liA via some length-increasing f ∈ FP. Define B′ = f−1(B). Then B′≤p

m,liB via f

and thus B′ ∈ NP. Therefore, 6 yields that (SAT, SAT ∪B′) is ≤pp
m,li-hard for NP. Observing

(SAT,SAT ∪B′)≤pp
m,li(A,A ∪B) via f finishes the proof. 2

3.2 Polynomial-Time Reducibility

We consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤p
m-complete for

NP. This is equivalent to Hunion. We prove several characterizations of Hunion, e.g., one in terms
of the coNP-completeness of the set of hard formulas of pps.

In the following theorem, the equivalence 1 ⇔ 2 was shown in [GPSS06].

Theorem 3.6 The following statements are equivalent:

1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp
m.

2. For all A,B ∈ NPCp
m with A ∩B = ∅ it holds A ∪B ∈ NPCp

m.

3. fq is ≤p
m-complete for coNP for all pps f and all polynomials q.

Proof “1 ⇔ 2”: Holds by [GPSS06].
“1 ⇒ 3”: By definition, fq = {x ∈ TAUT | ¬∃z ∈ Σ≤q(|x|)f(z) = x} and hence fq ∈ coNP.

Let
B = {x ∈ Σ∗ | ∃z ∈ Σ≤q(|¬x|)f(z) = ¬x}.

Observe that B ∈ NP and SAT∩B = ∅. By assumption, SAT∪B ∈ NPCp
m and hence SAT ∪B

is ≤p
m-complete for coNP. It holds that

SAT ∪B = SAT−B = {x ∈ SAT | ¬∃z ∈ Σ≤q(|¬x|)f(z) = ¬x}
= {x ∈ Σ∗ | ¬x ∈ TAUT ∧ ¬∃z ∈ Σ≤q(|¬x|)f(z) = ¬x}.

Thus x ∈ SAT ∪B ⇔ ¬x ∈ fq, which shows SAT ∪B≤p
mfq. Hence fq is ≤p

m-complete for coNP.
“3 ⇒ 1”: Let B ∈ NP such that SAT∩B = ∅ and let M be a nondeterministic polynomial-

time machine that accepts B. Choose a polynomial q such that for all x ∈ Σ∗ and all accepting
paths y of M(¬x) it holds that |〈x, y〉| ≤ q(|x|). Let

f(z) =

x, if z = 〈x, y〉, |y| < 2|x|, and y is an accepting path of M(¬x)

x, if z = 〈x, y〉, |y| = 2|x|, and x ∈ TAUT
True, otherwise.

14

Observe that f is a pps. By assumption, the set

fq = {x ∈ TAUT | ¬∃z ∈ Σ≤q(|x|)f(z) = x}

is ≤p
m-complete for coNP. Observe fq ∩ Σ≥n = {x ∈ TAUT | ¬x /∈ B} ∩ Σ≥n for sufficiently

large n ∈ N. Hence for all x ∈ Σ≥n it holds that x ∈ fq ⇔ ¬x ∈ SAT ∪B. In the case
SAT ∪B 6= ∅ this shows fq≤p

mSAT ∪B and hence SAT ∪B is ≤p
m-complete for NP.

It remains to argue that the case SAT ∪B = ∅ is not possible. If SAT ∪B = ∅, then
NP = coNP and hence there exists a polynomially bounded pps f ′. Thus for some polynomial
q′ it holds f ′q′ = ∅, which is not ≤p

m-complete for coNP, in contradiction to our assumption. 2

The following corollary summarizes the state of knowledge on the hypothesis Hunion. It
contains the statements from Theorem 3.6 and further equivalent formulations. The equivalence
of statements 1, 3, 5, 7, 10, 11 was shown in [GPSS06].

Corollary 3.7 The following statements are equivalent:

1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp
m.

2. There exists A ∈ NPCp
m,li such that for all B ∈ NP with A∩B = ∅ it holds A∪B ∈ NPCp

m.

3. There exists A ∈ NPCp
m such that for all B ∈ NP with A∩B = ∅ it holds A∪B ∈ NPCp

m.

4. For all A ∈ NPCp
m,li and all B ∈ NP with A ∩B = ∅ it holds A ∪B ∈ NPCp

m.

5. For all A ∈ NPCp
m and all B ∈ NP with A ∩B = ∅ it holds A ∪B ∈ NPCp

m.

6. For all A,B ∈ NPCp
m,li with A ∩B = ∅ it holds A ∪B ∈ NPCp

m.

7. For all A,B ∈ NPCp
m with A ∩B = ∅ it holds A ∪B ∈ NPCp

m.

8. fq is ≤p
m-complete for coNP for all pps f and all polynomials q.

9. fid is ≤p
m-complete for coNP for all f that are proof systems for ≤p

m-complete sets for
coNP.

10. For all paddable A,B ∈ NPCp
m with A ∩B = ∅ it holds that A ∪B ∈ NPCp

m.

11. There exists a paddable A ∈ NPCp
m such that for all paddable B ∈ NPCp

m with A ∩B = ∅
it holds A ∪B ∈ NPCp

m.

Proof 1, 3, 5, 7, 10, and 11 are equivalent by [GPSS06]. 7 and 8 are equivalent by Theorem 3.6.
The implications 5⇒ 4⇒ 2⇒ 3 and 7⇒ 6 are trivial.

“6⇒ 4”: We show the contraposition. Let A ∈ NPCp
m,li and B ∈ NP such that A ∩ B = ∅

and A ∪B /∈ NPCp
m. The sets 0A ∪ 1B and 1A ∪ 0B ∪ {ε} are disjoint and belong to NPCp

m,li.
Their union is

0(A ∪B) ∪ 1(A ∪B) ∪ {ε}≤p
mA ∪B,

where the ε is needed for the case A ∪B = Σ∗. Hence this union is not in NPCp
m.

“5⇒9”: Let f ∈ FP such that L = ran(f) is ≤p
m-complete for coNP. By definition,

fid = {x ∈ L | ¬∃z ∈ Σ≤|x|f(z) = x}.

Let
B = {x ∈ Σ∗ | ∃z ∈ Σ≤|x|f(z) = x}.

15

Observe that fid ∈ coNP and B ∈ NP. Moreover, L is ≤p
m-complete for NP and L∩B = ∅. Thus

our assumption implies that L∪B is ≤p
m-complete for NP. The observation fid = L−B = L ∪B

completes the proof.
“9 ⇒ 1”: We prove the contraposition. Let B ∈ NP such that SAT∩B = ∅ and SAT∪B /∈

NPCp
m. Choose a polynomial q and a nondeterministic machine M that accepts B in time q.

Let
TAUT′ = {〈x, 0q(|¬x|)〉 | x ∈ TAUT)}

and observe that TAUT′ is ≤p
m-complete for coNP. Let

f ′(z) =

〈x, 0q(|¬x|)〉, if z = 〈x, y〉, |y| = q(|¬x|), y is an accepting path of M(¬x)

〈x, 0q(|¬x|)〉, if z = 〈x, y〉, |y| > q(|¬x|), |y| ≥ 2|x|, and x ∈ TAUT
t′, otherwise, where t′ is a fixed element from TAUT′.

Observe that f ′ is a proof system for TAUT′. We claim that

f ′id = {〈x, 0q(|¬x|)〉 | x ∈ TAUT and ¬x /∈ B} − {t′}. (3)

“⊆”: Let x′ ∈ f ′id. Hence x′ ∈ TAUT′ and ¬∃z ∈ Σ≤|x
′|f ′(z) = x′. Thus x′ = 〈x, 0q(|¬x|)〉

for some x ∈ TAUT. Assume x′ does not belong to the rhs of (3). Note that x′ 6= t′, since
f ′(ε) = t′ and |ε| < 4 ≤ |t′|. It follows that ¬x ∈ B. Hence M(¬x) has an accepting path y with
|y| = q(|¬x|). Thus for z = 〈x, y〉 it holds that |z| = 2(|x|+ q(|¬x|) + 2) = |x′| and f ′(z) = x′.
This contradicts the observation ¬∃z ∈ Σ≤|x

′|f ′(z) = x′.
“⊇”: Let x′ belong to the rhs of (3). Hence t′ 6= x′ = 〈x, 0q(|¬x|)〉 for some x ∈ TAUT

and ¬x /∈ B. It follows that x′ ∈ TAUT′. Assume x′ /∈ f ′id, i.e., ∃z ∈ Σ≤|x
′|f ′(z) = x′. From

¬x /∈ B it follows that f ′(z) is not defined according to the first line in the definition of f ′. It is
also not defined according to the second line, since otherwise |z| = |〈x, y〉| = 2(|x|+ |y|+ 2) >
2(|x|+ q(|¬x|) + 2) = |x′| contradicting z ∈ Σ≤|x

′|. Hence f ′(z) is defined according to the third
line, but this contradicts t′ 6= x′.

This finishes the proof of (3). It follows that

x′ ∈ f ′id ⇔ x′ 6= t′ ∧ x′ = 〈x, 0q(|¬x|)〉 ∧ ¬x ∈ SAT ∪B.

Hence f ′id≤
p
mSAT ∪B (observe that SAT∪B 6= ∅). Therefore, f ′id is not ≤p

m-complete for coNP.
2

3.3 Infinitely Often P/poly Reducibility

We consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤io-p/poly
m -complete

for NP. This is equivalent to say that the union of disjoint sets from NPCp
m is ≤io-p/poly

m -complete
for NP. We prove several characterizations of this hypothesis, e.g., NP 6= coNP.

Theorem 3.8 The following statements are equivalent:

1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPC
io-p/poly
m .

2. For all A,B ∈ NPCp
m with A ∩B = ∅ it holds A ∪B ∈ NPC

io-p/poly
m .

3. NP 6= coNP (i.e., polynomially bounded pps do not exist).

16

Proof The implication 2 ⇒ 3 can be shown by proving the contraposition: NP = coNP

implies SAT ∈ NP, but SAT ∪ SAT /∈ NPC
io-p/poly
m . We argue for the implication 1 ⇒ 2 and

show that from 1 it even follows that for all A ∈ NPCp
m and all B ∈ NP with A ∩ B = ∅

it holds A ∪ B ∈ NPC
io-p/poly
m . Let A ∈ NPCp

m and B ∈ NP be disjoint. Then SAT≤p
mA

via some f ∈ FP. Define B′ = f−1(B). Then B′≤p
mB via f and thus B′ ∈ NP. Hence

SAT ∪ B′ ∈ NPC
io-p/poly
m by 1. Moreover, SAT ∪ B′≤p

mA ∪ B via f . Then by Proposition 2.7,

for all C with C≤io-p/poly
m SAT ∪B′ it holds C≤io-p/poly

m A ∪B, wherefore A ∪B ∈ NPC
io-p/poly
m .

Finally, we consider the implication 3 ⇒ 1. Assume NP 6= coNP. First we show that for
each pps f and each polynomial p it holds TAUT ∩ fp 6= ∅:

It follows from 3 that SAT /∈ NP. Assume there exists a pps f and a polynomial p such that
for all ϕ ∈ TAUT it holds ϕ ∈ f(Σ≤p(|ϕ|)). Then B := {(ϕ, x) | ϕ ∈ TAUT, f(x) = ϕ} ∈ P and
ϕ ∈ TAUT if and only if there exists some x ∈ Σ≤p(|ϕ|) with (ϕ, x) ∈ B. Hence TAUT ∈ NP
and thus SAT ∈ NP, which is a contradiction to NP 6= coNP.

Let B ∈ NP be disjoint to SAT. We show SAT≤io-p/poly
m SAT ∪ B. According to Proposi-

tion 2.12 it suffices to prove the existence of an f ∈ FP/poly which for infinitely many n ∈ N
satisfies x ∈ SAT⇔ f(x) ∈ SAT ∪B for all x ∈ Σn. We define

f(x) =

{
x ∨ ¬w|x| if w|x| 6= ε

x otherwise,

where wn is the advice string of length n.
Now we construct the advice strings. Let p0, p1, . . . be an enumeration of all polynomials

and f0, f1, . . . an enumeration of all pps. Note that we do not require these enumerations to be
effective. In the following we construct sets T0 (T1 (. . . that are subsets of TAUT with at
most one element of any length.

1. Let n = 1, i = 0, and T0 = ∅.
2. For j = 0 to i:

(a) Choose the smallest x ∈ Σ≥n ∩ TAUT in quasi-lexicographical order with x /∈
fj(Σ

≤pi(|x|)).

(b) Set Tn = Tn−1 ∪ {x} and n = |x|+ 1.

3. Increment i and go to step 2.

Note that due to TAUT ∩ fp 6= ∅ for each pps f and each polynomial p the step 2(a) can
always be executed. Let T = limn∈N Tn. By construction, T ∩ fp 6= ∅ for each pps f and each
polynomial p. Now define the advice string wn to be the unique word of length n in T if T
contains a word of length n. Otherwise define wn = ε.

For a contradiction, assume that for almost all n ∈ N there exists x ∈ Σn with x ∈ SAT⇔
f(x) /∈ SAT ∪ B. As (x ∈ SAT ⇔ f(x) ∈ SAT) and SAT ⊆ SAT ∪ B, there exists k ∈ N such
that for all n ≥ k there exists a word xn of length n with xn /∈ SAT and f(xn) ∈ B.

Let M be a nondeterministic polynomial-time TM accepting B in time r for a polynomial
r. Define the pps

f ′(x, y, z) =

y if M accepts (x ∨ ¬y) via path z, |x| = |y| ≥ k, and 2|x| > |z|
x if 2|x| ≤ |z| and x ∈ TAUT

True otherwise.

Let q be a polynomial such that for all x, y ∈ Σn for an n ∈ N it holds |x ∨ ¬y| ≤ q(n). We
show that all tautologies y ∈ T have proofs of length ≤ 2 · (2|y|+ r(q(|y|)) + 1) in f ′. It suffices

17

to show this for each tautology y ∈ T with n := |y| ≥ k. Recall xn /∈ SAT, |xn| = n, and
f(xn) = xn ∨ ¬y ∈ B. Choose an accepting path z of M on input xn ∨ ¬y. By definition,
f ′(xn, y, z) = y and |(xn, y, z)| ≤ 2 · (2n+ r(q(n)) + 1), a contradiction as T intersects with fp
for each pps f and each polynomial p. 2

The following corollary summarizes the state of knowledge on the hypothesis studied in this
subsection. It contains the statements from Theorem 3.8 and further equivalent formulations.

Corollary 3.9 The following statements are equivalent:

1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPC
io-p/poly
m .

2. There exists A ∈ NPCp
m,li such that for all B ∈ NP with A ∩ B = ∅ it holds A ∪ B ∈

NPC
io-p/poly
m .

3. There exists A ∈ NPCp
m such that for all B ∈ NP with A ∩ B = ∅ it holds A ∪ B ∈

NPC
io-p/poly
m .

4. For all A ∈ NPCp
m,li and all B ∈ NP with A ∩B = ∅ it holds A ∪B ∈ NPC

io-p/poly
m .

5. For all A ∈ NPCp
m and all B ∈ NP with A ∩B = ∅ it holds A ∪B ∈ NPC

io-p/poly
m .

6. For all A,B ∈ NPCp
m,li with A ∩B = ∅ it holds A ∪B ∈ NPC

io-p/poly
m .

7. For all A,B ∈ NPCp
m with A ∩B = ∅ it holds A ∪B ∈ NPC

io-p/poly
m .

8. NP 6= coNP.

Proof By Theorem 3.8, the statements 1, 7, and 8 are equivalent. Furthermore, in the proof
of Theorem 3.8 the proof of the implication 1 ⇒ 2 also contains a proof for the implication 1
⇒ 5 of this corollary. The following implications are trivial: 1 ⇒ 2, 2 ⇒ 3, 4 ⇒ 2, 5 ⇒ 4, and
7 ⇒ 6.

The implication 6 ⇒ 8 can be proven by showing the contraposition. If NP = coNP, then

SAT, SAT ∈ NPCp
m,li, but SAT ∪ SAT = Σ∗ /∈ NPC

io-p/poly
m .

To finish the proof, it suffices to show 3 ⇒ 8. We prove the contraposition. Assume NP =

coNP. Let A ∈ NPCp
m and choose B = A ∈ coNP = NP. Then A ∪B = Σ∗ /∈ NPC

io-p/poly
m . 2

4 An Oracle with P = UP, ¬Hcpair, and no Complete Sets for
NP ∩ coNP

In this section we construct an oracle O relative to which (i) P = UP and hence UP has
≤p

m-complete sets, (ii) ¬Hcpair, and (iii) NP ∩ coNP has no ≤p
m-complete sets. This answers

open questions asked by Pudlák [Pud17], who lists a number of hypotheses and asks for oracles
showing that any pairs of corresponding relativized conjectures are different. Our oracle shows
that (i) DisjNP does not imply UP in a relativized way and (ii) NP ∩ coNP does not imply UP
in a relativized way, where DisjNP is ¬Hcpair and UP (resp., NP ∩ coNP) is the assertion that
UP (resp., NP ∩ coNP) does not have ≤p

m-complete sets.
In particular, the relativizations of the hypotheses DisjNP and UP are different. Since DisjNP

implies several further hypotheses, the following hypotheses are also different from UP relative

18

to oracle O: CON, CON ∨ SAT, RFN1
4, and P 6= NP. We refer to [Pud17] for the definition

of these hypotheses and consider CON more closely. CON is the assertion that no P-optimal
propositional proof system exists and as it is implied by ¬Hcpair, it holds relative to O. Thus the
non-existence of a P-optimal proof system does not imply the non-existence of a ≤p

m-complete
set for UP in a relativized way. This is of particular interest as the converse implication holds
relative to all oracles [KMT03]. So the relativized hypotheses UP and CON are different, but
not independent.

The proof of the following theorem uses ideas by Rackoff [Rac82].

Theorem 4.1 There exists an oracle O with the following properties.

1. DisjNPO has no pair that is ≤p,O
m -hard for NPO ∩ coNPO.

2. PO = UPO.

As an immediate consequence we obtain:

Corollary 4.2 The following holds for the oracle O constructed in Theorem 4.1.

