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Abstract

A canonical communication problem Search(ϕ) is defined for every unsatisfiable CNF ϕ: an assign-
ment to the variables of ϕ is distributed among the communicating parties, they are to find a clause of
ϕ falsified by this assignment. Lower bounds on the randomized k-party communication complexity of
Search(ϕ) in the number-on-forehead (NOF) model imply tree-size lower bounds, rank lower bounds,
and size-space tradeoffs for the formula ϕ in the semantic proof system Tcc(k, c) that operates with
proof lines that can be computed by k-party randomized communication protocol using at most c bits
of communication [GP14]. All known lower bounds on Search(ϕ) (e.g. [BPS07, GP14, IPU94]) are
realized on ad-hoc formulas ϕ (i.e. they were introduced specifically for these lower bounds). We
introduce a new communication complexity approach that allows establishing proof complexity lower
bounds for natural formulas.

First, we demonstrate our approach for two-party communication and apply it to the proof system
Res(⊕) that operates with disjunctions of linear equalities over F2 [IS14]. Let a formula PMG encode
that a graph G has a perfect matching. If G has an odd number of vertices, then PMG has a tree-like
Res(⊕)-refutation of a polynomial-size [IS14]. It was unknown whether this is the case for graphs with
an even number of vertices. Using our approach we resolve this question and show a lower bound 2Ω(n)

on size of tree-like Res(⊕)-refutations of PMKn+2,n
.

Then we apply our approach for k-party communication complexity in the NOF model and
obtain a Ω

(
1
k2n/2k−3k/2

)
lower bound on the randomized k-party communication complexity of

Search
(
BPHPM2n

)
w.r.t. to some natural partition of the variables, where BPHPM2n is the bit pi-

geonhole principle and M = 2n + 2n(1−1/k). In particular, our result implies that the bit pigeonhole
requires exponential tree-like Th(k) proofs, where Th(k) is the semantic proof system operating with
polynomial inequalities of degree at most k and k = O(log1−ε n) for some ε > 0. We also show that
BPHP2n+1

2n superpolynomially separates tree-like Th(log1−εm) from tree-like Th(logm), where m is
the number of variables in the refuted formula.
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1 Introduction

Propositional proof complexity studies proof systems that allow proving the unsatisfiability of Boolean
CNF formulas. The main line of research in proof complexity is focused on refutation size lower bounds
for different proof systems. This research activity is motivated by NP vs coNP question [CR79] as well
as by studying properties of SAT-solvers. This paper develops the communication complexity approach
to proof complexity lower bounds.

1.1 Communication complexity of search problems

In the classical communication settings, several participants collaborate to compute a function using a
broadcast communication channel; each participant knows only a part of the input and the goal is to
compute the function with the minimum number of transmitted bits. In the case of search problems,
participants compute a relation R ⊆ X × Y instead of a function in the following sense: an input x ∈ X
is distributed among the participants and they have to find y ∈ Y such that (x, y) ∈ R. Analyzing
the communication complexity of search problems is usually much harder than analyzing the communi-
cation complexity of functions. Unrestricted and monotone circuit depth of a Boolean function can be
characterized in terms of the communication complexity of an appropriate search problem [KW90].

Every unsatisfiable CNF-formula ϕ defines a search problem Search(ϕ): the values of the variables of
ϕ are distributed between the parties of the protocol in some way, the participants are to find a clause of
ϕ that is falsified by the values of the variables. This problem plays an important role in proof complexity.

One of the promising approaches for obtaining proof complexity lower bounds is the investigation of
dag-like communication protocols [Kra97, Sok17]. This approach allows proving lower bounds for proof
systems operating with proof lines having small communication complexity in the appropriate communi-
cation model. Every refutation of a formula ϕ of size S can be translated to a dag-like communication
protocol for Search(ϕ) of complexity S · C, where C depends on the upper bound on the communication
complexity of proof lines. Thus, lower bounds on the complexity of dag-like communication protocols im-
ply lower bounds on the size of refutations. Nontrivial lower bounds on the size of dag-like protocols are
currently known only for two-party deterministic and two-party real communication models. There are
two known approaches for obtaining these lower bounds. The first is based on the correspondence between
dag-like protocols and monotone Boolean/real circuits [Kra97, Sok17, HP18]. The second approach is lift-
ing from the resolution width [GGKS18]. The mentioned lower bounds on dag-like communication imply
lower bounds for Resolution [Kra97], OBDD-based proof systems [Kra08] (via deterministic protocols),
and Cutting Planes [Pud97, HP17, FPPR17] (via real protocols).

