
Local Proofs Approaching the Witness Length

Noga Ron-Zewi∗ Ron D. Rothblum†

January 12, 2021

Abstract

Interactive oracle proofs (IOPs) are a hybrid between interactive proofs and PCPs. In an IOP
the prover is allowed to interact with a verifier (like in an interactive proof) by sending relatively
long messages to the verifier, who in turn is only allowed to query a few of the bits that were
sent (like in a PCP). Efficient IOPs are at the core of leading practical implementations of highly
efficient proof-systems.

In this work we construct, for a large class of NP relations, IOPs in which the communication
complexity approaches the witness length. More precisely, for any NP relation for which member-
ship can be decided in polynomial-time and bounded polynomial space (e.g., SAT, Hamiltonicity,
Clique, Vertex-Cover, etc.) and for any constant γ > 0, we construct an IOP with communication
complexity (1 + γ) · n, where n is the original witness length. The number of rounds, as well as
the number of queries made by the IOP verifier, are constant.

This result improves over prior works on short IOPs/PCPs in two ways. First, the com-
munication complexity in these short IOPs is proportional to the complexity of verifying the
NP witness, which can be polynomially larger than the witness size. Second, even ignoring the
difference between witness length and non-deterministic verification time, prior works incur (at
the very least) a large constant multiplicative overhead to the communication complexity.

In particular, as a special case, we also obtain an IOP for CircuitSAT with communication
complexity (1+γ) · t, for circuits of size t and any constant γ > 0. This improves upon the prior
state-of-the-art work of Ben Sasson et al. (ICALP, 2017) who construct an IOP for CircuitSAT
with communication length c · t for a large (unspecified) constant c ≥ 1.

Our proof leverages the local testability and (relaxed) local correctability of high-rate tensor
codes, as well as their support of a sumcheck-like procedure. In particular, we bypass the barrier
imposed by the low rate of multiplication codes (e.g., Reed-Solomon, Reed-Muller or AG codes)
- a key building block of all known short PCP/IOP constructions.

∗Department of Computer Science, University of Haifa. Email: noga@cs.haifa.ac.il. Supported by the Milgrom
family grant for Collaboration between the Technion and University of Haifa.

†Department of Computer Science, Technion. Email: rothblum@cs.technion.ac.il. Supported in part by the Mil-
grom family grant for Collaboration between the Technion and University of Haifa, by the Israeli Science Foundation
(Grants No. 1262/18 and 2137/19), and the Technion Hiroshi Fujiwara cyber security research center and Israel
cyber directorate.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 127 (2019)

mailto:noga@cs.haifa.ac.il
mailto:rothblum@cs.technion.ac.il

Contents

1 Introduction 3
1.1 Our results . 4
1.2 Techniques . 7
1.3 Open problems . 12
1.4 Organization . 13

2 Preliminaries 13
2.1 Interactive oracle proofs . 13
2.2 Error-correcting codes . 14
2.3 Constructible finite fields . 16
2.4 Low degree extension . 17
2.5 The sumcheck protocol . 17

3 Formal statement of our results 18
3.1 IOP results . 18
3.2 IOPP results . 19

4 Main ingredients 19
4.1 Notation and central definitions . 19
4.2 Main claims . 21

5 Code switching – proof of Lemma 4.5 23

6 Tensor IOPP reduction – proof of Lemma 4.6 25
6.1 Interactive query reduction for low-degree extension . 25
6.2 Trivial robustification of IOP reductions . 28
6.3 Proof of Lemma 4.6 . 29

7 S⊗t-sumcheckable code – proof of Lemma 4.7 30
7.1 Proof of Lemma 4.7 . 32
7.2 Sumcheck for tensor codes – proof of Lemma 7.1 . 34
7.3 Relaxed local correction of tensor codes – proof of Lemma 7.4 37
7.4 Local decomposability for tensor codes – proof of Lemma 7.5 39

8 IOPP for bounded space computation – proof of Theorem 3.5 40
8.1 Query reduction – proof of Lemma 8.2 . 42
8.2 Outer IOPP – proof of Lemma 8.3 . 43
8.3 Inner IOPP – proof of Theorem 8.4 . 44

9 IOP for NP – proof of Theorem 3.1 45
9.1 Proof of Lemma 9.1 . 46
9.2 IOPs for NP: Proof of Theorem 3.1 . 47

A A high-rate variant of Justesen’s code 53

B Optimal communication complexity for IOPs 56

1 Introduction

The celebrated PCP Theorem, established in the early 90’s [BFLS91, FGL+96, AS98, ALM+98],
shows that it is possible to encode any NP witness in such a way that the veracity of the witness can
be verified by reading only a constant number of bits from the encoding. This foundational result
has had a transformative effect on TCS with diverse applications in cryptography and complexity
theory.

A basic and natural question that has drawn a great amount of interest is what is the minimal
overhead in encoding that is needed to allow for such local checking of an NP witness. While the
original PCP theorem only guarantees a polynomial overhead, a beautiful line of work has culmi-
nated in remarkably short PCPs. More precisely, the works of Ben Sasson and Sudan [BS08] com-
bined with that of Dinur [Din07] yield PCPs of length t ·polylog(t) for any time t non-deterministic
computation.

A central open question in the area is whether such poly-logarithmic overhead is indeed necessary,
or can one construct truly linear length PCPs. Actually, since the question is highly dependent on
the computational model (since transitions between standard computational models usually involve
at the very least a logarithmic overhead), a cleaner formalization of this question is the following:

Does the NP-complete language1 CircuitSAT
have a PCP whose length is linear in the given circuit?

Beyond its intrinsic interest, this question also has implications to the construction of efficient
proof-systems that build on PCPs [Kil92, Mic00, BCS16] as well as to the field of hardness of ap-
proximation [Din16, MR17, App17, BCG+17, ARW17]. The state-of-the-art is a result of [BKK+16]
who construct a linear length PCP for CircuitSAT albeit with only nε query complexity, for any
desired constant ε > 0. This result falls well short of the desired goal of constant query complexity
(and has the additional drawback that the verification is non-uniform).

Motivated by the goal of constructing such short PCPs and their applications to the construction
of efficient proof-systems, Ben Sasson et al. [BCS16] recently proposed a natural generalization
of PCPs called interactive oracle proofs, or IOPs for short.2 An IOP is an interactive protocol
(similarly to an interactive proof), but at each round the prover can send a long message from
which the verifier is allowed to read only a few bits (i.e., PCP-style access to the prover messages).
Ben Sasson et al. [BCG+17] later constructed an IOP for CircuitSAT in which the communication
complexity (which we will also refer to as proof length) is O(t), thereby demonstrating that local
proofs with constant overhead exist, if one allows for interaction.

A recent exciting sequence of works [BBHR18, BCR+19, BBHR19, BGKS19] has leveraged the
efficiency of IOPs to construct highly efficient succinct argument schemes which are now at the core
of leading practical implementations [BCR+19].

1Recall that the language CircuitSAT consists of the set of all satisfiable Boolean circuits, and that there is an
O(t · log t)-time reduction from NTIME(t) to CircuitSAT [PF79].

2The same notion was proposed independently by Reingold et al. [RRR16] (who used the term probabilistically
checkable interactive proof) but for a different motivation - facilitating the construction of doubly-efficient interactive
proofs.

3

1.1 Our results

In this work we construct IOPs with nearly optimal proof length. As our first main result, which
actually follows from a more general statement that will be elaborated on in Section 1.1.1, we
construct an IOP for CircuitSAT in which the proof length is (1 + γ) · t, for circuits of size t and for
any constant γ > 0.

Theorem 1 (Informally Stated, see Corollary 3.3 and Remark 1.2). For every constants γ, ε > 0,
CircuitSAT has a constant-round and constant-query IOP in which the proof-length is (1 + γ) · t,
where t is the circuit size. The IOP has perfect completeness and soundness error ε. The verifier
runs in time Õ(t) and the prover runs in time poly(t) (given the satisfying assignment).

Theorem 1 should be contrasted with the main result of [BCG+17], who give an IOP for CircuitSAT
with proof length c · t, for a constant c ≥ 1 that is left unspecified.3 While the proof length in
Theorem 1 is shorter than that in [BCG+17], the round complexity is slightly larger (Indeed, while
we have not attempted to optimize the round complexity, a naive implementation seems to require
6 rounds, whereas [BCG+17] has only 3 rounds).

The proof of Theorem 1 relies on techniques developed in Meir’s [Mei13] code-based proof of the
IP = PSPACE Theorem.

Remark 1.1. The IOP in Theorem 1 can be extended to sub-constant values of γ = γ(t) > 0 and

ε = ε(t) > 0 (simultaneously) at the cost of increasing the query complexity to poly
(

1
γ , log(1/ε)

)
(and no overhead to the round complexity).4 This leads to an IOP with communication complexity
(1 + o(1)) · t and negligible soundness error, but with poly-logarithmic query complexity.

1.1.1 Approaching the witness length

When considering a generic NP relation R, the result of Theorem 1, the main result in [BCG+17],
and essentially all short PCP constructions, only yield constructions in which the communication
scales with the verification complexity of R, rather than with the length of the original NP witness.
Essentially, this is because PCPs — in order to facilitate local checking — typically encode the
entire computation (rather than just the witness) via a suitable error correcting code.

For example, consider checking the 3-Colorability of a (connected) graph G = (V,E). Using any of
the known PCPs or IOPs in the literature would give proof length Ω(|E|), which can be quadratically
larger than the length of the natural NP witness (which has length O(|V |)). Alternatively, checking
the satisfiability of a given CNF formula φ with m clauses and n variables is only known to have
PCPs and IOPs of length Ω(m + n), but has a standard NP witness of length n (which again can
be significantly smaller than m+ n).

This limitation actually turns out to be inherent for PCPs. Fortnow and Santhanam [FS11]
showed that constructing PCPs whose length is a fixed polynomial of the witness length is impossible,
unless NP ⊆ co-NP/poly.

3We estimate that c is at least 3 · 63 = 648. This is since the [BCG+17] IOP includes three codewords, each of
which is a tensor (of dimension ≥ 3) of an AG code. The AG code has rate 1 − 1

q−1
, using an alphabet of size q2

(for any prime power q). However, since they encode binary messages, the effective rate is (1− 1
q−1

)/ log(q2), which
achieves its maximum (over prime powers) at q = 4.

4The fact that the soundness error can be reduced is non-trivial: straightforward error reduction by repetition can
significantly increase the proof length.

4

Interestingly however, Kalai and Raz [KR08] show that the picture changes drastically if one
allows for interaction. In particular, their work yields IOPs with proof length that is polynomial
in the witness size for a large class of NP relations, with poly-logarithmic query complexity.5 We
improve upon the result of [KR08] by constructing IOPs, also for a large class of NP relations, in
which the proof length is (1 + γ) · n, where n is the length of the original NP witness, rather than
poly(n) as in [KR08], and with constant query and round complexities.

The class of relations that we can support consists of all NP relations that can be verified in
polynomial-time and bounded polynomial space.6 In particular, we obtain IOPs with communica-
tion approaching the witness length for many natural NP problems, such as: SAT, Hamiltonicity,
TSP, all 21 of Karp’s original NP-complete problems7 [Kar75], etc.

Theorem 2 (Informally Stated, see Corollary 3.3). Let R be an NP relation which can be verified
in polynomial-time and bounded polynomial space (i.e., space nξ for some sufficiently small constant
ξ > 0). Then for any constants γ, ε > 0, the relation R has a constant-round and constant-query
IOP with proof-length (1 + γ) · n, where n is the original witness length. The IOP has perfect
completeness and soundness error ε. The verifier runs in quasi-linear time and the prover runs in
polynomial-time (given the NP witness).

Remark 1.2. It is worth emphasizing that every language in NP has a corresponding NP relation
which can be verified in small space. Indeed, this follows directly from the Cook-Levin theorem.
However, the Cook-Levin transformation incurs a polynomial blowup to the witness size (corre-
sponding to the non-deterministic verification time of the relation). The point of Theorem 2 is that
for NP relations which a priori can be verified in small space, we do not need to pay this additional
(potentially large) overhead.

Still, by applying Theorem 2 to CircuitSAT using the NP relation arising from the Cook-Levin
theorem (in which the witness includes, in addition to the satisfying assignment, the values of all
of the gates in the circuit), we obtain an IOP for CircuitSAT with proof length (1 + γ) · t, where t is
the circuit size. Thus, Theorem 1 follows as an immediate corollary of Theorem 2.

Similarly to Theorem 1, we can extend Theorem 2 to sub-constant values of γ = γ(n) > 0
and ε = ε(n) > 0, at the cost of increasing the query complexity to poly(1/γ, log(1/ε)) (and no
overhead to the round complexity), leading to communication complexity (1+o(1))·n and negligible
soundness error, but with poly-logarithmic query complexity.

The communication complexity in Theorem 2 is very close to optimal, under the following plau-
sible complexity theoretic conjecture. Loosely speaking, the randomized strong exponential time

5Kalai and Raz [KR08] consider a restricted model (in fact a predecessor) of IOPs called interactive PCPs. Their
result, combined with followup works [GKR15, RRR16], yields IOPs with length that is polynomial in the witness
size for all NP relations that can be verified in either bounded depth, or bounded space. Jumping ahead, we remark
that our results can also be interpreted as interactive PCPs (see Remark 1.3).

6We emphasize that machine verifying the relation is allowed read-many access to the witness (in contrast to the
much more restricted complexity class NL in which the verifier has read-once access to the witness). For further
discussion, see [Gol08, Section 5.3.1].

7For all but 2 of Karp’s 21 problems, it is straightforward to see that their natural NP relation can be verified
in bounded space. The two exceptions are: feedback vertex set and feedback arc set. In these two problems, given a
graph G one needs to decide whether there is a small set of vertices (resp., edges) whose removal makes the graph
acyclic. The natural NP witness for these problems is a specification of the set of vertices (resp., edges) to be removed.
While we are unaware of a deterministic bounded space algorithm for checking whether a (directed) graph is a-cyclic,
it is straightforward to show that this problem is in co-NL. Using an unpublished extension [RRR17] of the [RRR16]
protocol to NL (and therefore also co-NL [Imm88, Sze87]) one can obtain short IOPs also for these two problems.

5

hypothesis (RSETH) states that SAT is not contained in BPTIME
(
2(1−γ)·n) for any constant γ > 0

(where n here is the number of variables in the formula). The work of Goldreich and H̊astad
[GH98] shows that only languages in BPTIME(2b · poly(n)) have constant-round public-coin inter-
active proofs (let alone IOPs) in which the prover sends at most b bits. Put together, these two
facts imply that SAT does not have a (constant-round and public-coin) IOP in which the prover
sends less than (1 − γ) · n bits, unless RSETH is false. For a more precise statement and further
details, see Appendix B.

We also mention that the limitation in Theorem 2 to relations computable in space nξ (for a
sufficiently small constant ξ > 0) is inherited from the work of [RRR16], on which we build. In this
work we have not made an attempt to optimize the constant ξ. However, we believe that ξ could
potentially be any constant smaller than 1/2 (i.e., leading to a space bound of n0.499). Whether or
not the space bound can be improved or altogether eliminated is an interesting open problem.

Remark 1.3. Our results can also be interpreted as interactive PCPs (IPCP) [KR08], a more
restricted model than IOPs in which the prover first sends a single long message to which the verifier
has oracle access (like a PCP), followed by short interactive protocol with sublinear communication
during which the verifier reads the prover’s messages in full (like an interactive proof).

Specifically, Theorem 2 (see Theorem 3.1) gives an IPCP in which the first message has length
(1 + γ) · n and constant query complexity, and the rest of the communication is of length nβ,
for arbitrarily small constants γ, β > 0. Alternatively, optimizing the communication complexity,
we can obtain an IPCP in which the first message has length (1 + 2−(logm)1−ε0) · n and query
complexity 2(logm)1−ε0 , and the rest of the communication has length 2(logm)1−ε0 , where m is the
input length, n is the witness length, and ε0 > 0 is a small absolute constant (see Corollary 3.4).
This should be contrasted with the main result of [KR08] that gives IPCP in which the first message
has length poly(n) with constant query complexity (in fact, one query suffices), and the rest of the
communication has length polylog(n).

1.1.2 Interactive oracle proofs of proximity with sublinear proof length

Loosely speaking, proofs of proximity are proof-systems in which the verifier runs in sublinear
time. Since the verifier cannot even read its own input, we only require that she rejects inputs
that are far from the language. Various models of proofs of proximity have been considered in
the literature, depending on the type of communication with the prover. In particular, PCP-style
access [BGH+06, DR06], interactive proofs [EKR04, RVW13], non-interactive proofs [GR18], as
well as an IOP variant [BCS16, RRR16].

As a technical step toward proving Theorem 2, we also construct short interactive oracle proofs
of proximity (IOPP). In an IOPP, the verifier is given oracle access to an implicit input w and is
allowed to communicate with an all powerful but untrusted prover (who sees all of w). In each
round of the interaction the prover sends a long message and the verifier can choose to read a few of
the bits of the message, as well as a few bits of w. At the end of the interaction the verifier should
accept if w belongs to the language and should reject (with high probability) if w is far from the
language (no matter what the prover does).

Theorem 3 (Informally Stated, see Corollary 3.6). Let L be a language computable in polynomial-
time and bounded-polynomial space. Then, for any constant β, γ > 0 there exists an IOPP for L
with communication complexity γ · n and constant query and round complexities. The verifier’s
running time is nβ, and the prover’s running time is poly(n).

6

We remark that the communication complexity in Theorem 3 is strictly less than the input
length n. At first glance this may seem quite surprising as, by the aforementioned work [GH98]
(see also [GVW02]), we do not expect IOPs for NP with communication that is shorter than the
witness length. Indeed, the key difference which enables such short communication is the fact that
Theorem 3 is for deterministic languages.

We remark that Theorem 3 is optimal in several ways. First, the work of Kalai and Roth-
blum [KR15] implies that there exists a language L∗ ∈ Logspace such that any IOP for L∗ with
communication complexity o(n) must have query complexity ω(1), under a strong but plausible
cryptographic assumption (i.e., exponentially hard cryptographic pseudorandom generators com-
putable in logarithmic space). Second, a bound on the space complexity of L is inherent under the
widely believed assumption that P is not contained in SPACE(Õ(n)) (c.f., [Gol18, Theorem 1.4]).

Remark 1.4. Interestingly, since the proof length is strictly less than the input size, Theorem 3
is non-trivial even if we ignore the fact the verifier only reads a small part of the proof. Thus, the
result can also be viewed as an interactive proof of proximity (IPP) [EKR04, RVW13]. As a point
of comparison, note that [RVW13, RRR16] also construct IPPs with sublinear communication for
bounded-space computations, but in a different parameter regime: the result in [RVW13, RRR16]
has much smaller communication complexity (e.g., O(

√
n)) but on the other hand it does not support

constant query complexity as in Theorem 3.

1.2 Techniques

Next we give an overview of the proof of Theorem 2 (from which Theorem 1 follows, see Remark 1.2).
As a warmup, we focus here on a high level overview of a short IOP for 3SAT (i.e., rather than
all bounded space relations) and with only some non-trivial query complexity (i.e., O(

√
n) rather

than constant). Later, in Section 1.2.1, we discuss the additional steps needed to generalize to any
bounded-space relation and with constant query complexity.

Let φ : {0, 1}n → {0, 1} be a 3CNF formula and let γ > 0. We construct an IOP for proving that
φ is satisfiable with communication complexity (1 + γ) · n and query complexity O(

√
n) (note that

the witness here is the satisfying assignment, and so the witness length is n). To construct the IOP,
our starting point is the following rough outline shared by most PCP and IOP constructions:

1. The prover provides an error-corrected encoding of the computation (either as part of the
PCP or as the first message of the IOP).

2. The error-correcting code is chosen so that there is way for the verifier to check that the given
alleged codeword is actually a valid codeword. For example, this can be done if the above
code is locally testable and (relaxed) locally correctable,8 or by providing an auxiliary proof
that the codeword is close to being valid (as in [BS08]).

3. Lastly, the PCP/IOP is designed to have a mechanism for ensuring that the message encoded
within the codeword - an alleged computation - is indeed a valid and accepting computation.

8Informally, a code is said to be locally testable if, given a string w, it is possible to determine whether w is
a codeword of C, or far from all codewords in C, by reading only a small part of w. A code is said to be locally
correctable if, given a codeword c that has been partially corrupted by some errors, it is possible to recover any
coordinate of c by reading only a small part of the corrupted version of c. Finally, in relaxed local correction, the
local corrector is additionally allowed to abort whenever a corruption is detected.

7

Our construction also shares this basic schema but departs significantly in the details. Let us
focus first on Step 1. The first main difference here is that in our construction we only provide an
encoding of the NP witness (i.e., the satisfying assignment in the case of 3SAT) rather than the
entire computation (which includes also the values of all the clauses in φ). Intuitively, this makes
our job harder when handling Step 3. The second main difference, on which we elaborate next, is
that the code that we use in Step 1 is a high rate code which is not a multiplication code.

