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Abstract

In this paper we prove two results about AC0[⊕] circuits.

• We show that for d(N) = o(
√

logN/ log logN) and N ≤ s(N) ≤ 2dN1/d2

there is an
explicit family of functions {fN : {0, 1}N → {0, 1}} such that

– fN has uniform AC0 formulas of depth d and size at most s;

– fN does not have AC0[⊕] formulas of depth d and size sε, where ε is a fixed
absolute constant.

This gives a quantitative improvement on the recent result of Limaye, Srinivasan,
Sreenivasaiah, Tripathi, and Venkitesh, (STOC, 2019), which proved a similar Fixed-

Depth Size-Hierarchy theorem but for d� log logN and s� exp(N1/2Ω(d)

).

As in the previous result, we use the Coin Problem to prove our hierarchy theorem. Our
main technical result is the construction of uniform size-optimal formulas for solving

the coin problem with improved sample complexity (1/δ)d+4 (down from (1/δ)2
O(d)

in
the previous result).

• In our second result, we show that randomness buys depth in the AC0[⊕] setting.
Formally, we show that for any fixed constant d ≥ 2, there is a family of Boolean
functions that has polynomial-sized randomized uniform AC0 circuits of depth d but
no polynomial-sized (deterministic) AC0[⊕] circuits of depth d.

Previously Viola (Computational Complexity, 2014) showed that an increase in depth
(by at least 2) is essential to avoid superpolynomial blow-up while derandomizing
randomized AC0 circuits. We show that an increase in depth (by at least 1) is essential
even for AC0[⊕].

As in Viola’s result, the separating examples are promise variants of the Majority
function on N inputs that accept inputs of weight at least N/2 +N/(logN)d−1 and
reject inputs of weight at most N/2−N/(logN)d−1.

1 Introduction

This paper addresses questions in the field of Boolean Circuit complexity, where we study the
complexity of compuational problems, modeled as sequences of Boolean functions fN : {0, 1}N →
{0, 1}, in the combinatorially defined Boolean circuit model (see, e.g. [AB09] for an introduction).

Boolean circuit complexity is by now a classical research area in Computational complexity,
with a large body of upper and lower bound results in many interesting circuit models. The
questions we consider here are motivated by two of the most well-studied circuit models, namely
AC0 and AC0[⊕]. The circuit class AC0 denotes the class of Boolean circuits of small-depth
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made up of AND, OR and NOT gates, while AC0[⊕] denotes the circuit class that is also allowed
the use of parity (addition modulo 2)1 gates.2

Historically, AC0 was among the first circuit classes to be studied and for which superpoly-
nomial lower bounds were proved. Building on an influential line of work [Ajt83, FSS84, Yao85],
H̊astad [Has89] showed that any depth-d AC0 circuit for the Parity function on N variables must
have size exp(Ω(N1/(d−1))), hence proving an exponential lower bound for constant depths and
superpolynomial lower bounds for all depths d� logN/ log logN. Researchers then considered
the natural follow-up problem of proving lower bounds for AC0[⊕]. Soon after, Razborov [Raz87]
and Smolensky [Smo87, Smo93] showed a lower bound of exp(Ω(N1/2(d−1))) for computing the
Majority function on N inputs, again obtaining an exponential lower bound for constant depths
and superpolynomial lower bounds for all depths d� logN/ log logN.

Thus, we have strong lower bounds for both classes AC0 and AC0[⊕]. However, in many
senses, AC0[⊕] remains a much more mysterious class than AC0. There are many questions that
we have been successfully able to answer about AC0 but whose answers still evade us in the
AC0[⊕] setting. This work is motivated by two such questions that we now describe.

Size Hierarchy Theorems. Size Hierarchy theorems are an analogue in the Boolean
circuit complexity setting of the classical Time and Space hierarchy theorems for Turing
Machines. Formally, the problem is to separate the power of circuits (from some class) of size s
from that of circuits of size at most sε for some fixed ε > 0. As is usual in the setting of circuit
complexity, we ask for explicit separations,3 or equivalently, we ask that the separating sequence
of functions be computed by a uniform family of circuits of size at most s.

The challenge here is to obtain explicit functions for which we can obtain tight (or near-tight)
lower bounds, since we want the functions to have (uniform) circuits of size s but no circuits of
size at most sε.

In the AC0 setting, H̊astad’s theorem stated above immediately implies such a tight lower
bound, since it is known (folklore) that the Parity function does have depth-d circuits of size
exp(O(N1/d−1)) for every d. Varying the number of input variables to the Parity function
suitably, this yields a Size Hierarchy theorem for the class of AC0 circuits of depth d as long as
d� logN/ log logN and s = exp(o(N1/(d−1))).

For AC0[⊕], however, this is not as clear, as explicit tight lower bounds are harder to prove.
In particular, the lower bounds of Razborov [Raz87] and Smolensky [Smo87, Smo93] for the
Majority function (and other symmetric functions) are not tight; indeed, the exact complexity of
these functions in AC0[⊕] remains unknown [OSS19]. In a recent result, the authors along with
Sreenivasaiah and Venkitesh [LSS+19] were able to show a size hierarchy theorem for AC0[⊕]

formulas4 for depths d� log logN and size s� exp(N1/2Ω(d)
). This is a weaker size hierarchy

theorem than the one that follows from H̊astad’s theorem for AC0, both in terms of the size
parameter as well as the depths until which it holds. In this paper, we build upon the ideas
in [LSS+19] and prove the following result that is stronger in both parameters.

1Though we state our results only for AC0[⊕], they extend in a straightforward way to AC0[p], where we are
allowed gates that add modulo p, for any fixed prime p.

2The formal definitions of AC0 and AC0[⊕] only allow for polynomial-size circuits and constant depth. However,
since some of our results apply to larger families of circuits, we will abuse notation and talk about AC0 circuits of
size s(N) and depth d(N) where s and d are growing functions of N .

3It is trivial to show a non-explicit separation by counting arguments.
4A formula is a circuit where the underlying undirected graph is a tree. For constant-depth, formulas and

circuits are interchangeable with a polynomial blowup in depth. However, this is no longer true at superconstant
depth [Ros08, RS17].
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Theorem 1. The following holds for some absolute constant ε > 0. Let N be a growing parameter

and d = d(N), s = s(N) be functions of N with d = o
(√

logN
log logN

)
and N ≤ s ≤ 2dN

1/d2

. Then

there is a family of functions {fN} such that fN has uniform AC0 formulas of depth d and size
at most s but does not have any AC0[⊕] formulas of depth d and size at most sε.