Proving a superpolynomial lower bound for any of the models of dag-like communication protocols
listed in the left column of Table 1 seems to be a very challenging open question. Such lower bounds
would imply currently unknown superpolynomial lower bounds on the corresponding proof systems in the
right column of the table.

In this paper, we deal with classical (tree-like) communication protocols. A lower bound on (tree-
like) communication complexity of the problem Search(ϕ) in the model from the left column of Table 1
implies a lower bound on the size of tree-like refutations of ϕ in the corresponding proof system from
the right column as well as a lower bound on the size of dag-like refutation of ϕ using small space (a
size-space tradeoff [GP14, HN12]). The usual strategy for obtaining lower bounds on the proof size via
communication complexity is the following: by a tree-like refutation of ϕ of size S (or by a realization
of a dag-like refutation of ϕ in size S within small space), one constructs a communication protocol
for Search(ϕ) with communication complexity O(logS log logS · c)1 for an arbitrary distribution of the
variables of ϕ between the parties, where c is an upper bound for communication complexity of a proof
line in the proof system in question. One then proceeds to prove a lower bound on the communication
complexity of Search(ϕ) for some fixed distribution of variables between the parties.

1sometimes it can be improved to O(logS · c)
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Communication model Proof systems

Randomized two-
party protocols

Res(⊕) [IS20]. Proof lines in Res(⊕) are disjunctions of linear equations
over F2.

Real k-party proto-
cols in the number-
on-forehead (NOF)
model

Semantic Th(k − 1) [BPS07]. Proof lines in Th(k − 1) are inequalities of
the form f(x1, x2, . . . , xn) ≥ 0, where f is a polynomial of degree at most
k − 1 with integer coefficients and Boolean variables.

Randomized k-party
protocols in the NOF
model

Semantic Tcc(c, k). Proof lines in Tcc(c, k) are arbitrary predicates that
can be computed with k-party randomized communication cost at most
c in the NOF model. Tcc(c, k) for small c simulates Th(k − 1) and
Res(PCd−1). Proof lines in Res(PCd) [Kha20] are disjunctions of polyno-
mial equalities of the form p(x1, x2, . . . , xn) = 0, where p is a polynomial
over F2 of degree at most d. Notice that Res(PC1) coincides with Res(⊕).

Table 1: Correspondence between communication models and proof systems

Proving lower bounds for the communication complexity of Search(ϕ) is not trivial since a lower bound
on Search(ϕ) in the two-party deterministic communication model implies a lower bound on the monotone
circuit depth for the corresponding monotone Boolean function [GP14, RM99]. However, in the tree-like
case good enough lower bounds are known for all models listed in the left column of Table 1. We discuss
the strongest model, k-party randomized communication. Typically lower bounds on the communication
complexity of Search(ϕ) are shown for artificial formulas ϕ that are constructed as follows: take a standard
formula ψ and replace each of its variables with a function g(y1, y2, . . . , ym) (also known as a gadget),
where y1, y2, . . . , ym are fresh variables; the result of this substitution is denoted by ψ ◦ g. The variables
of every gadget are distributed among k parties. Beame, Pitassi and Segerlind [BPS07] have shown a
lower bound on the randomized k-party communication complexity of Search(T (G) ◦ ∧k), where T (G) is
an unsatisfiable Tseitin formula based on a special expander G and ∧k is the conjunction of k variables,
and the ith party has the ith argument of each instance of ∧k written on their forehead.

Huynh and Nordström [HN12] have introduced a method to obtain a two-party randomized commu-
nication complexity lower bound for a search problem via lifting from search problems with large critical
block sensitivity. Göös and Pitassi [GP14] have simplified and generalized this result to multiparty com-
munication complexity and shown that if Search(ϕ) has large critical block sensitivity and a gadget g has
a versatile property, then Search(ϕ ◦ g) has large randomized communication complexity. Although the
construction of versatile functions is somewhat tricky, the proof of the lower bound is much simpler than
the proofs from [BPS07, HN12].