Multiplication codes and how to avoid9 them. Loosely speaking, a multiplication code
[Mei13, Mei14] is a linear error correcting code C, over a finite field F, so that the set {c1 ? c2 :
c1, c2 ∈ C}, where c1 ? c2 denotes entry-wise multiplication (over F), is itself a code (i.e., it has
large relative distance). The archtypical example of a multiplication code is the Reed-Solomon
code (since the product of two sufficiently low degree polynomials is a low degree polynomial).
As elegantly articulated in the works of Meir [Mei13, Mei14], the multiplication property is lever-
aged in PCP and IOP constructions to facilitate checking of non-linear relations that arise in the
computation (e.g., verifying correctness of AND gates).

Unfortunately, all known multiplications codes (e.g., the Reed-Solomon [RS60] code, the Reed-
Muller code [Mul54, Ree54], low rate tensor codes [Mei13, Mei14] or AG codes [Sti06, BKK+16])
have rate less than 1/2, and this is inherent [Ran13]. Since we are aiming for rate close to 1, we
cannot afford to encode the entire computation using such a code.

Instead, we encode the satisfying assignment w using a high rate binary code C : {0, 1}n →
{0, 1}(1+γ/2)·n with constant relative distance (which is not a multiplication code). Beyond having
high rate and constant relative distance, we will also need for C to be (1) locally testable, (2)
(relaxed) locally correctable, and (3) support a certain “sumcheck-like property”, elaborated on
below.

It turns out that the tensor product of a high-rate binary code of constant relative distance
satisfies all the aforementioned properties. Given a linear code C0 : {0, 1}k → {0, 1}m, consider the
(two-dimensional) tensor product code C0 ⊗ C0 : {0, 1}k×k → {0, 1}m×m; we will define the tensor
product formally in Definition 2.4, but for now, we will view the codewords of C0 ⊗ C0 as m ×m
matrices with the constraints that the rows and columns are all codewords of the base code C0.

It is well-known that the tensor product operation squares the rate and the relative distance of
the base code. In particular, if the base code has high-rate and constant relative distance, then so
does its tensor product. Moreover, a recent line of work [BS06, BV15, Vid15, KMRS17, GRR18]
has established the local testability and relaxed local correctability of high-rate tensor codes.10

Hence, we take C : {0, 1}n → {0, 1}(1+γ/2)·n to be a tensor product of some high-rate base code C0.
Given a satisfying assignment w ∈ {0, 1}n for φ, the prover in our IOP first sends C(w) (which has
length (1 + γ/2) · n). Next, addressing Step 2 in the outline, we observe that C is indeed locally
testable and relaxed locally correctable with query complexity O(

√
n).

Thus, we are left with the question of how to implement Step 3, which is the key technical
challenge. This is where we use the “sumcheck-like” property of our code C. To explain our
approach we first take a brief detour into the classical method for constructing PCPs due to [BFL91,
BFLS91]. Our presentation follows [Sud00].

9Actually, our construction does use multiplication codes (specifically the Reed-Muller or Low Degree Extension
code). What we avoid is explicitly sending an encoding of the computation (or witness) via a multiplication code.

10Local testability actually requires the dimension of the tensor product to be at least 3 [Val05, GM12]. For
simplicity we ignore this fact in this high-level overview.

8

A quick recap of classical PCP techniques. Imagine momentarily that the prover can provide
an encoding of the satisfying assignment w under the low degree extension code (a variant of the
Reed Muller code). This code is very “PCP-friendly” but has very poor rate.

In more detail, let F be a finite field of size |F| � log(n) and let ŵ : Flog(n) → F be the unique
multilinear polynomial such that for every i ∈ {0, 1}log(n) it holds that ŵ(i) = wi, where we identify
{0, 1}log(n) with [n] in the natural way. The existence of such a (unique) polynomial, referred to
as the multilinear extension of w, basically follows from interpolation, see Section 2.4 for details.
Observe that the truth table of ŵ has super-polynomial length and so we cannot afford for the
prover to send ŵ. Nevertheless, let us assume for now that the verifier also has oracle access to ŵ.

Consider the polynomial P : (Flog(n))3 × F3 → F of total degree O(log n) defined as:

P (i1, i2, i3, b1, b2, b3) = Îφ(i1, i2, i3, b1, b2, b3) ·
(
ŵ(i1)− b1

)
·
(
ŵ(i2)− b2

)
·
(
ŵ(i3)− b3

)
, (1)

where Îφ is a multilinear extension of a Boolean function Iφ that on input (i1, i2, i3, b1, b2, b3) ∈
{0, 1}3 log(n)+3 outputs 1 if the clause (xi1 = b1)∨ (xi2 = b2)∨ (xi3 = b3) appears in φ and otherwise
outputs 0. The significance of P is that it has the following easy-to-verify property: P is identically
0 in the hypercube {0, 1}3 log(n)+3 if and only if ŵ corresponds to a satisfying assignment for φ.

Thus, we only need to check that indeed P |{0,1}3 log(n)+3 ≡ 0. This can be done using a variant

of the classical (interactive) sumcheck protocol [LFKN92].11 More specifically, and without getting
into the details, there exists a constant round interactive proof for checking whether a given low
degree polynomial Q : Fm → F is identically 0 in {0, 1}m. Most importantly, the verifier in the
protocol only needs oracle access to Q and moreover, only makes a single query to Q.

It is very instructive to think of the above protocol as an interactive reduction - a central notion in
our work. Generally speaking, in an interactive reduction a (computationally) complex claim about
an input w is reduced, by interaction with a prover, to a much simpler claim about w. Completeness
means that if the original claim was true then the honest prover will make the verifier generate a
true (and simpler) claim, whereas soundness means that if the original claim was false, then no
matter what the prover does, with high probability, either the verifier rejects or it generates a false
claim. Since the claim has been simplified, intuitively, progress has been made.

We emphasize that in an interactive reduction the verifier doesn’t get any form of access to the
input w - it merely reduces the complexity of claims about w, without ever seeing it. For example,
the above protocol (for checking whether the polynomial Q vanishes on the hypercube) can be
viewed as an interactive reduction from a claim about 2m values of Q to a claim about a single
value.

Using this reduction, applied to the polynomial P , the prover and verifier can reduce the satisfi-
ability of the formula φ to a claim about a single point of the polynomial P . The verifier can now
directly check this claim, via Eq. (1), by making three queries to ŵ.12

Taking a step back, what we started off with was a claim that w is a satisfying assignment for
φ and we ended up with claims about three particular values of ŵ. Thus, we can view this entire
process itself as an interactive reduction from the claim that the assignment w satisfies the formula
φ to claims about three specific points of its low degree extension ŵ. We emphasize that in this
interactive reduction, which we denote by Πreduce, the verifier only needs to get φ and doesn’t need
any form of access to w.

11Since we aim for query complexity O(
√
n), we can use a constant-round variant of sumcheck with communication

O(
√
n).

12Here we also use the fact that the verifier can compute Îφ by itself in Õ(n) time, see Section 2.4 for details.

9

Back to our IOP construction. If we could afford for the prover to send ŵ then at this point
we would be done - after sending ŵ, the prover and verifier run Πreduce and then the verifier checks
the three claims about ŵ by reading the three corresponding points from the prover’s first message
(using also the local testability and correctability of the low degree extension).

Alas, in our actual IOP the prover can only send a high-rate encoding C(w) and cannot afford
to send ŵ. Still, we can use Πreduce to our advantage. In particular, after the prover sends C(w),
the two parties run Πreduce. The reduction generates claims about three values of ŵ. We are now
faced with a (potentially) simpler task. Given oracle access to C(w), we merely need to check the
three claims about ŵ. For simplicity let us focus on one of these three claims, that is, a claim of
the form ŵ(z) = b (where z ∈ Flog(n) and b ∈ F).

It is natural to wonder at this point whether checking that ŵ(z) = b, given oracle access to C(w),
is any simpler than checking that φ(w) = 1. We would like to argue that the answer is affirmative.
In particular, since the low degree extension is a linear code (over the field F), the claim ŵ(z) = b is
linear - i.e., it can be rephrased as a claim of the form 〈λz, w〉 = b, for some λz ∈ Fn (that depends
only on z ∈ Flog(n)).

Thus, we need a procedure for checking a linear claim about w, given oracle access to C(w).
Observing that C is a tensor code, a natural approach is to use the classical sumcheck protocol.
Recall that the sumcheck protocol is an interactive proof for computing

∑
i∈[n]wi, given oracle

access to C(w). While the protocol was originally designed specifically for the low degree extension
code, it was later abstracted by Meir [Mei13], who showed that it can be applied to any tensor
code.

The discussion so far comes close to resolving our problem. The difficulty that remains is that
we would like to check that 〈λz, w〉 = b whereas the sumcheck protocol supports claims of the
form 〈1, w〉 = b, where 1 is the all 1’s vector. That is, the sumcheck protocol seems limited to the
particular linear claim in which all coefficients are equal to 1. Unfortunately, the linear claim in
question (corresponding to the vector λz) does not have this form. Before proceeding, we remark
that if C were a multiplication code then we could have easily handled this difficulty be applying
the sumcheck protocol to the codeword C(w) ? C(λz).

Sumcheck for rank 1 tensor coefficients. While we do not know how to extend the sumcheck
protocol to handle linear claims with arbitrary coefficients, following [Mei13], we show that it is
possible to extend it to handle a particular form of coefficient structure. Luckily, the vector λz has
a suitable form.

More specifically, we show how to extend the sumcheck protocol to computing linear claims of
the form 〈λ,w〉 for any λ ∈ Fn which corresponds to a rank 1 matrix of dimension

√
n ×
√
n (or

more generally to any rank 1 tensor). That is, we assume that there exist λ(1), λ(2) ∈ F
√
n such that

λ = λ(1) ⊗ λ(2) (where ⊗ denotes the tensor product, and we view λ simultaneously as a vector in
Fn and as a matrix in F

√
n × F

√
n in the natural way). The fact that λz has this structure follows

from the fact that the low degree extension is itself a tensor code.
Thus, we would like to use the sumcheck protocol to compute 〈λ(1) ⊗ λ(2), w〉. Let C0 :

{0, 1}n0 → {0, 1}n′0 be a systematic linear code such that C = C0 ⊗ C0. Thus, n0 =
√
n and

n′0 =
√

(1 + γ/2) · n. Let c = C(w). We view c as an n′0 × n′0 dimensional matrix in the natural
way, and denote its (i, j)-th entry by ci,j .

In our sumcheck variant, the (honest) prover sends the message π ∈ Fn′0 which is defined as

πi =
∑

j∈[n0] λ
(2)
j · ci,j , for every i ∈ [n′0]. In other words, π is computed by taking a linear

10

combination of the first n0 columns of c, with coefficients corresponding to λ(2).
At first glance it may seem as though π is a codeword of C0. This is actually not true since C0

is linear over the field GF(2) whereas we are using coefficients in a different (and larger) field F.
Nevertheless, if we choose F to be an extension field of GF(2), then with some elementary algebraic
manipulations, we can show that π can be decomposed into log2(|F|) codewords of C0.

The verifier, given a string π̃ which is allegedly equal to π, first checks that π̃ indeed consists of
the aforementioned log(|F|) codewords and rejects otherwise. Since both π and π̃ are composed of
codewords, this test ensures us that if they differ then they must differ on a constant fraction of
coordinates.

The verifier then chooses a random i∗ ∈ [n′0] and checks that π̃i∗ =
∑

j∈[n0] λ
(2)
j · ci∗,j by reading

the i∗-th row of C. Assuming that the prover sent π̃ 6= π, with constant probability over the choice

of i∗ it holds that π̃i∗ 6= πi∗ =
∑

j∈[n0] λ
(2)
j · ci∗,j and so the verifier rejects. This probability can

be amplified by choosing a suitably large constant number of random i∗’s. Note that verifier only
reads a constant number of rows from c and so the number of queries to c is O(n′0) = O(

√
n).

Since we can now assume that the prover actually sent π, the verifier can simply output
∑

i∈[n0] λ
(1)
i ·

πi =
∑

i,j∈[n0] λ
(1)
i · λ

(2)
j · ci,j = 〈λ(1) ⊗ λ(2), w〉 as desired.

This concludes the description of the warmup. Observe that the communication complexity is
(1 + γ/2) · n+ Õ(

√
n) ≤ (1 + γ) · n and the query complexity is O(

√
n) as promised.

A brief digest: Interactive code switching. The key idea in the above proof is that, using
interaction, we are able to “switch” between different tensor codes during the protocol. More specif-
ically, we implicitly use a (low-rate) multiplication code to check correctness of the computation,
but are able to use a high-rate tensor code for actually encoding the witness. The key facilitator
for switching between these codes is the power of the sumcheck protocol.

This approach is inspired by Meir’s [Mei13] combinatorial proof of the IP = PSPACE theorem.
In Meir’s protocol, which is an abstraction of the [GKR15] protocol, claims about larger tensor
codewords are reduced to claims about smaller tensor codewords via the sumcheck protocol.

1.2.1 Additional steps from warmup to Theorem 2

Constant query complexity. The approach outlined so far only yields an IOP withO(
√
n) query

complexity. To obtain a result with constant query complexity we follow the usual route - query
reduction via composition [AS98]. In more detail, rather than actually performing the queries
we will ask the prover to provide a constant query PCP, or more precisely a PCP of proximity
(PCPP), that the verifier would have accepted had it read these queries. Since the PCPP is applied
to an input of length O(

√
n) (or more accurately to a computation of size Õ(

√
n)) we can afford

to use existing constant-query PCPP constructions (e.g., those with poly-logarithmic overhead
[BS08, Din07]). A similar type of IOP composition was used also in [BCG+17] and as in their work,
we utilize interaction to pay only linearly in the randomness complexity of the so-called “outer”
IOP (rather than exponentially as in standard PCP composition).

Actually making this idea go through is somewhat more technically invloved. For example, we
need to ensure that our base IOP (with O(

√
n) query complexity) is robust (i.e., the verifier cannot

be made to accept even if the prover is allowed to flip a constant fraction of its answers a posteriori).
We also need the outer IOP verifier to run in sublinear time. We achieve this by making also the
outer IOP an IOPP. We defer the details to the technical sections.

11

Extending to general bounded-space computations. When trying to extend our approach
past 3SAT, we observe that the main property that we used is that 3SAT has an interactive reduction
to a linear claim about the witness, where the linear claim has a rank 1 tensor structure.

Using the doubly-efficient interactive proofs of Reingold et al. [RRR16] we show that a similar
statement holds for any NP relation computable in polynomial-time and bounded polynomial-space.
This basically follows from the fact that the verifier in [RRR16] runs in sublinear time given access
to the low degree extension of its input. Plugging in the [RRR16] protocol instead of Πreduce lets
us obtain a high-rate IOP for any non-deterministic bounded space computation, thereby proving
Theorem 2.

Remark 1.5. One can replace the [RRR16] protocol with the doubly efficient interactive proof-
system of Goldwasser et al. [GKR15] to obtain an IOP approaching the witness length also for
NP relations that can be verified in small depth (rather than small space). However, the resulting
IOP only has poly-logarithmic query complexity due to the poly-logarithmic number of rounds in
[GKR15].

1.3 Open problems

Shorter PCPs. As mentioned above, the work of [FS11] shows that SAT does not have a PCP with
length that is a fixed polynomial in the witness size (let alone proof length approaching the witness
length), unless NP ⊆ co-NP/poly. This still leaves open the possibility that an interesting sub-class
of NP relations has such short proofs. Somewhat along this vein, a recent work of Ben Eliezer et
al. [BFLR19] constructs a PCPP with length n · (log n)o(1) but for a very specific problem. In
particular, while we have constructed nearly optimal IOPs for CircuitSAT, the question of whether
CircuitSAT has a linear length constant-query PCP remains wide open.

A major difficulty in trying to adapt our approach (as well as previous approaches) is that
we apply an interactive version of the sumcheck protocol that has sub-linear communication. In
contrast, the only way in which we know how to make the sumcheck protocol non-interactive (i.e.,
by specifying the answers of all possible queries of the verifier) leads to super-linear proof length.

A starting point may be to try to obtain PCPs for CircuitSAT of proof length approaching t with
any non-trivial query complexity (we note that while [BKK+16] constructed a PCP for CircuitSAT
of length O(t) with non-trivial query complexity, the hidden constant in the O(·) notation is very
large). A positive answer to this question would have to bypass the use of multiplication codes in
a fundamentally different way than in our protocol (which capitalizes on interaction). Moreover,
we note that for the case of locally testable and decodable codes, a key for reducing the query
complexity of linear length locally testable and decodable codes was indeed to first construct such
codes of rate approaching 1 and non-trivial sublinear query complexity [KMRS17].

Hardness of approximation. A major application of PCPs is showing hardness of approxima-
tion for central optimization problems (see, e.g., [FGL+96, H̊as01]). A fascinating open question,
pointed out by [BCG+17, ARW17], is whether IOPs may have similar implications. In particular,
a major barrier in applying the traditional PCP methodology for obtaining hardness of approx-
imation results in fine-grained complexity is the overhead in the length of existing PCPs. For
example, to show that GapSAT is 2(1−ε)·n hard, one would need a PCP with overhead 1 + ε′. (In
particular, note that a PCP of length, say, 100n would only roughly yield hardness of 2n/100.) Inter-
estingly, recent breakthrough results bypassed this barrier by relying on interactive proof machinery

12

[ARW17, Rub18, CGL+19]. It is natural to ask whether short IOPs such as those constructed in
this work can be used to establish new or improved hardness of approximation results.

Prover Efficiency. A key bottleneck in leading modern implementations of efficient argument
systems is the overhead incurred by the prover. For IOP based arguments, the communication
complexity is a lower bound on the IOP prover efficiency. Since we have managed to minimize the
communication complexity, it is tempting to ask whether it is possible to achieve linear overhead
for the IOP prover.

Building on our techniques, recent followup works [BCG20, BCL20, LSTW21] have made signif-
icant progress on this question by constructing IOPs in which the prover can be implemented by
a linear-size arithmetic circuit over a sufficiently large field. The question of obtaining a similar
result for Boolean circuits remains open.

1.4 Organization

We start with preliminaries in Section 2. Our main results are stated formally in Section 3. In
Section 4 we introduce the main definitions and lemmas that will be used in the proof. These
lemmas are proved in Sections 5 to 7. In Section 8 we use the results obtained in the previous
section to construct our IOPP and in Section 9 we construct our IOP.

2 Preliminaries

The relative distance between strings x, y ∈ Σn, over a finite alphabet Σ, is the fraction of coordinates
i ∈ [n] on which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n. The relative
distance of x ∈ Σn from a non-empty set S ⊆ Σn is dist(x, S) = miny∈S dist(x, y).

2.1 Interactive oracle proofs

Throughout this work for an NP relation R, we use n to denote the length of the NP witness. We
also define R(x) = {w : (x,w) ∈ R}.

Definition 2.1 (Interactive oracle proof (IOP)). A (public coin) interactive oracle proof for an NP
relation R is a pair (P,V) of probabilistic algorithms that satisfy the following requirements.

• Input: P receives a pair (x,w) as an input, and V receives x as an input.

• Communication phase: P and V interact for ` = `(n) rounds with total communication
cc = cc(n), where V’s messages only depend on the explicit input x and V’s randomness.

• Query phase: At the end of the interaction, V makes q = q(n) (non-adaptive) queries to
the transcript, and applies a predicate φ : {0, 1}q(n) → {accept, reject}, where the location
of the queries and the predicate φ only depends on the explicit input x and V’s randomness.

• Completeness: If (x,w) ∈ R, then when V interacts with P, it accepts with probability 1.

• Soundness: If R(x) = ∅, then for any prover strategy P∗, when V interacts with P∗, it
accepts with probability at most ε = ε(n).

13

We call `, cc, q, and ε the round complexity, communication complexity, query complexity, and
soundness error of the interactive oracle proof, respectively. We say that the interactive oracle proof
is (α(n), ε(n)-robust if the soundness requirement is replaced with the stronger requirement that
the answers to the queries made by V are α(n)-close to φ−1(accept) with probability at most ε(n).

Interactive Oracle Proofs of Proximity (IOPP). We next define IOPPs which are a variant
of IOPs in which the verifier only gets oracle access to the input and is required to reject inputs
that are far from the language.

Following the PCPP literature, we will consider pair languages which are sets of the form L ⊆
{(x,w) ∈ {0, 1}∗×{0, 1}∗}. We refer to x (which will be given explicitly to the verifier) as the explicit
input and to w (to which the verifier only has oracle access) as the implicit input. For x ∈ {0, 1}∗,
we use the notation Lx := {w : (x,w) ∈ L}. We will sometimes consider pair languages in which
the explicit input is empty. For simplicity we refer to such pair languages simply as languages.

Definition 2.2 (Interactive oracle proof of proximity (IOPP)). A public-coin interactive oracle
proof of proximity for the pair language L is a pair (P,V) of probabilistic algorithms that satisfy the
following requirements.

• Input: P receives a pair (x,w) as an input, and V receives x as an input and also gets oracle
access to w, where |w| = n.