1. DisjNPO has no ≤pp,O
m -complete pairs.

2. Relative to O there are no optimal pps.

3. NPO ∩ coNPO has no ≤p,O
m -complete sets.

4. UPO has ≤p,O
m -complete sets.

Proof of Theorem 4.1 Let M0,M1, . . . be a standard enumeration of nondeterministic,
polynomial-time oracle Turing machines. Let F0, F1, . . . be a standard enumeration of deter-
ministic, polynomial-time oracle Turing transducers. Choose a C ⊆ N that is ≤p

m-complete for
PSPACE such that all elements in C have odd length. Let e(0) = 2 and e(n + 1) = 22e(n)

for
n ∈ N. Define the following sets for p ∈ P≥3 and an oracle D ⊆ N.

AD
p = {0e(pk) | k ≥ 1 and there exists an even x ∈ D such that |x| = e(pk)} ∪ {0e(pk) | k ≥ 1}

BD
p = {0e(pk) | k ≥ 1 and there exists an odd x ∈ D such that |x| = e(pk)}

Note that if for each k ≥ 1 it holds

∃ an even x ∈ D ∩ Σe(pk) ⇔ ¬∃ an odd x ∈ D ∩ Σe(pk),

then AD
p = BD

p and hence AD
p ∈ NPD ∩ coNPD.

Preview of construction: On the one hand, the construction tries to prevent that L(Mi) and
L(Mj) for i 6= j are disjoint. If this is not possible, Mi and Mj inherently accept disjoint sets.
In this case, for a suitable p ∈ P≥3, the construction makes sure that Ap is in NP ∩ coNP and
does not ≤p

m-reduce to (L(Mi), L(Mj)). This prevents the existence of disjoint NP-pairs that

are ≤pp,O
m -hard for NPO ∩ coNPO. On the other hand, the construction tries to prevent that Mi

has the uniqueness property, i.e., for all x, the computation Mi(x) has at most one accepting
path. If this is not possible, then Mi inherently has the uniqueness property, which enables us
to show that L(Mi) is in P relative to the final oracle.

During the oracle construction we maintain a growing collection of properties that we de-
mand in the further construction. The collection is represented by a function t and if an oracle

4Khaniki [Kha18] recently proved RFN1 ⇒ CON ∨ SAT and thus the two hypotheses RFN1 and CON ∨ SAT
are equivalent.

19

satisfies the properties defined by t, then we call it t-valid. More precisely, we start with the
nowhere defined function t0 : N×N→ P≥3 ∪ {0, 1}, which defines no property. We successively
continue this function and obtain t1, t2, . . ., which have a finite, but growing domain, and which
belong to the set

T = {t : N× N→ P≥3 ∪ {0, 1} | dom(t) is finite and t is injective on {x | t(x) > 1}}.

At the end of the construction we reach the total function t = limi→∞ ti.
An oracle w ∈ Σ∗ is t-valid, where t ∈ T , if the following hold:

V1: For all (i, j) ∈ dom(t), if i 6= j and t(i, j) = 0, then there exists z such that Mw
i (z) and

Mw
j (z) definitely accept.

(meaning: L(Mv
i) ∩ L(Mv

j) 6= ∅ for all v w w)

V2: For all (i, j) ∈ dom(t), if i 6= j and t(i, j) = p ∈ P≥3, then

1. Aw
p ∩Bw

p = ∅
2. for all k ≥ 1 with |w| > z for all z of length e(pk), there exists x ∈ w with |x| = e(pk).

(meaning: relative to the final oracle it holds Ap = Bp)

V3: For all (i, j) ∈ dom(t), if i = j and t(i, i) = 0, then there exists z such that Mw
i (z) has

more than one path that definitely accepts.
(meaning: Mv

i violates the uniqueness property for all v w w)

V4: If x < |w| and |x| is odd, then x ∈ w ⇔ x ∈ C.
(meaning: w and C coincide for words of odd length)

V5: If x ∈ w and |x| is even, then there exists n ≥ 1 such that |x| = e(n).
(meaning: if a word in w has even length, then it has length e(n) for some n)

This definition directly implies the following claims.

Claim 4.3 Let t, t′ ∈ T such that t′ is a continuation of t. If w is t′-valid, then w is t-valid.

Claim 4.4 Let t ∈ T and u v v v w be oracles such that u and w are t-valid. Then v is
t-valid.

Claim 4.5 For every t ∈ T and every t-valid w there exists b ∈ {0, 1} such that wb is t-valid.
More precisely, for z = |w| the following holds.

1. If |z| is odd, then for each b ∈ {0, 1} it holds that wb is t-valid if and only if b = C(z).

2. If |z| is even, then the following holds.

(a) If |z| = e(pk) for some prime p ∈ ran(t) and there exists no word x ∈ w of length
e(pk), then w1 is t-valid.

(b) If z 6= 1e(p
k) for all primes p ∈ ran(t) and all k ≥ 1 or if there exists a word x ∈ w

with |x| = |z|, then w0 is t-valid.

Oracle construction: Let t0 be the nowhere defined function and w0 = ε, which is t0-valid.
We construct a sequence of partially defined oracles w0 vp w1 vp · · · and a sequence t0, t1, . . .
of functions from T such that wi is ti-valid and ti+1 is a continuation of ti for all i. The final
oracle is O = limi→∞wi. Each step treats the first task in our task list T and removes this and

20

possibly other tasks from the list. At the beginning, T is an enumeration of all (i, j) ∈ N2 and
all (i, j, r) ∈ N3 − {(i, i, r) | i, r ∈ N} in an order having the property that (i, j) appears earlier
than (i, j, r). We describe step s > 0, which starts with a ts−1-valid oracle ws−1 and extends it
to a ts-valid ws wp ws−1.

• task (i, j) with i 6= j: Let t′ = ts−1∪{(i, j) 7→ 0}. If there exists a t′-valid v wp ws−1, then let
ts = t′, ws = v, and remove all tasks (i, j, ·) from T . Otherwise choose p ∈ P≥3− ran(ts−1)
such that p > |ws−1| and let ts = ts−1 ∪{(i, j) 7→ p} and ws = w′ for a ts-valid w′ wp ws−1,
which exists by Claim 4.5, since ws−1 is ts-valid by the choice of p.
(meaning: force L(MO

i)∩L(MO
j) 6= ∅ if possible, otherwise choose a suitable prime p and

make sure that Ap = Bp with respect to the final oracle; corresponds to V1 and V2 in the
definition of t-valid)

• task (i, i): Let t′ = ts−1 ∪ {(i, i) 7→ 0}. If there exists a t′-valid v wp ws−1, then let ts = t′

and ws = v. Otherwise ts = ts−1 ∪ {(i, i) 7→ 1} and ws = w′ for a ts-valid w′ wp ws−1,
which exists by Claim 4.5, since ws−1 is ts-valid.
(meaning: destroy the uniqueness property of Mi if possible, otherwise define ts(i, i) = 1,
which indicates that Mi inherently has the uniqueness property; corresponds to V3 in the
definition of t-valid)

• task (i, j, r) with i 6= j: It holds that ts−1(i, j) = p ∈ P≥3. Let ts = ts−1 and choose a
ts-valid ws wp ws−1 such that for a suitable 0n at least one of the following holds.

– 0n ∈ Aws
p , Fws

r (0n) is defined, and its output is definitely rejected by Mws
i

– 0n ∈ Bws
p , Fws

r (0n) is defined, and its output is definitely rejected by Mws
j

(meaning: Fr does not realize a reduction Ap≤p
m(L(Mi), L(Mj)))

Claim 4.6 For all s ≥ 1, the construction of ws and ts in step s is possible and ws is ts-valid.

Proof For a contradiction, assume that the statement is wrong and choose the smallest step
s where the claim fails. There are two cases:

Step s treats task (i, j) for i, j ∈ N: Hence ts−1(i, j) is not defined, since it can only be
defined by the unique treatment of task (i, j). Therefore, t′ can be defined as specified, which
shows that the construction in step s is possible (cf. description of task (i, j)).

Step s treats task (i, j, r) with i 6= j: Here ts = ts−1 and ts(i, j) = p ∈ P, since otherwise
the earlier task (i, j) had removed (i, j, r). We argue that the choice of the specified ts-valid ws

is possible, which shows that the construction in step s is possible and which contradicts the
assumption.

Choose k large enough such that for n = e(pk) it holds that n is large enough to apply
Corollary 2.15, ws−1 is not defined for all words of length ≥ n and e(n+1) > (nr + r)i+j + i+ j.
Choose a ts-valid w′ w ws−1 that is defined for all words of length < n and undefined for all
words of length ≥ n (w′ exists by Claim 4.5). By Corollary 2.15 applied for D = C ∪ w′, there
exist an even x ∈ Σn and an odd y ∈ Σn such that at least one of the statements 1-3 holds.

If statement 1 holds, then define ws as the minimal w′′ wp w′ that satisfies V4, that contains
x, and that is defined for all words of length ≤ (nr + r)i + i. The latter makes sure that the
computations Fws

r (0n) and Mws
i (Fws

r (0n)) are defined and will not change when we extend ws.
As e(n+ 1) > (nr + r)i + i and x is the only word of length n in ws, the oracle ws satisfies V2.
Furthermore, ws = w′∪{x}∪(C∩Σ≤(nr+r)i+i) when interpreting w′ and ws as sets, i.e., x is the
only word of even length that we added to the oracle. Recall that w′ is a ts-valid oracle defined

21

for all words of length < n and undefined for all other words. We show that ws is ts-valid as
well. We have already seen that the oracle satisfies V2. It still satisfies V5. Moreover, V4 is
satisfied by the definition of ws. The remaining conditions V1 and V3 are not affected by the
extension w′ vp ws. Hence ws is ts-valid. 0n ∈ Aws

p , since x ∈ ws. The computation Fws
r (0n) is

defined and by statement 1 of Corollary 2.15, its output is definitely rejected by Mws
i . Thus we

have seen that if statement 1 holds, then the construction in step s is possible. For statement
2 this is shown analogously.

It remains to show that statement 3 cannot hold. Otherwise, for z = F
w′∪{x,y}∪C
r (0n) it

holds that z ∈ L(M
w′∪{x,y}∪C
i) ∩ L(M

w′∪{x,y}∪C
j). Consider the smallest step s′ where ts′(i, j)

is defined. This step extends ts′−1 such that ts′ = ts′−1 ∪ {(i, j) 7→ p}. Thus we have s′ ≤ s− 1
and ws′−1 vp ws′ v ws−1 v w′. We know that w′ is ts-valid and hence ts′−1-valid. Choose the
minimal v w w′ that satisfies V4, that contains x and y, and that is defined for all words of
length ≤ (nr + r)i+j + i + j. Then Mv

i (z) and Mv
j (z) definitely accept. By interpreting w′

and v as sets, we have v = w′ ∪ {x, y} ∪ (C ∩ Σ≤(nr+r)i+j+i+j), i.e., x, y are the only words of
even length that we added to the oracle. We know that w′ is a ts′−1-valid oracle defined for
all words of length < n and undefined for all other words. Now we show that v is ts′−1-valid
as well. Due to e(n + 1) > (nr + r)i+j + i + j, v satisfies V2.2. It also satisfies V2.1, since
|x| = |y| = e(pk) with p /∈ ran(ts′−1). After adding x, y, and the necessary words from C,
the oracle still satisfies V4 and V5 in the definition of ts′−1-valid, since |x| = |y| = e(pk). The
remaining conditions V1 and V3 are not affected by the extension w′ vp v. Hence v is ts′−1-
valid and even t′-valid for t′ = ts′−1 ∪ {(i, j) 7→ 0}, since Mv

i (z) and Mv
j (z) definitely accept.

Therefore, step s′ defines ts′ = t′ and chooses the oracle in an appropriate way (e.g., ws′ = v),
which contradicts ts′(i, j) = p. This shows that statement 3 cannot hold.

Thereby we have shown that in the steps treating tasks (i, j, r), the choice of the specified
ts-valid ws is possible, which contradicts the assumption. 2

Let O = lims→∞ws be the oracle obtained by the whole construction. It is totally defined,
since each step strictly extends the oracle.

Claim 4.7 DisjNPO has no pairs that are ≤pp,O
m -hard for NPO ∩ coNPO.

Proof Assume there exists such a pair (L(MO
i), L(MO

j)). From L(MO
i)∩L(MO

j) = ∅ it follows
that for all s there is no z such that Mws

i (z) and Mws
j (z) definitely accept. Hence ts(i, j) 6= 0

for all s for which ts(i, j) is defined. Let s be the step that treats task (i, j). Thus for all s′ ≥ s
it holds ts′(i, j) = p ∈ P≥3, which by V2 implies AO

p = BO
p ∈ NPO ∩ coNPO. Thus there exists

an r such that (AO
p , B

O
p)≤pp,O

m (L(MO
i), L(MO

j)) via FO
r . Let s′ be the step that treats task

(i, j, r). This step makes sure that for a suitable 0n at least one of the following holds:

• 0n ∈ Aws′
p , F

ws′
r (0n) is defined, and its output is definitely rejected by M

ws′
i .

• 0n ∈ Bws′
p , F

ws′
r (0n) is defined, and its output is definitely rejected by M

ws′
j .

The first (resp., second) assertion implies the first (resp., second) of the two following statements.

• 0n ∈ AO
p and FO

r (0n) is rejected by MO
i

• 0n ∈ BO
p and FO

r (0n) is rejected by MO
j

This contradicts the choice of r. 2

The proof of the following claim is based on a proof by Rackoff [Rac82, Theorem 4].

22

Claim 4.8 PO = UPO.

Proof Let L ∈ UPO and choose i such that L = L(MO
i) and MO

i has the uniqueness property.
Moreover, choose the smallest s such that ts(i, i) is defined and note that ts(i, i) = 1.

Consider the computation of Mi(x), where the oracle is not specified. P is called potential
accepting path if there exists an oracle D such that P is an accepting path of MD

i (x). For
sets Q,U,W,W ′ (which will be defined in the following algorithm) we say that P respects
(Q,U,W,W ′) if it answers yes to questions in C∪Q∪W , no to questions in W ′, no to questions
not in C ∪Q ∪ U , and consistently to questions in U − (W ∪W ′). Moreover, P all (resp., P yes,
P no) denotes the set of all (resp., positively answered, negatively answered) queries of P .

We show that the following algorithm decides L.

1. Input: x ∈ N
2. Let m = |x|.
3. If m is not large enough such that m ≥ 4, mi + i < 2m,

and ws−1 is undefined for all words of length ≥log m:

4. If x ∈ L, then Accept, else Reject.

5. Let n be the unique number such that e(n− 1) ≤ log m < e(n).
6. Let Q = {q ∈ O | |q| even and |q| < e(n)}.
7. If n = pk for some k ≥ 1 and some p ∈ ran(ts−1) ∩ P≥3:
8. Let U = {z ∈ N | |z| = e(n) and z odd} and W = W′ = ∅.
9. If SEARCH returns True, then Accept.

10. Let U = {z ∈ N | |z| = e(n) and z even} and W = W′ = ∅.
11. If SEARCH returns True, then Accept.

12. Reject.

13. If n 6= pk for all k ≥ 1 and p ∈ ran(ts−1) ∩ P≥3:
14. Let U = {z ∈ N | |z| = e(n)} and W = W′ = ∅.
15. If SEARCH returns True, then Accept.

16. Reject.

17. subroutine SEARCH

18. For j = 0 to 4(mi + i):
19. If there is no potential accepting path respecting (Q, U, W, W′),

then return False, else let P be such a path.
20. For each z ∈ Pall with |z| = e(n):
21. Ask whether z ∈ O.

22. If z ∈ O− U, then return False.

23. If z ∈ O ∩ U, then add z to W.

24. If z ∈ O ∩ U, then add z to W′.
25. If P still respects (Q, U, W, W′), then return True.

26. Return False.

Observe that once line 5 has been executed, it holds

mi + i < e(n+ 1). (4)

We argue that in presence of oracle O, the algorithm can be implemented as a polynomial time
algorithm: It suffices to argue for the lines 6, 7–12, 13–16, and 17–26.

Line 6: Because of line 3 we may assume that m is large enough such that mi + i < 2m

and ws−1 is undefined for all words of length e(n). Hence (4) shows that Mi(x) cannot ask
queries of length ≥ e(n + 1). Recall that each word in O − C has a length e(j) for some j.

23

Thus the set Q consists of all words in O − C that have length e(j) for some j ≤ n− 1 . From
1 + e(n− 1) ≤ 1 + logm we obtain 21+e(n−1) ≤ 2m and hence |

⋃n−1
j=0 Σe(j)| ≤ 2m, which shows

that with access to oracle O we can ask “q ∈ O?” for all q ∈
⋃n−1

j=0 Σe(j) in polynomial time in
|x|. Hence line 6 only requires polynomial time in |x|.

Lines 7–12 and 13–16: Note that we introduce the set U in the lines 8, 10, and 14 only
for better readability. These sets never have to be computed explicitly, since it can be easily
checked whether some query of Mi(x) is in U .

It remains to argue for the lines 17–26, i.e., subroutine SEARCH. Testing the membership
to Q, U , W , and W ′ is possible in polynomial time without oracle access. Hence, since C ∈
PSPACE, we can determine in polynomial space without oracle access (whether there exists)
a potential accepting path respecting (Q,U,W,W ′). As PSPACE ⊆ PC ⊆ PO, the subroutine
SEARCH requires polynomial time in |x| when having access to the oracle O.

First we show that if the algorithm accepts, then x ∈ L. This is true, if it accepts in line 4.
So assume now that it accepts in the lines 9, 11, or 15. Hence in these lines, SEARCH returns
True. We have a closer look at these calls of SEARCH. Recall that O consists of C and elements
of even length e(j) for some j ∈ N. Due to (4) MO

i (x) cannot ask queries of length ≥ e(n+ 1).