There is an established stereotype that lower bounds on the randomized communication complexity
of search problems are rather complicated and the resulting lower bounds for proof systems hold only for
artificial formulas. In this paper, we break this stereotype and suggest an approach that allows obtaining
lower bounds for natural families of formulas by reduction from randomized communication complexity.
Moreover, our proofs are elementary.

In the first part of the paper, we demonstrate our method by proving an exponential lower bound on
the size of tree-like Res(⊕)-refutations of the perfect matching principle, while the known lower bound
techniques for tree-like Res(⊕) do not work for this formula. This lower bound is based on two-party com-
munication complexity. In the second part of the paper, we apply our method to k-party communication
complexity and prove a lower bound for communication complexity of Search

(
BPHP2n+2n(1−1/k)

2n

)
, where

BPHPM2n denotes the bit pigeonhole principle stating that there are M distinct n-bit strings s1, . . . , sM ,
every string si for i ∈ [M ] is partitioned into k almost equal sequential parts and the jth part of every
string is written on the forehead of the jth party. In particular, the latter result implies that the bit
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pigeonhole principle is hard for tree-like Th(k), so it is the first natural hard instance.

1.2 Search problem ⊕kSearch(ϕ)

To achieve our results we use the parity gadget, one of the simplest and the most natural gadgets. We
then show how to get rid of this gadget using either properties of a proof system or properties of a family
of formulas.

For an unsatisfiable CNF formula ϕ we define a k-party communication problem ⊕kSearch(ϕ) as
follows: for every i ∈ [k], the ith party has an assignment αi ∈ Fn2 written on the forehead, where n is the
number of variables of ϕ. They are to find a clause of ϕ that is falsified by the assignment

∑k
i=1 αi.

It is easy to see that the communication complexity of Search(ϕ ◦ ⊕k) is at least the communication
complexity of ⊕kSearch(ϕ), where ⊕k is the parity of the sum of k bits. However, the formula ϕ◦⊕k may
have exponential size if ϕ contains a wide clause.

The gadget ⊕k is not an obstacle for lower bounds in Res(PCd). In Section 3 we observe the following
lemma.
Lemma 1. If an unsatisfiable CNF-formula ϕ has a tree-like Res(PCd) refutation of size S, then there
exists a bounded-error randomized communication protocol for ⊕d+1Search(ϕ) that transmits O(d logS)
bits.

1.3 Perfect matching principle in tree-like Res(⊕)

One of the most important open questions in proof complexity is obtaining a superpolynomial lower
bound for bounded-depth Frege with parity gates. Res(⊕) is a special case of this system and there are
still no known superpolynomial lower bounds for its dag-like version. The first exponential lower bounds
for tree-like Res(⊕) were proved by Itsykson and Sokolov [IS14, IS20]. Itsykson and Sokolov have shown
a lower bound 2Ω(n) on size of tree-like Res(⊕) refutations of Pigeonhole Principle (PHPmn ) for arbitrary
m > n using generalized Prover-Delayer games. Oparin in [Opa16] has shown a tight upper bound 2O(n)

for such refutations. A lower bound 2Ω(n) for functional pigeonhole principle (FPHPmn ) for m = O(n) can
be shown using a connection between the size of tree-like Res(⊕) refutations and the degree of polynomial
calculus refutations (over F2), observed by Garlik and Kolodziejczyk [GK18] (this method is described
in details in [PT20]). It is also worth mentioning the result of Krajicek [Kra18] that formulas encoding
Hall’s theorem about matchings in bipartite graphs require exponential-size tree-like Res(⊕) refutations.

Let PMG for a graph G encode the existence of a perfect matching in G. Itsykson and Sokolov
have shown that for graphs with an odd number of vertices, PMG has a polynomial-size tree-like Res(⊕)
refutation. The question about graphs with an even number of vertices remained open; we resolve it in
this paper.

Let Km,n be the complete bipartite graphs with parts of size m and n respectively. In Section 4 we
prove the following theorem.
Theorem 2. The size of a tree-like Res(⊕) refutation of PMKn+2,n is 2Ω(n).

Notice that Oparin’s upper bound for PHPmn [Opa16] implies that the obtained lower bound is tight
up to a constant in the exponent.