• Communication phase: P and V interact for ` = `(n) rounds with total communication
cc(n), where V’s messages only depend on the explicit input x and V’s randomness.

• Query phase: At the end of the interaction, V makes q = q(n) (non-adaptive) queries
to the implicit input w and to the transcript, and applies a predicate φ : {0, 1}q(n) →
{accept, reject}, where the location of the queries and the predicate φ only depend on the
explicit input x and V’s randomness.

• Completeness: If (x,w) ∈ L, then when V interacts with P, it accepts with probability 1.

• Soundness: If w is δ(n)-far from Lx, then for any prover strategy P∗, when V interacts with
P∗, it accepts with probability at most ε = ε(n).

We refer to δ as the proximity parameter of the IOPP. Similarly to IOPs, we refer to `, cc, q, and
ε as the round complexity, communication complexity, query complexity, and soundness error of the
IOPP, respectively. As before, we say that the interactive oracle proof of proximity is (α(n), ε(n))-
robust if the soundness requirement is replaced with the stronger requirement that the answers to
the queries made by V (both to the implicit input and the transcript) are α(n)-close to φ−1(accept)
with probability at most ε(n).

2.2 Error-correcting codes

Let Σ be a finite alphabet, and k, n be positive integers (the message length and the block length,
respectively). An (error-correcting) code is an injective map C : Σk → Σn. The elements in the
domain of C are called messages, and the elements in the image of C are called codewords. We say
that C is systematic if the message is a prefix of the corresponding codeword, i.e., for every x ∈ Σk

there exists z ∈ Σn−k such that C(x) = (x, z).

14

The rate of a code C : Σk → Σn is the ratio ρ := k
n . The relative distance dist(C) of C

is the maximum δ > 0 such that for every pair of distinct messages x, y ∈ Σk it holds that
dist(C(x), C(y)) ≥ δ.

If Σ = F for some finite field F, and C is a linear map between the vector spaces Fk and Fn then
we say that C is linear. The generating matrix of a linear code C : Fk → Fn is a matrix G ∈ Fn×k
such that C(x) = G · x for any x ∈ Fk. A parity-check matrix for C is an (n − k) × n matrix H
over F such that Ker(H) = Im(C). If C is linear then its relative distance is equal to the minimal
Hamming weight of any non-zero codeword.

Code Ensembles. In this work we will typically want error-correcting codes that are defined for
an infinite sequence of message lengths I ⊆ N. Thus, a code ensemble C = {Ck : (Σk)

k → (Σk)
n}k∈I

is a countable collection of error correcting codes, one for each input length k ∈ I. We say that C
has rate ρ = ρ(k) ∈ (0, 1) and relative distance δ = δ(k) ∈ (0, 1) if for any sufficiently large k ∈ I,
the code Ck has rate ρ(k) and relative distance δ(k).

We say that C is T -time encodable if given x ∈ (Σk)
k, the codeword Ck(x) can be generated in

time T (k). The code is linear-time encodable (resp., quasi-linear time encodable) if it is encodable
in time O(k) (resp., Õ(k)).

High-Rate Codes. A main ingredient in our constructions is the efficiently encodable binary
code due to Justesen [Jus72]. Actually we use a somewhat non-standard setting of Justesen’s code.
First, we are interested in very high rate. Second, we need a construction for every (sufficiently
large) message length (rather than just for an infinite sequence of message lengths). Thus, we
provide a full proof in Appendix A.

Theorem 2.3 (High-rate Justesen code). For any γ = γ(k) ∈
(

100 log k
k , 1

)
there exists a systematic

code ensemble C = {Ck : {0, 1}k → {0, 1}n}k∈N of binary linear codes of rate at least 1 − γ and
relative distance Ω(γ3). Moreover,

• Ck is encodable in time k · polylog(k).

• Any individual coordinate in the encoding can be generated in time k · polylog(k) and space
polylog(k).

2.2.1 Tensor codes

A main ingredient in our constructions is the tensor product operation, defined as follows (see, e.g.,
[Sud01, DSW06]).

Definition 2.4 (Tensor codes). Let C : Fk → Fn, C ′ : Fk′ → Fn′ be linear codes, and let G ∈ Fn×k
and G′ ∈ Fn′×k′ be generating matrices for C,C ′ respectively. Then the tensor code C⊗C ′ : Fk×k′ →
Fn×n′ is defined as (C ⊗ C ′)(M) = G ·M · (G′)T .

Note that the codewords of C ⊗ C ′ are n× n′ matrices (over the field F) whose columns belong
to the code C and whose rows belong to the code C ′. The following effects of the tensor product
operation on the classical parameters of the code are well known.

Fact 2.5. Suppose that C : Fk → Fn, C ′ : Fk′ → Fn′ are linear codes of rates ρ, ρ′ and relative
distances δ, δ′ respectively. Then, the tensor code C ⊗ C ′ has rate ρ · ρ′ and relative distance δ · δ′.

15

For a linear code C, let C⊗1 := C and C⊗t := C ⊗ C⊗(t−1), for any t ≥ 2. The codewords
of C⊗t : Fkt → Fnt can be viewed as t-dimensional cubes, satisfying that their projection on any
axis-parallel line is a codeword of C. Moreover, by the above fact, if C has rate ρ and relative
distance δ then C⊗t has rate ρt and relative distance δt.

Finally, for λ(1), λ(2), . . . , λ(t) ∈ Fn we let λ(1)⊗λ(2)⊗· · ·⊗λ(t) ∈ Fnt denote the vector satisfying
that (λ(1) ⊗ λ(2) ⊗ · · · ⊗ λ(t))i1,i2,...,it = (λ(1))i1 · (λ(2))i2 · · · (λ(t))it for any i1, i2, . . . , it ∈ [n].

2.2.2 Relaxed Locally Correctable Codes

Locally correctable codes are error-correcting codes in which it is possible to recover individual
sybmols from a noisy codeword by reading only a few of its coordinates. We consider here a
relaxation, due to [GRR18] (extending the work of [BGH+06]), that allows the corrector to reject
by outputting a special abort symbol.

Definition 2.6 (Relaxed Locally Correctable Codes (RLCCs)). Let C : Σk → Σn be an error
correcting code. We say that C is relaxed locally correctable wrt correcting radius δdec ∈ (0, 1], query
complexity q and soundness error ε (RLCC) if there exists a randomized oracle machine M , called
the corrector, which gets as input oracle access to w ∈ Σn and explicit access to an index i ∈ [n],
makes at most q queries to the oracle and satisfies the following two conditions.

1. If w ∈ C, then Mw(i) = wi with probability 1.

2. If w is δdec-close to some codeword c ∈ C, then with probability at least 1 − ε it holds that
Mw(i) either outputs ci or a special abort symbol ⊥.

We say that C is (α, ε) robust if it satisfies the following more stringent requirement:

1. If w is δdec-close to some codeword c ∈ C, then with probability 1− ε the view of the corrector
is α-far from any view that would make it output a value in Σ\{ci}.

We extend the definition to a code ensemble in the natural way. A code ensemble C = {C(k) :
(Σk)

k → (Σk)
n} is a relaxed locally correctable code with query complexity q = q(k) and soundness

error ε = ε(k) if there exists a constant δdec ∈ (0, 1] such that for every k the code C(k) is relaxed
locally correctable wrt correcting radius δdec with query complexity q(k) and soundness error ε(k).
The code ensemble C is (α, ε)-robust for α = α(k) and ε = ε(k) if for every k the code Ck is
(α(k), ε(k))-robust.

Relaxed locally decodable codes (RLDC) [BGH+06] are defined similarly to RLCCs except that
machine M , referred to as the decoder, needs to recover the message bits, rather than the codewords
bits. Observe that any systematic RLCC is also automatically an RLDC.

2.3 Constructible finite fields

We will use finite fields extensively throughout this work. For sake of efficient implementation of
the field operations, we need the field to be constructible.

Definition 2.7. We say that an ensemble of finite fields F = (Fn)n∈N is constructible if elements
in Fn can be represented by O(log(|Fn|)) bits and field operations (i.e., addition, subtraction, mul-
tiplication, inversion and sampling random elements) can all be performed in polylog(|Fn|) time
given this representation.

16

Lemma 2.8 (see [Sho88]). For every S = S(n) ≥ 1, there exists a constructible field ensemble of
characteristic 2 and size O(S).

2.4 Low degree extension

Let F be a finite field, H ⊆ F an additive subgroup of F and let m ∈ N. Let Î : Fm × Fm → F be
the individual degree |H| − 1 polynomial defined as:

Î(x, z)
def
=
∏
i∈[m]

∏
h∈H\{0}

zi − xi + h

h
. (2)

Fact 2.9. For every h, h′ ∈ Hm it holds that Î(h, h′) = 1 if h = h′ and Î(h, h′) = 0 otherwise.

Proof. For h = h′ this follows by inspection. For h 6= h′, observe that h− h′ ∈ H\{0} (since H is
an additive group) and so the product includes a zero term (corresponding to h− h′).

Proposition 2.10. For every function φ : Hm → F, there exists a unique extension of φ into an
individual degree |H| − 1 polynomial φ̂ : Fm → F, which agrees with φ on Hm (i.e., φ̂|Hm ≡ φ).

The polynomial φ̂ is called the low degree extension of φ (with respect to F, H and m).

Proof of Proposition 2.10. Consider the polynomial φ̂(x) =
∑

h∈Hm φ(h) · Î(x, h). The fact that φ̂
and φ agree on Hm follows from Fact 2.9. Uniqueness follows from the fact that any two individual
degree H − 1 polynomials that agree on Hm, agree everywhere.

2.5 The sumcheck protocol

We use (a slight variant of) the celebrated sumcheck protocol of [LFKN92] for verifying the sum
of a low-degree polynomial P over all inputs in a subcube Hm ⊆ Fm. This variant allows for a
trade-off between the number of rounds and the total amount of communication.

Lemma 2.11 (The Sumcheck Protocol). Fix a constructible finite field ensemble H = (Hn)n∈N, a
constructible finite field ensemble F = (Fn)n∈N (i.e., Fn ⊇ Hn is an extension field of Hn) such that
|H|n ≥ log(|Fn|).

For every m = m(n) ≥ 1 and round parameter r = r(n) ∈ [m], where r divides m, there exists a
r-round public-coin interactive protocol as follows.

The verifier Vsumchk gets as input n ∈ N. The prover Psumchk gets as input a polynomial P : Fm →
F of individual degree t = t(n) ∈ [|H|, |F|−1]. At the end of the interaction Vsumchk either rejects or
outputs a point z ∈ Fm, which depends only on Vsumchk’s coin tosses, and a value v ∈ F such that:

• Completeness: If
∑

z∈Hm P (z) = 0, then (Psumchk(P, n),Vsumchk(n)) outputs (z, v) such that
P (z) = v.

• Soundness: If
∑

z∈Hm P (z) 6= 0, for every cheating prover P̃sumchk, with probability (1− t·m
|F|),

either Vsumchk rejects or P (z) 6= v.

• Complexity: The total communication is
(
r · (t+ 1)m/r · log |F|+m · log |F|

)
. The prover

runs in time
(
|H|m · tO(m/r) · poly(m, log |F|)

)
and the verifier runs in time

(
tO(m/r) · poly(m, log |F|)

)
.

17

3 Formal statement of our results

We first state our IOP results in Section 3.1. Then, in Section 3.2, we state our IOPP results.

3.1 IOP results

Our main result is an IOP for every NP relation that can be verified in bounded space. The general
statement is given in Theorem 3.1 below, which gives tradeoffs depending on parameters β (which
offers a tradeoff between number of rounds and total communication) and γ (which offers a tradeoff
between the rate and the query, communication and verification complexities). Since the statement
of Theorem 3.1 is somewhat involved, it may be useful for the first reading to skip directly to
Corollary 3.3 which considers a particularly interesting setting of the parameters.

In the following we say that a function α = α(n) ∈ (0, 1) is nice if it is computable in time
polylog(n) and α(Θ(n)) = Θ(α(n)) (e.g., α(n) = 1/ log(n) is nice).

Theorem 3.1 (IOP for NP). Let L ∈ NP with corresponding relation RL in which the instances
have length m and witnesses have length n, where n and m are polynomially related, and such
that RL can be decided in time poly(n) and space s ≥ log(n). Also, we assume that m ≥ n (i.e.,
instances are not shorter than their corresponding witnesses).13

Let γ = γ(m) ∈ (0, 1) and β = β(m) ∈ (0, 1) be nice functions such that poly(1/β) ≤ log(n) and
γ ≥ m−O(β). Then, there exists a β−O(1/β)-round IOP for L with soundness error 1/2. The query
complexity is (γβ)−O(1/β) and the communication consists of a first (deterministic) message sent by
the prover of length (1+γ)·n bits followed by poly

(
mβ, (γβ)−1/β, s

)
additional communication. The

IOP verifier runs in time Õ(m) + poly
(
mβ, (γβ)−1/β, s

)
and the IOP prover runs in time poly(m).

Remark 3.2. The soundness error in Theorem 3.1 can be reduced by parallel repetition, while
observing that since the first prover message is deterministic, it does not to be repeated (note that
in a typical setting of parameters the first prover message in Theorem 3.1 is by far the largest part
of the communication).

A particularly interesting setting of parameters is when γ > 0 is an arbitrarily small constant,
and β > 0 is a sufficiently small constant. In this regime we obtain the following corollary from
Theorem 3.1.

Corollary 3.3. There exists a fixed constant ξ > 0 such that the following holds. Let L ∈ NP be
as in Theorem 3.1 with s = s(n) ≤ nξ. Then, for any constant γ, ε > 0 there exists an IOP for L
with communication complexity (1 + γ) · n, constant query complexity, constant round complexity,
and soundness error ε. The verifier runs in time Õ(m) and the prover runs in time poly(m).

We also state another corollary of Theorem 3.1, focusing on minimizing the communication
complexity following the first prover’s message. Specifically, letting β(m) = 1

(logm)Θ(ε0)
and γ(m) =

2−(logm)1−Θ(ε0)
we obtain the following.

Corollary 3.4. There exists an absolute constant ε0 > 0 such that the following holds. Let L ∈ NP
be as in Theorem 3.1 with s = s(n) ≤ 2(logm)1−ε0 . Then, there exists a 2(logm)ε0 -round IOP for

13This requirement can be handled by simply padding the input with 0’s if necessary. This increases the input size
by at most n.

18

L with soundness error 1/2. The query complexity is 2(logm)1−ε0 , and the communication consists
of a first (deterministic) message sent by the prover of length (1 + 2−(logm)1−ε0) · n, followed by
2(logm)1−ε0 additional communication. The IOP verifier runs in time Õ(m) and the IOP prover
runs in time poly(m).

3.2 IOPP results

We next state our IOPP results. Our main result is an IOPP for bounded space computations in
which the communication complexity is slightly less than n.

Theorem 3.5 (IOPP for bounded-space computations). Let L be a language computable in time
poly(n) with space s = s(n) ≥ log n. Then for every δ = δ(n) ∈ (0, 1), β = β(n) ∈ (0, 1) and

γ = γ(n) ∈ (0, 1) such that poly(1/β) ≤ log(n) and γ = γ(n) ≥ 200·41/β ·logn
nβ/2

the following holds.

There exists a β−O(1/β)-round IOPP for L with respect to proximity parameter δ, and with sound-
ness error 1/2. The query complexity is poly

(
(γβ)−1/β, 1/δ

)
, and the communication consists of a

first (deterministic) message sent by the prover of length γ·n bits followed by poly
(
nβ, (γβ)−1/β, 1/δ, s

)
additional communication. The IOP verifier runs in time poly

(
nβ, (γβ)−1/β, 1/δ, s

)
, and the IOP

prover runs in time poly(n).

As in the IOP case, letting δ, γ > 0 be arbitrary constants and β > 0 be a sufficiently small
constant, we obtain the following constant query IOPP.

Corollary 3.6. For any β > 0 there exists a constant ε0 > 0 such that the following holds. Let L
be a language computable in time poly(n) and space nε0. Then, for any constants δ, γ, ε > 0 there
exists an IOPP for L, wrt proximity parameter δ, with communication complexity γ · n, constant
query complexity, constant round complexity, and soundness error ε. The verifier runs in time nβ,
and the prover runs in time poly(n).

4 Main ingredients

In this section we introduce the main definitions and claims that will be used to establish our
results.

4.1 Notation and central definitions

In what follows, let I ⊆ N be an infinite sequence of integers, and let F = {Fn}n∈I be a constructible
ensemble (see Definition 2.7) of finite fields of characteristic 2. Let S = {Sn}n∈I be a sequence of
sets, where Sn ⊆ (Fn)n for any n ∈ I (i.e., Sn is a subset of the n-dimensional vector space over the
field Fn). We further assume that for any n ∈ I, any vector λ ∈ Sn can be represented by a short
string �λ� of length a(n). The actual details of this representation depend on the specifics choice
of the collection S, which will be fixed later. Finally, we say that a pair language L has implicit
length sequence I if for any (x,w) ∈ L it holds that |w| ∈ I.

Definition 4.1 (S-linear IOP reduction). An S-linear IOP reduction for a pair language L with im-
plicit length sequence I is defined similarly to an IOP except that rather than accepting or rejecting,
at the end of the protocol the verifier either rejects or outputs a pair (�λ�, b) ∈ {0, 1}a(n) × F such
that the following holds:

19

• Completeness: If (x,w) ∈ L, then when V interacts with P, the output of V is a pair
(�λ�, b) ∈ {0, 1}a(n) × F so that λ ∈ Sn and 〈λ,w〉 = b with probability 1, where n = |w|.

• Soundness: If x and w are such that w /∈ Lx, then for any prover strategy P∗, when V
interacts with P∗, the probability that V outputs a pair (�λ�, b) ∈ {0, 1}a(n) × F such that
λ ∈ Sn and 〈λ,w〉 = b is at most ε(n).

We say that the IOP reduction is robust if it further satisfies the following requirement:

• Robustness: The IOP is (α(n), ε(n))-robust if for every w /∈ Lx and prover strategy P∗,
when V interacts with P∗, with probability 1 − ε, there exists λ ∈ Sn and b ∈ F such that
〈λ,w〉 6= b and for any view v′ that is α-close to the view v of the verifier in the protocol, the
verifier either rejects or outputs (�λ�, b).

Thus, the output of the verifier in an IOP reduction (assuming that it does not reject) is a concise
representation of a vector λ ∈ Fn and a scalar b ∈ F, where the condition 〈λ,w〉 = b is interpreted
as accepting and 〈λ,w〉 6= b is interpreted as rejecting.

Remark 4.2. The robustness property in Definition 4.1 is somewhat subtle. It basically says that
(with high probability) any view that is close to the actual view of the verifier either leads to rejection
or to a unique λ and b (that do not depend on the specific neighboring view) such that 〈λ,w〉 6= b.

Also, observe that robustness is a stronger requirement than soundness in the sense that (α, ε)-
robustness implies ε-soundness for any α > 0.

Our construction will rely on codes for which it is possible to apply a “sumcheck-like” procedure
for linear functions corresponding to the set S.

Definition 4.3 (S-sumcheckable code). A code ensemble C = {Cn : {0, 1}n → {0, 1}n′}n∈I is an
S-sumcheckable code if there exists an IOPP for the language

LS :=

{((
�λ�, b

)
, w

)
∈
(
Sn × Fn

)
× {0, 1}n′ : ∃x ∈ {0, 1}n s.t. w = Cn(x) and 〈λ, x〉 = b

}
,

where (�λ�, b) is the explicit input and w is the implicit input.
We further require that in the corresponding IOPP, V’s messages and query locations only depend

on V’s randomness (and not on the explicit input (�λ�, b)).

To construct our final IOPs, we shall also require that our sumcheckable code is locally decom-
posable. Intuitively, this definition requires that individual bits in the encoding C(m1 ◦m2) can be
reconstructed given oracle access to C(m1) and C(m2). More formally:

Definition 4.4 (Locally decomposable code). Let C : {0, 1}n → {0, 1}n′ be a code, and let ` be such
that ` divides n. We say that C is locally `-decomposable if there exist a base code C0 : {0, 1}n/` →
{0, 1}∗, and an oracle machine A such that the following holds. For every m(1), . . . ,m(`) ∈ {0, 1}n/`,
given oracle access to the codewords C0(m(1)), . . . , C0(m(`)) and explicit access to an index i ∈ [n′],
the machine A makes at most O(1) queries to each oracle, and outputs the i-th coordinate of
C(m(1) ◦ · · · ◦m(`)).

20

We extend the definition of local decomposability to code ensembles in the natural way. Namely,
let C = {Cn : {0, 1}n → {0, 1}n′}n∈I be a code ensemble, and let ` = `(n) ≥ 1 be such that
`(n) divides n for any n ∈ I. We say that C is locally `-decomposable if there exists a code
ensemble C0 := {(C0)n/` : {0, 1}n/` → {0, 1}∗}n∈I such that for any n ∈ I, the code Cn is locally
`(n)-decomposable with respect to the base code (C0)n/`, and moreover the corresponding oracle
machine can be implemented by a time ` · polylog(n)-time Turing machine.