Hence MO
i (x) = M

C∪Q∪(O∩Σe(n))
i (x). By the lines 23–24, during the execution of SEARCH it

always holds that W,W ′ ⊆ U , W ⊆ O, and W ′ ⊆ O. Moreover, each time we reach line 25 it
holds that

P all ∩ Σe(n) ⊆W ∪W ′ ∪ (O − U). (5)

Consider the loop 18–25 at the iteration that in line 25 returns True. Hence in line 25 it holds
that P respects (Q,U,W,W ′). Therefore, on P we have the following cases for queries q and
their answers:

• If |q| < e(n), then the answer is (C ∪Q)(q) = O(q).

• If |q| > e(n), then the answer is C(q) = O(q).

• If |q| = e(n) and q ∈W , then the answer is 1 = O(q).

• If |q| = e(n) and q ∈W ′, then the answer is 0 = O(q).

• If |q| = e(n) and q ∈ O − U , then the answer is 0 = O(q).

By (5), the cases (|q| = e(n) ∧ q ∈ U − (W ∪W ′)) and (|q| = e(n) ∧ q ∈ O − U) are impossible.
Hence, in the considered execution of line 25, P is an accepting path of MO

i (x), which implies
x ∈ L. This shows that if the algorithm accepts x, then x ∈ L.

It remains to argue that if x ∈ L, then the algorithm accepts x. From now on we assume
x ∈ L. Without loss of generality we assume that the algorithm on input x does not stop in
line 3. Thus m ≥ 4, mi + i < 2m, and ws−1 is undefined for all words of length ≥ logm (and
thus in particular for all words of length e(n)). Thus the number n in line 5 exists. We consider
two cases:

Case 1: 4(mi + i) ≥ 2e(n).
Assume that the algorithm does not accept, i.e., it rejects. We show that this implies a contra-
diction. The assumption that the algorithm does not stop in line 4 implies that it stops in the
lines 12 or 16. Note that if the algorithm stops in line 12, then 0e(n) /∈ AO

p or 0e(n) /∈ BO
p , since

p ∈ ran(ts−1) ∩ P≥3 and hence AO
p ∩BO

p = ∅ by V2.1. We have to consider the following cases.

Case 1a: The algorithm stops in line 12 and 0e(n) /∈ AO
p . Here we continue the argumen-

tation by choosing U = {z ∈ N | |z| = e(n) and z odd} and having a closer look at the call of
SEARCH in line 9, which returns False.

24

Case 1b: The algorithm stops in line 12 and 0e(n) /∈ BO
p . Here we continue the argumen-

tation by choosing U = {z ∈ N | |z| = e(n) and z even} and having a closer look at the call of
SEARCH in line 11, which returns False.

Case 1c: The algorithm stops in line 16. Here we continue the argumentation by choosing
U = {z ∈ N | |z| = e(n)} and having a closer look at the call of SEARCH in line 15, which
returns False.

We argue for the Cases 1a, 1b, and 1c in parallel. Note that in each case it holds O∩Σe(n) ⊆
U . By the lines 23–24, during the considered call of SEARCH it always holds that W,W ′ ⊆ U ,
W ⊆ O, and W ′ ⊆ O. As x ∈ L, the computation MO

i (x) has an accepting path P ′. P ′ respects
(Q,U,W,W ′) each time we reach line 19, since there are the following cases for queries q:

• If q ∈ C ∪Q ∪W , then the answer is O(q) = 1, since C ∪Q ∪W ⊆ O.

• If q ∈W ′, then the answer is O(q) = 0, since W ′ ⊆ O.

• If q /∈ C ∪ Q ∪ U , then the answer is O(q) = 0, since |q| < e(n + 1) and O ∩ Σ<e(n+1) =
C ∪Q ∪ (O ∩ Σe(n)) ⊆ C ∪Q ∪ U .

• If q ∈ U − (W ∪W ′), then multiple queries q are answered consistently by O(q).

Hence the considered call of SEARCH cannot return False in line 19. Moreover, by O∩Σe(n) ⊆
U , it cannot return False in line 22. Thus the considered call of SEARCH returns False in
line 26. In particular, the loop 18–25 is executed exactly 4(mi + i) + 1 times and in each
execution of line 25, P does not respect (Q,U,W,W ′) anymore. The latter implies that each
execution of the loop increases |W ∪W ′| at least by 1. Hence, when reaching line 26 it holds
|W ∪W ′| > 4(mi + i) ≥ 2e(n). This is a contradiction, since W ∪W ′ ⊆ U ⊆ Σe(n).

Case 2: 4(mi + i) < 2e(n).
Define the following predicate.

All potential accepting paths P1, P2 that respect (Q,U,W,W ′) and that satisfy
P all

1 ∩ (U − (W ∪W ′)) 6= ∅ and P all
2 ∩ (U − (W ∪W ′)) 6= ∅ have a query from

U − (W ∪W ′) in common, i.e., P all
1 ∩ P all

2 ∩ (U − (W ∪W ′)) 6= ∅.
(6)

We show the following assertions for Q = {q ∈ O | |q| even and |q| < e(n)}.

If n = pk for p ∈ ran(ts−1)∩P≥3 and k ≥ 1, 0e(n) /∈ AO
p , U = {z | |z| = e(n) and z odd},

W ⊆ O ∩ U , W ′ ⊆ O ∩ U , and 4(mi + i) < 2e(n), then (6) holds.
(7)

If n = pk for p ∈ ran(ts−1)∩P≥3 and k ≥ 1, 0e(n) /∈ BO
p , U = {z | |z| = e(n) and z even},

W ⊆ O ∩ U , W ′ ⊆ O ∩ U , and 4(mi + i) < 2e(n), then (6) holds.
(8)

If n 6= pk for all p ∈ ran(ts−1)∩P≥3 and all k ≥ 1, U = {z ∈ N | |z| = e(n)}, W ⊆ O∩U ,
W ′ ⊆ O ∩ U , and 4(mi + i) < 2e(n), then (6) holds.

(9)

By symmetry, if suffices to prove (7) and (9). We start with the proof of (7). Suppose there exist
potential accepting paths P1, P2 that respect (Q,U,W,W ′), that satisfy P all

1 ∩(U−(W∪W ′)) 6= ∅
and P all

2 ∩ (U − (W ∪W ′)) 6= ∅, and that have no query from U − (W ∪W ′) in common. Hence
P1 and P2 are different paths. Let Y = (P yes

1 ∪ P yes
2) ∩ Σ≥e(n) and N = (P no

1 ∪ P no
2) ∩ Σ≥e(n).

Note Y ⊆ U ∪ C (cf. (4)).
We argue for Y ∩ N = ∅. Assume there exists some q ∈ Y ∩ N . Hence |q| ≥ e(n). If

|q| > e(n), then q ∈ Y ⊆ U ∪ C implies q ∈ C, which contradicts q ∈ N , since both paths
respect (Q,U,W,W ′). From now on assume |q| = e(n). From the fact that P1 and P2 respect
(Q,U,W,W ′) we obtain:

25

• If q /∈ U , then it holds that q /∈ P yes
1 and q /∈ P yes

2 , which contradicts q ∈ Y .

• If q ∈W , then it holds that q /∈ P no
1 and q /∈ P no

2 , which contradicts q ∈ N .

• If q ∈W ′, then it holds that q /∈ P yes
1 and q /∈ P yes

2 , which contradicts q ∈ Y .

• If q ∈ U − (W ∪W ′), then q ∈ P yes
1 ∩ P no

2 or q ∈ P no
1 ∩ P

yes
2 , and hence P1 and P2 have a

common query from U − (W ∪W ′), which contradicts the assumption.

This shows Y ∩N = ∅.
Let u w ws−1 such that u(z) = O(z) for all words z with |z| < e(n) and u is undefined for

all other words. According to the Claims 4.3 and 4.4, the oracle u is ts−1-valid. Consider the
minimal v wp u that satisfies V4, that contains all words in Y , that contains at least one word

from U −N (which is a nonempty set, since |N | ≤ 2(mi + i), |U | = 2e(n)−1, and by assumption
4(mi + i) < 2e(n)), and that is defined for all words of length ≤ max{mi + i, e(n)}. The non-
emptiness of U −N is the reason for the distinction of the Cases 1 and 2. Note that v ∩N = ∅.
Moreover, v contains all words in Q, since these words are in u. The oracle v satisfies V2.1,
since u is ts−1-valid, e(n + 1) > max(e(n),mi + i) (cf. (4)), and the words of even length that
we added to the oracle all belong to U (recall Y ⊆ U ∪C for the last property). It also satisfies
V2.2, since we added at least one word from U − N . Moreover, v satisfies V5, since we only
added such words of even length that are in U ⊆ Σe(n). Finally, V1 and V3 are not affected by
adding words from U to the oracle. Thus v is ts−1-valid.

P1 and P2 respect (Q,U,W,W ′) and Y ∩N = ∅. Hence on P1 and P2 we have the following
cases for queries q and their answers:

• If |q| < e(n), then the answer is (C ∪Q)(q) = O(q) = u(q) = v(q).

• If |q| ≥ e(n) and q ∈ Y , then the answer is 1 = v(q), since Y ⊆ v.

• If |q| ≥ e(n) and q ∈ N , then the answer is 0 = v(q), since v ∩N = ∅.

This shows that P1 and P2 are two different accepting paths of the computation Mv
i (x). Both

paths are definitely accepting, since v is defined for all words of length ≤ mi + i. Thus v is
t′-valid for t′ = ts−1 ∪ {(i, i) 7→ 0}. Hence step s defines ts = t′ and chooses the oracle in an
appropriate way (e.g., ws = v), which contradicts ts(i, i) = 1. This proves (7).

In order to prove (9), we only need to simplify the proof of (7): Suppose there exist potential
accepting paths P1, P2 that respect (Q,U,W,W ′), that satisfy P all

1 ∩ (U − (W ∪W ′)) 6= ∅ and
P all

2 ∩ (U − (W ∪W ′)) 6= ∅, and that have no query from U − (W ∪W ′) in common. Hence P1

and P2 are different paths. Let Y = (P yes
1 ∪P yes

2)∩Σ≥e(n) and N = (P no
1 ∪P no

2)∩Σ≥e(n). Note
Y ⊆ U ∪ C (cf. (4)).

We argue for Y ∩ N = ∅. Assume there exists some q ∈ Y ∩ N . Hence |q| ≥ e(n). If
|q| > e(n), then q ∈ Y ⊆ U ∪ C implies q ∈ C, which contradicts q ∈ N , since both paths
respect (Q,U,W,W ′). From now on assume |q| = e(n), i.e., q ∈ U . From the fact that P1 and
P2 respect (Q,U,W,W ′) we obtain:

• If q ∈W , then it holds that q /∈ P no
1 and q /∈ P no

2 , which contradicts q ∈ N .

• If q ∈W ′, then it holds that q /∈ P yes
1 and q /∈ P yes

2 , which contradicts q ∈ Y .

• If q ∈ U − (W ∪W ′), then q ∈ P yes
1 ∩ P no

2 or q ∈ P no
1 ∩ P

yes
2 , and hence P1 and P2 have a

common query from U − (W ∪W ′), which contradicts the assumption.

26

This shows Y ∩N = ∅.
Let u w ws−1 such that u(z) = O(z) for all words z with |z| < e(n) and u is undefined for

all other words. According to the Claims 4.3 and 4.4, the oracle u is ts−1-valid. Consider the
minimal v wp u that satisfies V4, that contains all words in Y , and that is defined for all words
of length ≤ max{mi + i, e(n)}. Note that v∩N = ∅. Moreover, v contains all words in Q, since
these words are in u. The oracle v satisfies V2, since u is ts−1-valid, n 6= pk for all k ≥ 1 and
p ∈ ran(ts−1) ∩ P≥3, and e(n+ 1) ≥ max{mi + i, e(n)}. Moreover, v satisfies V5, since we only
added such words of even length that are in U = Σe(n). Finally, V1 and V3 are not affected by
adding words from U to the oracle. Thus v is ts−1-valid.

P1 and P2 respect (Q,U,W,W ′) and Y ∩N = ∅. Hence on P1 and P2 we have the following
cases for queries q and their answers:

• If |q| < e(n), then the answer is (C ∪Q)(q) = O(q) = u(q) = v(q).

• If |q| ≥ e(n) and q ∈ Y , then the answer is 1 = v(q), since Y ⊆ v.

• If |q| ≥ e(n) and q ∈ N , then the answer is 0 = v(q), since v ∩N = ∅.

This shows that P1 and P2 are two different accepting paths of the computation Mv
i (x). Both

paths are definitely accepting, since v is defined for all words of length ≤ mi + i. Thus v is
t′-valid for t′ = ts−1 ∪ {(i, i) 7→ 0}. Hence step s defines ts = t′ and chooses the oracle in an
appropriate way (e.g., ws = v), which contradicts ts(i, i) = 1. This proves (9).

We continue to argue that the algorithm accepts x. For this we study two subcases.
Case 2a: Assume n = pk for some p ∈ ran(ts−1) ∩ P≥3 and k ≥ 1. Then AO

p ∩ BO
p = ∅

due to V2.1. Consider the lines 8 and 9 (here U = {z ∈ N | |z| = e(n) and z odd}). Without
loss of generality 0e(n) /∈ AO

p (otherwise 0e(n) /∈ BO
p and it can be argued symmetrically), i.e., O

does not contain an even word of length e(n). Hence O − U contains no words of length e(n)
and thus the subroutine SEARCH does not return False in line 22. Since x ∈ L, there exists an
accepting path P ′ of MO

i (x).
Observe that for all W ⊆ O ∩ U and W ′ ⊆ O ∩ U it holds that P ′ is a potential accepting

path respecting (Q,U,W,W ′), which is a consequence of the following possibilities how queries
q ∈ P ′all are answered.

• If q ∈ C ∪Q ∪W , then the answer is yes, since C ∪Q ∪W ⊆ O.

• If q ∈W ′, then the answer is no, since W ′ ⊆ O.

• Assume q /∈ C ∪ Q ∪ U . As |q| ≤ mi + i < e(n + 1) by (4), q /∈ Q ∪ U , and O does not
contain an even word of length e(n), it holds that q /∈ O or the length of q is odd. In the
latter case, as q /∈ C and O(q′) = C(q′) for all words q′ of odd length, it holds q /∈ O.
Hence the answer is no.

• If q ∈ U − (W ∪W ′), then multiple queries q are answered consistently by O(q).

By the lines 23–24, during the execution of SEARCH it always holds that W ⊆ O ∩ U and
W ′ ⊆ O ∩ U . Thus, each time we reach line 19 it holds that P ′ is a potential accepting
path respecting (Q,U,W,W ′). Hence line 19 does not return False, but chooses some potential
accepting path P = P1 that respects (Q,U,W,W ′). If P all

1 ∩ (U − (W ∪W ′)) = ∅, then P1 still
respects (Q,U,W,W ′) when reaching line 25 (since the loop 20–24 adds only words from U to
W or W ′), hence SEARCH returns True, the algorithm accepts, and we are done. Otherwise,
we have P all

1 ∩ (U − (W ∪W ′)) 6= ∅. By (7), for each potential accepting path P2 that respects
(Q,U,W,W ′) and that satisfies P all

2 ∩ (U − (W ∪W ′)) 6= ∅ it holds that P1 and P2 have a query

27

q ∈ U − (W ∪W ′) in common. The lines 23–24 add this query to W ∪W ′, which decreases
|P all

2 ∩ (U − (W ∪W ′))| at least by 1. Therefore, if SEARCH does not return True within mi + i
iterations of the loop 18–25, then after this number of iterations, for all potential accepting
paths P2 that respect (Q,U,W,W ′) it holds P all

2 ∩ (U − (W ∪W ′)) = ∅ and hence the next
iteration returns True in line 25. This implies that the loop returns True within mi + i + 1
iterations, which shows that the algorithm accepts.

Case 2b: Assume n 6= pk for all p ∈ ran(ts−1) ∩ P≥3 and all k ≥ 1. Consider the lines 14
and 15 (here U = Σe(n)). Due to the choice of U , the subroutine SEARCH does not return
False in line 22. Since x ∈ L, there exists an accepting path P ′ of MO

i (x).
Observe that for all W ⊆ O ∩ U and W ′ ⊆ O ∩ U it holds that P ′ is a potential accepting

path respecting (Q,U,W,W ′), which is a consequence of the following possibilities how queries
q ∈ P ′all are answered.

• If q ∈ C ∪Q ∪W , then the answer is yes, since C ∪Q ∪W ⊆ O.

• If q ∈W ′, then the answer is no, since W ′ ⊆ O.

• Assume q /∈ C ∪ Q ∪ U . As |q| ≤ mi + i < e(n + 1) by (4) and q /∈ Q ∪ U , it holds that
q /∈ O or the length of q is odd. In the latter case, as q /∈ C and O(q′) = C(q′) for all
words q′ of odd length, it holds q /∈ O. Hence the answer is no.

• If q ∈ U − (W ∪W ′), then multiple queries q are answered consistently by O(q).

By the lines 23–24, during the execution of SEARCH it always holds that W ⊆ O ∩ U and
W ′ ⊆ O ∩ U . Thus, each time we reach line 19 it holds that P ′ is a potential accepting
path respecting (Q,U,W,W ′). Hence line 19 does not return False, but chooses some potential
accepting path P = P1 that respects (Q,U,W,W ′). If P all

1 ∩ (U − (W ∪W ′)) = ∅, then P1 still
respects (Q,U,W,W ′) when reaching line 25 (since the loop 20–24 adds only words from U to
W or W ′), hence SEARCH returns True, the algorithm accepts, and we are done. Otherwise,
we have P all

1 ∩ (U − (W ∪W ′)) 6= ∅. By (9), for each potential accepting path P2 that respects
(Q,U,W,W ′) and that satisfies P all

2 ∩ (U − (W ∪W ′)) 6= ∅ it holds that P1 and P2 have a query
q ∈ U − (W ∪W ′) in common. The lines 23–24 add this query to W ∪W ′, which decreases
|P all

2 ∩ (U − (W ∪W ′))| at least by 1. Therefore, if SEARCH does not return True within mi + i
iterations of the loop 18–25, then after this number of iterations for all potential accepting paths
P2 that respect (Q,U,W,W ′) it holds P all

2 ∩ (U − (W ∪W ′)) = ∅ and hence the next iteration
returns True in line 25. This implies that the loop returns True within mi + i + 1 iterations,
which shows that the algorithm accepts. 2

This completes the proof of Theorem 4.1. 2

5 An Oracle for ¬Hunion and ¬Hcpair

We show that the implication ¬Hunion ⇒ Hcpair cannot be proven in a relativizable way. It
follows from (1) that the same holds for the implication ¬Hunion ⇒ Hopps.