The formula PMKn+2,n (however, in a different encoding) has a constant-degree derivation in Null-
stellensatz over F2 [BR96]. PMKn+2,n may be refuted as follows: compute the number of edges in the
matching modulo 4 in two different ways, on the one hand it is n mod 4 and on the other hand it is
(n + 2) mod 4. This yields a low-degree Nullstellensatz refutation since the function MOD4 has a repre-
sentation as a polynomial of degree 3, see Lemma 8.7 of [BR96] for details. Thus, Theorem 2 can not be
proved via the same reduction to the Polynomial Calculus degree as it can be done for FPHPmn .

Since PMKn+2,n has a tree-like Cutting Planes refutation of polynomial size, the problem
Search

(
PMKn+2,n

)
has communication complexity O(log n) for any partition and thus can not yield a
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A(1)

B(0) B(1)

Figure 1: The graphs
A(0), A(1), B(0), and B(1) and
their pairwise symmetric differences.
Only A(1)⊕B(1) is not a matching.

Alice

Bob

1 1 0

0 1 1

H

HA

HB

Figure 2: The construction of the graphs HA, HB and H
for x = (0, 1, 1); y = (1, 1, 0)

superpolynomial lower bound on size of tree-like Res(⊕) refutations. Therefore the methods previously
used to establish tree-like Res(⊕) lower bounds fail for PMKn+2,n .

Proof sketch of Theorem 2. By Lemma 1 it is sufficient to show a lower bound Ω(n) on the two-party
bounded-error randomized communication complexity of ⊕2Search

(
PMKn+2,n

)
. We show this lower bound

via probabilistic reduction from the set disjointness problem. Recall that in the set disjointness problem
DISJn Alice and Bob have strings x, y ∈ {0, 1}n respectively and they want to verify that there are no
i ∈ [n] such that xi = yi = 1. It is known that two-party bounded-error randomized communication
complexity of DISJn is Ω(n) [KS92]. Let G0(V,E1) and G1(V,E1) be graphs on the same set of vertices
V ; we define G0 ⊕G1 as a graph on V with edges E1 ⊕ E2, where ⊕ denotes the symmetric difference.

We now describe the reduction from DISJn to ⊕2Search
(
PMKn+2,n

)
. Before starting the communica-

tion, each of the parties constructs two graphs: Alice constructs A(0) and A(1), Bob constructs B(0) and
B(1) that are shown in Figure 1. These four graphs are bipartite graphs on 8 vertices, 4 vertices in each
part and the parts coincide for all the graphs. These graphs have the following property: for a, b ∈ {0, 1}
the graph A(a)⊕B(b) is a perfect matching iff at least one of a and b is zero. The graph A(1)⊕B(1) has
two connected components, the first component consists of a single vertex from the first part connected
with three vertices from the second part, the second connected component consists of a single vertex from
the second part connected with three vertices from the first part.

For each i ∈ [n] Alice and Bob create new 8 vertices; Alice builds the graph A(xi) on these vertices
and Bob builds the graph B(yi) on these vertices. Thus, Alice and Bob construct two bipartite graphs
GA and GB with 4n vertices in each part such that GA ⊕ GB is a perfect matching iff DISJn(x, y) = 1.
Additionally, Alice and Bob add three vertices to the first part and one vertex to the second part of
GA⊕GB connecting the latter with the three vertices added to the first part. Let us denote the resulting
graph by H. Let H = HA ⊕HB, where HA is known to Alice and HB is known to Bob. An example of
the resulting graphs is shown in Figure 2. Alice and Bob shuffle the vertices in each part of their graphs
according to a permutation of generated using public random bits and get graphs H ′A and H ′B. As a
result, in the shuffled graph H ′ = H ′A ⊕ H ′B the violation of the perfect matching principle artificially
added by Alice and Bob is indistinguishable from a violation that appears because of DISJn(x, y) = 0.
After that Alice and Bob run the communication protocol for ⊕2Search

(
PMK4n+3,4n+1

)
. If the protocol

returns a clause corresponding to the artificially added contradiction, Alice and Bob return 1; otherwise,
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they return 0. By repeating the whole protocol multiple times one can reduce the error probability.