Randomized versus Deterministic circuits. The study of the relative power of random-
ized versus deterministic computation is an important theme in Computational complexity. In the
setting of circuit complexity, it is known from a result of Adleman [Adl78] that unbounded-depth
polynomial-sized randomized circuits5 are no more powerful than polynomial-sized deterministic
circuits.

However, the situation is somewhat more intriguing in the bounded-depth setting. Ajtai and
Ben-Or [AB84] showed that for any randomized depth-d AC0 circuit of size at most s, there
is deterministic AC0 circuit of depth d + 2 and size at most poly(s) that computes the same
function; a similar result also follows for AC0[⊕] with the deterministic circuit having depth
d+ 3. This begs the question: is this increase in depth necessary?

For AC0 circuits of constant depth, Viola [Vio14] gave an optimal answer to this question by
showing that an increase of two in depth is necessary to avoid a superpolynomial blow-up in
size. To the best of our knowledge, this problem has not been studied in the setting of AC0[⊕].
In this paper, we show that an increase in depth (of at least one) is required even for AC0[⊕].
More formally we prove the following theorem.

Theorem 2. Fix any constant d ≥ 2. There is a family of Boolean functions that has polynomial-
sized randomized uniform AC0 circuits of depth d but no polynomial-sized (deterministic) AC0[⊕]
circuits of depth d.

1.1 Proof Ideas

The proofs of both theorems are based on analyzing the complexity of Boolean functions that
are closely related to the Majority function.

Size-Hierarchy Theorem. To prove the size hierarchy theorem for constant-depth AC0[⊕]
formulas, [LSS+19] studied the AC0[⊕] complexity of the δ-coin problem [BV10], which is the
problem of distinguishing between a coin that is either heads with probability (1 + δ)/2 or is
heads with probability (1− δ)/2, given a sequence of a large number of independent tosses of
this coin. This problem has been studied in a variety of computational models [SV10, BV10,
CGR14, GII+19]. It is known [OW07, Ama09] that this problem can be solved by AC0 formulas
of depth d and size exp(O(d(1/δ)1/(d−1))) and further [OW07, SV10, LSS+19] that this upper
bound is tight up to the constant in the exponent even for AC0[⊕] formulas of depth d. This
gives a family of functions for which we have tight lower bounds for AC0[⊕] formulas.

Based on this, [LSS+19] noted that to prove AC0[⊕] size-hierarchy theorems for size s(N)
and depth d(N), it suffices to construct a uniform sequence of formulas of size s and depth d
solving the coin problem optimally (i.e. for δ such that s = exp(O(d(1/δ)1/(d−1)))) using at most
N samples. Before [LSS+19], all known size-optimal formula constructions for solving the δ-coin
problem used N = s = exp(O(d(1/δ)1/(d−1))) many samples. The work of [LSS+19] brought

the number of samples down to N = (1/δ)2O(d)
. Our main technical result here is an explicit

size-optimal formula for solving the δ-coin problem using only (1/δ)d+4 samples. Plugging this
into the framework from [LSS+19], we immediately get the improved size-hierarchy theorem.

5A randomized Boolean circuit for a Boolean function f(x) is a Boolean circuit C that takes as input variables
x and r such that for each setting of x and uniformly random r, C(x) = f(x) with probability at least 3/4.
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While the reason for this improvement is rather technical, we try to give a high-level outline
here. It was shown by O’Donnell and Wimmer [OW07] and Amano [Ama09] that the δ-coin
problem is solved by read-once AC0 formulas of depth d with gates of prescribed fan-ins. While
the size s of these formulas is optimal, the number of samples is N = s, which is too big for
our purposes. In [LSS+19], this number is brought down by distributing a smaller number
of variables across the formula in a pseudorandom way (specifically using a Nisan-Wigderson
design). The challenge now is to show that the formula still solves the δ-coin problem: the
reason this is challenging is that various subformulas now share variables and hence the events
that they accept or reject are no longer independent. However [LSS+19] note that Janson’s
inequality [Jan90], a tool from probabilistic combinatorics, can be used to argue that if the
variables are spread out in a suitably “random”-like fashion, then various subformulas at a
certain depth may, for our intents and purposes, be treated as “nearly” independent.

This “distance” from independence is determined by a parameter ∆ that goes into the
statement of Janson’s inequality, and hence let us call it the Janson parameter. In [LSS+19],
this parameter was measured in a very brute-force way, forcing us to square the number of
samples every time the depth of the formula increased by 1. This leads to a sample complexity
of (1/δ)2O(d)

. Here, however, we give a different way of bounding the Janson parameter via a
recursive analysis, which works as long as the number of variables grows by a factor of (1/δ) for
each additional depth. This gives the improvement in our construction.

Randomized versus Deterministic circuits. For his separation of deterministic and
randomized AC0 circuits, Viola [Vio14] used the k-Promise-Majority functions 6 which are
Boolean functions that accept inputs with at least N/2 + k many 1s and reject inputs with
at most N/2− k many 0s. Building on work of [AB84, OW07, Ama09], Viola [Vio14] showed
that for k = N/(logN)d−1, there are k-Promise-Majorities that have uniform polynomial-sized
randomized depth-d AC0 circuits. On the other hand, he also showed that the same problem
has no deterministic circuit of depth d (and in fact even d+ 1).

The challenge in proving such a lower bound is that if a Boolean function has a randomized
circuit of depth d and size s, then it immediately follows that there is also a deterministic
circuit of the same depth and size approximating the same Boolean function (i.e. computing it
correctly on most inputs). In particular, the lower bound technique must be able to distinguish
circuits that are computing the function exactly (since this is hard) from circuits that are
merely approximating it (as this is easy). Viola overcomes this hurdle in the case of AC0 with
a clever argument for depth-3 circuits and an inductive use of the H̊astad Switching lemma
for higher depths. Neither of these techniques is available for AC0[⊕] circuits. In fact, the
standard techniques for proving lower bounds against AC0[⊕] involve approximating the circuits
to constant error using low-degree polynomials from F2[x1, . . . , xN ]. Note that this immediately
runs into the obstacle mentioned above since we can then no longer distinguish between circuits
that are exactly correct and those that are approximately correct.