Theorem 5.1 There exists an oracle O with the following properties.

1. DisjNPO has no ≤pp,O
m -complete pairs.

2. There are disjoint sets A and B that are ≤p,O
m -complete for NPO such that A ∪ B is not

≤p,O
m -complete for NPO.

28

Proof Let M1,M2, . . . be a standard enumeration of nondeterministic, polynomial-time oracle
Turing machines. Let F1, F2, . . . be a standard enumeration of deterministic, polynomial-time
oracle Turing transducers.

Define the following sets for i, j, k ∈ N, p ∈ P≥3, and an oracle D ⊆ N.

KD = {〈0i, 0j , x〉 | MD
i (x) accepts within j steps}

AD
p = {0pk | k ≥ 1 and there exists an even x ∈ D such that |x| = pk}

BD
p = {0pk | k ≥ 1 and there exists an odd x ∈ D such that |x| = pk}

ΓD = {0n | ∃y∈Σny ∈ D} ∈ NPD

∆D = {〈0i, 0j , x〉 | ∃
y∈Σ|〈0i,0

j ,x〉|〈0i, 0j , x〉y ∈ D} ∈ NPD

Observe that KD is ≤p,D
m -complete for NPD. Moreover, note that for all primes p the sets AD

p

and BD
p are disjoint if for all k ∈ N+ it holds D ∩ {y | |y| = pk} ≤ 1.

Preview of construction: On the one hand, the construction tries to prevent that L(Mi) and
L(Mj) for i 6= j are disjoint. If this is not possible, Mi and Mj inherently accept disjoint sets.
In this case, for a suitable p ∈ P, the construction makes sure that (Ap, Bp) does not ≤pp

m -reduce
to (L(Mi), L(Mj)), which prevents the existence of complete disjoint NP-pairs. On the other
hand, the construction diagonalizes against all FP-functions ensuring that Γ does not reduce to
K ∪∆. Statement 2 of the theorem is a simple corollary of this result.

Claim 5.2 For oracles v and w and all y ≤ min(|v|, |w|), if pry(v) = pry(w), then Kw(y) =
Kv(y).

Proof We may assume y = 〈0i, 0j , x〉 for suitable i, j, x, since otherwise Kw(y) = Kv(y) = 0.
For each q that is queried within the first j steps of Mw

i (x) or Mv
i (x) it holds that |q| ≤ j < |y|

and thus q < y. Hence these queries are answered the same way relative to w and v, showing
that Mw

i (x) accepts if and only if Mv
i (x) accepts. 2

During the oracle construction we maintain a growing collection of properties that we de-
mand in the further construction. The collection is represented by a function t and if an oracle
satisfies the properties defined by t, then we call it t-valid. More precisely, we start with the
nowhere defined function t0 : N × N → P≥3 ∪ {0}, which defines no property. We successively
continue this function and obtain t1, t2, . . ., which have a finite, but growing domain. At the
end of the construction we reach the total function t = limi→∞ ti.

Let t ∈ T := {t : N × N → P ∪ {0} | t has finite domain and is injective on supp(t)}. An
oracle w ∈ Σ∗ is t-valid, if for all (i, j) ∈ dom(t):

V1 If i 6= j and t(i, j) = 0, then there exists z such that Mw
i (z) and Mw

j (z) definitely accept.
(meaning: L(Mv

i) ∩ L(Mv
j) 6= ∅ for all v w w)

V2 If i 6= j and t(i, j) = p ∈ P≥3, then for all k ≥ 1 it holds that |{x ∈ w | |x| = pk}| ≤ 1.
(meaning: (Aw

p , B
w
p) is a disjoint NPw-pair)

V3 If i = j and t(i, i) = 0, then there is a word 0n such that Fw
i (0n) is defined and 0n ∈ Γv ⇔

Fw
i (0n) /∈ Kv ∪∆v for all v w w.

(meaning: there is no v w w such that F v
i reduces Γv to Kv ∪∆v)

V4 Kw ∩∆w = ∅.

This definition directly implies the following claim.

29

Claim 5.3 Let t, t′ ∈ T such that t′ is a continuation of t. If w is t′-valid, then w is t-valid.

Claim 5.4 Let t ∈ T , w be t-valid, and z = |w|.

1. w0 is t-valid.

2. If |z| is odd and no prime power, then w1 is t-valid.

3. If z = 〈0i, 0j , x〉y with 〈0i, 0j , x〉 /∈ Kw and |z| = 2|y|, then w1 is t-valid.

Proof The statements 1 and 2 directly follow from the definition. Statement 3 follows from
Claim 5.2. 2

Oracle construction: Let t0 be the nowhere defined function and w0 = ε, which is t0-valid.
We construct a sequence of partially defined oracles w0 vp w1 vp · · · and a sequence t0, t1, . . .
of functions from T such that wi is ti-valid and ti+1 is a continuation of ti for all i. The final
oracle is O = limi→∞wi. Each step treats the first task in our task list T and removes this
and possibly other tasks from the list. At the beginning, T consists of an enumeration of all
(i, j) ∈ N2 and all (i, j, r) ∈ N3 − {(i′, i′, r′) | i′, r′ ∈ N} in an order having the property that
(i, j) appears earlier than (i, j, r) for all i, j, r with i 6= j. We describe step s > 0, which starts
with a ts−1-valid oracle ws−1 and extends it to a ts-valid ws wp ws−1.

• task (i, j) with i 6= j: Let t′ = ts−1∪{(i, j) 7→ 0}. If there exists a t′-valid v wp ws−1, then let
ts = t′, ws = v, and remove all tasks (i, j, ·) from T . Otherwise choose p ∈ P≥3− ran(ts−1)
such that p > |ws−1| and let ts = ts−1 ∪ {(i, j) 7→ p} and ws = ws−10.
(meaning: force L(MO

i)∩L(MO
j) 6= ∅ if possible, otherwise choose a suitable prime p and

make sure that O contains at most one element of length pk for all k and hence (AO
p , B

O
p)

is a disjoint NPO-pair; corresponds to V1 and V2 in the definition of t-valid)

• task (i, i): Let t′ = ts−1 ∪ {(i, i) 7→ 0} and choose a ts-valid oracle ws wp ws−1.

(meaning: FO
i does not realize a reduction ΓO≤p,O

m KO ∪∆O)

• task (i, j, r) with i 6= j: It holds that ts−1(i, j) = p ∈ P≥3. Let ts = ts−1 and choose a
ts-valid ws wp ws−1 such that for a suitable 0n at least one of the following holds.

– 0n ∈ Aws
p , Fws

r (0n) is defined, and its output is definitely rejected by Mws
i

– 0n ∈ Bws
p , Fws

r (0n) is defined, and its output is definitely rejected by Mws
j

(meaning: FO
r does not realize a reduction (AO

p , B
O
p)≤pp,O

m (L(MO
i), L(MO

j)))

Claim 5.5 For all s ≥ 1, the construction of ws and ts in step s is possible and ws is ts-valid.

Proof For a contradiction, assume that the statement is wrong and choose the smallest step
s where the claim fails. Assume that this step treats a task (i, i). Then ts−1(i, i) is not defined
as it can only be defined by the unique treatment of task (i, i). Therefore, ts can be defined as
specified. We argue that the choice of a ts-valid ws is possible, which contradicts the assumption.

Choose n ∈ N such that n is odd and no prime power, 2n > ni + i, and ws−1 is undefined
for all words of length n. Define z = F

ws−1

i (0n). We study three cases.
First Case: Assume z is not of the form 〈0i, 0j , x〉. In particular z /∈ Kv ∪ ∆v for any

oracle v. By the choice of n there exists y of length n that is not queried by F
ws−1

i (0n). Then
choose ws to be the minimal oracle wp ws−1 that contains y and is defined for all words of length
≤ ni + i. Hence ws = ws−1 ∪ {y} and as n is odd and no prime power, ws is ts−1-valid by

30

Claim 5.4. Since ws = ws−1 ∪ {y}, Fws−1

i (0n) does not query y, and ws is defined for all words
of length ≤ ni + i, it holds F v

i (0n) = z for all v w ws. However, 0n ∈ Γv for all v w ws, since
y ∈ ws. Thus ws is even ts-valid, a contradiction.

From now on assume that z is of the form 〈0i, 0j , x〉, in particular |z| is even by the definition
of the pairing function.

Second Case: It holds |z| ≤ n. As n is odd, it even holds |z| < n. First assume z ∈
Kws−1 ∪ ∆ws−1 . Choose ws w ws−1 to be the minimal oracle defined for all words of length
≤ ni + i, i.e., interpreted as sets, ws−1 and ws are equal. Then by Claim 5.4, ws is ts−1-valid
and it remains to prove that 0n ∈ Γv ⇔ F v

i (0n) /∈ Kv ∪∆v for all v w ws. It holds F v
i (0n) = z

for all v w ws. We know z ∈ Kws−1 ∪∆ws−1 and show z ∈ Kv ∪∆v for all v w ws: if z ∈ Kws−1 ,
then z ∈ Kws , since the sets ws−1 and ws are equal. Then by Claim 5.2, z ∈ Kv for all v w ws.
If z ∈ ∆ws−1 , then z ∈ ∆v even for each v w ws−1. As 0n /∈ Γv for all v w ws, the oracle ws is
ts-valid, a contradiction.

Now assume z /∈ Kws−1 ∪ ∆ws−1 . Let y ∈ Σn be minimal such that it is not queried by
F

ws−1

i (0n) (such a word exists by the choice of n). Choose ws w ws−1 to be the minimal oracle
containing y and being defined for all words of length ≤ 2(ni + i), i.e., interpreting the oracles
as sets it holds ws = ws−1 ∪ {y}. As n is odd and no prime power, Claim 5.4 states that ws is
ts−1-valid. It remains to show that ws is even ts-valid, i.e., 0n ∈ Γv ⇔ F v

i (0n) /∈ Kv ∪∆v for all
v w ws. Clearly 0n ∈ Γv for all such v. Moreover, since ws = ws−1 ∪ {y}, Fws−1

i (0n) does not
query y, and ws is defined for all words of length ≤ ni + i, it holds F v

i (0n) = z for all v w ws.
As ws is defined for all words of length 2(ni + i) ≥ 2|z|, ws = ws−1 ∪ {y}, and |y| = n is odd,
z /∈ ∆v for all v w ws. Recall |z| < n. As prz(ws) equals ws−1 (when interpreting the oracles as
sets), it holds z /∈ Kprz(ws). Then Claim 5.2 yields z /∈ Kv for all v w prz(ws), in particular for
all v w ws. Hence ws is ts-valid, a contradiction.

Third Case: It holds |z| > n and z is of the form 〈0i, 0j , x〉. If z ∈ Kws−1 , then choose
ws w ws−1 to be the minimal oracle defined for all words of length ≤ 2(ni + i), i.e., ws = ws−1

when interpreting the oracles as sets. By Claim 5.4, the oracle ws is ts−1-valid. For all v w ws,
0n /∈ Γv, z /∈ ∆v (note 2(ni + i) ≥ 2|z|), and F v

i (0n) = z. By Claim 5.2, it holds z ∈ Kv for all
v w ws. Hence ws is ts-valid, a contradiction.

We consider the case z /∈ Kws−1 . Choose a word zy for |y| = |z| such that zy is not queried
by F

ws−1

i (0n) (such a word exists by the choice of n). Now let ws w ws−1 be the minimal oracle
containing zy and being defined for all words of length ≤ 2(ni + i), i.e., ws = ws−1 ∪ {zy}
when interpreting the oracles as sets. It can be argued as in the case above that z /∈ Kv for all
v w prz(ws). This allows to apply Claim 5.4.3, which (together with Claim 5.4.1) yields that
ws is ts−1-valid. Clearly 0n /∈ Γv for all v w ws. Furthermore, by the choice of ws it holds
F v
i (0n) = z for all v w ws. However, as zy ∈ ws, it holds z ∈ ∆v for all v w ws. Hence ws is
ts-valid, a contradiction.

Now assume that step s treats a task (i, j) for i, j ∈ N and i 6= j. Hence ts−1(i, j) is not
defined, since it can only be defined by the unique treatment of task (i, j). Therefore, t′ and
ts can be defined as specified, which shows that the construction in step s is possible. If a
t′-valid v wp ws−1 exists, then ws is ts-valid, which contradicts the assumption. Otherwise,
ts = ts−1 ∪ {(i, j) 7→ p} for a prime p chosen according to the construction above and by
Claim 5.4, ws is ts−1-valid. The choice of p implies that ws does not contain words of length pk

for k ≥ 1. Therefore, ws is also ts-valid, which contradicts the assumption.
From now on we assume that step s treats a task (i, j, r) with i 6= j. Here ts = ts−1 and

ts(i, j) = p ∈ P, since otherwise the earlier task (i, j) had removed (i, j, r). We argue that the
choice of the specified ts-valid ws is possible, which shows that the construction in step s is
possible and which contradicts the assumption.

We apply Corollary 2.15 for n = pk, where k is chosen large enough such that the corollary

31

holds for that n and ws−1 is not defined for words of length≥ n. Consider the minimal w′ w ws−1

that is defined for all words of length < n. By Claim 5.4, w′ is ts-valid. By Corollary 2.15, there
exist an even x ∈ Σn and an odd y ∈ Σn such that at least one of the statements 1-3 holds.

If statement 1 holds, then choose the minimal ws wp w′ that contains x and that is defined
for all words of length ≤ (nr + r)i + i. The latter makes sure that the computations Fws

r (0n)
and Mws

i (Fws
r (0n)) are defined and will not change when we extend ws. By interpreting w′ and

ws as sets, we obtain ws = w′ ∪ {x}, i.e., we added exactly the word x to the oracle. Note that
w′ is a ts-valid oracle defined for all words of length < n and undefined for all other words.
After adding x, the oracle still satisfies V2 in the definition of ts-valid, since we only added one
word and w′ contains no word of this length. The remaining conditions V1, V3, and V4 are
not affected by x, since x has odd length. Hence ws is ts-valid. 0n ∈ Aws

p , since x ∈ ws. The
computation Fws

r (0n) is defined and by statement 1 of Corollary 2.15, its output is definitely
rejected by Mws

i . Thus we have seen that if statement 1 holds, then the construction in step s
is possible. For statement 2 this is shown analogously.

It remains to show that statement 3 cannot hold. Otherwise, for z = F
w′∪{x,y}
r (0n) it holds

that z ∈ L(M
w′∪{x,y}
i) ∩ L(M

w′∪{x,y}
j). Consider the smallest step s′ where ts′(i, j) is defined.

This step extends ts′−1 such that ts′ = ts′−1 ∪ {(i, j) 7→ p}. Thus we have s′ ≤ s − 1 and
ws′−1 vp ws′ v ws−1 v w′. We know that w′ is ts-valid and hence ts′−1-valid, by Claim 5.2.
Choose the minimal v w w′ that contains x, y and that is defined for all words of length
≤ (nr + r)i+j + i+ j. Hence Mv

i (z) and Mv
j (z) definitely accept. The interpretation of w′ and v

as sets illustrates v = w∪{x, y}, i.e., we added exactly the words x, y. We know that w′ is a ts′−1-
valid oracle defined for all words of length < n and undefined for all other words. After adding
x and y, the oracle still satisfies V2 in the definition of ts′−1-valid, since |x| = pk /∈ ran(ts′−1).
The remaining conditions V1, V3, and V4 are not affected by x and y, since x and y have
odd length. Hence v is ts′−1-valid and even t′-valid for t′ = ts′−1 ∪ {(i, j) 7→ 0}, since Mv

i (z)
and Mv

j (z) definitely accept. Therefore, step s′ defines ts′ = t′ and chooses the oracle in an
appropriate way (e.g., ws′ = v), which contradicts ts′(i, j) = p. This shows that statement 3
cannot hold.

Thereby we have shown that in steps treating tasks (i, j, r), the choice of the specified ts-valid
ws is possible, which contradicts the assumption. 2

Recall O = lims→∞ws and note that O is totally defined, since each step strictly extends
the oracle.

Claim 5.6 DisjNPO has no ≤pp,O
m -complete pairs.

Proof Assume there exists a ≤pp,O
m -complete (L(MO

i), L(MO
j)) ∈ DisjNPO. From L(MO

i) ∩
L(MO

j) = ∅ if follows that for all s there is no z such that Mws
i (z) and Mws

j (z) definitely accept.
Hence ts(i, j) 6= 0 for all s for which ts(i, j) is defined. Let s be the step that treats task (i, j).
Thus ts′(i, j) = p ∈ P for all s′ ≥ s, which implies that AO

p ∩ BO
p = ∅. Thus there exists an r

such that (AO
p , B

O
p)≤pp,O

m (L(MO
i), L(MO

j)) via FO
r . Let s′ be the step that treats task (i, j, r).

This step makes sure that at least one of the two specified properties holds, which implies that
at least one of the following holds.

• 0n ∈ AO
p and FO

r (0n) is rejected by MO
i

• 0n ∈ BO
p and FO

r (0n) is rejected by MO
j

This contradicts the choice of r. 2

32

Claim 5.7 There exist disjoint sets A,B ∈ NPCp,O
m such that A∪B is not ≤p,O

m -hard for NPO.