1.4 Bit pigeonhole principle

1.4.1 Bit pigeonhole principle with ⊕-gadget

In Section 5 we apply our lower bound technique for k-party communication in the number-on-forehead
model. We consider the bit pigeonhole principle BPHPm2` that encodes in CNF that there are m pairwise
distinct strings from {0, 1}`. This formula is unsatisfiable for m > 2`.
Theorem 3. Let ` and k be natural numbers such that 2 ≤ k ≤ ` − 7. Then the randomized commu-
nication complexity of ⊕kSearch

(
BPHP2`+2k

2`

)
in the k-party NOF model is Ω

(
2`/2

k23k/2

)
. For k = 2 the

stronger bound Ω
(
2`
)
holds.

Proof idea. The proof follows the same plan as the communication complexity lower bound in Theo-
rem 2. In Subsection 5.1 we consider a decision problem Distinctk,` that is similar to the search problem
⊕kSearch

(
BPHP2`

2`

)
. Let each of k parties have a 2` × ` matrix over F2 on the forehead. The goal is to

determine, whether the rows of the sum of these matrices are distinct. Recall that the unique disjointness
UDISJk,n is the promise version of the k-party set disjointness: the ith of k parties has a string x(i) from
{0, 1}n on the forehead, they are to verify that there is no j ∈ [n] such that x(i)

j = 1 for all i ∈ [k] under the
promise that there is at most one such index j. We describe a randomized reduction from UDISJk,2`−k+1

to ⊕kSearch
(

BPHP2`

2`

)
and then use the known lower bound on the communication complexity of the

former problem [She14]. First, we reduce UDISJk,2`−k to the problem Distinctk,`: the ith of the parties
of the UDISJ protocol generates a matrix Di of size 2` × ` such that the matrix

∑k
i=1Di contains a pair

of equal rows iff UDISJk,2`−k evaluates to 0. Moreover, the matrix
∑k

i=1Di has additional properties:
• each of the 2`−k bits of UDISJ correspond to a block of 2k rows of the matrix

∑k
i=1Di such that

any two rows from different blocks are distinct;
• if the common 1-bit of the inputs of UDISJ has the index j ∈ [2`−k], then the block corresponding

to the bit j contains each of its rows exactly twice (all the other blocks have distinct rows).
In Subsections 5.2 and 5.3 we adapt this reduction for ⊕kSearch

(
BPHP2`+2k

2`

)
. We add an additional

(fake) block to each of the matrices Di such that the matrix
∑k

i=1Di has the following property: every
row of this new block appears in it exactly twice and does not appear anywhere else. Using randomization
we make sure that the new artificially added row collisions from the fake block are indistinguishable from
the collisions coming from the initial (genuine) blocks corresponding to the bits of UDISJ. Finally, if
UDISJ evaluates to 1 then all the collisions are artificially added; if UDISJ evaluates to 0, then with a
significant probability the protocol solving ⊕kSearch

(
BPHP2`+2k

2`

)
finds a pair of equal rows coming from

a genuine block.
Theorem 3 and Lemma 1 immediately imply the lower bound Ω

(
2`/2

k23k/2

)
on the size of tree-like

Res(PCk−1) refutations of BPHP2`+2k

2`
(for k = 2 the stronger lower bound Ω(2`) holds).

1.4.2 Bit pigeonhole without ⊕-gadget.

In Section 6 we present a pretty simple and nice reduction from ⊕kSearch(BPHPm2n) to
Search

(
BPHPm·2

(k−1)n

2kn

)
. Here we describe this reduction for k = 2. For a larger k the proof is es-

sentially the same. Let us reduce ⊕2Search(BPHPm2n) to Search
(
BPHP2n·m

22n

)
. We denote the input of

Alice in ⊕2Search(BPHPm2n) as a1, . . . , am ∈ Fn2 and the input of Bob as b1, . . . , bm ∈ Fn2 . Their goal is to
find a clause of BPHPm2n falsified by the assignment a1 + b1, . . . , am + bm. Observe that given i 6= j ∈ [m]
such that ai + bi = aj + bj they can find a falsified clause transmitting additional O(n) bits. For each
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i ∈ [m], Alice and Bob generate 2n strings from Fn2 : Alice generates ai + z for each z ∈ Fn2 and Bob
generates bi + z for each z ∈ Fn2 . For each pair of strings ai + z and bi + z their sum coincides with
ai + bi. Alice and Bob run the protocol for Search

(
BPHP2n·m

22n

)
on an input where each line has the form

(ai + z, bi + z) for each i ∈ [m] and z ∈ Fn2 . Given a falsified clause of BPHP2n·m
22n on this input they

determine the lines (ai+ z, bi+ z) and (aj + z′, bj + z′) that are equal to each other. Then ai+ bi = aj + bj
and i 6= j since each pair (i, z) ∈ [m]× Fn2 is used by Alice and Bob exactly once.