4.2 Main claims

We next show how to combine together a S-linear IOP reduction for a language L, together with a
S-sumcheckable code, to obtain an IOPP for L.

Lemma 4.5 (Code switching). Suppose that the following exist:

• An S-linear IOP reduction for a pair language L with implicit length sequence I of commu-
nication complexity cc, query complexity q, round complexity `, and soundness error ε.

• A systematic S-sumcheckable code C = {Cn : {0, 1}n → {0, 1}n′}n∈I of rate 1 − γ whose
corresponding IOPP has communication complexity cc′, query complexity q′, round complexity
`′, proximity parameter δ′(n′) < dist(Cn)

2 , and soundness error ε′.

Then, there exists an IOPP for L with communication complexity γ(n)
1−γ(n) · n + cc(n) + cc′(n′),

query complexity q(n) + q′(n′), round complexity `(n) + `′(n′), proximity parameter δ′(n′)
1−γ(n) , and

soundness error ε(n) + ε′(n′).
Moreover,

• The communication phase consists of a single prover message which is the non-systematic
part of Cn(w) (i.e., of length γ(n)

1−γ(n) · n), followed by a two-way communication of length

cc(n) + cc′(n′).

• If the verifier in the S-linear IOP reduction and the S-sumcheckable code IOPP have running
times T and T ′, respectively, then the verifier in the resulting IOP has running time T (n) +
T ′(n′).

• If the S-linear IOP reduction and the S-sumcheckable code IOPP are (α, ε)-robust and (α′, ε′)-

robust, respectively, then the resulting IOPP is
(

min
{
α(n)

2 , α
′(n′)
2

}
, ε(n) + ε′(n′)

)
-robust with

query complexity 2 ·max{q(n), q′(n′)} and verifier running time 2 ·max{T (n), T ′(n′)}.

• If the prover in the S-linear IOP reduction and the S-sumcheckable code IOPP have running
times T and T ′, respectively, and the S-sumcheckable code has encoding time Tenc, then the
prover in the resulting IOP has running time Tenc(n) + T (n) + T ′(n′).

We prove Lemma 4.5 in Section 5.

We next define a particular subset ensemble S that we will focus on throughout this work. Loosely
speaking this subset, parameterized by an integer t, consists of all vectors which can be interpreted
as rank 1 tensors of dimension t. For example, when t = 2 the set consists of all

√
n×
√
n matrices

of rank 1 (viewed as vectors in Fn in the natural way).

21

Let t = t(n) ≥ 2 be an integer valued function. For any n ∈ N we let n̄ :=
(
dn1/(2t(n))e

)2t(n)

be the minimal integer no smaller than n that is a power of 2t(n).14 We mention that for values
of t that we will consider, it holds that n̄ is extremely close to n: i.e., n̄ ≤ (1 + o(1)) · n (see
Eq. (6) below). We define the set of indices as I = {n̄ | n ∈ N}, and the subset ensemble as

S⊗t =
{
S

(n̄)
⊗t

}
n̄∈I

where

S
(n̄)
⊗t =

{
λ(1) ⊗ · · · ⊗ λ(t) : λ(1), . . . , λ(t) ∈ (Fn̄)n̄

1/t
}

for any n̄ ∈ I. Having defined the set S⊗t we next define a concise representation for its elements.

The choice of representation is the natural one: for any λ = λ(1) ⊗ · · · ⊗ λ(t) ∈ S
(n̄)
⊗t , we let

�λ� = (λ(1), . . . , λ(t)). Note that the length of this representation is a(n̄) = t · n̄1/t · log2(|F|).
The following lemma establishes the existence of an S⊗t-linear IOP reduction for a large class

of languages. The lemma is stated relative to a parameter β which offers a tradeoff between the
number of rounds and total amount of communication. For sake of simplicity, it may be useful for
the reader to focus first on the setting where β is a small constant (e.g., β = 0.1).

Lemma 4.6 (S⊗t-linear IOP reduction). Let L be a language with implicit length sequence I, that
can be decided in time poly(n) and space s = s(n) ≥ log(n). Then, for any t = t(n) ∈ [log n],
β = β(n) ∈ (0, 1/2) with poly(1/β) ≤ log(n), and constructible field ensemble F = (Fn)n∈N with
|Fn| ≥ β−O(1/β) · polylog(n), the following holds.

There exists an S⊗t-linear IOP reduction for L with communication and query complexity nβ ·
β−O(1/β) · poly(s) · polylog(|F|), round complexity β−O(1/β), and soundness error poly(1/|F|).

Moreover,

• The IOP reduction is
(
βO(1/β), poly(1/|F|)

)
-robust.

• The verifier’s running time is poly
(
nβ · β−1/β, s, log(|F|)

)
.

• The prover’s running time is poly(n, log(|F|)).

We prove Lemma 4.6 in Section 6.

Lastly, the following lemma states the existence of an S⊗t-sumcheckable code with an efficient
IOPP.

Lemma 4.7 (S⊗t-sumcheckable code). The following holds for any δ = δ(n) > 0, t = t(n) ∈
{2, . . . , (log n)/2}, and γ = γ(n) ∈

(200t logn
n1/(2t) , 1

)
.

There exists a systematic linear S⊗t-sumcheckable code C = {Cn̄ : {0, 1}n̄ → {0, 1}n′}n̄∈I , where
Cn̄ has rate at least 1− γ and relative distance (γ/t)O(t), and the corresponding IOPP has commu-
nication complexity n1/t · (t/γ)O(t) · log(|F|), query complexity n1/t · (t/γ)O(t) · 1

δ , round complexity
t, and soundness error 1/2 wrt proximity parameter δ.

Moreover,

• The IOPP is
(
(γ/t)O(t) · δ, 1− (γ/t)O(t) · δ

)
-robust with query complexity n1/t · (t/γ)O(t) · 1

δ ·
log |F|.

14Jumping ahead, we mention that the reason that we want n̄ to be a power of 2t, rather than just t, is that it will
sometimes be more convenient for us to use tensors of even dimension.

22

• The verifier’s running time is nO(1/t) · (t/γ)O(t) · 1
δ · polylog(|F|).

• The prover’s running time is n′ · (t/γ)O(t) · polylog(|F|).

• Cn̄ is encodable in time n · polylog(n), and for any integer d = d(n) ≤ 2t(n) − 1, the code
Cn̄ is locally n̄1−d/(2t)-decomposable with running time n1−d/(2t) · polylog(n) with respect to a
base code C0 of rate at least 1− γ.

We prove Lemma 4.7 in Section 7.

5 Code switching – proof of Lemma 4.5

Let Π be the S-linear IOP reduction, let {Cn}n be the S-sumcheckable code, and let Π′ be the
corresponding IOPP (for LS). The composed IOPP Π̃ is given in Fig. 1.

The composed protocol Π̃:

Explicit Input: x.

Implicit Input: w ∈ {0, 1}n.

1. P sends the non-systematic part z of Cn(w).

2. P and V run the S-linear IOP reduction Π on explicit input x and implicit input w. If the verifier of
Π rejects then V rejects. Otherwise, the protocol Π outputs a pair (�λ�, b) ∈ {0, 1}a(n) × Fn.

3. P and V run the IOPP Π′ for the code Cn (wrt S) on explicit input (�λ�, b) and implicit input
(w, z). The verifier V accepts if and only if the verifier of Π′ accepts.

Figure 1: IOPP for L

It can be verified that the communication complexity, query complexity, round complexity, ver-
ifier running time, and prover running time are all as claimed. Next we show that completeness,
soundness, and robustness properties also hold.

Completeness. Suppose that (x,w) ∈ L. Then, by the completeness of Π, with probability 1,
the output of f is (�λ�, b) ∈ {0, 1}a(n)×Fn satisfying 〈λ,w〉 = b. Consequently, ((�λ�, b), (w, z)) =
((�λ�, b), Cn(w)) ∈ LS , and the protocol Π′ will accept with probability 1.

Soundness. We first show that soundness holds since it is simpler to establish although it will
also follow as a special case of the robustness analysis below (see Remark 4.2).

Let x and w such that w is δ′

1−γ -far from Lx. Fix a cheating prover strategy P∗. We assume
without loss of generality that P∗ is deterministic and denote the first message that it sends (on
input (x,w)) by z.

Suppose first that (w, z) is δ′-far from the code Cn. In this case, we also have that (w, z) is
δ′-far from (LS)(�λ�,b), and so the protocol Π′ will reject with probability at least 1− ε′, in which

case the protocol Π̃ will also reject. Hence we may assume that (w, z) is δ′-close to some codeword
Cn(w′).

23

Next observe that our assumption that dist((w, z), Cn(w′)) ≤ δ′ implies that dist(w,w′) ≤ δ′·n′
n =

δ′

1−γ . By assumption that w is δ′

1−γ -far from Lx, this implies in turn that w′ /∈ Lx. Consequently,

with probability at least 1 − ε the protocol Π will either reject (in which case the protocol Π̃ will
also reject), or output (�λ�, b) satisfying 〈λ,w′〉 6= b.

We claim that in the latter case (w, z) is δ′-far from (LS)(�λ�,b), and so the protocol Π′ will reject

with probability at least 1− ε′, in which case the protocol Π̃ will also reject. To see this, suppose
in contradiction that (w, z) is δ′-close to some codeword Cn(w′′) with 〈λ,w′′〉 = b. Then we have
that Cn(w′) and Cn(w′′) are distinct codewords (since 〈λ,w′〉 6= b but 〈λ,w′′〉 = b) that are both of

distance at most δ′ from (w, z). By triangle inequality and our assumption that δ′ < dist(Cn)
2 this

implies in turn that dist(Cn(w′), Cn(w′′)) ≤ 2δ′ < dist(Cn), a contradiction.

Robustness. In what follows we assume that the queries made by V as part of the protocols
Π and Π′ are of equal length. This can be achieved by duplicating q

q′ times the view of V in Π′

if q > q′, and duplicating q′

q times the view of V in Π otherwise, and accepting if and only if all

duplicated views are consistent with each other and the original protocol Π̃ accepts. Note that this
transformation increases the total number of queries and verifier running time to 2 ·max{q, q′} and
2 ·max{T, T ′}, respectively.

As in the soundness analysis, let x and w such that w is δ′

1−γ -far from Lx. Fix a (deterministic)
cheating prover strategy P∗ and denote its first message by z.

Consider first the case that (w, z) is δ′-far from the code Cn. As before, this implies in turn that
(w, z) is δ′-far from (LS)(�λ�,b). By the robustness of Π′, the queries made in the sub-protocol Π′

(to both the transcript and w) will be α′-far from making Π′ accept with probability at least 1− ε′.
Since these account for half of the queries of the composed protocol, we get that the queries in the
protocol Π̃ will be α′

2 -far from an accepting view. Hence in what follows we may assume that (w, z)
is δ′-close to some codeword Cn(w′). Moreover, as we showed in the soundness analysis, it must be
the case that w′ /∈ Lx.

By the robustness of Π, with probability at least 1 − ε, there exist λ ∈ Fn and b ∈ F such that
〈λ,w′〉 6= b and any view that is α-close to the view of the verifier of Π makes it either reject or
output (�λ�, b). Fix the coins of V only for Step 2 of Π̃ such that the foregoing event occurs and
consider the corresponding λ and b (guaranteed by the fact that the event occurs). Note that this
fixes half of the view of the verifier (corresponding to queries from Step 2). Denote this part of the
view by viewΠ. We emphasize that at this point the coins for the second half of the protocol (i.e.,
Step 3) have not been fixed.

Let view′Π be α-close to viewΠ.

Claim 5.1. With probability 1 − ε′ over the remaining coins of V (i.e., those from Step 3), for
every view view′Π′ that is α′-close to the partial view of V corresponding to Step 3, it holds that V
rejects given the view (view′Π, view

′
Π′).

Proof. Since view′Π is α-close to viewΠ, given view′Π the protocol Π either rejects or outputs (�λ�, b)
(which have already been fixed). We next consider these two possibilities.

First, if Π rejects then also V rejects (regardless of the partial view for Step 3) and we are done.
Thus, let us assume that Π outputs (�λ�, b) given the view view′Π.

Since Cn(w′) is δ′-close to (w, z) and 〈λ,w′〉 6= b, as was done in the soundness analysis, we can
show that (w, z) is δ′-far from (LS)(�λ�,b). Thus, by the robustness of Π′, with probability 1 − ε′

24

(over the coins in Step 3), the queries made at Step 3 (to Π′ and (w, z)) are α′-far from making Π′

accept. Thus, with probability 1 − ε′, for every view view′Π′ that is α′-close to the partial view of
V corresponding to Step 3 of Π̃, the verifier V rejects given the view (view′Π, view

′
Π′).

Since (by assumption) the two parts of the verifier’s view have equal weights, using Claim 5.1,

we have that with probability 1 − ε − ε′, any view that is min
{
α
2 ,

α′

2

}
-close to the actual view of

V makes it reject.

6 Tensor IOPP reduction – proof of Lemma 4.6

We prove Lemma 4.6 based on a result of Reingold et al. [RRR16].

Theorem 6.1 (Doubly Efficient Interactive Proofs for Bounded Space [RRR16, see Corollary 9 and
Theorem 10]). Let L be a language computable in time poly(n) and space s = s(n) ≥ log(n). Then,
for every β ∈ (0, 1/2) such that poly(1/β) ≤ log(n), the language L has a β−O(1/β)-round public-coin
interactive proof with perfect completeness and soundness error 1

2 . The communication complexity

is nβ · poly(s). The prover runs in time poly(n) and the verifier runs in time Õ(n) + nβ · poly(s).
Furthermore, the verifier runs in time nβ · poly(s) given only oracle access to the low degree

extension x̂ of the input x ∈ {0, 1}n, where the low degree extension is relative to F, H and dimension
log|H|(n), where H = (Hn)n∈N and F = (Fn)n∈N are constructible field ensembles such that F is an

extension field of H, where |H| = log(n) · (1/β)O(1/β) and |F| = poly(|H|).
Throughout this section we refer to the protocol of Theorem 6.1 as the RRR protocol. At a

high level, we would like to prove Lemma 4.6 by simply running the RRR protocol wrt to L. At
first glance this seems problematic since the RRR verifier needs to get w as its input, whereas our
reduction does not have any access whatsoever to w.

To overcome this difficulty we rely on the furthermore clause of Theorem 6.1, which states that
all that the RRR verifier needs is oracle access to the low degree extension of w. Since the prover
can provide (alleged) values for the queries that the verifier would like to make, all that we need
to ensure is that the prover’s claims about the low degree extension of w are correct. By relying
on the fact that the low degree extension is a tensor code, it is possible to show that the verifier
simply generates linear claims, where the coefficients of these linear claims have a rank 1 tensor
structure, as required by Lemma 4.6.

There are two main issues that we encounter when trying to implement this high-level approach.
First, the verifer in Lemma 4.6 should output a single claim about the low degree extension of w,
whereas the RRR verifier may make many queries to ŵ (which corresponds to generating many
linear claims). Second, the furthermore clause of Lemma 4.6 requires robust soundness which is
not directly provided by Theorem 6.1.

We handle these two issues in the following subsections. First, in Section 6.1 we show how to
generically reduce the number of queries to the low degree extension (via interaction). Then, in
Section 6.2 we show how to obtain robustness essentially for free, as long as one does not care about
the query complexity. Lastly, in Section 6.3 we combine the above to derive Lemma 4.6.

6.1 Interactive query reduction for low-degree extension

In this section we show how, using interaction, one can reduce the number of queries to the low
degree extension encoding.

25

The “traditional” way to (interactively) reduce the number of queries k to the low degree exten-
sion code (originating in [KR08, GKR15]) is to take a low degree curve passing through all the k
points (as well as some additional points), ask the prover for the evaluation on all points on the
curve and check the correctness on a single random point. To make this approach work, one needs
to use a large field F of cardinality |F| ≥ k. We would like to avoid the use of such a large field and
so we do not follow this approach.

A natural generalization that has been considered in the literature (see, e.g., [RRR16]) is to use
a high dimensional (low degree) manifold rather than a (univariate) curve. Unfortunately, this idea
seems to introduce a quadratic dependence on k (to both communication and verification time),
which again we would like to avoid. Instead, we take a new approach based on the sumcheck
protocol, which is described next.

Lemma 6.2. Let F = (Fn)n∈N and H = (Hn)n∈N be constructible field ensembles such that Fn is
an extension field of Hn for every n ∈ N.

Let (P,V) be a public-coin interactive proof for a language L with soundness error ε, in which V
receives oracle access to the low degree extension x̂ : Fm → F of the input x ∈ {0, 1}n, wrt F, H and
dimension m = log|H|(n). Then, there exists a public-coin interactive proof (P ′,V ′) with soundness
error ε + O(m · |H|/|F|), in which V ′ similarly receives oracle access to x̂ but only makes a single
query.

For every parameter r ∈ [m], we can implement the foregoing interactive proof with an additional
r rounds of communication, additive overhead of r · |H|dm/re · polylog(|F|) +m · polylog(|F|) to the
communication complexity and verification time and poly(|F|m) prover time overhead.

Proof. Let x ∈ {0, 1}n be an input to the protocol. Since |H|m = n we can identify Hm with [n]
in some canonical way. Recall that the low degree extension of x wrt F, H, and m is the (unique)
individual degree |H| − 1 polynomial x̂ : Fm → F that agrees with x on Hm (see Section 2.4).

We start with an intuitive description and then proceed to a formal description of the protocol.
The prover P ′ and verifier V ′ exactly emulate the communication phase of (P,V). Then, during
the query phase, the verifier V needs to make some ≤ k queries to x̂. Let {q1, . . . , qk} ⊆ Ft be the
locations that V wants to query (i.e., V wants to obtain the values x̂(qj) for all j ∈ [k]). The prover
P ′ sends to the verifier V ′ a list of alleged values for all these points. That is, values (ν1, . . . , νk)
which the prover claims are equal to (x̂(q1), . . . , x̂(qk)).

Given (ν1, . . . , νk), the verifier V ′ checks that V accepts given these answers (and immediately
rejects otherwise). Thus, V ′ only needs to verify the claim

∀j ∈ [k], νj = x̂(qj). (3)

To do so, V ′ selects at random r1, . . . , rk ∈ F. Observe that if Eq. (3) holds, then
∑

j rjνj =∑
j rj x̂(qj). Otherwise however (i.e., if Eq. (3) does not hold) then, with probability 1 − 1/|F|,

it holds that
∑

j rjνj 6=
∑

j rj x̂(qj). In other words, after choosing r1, . . . , rk, it suffices for V ′ to
check the identity ∑

j

rjνj =
∑
j

rj x̂(qj). (4)

By definition of the low degree extension (see Proposition 2.10), the RHS of Eq. (4) can be expressed
as
∑

j rj
∑

h∈Hm x̂(h) · Î(h, qj) (see Section 2.4 for the definition of Î and more background on the

26

low degree extension). Define Q(λ) = x̂(λ) ·
(∑

j rj · Î(λ, qj)
)

. Observe that Q is an individual

degree 2(|H| − 1) polynomial and that Eq. (4) is equivalent to checking that
∑

h∈Hm Q(h) is equal
to some fixed value. We can perform this test using the sumcheck protocol (see Lemma 2.11) which
requires only a single query to Q (which itself can be emulated using a single query to x̂). We
proceed to a formal description of the protocol.

1. Input for P ′: x ∈ {0, 1}n.

2. Oracle Input for V ′: x̂ : Fm → F the low degree extension of x.

3. P ′ and V ′ emulate the communication phase of (P,V). At the end of this phase either V
rejects (in which case V ′ immediately rejects), or it generates a list of queries q1, . . . , qk ∈ Fm
to x̂.

4. V ′ sends q1, . . . , qk to P ′ which responds with values ν1, . . . , νk such that νj = x̂(qj).

5. Upon receiving the values ν̃1, . . . , ν̃k (where, allegedly, ν̃j = νj) the verifier V ′ first checks that
V accepts given the answer sequence (ν̃1, . . . , ν̃k). If not then V ′ immediately rejects.

6. V ′ chooses at random r1, . . . , rk ∈ F and sends them to P ′.

7. Define Q(λ) = x̂(λ) ·
(∑

j rj · Î(λ, qj)
)

. The prover P ′ and verifier V ′ run the sumcheck

protocol (see Lemma 2.11) wrt the claim
∑

h∈Hm Q(h) =
∑

j rjνj . The sumcheck verifier
outputs a claim of the form Q(z) = η for some z ∈ Fm and η ∈ F.

8. The verifier V ′ checks that η = x̂(z) ·
∑

j rj · Î(z, qj), using a single query to x̂.

Completeness. Suppose that x ∈ L. By completeness of (P,V), in Item 3 V ′ generates queries
q1, . . . , qk ∈ Fm such that V accepts given the answer sequence {νj = x̂(qj)}j . Observe that

∑
h∈Hm

Q(h) =
∑
h∈Hm

x̂(h) ·

∑
j

rj · Î(h, qj)

=
∑
j

rj
∑
h∈Hm

x̂(h) · Î(h, qj)

=
∑
j

rj x̂(qj)

=
∑
j

rjνj

and so by the completeness of Lemma 2.11, the sumcheck verifier outputs a claim (z, η) such that
indeed Q(z) = η. Thus, the verifier accepts when checking that η = x̂(z) ·

∑
j rj · Î(z, qj).