Proof First we show that KO ∪∆O is not ≤p,O
m -hard for NPO. Assume this is wrong. Then

ΓO≤p,O
m KO ∪ ∆O witnessed by some FO

i for i ∈ N+. Let s ∈ N+ be the step where the task
(i, i) is considered. Then ts(i, i) = 0. As ws is ts-valid, for all v w ws, F

v
i does not reduce Γv to

Kv ∪∆v, a contradiction to the assumption that ΓO≤p,O
m KO ∪∆O via FO

i .

Define A = 0KO ∪ 1∆O and B = 1KO ∪ 0∆O. The sets A and B are disjoint and NPO-
complete since KO≤p

mA via x 7→ 0x and KO≤p
mB via x 7→ 1x. Moreover, A ∪ B = 0(KO ∪

∆O)∪ 1(KO ∪∆O)≤p
mKO ∪∆O via ax 7→ x for a ∈ {0, 1} and thus A∪B is not ≤p,O

m -complete
for NPO. 2

This completes the proof of Theorem 5.1. 2

6 An Oracle for Hunion and ¬Hcpair

This section shows that the implication Hunion ⇒ Hcpair cannot be proven in a relativizable way.
Ogiwara and Hemachandra [OH93] construct an oracle that proves that the converse implication
Hcpair ⇒ Hunion cannot be proven in a relativizable way as well. Thus Hunion and Hcpair are
independent of each other under relativizable proofs.

Theorem 6.1 There exists an oracle O with the following properties.

1. DisjNPO has no ≤pp,O
m -complete pairs.

2. If A is ≤p,O
m -complete for NPO and disjoint to B ∈ NPO, then A∪B is ≤p,O

m -complete for
NPO.

Proof [Proof of Theorem 6.1] Let M1,M2,M3, . . . be a standard enumeration of nondetermin-
istic, polynomial-time oracle Turing machines. Let F1, F2, F3, . . . be a standard enumeration of
deterministic, polynomial-time oracle Turing transducers.

Define the following sets for an oracle D ⊆ N.

KD = {〈0i, 0j , x〉 | i > 0 and MD
i (x) accepts within j steps}

KD
∨ = {〈z1, . . . , zn〉 | z1 ∈ KD ∨ · · · ∨ zn ∈ KD}

KD and KD
∨ are ≤p,D

m -complete for NPD. We construct the oracle such that KO
∨ ∪ B is NPO-

complete for all B ∈ NPO disjoint from KO
∨ and show that this implies the second statement of

the theorem.
For an oracle D let

ED = {0n | ∃x ∈ D such that |x| = n}

and observe that ED ∈ NPD. Choose e ∈ N such that L(MD
e) = ED for all oracles D and let

vn = 〈0e, 0ne+e, 0n〉. Hence vn ∈ KD if and only if MD
e (0n) accepts, i.e., vn ∈ KD ⇔ 0n ∈ ED.

For an oracle D and a prime p define the following sets.

AD
p = {0pk | k ≥ 1 and there exists an even x ∈ D such that |x| = pk}

BD
p = {0pk | k ≥ 1 and there exists an odd x ∈ D such that |x| = pk}

We construct the oracle such that for certain primes p it holds that for each k there is at most
one x ∈ O such that |x| = pk. Hence for these p we have (AO

p , B
O
p) ∈ DisjNPO.

33

Preview of construction: On the one hand, the construction tries to prevent that Mi and Mj

accept disjoint sets. If this is not possible, then L(Mi) and L(Mj) are inherently disjoint. In
this case, for a suitable p ∈ P, the construction makes sure that (Ap, Bp) does not ≤pp

m -reduce
to (L(Mi), L(Mj)), which prevents the existence of complete disjoint NP-pairs. On the other
hand, the construction also tries to prevent that Mi accepts a set disjoint from K∨. If this
is not possible, then Mi inherently accepts a set disjoint from K∨. In this case, there will be
a prime p such that the words vpk for k ≥ 1 are neither in K nor in L(Mi). It even holds
〈vpk , u1, . . . , un〉 /∈ L(Mi) for all u = 〈u1, . . . , un〉 of length ≤ |vpk |. This means that the vpk are
difficult instances for Mi, since there is no linear-size proof u that allows Mi to recognize that
vpk /∈ K. Hence adding a sufficiently large vpk to an instance u does not change the membership
to K∨, but guarantees that the result is not in L(Mi). This yields a reduction K∨≤p

mK∨∪L(Mi)
and implies that K∨ ∪ L(Mi) is NP-complete.

During the oracle construction we maintain a growing collection of properties that we de-
mand in the further construction. The collection is represented by a function t and if an oracle
satisfies the properties defined by t, then we call it t-valid. More precisely, we start with the
nowhere defined function t0 : N × N → P ∪ {0}, which defines no property. We successively
continue this function and obtain t1, t2, . . ., which have a finite, but growing domain. At the
end of the construction we reach the total function limi→∞ ti.

Let t ∈ T := {t : N × N → P ∪ {0} | t has finite domain and is injective on supp(t)}. An
oracle w ∈ Σ∗ is t-valid, if for all (i, j) ∈ dom(t):

V1: If i 6= j and t(i, j) = 0, then ∃z such that Mw
i (z) and Mw

j (z) definitely accept.
(meaning: L(Mv

i) ∩ L(Mv
j) 6= ∅ for all v w w)

V2: If i 6= j and t(i, j) = p ∈ P, then ∀k ≥ 1 it holds that |{x ∈ w | |x| = pk}| ≤ 1.
(meaning: (Aw

p , B
w
p) is a disjoint NPw-pair)

V3: If i = j and t(i, i) = 0, then ∃n∃u0, . . . , un such that Mw
i (〈u0, . . . , un〉) definitely accepts,

u0 = 〈0i0 , 0j0 , x0〉, and Mw
i0

(x0) definitely accepts within j0 steps.
(meaning: 〈u0, . . . , un〉 ∈ Kv

∨ ∩ L(Mv
i) for all v w w)

V4: If i = j and t(i, i) = p ∈ P, then ∀k ≥ 1 it holds that {x ∈ w | |x| = pk} = ∅.
(meaning: for all k ≥ 1 it holds that 0p

k
/∈ Ew and hence vpk /∈ Kw)

This definition leads to the following observations.

Claim 6.2 Let t, t′ ∈ T such that t′ is a continuation of t. If w is t′-valid, then w is t-valid.

Claim 6.3 Let t ∈ T and w ∈ Σ∗. If w is t-valid, then w0 is t-valid.

Oracle construction: Let t0 be the nowhere defined function and w0 = ε, which is t0-valid.
We construct a sequence of partially defined oracles w0 vp w1 vp · · · and a sequence t0, t1, . . .
of functions from T such that wi is ti-valid and ti+1 is a continuation of ti. The final oracle is
O = limn→∞wn. Each step treats the first task in our task list T and removes this and possibly
other tasks from the list. At the beginning, T consists of an enumeration of all (i, j) ∈ N2 and
all (i, j, r) ∈ N3 − {(i, i, r) | i, r ∈ N} in an order having the property that (i, j) appears earlier
than (i, j, r) for all i, j, r with i 6= j. We describe step s, which starts with a ts−1-valid oracle
ws−1 and extends it to a ts-valid ws wp ws−1.

34

• task (i, j) with i 6= j: Let t′ = ts−1 ∪ {(i, j) 7→ 0}. If there exists a t′-valid v wp ws−1, then
let ts = t′, ws = v, and remove all tasks (i, j, ·) from T . Otherwise choose p ∈ P−ran(ts−1)
such that p > |ws−1| and let ts = ts−1 ∪ {(i, j) 7→ p} and ws = ws−10.
(meaning: if possible, force L(Mi) ∩ L(Mj) 6= ∅, otherwise choose a suitable prime p and
make sure that the oracle contains at most one element of length pk for all k and hence
(Ap, Bp) is a disjoint NP-pair; corresponds to V1 and V2)

• task (i, i): Let t′ = ts−1 ∪ {(i, i) 7→ 0}. If there exists a t′-valid v wp ws−1, then let
ts = t′ and ws = v. Otherwise choose p ∈ P − ran(ts−1) such that p > |ws−1| and

(3|vpk |+ 2)i + i < 2p
k

for all k ≥ 1, and let ts = ts−1 ∪ {(i, i) 7→ p} and ws = ws−10.
(meaning: if possible, force K∨ ∩ L(Mi) 6= ∅, otherwise choose a suitable prime p and
make sure that the oracle contains no element of length pk and hence vpk /∈ K for all k;
corresponds to V3 and V4)

• task (i, j, r) with i 6= j: It holds that ts−1(i, j) = p ∈ P. Let ts = ts−1 and choose a
ts-valid ws wp ws−1 such that for a suitable 0n at least one of the following holds.

– 0n ∈ Aws
p , Fws

r (0n) is defined, and its output is definitely rejected by Mws
i

– 0n ∈ Bws
p , Fws

r (0n) is defined, and its output is definitely rejected by Mws
j

(meaning: Fr does not realize a reduction (Ap, Bp)≤pp
m (L(Mi), L(Mj)))

Claim 6.4 For all s ≥ 1, the construction of ws and ts in step s is possible and ws is ts-valid.

Proof We prove the contraposition. Choose the smallest step s where the claim fails. Assume
that this steps treats a task (i, j) for i, j ∈ N. Hence ts−1(i, j) is not defined, since it can only be
defined by the unique treatment of task (i, j). Therefore, t′ and ts can be defined as specified,
which shows that the construction in step s is possible. If a t′-valid v wp ws−1 exists, then ws

is ts-valid, which contradicts the assumption. Otherwise, ts = ts−1 ∪ {(i, j) 7→ p} for a prime p
chosen according to the construction above and by Claim 6.3, ws is ts−1-valid. The choice of p
implies that ws does not contain words of length pk for k ≥ 1. Therefore, ws is also ts-valid,
which contradicts the assumption.

From now on we assume that step s treats a task (i, j, r) with i 6= j. Here ts = ts−1 and
ts(i, j) = p ∈ P, since otherwise the earlier task (i, j) had removed (i, j, r). We argue that the
choice of the specified ts-valid ws is possible, which shows that the construction in step s is
possible and which contradicts the assumption.

We apply Corollary 2.15 for n = pk, where k is chosen large enough such that the corollary
holds for that n and ws−1 is not defined for words of length≥ n. Consider the minimal w′ w ws−1

that is defined for all words of length < n. By Claim 6.3, w′ is ts-valid. By Corollary 2.15, there
exist an even x ∈ Σn and an odd y ∈ Σn such that at least one of the statements 1-3 holds.

If statement 1 holds, then choose the minimal ws wp w′ that contains x and that is defined
for all words of length ≤ (nr +r)i+i. The latter makes sure that the computations Fws

r (0n) and
Mws

i (Fws
r (0n)) are defined and will not change when we extend ws. By interpreting w′ and ws

as sets, we obtain ws = w′ ∪ {x}, i.e., we added exactly the word x to the oracle. Note that w′

is a ts-valid oracle defined for all words of length < n and undefined for all other words. After
adding x, the oracle still satisfies V2, since we added only one word and w′ contains no words of
this length. The remaining conditions V1, V3, and V4 are not affected by x, since ts is injective
on its support. Hence ws is ts-valid. 0n ∈ Aws

p , since x ∈ ws. The computation Fws
r (0n) is

defined and by statement 1 of Corollary 2.15, its output is definitely rejected by Mws
i . Thus we

have seen that if statement 1 holds, then the construction in step s is possible. For statement
2 this is shown analogously.

35

It remains to show that statement 3 cannot hold. Otherwise, for z = F
w′∪{x,y}
r (0n) it holds

that z ∈ L(M
w′∪{x,y}
i) ∩ L(M

w′∪{x,y}
j). Consider the smallest step s′ where ts′(i, j) is defined.

This step extends ts′−1 such that ts′ = ts′−1 ∪ {(i, j) 7→ p}. Thus we have s′ ≤ s − 1 and
ws′−1 vp ws′ v ws−1 v w′. We know that w′ is ts-valid and hence ts′−1-valid, by Claim 6.2.
Choose the minimal v w w′ that contains x, y and that is defined for all words of length
≤ (nr + r)i+j + i+ j. Hence Mv

i (z) and Mv
j (z) definitely accept. The interpretation of w′ and v

as sets illustrates v = w∪{x, y}, i.e., we added exactly the words x, y. We know that w′ is a ts′−1-
valid oracle defined for all words of length < n and undefined for all other words. After adding
x and y, the oracle still satisfies V2 in the definition of ts′−1-valid, since |x| = pk /∈ ran(ts′−1).
The remaining conditions V1, V3, and V4 are not affected by x and y, since ts′−1 is injective
on its support. Hence v is ts′−1-valid and even t′-valid for t′ = ts′−1 ∪ {(i, j) 7→ 0}, since Mv

i (z)
and Mv

j (z) definitely accept. Therefore, step s′ defines ts′ = t′ and ws′ = v, which contradicts
ts′(i, j) = p. This shows that statement 3 cannot hold.

Thereby we have shown that in steps treating tasks (i, j, r), the choice of the specified ts-valid
ws is possible, which contradicts the assumption. 2

Consider our construction at some step s and assume that ts(i, i) = p ∈ P. Thus it was not
possible to achieve Kws

∨ ∩L(Mws
i) 6= ∅ and hence Kws

∨ and L(Mws
i) are disjoint. By V4, ws does

not contain words of length pk and hence vpk /∈ Kws for all k ≥ 1. The following claim asserts
that these vpk are not accepted by Mws

i , even if we add arbitrary information of size at most

|vpk | to the instance. This means that the words vpk are instances from Kws that are difficult in
the sense that there is no proof of size at most |vpk | that allows Mws

i to recognize these words.

Claim 6.5 If ts(i, i) = p ∈ P, then for all k ≥ 1, n ∈ N, and u1, . . . , un ∈ N with
|〈u1, . . . , un〉| ≤ |vpk | it does not hold that Mws

i (〈vpk , u1, . . . , un〉) definitely accepts (i.e., is
not defined or definitely rejects).

Proof Assume there exists k ≥ 1, n ∈ N, and u1, . . . , un ∈ N such that |〈u1, . . . , un〉| ≤ |vpk |
and Mws

i (〈vpk , u1, . . . , un〉) definitely accepts. Let l be the minimal path that definitely accepts

and choose the smallest word q of length pk that is not queried on l. Such a word exists, since
|〈vpk , u1, . . . , un〉| ≤ 3|vpk |+ 2 by our pairing function and (3|vpk |+ 2)i + i < 2p

k
by the choice

of p. Consider the smallest step s′ where ts′(i, i) is defined. This step extends ts′−1 such that
ts′ = ts′−1 ∪ {(i, i) 7→ p}. Let w′ be the word obtained from ws by changing the letter w(q)
from 0 to 1. Hence w′ = ws ∪ {q}, where w′ and ws are interpreted as sets. By Claim 6.2, ws

is ts′−1-valid. Even w′ is ts′−1-valid: adding q does not affect the properties V1 and V3 in the
definition of ts′−1-valid, since the mentioned computations definitely accept with oracle ws′−1

and |q| ≥ p > |ws′−1|; and it does not affect V2 and V4, because |q| = pk and p /∈ ran(ts′−1).
Choose the minimal v w w′ that is defined for all words of length ≤ pke + e. Hence ws′−1 vp v
and v = ws ∪ {q}. By Claim 6.3, v is ts′−1-valid. Mv

i (〈vpk , u1, . . . , un〉) still definitely accepts

on l, since this path does not query q. From q ∈ v it follows that 0p
k ∈ Ev = L(Mv

e) and hence

Mv
e (0p

k
) definitely accepts within pke + e steps. By defining u0 = vpk , i0 = e, j0 = pke + e, and

x0 = 0p
k

we see that Mv
i (u0, . . . , un) definitely accepts, u0 = 〈0i0 , 0j0 , x0〉, and Mv

i0
(x0) definitely

accepts within j0 steps. This shows that v is even t′-valid for t′ = ts′−1∪{(i, j) 7→ 0}. Therefore,
step s′ defines ts′ = t′ and chooses the oracle ws′ in an appropriate way (e.g., ws′ = v), which
contradicts ts′(i, j) = p. 2

Let w = lims→∞ws be the oracle obtained by the whole construction. It is totally defined,
since each step strictly extends the oracle.

Claim 6.6 DisjNPO has no ≤pp,O
m -complete pairs.

36

Proof Assume there exists an ≤pp,O
m -complete (L(MO

i), L(MO
j)) ∈ DisjNPO. From L(MO

i) ∩
L(MO

j) = ∅ if follows that for all s there is no z such that Mws
i (z) and Mws

j (z) definitely
accept. Hence ts(i, j) 6= 0 for all s. Let s be the step that treats task (i, j). Thus ts′(i, j) =
p ∈ P for all s′ ≥ s, which implies that AO

p ∩ BO
p = ∅. Thus there exists an r such that

(AO
p , B

O
p)≤pp,O

m (L(MO
i), L(MO

j)) via FO
r . Let s′ be the step that treats task (i, j, r). This step

makes sure that at least one of two specified properties holds, which implies that at least one
of the following holds.

• 0n ∈ AO
p and FO

r (0n) is rejected by MO
i

• 0n ∈ BO
p and FO

r (0n) is rejected by MO
j

This contradicts the choice of r. 2

Claim 6.7 KO
∨ ∪B is ≤p,O

m -complete for NPO for all B ∈ NPO that are disjoint to KO
∨ .