The way we get around this argument is to use a recent result of Oliveira, Santhanam and
the second author [OSS19] where it is observed that the standard construction of approximating
polynomials for AC0[⊕] actually gives polynomials that approximate the given circuit C to very
small error on either the zero or the one inputs of C. They are able to use this to improve known
AC0[⊕] lower bounds for the Majority function. Our main observation is that this stronger lower
bound is actually able to distinguish between circuits that approximate the Majority function to
constant error (say from [OW07, Ama09]) and those that compute it exactly, thus overcoming

6These are called Approximate Majorities in a lot of the earlier literature ,including in Viola’s work. We
avoid this name, since Approximate Majorities are also used for functions more closely related to the coin
problem [OW07], and in our opinion, the name “Promise Majorities” better describes these functions.
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the barrier we mentioned above. We then note that their proof can also be made to work for
k-Promise-Majorities. This yields the separation.

2 Size hierarchy theorem for AC0[⊕]
Definition 3 (The δ-Coin Problem). Let δ ∈ (0, 1) be a parameter. Given an N ∈ N, we define
the probability distributions µNδ,0 and µNδ,1 to be the product distributions where each bit is set to 1
with probability (1− δ)/2 and (1 + δ)/2 respectively. We omit the δ in the subscript and N in
the superscript when these are clear from context.

Given a function g : {0, 1}N → {0, 1}, we say that g solves the δ-coin problem if

Pr
x∼µN0

[g(x) = 1] ≤ 0.1 and Pr
x∼µN1

[g(x) = 1] ≥ 0.9. (1)

We say that the sample complexity of g is N .

Parameters Let m, d be growing parameters such that d = o(m/ logm). Let 1/δ =
(m ln 2)d−1/C1, where C1 is a fixed large constant, to be specified below. Let M = dm · 2m · ln 2e
and let M1 = 2m.

Theorem 4. For large enough absolute constant C1, the following holds. For parameters
m, δ, d as above and for d ≥ 2, there is an explicit depth-d AC0 formula of size exp(O(dm))
= exp(O(d(1/δ)1/d−1)) and sample complexity (1/δ)d+o(d) that solves the δ-coin problem.

2.1 Proof of Theorem 1

We use Theorem 4 for a suitable choice of parameters to define the explicit function.
Let m = b(α log s)/dc for some absolute constant α < 1 that we fix below. It can be checked

that as s ≥ N and d = o(
√

logN/ log logN), we have d = o(m/ logm). Define δ as above and

note that (1/δ)d+o(d) ≤ m2d2 ≤ (log s)2d2 ≤ N , where the final inequality uses the given upper
bounds on d and s.

We set fN to be the Boolean function computed by the formula Fd constructed above on
the first (1/δ)d+4 of the N input variables. By Theorem 4, the size of Fd is exp(O(dm)) ≤ s
for a small enough absolute constant α and Fd solves the δ-coin problem. Moreover, it was
shown in [LSS+19] that any depth-d AC0[⊕] formula solving the δ-coin problem must have size
exp(Ω(d(1/δ)1/(d−1))) = exp(Ω(md)) = sε for some absolute constant ε > 0. This proves the
theorem.

2.2 Proof of Theorem 4

Construction There exist integers Q,D, such that Q is a prime power, M ≤ QD ≤ 2M and
m4/δ ≤ Q ≤ (m4/δ)1+o(1). Let F be a finite field with Q elements and A ⊆ F be a set of size m.
For completeness, we outline how such Q,D and F can be constructed in time poly(m) in the
Appendix (Section A).

Let PD be the lexicographically first M univariate polynomials over F of degree less than D.
Similarly, let P ′D be the lexicographically first M1 univariate polynomials over F of degree less
than D.

We now describe the construction of our formula. The variables in the formula correspond
to the points in the set A× Fd−1. i.e. for each (a, c1, . . . , cd−1) ∈ A× Fd−1, we have a variable
x(a, c1, . . . , cd−1). We have m ·Qd−1 many variables. We use N to denote this number.
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For each i ∈ [d − 1] and P̄ = (Pi, . . . , Pd−1) ∈ Pd−iD , define a depth-i formula C(Pi,...,Pd−1
)

inductively as follows.

C(P1,...,Pd−1) =
∧
a∈A

x(a, P1(a), . . . , Pd−1(a))

C(P2,...,Pd−1) =
∨

R1∈PD

C(R1,P2,...,Pd−1)

C(P3,...,Pd−1) =
∧

R2∈PD

C(R2,P3,...,Pd−1)

and so on, with the gates alternately repeating between AND and OR. Finally, C(∅) is the
output of the formula. If the depth of the formula is odd (even) then C(∅) is an AND gate (OR
gate resp.), where the AND (OR resp.) is over C(R), where R ∈ P ′D.

C(∅) =


∧
R∈P ′D

C(R) if i is odd

∨
R∈P ′D

C(R) if i is even

This finishes the description of our formula. We use Fd = C(∅) to denote this formula.

Analysis of the construction Here we present the details regarding the analysis of our
construction presented above, which will be used to prove Theorem 4. We will start with some
definitions, notations and some useful inequalities.

Definition 5. For 1 ≤ i ≤ d− 1, we define the following terms.

1. For P̄ = (Pi, . . . , Pd−1) ∈ Pd−iD and b ∈ {0, 1}, let

AccP̄ ,b := Pr
µb

[C(Pi,...,Pd−1) accepts] and

RejP̄ ,b := Pr
µb

[C(Pi,...,Pd−1) rejects].

Let qP̄ ,b = min {AccP̄ ,b,RejP̄ ,b}.

2. For P̄ = (Pi, . . . , Pd−1), P̄ ′ = (P ′i , . . . , P
′
d−1) ∈ Pd−iD , we say that P̄ ∼ P̄ ′ when CP̄ and CP̄ ′

are distinct gates, which share a common input variable.

3. For P̄ = (Pi+1, . . . , Pd−1), P̄ ′ = (P ′i+1, . . . , P
′
d−1) ∈ Pd−i−1

D , b ∈ {0, 1},

∆P̄ ,P̄ ′,b =



∑
Ri,R

′
i∈PD

(Ri,P̄ )∼(R′i,P̄
′)

PrDλ [C(Ri,P̄ ) = 0 AND C(R′i,P̄
′) = 0] if CP̄ and CP̄ ′ are AND gates

∑
Ri,R

′
i∈PD

(Ri,P̄ )∼(R′i,P̄
′)

PrDλ [C(Ri,P̄ ) = 1 AND C(R′i,P̄
′) = 1] if CP̄ and CP̄ ′ are OR gates
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A useful tool in our analysis of the circuit is the Janson’s inequality stated here in the
language of Boolean circuits.