Together with Theorem 3 this yields the following theorem.
Theorem 4. For n ≥ k(k + 7) the randomized k-party communication complexity of
Search

(
BPHP2n+2n+k−bn/kc

2n

)
is Ω

(
1
k2n/2k−3k/2

)
, where every string of BPHP is partitioned into k al-

most equal contiguous parts such that jth party has the jth part of every string on its forehead. For
k = 2 the bound can be improved up to Ω

(
2n/2

)
.

In particular, Theorem 4 implies the lower bound Ω
(

1
cnk2n/2k−3k/2

)
on the size of tree-like Tcc(c, k)

(and, thus, Th(k − 1)) refutations of BPHP2n+2n+k−bn/kc

2n .
Hrubes and Pudlák [HP17] proved a lower bound on the complexity of dag-like two-party real com-

munication protocols for Search
(
BPHPm2`

)
with the same variable partition, where m > 2` is arbitrary.

Formally their and our results are incomparable. On the one hand, the result of Hrubes and Pudlák holds
for dag-like protocols and arbitrary weak bit pigeonhole principle, on the other hand, we use a stronger
(randomized) model and the statement holds for the multiparty communication as well.

In addition, we show an upper bound on the communication complexity of Search
(
BPHPm2`

)
. The gap

between the upper and the lower bound for k > 2 is quadratic. For k = 2 the bounds coincide up to a
logarithmic factor.
Proposition 5. For M > 2n and k ∈ {2, 3, . . . , n} there exists a deterministic NOF communication
protocol for Search

(
BPHPM2n

)
with variables partitioned as in Theorem 4 transmitting O

(
2dn/ke · logM

)
bits.

Our lower bound on the k-party communication complexity of Search(BPHPmn ) is non-trivial for
k ≤ log1−ε n for ε > 0. This lower bound implies a superpolynomial lower bound on the size of tree-like
Th(k)-refutations of BPHPmn for such k. We show that there exists a short tree-like Th(log n) refutation:
Proposition 6. For m > 2` there exists a tree-like Th(`) refutation of BPHPm2` of size O(m2 · 2`).

Proposition 6 and the result of Hrubes and Pudlák [HP17] imply that tree-like Th(log n), where n is
the number of variables of the refuted formula can not be simulated by dag-like Th(1). Theorem 4 and
Proposition 6 imply that the bit pigeonhole principle separates tree-like Th(log n) from tree-like Th(k)
for k ≤ log1−ε n.

1.5 Open questions

1. To prove lower bounds on the communication complexity of ⊕2Search(PMG) for constant-degree
graphs G. An Ω(n) lower bound would improve the best known Ω(n/ log n) lower bound on the
two-party communication complexity of a Search(ϕ) problem, where n is the number of variables.

2. To extend our results to Res(PCd) over arbitrary finite fields.
3. Prove an upper bound for tree-like Th(k) refutation of BPHPm2n that matches our lower bound.

Such upper bound would imply a superpolynomial separation between tree-like Th(k) and dag-like
cutting planes due to the lower bound by [HP17] as well as separations between tree-like Th(k) for
different values of k.

4. Can we show a lower bound on the communication complexity of the search problem for weaker
versions of BPHPM2n , for example with M = 2n+1?
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2 Preliminaries

Notations. We use the following notation: [n] = {1, 2, . . . , n}. Let Sn×m denote the set of matrices
of size n × m with elements from S. We denote by 0n×m the zero matrix of size n × m and by 1n×m
the matrix of the same size containing only ones. For square matrices A1, . . . , Ak we denote a diagonal
block matrix with blocks A1, . . . , Ak by diag(A1, . . . , Ak). For x ∈ {0, 1, . . . , 2k − 1} we denote a vector
(a0, . . . , ak−1) ∈ {0, 1}k such that x =

∑k−1
i=0 ai2

i by bink(x), i.e. (a0, . . . , ak−1) is the reversed binary
representation of x. For vectors v1, . . . , vn from a vector space over a field F we denote their linear span
by Span(v1, . . . , vn).We use coordinate-wise comparison of strings from {0, 1}n, i.e. for x, y ∈ {0, 1}n we
write x ≤ y iff xi ≤ yi for each i ∈ [n]. We denote the set of variables of a CNF-formula ϕ by Vars(ϕ).