Proof Choose i such that B = L(MO
i) and let s be the step that treats task (i, i). We

claim that ts(i, i) = p ∈ P. Otherwise there exist u0, . . . , un such that Mws
i (〈u0, . . . , un〉)

definitely accepts, u0 = 〈0i0 , 0j0 , x0〉, and Mws
i0

(x0) definitely accepts within j0 steps. Hence

u0 ∈ KO, 〈u0, . . . , un〉 ∈ KO
∨ , and MO

i (〈u0, . . . , un〉) accepts. This contradicts the assumption
KO
∨ ∩ L(MO

i) = ∅ and shows ts(i, i) = p ∈ P.
It follows that ts′(i, i) = p ∈ P for all s′ ≥ s. Thus for all k ≥ 1, O does not contain elements

of length pk and hence vpk /∈ KO. By Claim 6.5, for all s′ ≥ s, k ≥ 1, n ∈ N, and u1, . . . , un ∈
N with |〈u1, . . . , un〉| ≤ |vpk | it does not hold that the computation M

ws′
i (〈vpk , u1, . . . , un〉)

definitely accepts. Therefore,

∀k ≥ 1, n ∈ N, u1, . . . , un ∈ N with |〈u1, . . . , un〉| ≤ |vpk |, MO
i (〈vpk , u1, . . . , un〉) rejects. (10)

Let f(〈u1, . . . , un〉) = 〈u0, u1, . . . , un〉, where u0 = vpk for the minimal k ≥ 1 such that

|〈u1, . . . , un〉| ≤ |vpk |. It holds that f ∈ FP ⊆ FPO. We argue that f reduces KO
∨ to KO

∨ ∪ B.

If 〈u1, . . . , un〉 ∈ KO
∨ , then f(〈u1, . . . , un〉) ∈ KO

∨ .
Assume now 〈u1, . . . , un〉 /∈ KO

∨ . From vpk /∈ KO it follows f(〈u1, . . . , un〉) /∈ KO
∨ . More-

over, f(〈u1, . . . , un〉) /∈ B = L(MO
i), since otherwise f(〈u1, . . . , un〉) = 〈vpk , u1, . . . , un〉 is a

counterexample for (10).
Hence f reduces KO

∨ to KO
∨ ∪B, which implies that KO

∨ ∪B is ≤p,O
m -complete for NPO. 2

Claim 6.8 If A is ≤p,O
m -complete for NPO and disjoint to B ∈ NPO, then A∪B is ≤p,O

m -complete
for NPO.

Proof Otherwise there exist counterexamples A and B. Choose f ∈ FPO such that KO
∨≤

p,O
m A

via f and let B′ = f−1(B). Observe that B′ ∈ NPO, KO
∨ ∩B′ = ∅, and KO

∨ ∪B′≤
p,O
m A ∪B via

f . Hence KO
∨ ∪B′ is not ≤p,O

m -complete for NPO, which contradicts Claim 6.7. 2

This finishes the proof of Theorem 6.1. 2

37

7 An Oracle for Hunion and Hopps

In this section we construct an oracle O which shows that a relativizable proof of the implication
Hopps ⇒ ¬Hunion does not exist. As according to Theorem 5.1 neither the converse implication
can be proven in a relativizable way, the two assertions Hcpair and ¬Hunion are independent of
each other under relativizable proofs.

In addition (cf. Corollaries 7.13 and 7.15), relative to O there exists a “super-tally” set in
NP − coNP as well as a tally set in NEE − coNEE, where NEE

df
= NTIME(2O(2n)). This is of

interest as it shows that the converses of the following implications by Köbler, Messner, and
Torán [KMT03] fail relative to O.

• NEE ∩ TALLY ⊆ coNEE ⇒ Hopps

• NEE ∩ TALLY ⊆ EE ⇒ there exist P-optimal pps

Theorem 7.1 There exists an oracle O with the following properties.

1. There exists a PO-optimal propositional proof system f .

2. If A is ≤p,O
m -complete for NPO and disjoint to B ∈ NPO, then A∪B is ≤p,O

m -complete for
NPO.

Proof Let M1,M3,M5, . . . be a standard enumeration of nondeterministic, polynomial-
time oracle Turing machines. Let F2, F4, F6, . . . be a standard enumeration of deterministic,
polynomial-time oracle Turing transducers.

For D ⊆ N we define sets KD, KD
∨ , and ED similar to those in the proof of Theorem 6.1.

KD = {〈0i, 0j , x〉 | i is odd and MD
i (x) accepts within j steps}

KD
∨ = {〈z1, . . . , zn〉 | z1 ∈ KD ∨ · · · ∨ zn ∈ KD}

Claim 7.2 For oracles v and w and all y ≤ min(|v|, |w|), if pry(v) = pry(w), then Kw(y) =
Kv(y) and Kw

∨ (y) = Kv
∨(y).

Proof It suffices to show Kw(y) = Kv(y). We may assume y = 〈0i, 0j , x〉 for suitable i, j, x,
since otherwise Kw(y) = Kv(y) = 0. For each q that is queried within the first j steps of Mw

i (x)
or Mv

i (x) it holds that |q| ≤ j < |y| and thus q < y. Hence these queries are answered the same
way relative to w and v, showing that Mw

i (x) accepts if and only if Mv
i (x) accepts. 2

KD and KD
∨ are ≤p,D

m -complete for NPD and their complements are ≤p,D
m -complete for

coNPD. We construct the oracle such that KD
∨ has a PO-optimal proof system f ∈ FPO. As

KO
∨ is ≤p,O

m -complete for coNPO, this implies the first statement of the theorem.
For an oracle D let

ED = {0n | ∃x ∈ D such that |x| = n}
and observe that ED ∈ NPD. Choose e ≥ 2 such that L(MD

e) = ED for all oracles D and let
vn = 〈0e, 0ne+e, 0n〉. Hence vn ∈ KD if and only if MD

e (0n) accepts, i.e., vn ∈ KD ⇔ 0n ∈ ED.
For i ∈ 2N+ and x, y ∈ N let c(i, x, y) = 〈0i, 0(|x|i+i)2ie , x, y〉. These words are used to encode

proofs into the oracle: if the oracle contains the codeword c(i, x, y), then this means Fi(x) = y
and y /∈ K∨, i.e., c(i, x, y) is a proof for y /∈ K∨.

Claim 7.3 The following holds for all oracles w, all i ∈ 2N+ and x, y ∈ N.

1. If c(i, x, y) ≤ |w|, then Fw
i (x) is defined and F v

i (x) = Fw
i (x) < |w| for all v w w.

2. If c(i, x, y) ≤ |w|, then Fw
i (x) is defined and Fw

i (x) ∈ Kw
∨ ⇔ F v

i (x) ∈ Kv
∨ for all v w w.

38

Proof 1: Fw
i (x) is defined, since for each q queried by Fw

i (x) it holds that |q| ≤ |x|i + i <
|c(i, x, y)| and hence q < c(i, x, y) ≤ |w|. The same argument shows F v

i (x) = Fw
i (x) < |w|. 2:

Follows from Claims 7.3.1 and 7.2. 2

Preview of construction: On the one hand, the construction tries to prevent that Fi is a proof
system for K∨. If this is not possible, then Fi inherently is a proof system for K∨. In this case,
the codewords c(i, x, y) are used to encode Fi-proofs into the oracle. These encodings finally
yield a P-optimal proof system for K∨. On the other hand, the construction also tries to prevent
that Mi accepts a set disjoint from K∨. If this is not possible, then Mi inherently accepts a set
disjoint from K∨. In this case, there will be a prime p such that the words vpk for k ≥ 1 are
neither in K nor in L(Mi). It even holds 〈vpk , u1, . . . , un〉 /∈ L(Mi) for all u = 〈u1, . . . , un〉 of
length ≤ |vpk |. This means that the vpk are difficult instances for Mi, since there is no linear-size
proof u that allows Mi to recognize that vpk /∈ K. Hence adding a sufficiently large vpk to an
instance u does not change the membership to K∨, but guarantees that the result is not in
L(Mi). This yields a reduction K∨≤p

mK∨∪L(Mi) and implies that K∨∪L(Mi) is NP-complete.
During the construction we maintain a growing list of properties. This list belongs to the

set T = {(m1, . . . ,mn) | n ≥ 0, m1, . . . ,mn ∈ N, and mi < mj for all i < j with mj 6= 0}. If an
oracle satisfies the properties defined by a list t, then we call it t-valid. For a list t = (m1, . . . ,mn)
and a ∈ N let t(i) = mi, |t| = n, and t+ a = (m1, . . . ,mn, a). If the list t is a prefix of the list
t′, then we write t v t′. We start with the empty list t0 = (), which defines no property. By
successively appending an element we obtain lists t1, t2, and so on.

An oracle w ∈ Σ∗ is t-valid, where t ∈ T , if the following holds:

V1: w ⊆ {c(i, x, y) | i ∈ 2N+ and x, y ∈ N} ∪ {v | |v| = pk for p ∈ P≥41 and k ≥ 1}
(meaning: the oracle contains only codewords c(i, x, y) and words of length pk)

V2: For all c(i, x, y) ∈ w with i ∈ 2N+ and x, y ∈ N it holds that Fw
i (x) = y /∈ Kw

∨ .
(meaning: if the oracle contains the codeword c(i, x, y), then Fw

i (x) outputs y /∈ Kw
∨ ;

hence c(i, x, y) ∈ w is a proof for y /∈ Kw
∨)

V3: For all positive even i ≤ |t| it holds that t(i) ∈ 2N and:

(a) If t(i) = m > 0, then c(i, x, y) ∈ w for all x, y ∈ N with Fw
i (x) = y and m ≤

c(i, x, y) < |w|.
(meaning: the oracle maintains codewords for Fi, i.e., if x is large enough and Fw

i (x)
outputs y, then w contains a proof for this, namely the codeword c(i, x, y))

(b) If t(i) = 0, then there exists x such that Fw
i (x) is defined and outputs y < |w| with

y ∈ Kw
∨ .

(meaning: Fi is not a proof system for K∨ relative to all extensions of w)

V4: For all odd i ≤ |t| it holds that t(i) ∈ {0} ∪ P≥41 and:

(a) If t(i) = p > 0, then {x ∈ w | |x| = pk for k ≥ 1} = ∅ and for all positive even j < i
with t(j) = 0 it holds that {c(j, x, y) ∈ w | x, y ∈ N and |c(j, x, y)| ≥ p} = ∅.
(meaning: the first part says 0p

k
/∈ Ew and hence vpk /∈ Kw for all k ≥ 1; the second

part says that if Fj is no proof system for K∨ and has a smaller index than Mi, then
the oracle contains no codewords c(j, ·, ·) of length ≥ p)

(b) If t(i) = 0, then there exists x < |w| such that x ∈ Kw
∨ and Mw

i (x) definitely accepts.
(meaning: Mi is not disjoint from K∨ relative to all extensions of w)

39

Claim 7.4 The following holds in reference to the definition of t-valid.

1. In V1, the two sets are disjoint.

2. In V2, Fw
i (x) is defined and F v

i (x) = y /∈ Kv
∨ for all v w w.

3. In V3a, Fw
i (x) is defined.

4. In V3b, y ∈ Kv
∨ for all v w w.

5. In V4b, x ∈ Kv
∨ for all v w w.

Proof V1: The union is disjoint, since |c(i, x, y)| is even. V2+V3a: Follows from Claim 7.3.
V3b+V4b: Follows from Claim 7.2. 2

Claim 7.5 Let t, t′ ∈ T such that t v t′. If w is t′-valid, then w is t-valid.

Proof Follows from the definition of t-valid. 2

Claim 7.6 Let u and w be t-valid. If u v v v w, then v is t-valid.

Proof We show that v satisfies V1–V4. When we consider w and v as sets, then v ⊆ w.
Therefore, v satisfies V1 and V4a. Moreover, v v w and Claim 7.3 imply that v satisfies V2
and V3a.

Since u is t-valid, it satisfies V3b and V4b. From u v v, Claim 7.4.4, and Claim 7.4.5 it
follows that v satisfies V3b and V4b. 2

Claim 7.7 The following holds for all t-valid oracles w and z = |w|.

1. w0 is not t-valid if and only if z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i ≤ |t|,
t(i) > 0, z ≥ t(i), and Fw

i (x) = y.

2. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N or |z| = pk for p ∈ P≥41, k ≥ 1, then w1 satisfies V1.

3. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that Fw
i (x) = y /∈ Kw

∨ , then w1 satisfies V2.

4. w1 satisfies V3 and V4b.

Proof 1. Observe that w0 satisfies V1. By Claim 7.4.2, it satisfies V2. By 7.4.4 and 7.4.5, it
satisfies V3b and V4b. It also satisfies V4a, since w and w0 describe the same sets. Hence w0
is not t-valid if and only if it does not satisfy V3a. The latter holds if and only if z = c(i, x, y)
for i ∈ 2N+, x, y ∈ N such that i ≤ |t|, t(i) > 0, z ≥ t(i), and Fw

i (x) = y, since w satisfies V3a,
z /∈ w0, and Fw

i (x) = Fw0
i (x) by Claim 7.3.1. 2. Holds by definition. 3.+4. Hold by definition

and Claim 7.4. 2

Oracle construction: Let t0 = () be the empty list and w0 = ε, which is t0-valid. We
construct a sequence t0 vp t1 vp · · · of lists from T and a sequence w0 vp w1 vp · · · of partially
defined oracles such that |ts| = s and ws is ts-valid. The final oracle is O = lims→∞ws. We
describe step s > 0, which starts with a list ts−1 of length s−1 and a ts−1-valid ws−1 and which
defines a list ts wp ts−1 of length s and a ts-valid ws wp ws−1.

40

• s even: If there is a ts−1-valid v wp ws−1 such that for some x, F v
s (x) is defined and has

an output y < |v| with y ∈ Kv
∨, then let ws = v and ts = ts−1 + 0. Otherwise choose

b ∈ {0, 1} such that ws−1b is ts−1-valid, let ws = ws−1b and ts = ts−1 + m for an even
m > |ws| that is greater than all elements in ts−1.
(meaning: if possible, then force that Fs is not a proof system for K∨ relative to all
extensions of v; otherwise, we start to maintain codewords for Fs, i.e., if x is large enough
and Fs(x) outputs y, then the oracle contains a proof for this, namely the codeword
c(s, x, y))

• s odd: If there is a ts−1-valid v wp ws−1 such that for some x < |v|, x ∈ Kv
∨ and Mv

s (x)
definitely accepts, then let ws = v and ts = ts−1 + 0. Otherwise choose b ∈ {0, 1} such
that ws−1b is ts−1-valid, let ws = ws−1b and ts = ts−1 + p for some p ∈ P≥41 large enough
such that (16|vpk |)s < 2p

k
for all k ∈ N+, p > |ws|, and p is greater than all elements in

ts−1.
(meaning: force L(Ms)∩K∨ 6= ∅ if possible; otherwise choose a suitable prime p and make
sure that the oracle contains no elements of length pk and hence vpk /∈ K for all k ≥ 1;
the step corresponds to V4)

The subsequent claims refer to the construction above. We start with a claim showing that
the construction is possible and how one can extend a ts-valid w w ws by one bit.

Claim 7.8 Let s ∈ N. The choices of ws and ts are possible and ws is ts-valid. Moreover, for
each ts-valid w w ws and z = |w| the following holds.

1. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i ≤ s, ts(i) > 0, and z ≥ ts(i), then:

(a) if Fw
i (x) = y, then w1 is ts-valid and w0 is not.

(b) if Fw
i (x) 6= y, then w0 is ts-valid and w1 is not.

2. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i ≤ s and ts(i) = 0, then:

(a) w0 is ts-valid.

(b) if Fw
i (x) = y /∈ Kw

∨ and there is no odd i′ such that i < i′ ≤ s, ts(i′) = p ∈ P≥41, and
|z| ≥ p, then w1 is ts-valid.

3. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i > s, then:

(a) w0 is ts-valid.

(b) if Fw
i (x) = y /∈ Kw

∨ , then w1 is ts-valid.

4. If |z| = pk for p ∈ P≥41, p /∈ ts, and k ≥ 1, then w0 and w1 are ts-valid.

5. In all other cases w0 is ts-valid.

Proof Induction on s. The induction base holds by the definition of t0 and w0.
Now assume s > 0. By induction hypothesis, the choice of a ts−1-valid ws−1 is possible. By

the statements 1–5 of the induction hypothesis, the choice of b in step s is possible and hence
the choices of ws and ts. By construction, ws is ts−1-valid. We show that ws is ts-valid. The
following properties hold, since ws is ts−1-valid: V1, V2, V3 for i < |ts|, and V4 for i < |ts|. It
remains to argue for V3 and V4 in case i = s = |ts|. If s is even, then V4 trivially holds, V3(b)
holds by construction, and V3(a) trivially holds, since m = ts(s) > |ws|. If s is odd, then V3
trivially holds, V4(b) holds by construction, and V4(a) trivially holds, since p = ts(s) > |ws|.
Therefore, ws is ts-valid. Now let w w ws be ts-valid and z = |w|.

41

1a: By Claim 7.3.1, Fw
i (x) is defined and hence Fw1

i (x) = y. Then w0 is not ts-valid, since
it violates V3a. Consider w1. By Claim 7.7, this oracle satisfies V1, V3, and V4b. It also
satisfies V4a, since ws is ts-valid, z = c(i, x, y) has even length, and ts(i) > 0. Assume w1 does
not satisfy V2. Hence by Claim 7.7, y ∈ Kw

∨ . As i ≤ s, the oracle w w ws w wi−1 is ti−1-valid.
By Claim 7.3.1, Fw

i (x) is defined and has an output y < |w| with y ∈ Kw
∨ . Thus step i defines

ti(i) = 0, which contradicts ts(i) > 0.

1b: By Claim 7.3.1, Fw
i (x) is defined and thus Fw1

i (x) = Fw
i (x) 6= y. Hence w1 violates V2

and is not ts-valid. By Claim 7.7.1, w0 is ts-valid.

2a: Holds by Claim 7.7.1.

2b: By Claim 7.7, w1 satisfies V1, V2, V3, and V4b. We show that it satisfies V4a. Let
i′ ≤ s be odd with ts(i

′) = p ∈ P≥41. As w is ts-valid and c(i, x, y) has even length, it holds
{x ∈ w1 | |x| = pk for k ≥ 1} = ∅. Let j < i′ be positive even with ts(j) = 0. We show
z /∈ J = {c(j, x′, y′) ∈ w1 | x′, y′ ∈ N and |c(j, x′, y′)| ≥ p}, which implies J = ∅, since ws it
ts-valid. If z ∈ J , then |z| ≥ p and hence i′ ≤ i, since by assumption, there is no odd i′ such that
i < i′ ≤ s, ts(i

′) = p ∈ P≥41, and |z| ≥ p. Thus j < i′ ≤ i, which contradicts z = c(i, x, y) ∈ J .
Hence w1 satisfies V4a and is ts-valid.