Soundness. Suppose that x 6∈ L. By the soundness of (P,V), with probability at least ε (over
the coins of V) it holds that if P ′ sends ν̃j = νj for all j ∈ [k], then V ′ will reject. Assume that

27

the latter holds. Then, to avoid having V ′ immediately reject, P ′ must sends ν̃j∗ 6= νj∗ for some
j∗ ∈ [k]. Thus, with probability 1− 1/|F| over the choice of r1, . . . , rk, it holds that∑

j

rj ν̃j 6=
∑
j

rjνj =
∑
j

rj x̂(qj) =
∑
j

rj
∑
h∈Hm

x̂(h) · Î(h, qj) =
∑
h∈Hm

Q(h).

Therefore, the sumcheck protocol is invoked on a false claim and with probability 1−O(m · |H|/|F|),
the sumcheck verifier either rejects or outputs z ∈ Fm and η ∈ F such that Q(z) 6= η. Assuming the
latter, V ′ rejects when checking that η = x̂(z) ·

∑
j rj · Î(z, qj) = Q(z). Thus, overall, the verifier

accepts with probability at most ε+O(m · |H|/|F|).

6.2 Trivial robustification of IOP reductions

In this section we show how to transform any constant-round IOP reduction, in which the verifier
reads the entire communication transcript (as in an interactive proof), into a robust IOP reduction.
The transformation is trivial - we simply have the prover encode each of its messages before sending
them (using a code with constant relative distance) and have the verifier check that it indeed
receives encoded messages. We show that due to the encoding, and since the protocol only involves
a constant ` number of messages, even in retrospect, making O(1/`) changes to the transcript
cannot help the prover.

Lemma 6.3. Suppose that (P,V) is an `-round S-linear IOP reduction for a pair language L with
communication complexity cc, query complexity cc (i.e., the verifier reads the entire communication
transcript), soundness error ε, verifier running time TV and prover running time TP .

Then, L has an `-round S-linear IOP reduction (P ′,V ′) with robustness (O(1/`), ε), communica-
tion complexity O(cc), query complexity O(cc), verifier running time TV +Õ(cc) and prover running
time TP + Õ(cc).

Proof. Let C : {0, 1}∗ → {0, 1}∗ be the error correcting code from Theorem 2.3 and observe that C
has constant rate, constant relative distance dist(C), and that both encoding, checking membership
in the code, and decoding valid codewords, can be done in quasi-linear time.

We construct the robust IOP reduction (P ′,V ′) by modifying (P,V) as follows. In each round
i ∈ [`], when P needs to send a message αi, the prover P ′ instead sends the message α̂i = C(αi).
In its query phase, the verifier V ′ reads the entire (encoded) transcript. The verifier V ′ checks that
all messages (α̂1, . . . , α̂`) sent from P ′ are valid encodings under C, and rejects otherwise. Denote
the corresponding underlying messages by α1, . . . , α` (i.e., α̂i = C(αi)). Finally, V ′ accepts if and
only if V accepts the transcript (α1, . . . , α`).

Completeness of the protocol (P ′,V ′) follows directly from the completeness of (P,V). For
robustness (which also implies soundness), let x and w such that w 6∈ Lx and fix a cheating prover
P∗. We need to show that with probability 1−ε, there exists λ ∈ Fn and b ∈ F such that 〈λ,w〉 6= b

and for any view v′ that is dist(C)
2` -close to the view v of the verifier in the protocol, the verifier

either rejects or outputs (�λ�, b). Recall that in our protocol, the view of the verifier consists of
the entire transcript sent by P∗.

Denote the message sent by P∗ by (α̃1, . . . , α̃`). For every i ∈ [`], let α̂i be the closest codeword
to α̃i (breaking ties in some arbitrary fixed way). We refer to (α̂1, . . . , α̂`) as the error-corrected
transcript.

28

Claim 6.4. With probability 1 − ε, it holds that the transcript (α̂1, . . . , α̂`) makes V ′ reject or
outputs (�λ�, b) such that 〈λ,w〉 6= b.

Proof. Suppose otherwise. We can construct a cheating prover for V that emulates P∗ while sending
a decoding of its messages. Claim 6.4 now follows from the soundness of V.

Fix an execution of the protocol (P∗,V ′) (i.e., fix the random coins of the verifier) conditioned
on the event that the corresponding error-corrected transcript (α̂1, . . . , α̂`) makes V ′ either reject
or output (�λ�, b) such that 〈λ,w〉 6= b. By Claim 6.4, the event that we have conditioned on
happens with probability 1−ε. Denote the messages actually sent by P∗ in the foregoing execution
by (α̃1, . . . , α̃`) and notice that these messages are now fixed (since we have fixed the coins of the
verifier).

Consider first the case that there exists some i ∈ [`] such that α̃i is dist(C)/2 far from α̂i. In

such a case, all transcripts that are dist(C)
2` -close to the actual transcript (α̃1, . . . , α̃`) will lead V ′ to

reject (since V checks the i-th message is a codeword). Thus, the robustness property is trivially
satisfied (wrt an arbitrary choice of λ ∈ Fn and b ∈ F for which 〈λ,w〉 6= b). Therefore, we may
assume that each α̃i is dist(C)/2-close to α̂i.

Observe that due to the distance of the code C, for any sequence of messages (α̃′1, . . . , α̃
′
`) that

is dist(C)
2` -close to (α̃1, . . . , α̃`), other than (α̂1, . . . , α̂`), there exists some i ∈ [n] such that α̃′i is not

a codeword and so V ′ rejects given (α̃′1, . . . , α̃
′
`).

Recall that we have already conditioned on the event that V ′ either rejects given (α̂1, . . . , α̂`) or
outputs (�λ�, b) such that 〈λ,w〉 6= b. Let us first handle the former case (i.e., given (α̂1, . . . , α̂`)

the verifier V ′ rejects). In such a case we can now conclude that for every transcript that is dist(C)
2` -

close to (α̃1, . . . , α̃`) the verifier V rejects and again the robustness property is trivially satisfied
(wrt an arbitrary choice of λ ∈ Fn and b ∈ F for which 〈λ,w〉 6= b).

Thus, we are left with the case that given (α̂1, . . . , α̂`) the verifier V ′ outputs (�λ�, b) such that
〈λ,w〉 6= b. In such case the robustness property also holds, wrt the the specific λ and b specified
by V ′ on input (α̂1, . . . , α̂`). This concludes the proof of Lemma 6.3.

6.3 Proof of Lemma 4.6

Let L be a language with implicit length sequence I that can be computed in time poly(n) and
space s = s(n) ≥ log(n). Let t = t(n), β = β(n) and ε = ε(n) as in the theorem’s statement.

Let H = (Hn)n∈N and F = (Fn)n∈N be binary constructible field ensembles such that Fn is an
extension field of Hn for every n ∈ N, where |H| = log(n) · (1/β)O(1/β) and |F| ≥ poly(|H|). Let
d = log|H|(n). We choose H so that (1) d is an integer, and (2) t divides d. Note that |F| ≥ |H|2
(since F is a field extension) and that d ≤ log(n).

By Theorem 6.1, there exists a constant-round public-coin interactive proof (P,V) for L with
soundness error 1/2, communication complexity nβ · poly(s,m) and prover run time poly(n). By
the furthermore part of Theorem 6.1, the verifier V runs in time nβ · poly(s,m) given oracle access
to the low degree extension of the input w (wrt F, H and d). We repeat this protocol O(log(|F|))
times (in parallel) to reduce the soundness error to 1/|F|.

At this point we apply the transformation of Lemma 6.2 to (P ′,V ′) to obtain an IOP with
soundness error 1/|F|+O(d · |H|/|F|) ≤ poly(1/|F|) in which the verifier only needs to make a single
query to the low degree extension of w. Since the prover can provide an (alleged) value for this

29

query, we can view the verifier as simply outputting a single claim about the low degree extension
of w.

Let (z, b) ∈ Fd × F be the claim generated by the verifier. That is, the verifier would like to
check that ŵ(z) = b (where ŵ : Fd → F is the low degree extension of w). Using Proposition 2.10,
this precisely corresponds to

∑
h∈Hd w(h) · Î(z, h) = b, a linear claim about w. In more detail,

consider a vector λ ∈ Fn defined as λh = Î(z, h) for every h ∈ Hd (recall that we associate the set
[n] with Hd). Then the claim that the verifier generates is that 〈λ,w〉 = b. Observe further that
since Î(z, h) =

∏d
i=1 Î(zi, hi) it holds that λ ∈ S⊗d.

Fact 6.5. If λ ∈ S⊗d and t divides d, then λ ∈ S⊗t.

Proof. Since λ ∈ S⊗d, there exist λ1, . . . , λd ∈ Fn1/d
such that λ = λ1 ⊗ · · · ⊗ λd. For every i ∈ [t],

let λ′i = λ(d/t)·(i−1)+1 ⊗ · · · ⊗ λ(d/t)·i ∈ Fn1/t
. Observe that λ′1 ⊗ · · · ⊗ λ′t = λ1 ⊗ · · · ⊗ λd = λ. Thus,

λ ∈ S⊗t.

Thus, the single query generated by the verifier does indeed lie in S⊗t as required. This concludes
all but the furthermore part of Lemma 4.6. For the furthermore part, since the IOP contructed so
far is a constant-round IOP, using Lemma 6.3 we can transform it into a robust IOP as desired.

7 S⊗t-sumcheckable code – proof of Lemma 4.7

The sumcheckable code that we construct is the t-dimensional tensor C⊗t of a high-rate binary
code C. We show that it is sumcheckable by constructing the required IOPP, while utilizing known
properties of tensor codes such as the sumcheck protocol [LFKN92, Mei13], local testing [Vid15],
and a relaxed local correcting procedure [GRR18].

We start with the following lemma, which provides a sumcheck protocol for tensor codes that
is very similar to our desired IOPP, except that we assume that the verifier is given oracle access
to a genuine codeword. To simulate this access when the implicit input is arbitrary we shall later
combine this protocol with local testing (to reject inputs that are far from the code) and relaxed
local correction (to decode the input for the nearest codeword) procedures for tensor codes.

Lemma 7.1 (Sumcheck for tensor codes). Let C = {C(n) : {0, 1}k → {0, 1}n}n∈N be a systematic
linear code ensemble of relative distance δ, and let F be a finite field of characteristic 2. Then for
any integer t ≥ 2 and ε > 0, there exist d = O(log(t/ε)/δ) and a protocol (P,V) satisfying the
following properties.

• Prover P’s Input: (λ(1), . . . , λ(t), b) ∈ (Fk)t × F and a codeword c = C⊗t(x) ∈ {0, 1}nt.

• Verifier V’s Input: the same (λ(1), . . . , λ(t), b) and oracle access to c.

• Communication phase: P and V interact for t rounds with total communication O(n·dt+1 ·
log |F|), where V’s messages only depend on V’s randomness.

• Query phase: At the end of the interaction, V makes dt (non-adaptive) queries to c, reads
the entire transcript, and applies a Boolean predicate φ to the values that it read (from c
and the transcript) which instructs it whether to accepts or reject. We further require that the
location of the queries only depends on V’s randomness, and that the predicate φ only depends
on the explicit input (λ(1), . . . , λ(t), b) and V’s randomness.

30

• Completeness: If 〈λ(1) ⊗ · · · ⊗ λ(t), x〉 = b, then when V interacts with P, it accepts with
probability 1.

• Soundness: If 〈λ(1) ⊗ · · · ⊗ λ(t), x〉 6= b, then for any prover strategy P∗, when V interacts
with P∗, it accepts with probability at most ε.

Moreover,

• The verifier’s running time is dt+1 · poly(n, log |F|), given a parity-check matrix for C.

• The prover’s running time is nt · t · dt · polylog(F).

• If 〈λ(1) ⊗ · · · ⊗ λ(t), x〉 6= b, then for any prover strategy P∗, when V interacts with P∗, the
transcript is Ω(d−t)-close to an accepting view with probability at most ε.

We prove Lemma 7.1 in Section 7.2. The next lemma from [Vid15] gives a local testing procedure
for tensor codes.

Lemma 7.2 (Local testing of tensor codes, [Vid15], Theorem 3.1). Let {C(n) : {0, 1}k → {0, 1}n}n∈N
be a linear code of relative distance δ. Then for any integer t ≥ 3 and ε > 0 there exists a randomized
algorithm A satisfying the following properties.

• Input: A gets oracle access to a string w ∈ {0, 1}nt and a parameter α ∈ (0, 1).

• Query complexity: A makes n2 · δ−O(t) ·α−1 · log(1/ε) (non-adaptive) queries to the oracle
w.

• Completeness: If w is a codeword of C⊗t, then A accepts with probability 1.

• Soundness: If w is α-far C⊗t, then A accepts with probability at most ε.

Moreover,

• If w is α-far from C⊗t, then, in expectation, A’s view is (δO(t) ·α)-far from an accepting view.

• The running time of A is nO(1) · δ−O(t) · α−1 · log(1/ε), given a parity-check matrix for C.

Remark 7.3. We remark on the following differences from [Vid15, Theorem 3.1]:

1. Viderman [Vid15, Theorem 3.1] only states the rejection probability of the n-query test that
chooses a random axis parallel line (according to some specified distribution) and checks that
the projection of w to the line is a codeword of C. However, the proof shows that the n2-query
test that chooses a random axis parallel plane (according to some specified distribution) and
checks that the projection of w to the plane is a codeword of C⊗2 is robust, in the sense that
the average view of the tester is (δO(t) · α)-far from C⊗2.

Finally, note that the above implies in turn that the tester rejects with probability at least
(δO(t) ·α), and the rejection probability can be amplified to 1−ε by repeating the tester δ−O(t) ·
α−1 ·log(1/ε) times and accepting if and only if all invocations accept. Note that this increases
the query complexity and running time by a multiplicative factor of δ−O(t) · α−1 · log(1/ε).

31

2. Running time is not stated explicitly in [Vid15]. However, inspection shows that a random
plane from the aforementioned distribution can be sampled in time O(t · log n). Moreover,
checking whether a given string is a codeword of C⊗2 can be implemented in time poly(n)
given a parity-check matrix for C.

Finally, we use the following relaxed local correction procedure for tensor codes from [GRR18].
As [GRR18] (cf., [GRR17, Lemma 5.5]) only deals with the two-dimensional (i.e., t = 2) case, and
since we also require an additional robustness property, we provide a full proof in Section 7.3.

Lemma 7.4 (Relaxed local correction of tensor codes). Let C = {C(n) : {0, 1}k → {0, 1}n}n∈N be
a linear code ensemble of relative distance δ. Then for any integer t ≥ 2 and ε > 0 there exists a
randomized algorithm A satisfying the following properties.

• Input: A takes as input a coordinate i ∈
[
nt
]
, and also gets oracle access to a string w ∈

{0, 1}nt.

• Query complexity: A makes n · δ−O(t) · log(1/ε) (non-adaptive) queries to the oracle w.

• Completeness: If w is a codeword of C⊗t, then A outputs ci with probability 1.

• Soundness: If w is
(
δ
4

)t
-close to a codeword c ∈ C⊗t, then, with probability at least 1 − ε,

the output of A is either ci or ⊥.

Moreover,

• If w is
(
δ
4

)t
-close to a codeword c of C⊗t, then with probability at least 1 − ε, the view of A

is δ−O(t) · log−1(1/ε)-far from any view that would cause it to output 1− ci.

• The running time of A is nO(1) · δ−O(t) · log(1/ε), given a parity-check matrix for C.

Lastly, we shall also use the following local decomposability property (cf., Definition 4.4) of tensor
codes. We prove the following lemma in Section 7.4.

Lemma 7.5 (Local decomposability of tensor codes). Let C : {0, 1}k → {0, 1}n be a linear code,
and let t > d ≥ 1. Then C⊗t is locally kt−d-decomposable with respect to the base code C⊗d.
Moreover, if each coordinate of C can be encoded in time T , then the running time of the oracle
machine A is at most O(T · kt−d−1).

Section Organization. In Section 7.1 we show how to use Lemmas 7.1, 7.2, 7.4 and 7.5 to prove
Lemma 4.7. Then, in Sections 7.2 to 7.4 we prove Lemmas 7.1, 7.4 and 7.5, respectively.

7.1 Proof of Lemma 4.7

Recall that in Section 4 we defined I = {n̄ | n ∈ N}, where n̄ :=
(
dn1/(2t(n))e

)2t(n)
and defined S⊗t

as the set of all t-dimensional rank 1 tensors. Namely, S⊗t =
{
S

(n̄)
⊗t

}
n̄∈I

where

S
(n̄)
⊗t =

{
λ(1) ⊗ · · · ⊗ λ(t) : λ(1), . . . , λ(t) ∈ (Fn̄)n̄

1/t
}

.
Fix n̄ ∈ I, and let t = t(n), γ = γ(n), F = Fn, and S = S

(n)
⊗t . We proceed to describe the code

C = Cn̄.

32

The code C. Let R be the systematic binary linear code guaranteed by Theorem 2.3 of message
length n̄1/(2t) (noting that n̄1/(2t) is an integer for any n̄ ∈ I), rate at least 1 − γ

2t , and relative

distance
(γ
t

)O(1)
(noting that γ

2t ≥
100 log n̄
n̄1/(2t) by our constraints on γ). Let C = R⊗2t be the (2t)-wise

tensor product of R. Then, C has message length n̄, rate at least (1 − γ
2t)

2t ≥ 1 − γ, and relative

distance
(γ
t

)O(t)
. Since R is systematic, also the code C is systematic.

Let d = d(n) ∈ [2t(n) − 1]. By Lemma 7.5, C is locally n̄1−d/(2t)-decomposable with running
time n̄1−d/(2t) ·polylog(n) with respect to the base code R⊗2d which has rate least 1−γ. Moreover,
Cn̄ is encodable in time n̄ · polylog(n).

Next we describe the IOPP Π̃ corresponding to C.

The IOPP Π̃. Let Π be the sumcheck protocol given by Lemma 7.1 for with respect to the base
code R⊗2, dimension t, and soundness error 1

4 with d = (t/γ)O(1). Let A be the local tester given

by Lemma 7.2 for the base code R, dimension 2t, proximity parameter min{δ, dist(C)
4t } and failure

probability 1/2. Lastly, let A′ be the relaxed local corrector given by Lemma 7.4 for the base code
R⊗2, dimension t, and failure probability 1

4dt = (γ/t)O(t).

On explicit input λ(1), . . . , λ(t) ∈ Fn̄1/t
and b ∈ F, and implicit input w ∈ {0, 1}n′ , P and V

interact according to the protocol Π, where in the query phase, V first runs the local tester A on w,
and then replaces each query of Π to ci by applying the relaxed local corrector A′ on input i with
oracle access to w. If either A or A′ reject in any of the invocations, then V rejects. Otherwise, V
answers according to the protocol Π.

It can be readily verified that the communication complexity, query complexity, round com-
plexity, verifier running time, and prover running time are all as claimed. Completeness is also
straighfroward. Next we show soundness and robustness.

Soundness. For soundness, let w ∈ {0, 1}n̄ be δ-far from any codeword C(x) satisfying 〈λ, x〉 = b,

Suppose first that w is min{δ, dist(C)
4t }-far from the code C. Then the local tester A rejects with

probability at least 1/2, and so we are done. Hence we may assume that w is min{δ, dist(C)
4t }-close

to some codeword C(x). By our assumption, this implies that 〈λ, x〉 6= b, where λ = λ(1)⊗· · ·⊗λ(t).
With probability at least 3/4, the relaxed local corrector either rejects (in which case V also

rejects) or answer all dt queries of Π with the corresponding values of C(x). Conditioned on this,
the protocol Π accepts with probability at most 1

4 , so we get an overall rejection probability of 1
2 .

Robustness. Let cc denote the transcript length of Π, and let q (resp., q′) denote the total number
of queries made by A (resp., A′) during the protocol Π̃. In what follows we assume that cc = q = q′

which can be achieved by duplicating the view of the verifier in any of the parts, if necessary, and
accepting if and only if all duplicated views are consistent with each other and the original protocol
accepts. Note that this increases the asymptotic query complexity by a multiplicative factor of
log(|F|), while maintaining the same asymptotic verifier running time.

Suppose next that w is δ-far from any codeword C(x) satisfying 〈λ, x〉 = b. Let us assume first

that w is min{δ, dist(C)
4t }-far from any codeword of C. By the robustness of the local tester A,

the average view of A is (γ/t)O(t) · δ-far from an accepting view, and so with probability at least
(γ/t)O(t) · δ, A’s view is (γ/t)O(t) · δ-far from an accepting view. Since these account for 1/3 of the

33

queries of V in the protocol Π̃, we get that the queries in the protocol Π̃ will be (γ/t)O(t) · δ-far
from an accepting view with probability at least (γ/t)O(t) · δ.