Communication complexity. We briefly recall some notions of communication complexity. For formal
definition and details we refer to [KN97].

In the classic two-party randomized communication protocol with public randomness, Alice and Bob
cooperate to compute a relation Q ⊆ X × Y ×Z: Alice has an input x ∈ X and Bob has an input y ∈ Y ,
their goal is to compute z ∈ Z such that (x, y, z) ∈ Q. We assume that Alice and Bob have access to an
arbitrary large random string of bits that is common for Alice and Bob. Let for every x ∈ X and y ∈ Y ,
Rδpub(Q, x, y) denote the minimal number of bits Alice and Bob need to transmit between each other so
they both find a z ∈ Z such that (x, y, z) ∈ Q with probability at least 1− δ taken over the values of the
common random string. And Rδpub(Q) := maxx∈X,y∈Y R

δ
pub(Q, x, y).

We also consider multiparty communication protocols in the number on forehead (NOF) model that
extends two-party protocols for an arbitrary number of parties. In this setting k parties cooperate to
compute a relation Q ⊆ X1 ×X2 × . . . ×Xk × Y . The ith party has xi ∈ Xi written on their forehead
so they know all xj for j 6= i, their goal is to compute y ∈ Y such that (x1, x2, . . . , xk, y) ∈ Q. The
parties communicate by taking turns broadcasting messages to all other parties until all parties learn
the value of y ∈ Y such that (x1, . . . , xk, y) ∈ Q. In this model we also assume that all parties have
access to a common random string of bits. Let Rδpub(Q, x1, . . . , xk) for x1 ∈ X1, . . . , xk ∈ Xk denote the
minimal total number of bits transmitted until each party learns y ∈ Y such that (x1, . . . , xk, y) ∈ Q
with probability at least 1 − δ taken over the set of values of the random string of bits. Also, let
Rδpub(Q) := maxx1∈X1,...,xk∈Xk

Rδpub(Q, x1, . . . , xk).
Let f be a function from X1 × X2 × . . . × Xk → Y . Then Rδpub(f) denotes Rδpub(Qf ), where Qf =

{(x1, x2, . . . , xk, y) | f(x1, . . . , xk) = y}.
We prove communication complexity lower bounds by reduction from different versions of the set

disjointness problem. DISJk,n is a function {0, 1}n → {0, 1} such that for every x1, . . . , xk ∈ {0, 1}n the

following holds: DISJk,n(x1, . . . , xk) =
∧n
j=1 ¬

(
k∧
i=1

(xi)j

)
︸ ︷︷ ︸

NAND

.

Let us define the communication promise problem UDISJk,n in the k-party NOF model. For each
i ∈ [k] the string xi is written on the forehead of the ith party, it is guaranteed that there exists at most
one index j ∈ [n] such that for every i ∈ [k], (xi)j = 1. The goal is to compute DISJk,n(x1, . . . , xk).

Theorem 7 ([She12], [She14]). R1/3
pub(UDISJk,n) = Ω

(√
n

2kk

)
.

For k = 2 we omit the first index: DISJn = DISJ2,n; in this case Theorem 7 may be improved.

Theorem 8 ([KS92]). R1/3
pub(DISJn) ≥ R1/3

pub(UDISJ2,n) = Ω(n).

Proof complexity. We consider refutational proof systems for the language of unsatisfiable CNF-
formulas UNSAT. A refutation of ϕ ∈ UNSAT in a proof system Π is a sequence of Boolean functions
(proof lines) such that each proof line either represents a clause of ϕ or derived from previous proof lines
in the sequence via some sound inference rules. The last line of the proof is identically zero function. A
proof system Π is defined by a representation of proof lines and by a set of admissible inference rules. It
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is required that the inference rules are polynomially verifiable i.e. there exists an algorithm that checks
whether it is legitimate to derive a line L0 from the lines L1, . . . , Lk.