3a: Holds by Claim 7.7.1.

3b: By Claim 7.7, w1 satisfies V1, V2, V3, and V4b. It also satisfies V4a, since ws is ts-valid,
z = c(i, x, y) has even length, and i > s.

4: Since |z| is odd, z is not a codeword. By Claim 7.7.1, w0 is ts-valid. Note that w1 satisfies
V1. By Claim 7.7, w1 satisfies V3 and V4b. It satisfies V2 and V4a, since z is not a codeword
and p /∈ ts.

5: By Claim 7.7.1, only in the case 7.8.1a it holds that w0 is not ts-valid. Hence in the
present case w0 is ts-valid. 2

Claim 7.9 Let k ∈ KO
∨ . The following f ∈ FPO is a PO-optimal proof system for KO

∨ .

f(z) =

{
y if z = c(i, x, y) ∈ O for i ∈ 2N+ and x, y ∈ N
k otherwise

Proof We show ran(f) = KO
∨ . First we argue for ⊆. Let z ∈ N with f(z) ∈ KO

∨ . Then
z = c(i, x, y) ∈ O for i ∈ 2N+, x, y ∈ N. As all finite prefixes of O satisfy V2, y /∈ KO

∨ .

Now we argue for ⊇. Let k′ ∈ KO
∨ and g ∈ FPO be a proof system for KO

∨ such that

for every x ∈ KO
∨ there are infinitely many z with g(z) = x. Choose i ∈ 2N+ such that FO

i

computes g. Hence it holds ti(i) > 0. Let x be greater than t(i) with FO
i (x) = k′. Choose an

s > i sufficiently large such that |ws| > c(i, x, k′) and Fws
i (x) = k′ ∈ Kws

∨ . Since ws is ts-valid,
it holds c(i, x, k′) ∈ ws ⊆ O. Consequently, k′ ∈ ran(f).

It remains to show that f simulates every other proof system h ∈ FPO for KO
∨ . Choose

j ∈ 2N+ such that FO
j computes h. Hence t(j) > 0. Define

π(x) =

{
c(j, x, y) if FO

j (x) = y and c(j, x, y) ∈ O
c(i, x′, y) if FO

j (x) = y and c(j, x, y) /∈ O, where x′ ≥ t(i) is minimal with FO
i (x′) = y.

Then h(x) = f(π(x)) for all x. If FO
j (x) = y and x ≥ t(j), then c(j, x, y) ≥ t(j). Moreover,

for a sufficiently large s > j with c(j, x, y) < |ws| it holds that Fws
j (x) = y is defined and —as

42

ws is tj-valid— c(j, x, y) ∈ ws ⊆ O. Thus there exist only finitely many x with FO
j (x) = y and

c(j, x, y) /∈ O. Hence π ∈ FPO. 2

Since the problem KO
∨ is ≤p,O

m -complete for coNPO, Claim 7.9 implies the first statement of
the theorem.

Claim 7.10 MO
s (〈vpk , u1, . . . , un〉) rejects for all odd s with ts(s) = p ∈ P≥41, all k ∈ N+, and

all u = 〈u1, . . . , un〉 with |u| ≤ |vpk |.

Proof We assume that MO
s (u′) accepts for u′ = 〈vpk , u1, . . . , un〉 and show a contradiction.

Choose j > s large enough such that M
wj
s (u′) definitely accepts, |wj | > u′, and |wj | > q for

all q with |q| = pk. By construction, wj is tj-valid and hence ts−1-valid. Let r be a definitely
accepting path of M

wj
s (u′). For r we inductively define the set of queries and their dependencies.

Q0 = {q | q is queried on r} (11)

Qn+1 =
⋃

z ∈ Qn with z = c(i, x, y),
i < s, x, y ∈ N, ts−1(i) > 0

{q | q is queried by F
wj

i (x)} (12)

Let Q =
⋃

n≥0Qn. It holds that |Q| < 2p
k
, which is seen as follows: For mn =

∑
q∈Qn

|q| we
have mn+1 ≤ mn/2, since the sum of lengths of queries induced by z = c(i, x, y) is at most
|x|i + i ≤ (|x|i + i)2ie ≤ |z|/2 by the definition of c and 〈·〉. Thus the mn form a geometric series.

From |u′| = |u|+2|vpk |+2 ≤ 4|vpk | it follows |Q| ≤ 2m0 ≤ 2(|u′|s+s) ≤ 4|u′|s ≤ (16|vpk |)s < 2p
k
,

where the latter inequality holds by the choice of p in step s.
Let q̄ be the smallest word of length pk that is not in Q. The word exists, since |Q| < 2p

k
.

By the assumption that |wj | > q for all q with |q| = pk, it holds in particular |wj | > q̄. By
the choice of p in step s we have p > |ws| and hence |ws−1| < q̄ < |wj |. Thus for v = prq̄(wj)
it holds that ws−1 vp v vp wj , where ws−1 and wj are ts−1-valid. By Claim 7.6, v is ts−1-valid.
Moreover, |v| = q̄, |q̄| = pk, and p /∈ ts−1, since step s chooses p greater than all elements in
ts−1. From Claim 7.8.4 it follows that v1 is ts−1-valid.

We show that there exists a ts−1-valid w′ w v1 relative to which r is still a definitely accepting
path. More precisely, |w′| = |wj | and for all q ∈ Q it holds that q ∈ w′ ⇔ q ∈ wj . Below we
describe how v1 is extended bit by bit to w′, i.e., how the word w w v1 w ws−1 constructed so
far is extended by one bit b, where z denotes the length of w. We define b and argue that

wb is ts−1-valid and if z ∈ Q then b = wj(z), (13)

where we follow the cases in Claim 7.8.

1. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i ≤ s − 1, ts−1(i) > 0: If Fw
i (x) = y, then b = 1 else

b = 0.
Note that z > q̄ > p > ts−1(i). By Claim 7.8.1, wb is ts−1-valid. If z ∈ Q, then by (12),
q ∈ Q for all q queried by Fw

i (x). For these q it holds that q < z = |w| and hence w(q) =
wj(q) by (13). Thus Fw

i (x) = F
wj

i (x). We know that wj is ts−1-valid and z > ts−1(i) > 0.
From V2 and V3(a) it follows that z ∈ wj ⇔ F

wj

i (x) = y ⇔ Fw
i (x) = y ⇔ b = 1. Hence

b = wj(z), which proves (13).

2. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i ≤ s− 1, ts−1(i) = 0: Let b = 0.
By Claim 7.8.2, wb is ts−1-valid. Assume b 6= wj(z), i.e., z ∈ wj . We are in the situation
that wj is tj-valid, s < j is odd, tj(s) = p, i ∈ 2N+ with i < s, and tj(i) = 0. By V4a, the
set {c(i, x, y) ∈ wj | x, y ∈ N and |c(i, x, y)| ≥ p} is empty. However, z belongs to this set,
as z = |w| > |v| = q̄ and hence |z| ≥ pk ≥ p. This is a contradiction, which shows (13).

43

3. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i > s− 1: If z /∈ Q ∩ wj , then b = 0 else b = 1.
If b = 0, then wb is ts−1-valid by Claim 7.8.3. Otherwise, b = 1 and z ∈ Q∩wj . We show

|x|i + i < pk. (14)

Assume |x|i + i ≥ pk. From p ≥ 41, e ≥ 2, k ≥ 1, and i ≥ s ≥ 1 it follows that
(41 · pke)s < p2ike. Moreover, |vpk | = 2(e+ pke + e+ pk + 3) ≤ 10 · pke. Hence we obtain.

|c(i, x, y)| > (|x|i + i)2ie ≥ p2ike > (41 · (pke)s ≥ (40 · pke)s + s ≥ (4|vpk |)s + s ≥ |u′|s + s.

Thus |z| > |u′|s + s ≥ m0 ≥ m1 ≥ · · · and hence z /∈ Q, a contradiction. This proves (14).

We know that wj is tj-valid. By V2, F
wj

i (x) = y /∈ Kwj
∨ . By (14), the computation F

wj

i (x)
stops within |x|i + i < pk steps. Hence it can only ask queries of length < pk and |y| < pk.
Thus Fw

i (x) = y /∈ Kw
∨ , since w and wj coincide with respect to all words of length < pk.

By Claim 7.8.3, wb is ts−1-valid.

To show the second part of (13) assume z ∈ Q. If b = 1, then z ∈ Q ∩ wj and hence
b = wj(z). If b = 0, then z /∈ wj and hence b = wj(z). This proves (13).

4. |z| = p′k for p′ ∈ P≥41, p′ /∈ ts, k ≥ 1: Let b = wj(z).
By Claim 7.8.4, wb is ts−1-valid, which implies (13).

5. Otherwise: Let b = 0.
By Claim 7.8.5, wb is ts−1-valid. Assume b 6= wj(z), i.e., z ∈ wj . We know that wj

is tj-valid. From V1 it follows that z must be a word of length p′k for p′ ∈ P≥41 and
p′ ∈ ts−1 (note that the case p′ /∈ ts−1 has already been considered in 4). Choose s′ such
that ts−1(s′) = p′ and note that s′ is odd. From V4a it follows that z /∈ wj , a contradiction
which implies (13).

This shows that there exists a ts−1-valid w′ w v1 wp ws−1 such that |w′| = |wj | > u′ and for

all q ∈ Q it holds that q ∈ w′ ⇔ q ∈ wj . Hence Mw′
s (u′) definitely accepts. Moreover, |v| = q̄

and hence q̄ ∈ w′. From |q̄| = pk it follows vpk ∈ Kw′ and u′ ∈ Kw′
∨ . Therefore, step s of the

construction defines ts = ts−1 + 0 (and chooses for instance ws = w′), which contradicts the
assumption ts(s) = p ∈ P≥41. 2

Claim 7.11 KO
∨ ∪B is ≤p,O

m -complete for NPO for all B ∈ NPO that are disjoint to KO
∨ .

Proof Choose s odd such that B = L(MO
s). We claim that ts(s) = p ∈ P≥41. Otherwise there

exists x ∈ Kws
∨ such that Mws

s (x) definitely accepts. Hence x ∈ KO
∨ and MO

s (x) accepts, which
contradicts the assumption KO

∨ ∩ L(MO
s) = ∅.

Let f(〈u1, . . . , un〉) = 〈u0, u1, . . . , un〉, where u0 = vpk for the minimal k ≥ 1 such that
|〈u1, . . . , un〉| ≤ |vpk |.

It holds that f ∈ FP ⊆ FPO. We argue that f reduces KO
∨ to KO

∨ ∪B. If 〈u1, . . . , un〉 ∈ KO
∨ ,

then f(〈u1, . . . , un〉) ∈ KO
∨ .

Assume now 〈u1, . . . , un〉 /∈ KO
∨ . From ts(s) = p it follows that for all k ≥ 1, O does not

contain elements of length pk and hence vpk /∈ KO. Therefore, f(〈u1, . . . , un〉) /∈ KO
∨ . Moreover,

by Claim 7.10, f(〈u1, . . . , un〉) /∈ L(MO
s) = B. 2

The following claim has the same proof as Claim 6.8.

Claim 7.12 If A is ≤p,O
m -complete for NPO and disjoint to B ∈ NPO, then A ∪ B is ≤p,O

m -
complete for NPO.

44

Proof Otherwise there exist counterexamples A and B. Choose f ∈ FPO such that KO
∨≤

p,O
m A

via f and let B′ = f−1(B). Observe that B′ ∈ NPO, KO
∨ ∩B′ = ∅, and KO

∨ ∪B′≤
p,O
m A ∪B via

f . Hence KO
∨ ∪B′ is not ≤p,O

m -complete for NPO, which contradicts Claim 7.11. 2

This finishes the proof of Theorem 7.1. 2

Corollary 7.13 For the oracle O constructed in Theorem 7.1 there exists a set L ∈ NPO −
coNPO with L ⊆ {022

n

| n ∈ N}.

Proof The proof consists of two parts. First, we show the existence of a set A ∈ NPO−coNPO.

Then we “translate” A into a set L ⊆ {022
n

| n ∈ N}.
We refer to the proof of Theorem 7.1. Recall EO = {0n | ∃x ∈ O with |x| = n} ∈ NPO.

Define
B = {0pk | p ∈ P≥41,∃i ∈ N+ pk < 22(2i+1)·2p ≤ pk+1} (15)

and A = EO ∩B. Note that for p ∈ P≥41 and k ∈ N, due to

22(2(i+1)+1)·2p

22(2i+1)·2p > p

it holds that if 0p
k ∈ B, then in (15) the i is uniquely determined.

Let 0p
k ∈ B. Then there exists i > 0 such that pk+1 ≥ 22(2i+1)2p

> 222
p·2

= 222
p+1

. As
pk+1 ≤ 2(log p+1)·(k+1), we obtain (log p+ 1) · (k + 1) ≥ 22p+1

, which implies

k ≥ 22p+1

log p+ 1
− 1 ≥ 22p · 22p

p
− 1 ≥ 22p · 22p

2p
≥ 22p .

This yields

log log k ≥ p. (16)

We show B ∈ P ⊆ PO via the following algorithm (note that this implies A ∈ NPO).

1. Input: w ∈ Σ∗

2. If w is not of the form 0p
k

for some p ∈ P≥41 and k ∈ N with log log k ≥ p, then reject.

3. Otherwise, let t = 222
p

and j = 0 and repeat the following until t > pk.
(a) t = t2

(b) j = j + 1
4. If j is not of the form 2i · 2p for some i ∈ N+, then reject.
5. If t ≤ pk+1, then accept. Otherwise reject.

In step 3, due to (16) it holds pk ≥ p22
p

≥ 222
p

. Therefore, step 3 and as a consequence the
complete algorithm works in polynomial time.

Note that for all j ∈ N it holds 22j+1+2p

=
(
22j+2p)2

. Thus, before and after each execution
of the loop in 3 it holds

t = 22j+2p

. (17)

We show that for all w, it holds w ∈ B if and only if the algorithm accepts on input w.
If w ∈ B, then w = 0p

k
for p ∈ P≥41 and k ∈ N and there exists a unique i ∈ N+ such that

pk < 22(2i+1)·2p ≤ pk+1. Due to (16) the algorithm does not reject in step 2. After step 3 it

45

holds t = 22(2i+1)·2p
(cf. (17)). Because of that and (17), it holds j = 2i · 2p at this point in time.

Consequently, the algorithm accepts in step 5.
Conversely, if the algorithm accepts a word w, then due to step 2 it holds w = 0p

k
for

p ∈ P≥41 and k ∈ N. Moreover, because of (17) and step 4 there exists some i ∈ N+ such that

at the beginning of the execution of step 5 we have pk < t = 222i·2
p+2p

= 22(2i+1)·2p
. As the

algorithm accepts in step 5 it holds 22(2i+1)·2p ≤ pk+1. Hence w ∈ B.
We show A /∈ coNPO. Assume that this is wrong. Then there exists a nondeterministic

Turing machine M with running time nc + c for some constant c such that M accepts A. Let
M ′ be a nondeterministic polynomial time Turing machine that on input x simulates M on
input vpk if x = 0p

k
for p, k ∈ N with 0p

k ∈ B, and rejects otherwise. There exists an odd s

such that Ms = M ′ and it holds for all p, k ∈ N with 0p
k ∈ B

vpk ∈ KO ⇔ 0p
k ∈ EO ⇔ 0p

k ∈ A ⇔ 0p
k
/∈ A ⇔ 0p

k
/∈ L(MO) ⇔ vpk /∈ L(MO

s), (18)

which implies KO ∩ L(MO
s) = ∅. Therefore, ts(s) = p for some p ∈ P≥41 and by Claim 7.10

MO
s rejects vpk for all k ∈ N+. (19)

By V4(a), {x ∈ O | |x| = pk for k ≥ 1} = ∅. Therefore, for all k ≥ 1, it holds 0p
k
/∈ EO. Thus

by (18) vpk ∈ L(MO
s) for all k ∈ N+ with 0p

k ∈ B. Hence, if there exists a k ∈ N with 0p
k ∈ B,

then we obtain a contradiction to (19). We show that such a k exists: choose an arbitrary

i ∈ N+. Then choose k as the unique number with pk < 22(2i+1)·2p ≤ pk+1. Then 0p
k ∈ B, which

shows A ∈ NPO − coNPO.
Roughly speaking, we now translate A into a set L ⊆ {022

n

| n ∈ N}. More precisely, define

L = {022
(2i+1)·2p

| i, p ∈ N+,∃k ∈ N such that 0p
k ∈ A and pk < 22(2i+1)·2p ≤ pk+1}.

As L ⊆ {022
n

| n ∈ N}, it remains to prove L ∈ NPO − coNPO. It holds L ∈ NPO as the
following NPO-algorithm accepts L.

1. Input: w ∈ Σ∗

2. If w is not of the form 022
m

for some m ∈ N, reject.
Otherwise, determine the unique i and p with (2i+ 1) · 2p = m.
If p /∈ P≥41 or i = 0, then reject.

3. Compute the unique k such that pk < 22(2i+1)·2p ≤ pk+1.
4. If pk ∈ A, accept. Otherwise reject.

It remains to argue for L /∈ coNPO. We show this by proving A≤p
mL. Consider the following

polynomial time algorithm (and note that ε /∈ L).

1. Input: w ∈ Σ∗

2. If w is not in B, return ε.
3. Otherwise w = 0p

k
for p ∈ P≥41 and k ∈ N. Determine the unique i ∈ N+ with

pk < 22(2i+1)·2p ≤ pk+1 (the above P-algorithm for B illustrates that this is possible in

polynomial time) and return 022
(2i+1)·2p

.