Hence, as in the soundness analysis, we may assume that w is dist(C)
4t -close to some codeword

C(x) with 〈λ, x〉 6= b. Let v′ be the view of A′ corresponding to all dt = (γ/t)O(t) queries of the
protocol Π. By the robustness of A′, with probability at least 3/4, any view that is (γ/t)O(t)-close
to v makes it either reject or output the correct values of C(x) to all of the queries of Π. Assume
that the foregoing event occurs, and note that conditioning on this event does not change the
distribution of the transcript Π. Let v′ be (γ/t)O(t)-close to v.

Claim 7.6. With probability 3/4 over the randomness of Π, for every transcript τ ′ that is (γ/t)O(t)-
close to the transcript τ of Π, it holds that V rejects given the view (v′, τ ′).

Proof. Since v′ is (γ/t)O(t)-close to v, given v′ the relaxed local corrector A′ either rejects or outputs
the correct values of C(x) to all queries of Π. If A′ rejects then also V rejects and we are done.
Thus, let us assume that A′ outputs the correct values of C(x) given the view v′. Since 〈λ, x〉 6= b,
by the robustness of Π, with probability 3

4 (over the coins of Π), the transcript of Π is (γ/t)O(t)-far

from making Π accept. Thus, with probability 3
4 , for every view τ ′ that is (γ/t)O(t)-close to the

transcript of Π, the verifier V rejects given the view (v′, τ ′).

Since (by assumption) A′’s view and the transcript of Π have equal weight, and constitute each
1/3 of the queries of V in the protocol Π̃, using Claim 7.6, we have that with probability (γ/t)O(t) ·δ,
any view that is (γ/t)O(t) · δ-close to the actual view of V makes it reject.

7.2 Sumcheck for tensor codes – proof of Lemma 7.1

The proof of Lemma 7.1 is based on the ubiquitous sumcheck protocol [LFKN92], or rather its
extension to tensor codes [Mei13]. Our construction differs in two ways from the standard sumcheck
protocol. First, in contrast to the typical usage, here we do not merely compute a sum of the
coordinates of the message, but allow certain linear combinations (corresponding to a rank 1 tensor).
Second, we allow the coefficient to lie in an extension field of the field over which our code is defined.

Fix a basis A for F over the binary field F2, where we view F as a log2(|F|) dimensional vector
space over F2 in the natural way (e.g., A can be the standard basis). Every element in F can be
expressed as a linear combination of the basis elements. Extending this fact to vectors, any y ∈ Fn
can be expressed as y =

∑
a∈A a · y|a, where y|a ∈ (F2)n for any a ∈ A.

For convenience, we will present the sumcheck protocol where the communication and query
phases are interleaved, however it can be checked that the verifier queries and checks could be
deferred to the end of the protocol.

Our description of the sumcheck protocol is recursive. On each call, P and V are given as input
an iteration number i ∈ [t+1], a string r ∈ [n]i−1, and a value b̂ ∈ F, where the protocol is initiated
at the beginning to i = 1, r = ⊥, and b̂ = b.

In iteration i 6= t + 1, the prover sends a certain F-linear combination of axis-parallel lines of
the codeword c in direction i, where the linear combination is determined by λ(1), . . . , λ(t) and the
string r. The verifier then checks that the resulting linear combination w ∈ Fn is a codeword of C
when projected on any basis element a ∈ A, and that 〈λ(i), w〉 = b̂. If any of the checks fail then
V rejects. Otherwise, the verifier sends a uniform random index σ ∈ [n], and V and P continue to
iteration i+ 1 with r = (r, σ) ∈ [n]i and b̂ = wσ ∈ F (this latter step is repeated d times to amplify

34

the rejection probability). Finally, on iteration i = t+ 1, the verifier checks that the value of c on
point r ∈ [n]t equals b̂, and rejects otherwise. If all checks pass then the verifier eventually accepts.

The sumcheck protocol is given in Fig. 2.

Sumcheck(i, r, b̂), where i ∈ [t+ 1], r ∈ [n]i−1 and b̂ ∈ F (initialized to i← 1, r ← ⊥, and b̂← b)

1. If i = t + 1, V queries c(r1, . . . , rt) and checks that it equals b̂; If not, V rejects and otherwise it
accepts.

2. Otherwise (i.e., i ∈ [t]):

(a) P sends w ∈ Fn whose `-th coordinate equals

w` =
∑

`i+1,...,`t∈[k]

(λ(i+1))`i+1
· · · (λ(t))`t · c(r1, . . . , ri−1, `, `i+1, . . . , `t),

for every ` ∈ [n].

(b) V checks that for any a ∈ A, w|a is a codeword of C; If not, V rejects.

(c) V checks that
∑
`∈[k](λ

(i))` · w` = b̂; If not, V rejects.

(d) V sends uniform random independent σ1, . . . , σd ∈ [n].

(e) For j = 1, . . . , d: P and V run Sumcheck(i+1, (r, σj), wσj
). Accept if all invocations accepted

and otherwise reject.

Figure 2: Sumcheck for Tensor Codes

First note that we run the above recursive call with i 6= t+1 for 1+d+ · · ·+dt−1 ≤ dt times, and
with i = t+ 1 for dt times. For any call corresponding to i 6= t+ 1, the communication complexity
is n · log |F|+d · log n, verifier running time is nO(1) ·polylog(|F|)+d · log n, and prover running time
is at most nt · t ·polylog(F), leading to a total communication complexity of O(n ·dt+1 · log |F|), total
verifier running time nO(1) · dt+1 ·polylog(|F|), and total prover running time nt · t · dt ·polylog(|F|).
The verifier queries a single bit of c on each of the calls corresponding to i = t+ 1, leading to total
query complexity of dt. Finally, for any i ∈ [t], we invoke all calls corresponding to i in parallel,
leading to t total rounds. Next we show completeness, soundness, and robustness.

For i ∈ [t] and r ∈ [n]i−1, let w(i,r) ∈ Fn denote the message sent by the honest prover P on a
call corresponding to i, r. That is,

(w(i,r))` =
∑

`i+1,...,`t∈[k]

(λ(i+1))`i+1
· · · (λ(t))`t · c(r1, . . . , ri−1, `, `i+1, . . . , `t)

for any ` = 1, . . . , n. Note that the definition extends naturally to i = t+ 1 and r ∈ [n]t.
Then for any i ∈ [t− 1], r ∈ [n]i−1, and σ ∈ [n] we have that∑

`∈[k]

(λ(i+1))`·(w(i+1,(r,σ)))` =
∑

`i+1,...,`t∈[k]

(λ(i+1))`i+1
· · · (λ(t))`t ·c(r1, . . . , ri−1, σ, `i+1, . . . , `t) = (w(i,r))σ.

35

Moreover, if we let λ(t+1) := (1, 0k−1) ∈ {0, 1}k, then for any r ∈ [n]t−1 and σ ∈ [n] we have that∑
`∈[k]

(λ(t+1))` · (w(t+1,(r,σ)))` = c(r1, . . . , rt−1, σ) = (w(t,r))σ.

We conclude that ∑
`∈[k]

(λ(i+1))` · (w(i+1,(r,σ)))` = (w(i,r))σ (5)

for any i ∈ [t], r ∈ [n]i−1, and σ ∈ [n].

Completeness. Suppose that 〈λ(1) ⊗ · · · ⊗ λ(t), x〉 = b. On each call corresponding to i ∈ [t] and
r ∈ [n]i−1 we have that w(i,r) is a linear combination of codewords in C with coefficients in F. Thus
for any a ∈ A we have that w(i,r)|a is a linear combination of codewords of C with coefficient in F2,
which by linearity is a codeword of C. So w(r,i) will pass the test in Step 2b.

Next observe that since the code C is systematic, the assumption that 〈λ(1)⊗· · ·⊗λ(t), x〉 = b im-
plies that

∑
`1,...,`t∈[k](λ

(1))`1 · · · (λ(t))`t ·c(`1, . . . , `t) = b, which is equivalent in turn to
∑

`∈[k](λ
(1))`·

(w(1,⊥))` = b. Moreover, for any call corresponding to i ∈ {2, . . . , t}, r ∈ [n]i−1, and the particular
value of b̂ ∈ F in the i-th iteration, we have that

∑
`∈[k](λ

(i))` · (w(i,r))` = b̂ by Eq. (5). So for

any i ∈ [t], w(i,r) will pass the test in Step 2c. Finally, note that for i = t + 1 we have that
(w(t,r))σ =

∑
`∈[k](λ

(t+1))` · (w(t+1,r))` = c(r1, . . . , rt), and so V will not reject in Step 1.
We conclude that all tests will pass with probability 1, and so V accepts with probability 1.

Soundness. Suppose that 〈λ(1) ⊗ · · · ⊗ λ(t), x〉 6= b, and let P∗ be a prover strategy. We may
assume that on each call corresponding to i ∈ [t], r ∈ [n]i−1, and b̂ ∈ F, the cheating prover P∗
sends y ∈ Fn such that y|a is a codeword of C for any a ∈ A, and

∑
`∈[k](λ

(i))` · y` = b̂, since
otherwise V rejects.

Claim 7.7. Let y ∈ Fn be a message sent by P∗ on some call corresponding to i ∈ [t], r ∈ [n]i−1,
and b̂ ∈ F. Suppose that

∑
`∈[k](λ

(i))` · (w(i,r))` 6= b̂. Then with probability at least δ over the choice

of a uniform random σ ∈ [n] it holds that
∑

`∈[k](λ
(i+1))` · (w(i+1,(r,σ)))` 6= yσ.

Proof. By assumption we have that
∑

`∈[k](λ
(i))` · y` = b while

∑
`∈[k](λ

(i))` · (w(i,r))` 6= b̂, and so

y 6= w(i,r). In particular, there exists a basis element a ∈ A for which y|a 6= w(i,r)|a. Moreover, by
assumption both y|a and w(i,r)|a are codewords of C, and so dist(y|a, w(i,r)|a) ≥ δ which implies in
turn that dist(y, w(i,r)) ≥ δ. Thus, with probability at least δ over the choice of a uniform random

σ ∈ [n] it holds that yσ 6= w
(i,r)
σ . By Eq. (5) this implies in turn that

∑
`∈[k](λ

(i+1))` ·w(i+1,(r,σ)) =

(w(i,r))σ 6= yσ.

Next observe that since the code C is systematic, the assumption that 〈λ(1) ⊗ · · · ⊗ λ(t), x〉 6=
b is equivalent to

∑
`1,...,`t∈[k](λ

(1))`1 · · · (λ(t))`t · c(`1, . . . , `t) 6= b, which is equivalent in turn to∑
`∈[k](λ

(1))` · (w(1,⊥))` 6= b. By Claim 7.7, this implies in turn that with probability at least 1 −
(1−δ)d ≥ 1− ε

t there will be a call corresponding to i = 2, r ∈ [n], and b̂ ∈ F for which
∑

`∈[k](λ
(2))` ·

(w(2,r))` 6= b̂. Continuing this way, by the union bound, there will be a call corresponding to i = t+1,
r ∈ [n]t, and b̂ ∈ F for which

∑
`∈[k](λ

(t+1))` · (w(t+1,r))` 6= b̂. Finally, note that the left hand side of
this inequality equals c(r1, . . . , rt), and consequently in this case the verifier will reject at Step 1.

36

Robustness. We show robustness we slightly modify the protocol as follows. In Step 2a the
prover sends an encoding of w (viewed as a bit string of length n · log |F|) via an explicit linear
code C ′ of constant rate and constant relative distance δ′ (see, e.g., Theorem 2.3). Upon receiving
a message z from the verifier, the prover first checks that z is a codeword of C ′. If not, it rejects.
Otherwise, it decodes z, and proceeds to Step 2b with the decoded message. Note that this only
increases the communication complexity by a constant factor and the verification time by a poly-
logarithmic factor.

Next suppose that 〈λ(1)⊗· · ·⊗λ(t), x〉 6= b, and let P∗ be a prover strategy. We may assume that
on each call corresponding to i ∈ [t], r ∈ [n]i−1, and b̂ ∈ F, the cheating prover P∗ sends z ∈ Fn
that is δ′

2 -close to some codeword C ′(y′). Indeed, otherwise, any z′ that is δ′

2 -close to z will cause
V to reject, and since the total number of calls corresponding to i 6= t + 1 is at most dt, this will
imply in turn that the transcript is at least δ′

2·dt -far from an accepting view.

Next we note that under the above assumption any z′ that is δ′

2 -close to z is either not a codeword
of C ′ or equals C ′(y′). Indeed, suppose in contradiction that z′ = C ′(y′′) for some y′′ 6= y′. Then
by the triangle inequality z = C ′(y′) is δ′-close to z′ = C ′(y′′), which by distance properties of C ′

implies in turn that y′′ = y′.
We conclude that there is only a single transcript τ ′ that is δ′

2·dt -close to the original transcript τ
and contains only valid encodings of C ′. Finally, note that any transcript that contains a non-valid
encoding of C ′ will cause the verifier to reject. Moreover, by the soundness property established
above, with probability at least 1− ε the transcript τ ′ will cause the verifier to reject.

7.3 Relaxed local correction of tensor codes – proof of Lemma 7.4

Lemma 7.4 can be deduced from the following lemma by induction.

Lemma 7.8. Suppose that C : {0, 1}k → {0, 1}n and C ′ : {0, 1}k′ → {0, 1}n′ are relaxed locally
correctable linear codes (see Definition 2.6) with query complexity q, q′, decoding radius δR, δ

′
R, and

failure probability ε, δR
4 , respectively. Then the tensor product C ⊗ C ′ is relaxed locally correctable

with query complexity O(q′ · log(1/ε)/δR + q), decoding radius
δR·δ′R

2 , and failure probability ε.
Moreover,

• If the relaxed local corrector for C,C ′ are (α, ε), (α′, δR4)-robust, respectively, then the relaxed
local corrector for C ⊗ C ′ is (α̃, ε)-robust for

α̃ = min

{
α

2
, Ω

(
α′ · δR

log(1/ε)

)}
.

• If the relaxed local corrector for C,C ′ have running times T, T ′, respectively, then the relaxed
local corrector for C ⊗ C ′ has running time O(T ′ · log(1/ε)/δR + T).

Before we prove the above lemma we show how it implies Lemma 7.4.

Proof of Lemma 7.4. Apply Lemma 7.8 iteratively for i = 1, . . . , t − 1 with C ′ being the code
C⊗i constructed so far, and C being a new copy of C, noting that C is trivially relaxed locally
correctable with query complexity n, decoding radius δ

2 , and failure probability 0 using the relaxed
local corrector that reads the whole string w and outputs wi if w is a codeword of C and ⊥ otherwise.

Then on each step the decoding radius decreases by a multiplicative factor of δ/4. Moreover,
one each step other than the last one we may obtain failure probability δ/8 by increasing the query

37

complexity by a multiplicative factor of O(log(1/δ)/δ), while on the last step we may obtain failure
probability ε by increasing the query complexity by a multiplicative factor of O(log(1/ε)/δ). This
leads to the claimed query complexity, decoding radius, and failure probability.

As to robustness, note first that the trivial relaxed local corrector for C is (δ/4, 0)-robust since if
w is δ/2-close to a codeword c of C, then any w′ that is δ/4-close to w is either a non-codeword or
equals to c. Next observe that in each step other than the last one the robustness is multiplied by
a factor of Ω(δ · log−1(1/δ)), while in the last step it is multiplied by a factor of Ω(δ · log−1(1/ε)),
leading to the claimed robustness. Finally, note that the trivial relaxed local corrector for C can be
implemented in time nO(1) given a parity-check matrix for C, and so we also obtain a total running
time of nO(1) · δ−O(t) · log(1/ε).

We proceed to the proof of Lemma 7.8.

Proof of Lemma 7.8. The relaxed local corrector Ã for C ⊗ C ′ is given in Fig. 3 below.

The composed corrector Ã

B Ã receives oracle access to a matrix w ∈ {0, 1}n×n′ and as explicit input i ∈ [n] and j ∈ [n′].

1. Repeat for O(log(1/ε)/δR) times:

• Pick a random row i′ ∈ [n].

• Run the relaxed local corrector A′ for C ′ on input j with oracle access to the i′-row w|{i′}×[n′].
If the result is not equal to wi′,j then output ⊥ and abort.

2. Run the relaxed local corrector A for C on input i with oracle access to the j-th column w|[n]×{j},
and return the value output by A.

Figure 3: Relaxed Local Corrector for C ⊗ C ′

It can be verified that the query complexity and running time are as claimed. completeness is
also clear. Next we show soundness and robustness.

Soundness. Suppose that w ∈ {0, 1}n×n′ is
δR·δ′R

2 -close to a codeword c ∈ {0, 1}n×n′ of C ⊗ C ′.
If the j-th column of w is δR-close to the j-th column of c, then in Step 2 the relaxed local

corrector A will output either ci,j or ⊥ with probability at least 1 − ε. Since the only possible
output in Step 1 is ⊥, in this case Ã will also output either ci,j or ⊥ with probability at least 1− ε.
Hence we may assume that the j-th column of w is δR-far from the j-th column of c.

Next observe that by averaging, for at least (1− δR
2)-fraction of the rows i′ it holds that the i′-th

row of w is δ′R-close to the i′-th row of c. Moreover, by assumption that the j-th column of w is
δR-far from the j-th column of c, we also have that wi′,j 6= ci′,j for at least δR-fraction of the indices

i′ ∈ [n]. We conclude that for at least δR
2 -fraction of the indices i′ ∈ [n], it holds that both the i′-th

row of w is δ′R-close to the i′-th row of c, and wi′,j 6= ci′,j . Let I ⊆ [n] denote the subset of these

indices, and note that |I| ≥ δR
2 · n.

Now Ã picks i′ ∈ I in Step 1 with probability at least δR
2 , and conditioned on this, the relaxed

local corrector A′ will output in Step 1 either ⊥ or ci′,j 6= wi′,j with probability at least 1 − δR
4 ,

38

which will cause Ã to output ⊥. Finally, repeating this process for O(log(1/ε)/δR) times, we obtain
that Ã will output ⊥ with probability at least 1− ε.

Robustness. In what follows assume that in Step 1 the relaxed local corrector Ã queries wi′,j
for q′ times and outputs ⊥ if the duplicated views are non-identical. Additionally, assume that
total number of queries in Step 1 equals number of queries in Step 2 which can be achieved by
duplicating the views and outputting ⊥ whenever the views are inconsistent with each other. Note
that this does not change the asymptotic query complexity and running time.

Next suppose that w ∈ {0, 1}n×n′ is
δR·δ′R

2 -close to a codeword c ∈ {0, 1}n×n′ of C ⊗ C ′, and let

v be Ã’s view. We will show that with probability at least 1− ε any view v′ that is obtained from
v by changing at most α̃-fraction of coordinates outputs either ci,j or ⊥.

As in the soundness analysis, suppose first that the j-th column of w is δR-close to the j-th
column of c. Then by robustness of A, with probability at least 1− ε, any view that is α-close to
A’s view in Step 2 will output either ci,j or ⊥. Since the only possible output in Step 1 is ⊥, by
our assumption that the queries in Step 2 constitute half the queries of Ã, we conclude that with
probability at least 1− ε, any view that is obtained from v by changing at most α

2 -fraction of the

coordinates will cause Ã to output either ci,j or ⊥.
Hence we may assume that the j-th column of w is δR-far from the j-th column of c. As in the

soundness analysis, this implies the existence of a subset I ⊆ [n], |I| ≥ δR
2 · n, such that for any

i′ ∈ I it holds that the i′-th row of w is δ′R-close to the i′-th row of c, and additionally, wi′,j 6= ci′,j .

So Ã picks i′ ∈ I in Step 1 with probability at least δR
2 .

Conditioned on the above, with probability at least 1− δR
4 , any view that is α′-close to A′’s view

in Step 1 will output either ⊥ or ci′,j 6= wi′,j . Recalling that we duplicated wi′,j for q′ times, we

conclude that with probability at least δR
4 , any view that is α′

2 -close to the view on Step 1 will caluse

Ã to output ⊥. Finally, repeating this process for O(log(1/ε)/δR) times, and recalling that the total
number of queries in Step 1 account for half of the queries of Ã, we obtain that with probability at
least 1− ε, any view that is obtained from v by changing at most Ω(α′ · δR · log−1(1/ε))-fraction of
the coordinates will cause Ã to output ⊥.

7.4 Local decomposability for tensor codes – proof of Lemma 7.5

Observe that C⊗t = R ⊗ R′, where R := C⊗d and R′ := C⊗(t−d). Thus, we can view a codeword
c ∈ {0, 1}nt of C⊗t as an nd × nt−d binary matrix whose columns belong to R and whose rows
belong to R′. We may also view a message x ∈ {0, 1}kt as an kd × kt−d binary matrix.