Theorem 6 (Janson’s inequality). Let C1, . . . , CM be any monotone Boolean circuits over
inputs x1, . . . , xn and let C denote

∨
i∈[M ] Ci. For each distinct i, j ∈ [M ], we use i ∼ j to

denote the fact that Ci and Cj share a common variable. Assume each xj (j ∈ [M ]) is chosen
independently to be 1 with probability pj ∈ [0, 1], and that under this distribution, we have
maxi∈[M ]{Prx[Ci(x) = 1]} ≤ 1/2. Then we have

∏
i∈[M ]

Prx[Ci(x) = 0] ≤ Prx[C(x) = 0] ≤

 ∏
i∈[M ]

Prx[Ci(x) = 0]

 · exp(∆) (2)

where ∆ :=
∑

i∼j Prx[(Ci(x) = 1) ∧ (Cj(x) = 1)].

Throughout, we use log(·) to denote logarithm to the base 2 and ln(·) for the natural
logarithm. We use exp(x) to denote ex.

Fact 7. Assume that x ∈ [−1/2, 1/2]. Then we have the following chain of inequalities.

exp(x− (|x|/2)) ≤
(a)

exp(x− x2) ≤
(b)

1 + x ≤
(c)

exp(x) ≤
(d)

1 + x+ x2 ≤
(e)

1 + x+ (|x|/2) (3)

We define a few parameters, which will be useful in the main technical lemma that helps in
proving Theorem 4.

For i ∈ [d− 1], let αi = mi · (ln 2)i−1 · δ. Let also for i ∈ [d− 2], βi = βi−1 + 2αi + 2
mi(ln 2)i−1

Observation 8. For all i ∈ [d− 2], βi ≤ O(1/m).

Lemma 9. Assume d ≥ 3 and qP̄ ,b and formula C(∅) defined as before. We have the following
properties.

1. For b ∈ {0, 1}, i ∈ [d− 2] such that i ≡ b (mod 2),

1

2m
· (1 + αi exp(−βi)) ≤ qP̄ ,b ≤

1

2m
· (1 + αi exp(βi))

1

2m
· (1− αi exp(βi)) ≤ qP̄ ,(1−b) ≤

1

2m
· (1− αi exp(−βi))

2. Say d− 1 ≡ b (mod 2). Then

qP̄ ,b ≥
1

2m
· exp(αd−1/4) and qP̄ ,1−b ≤

1

2m
· exp(−αd−1/4)

3. For all i ∈ [d− 1], b ∈ {0, 1} and P̄ , P̄ ′ ∈ Pd−i−1
D , ∆P̄ ,P̄ ′,b < δ.

Assuming that the above lemma holds, we will prove Theorem 4.

Proof of Theorem 4. We start by bounding the size of Fd = C(∅). As per our construction, the
gates at level 1 are AND gates with fan-in m each. For all 2 ≤ i ≤ d−1, the fan-in of each gate on
level i is M = dm·2m ·ln 2e and the top fan-in is M1 = 2m. Therefore, the total number of gates in
the formula ism·Md−2·M1. We can trivially bound this byMd = O(md2dm). As d = o(m/ logm),
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we get that the size is bounded by exp(O(dm)). Recall that 1/δ = (m ln 2)d−1/C1, where C1 is
an appropriately chosen constant. Hence exp(O(dm)) = exp(O(d(1/δ)1/(d−1))).

We will now bound the number of variables, N , used by the formula. As mentioned
above, N = m · Qd−1. As Q is chosen such that (m4/δ) ≤ Q ≤ (m4/δ)1+o(1), we have
N ≤ Qd = (1/δ)d+o(d) as claimed.

Finally, we will show that the formula solves the δ-coin problem. Let us assume that d is
even. In that case, the output gate C(∅) is an OR gate. (When it is an AND gate, the analysis
is very similar.) We bound the probabilities Pra∈µ0 [Fd(a) = 1] and Pra∈µ1 [Fd(a) = 0] by 1/10
each.

Pr
a∈µ0

[Fd(a) = 1] ≤
∑
P̄∈P ′D

Pr
a∈µ0

[C(P̄ )(a) = 1] Using a Union bound

≤ 2m · 1

2m
· exp(−αd−1/4) |P ′D| = 2m, using Lemma 9, (2)

≤ exp(−Ω(C1)) Using the value of αd−1

≤ 1/10 for large enough C1

Pr
a∈µ1

[Fd(a) = 0] ≤
∏
P̄∈P ′D

Pr
a∈µ1

[C(P̄ )(a) = 0] · exp(δ) Using Janson’s inequality and Lemma 9, (3)

≤
∏
P̄∈P ′D

(1− Pr
a∈µ1

[C(P̄ )(a) = 1]) · exp(δ)

≤ (1− 1

2m
· exp(αd−1/4))2m · exp(δ) |P ′D| = 2m, using Lemma 9, (2)

≤ exp

(
−2m

2m
· exp(αd−1/4)

)
· 2 As exp(δ) ≤ 2

≤ 1/10 Using the value of αd−1

and for large enough C1

This finishes the proof of Theorem 4 assuming Lemma 9.

We now give the proof of Lemma 9. The proof is by induction on the depth of the circuit.

Proof of Lemma 9. The lemma has three parts. As mentioned above, we proceed by induction
on the depth.

Base case (i = 1): Here let us first assume that we are working with µN1 . We start with
part (1). We wish to bound qP̄ ,1. From the construction of our formula, we know that the formula

has AND gates at layer 1 and the inputs to these are independent. Therefore, qP̄ ,1 =
(

1+δ
2

)m
.

We will upper and lower bound this quantity.(
1 + δ

2

)m
=

1

2m
· (1 + δ)m ≥ 1

2m
· exp(δm− δ2m) Fact 7 (b)

≥ 1

2m
· (1 + δm)

=
1

2m
· (1 + α1 · exp(β1)) As α1 = δm, β1 = 2α1

8



(
1 + δ

2

)m
=

1

2m
· (1 + δ)m ≤ 1

2m
· exp(δm) Fact 7 (c)

≤ 1

2m
· (1 + δm+ (δm)2) Fact 7 (d)

≤ 1

2m
· (1 + δm · exp(2δm)) Fact 7 (c)

=
1

2m
· (1 + α1 · exp(β1)) As α1 = δm, β1 = 2α1

In the case of µN0 , we get qP̄ ,0 =
(

1−δ
2

)m
and a very similar computation can be used to upper

and lower bound this quantity.
There is nothing to prove for part (2) in the base case. We now prove the base case for

part (3). Let P̄ = (P2, . . . , Pd−1), P̄ ′ = (P ′2, . . . , P
′
d−1) ∈ Pd−2

D . We will analyse ∆P̄ ,P̄ ′,1 here.
The analysis for ∆P̄ ,P̄ ′,0 is very similar. Let λ denote (1 + δ)/2.