If the algorithm terminates in step 2, then the input is not in B ⊇ A and the output is not in
L. If it terminates in step 3, then by the definition of A, B, and L the input is in A if and only
if the output is in L. 2

46

Proposition 7.14 ([Boo74]) The following holds for each oracle A and
NEEA df

= NTIMEA(2O(2n)).

∃L ∈ NPA − coNPA with L ⊆ {022
n

| n ∈ N} ⇔ NEEA ∩ TALLY 6⊆ coNEEA

Proof “⇐:” Let T ∈ (NEEA ∩ TALLY) − coNEEA and let N be a nondeterministic Turing

machine accepting T with oracle A in time 2O(2n). Let L = {022
n

| 0n ∈ T}. Let M be the

algorithm that on input x rejects if x 6= 022
n

for some n and that otherwise simulates N on 0n.

Clearly L(MA) = L. The running time of M on input x is |x|O(1) for the test x = 022
n

plus
2c2

n
= (22n)c = |x|c for the simulation of N(0n). This shows L ∈ NPA.

Assume L ∈ coNPA and let M ′ be a nondeterministic Turing machine accepting L with

oracle A in polynomial time. Let N ′ be the algorithm that on input 0n simulates M ′ on 022
n

and accepts on all other inputs. Clearly L(N ′A) = T . The running time of N ′ on input 0n is
(22n)c = 2c2

n
, which shows T ∈ NEEA, a contradiction. Hence L /∈ coNPA.

“⇒:” Let L ∈ NPA − coNPA with L ⊆ {022
n

| n ∈ N} and let M be a nondeterministic

Turing machine accepting L with oracle A in polynomial time. Let T = {0n | 022
n

∈ L}. Let N

be the algorithm that on input 0n simulates M on 022
n

and rejects on all other inputs. Clearly
L(NA) = T . The running time of N on input 0n is (22n)c = 2c2

n
, which shows T ∈ NEEA.

Assume T ∈ coNEEA and let N ′ be a nondeterministic Turing machine accepting T with

oracle A in time 2O(2n). Let M ′ be the algorithm that on input x accepts if x 6= 022
n

for some
n and that otherwise simulates N ′ on 0n. Clearly L(M ′A) = L. The running time of M on

input x is |x|O(1) for the test x = 022
n

plus 2c2
n

= (22n)c = |x|c for the simulation of N ′(0n).
This shows L ∈ NPA and hence L ∈ coNPA, which is a contradiction. Hence T /∈ coNEEA and
therefore, NEEA ∩ TALLY 6⊆ coNEEA. 2

The following corollary directly follows from Corollary 2.4, Corollary 7.13, and Proposi-
tion 7.14.

Corollary 7.15 Relative to the oracle O constructed in Theorem 7.1 the following holds.

1. Each A ∈ coNPO has a PO-optimal proof system.

2. If A is ≤p,O
m -complete for NPO and disjoint to B ∈ NPO, then A∪B is ≤p,O

m -complete for
NPO.

3. NEEO ∩ TALLY 6⊆ coNEEO, where NEEO df
= NTIMEO(2O(2n)).

Köbler, Messner, and Torán [KMT03] prove the following implications (20) and (22).

NEE ∩ TALLY ⊆ coNEE ⇒ Hopps (20)

NEE ∩ TALLY ⊆ coNEE
?⇔ NTIME(2O(22

n
)) = coNTIME(2O(22

n
)) (21)

NEE ∩ TALLY ⊆ EE ⇒ ∃ a P-optimal pps (22)

NEE ∩ TALLY ⊆ EE
?⇔ DTIME(2O(22

n
)) = NTIME(2O(22

n
)) (23)

They also mention that the inviting equivalences (21) and (23) are not clear. The usual approach
suggests to define for every tally set T the set L

df
={n | 0n ∈ T} and to show

T ∈ NEE⇔ L ∈ NTIME(2O(22
n

)). (24)

The equivalence (24) strongly depends on the encoding of numbers:

47

If we encode numbers in binary representation, then ⇒ is clear, but ⇐ is not: If on input

0n for n = 2k one simulates the NTIME(2O(22
n

)) machine on n, then the running time is

2c2
2|n|

= 2c2
21+k

= 2c2
2·2k

= 2c2
2n
/∈ 2O(2n).

If we encode numbers in dyadic representation, then ⇐ is clear, but ⇒ is not: If on input n for
n = 2 · (2k − 1) one simulates the NEE machine on 0n, then the running time is

2c2
n

= 2c2
2·(2k−1)

= 2c2
2·(2|n|−1)

/∈ 2O(22
|n|

).

Further evidence against (21) and (23) is given by Ben-David and Gringauze [BDG98] who

state the existence of an oracle relative to which DTIME(2O(22
n

)) = NTIME(2O(22
n

)), ¬Hopps,
and hence NEE ∩ TALLY 6⊆ coNEE. Relative to this oracle, in (21) and (23) the implications
⇐ fail.

Corollary 7.15 shows that relative to the oracle from Theorem 7.1, the converses of (20)
and (22) fail, i.e., the premises are stronger than the conclusions. It is not clear how to
modify these premises such that (20) and (22) become relativizable equivalences. The ora-

cle by Ben-David and Gringauze [BDG98] shows that NTIME(2O(22
n

)) = coNTIME(2O(22
n

))

and DTIME(2O(22
n

)) = NTIME(2O(22
n

)) are not appropriate choices.

8 Summary of Oracles and their Properties

Table 1 summarizes the properties of several oracles that are relevant to the hypotheses studied
in this paper. Some of these properties are obtained by known results, which are compiled in
the following theorem to make them quotable in the table.

Theorem 8.1 The following holds relative to all oracles, where EE = DTIME(2O(2n)) and
NEE = NTIME(2O(2n)).

1. ∃ P-optimal pps ⇒ Hopps

2. Hcpair ⇒ ∃ ≤pp
T -complete disjoint NP-pairs

3. P = NP ⇒ UP = NP = coNP

4. [KP89]: (E = NE ⇒ ∃ P-optimal pps) and (NE = coNE ⇒ Hopps)

5. [KMT03]: (NEE∩TALLY⊆EE ⇒ ∃P-optimal pps) and (NEE∩TALLY⊆coNEE ⇒ Hopps)

6. [Raz94]: Hopps ⇒ Hcpair

7. P = NP ⇒ E = NE ⇒ EE = NEE ⇒ NEE ∩ TALLY ⊆ EE and
NP = coNP ⇒ NE = coNE ⇒ NEE = coNEE ⇒ NEE ∩ TALLY ⊆ coNEE

8. [KMT03]: Hopps ⇒ NP ∩ SPARSE has ≤p
m-complete sets

9. Hunion ⇒ NP 6= coNP

10. NP = coNP ⇒ ∃ disjoint NP-pairs that are ≤pp
T -hard for NP

11. [GS88]: P 6= NP ∩ coNP ⇒ ∃ P-inseparable disjoint NP-pairs

12. If NP 6= coNP and all disjoint NP-pairs are P-separable, then Hunion holds.

13. If P 6= NP and all disjoint NP-pairs are P-separable, then there are no disjoint NP-pairs
that are ≤pp

T -hard for NP.

14. If all disjoint NP-pairs are P-separable, then Hcpair holds.

15. [ESY84]: If no disjoint NP-pair is ≤pp
T -hard for NP, then UP 6= NP and NP 6= coNP.

16. If there exist disjoint NP-pairs that are ≤pp
T -hard for NP, then there exist ≤pp

T -complete
disjoint NP-pairs.

17. EE ⊆ coNEE

48

[G
S

S
Z

0
4
,

T
3
.8

]

[G
S

S
Z

0
4
,

T
6
.1

]

[G
S

S
Z

0
4
,

T
6
.7

]

[G
S

S
0
5
,

T
2
1
]

[O
H

9
3
,

L
4
.7

]

[H
S

9
2
,

T
1
]

T
h

m
4
.1

T
h

m
5
.1

T
h

m
6
.1

T
h

m
7
.1

∃ P-optimal pps − 1 − 1 − 1 − 1 − 1 − 1 +

∃ optimal pps / Hopps − + − − 6 + 4 − 6 − 6 − 6 + 1

NPCp
m closed under disj. union / Hunion − 9 + 12 − + +

∃ ≤pp
m -complete disjoint NP-pairs / Hcpair − 2 + 6 + − + 6 + 14 − − − + 6

∃ ≤pp
T -complete disjoint NP-pairs − + 2 + 2 + 16 + 2 + 2 + 2

∃ disj. NP-pairs that are ≤pp
T -hard for NP − − − + 15 + 10 − 13

∃ P-inseparable disjoint NP-pairs + + + + 11 − + 14 + 14 + 14

P 6= UP − −
P 6= NP + 3 + 7 + 3 + 3 + 3 + + 7 + 7 + 3 + 7

UP 6= NP + + + + + + 7

NP 6= coNP + + + + 7 − + 11 + 7 + 7 + 9 + 9

NP ∩ SPARSE has ≤p
m-complete sets + 8 − + 8 + 8

E 6= NE + 4 + + 4 + 4 + 4 + 4 + 4 + 7

NE 6= coNE + 4 − + 4 + 4 − 7 + 4 + 4 + 4 + 7

NEE ∩ TALLY 6⊆ EE + 5 + 5 + 5 + 5 + 5 + 5 + 17

NEE ∩ TALLY 6⊆ coNEE + 5 − 7 + 5 + 5 − 7 + 5 + 5 + 5 +

Table 1: Summary of oracles and their properties. Each column corresponds to the oracle men-
tioned in the topmost cell. If entries + or − appear without a number, then the corresponding
property is mentioned in the oracle construction. Otherwise, the number refers to the argument
in Theorem 8.1 that implies the property (sometimes one additionally needs other entries of the
same column). We say that there exist P-optimal (resp., optimal) pps relative to an oracle, if
relative to this oracle, some ≤p

m-complete A ∈ coNP has a P-optimal (resp., optimal) proof sys-
tem (cf. Remark 2.2). A disjoint NP-pair (A,B) is ≤pp

T -complete, if for every disjoint NP-pair
(C,D) and every separator S of (A,B) there exists a separator T of (C,D) such that T≤p

TS. A
disjoint NP-pair (A,B) is ≤pp

T -hard for NP, if for every C ∈ NP and every separator S of (A,B)
it holds that C≤p

TS. The double exponential time classes are defined as EE = DTIME(2O(2n))
and NEE = NTIME(2O(2n)).

9 Conclusion and Open Questions

The main goal of this paper is to investigate the connections between three famous complexity
theoretic hypotheses. Regarding the three hypotheses Hunion, Hopps, and Hcpair, we have shown
that —except for the known implication Hopps ⇒ Hcpair— any two of the hypotheses are inde-
pendent under relativized proofs. But what are the connections between the hypotheses if we
consider all three at once. At first glance there are 8 possible situations. As it is known that
Hopps implies Hcpair in a relativized way, there remain 6 possible situations. Table 1 illustrates
that oracles for 4 of the 6 possible situations are already known. This observation leads to
the open question of whether there also exist oracles for the remaining two situations. More
precisely, we ask:

49

• Does there exist an oracle O1 with the following properties?
Relative to O1, it holds ¬Hopps ∧ Hunion ∧ Hcpair, i.e., there exists no optimal pps, unions
of disjoint, ≤p

m-complete NP-sets remain complete, and there exist ≤pp
m -complete disjoint

NP-pairs.

• Does there exist an oracle O2 with the following properties?
Relative to O2, it holds ¬Hopps ∧ ¬Hunion ∧Hcpair, i.e., there exists no optimal pps, there
exist disjoint ≤p

m-complete NP-sets whose union is not complete, and there exist ≤pp
m -

complete disjoint NP-pairs.

Note that the oracle in [GSSZ04, T6.7] either has the properties requested for O1 or has the
properties requested for O2. So this oracle answers one of the two open questions, yet we do
not know which one.

Furthermore we receive new insights on problems related to the main topic. On the one
hand we answer open questions by Pudlák [Pud17] who asked for oracles relative to which
the following assumptions do not imply that UP has no ≤p

m-complete sets: ¬Hcpair, ¬Hopps,
and NP ∩ coNP has no ≤p

m-complete sets. On the other hand we show that the converses of
Köbler, Messner, and Torán’s [KMT03] implications (NEE ∩ TALLY ⊆ coNEE ⇒ Hopps) and
(NEE ∩ TALLY ⊆ EE ⇒ there exist P-optimal pps) fail relative to an oracle.

References

[BDG98] S. Ben-David and A. Gringauze. On the existence of propositional proof systems and
oracle-relativized propositional logic. Technical Report 5, Electronic Colloquium on
Computational Complexity, 1998.

[Bey04] O. Beyersdorff. Representable disjoint NP-pairs. In Proceedings 24th International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 3328 of Lecture Notes in Computer Science, pages 122–134. Springer,
2004.

[Bey06] O. Beyersdorff. Disjoint NP-pairs from propositional proof systems. In Proceedings
of Third International Conference on Theory and Applications of Models of Compu-
tation, volume 3959 of Lecture Notes in Computer Science, pages 236–247. Springer,
2006.

[Bey07] O. Beyersdorff. Classes of representable disjoint NP-pairs. Theoretical Computer
Science, 377(1-3):93–109, 2007.

[Bey10] O. Beyersdorff. The deduction theorem for strong propositional proof systems.
Theory of Computing Systems, 47(1):162–178, 2010.

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete
sets. SIAM Journal on Computing, 6:305–322, 1977.

[Boo74] R. V. Book. Tally languages and complexity classes. Information and Control,
26:186–194, 1974.

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36–50, 1979.

[ESY84] S. Even, A. L. Selman, and J. Yacobi. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61:159–173, 1984.

50

[EY80] S. Even and Y. Yacobi. Cryptocomplexity and NP-completeness. In Proceedings 7th
International Colloquium on Automata, Languages and Programming, volume 85 of
Lecture Notes in Computer Science, pages 195–207. Springer, 1980.

[GHPT14] C. Glaßer, J. M. Hitchcock, A. Pavan, and S. Travers. Unions of disjoint np-complete
sets. ACM Trans. Comput. Theory, 6(1):3:1–3:10, 2014.

[GPSS06] C. Glaßer, A. Pavan, A. L. Selman, and S. Sengupta. Properties of NP-complete
sets. SIAM Journal on Computing, 36(2):516–542, 2006.

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing, 17(2):309–335, 1988.

[GSS05] C. Glaßer, A. L. Selman, and S. Sengupta. Reductions between disjoint NP-pairs.
Information and Computation, 200:247–267, 2005.

[GSSZ04] C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM
Journal on Computing, 33(6):1369–1416, 2004.

[GSTW08] C. Glaßer, A. L. Selman, S. Travers, and K. W. Wagner. The complexity of unions
of disjoint sets. Journal of Computer and System Sciences, 74(7):1173–1187, 2008.

[GSZ07] C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of propositional
proof systems. Theoretical Computer Science, 370:60–73, 2007.

[GSZ09] C. Glaßer, A. L. Selman, and L. Zhang. The informational content of canoni-
cal disjoint NP-pairs. International Journal of Foundations of Computer Science,
20(3):501–522, 2009.

[HHH05] E. Hemaspaandra, L. A. Hemaspaandra, and H. Hempel. All superlinear inverse
schemes are conp-hard. Theoretical Computer Science, 345(2-3):345–358, 2005.

[HS92] S. Homer and A. L. Selman. Oracles for structural properties: The isomorphism
problem and public-key cryptography. Journal of Computer and System Sciences,
44(2):287–301, 1992.

[Kab01] V. Kabanets. Easiness assumptions and hardness tests: trading time for zero error.
Journal of Computer and System Sciences, 63(2):236–252, 2001.

[Kha18] E. Khaniki. New relations and separations of conjectures about incompleteness in
the finite domain. Technical Report 64, Institute of Mathematics, Czech Academy
of Sciences, 2018.

[KMT03] J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for
promise classes. Information and Computation, 184(1):71–92, 2003.

[KP89] J. Kraj́ıcek and P. Pudlák. Propositional proof systems, the consistency of first
order theories and the complexity of computations. Journal of Symbolic Logic,
54:1063–1079, 1989.

[Lov79] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, 25(1):1–7, 1979.

[MY85] S. Mahaney and P. Young. Reductions among polynomial isomorphism types. The-
oretical Computer Science, 39:207–224, 1985.

51

[Myh55] J. Myhill. Creative sets. Mathematical Logic Quarterly, 1(2):97–108, 1955.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure properties.
Journal of Computer and System Sciences, 46:295–325, 1993.

[Pap81] C. H. Papadimitriou. On the complexity of integer programming. Journal of the
ACM, 28(4):765–768, 1981.

[Pud96] P. Pudlák. On the lengths of proofs of consistency. In Collegium Logicum, pages
65–86. Springer Vienna, 1996.

[Pud03] P. Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer
Science, 295:323–339, 2003.

[Pud17] P. Pudlák. Incompleteness in the finite domain. The Bulletin of Symbolic Logic,
23(4):405–441, 2017.

[Rac82] C. Rackoff. Relativized questions involving probabilistic algorithms. Journal of the
ACM, 29:261–268, 1982.

[Raz94] A. A. Razborov. On provably disjoint np-pairs. Electronic Colloquium on Compu-
tational Complexity (ECCC), 1(6), 1994.

[Rog67] H. Rogers Jr. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York, 1967.

[Sad02] Z. Sadowski. On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoretical Computer Science, 288(1):181–193, 2002.

[Sel88] A. L. Selman. Natural self-reducible sets. SIAM Journal on Computing, 17(5):989–
996, 1988.

[Tar88] E. Tardos. The gap between monotone and non-monotone circuit complexity is
exponential. Combinatorica, 8(1):141–142, 1988.

[Tra07] S. Travers. Structural Properties of NP-Hard Sets and Uniform Characterisations of
Complexity Classes. PhD thesis, Julius-Maximilians-Universität Würzburg, 2007.

[Ver91] O. V. Verbitskii. Optimal algorithms for conp-sets and the exp =? nexp problem.
Mathematical notes of the Academy of Sciences of the USSR, 50(2):796–801, Aug
1991.

52

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