For r ∈ [kt−d], we let x(r) ∈ {0, 1}kd denote the r-th column of x, and let y(r) := R(x(r)). Suppose
we wish to encode a coordinate (i, j) ∈ [nd]× [nt−d] of C⊗t = R⊗R′. Then we have that the (i, j)

coordinate of R⊗R′ equals the j-th coordinate of R′
(

(y(1))i, . . . , (y
(kd))i

)
, and so this coordinate

can be retrieved by making at most 1 query to each y(r) = C⊗d(x(r)), for every r ∈ [kt−d].
Finally, note that the running time of the oracle machine is the time required for decoding a

single coordinate of R′ = C⊗t−d which is at most O(T · kt−d−1) by the claim below.

Claim 7.9. Suppose that each coordinate of C is encodable in time T . Then each coordinate of
C⊗t is encodable in time O(T · kt−1).

Proof. We prove the claim by induction on t. The claim clearly holds when t = 1. For t > 1,
the above proof with d = t − 1 shows that any coordinate of C⊗t can be computed by computing

39

at most k coordinates of C⊗t−1 and a single coordinate of C. Denoting the encoding time for
dimension i by Ei we have that

Ei = k · Ei−1 + T = · · · = kj · Ei−j + T ·
(
1 + k + k2 + · · ·+ kj−1

)
= T ·

(
ki−1 +

ki−1 − 1

k − 1

)
Thus, Et = O(T · kt−1) and the claim follows.

8 IOPP for bounded space computation – proof of Theorem 3.5

In this section, building on results established in the previous sections, we construct an IOPP for
bounded space languages, thereby proving Theorem 3.5. Actually, we will prove a more general
(and somewhat technical) lemma, from which Lemma 8.1 immediately follows. The technical details
in Lemma 8.1 will be useful for us in Section 9 when we construct a (short) IOP for NP.

Lemma 8.1. Let L be a language computable in time poly(n) with space s = s(n) ≥ log n. Then
for every β = β(n) ∈ (0, 1) and γ = γ(n) ∈ (0, 1) such that poly(1/β) ≤ log(n) and γ = γ(n) ≥
200·41/β ·logn

nβ/2
the following holds.

There exists an IOPP for L with respect to proximity parameter δ > 0 with communication com-
plexity γ · n + poly

(
nβ, (γβ)−1/β, 1/δ, s

)
, query complexity poly

(
(γβ)−1/β, 1/δ

)
, round complexity

β−O(1/β), and soundness error 1/2.
Moreover,

• The verifier’s running time is poly
(
nβ, (γβ)−1/β, 1/δ, s

)
.

• The prover’s running time is poly(n).

• There exists a systematic code C = {Cn : {0, 1}n → {0, 1}n′}n∈N of rate at least 1
1+γ

such that the communication phase consists of a single prover’s message of length γ · n
which is the non-systematic part of Cn, followed by a two-way communication of length
poly

(
nβ, (γβ)−1/β, 1/δ, s

)
.

For any integer d ≤ 2 · d1/βe, the code Cn is locally (n̄)1−2βd-decomposable with respect to a
base code C0 of rate at least 1− γ that is encodable in quasi-linear time.

We prove Lemma 8.1 in two stages. First, using the results established in Sections 4 to 7, we
construct a short robust IOPP with sublinear query complexity. The next step is a composition
procedure for IOPPs that combines an outer IOPP of small communication complexity but relatively
large query complexity (such as the one that we constructed in the first stage) with an inner IOPP
of small query complexity but relatively large communication complexity (here we can use an “off-
the-shelf” PCPP or IOPP) to obtain the best of both worlds: an IOPP with small communication
and query complexities. In particular, the following lemma extends the composition lemma from
[BCG+17] which combines an outer (robust) PCPP with an inner IOPP.

Lemma 8.2 (IOPP query reduction). Suppose that the following exist:

• (Outer IOPP:) An IOPP for a language L wrt proximity parameter δ > 0, with commu-
nication complexity cc, query complexity q, round complexity `, (α, ε)-robustness, verifier
randomness complexity r, and predicate set Φ.

40

• (Inner IOPP:) An IOPP for the language LΦ := {(φ,w) | φ ∈ Φ, φ(w) = accept} (where φ
is an explicit input and w is the implicit input) wrt proximity parameter δ′, with communica-
tion complexity cc′, query complexity q′, round complexity `′, and soundness error ε′, where
δ′(q(n)) = α(n).

Then, there exists an IOPP for L wrt proximity parameter δ > 0 with communication complexity
cc(n) + cc′(q(n)) + r(n), query complexity q′(q(n)), round complexity `(n) + `′(q(n)) and soundness
error ε(n) + ε′(q(n)).

Moreover,

• If the verifiers in the outer and inner IOPPs have running times T and T ′, respectively, then
the verifier in the resulting IOPP has running time T (n) + T ′(q(n)).

• If the provers in the outer and inner IOPPs have running times T and T ′, respectively, then
the prover in the resulting IOPP has running time T (n) + T ′(q(n)).

We prove Lemma 8.2 in Section 8.1. As the outer IOPP we use the IOPP given by the combination
of Lemmas 4.5 to 4.7.

Lemma 8.3 (Outer IOPP). Let L be a language computable in time poly(n) and space s = s(n) ≥
log n. Then there exists an absolute constant ε0 > 0 such that the following holds for any δ =

δ(n) > 0, β = β(n) ∈ (1
(logn)ε0 ,

1
2), and γ = γ(n) ∈ (200·41/β ·logn

nβ/2
, 1).

There exists an IOPP for L of communication complexity γ ·n+poly
(
nβ, (γβ)−1/β, 1/δ, s

)
, query

complexity and verifier running time poly
(
nβ, (γβ)−1/β, 1/δ, s

)
, round complexity β−O(1/β), prox-

imity parameter δ, and
(
(γβ)O(1/β) · δ, 1− (γβ)O(1/β) · δ

)
-robustness.

Moreover,

• Prover’s running time is poly(n).

• There exists a systematic code C := {Cn : {0, 1}n → {0, 1}n′}n∈N of rate at least 1
1+γ

such that the communication phase consists of a single prover’s message of length γ · n
which is the non-systematic part of Cn, followed by a two-way communication of length
poly

(
nβ, (γβ)−1/β, 1/δ, s

)
.

• For any integer d ≤ 2 · d1/βe, the code Cn is locally (n̄)1−2βd-decomposable with running time
n1−2βd · polylog(n) with respect to a base code C0 of rate at least 1− γ.

We prove Lemma 8.3 in Section 8.2.

As the inner IOPP we use an off the shelf PCPP (recall that a PCPP is simply a 1-round IOPP).
For convenience we use the PCPP of Mie [Mie09, Theorem 1] although we note that slightly less
efficient PCPPs, such as those constructed in [BGH+05] suffice for our purposes.

Theorem 8.4 (Inner IOPP). Let L be a pair language computable in time poly(n). Then for any
δ = δ(n) > 0 and ε = ε(n) > 0 there exists an IOPP for L wrt proximity parameter δ > 0, with
communication complexity poly(n), query complexity O(log(1/ε) · log(1/δ)/δ), round complexity 1
and soundness error ε.

Moreover, the prover’s running time is poly(n), and the verifier’s running time is poly(n) ·
log(1/ε) · log(1/δ)/δ.

41

Remark 8.5. We remark that [Mie09, Theorem 1] does not explicitly state the prover’s running
time but it can be readily verified that the prover can be implemented in polynomial-time. We
also note that follow up works obtain prover running time that is quasi-linear (rather than merely
polynomial) in the original computation [BCGT13].

The main result of [Mie09] only talks about constant proximity parameter and soundness error.
In Section 8.3 we show how to extend this result to arbitrary ε = ε(n) and δ = δ(n). Next we prove
Theorem 3.5, based on Lemmas 8.2 and 8.3 and Theorem 8.4.

Proof of Lemma 8.1. By Lemma 8.3, there exists an IOPP for L with communication complexity γ ·
n+nβ ·(γβ)−O(1/β)· 1δ ·s

2, query complexity nβ ·(γβ)−O(1/β)· 1δ ·s
2, round complexity β−O(1/β), proxim-

ity parameter δ, verifier running time nO(β)·(γβ)−O(1/β)·1δ ·s
2, and

(
(γβ)O(1/β) · δ, 1− (γβ)O(1/β) · δ

)
-

robustness. Moreover, the communication phase consists of a single prover message which is the
non-systematic part Cn̄(w, 0n̄−n) of length γ · n, followed by a two-way communication of length
nβ · (γβ)−O(1/β) · 1

δ · s
2.

Let Φ be the predicate set for the above outer IOPP, let LΦ := {(φ,w) | φ ∈ Φ, φ(w) = accept},
and note that LΦ is computable in time nO(β) · (γβ)−O(1/β) · 1

δ · s
2. By Theorem 8.4, there exists

an IOPP for LΦ of communication complexity nO(β) · (γβ)−O(1/β) · δ−O(1) · sO(1), query complexity
(γβ)−O(1/β) ·δ−O(1), round complexity 1, proximity (γβ)O(1/β) ·δ, and soundness error (γβ)O(1/β) ·δ.

Lemma 8.2 then implies the existence of an IOPP for L of communication complexity γn+nO(β) ·
(γβ)−O(1/β) · δ−O(1) · sO(1), query complexity (γβ)−O(1/β) · δ−O(1), round complexity (γβ)−O(1/β) · 1

δ ,

proximity parameter δ, and soundness error 1− (γβ)O(1/β) · δ. Moreover, the communication phase
consists of a single prover message which is the non-systematic part Cn̄(w, 0n̄−n) of length γ · n,
followed by a two-way communication of length nO(β) · (γβ)−O(1/β) · δ−O(1) · sO(1).

Finally, one can decrease the soundness error to 1/2 by repeating the protocol for (γβ)−O(1/β) · 1
δ

times, and accepting if and only if all invocations accept. Note that since the first prover message
is deterministic, one does not need to repeat this message. We conclude that there exists an IOPP
for L of communication complexity γ · n + nO(β) · (γβ)−O(1/β) · δ−O(1) · sO(1), query complexity
(γβ)−O(1/β) · δ−O(1), round complexity (γβ)−O(1/β) · δ−O(1), proximity parameter δ, and soundness
error 1/2. Moreover, the communication phase consists of a single prover message which is the
non-systematic part of Cn̄(w, 0n̄−n) of length γ ·n, followed by a two-way communication of length
nO(β) · (γβ)−O(1/β) · δ−O(1) · sO(1).

8.1 Query reduction – proof of Lemma 8.2

The composed protocol Π̃ is given in Fig. 4

It can be verified that communication complexity, query complexity, round complexity, and
verifier and prover running time are all as claimed. Next we show completeness and soundness.

Completeness. Suppose that (x,w) ∈ L. Then with probability 1, the output of φ on query set
I is accept. Consequently, the protocol Π′ will accept with probability 1.

42

The composed protocol Π̃:

Explicit input: x

Implicit input: w ∈ {0, 1}n

Communication phase:

1. P and V interact for `(n) rounds with total communication cc(n) according to the outer IOPP Π for
L on explicit input x and implicit input w.

2. V sends its randomness string of length r(n), and P and V compute the corresponding query set I
of size q(n) and predicate φ.

3. P and V interact for `′(q(n)) rounds with total communication cc′(q(n)) according to the promised
inner IOPP Π′ for LΦ on explicit input φ, viewing the restriction of w and the transcript of Π to the
query set I as the implicit input to Π′.

Query phase: V makes q′(q(n)) queries to the transcripts of Π′ and Π and to the implicit input w
according to the protocol Π′ and accepts if and only if the protocol Π′ accepts.

Figure 4: Query Reduced Protocol Π̃

Soundness. Suppose that w is δ(n)-far from Lx, and let P∗ be a prover strategy. By the ro-
bustness property of Π, with probability at least 1 − ε(n), the restriction of the transcript of Π
and the implicit input w to the query set I is α(n)-far from φ−1(accept), where δ′(q(n)) = α(n).
Consequently, the protocol Π′ will reject with probability at least 1−ε′(q(n)). By the union bound,
we conclude that the protocol Π̃ will reject with probability at least 1− ε(n)− ε′(q(n)).

8.2 Outer IOPP – proof of Lemma 8.3

Let t = t(n) := d1/β(n)e, and let L̄ be a language with implicit length sequence I = {n̄ | n ∈ N}
(recalling that n̄ =

(
dn1/(2t(n))e

)2t(n)
), obtained by padding any implicit input belonging to L of

length n with n̄− n zeros. Note that

n

n̄
≥ n(

n1/(2t) + 1
)2t

=
n∑2t

i=0

(
2t
i

)
ni/(2t)

≥ n

n+ n(2t−1)/(2t) ·
∑2t

i=0

(
2t
i

)
=

1

1 + 4t · n−1/(2t)

≥ 1

1 + γ/2
, (6)

where the last inequality follows by assumption that γ ≥ 2·41/β

nβ/2
.

By Lemma 4.6, there exists an S⊗t-linear IOP reduction for L̄, over a constructible field ensemble
of size poly

(
log(n), (γβ)−1/β, 1/δ

)
of characteristic 2, with communication, query complexity, and

43

verifier running time poly
(
nβ, (γβ)−1/β, 1/δ, s

)
, round complexity β−O(1/β), prover’s running time

poly(n), and (βO(1/β), (γβ)O(1/β) · δ)-robustness.
By Lemma 4.7, there exists a systematic S⊗t-sumcheckable code C = {Cn̄ : {0, 1}n̄ → {0, 1}n′}n̄∈I ,

where Cn̄ has rate at least 1
1+γ/2 and relative distance (γβ)O(1/β), and the corresponding IOPP has

communication complexity, query complexity, and verifier running time poly
(
nβ, (γβ)−1/β, 1/δ

)
,

round complexity d1/βe, proximity parameter min
{
δ · 1

1+γ/2 ,
dist(Cn)

2

}
, prover’s running time poly(n),

and
(
(γβ)O(1/β) · δ, 1− (γβ)O(1/β) · δ

)
-robustness.

Lemma 4.5 implies in turn the existence of an IOPP for L̄ with communication complexity γ
2 · n̄+

poly
(
nβ, (γβ)−1/β, 1/δ, s

)
, query complexity and verifier running time poly

(
nβ, (γβ)−1/β, 1/δ, s

)
,

round complexity β−O(1/β), proximity parameter δ, prover’s running time poly(n), and robustness(
(γβ)O(1/β) · δ, 1− (γβ)O(1/β) · δ

)
.

Moreover, the communication phase consists of a single prover message which is the non-systematic
part of Cn̄(w) of length γ

2 ·n̄, followed by a two-way communication of length poly
(
nβ, (γβ)−1/β, 1/δ, s

)
.

Moreover, for any integer d ≤ 2 · d1/βe, the code Cn̄ is locally (n̄)1−2βd-dcomposable with running
time n1−2βd · polylog(n) with respect to a base code C0 of rate at least 1− γ.

Finally, passing to L (without the padding), and using Eq. (6) we obtain that L also has an IOPP
with the same parameters as above, where the first prover message is the non-systematic part of
Cn̄(w, 0n̄−n) of length γ · n.

8.3 Inner IOPP – proof of Theorem 8.4

We use the following lemma that shows how to transform an IOPP of high (i.e., constant) proximity
into a IOPP of arbitrarily low proximity.

Lemma 8.6. Let L be a pair language, and let δ = δ(n) > 0. Suppose that the following exist.

• A relaxed locally decodable code C = {Cn : {0, 1}n → {0, 1}n′}n∈N with relative distance δ′,
decoding radius δ′

2 , query complexity q′, and failure probability δ/2.

• An IOPP for L′ := {(x,C(w)) : (x,w) ∈ L} with communication complexity cc, query com-
plexity q, round complexity `, proximity parameter δ′

2 , and soundness error ε.

Then, there exists an IOPP for L with communication complexity n′ + cc(n′), query complexity
q(n′) + q′(n) ·O(log(1/ε)/δ), round complexity `, proximity parameter δ, and soundness error ε.

Moreover,

• If the verifier in the IOPP for L′ has running time T ′, and the relaxed local decoder for C has
running time time Trlcc, then the verifier in the resulting IOPP has running time T ′(n′) +
O(log(1/ε)/δ) · Trlcc(n).

• If the prover in the IOPP for L′ has running time T ′, and C has encoding time Tenc, then the
prover in the resulting IOPP has running time T ′(n′) + Tenc(n).

Proof. The prover in the IOPP Π for L first sends the string C(w). The prover and the verifier
then interact according to the IOPP Π′ for L′, wrt to the explicit input x and implicit input C(w).
Let z denote the first prover’s message that is allegedly equal to C(w).

In the query phase, the verifier first runs the check of Π′, wrt to the explicit input x and the
implicit input z. If Π′ rejects, then the verifier rejects. Otherwise, the verifier repeats the following

44

procedure O(log(1/ε)/δ) times: the verifier picks a uniform random i ∈ [n], and applies the relaxed
local decoder on input coordinate i with oracle access to z. If in any of the invocations the output
of the relaxed local decoder is different than wi (which it obtains by making a query to the implicit
input w) then the verifier rejects. Otherwise, the verifier accepts.

It can be verified that the communication complexity, query complexity, and verifier and prover
running times are all as claimed. Completeness is also clear. Next we show soundness.

Suppose that w is δ-far from Lx. If z is δ′

2 -far from any codeword of C then Π′ rejects with

probability at least 1− ε. Hence we may assume that z is δ′

2 -close to some codeword C(w′). Next
suppose that w′ /∈ Lx. Then, since the code C has relative distance at least δ′, we have that C(w′)
is δ′-far from L′x. By the triangle inequality, this implies in turn that z is δ′

2 -far from L′x, and so Π′

will once more reject with probability at least 1−ε. Thus, we we may also assume that C(w′) ∈ L′x.
By definition, if C(w′) ∈ L′x then w′ ∈ Lx. But as we have assumed that w is δ-far from Lx,

the above implies in turn that dist(w,w′) ≥ δ. Thus, with probability at least δ, the verifier will
pick i ∈ [n] on which w and w′ differ, and moreover, the relaxed local decoder will output w′i with
probability at least 1 − δ/2. We conclude that the verifier rejects with probability at least δ/2
on each of the invocations. Finally, repeating this procedure for log(1/ε)/δ times gives rejection
probability at least 1− ε.

We now proceed to the proof of Theorem 8.4, based on the above lemma.

Proof of Theorem 8.4. Theorem 1.5 in [BGH+06] gives an explicit linear relaxed locally decodable
code C = {Cn : {0, 1}n → {0, 1}poly(n)}n∈N of some constant relative distance δ′ > 0, constant
decoding radius α′ > 0, constant query complexity, failure probability 1/3, and running time
poly(n). By repeating the relaxed local decoder for O(log(1/δ)) times, and outputting some value
other than ⊥ if and only if all invocations output this value, we may assume that the relaxed local
decoder has failure probability at most δ/2, at the cost of increasing the query complexity and
running time by a multiplicative factor of O(log(1/δ)).

For any language in P and for any constant δ0, ε0 > 0, Mie [Mie09] gives an IOPP of communica-
tion complexity poly(n), constant query complexity, round complexity 1, proximity parameter δ0,
soundness error ε0, and verifier and prover running time poly(n).

Note that as L is computable in time poly(n), and as C is an explicit linear code, L′ is also
computable in time poly(n). Consequently, there exists an IOPP for L′ of communication com-
plexity poly(n), constant query complexity, round complexity 1, proximity parameter min{δ′, α′},
soundness error 1/2, and verifier and prover running time poly(n). Note that the soundness error
can be decreased to ε by repeating the verifier check for O(log(1/ε)) times and accepting if and
only if all invocations accept, at the cost of increasing the query complexity and verifier running
time by a multiplicative factor of O(log(1/ε)).

Lemma 8.6 then gives an IOPP for L of communication complexity poly(n), query complexity
O(log(1/ε) · log(1/δ)/δ), round complexity 1, proximity parameter δ, soundness error ε, prover
running time poly(n), and verifier running time poly(n) · log(1/ε) · log(1/δ)/δ.

9 IOP for NP – proof of Theorem 3.1

The proof of Theorem 3.1 relies on the following lemma that, loosely speaking, shows how to
transform an IOPP for deterministic languages into an IOP for non-deterministic languages. This
transformation is analogous to the known transformation from PCPPs for P to PCPs for NP

45

[BGH+06, DR06]. The main difference however is that, since we cannot afford even a constant
blowup in communication, we have to be extremely careful when composing and in particular use
some specific properties of the underlying IOPP.

Lemma 9.1. Let L ∈ NP with corresponding relation RL, in which the instances have length m
and witnesses have length n, where n and m are polynomially related and m ≥ n (i.e., witnesses
are shorter than their corresponding instances). Let E = {E(m) : {0, 1}m → {0, 1}m′}m∈N be a code

ensemble with relative distance δ > 0 and quasi-linear time encoding. Let C0 = {C(n)
0 : {0, 1}n →

{0, 1}n′}n∈N be a code ensemble with rate 1 − η and quasi-linear time encoding. Let ` = dn+m′

n e
and suppose that C = {C(n·`) : {0, 1}n·` → {0, 1}∗}n∈N is a systematic locally `-decomposable code
wrt the base code C0.