∆P̄ ,P̄ ′,1 =
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

PrDλ [C(R,P̄ ) = 1 AND C(R′,P̄ ′) = 1]

=
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

λ
|Var(C(R,P̄ ))∪Var(C

(R′,P̄ ′))|

=
∑

1≤k<D
λ2m−k

∑
R,R′

(R,P̄ )∼(R′,P̄ ′)
|Var(C(R,P̄ ))∩Var(C

(R′,P̄ ′))|=k

1

=
∑

1≤k<D
λ2m−kQD

∑
R

(R,P̄ )∼(0,P̄ ′)
|Var(C(R,P̄ ))∩Var(C

(0,P̄ ′))|=k

1 (4)

We analyse the second summation term in (4) by considering two cases.

(a) If P̄ = P̄ ′, (R, P̄ ) ∼ (0, P̄ ′) if and only if R 6= 0 and R has a zero in A. Furthermore
|Var(C(R,P̄ )) ∩Var(C(0,P̄ ′))| = |Z(R) ∩A|. Therefore in this case, the inner sum in the last
line is exactly the number of non-zero polynomials of degree < D with exactly k zeros in A
which is bounded from above by

(
m
k

)
QD−k. Therefore in this case,

9



∆P̄ ,P̄ ′,1 ≤
∑

1≤k<D
λ2m−kQD

(
m

k

)
QD−k

= (λmQD)2
∑

1≤k<D

(
m

k

)
λ−kQ−k (5)

≤ (λmQD)2((1 +
1

λQ
)m − 1) =

= (λm · 2 ·M)2 · 2m

λQ
As QD ≤ 2M and Fact 7 (b), (c)

≤ (2(1 + δ)mm · ln 2)2 2m

Q(1 + δ)
As M = m · 2m · ln 2 and λ = (1 + δ)/2

= 16(ln 2)2 · m
3

Q
(1 + δ)m−1

≤ 32m3

Q
< δ/2 < δ As (1 + δ)m−1 ≤ 2 and δ > m4/Q.

(b) If P̄ 6= P̄ ′, (R, P̄ ) ∼ (0, P̄ ′) if and only if R = 0 or R has a zero in A. Furthermore
|Var(C(R,P̄ )) ∩Var(C(0,P̄ ′))| ≤ |Z(R) ∩A|. Therefore in this case,

∆P̄ ,P̄ ′,1 ≤ λ
2mQD

∑
R

(R,P̄ )∼(0,P̄ ′)

(
1

λ
)
(|Var(C(R,P̄ ))∩Var(C

(0,P̄ ′))|)

≤ λ2mQD(
1

λ
)D + λ2mQD

∑
R 6=0

(R,P̄ )∼(0,P̄ ′)

(
1

λ
)|Z(R)∩A|

≤ λ2mQDλ−D + λ2mQD
∑
R 6=0

R has a zero in A

(
1

λ
)|Z(R)∩A|

≤ (λm2M)2 · 3D

M
+ λ2mQD

∑
1≤k<D

λ−k
∑
R 6=0

R has a zero in A and deg(R)<D

1 (6)

≤ (λm2M)2 · 3D

M
+ λ2mQD

∑
1≤k<D

λ−k
(
m

k

)
QD−k

≤ 4 ·
(

(1 + δ)m

2m
·m · 2m · ln 2

)2

· 3D

m · 2m · ln 2
(7)

+ (λmQD)2
∑

1≤k<D

(
m

k

)
λ−kQ−k

≤ O
(
m3D

2m

)
+ δ/2 (8)

≤ 1

2Ω(m)
+ δ/2 < δ

In the above computation Step (6) follows because QD ≤ 2M and (1/λ) ≤ 3. Step (7) is
obtained by substituting the the values of λ and M . Note that the second summation term

10



in Step (7) is exactly the same as in the previous computation and hence, the upper bound
of δ/2 on that term in Step (8) follows. Finally as D = o(m) and because 1/2Ω(m) < δ/2,
we get the final inequality.

To see that ∆P̄ ,P̄ ′,0 is also upper bounded by δ, a similar analysis can be used. We omit the
details. This finishes the base case.

Inductive case: We now start the proof of the inductive case. Here again, let us handle the
case of µN1 distribution. We assume that we are at an AND layer (the OR layer is similar). By
using Janson’s inequality to analyse qP̄ ,1, we get the following upper and lower bounds on this
quantity. ∏

R∈PD

(1− q(R,P̄ ),0) ≤ qP̄ ,1 ≤
∏
R∈PD

(1− q(R,P̄ ),0) · exp(δ) (9)

Here, the factor exp(δ) in the upper bound comes from the application of the Janson’s inequality
(Theorem 6) and the induction hypothesis for Lemma 9 Part (3). Let us use (9) in order to
bound qP̄ ,1.

To lower bound qP̄ ,1, we can upper bound q(R,P̄ ),0 for each R ∈ PD. We can use induction
hypothesis to do that. By observing that for each R ∈ PD we get the same bound, we will get
the following lower bound on qP̄ ,1.

qP̄ ,1 ≥
(

1− 1

2m
· (1− αi−1 exp(−βi−1))

)M
≥ exp

(
−M

2m
· (1− αi−1 exp(−βi−1)−M ·

(
1

2m
· (1− αi−1 exp(−βi−1))

)2
)

≥ exp
(
−(m ln 2) · (1− αi−1 exp(−βi−1)−O

( m
2m

))
≥ 1

2m
· exp

(
m · ln 2 · αi−1 exp(−βi−1)−O

( m
2m

))
≥ 1

2m
· exp

(
αi exp(−βi−1)−O

( m
2m

))
(As αi = m · ln 2 · αi−1) (10)

≥ 1

2m
· exp

(
αi exp(−βi−1)− α2

i

10

)
≥ 1

2m
· exp

(
αi(exp(−βi−1)− αi

10
)
)

≥ 1

2m
·
(

1 + αi exp
(
−βi−1 −

αi
10

))
≥ 1

2m
· (1 + αi exp(−βi))

Here, the second inequality comes from Fact 7 (b). The third inequality uses the value of M . It
is easy to see that O(m/2m) is bounded from above by α2

i /10 by our choice of αi, which gives
us (10). The second last inequality follows from Fact 7 (c). Finally, the last inequality follows
from the choice of βi. This finishes the proof of the lower bound in the case of b = 1.

We now obtain an upper bound on qP̄ ,1.
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qP̄ ,1 ≤
(

1− 1

2m
· (1− αi−1 exp(βi−1))

)M
· exp(δ)

≤ exp

(
−M

2m
· (1− αi−1 exp(βi−1))

)
· exp(δ)

≤ exp (−m ln 2 · (1− αi−1 exp(βi−1))) · exp(δ)

≤ 1

2m
· exp (m ln 2 · αi−1 exp(βi−1)) · exp(δ)

≤ 1

2m
· exp (αi exp(βi−1) + δ) (11)

≤ 1

2m
·
(
1 + (αi exp(βi−1) + δ) + (αi exp(βi−1) + δ)2

)
≤ 1

2m
·
(

1 +

(
αi exp(βi−1) +

αi
mi(ln 2)i−1

)
+ 2 · α2

i

)
≤ 1

2m
·
(

1 + αi(exp(βi−1) + 2αi +
2

mi(ln 2)i−1
)

)
≤ 1

2m
· (1 + αi(exp(βi)))

Here the first inequality comes from the induction hypothesis. The second inequality comes
from Fact 7 (c). The third inequality is obtained by substituting the value of M . We obtain (11)
by substituting αi = m · ln 2 · αi−1. The inequality following that uses Fact 7 (d). We use the
value of αi in obtaining the next inequality. The final inequality follows from the choice of βi.

This finishes the proof of Part 1 when b = 1 and i is odd. The other cases can be handled in
the exactly same way.

We now turn to Part2 of the lemma, which is relevant only when i = d− 1. Assume that
b = 1 (the other case is similar). Assuming that d− 1 is odd (i.e. we are dealing with an AND
layer), it suffices to consider the inequality (10) to obtain the lower bound (note that βi−1 = o(1)
by Observation 8). Similarly, when d− 1 is even, we use the the inequality analogous7 to (11) to
obtain an upper bound 2−m · exp(−αi exp(−βi−1) + δ) ≤ 2−m exp(−αi/4). The case b = 0 can
be worked out similarly.

Finally, we prove the inductive statement about ∆P̄ ,P̄ ′,1 in the case that i is odd. The proof

for other cases can be worked out similarly. Fix any P̄ , P̄ ′ ∈ Pd−i+1 (in the case that i = d− 1,
we will have P̄ = P̄ ′ = (∅)). The computation goes as follows. (The crucial step is the second
equality, where we interpret each term in the sum as the probability that a depth i− 1 circuit
takes the value 0, which can be bounded using Janson’s inequality and the induction hypothesis.)

7Note that when i is even, we need to do a different analysis to obtain an upper bound for qP̄ ,1. However, since
the analysis is very similar to the case when i is odd, we have omitted it.
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∆P̄ ,P̄ ′,1 =
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

Pr
µN1

[CR,P̄ = 0 AND CR′,P̄ ′ = 0]

=
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

Pr
µN1

[
∨
S

CS,R,P̄ ∨
∨
S′

CS′,R′,P̄ ′ = 0]

≤
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

∏
S

Pr[CS,R,P̄ = 0] ·
∏
S′

Pr[CS′,R′,P̄ ′ = 0] · exp(δ)

≤ exp(δ) ·
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

(
1− (1− 2αi−1)

2m

)2M

= exp(δ)

(
1− (1− 2αi−1)

2m

)2M

·
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

1

≤ 2 exp(−m ln 2 +O(αi)) ·
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

1

= O

(
1

22m

)
·

∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

1

where the first inequality is just Janson’s inequality applied to the formula
∨
S CS,R,P̄ ∨∨

S′ CS′,R′,P̄ ′ ; the second inequality follows from the induction hypothesis applied to level
i − 1 ≤ d − 2 (we have used a slightly weaker bound that is applicable also to other cases
such as when b = 0); and the last inequality follows from our choice of M and the fact that
αi = αi−1 · (m ln 2). The sum in the final term may be bounded by Q2D ·O(m/Q) almost exactly
as in the base case (we omit the computation). We thus get

∆P̄ ,P̄ ′,1 ≤ O
(
Q2D

2m

)
· m
Q

= O

(
M2

2m

)
· m
Q
≤ O(m3)

Q
< δ

as Q ≥ m4/δ. This finishes the analysis of ∆P̄ ,P̄ ′,1.

3 Deterministic AC0[⊕] circuits

For a ∈ {0, 1}n, let |a| denote the Hamming weight of a, i.e. the number of 1s in a.

Definition 10. Let k, ` ≤ n/2. The Promise Majority problem, PrMajnk,`, is a promise problem
of distiguishing n-bit strings of Hamming weight less than n/2− k from those with Hamming
weight more than n/2 + `. Formally,

PrMajnk,`(a) =


0 if |a| < (n2 − k)

1 if |a| ≥ (n2 + `)

If the length of the input is clear from the context then we drop the superscript n. If k = 0
then we denote PrMaj0,` by LowPrMaj`. Similarly, ` = 0 then we denote PrMajk,0 by UpPrMajk.
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When both k, ` are zero, PrMaj0,0 is the Majority function. If k = ` then we use PrMajk to denote
PrMajk,k.

Let Yesn` ,No
n
k denote the yes and no instances of PrMajnk,`. That is, Yesn` = {a ∈ {0, 1}n |

|a| ≥ n/2 + `} and Nonk = {a ∈ {0, 1}n | |a| < n/2− k}. In [Vio14], the following theorem was
proved.

Theorem 11 (Theorem 1.2 [Vio14]). For any d ≥ 2 and k(N) = Ω(N/(logN)d−1), there is a
randomized AC0 circuit of depth d computing PrMajNk(N), which has size poly(N).

Here, we prove the following theorem.

Theorem 12. For any d ≥ 2, say C is a (deterministic) AC0[⊕] circuit of depth d computing
PrMajNN/2·(logN)d−1, then C must have size Nω(1).