Let L′ =
{

(E(x), w) : (x,w) ∈ RL
}

(note that we view the tuple (E(x), w) as the implicit input
to L′ and there is no explicit input) and suppose that L′ has a q-query r-round IOPP, with respect
to proximity parameter δ/2 and soundness error ε with the following properties:

• The first message in the IOPP for L′ is the non-systematic part of C(E(x), w).

• The rest of the communication in the IOPP is of length cc.

• The IOPP verifier runs in time TV and the IOPP prover runs in time TP .

Then, L has an r(m′ + n)-round IOP with soundness error ε(m′ + n). The query complexity
is O(q(m′ + n)) and the communication consists of a first message sent by the prover of length
n′ = 1

1−η · n bits followed by cc(m′ + n) additional communication. The IOP verifier runs in time

Õ(m) + TV (m′ + n) and the IOP prover runs in time Õ(m) + TP (m′ + n).

We first prove Lemma 9.1 in Section 9.1 and then show how to use it to obtain Theorem 3.1 in
Section 9.2.

9.1 Proof of Lemma 9.1

Recall that the IOP verifier gets as input x and the IOP prover gets x and a witness w. First, the
prover sends w to the verifier. Then, the two parties run the IOPP for L′ wrt to the input (E(x), w)
(we once again emphasize that (E(x), w) is an implicit input to the IOPP and there is no explicit
input).15 The IOP verifier emulates queries to E(x) by generating E(x) by itself (recall that the
verifier has explicit access to x and so can compute E(x) by itself), and redirects queries to w to
the initial message sent by the prover. For reasons that will become apparent soon, we assume
without loss of generality that |E(x)| = m′ is a multiple of n (this can be achieved by padding with
0’s since we only assumed that E has constant relative distance and quasi-linear time encoding).

Observe that if (x,w) ∈ RL then (E(x), w) ∈ L′ and by the completeness of the IOPP, the IOP
verifier accepts.

For soundness, fix x 6∈ L and a cheating prover strategy P ∗. We assume without loss of generality
that P ∗ is deterministic and denote its first message by w∗ (an alleged encoding of a witness).

15Note that we cannot use x as an explicit input to the IOPP. Syntactically, this is because the IOPP that we
eventually use is for languages that do not have an explicit input. More fundamentally however, while we could have
extended that IOPP to support an explicit input x ∈ {0, 1}m, this would introduce a poly(m) dependence in the
communication and verification time that we would like to avoid.

46

Observe that since x 6∈ L and |x| ≥ |w∗|, the pair (E(x), w∗) is at least δ/2 far from L′. Thus, by
soundness of the IOPP, the verifier accepts with probability at most ε.

To obtain the desired efficiency we slightly modify the above protocol (while making certain
that this change does not effect completeness nor soundness). Recall that, by assumption, the
first message in the IOPP is the non-systematic part of C(E(x), w)) where C is a systematic locally
decomposable code wrt the base code ensemble C0. Therefore, as described so far, the first message
of our IOP prover consists of w and of the non-systematic part of C(E(x), w).

To obtain a more efficient protocol, rather than sending this (relatively long) message, our IOP
prover only sends C0(w) as its first message (of length 1

1−γ ·n) and then continues the interaction as
before. Since the code C is locally decomposable, queries to C(E(x), w) (whether to the systematic
part or not) can be emulated by making at most O(q) queries to C0(w) (to which the verifier
has oracle access since it was sent by the prover) and to C0((E(x))1), . . . , C0((E(x))`−1), where
E(x)i is the i-th block of E(x) of length n and ` = dn+m′

n e. Note that that verifier can generate
C0

(
(E(x))1

)
, . . . , C0

(
(E(x))`−1

)
by itself since it has x. The stated efficiency follows from the rate

of C0 and the quasi-linear time encoding of both E and C0.

9.2 IOPs for NP: Proof of Theorem 3.1

Let L ∈ NP with corresponding relation RL in which the instances have length m and witnesses
have length n, where n and m are polynomially related, and such that RL can be decided in time
poly(n) and space s ≥ log(n). Also, we assume without loss of generality that m ≥ n (by padding
the input with 0’s if necessary), while noting that this can increase our input size by at most n.

Let E = {E(m) : {0, 1}m → {0, 1}m′}m∈N be the code ensemble from Theorem 2.3 with constant
rate and constant relative distance δ > 0 (note that we do not require E to have rate close to 1).
Observe that E also has quasi-linear time encoding and that deciding membership in E can be
done in polynomial-time and poly-logarithmic space.

Let β ∈ (0, 1) and γ ∈ (0, 1) be nice functions as in the statement of Theorem 3.1. Note that
β(n + m′) = β(Θ(m)) ≥ Θ(β(m)). Thus, poly(1/β(n + m′)) = poly(1/β(m)) ≤ log(m) and
γ(n + m′) = Θ(γ(m)) ≥ m−O(β(m)) ≥ (n + m′)−O(β(n+m′). Choosing the constant in the big-

Oh appropriately, this means that γ(n + m′) ≥ 200·41/β(n+m′)·log(n+m′)

(n+m′)β(n+m′)/2 , for sufficiently large n. In

particular this implies that β and γ satisfy the requirements of Lemma 8.1.
Let C and C0 be the code ensembles from Lemma 8.1 wrt the above choice of β and γ′. Observe

that (1) C0 has rate 1
1+γ and is encodable in quasi-linear time, and (2) that C is a systematic

locally dn+m′

n e-decomposable code wrt the base code C0.
Consider the language L′ = {(E(x), w) : (x,w) ∈ RL} and note that inputs to L′ have length

n + m′ = Θ(m). Observe that membership in L′ can be decided in polynomial-time and space
s′ = max s,polylog(n).

Thus, by Lemma 8.1, there exists an IOPP for L′ with respect to proximity parameter δ/2
with query complexity poly

(
(γβ)−1/β, 1/δ

)
, round complexity β−O(1/β), and soundness error 1/2.

Moreover,

• The verifier’s running time is poly
(
mβ, (γβ)−1/β, 1/δ, s

)
.

• The prover’s running time is poly(m).

• The communication phase consists of a single prover’s message of length γ·(n+m′) which is the
non-systematic part of Cn, followed by a two-way communication of length poly

(
m)β, (γβ)−1/β, 1/δ, s

)
.

47

Now, by Lemma 9.1, we obtain that L has a β−O(1/β)-round IOP with soundness error 1/2. The
query complexity is poly

(
(γβ)−1/β, 1/δ

)
and the communication consists of a first message sent by

the prover of length 1
1−γ · n bits followed by poly

(
mβ, (γβ)−1/β, 1/δ, s

)
additional communication.

The IOP verifier runs in time Õ(m) + poly
(
mβ, (γβ)−1/β, 1/δ, s

)
and the IOP prover runs in time

poly(m). The theorem now follows by observing that δ is a constant.

Acknowledgements

We thank Ale Chiesa, Yuval Ishai, Swastik Kopparty and Or Meir for useful discussions.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–
555, 1998.

[App17] Benny Applebaum. Exponentially-hard gap-csp and local PRG via local hardcore func-
tions. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 836–847, 2017.

[ARW17] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. Distributed PCP theorems for
hardness of approximation in P. In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 25–36,
2017.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. J. ACM, 45(1):70–122, 1998.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon
interactive oracle proofs of proximity. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 14:1–14:17, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part III, pages 701–732, 2019.

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive oracle proofs with constant rate and query complexity. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, pages 40:1–40:15, 2017.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with
sublinear verification from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,
USA, November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in
Computer Science, pages 19–46. Springer, 2020.

48

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete
efficiency of probabilistically-checkable proofs. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 585–594, 2013.

[BCL20] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge succinct arguments
with a linear-time prover. IACR Cryptol. ePrint Arch., 2020:1527, 2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-
23, 2019, Proceedings, Part I, pages 103–128, 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFLR19] Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Ron D. Rothblum. Hard properties
with (very) short pcpps and their applications. CoRR, abs/1909.03255, 2019.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Short pcps verifiable in polylogarithmic time. In 20th Annual IEEE Conference on
Computational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages
120–134, 2005.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput,
36(4):889–974, 2006.

[BGKS19] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
sampling outside the box improves soundness. Electronic Colloquium on Computational
Complexity (ECCC), 26:44, 2019.

[BKK+16] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
Constant rate PCPs for circuit-sat with sublinear query complexity. J. ACM, 63(4):32:1–
32:57, 2016.

[BS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Structures and Algorithms, 28(4):387–402, 2006.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008.

49

[BV15] Eli Ben-Sasson and Michael Viderman. Composition of semi-LTCs by two-wise tensor
products. Computational Complexity, 24(3):601–643, 2015.

[CGL+19] Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy Rothblum, and Aviad Rubinstein.
Fine-grained complexity meets ip = pspace. In SODA, pages 1–20. SIAM, 2019.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[Din16] Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor prod-
ucts of LDPC codes. In proceedings of the 9th International Workshop on Randomization
and Computation (RANDOM), pages 304–315. Springer, 2006.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically
checkable proofs. Inf. Comput., 189(2):135–159, 2004.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. In-
teractive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292,
1996.

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205–214, 1998.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015.

[GM12] Oded Goldreich and Or Meir. The tensor product of two good codes is not necessarily
locally testable. Information Processing Letters, 112(8-9):351–355, 2012.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge Uni-
versity Press, 2008.

[Gol18] Oded Goldreich. On doubly-efficient interactive proof systems. Foundations and Trends
in Theoretical Computer Science, 13(3):158–246, 2018.

[GR18] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Computational
Complexity, 27(1):99–207, 2018.

[GRR17] Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes.
Electronic Colloquium on Computational Complexity (ECCC), 24:143, 2017.

[GRR18] Tom Gur, Govind Ramnarayan, and Ron D. Rothblum. Relaxed locally correctable
codes. In 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, pages 27:1–27:11, 2018.

50

[GVW02] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput., 17(5):935–938, 1988.

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans.
Information Theory, 18(5):652–656, 1972.

[Kar75] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,
New York, 1975.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 723–732, 1992.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally
correctable and locally testable codes with sub-polynomial query complexity. J. ACM,
64(2):11:1–11:42, 2017.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-
11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming
& Track C: Security and Cryptography Foundations, pages 536–547, 2008.

[KR15] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [extended ab-
stract]. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
422–442, 2015.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LSTW21] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time zero-
knowledge snarks for r1cs. Cryptology ePrint Archive, Report 2021/030, 2021. https:
//eprint.iacr.org/2021/030.

[Mei13] Or Meir. IP = PSPACE using error-correcting codes. SIAM J. Comput., 42(1):380–403,
2013.

[Mei14] Or Meir. Combinatorial PCPs with efficient verifiers. Computational Complexity,
23(3):355–478, 2014.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with O (1) queries. Ann.
Math. Artif. Intell, 56(3-4):313–338, 2009.

51

https://eprint.iacr.org/2021/030
https://eprint.iacr.org/2021/030

[MR17] Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and com-
plexity of approximating dense csps. In 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages
78:1–78:15, 2017.

[Mul54] David E. Muller. Application of boolean algebra to switching circuit design and to error
detection. Trans. I.R.E. Prof. Group on Electronic Computers, 3(3):6–12, 1954.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, 1979.

[Ran13] Hugues Randriambololona. An upper bound of singleton type for componentwise prod-
ucts of linear codes. IEEE Trans. Information Theory, 59(12):7936–7939, 2013.

[Ree54] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme.
Trans. of the IRE Professional Group on Information Theory (TIT), 4:38–49, 1954.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 49–62, 2016.

[RRR17] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Personal Communication,
2017.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. SIAM
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[Rub18] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 1260–1268, 2018.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 793–802, 2013.

[Sho88] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields.
In 29th Annual Symposium on Foundations of Computer Science, White Plains, New
York, USA, 24-26 October 1988, pages 283–290, 1988.

[Sti06] Henning Stichtenoth. Transitive and self-dual codes attaining the tsfasman-vla/spl
breve/dut$80-zink bound. IEEE Trans. Information Theory, 52(5):2218–2224, 2006.

[Sud00] Madhu Sudan. Probabilistically checkable proofs - lecture notes, 2000. Available at
http://madhu.seas.harvard.edu/MIT/pcp/pcp.ps.

[Sud01] Madhu Sudan. Algorithmic introduction to coding theory (lecture notes), 2001.

[Sze87] Róbert Szelepcsényi. The moethod of focing for nondeterministic automata. Bulletin
of the EATCS, 33:96–99, 1987.

52

http://madhu.seas.harvard.edu/MIT/pcp/pcp.ps

[Val05] Paul Valiant. The tensor product of two codes is not necessarily robustly testable. In
RANDOM, pages 472–481. Springer, 2005.

[Vid15] Michael Viderman. A combination of testability and decodability by tensor products.
Random Structures and Algorithms, 46(3):572–598, 2015.

A A high-rate variant of Justesen’s code

In this section we prove Theorem 2.3, based on Justesen’s [Jus72] code. The construction uses the
well-known family of Reed-Solomon codes.

Fact A.1 (Reed-Solomon codes, [RS60]). For any constructible finite field F and integers k ≤
n ≤ |F|, there exists a systematic linear code C : Fk → Fn of rate k/n and relative distance at
least 1− k/n. Moreover,

• Ck is encodable in time |F| · polylog(|F|).

• Any coordinate of C is encodable in time k · polylog(k, |F|) with space polylog(k, |F|).

The fact that Reed Solomon codes can be encoded in quasi-linear time is based on the Fast
Fourier Transform, whereas the fact that each coordinate in the encoding can be generated in small
space follows from exponentiation via repeated squaring.

Fix a sufficiently large k ∈ N, and let γ = γ(k). In what follows we construct the code C := Ck :
{0, 1}k → {0, 1}n. The code C is obtained by encoding the symbols of a Reed-Solomon code C ′

given by the above fact with the Wozencraft Ensemble. We start by setting the parameters for the
Reed-Solomon code C ′.

The code C ′. Let m = blog kc, and let F be a finite field of size 2m. Let C ′ : Fk′ → Fn′ be the
code guaranteed by Fact A.1 of message length k′ =

⌈
k
m

⌉
and codeword length n′ = bk′ · (1+γ/3)c,

noting that k′ ≤ n′, and

n′ ≤ k′ ·
(

1 +
γ

3

)
≤

(
k

m
+ 1

)
·
(

1 +
γ

3

)
≤

(
k

log k − 1
+ 1

)
·
(

1 +
γ

3

)
≤ |F|,

where the last inequality holds for sufficiently large k.

53

Then, C ′ has relative distance at least

1− k′

n′
≥ 1− k′

k′ · (1 + γ/3)− 1

≥ γ/3− 1/k′

1 + γ/3

≥ γ/3−m/k
1 + γ/3

≥ γ/3− log k/k

1 + γ/3

≥ γ

6
,

where the last inequality holds for sufficiently large k, using the assumption that γ ≥ 100 log k
k .

Moreover, C ′ is encodable in time k · polylog(k), and any coordinate of C ′ is encodable in time
k · polylog(k) with space polylog(k).

The code C. Let F = {α1, α2, · · · , α2m}, let s =
⌊γ

3 ·m
⌋
, and for α ∈ F, let σ(α) ∈ {0, 1}s denote

the projection of α (viewed as a length m bit string over the binary base field in the natural way)
to the first s bits. For i = 1, . . . , 2m, define C(i) : F→ {0, 1}m+s as C(i)(x) = (x, σ(αi · x)).

Given a message x ∈ {0, 1}k, let x′ ∈ Fk′ be the string obtained from x by viewing any consecutive
m coordinates as an element of F in the natural way (and appending a couple of zeros to x if
necessary). Let y = C ′(x′) ∈ Fn′ , and recalling that n′ ≤ |F|, let

C(x) =
(
C(1)(y1), C(2)(y2), . . . , C(n′)(yn′)

)
.

It can be verified that C is a binary systematic (up to reordering of coordinates) linear code, that
it is encodable in time k ·polylog(k), and that any coordinate of C is encodable in time k ·polylog(k)
with space polylog(k). Next we analyze the rate and distance of C.

Rate of C. The codeword length of C is

n := n′ · (m+ s) ≤
(
k

m
+ 1

)
·
(

1 +
γ

3

)
·m ·

(
1 +

γ

3

)
≤ k ·

((
1 +

γ

3

)2
+

2 log k

k

)
≤ k · (1 + γ),

where the last inequality follows by assumption that γ ≥ 100 log k
k . We conclude that C has rate

k/n ≥ 1/(1 + γ) ≥ 1− γ.

Distance of C: We divide into cases according to the value of γ.
Suppose first that γ ≤ 100·log log k

log k . Since C ′ has relative distance at least γ
6 , and since all the

inner codes C(i) are injective, we have that any pair of distinct codewords of C differ on at least
γ
6 · n

′ coordinates. We conclude that C ′ has relative distance at least

(γ/6) · n′

n′ · (m+ s)
≥ γ/6

log k · (1 + γ/3)
≥ γ

100 · log k
≥ Ω(γ3),

54

where the last inequality holds for sufficiently large k using the assumption that γ ≤ 100·log log k
log k .

Next assume that γ ≥ 100·log log k
log k . In this case, we use the following claim to bound the relative

distance of C. In what follows let H : [0, 1] → [0, 1] denote the binary entropy function given by
H(x) = −x log(x)− (1− x) log(1− x).

Claim A.2. For any ε > 0, for at least (1− 2−ε(m+s)) · 2m indices i ∈ {1, . . . , 2m} it holds that the

code C(i) has relative distance at least H−1
(

s
m+s − ε

)
.

Proof. Observe that each vector z ∈ {0, 1}m+s can appear in the image of at most 2m−s different

codes C(i). The number of vectors z ∈ {0, 1}m+s of weight less than H−1
(

s
m+s − ε

)
is at most

2(s/(m+s)−ε)·(m+s). Therefore, the number of codes C(i) containing some codeword z ∈ {0, 1}m+s of

weight less than H−1
(

s
m+s − ε

)
is at most

2(s/(m+s)−ε)·(m+s) · 2m−s = 2m · 2−ε(m+s).

Since C ′ has relative distance least γ
6 , for any codeword c′ of C ′, at least γ

6 -fraction of the

coordinates are non-zero. By Claim A.2, with ε = s
2(m+s) , we conclude that for at most 2m−s/2

coordinates i ∈ [n′], the code C(i) has relative distance less than H−1
(

s
m+s − ε

)
, or equivalently,

for at most 2m−s/2

n′ -fraction of the coordinates i ∈ [n′] it holds that the code C(i) has relative distance

less than H−1
(

s
m+s − ε

)
.

We conclude that for at least
(
γ
6 −

2m−s/2

n′

)
-fraction of the coordinates i ∈ [n′] it holds that

c′i 6= 0, and additionally, C(i) has relative distance at least H−1
(

s
2(m+s)

)
. Consequently, C has

relative distance at least (
γ

6
− 2m−s/2

n′

)
·H−1

(
s

2(m+ s)

)
. (7)

Using the assumption that γ ≥ 100·log log k
log k (implying that 100 log(100/γ)

γ ≤ log k), we can bound
the first factor in Eq. (7) by

γ

6
− 2m−s/2

n′
≥ γ

6
− 2(1−γ/6)·log k+1

k/ log k
=
γ

6
− 2−(γ·log k/6−log log k−1) ≥ γ

6
− 2−γ·log k/12 ≥ γ

12
. (8)

We can also bound the second factor in Eq. (7) by

H−1

(
s

2(m+ s)

)
≥ H−1

(
γ/3− 1/(log k − 1)

2 + 2 · (γ/3− 1/(log k − 1))

)
= Ω(γ2), (9)

where the last inequality follows for sufficiently large k, using the assumption that γ ≥ 100·log log k
log k .

Using Eqs. (7) to (9), we conclude that also in this case C has relative distance at least Ω(γ3).

55

B Optimal communication complexity for IOPs

In this section we show the communication complexity in our IOP is close to optimal under the
randomized strong exponential time hypothesis (RSETH) assumption. We first formally state the
RSETH:

Definition B.1 (RSETH). The randomized strong exponential time hypothesis (RSETH) states
that for every ε > 0 there exists k such that the language k-SAT (consisting of satisfiable k-CNF
formulas on n variables) is not contained in BPTIME

(
2(1−ε)·n).

We will also use the following result due to Goldreich and H̊astad [GH98].

Theorem B.2 ([GH98, Proposition 6]). If L has a constant-round public-coin interactive proof in
which the prover sends at most b bits to the verifier, then L ∈ BPTIME(2b · poly(n)) (where n is
the input length).

We remark that the conclusion stated in [GH98, Proposition 6] is that L ∈ BPTIME(2O(b) ·
poly(n)) but inspection of their proof shows that it actually implies the stronger form as given in
Theorem B.2 (i.e., L ∈ BPTIME

(
2b · poly(n)

)
).

From Theorem B.2 we immediately derive the following conclusion:

Corollary B.3. If RSETH holds then for every γ > 0 there exists a k such that k-SAT does not
have a public-coin interactive proof in which the prover sends less than (1− γ) · n bits.

56

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