It is easy to see that using Theorem 11 and Theorem 12, we immediately get Theorem 2. In
order to prove Theorem 12 we need the following claim. This is our main technical claim.

Claim 13. Let n ∈ N and let k = Θ(n/(log n)c). Let p ∈ F[x1, . . . , xn] be a (deterministic)
polynomial such that it satisfies one of the following two conditions

either Pr
a∈Nonk

[p(a) = 1] ≤ 1/n, Pr
a∈Yesn0

[p(a) = 0] ≤ 1/10 (12)

or Pr
a∈Non0

[p(a) = 1] ≤ 1/10 Pr
a∈Yesnk

[p(a) = 0] ≤ 1/n (13)

Then deg(p) = Ω(logc+1 n).

Proof of Theorem 12 using Claim 13. We will first show that Theorem 12 follows from the above
claim. We will do this using the following two step argument.

(I) Let us assume for now that C is a circuit of size s and depth d with either OR gate or ⊕
gate as its output gate. Let us call the output gate Gout. We will show that if C computes
PrMajNk then we have a circuit C′ of size s, depth d and with output gate Gout, such that
it computes UpPrMajn2k, where n = N − 2k.8.

(II) We will then show that any depth d circuit with OR or ⊕ output gate computing UpPrMajn2k
must have size nω(1).

As we will invoke this for k = N/2(logN)c, which is o(N), an nω(1) lower bound on UpPrMajn2k
will imply a Nω(1) lower bound on PrMajNk , thereby proving the theorem.

Here, (I) can be shown by simply fixing some of the input bits to the constant 1. Specifically,
let us set 2k bits out of the N bits to 1s. Let n = N − 2k. It is easy to see that if x ∈ {0, 1}n
has Hamming weight at least n/2, then in fact y = x · 12k has N/2 + k many 1s. Similarly, if
x ∈ {0, 1}n has Hamming weight at most n/2− 2k then the Hamming weight of y = x · 12k is at
most N/2− k.

To show (II) requires a little more work. In particular, to show (II), we use a result
from [OSS19] about degree of polynomials approximating AC0[⊕] circuits. To state their result,
we will introduce some notation.

8As PrMaj is a self-dual function and UpPrMaj and LowPrMaj are duals of each other, we can assume that the
output gate of C is OR or ⊕ without loss of generality.
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Definition 14. Let f : {0, 1}n → {0, 1} be a Boolean function. For any parameters ε0, ε1,
(ε0, ε1)-error probabilistic polynomial for f is a random multilinear polynomial P chosen from
F2[x1, . . . , xn], such that for any b ∈ {0, 1} and any a ∈ f−1(b), Pr[P (a) 6= f(a)] ≤ εb.

A probabilistic polynomial is said to have degree at most d if the underlying distribution is
supported on monomials of degree at most d.

We define the (ε0, ε1)-error probabilistic polynomial degree of a Boolean function f , denoted
as pdegε0,ε1(f), to be the smallest d such that there is an (ε0, ε1)-error probabilistic polynomial
of degree d for f .

Lemma 15 (Corollary 15 [OSS19]). Let C be a size s, depth d circuit with OR or ⊕ as its output
gate. Then there is a probabilistic polynomial p approximating C such that pdeg1/n2,1/100(p) is

at most O(log s)d−1.

Remark 16. Let C be a circuit of size s and depth d (with any output gate). It is known that if
p is a probabilistic polynomial for C such that ε0 = ε1 = 1/sO(1), then pdeg1/sO(1),1/sO(1)(p) is

O(log s)d. The above lemma says that if we need only constant error on one of sides, i.e. say if
either ε0 or ε1 is Ω(1), then we can get a better degree upper bound. Instead of having d in the
exponent, we get d− 1 in the exponent. This is crucial for us.

Note that, if the output gate of C is OR (AND) then we can ensure that ε0 = 1/n2 (ε1 = 1/n2,
resp.). If it is a ⊕ gate, then either can be ensured.

Suppose there is an AC0[⊕] circuit C of size s = nt and depth d with top gate OR or ⊕ and
computing UpPrMaj2k.

Applying Lemma 15 and by standard averaging arguments we can show that there is a
fixed polynomial P ∈ F [X] that satisfies conditions (12) for c = d− 1 and has the same degree
as the degree of p. Therefore on the one hand, we know that deg(P ) is less than or equal to
O(t log n)d−1, while on the other hand using Claim 13 we get that deg(P ) is at least Ω(log n)d.
(As N/(logN)c = Θ(n/(log n)c), Claim 13 is applicable.) Thus, O(t log n)d−1 ≥ Ω(log n)d and
hence we get t ≥ Ω(log n)1/d−1. Therefore we get (II). This finishes the proof of Theorem 12.

We now proceed with the proof of Claim 13. We will use the following fact in the proof of
Claim 13.

Fact 17. Say R ∈ F[X] is a non-zero polynomial that vanishes on Nonk , then degree of R is at
least n/2− k.

Proof of Claim 13. We will show that if a deterministic polynomial p ∈ F[X] satisfies condi-
tion (12), then it has degree C · logc+1 n for some constant C. The proof for the lower bound on
the degree of p assuming condition (13) is similar. For simplicity we will work out the proof
when k = n/(log n)c. The proof is similar when k = Θ(n/(log n)c).

Let us use D to denote C · logc+1 n. Consider a polynomial p satisfying condition (12). Let
E0 and E1 be error sets of this polynomial on no and yes instances respectively, i.e. E0 = {a ∈
Nonn/(logn)c | p(a) = 1} and E1 = {a ∈ Yesn0 | p(a) = 0}. From condition (12) we have a bound on
the cardinalities of E0, E1.

We will first observe that in order to prove the claim, we need to show the existence of a
polynomial Q ∈ F[X] with the following three properties.

(a) Q(a) = 0 for all a ∈ E0.

(b) Q · p 6= 0.

(c) deg(Q) ≤ r −D, where r = n/2− n/(log n)c and D is as defined above.
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Suppose we have such a Q then let R = Q ·p. Now R is a polynomial that vanishes on Nonn/(logn)c .
This is because either p vanishes on Nonn/(logn)c \ E0 or Q vanishes on E0. Due to property (b),
R is also a non-zero polynomial. Therefore using Fact 17, we know that it has degree at least
r. Now assuming property (c) we get that p must have degree at least D, thereby proving the
claim.

We will prove the existence of a polynomial Q with the above properties. In order to prove
that such a Q exists, we proceed as follows.

Let P be a class of polynomials of degree at most r −D that vanish on E0. Let clr−D(E0)
denote the set of all the points in {0, 1}n such that for each point in the set some polynomial
from P vanishes on it. Formally,

clr−D(E0) = {a ∈ {0, 1}n | ∀q ∈ Q, q(a) = 0},

This is also called the (r−D)-closure of E0. Suppose the cardinality of this closure set is strictly
smaller than 2n/10, i.e suppose the following holds:

|clr−D(E0)| < 2n/10. (14)

Then we know that there is a point a0 ∈ Yesn \ E1 and a polynomial Q in P such that
Q(a0) 6= 0. It is easy to see that this polynomial has the desired properties; it vanishes on E0,
Q · p is non-zero (this is because Q(a0) 6= 0 and p(a0) 6= 0), and the degree of Q is at most r−D.
Therefore, assuming (14) we are done.

Proof of the bound (14). To bound the cardinality of the (r −D)-closure of E0, we will use the
following theorem of Nie and Wang [NW15].

Theorem 18. Let E ⊆ Fn2 then
|clr−D(E)|

2n
≤ |E|
Nr−D

,

where Nt stands for the number of multilinear monomials of degree at most t.

We will apply this theorem for E = E0. We know that Nr−D =
(

n
≤r−D

)
. We also know that

|E0| ≤ 1
n ·
(
n
≤r
)
, as it is 1/n fraction of the cardinality of Nonn/(logn)c . In order to prove (14), it

suffices to prove the following.

Subclaim 19. As long as r = n/2 − k, where k = n/(log n)c and D = C · logc+1 n, where
C ≤ 1/100, we have the following. (

n
≤r
)

n ·
(

n
≤r−D

) < 1/10

It is clear that proving the subclaim will prove (14). Therefore, assuming the subclaim we
are done with the proof of (14).

Proof of Subclaim 19. As
(
n
≤r
)

=
(

n
≤r−D

)
+
∑D

j=1

(
n

r−D+j

)
and as

(
n

r−D+j

)
≤
(

n
r−D+j′

)
, where

j′ ≥ j, we know that (
n

≤ r

)
≤
(

n

≤ r −D

)
+D ·

(
n

r

)
.

Therefore, to prove the subclaim, it suffices to show that

2 ·D ·
(
n
r

)
n ·
(

n
≤r−D

) < 1/10
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As
(

n
≤r−D

)
≥
(

n
r−D

)
, in fact it suffices to show that

2 ·D ·
(
n
r

)
n ·
(

n
r−D

) < 1/10 (15)

Now, (
n
r

)(
n

r−D
) =

(
n
r

)(
n
r−1

) × ( n
r−1

)(
n
r−2

) × . . .× ( n
r−D+1

)(
n

r−D
) (16)

It is easy to see that

(
n
r

)(
n
r−1

) ≤ n− r
r
· (1 + o(1))

=
n/2 + k

n/2− k
· (1 + o(1)) (assuming r = n/2− k)

≤ 1 +
8k

n
≤ e8k/n (as 1 + x ≤ ex)

By using a similar argument to bound
( n
r−j)

( n
r−j−1)

for j ∈ {0, . . . , D − 1}, we get that each term

in (16) is bounded by e8k/n. Therefore we get that
(nr)

( n
r−D)

≤ e8kD/n . As k = n/(log n)c and

D = C · logc+1n, as long as C ≤ 1/100, say, we get
(nr)

( n
r−D)

≤ e8kD/n = o(n). This shows (15),

thereby proving the subclaim.

Remark 20. Note that in Claim 13 we have assumed that k = Θ(n/(log n)c), while we proved
it for the specific value of k = n/(log n)c. To prove it in its full generality we need to simply
observe that instead of setting C to some constant less than or equal to say 1/100, as we did in
the above proof, we could set it to an appropriately small constant depending on the constants
hidden in Θ(·).
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A Finding Q,D and a representation for F efficiently

We show how to find a prime power Q and a positive D such that M ≤ QD ≤ 2M and
m4/δ ≤ Q ≤ (m4/δ)1+o(1) in time poly(m). We will ensure that Q is a power of a prime p such
that p = mO(1). By a result of Shoup [Sho90], it then follows that an irreducible univariate
polynomial P (X) of degree D over the field Fp can be found in time poly(m,D) = poly(m). We
take the field F to be the field Fp[X]/(P (X)). Note that field arithmetic over F now takes only
poly(m) time and it follows that the formula Fd constructed in Section 2 is fully explicit: that
is, there is a poly(m)-time deterministic algorithm which, when given the descriptions of two
gates in Fd outputs the labels of the gates and whether the first gate is a child of the second
gate or not.

To show that Q,D as above can be computed, we first need to show they exist. To see this,
we first choose D to be the largest positive integer so that x0 := M1/D ≥ m4/δ. Note that we
have M1/D ≥ m4/δ and M1/(D+1) < m4/δ, which implies that D = Θ(m/(logm + log(1/δ)).
Using the fact that 1/δ ≤ mO(d) ≤ 2o(m), we have D = ω(1). In particular, we also get

x0 = M1/D ≤
(
M1/D+1

)1+1/D ≤ (m4/δ)1+o(1). Finally, note that D can be computed in poly(m)
time.

Note that x0 ≥ m4/δ ≥ m5. Define y0 = x
1/k
0 where k is the largest positive integer so that

x
1/k
0 ≥ m5. It follows that k = o(m) and y0 ≤ (m5)1+1/k ≤ m10.

Let p denote the least prime greater than y0. A theorem of Baker, Harman and Pintz [?]
shows that p ≤ y0 + y0.53

0 ≤ y0(1 + 1/m2). We take Q = pk. We thus have

m4

δ
≤ x0 = yk0 ≤ Q ≤ x0 ·

(
1 +

1

m2

)k
≤ x0 ·

(
1 +

1

m

)
≤
(
m4

δ

)1+o(1)

.

Finally, we also have

M = xD0 ≤ QD ≤ xD0 ·
(

1 +
1

m

)D
= M · (1 + o(1)) ≤ 2M.

This shows that p,Q,D as specified above exist. As noted above, D can be computed in
poly(m) time. Similarly, we can also compute x0, y0 and k. The prime p can be found in poly(m)
time by brute force search in the required range. It thus follows that Q can also be computed in
poly(m) time.
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