For example, in the Resolution proof lines are represented by clauses and the only inference rule is the
resolution rule that allows deriving a clause A ∨B from the clauses A ∨ x and A ∨ ¬x.

The size of a proof is the total size of all representations of proof lines in the proof. The length of a
proof is the number of proof lines in it.

A tree-like proof is such a proof that every its line can be used as a premise of a rule at most once.
For each proof system, we can also consider its tree-like version where all proofs are constrained to be
tree-like.

We also consider semantic refutational proof systems, where we drop the requirement for polynomial
verification of inference rules i.e. we allow to derive any sound consequence from the premises. For such
systems it is crucial to bound fan-in i.e. the number of the premises from which each proof line can be
derived, otherwise, it would be possible to derive a contradiction from the clauses of the initial formula
immediately. For example, it is well-known that Resolution is polynomially equivalent to a semantic proof
system with fan-in 2 operating with clauses.

A lower bound on the proof size in a semantic proof system implies a lower bound on the proof size
in its syntactic counterpart because a syntactic proof is always a semantic proof that operates with the
same class of proof lines.

We define semantic Res(⊕) as a semantic proof system with fan-in 2 that operates with linear clauses.
A linear clause is a disjunction of linear equations over F2:

∨k
i=1(fi = ai), where fi is a linear form over F2

and ai ∈ F2. Notice that an ordinary clause
∨
i∈P xi ∨

∨
j∈N ¬xj can be represented by the linear clause∨

i∈P (xi = 1) ∨
∨
j∈N (xj = 0). For definition of syntactic version of Res(⊕) we refer to [IS20]; it is also

proved there that syntactic and semantic Res(⊕) are polynomially equivalent.
We define semantic Res(PCd) as a semantic proof system with fan-in 2 that operates with disjunctions

of equations of type f = 0, where f is a degree-d polynomial over F2. Notice that semantic Res(PC1) is
exactly semantic Res(⊕). For the definition of the syntactic version of Res(PCd) we refer to [Kha20].

Following [BPS07] we define Th(k) as a semantic proof system with fan-in 2 that operates with
polynomial inequalities g ≥ 0, where g is a polynomial of degree at most k with integer coefficients and
Boolean variables. A clause

∨
i∈P xi∨

∨
j∈N ¬xj can be represented by an inequality

∑
i∈P xi+

∑
j∈N (1−

xj)− 1 ≥ 0.

Proof complexity and communication complexity. For an unsatisfiable CNF-formula ϕ we define
the communication problem Search(ϕ). Search(ϕ) is the following problem: given an assignment of the
variables of the unsatisfiable CNF ϕ, find a clause that is falsified by this assignment. It is assumed that
variables of ϕ are somehow partitioned between the parties.

Following the paper [GP14] we consider a semantic proof system Tcc(k, c) that models many interesting
syntactic and semantic proof systems. The proof lines in Tcc(k, c) can be arbitrary Boolean functions
having the following property: for every proof line C and every partition of variables of C between k
parties, the NOF k-party randomized communication complexity of C is at most c w.r.t. this partition.
We also define a semantic proof system Tcc

os(k, c) that is a subsystem of Tcc(k, c) with the restriction that
a communication protocol for proof lines must have a one-sided error: if the value of a proof line is zero,
then the protocol should return zero with probability 1.

For example, Tcc(2, 2) simulates Resolution; Tcc(2,O(1)) simulates Res(⊕) [IS20]; Tcc(k,O(k3 log2 n)),
where n is the number of variables in a refuted formula, simulates Th(k − 1) [GP14]. In Section 3 we
show that Tcc

os(d+ 1,O(1)) simulates Res(PCd) .
The following connection between the communication complexity of Search(ϕ) and tree-like proof

complexity of ϕ is known.
Lemma 9 ([BPS07], [GP14]). If a CNF formula ϕ has a tree-like Tcc(k, c) refutation of length ` then, over
any k-partition of the variables, there is a randomized bounded-error k-party NOF protocol for Search(ϕ)
with communication cost O(c · log ` log log `).
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In Section 3 we show that for Tcc
os(k, c) the bound can be improved, see Remark 14.

Basic formulas. A CNF formula PHPmn encodes the pigeonhole principle; PHPmn states that it is
possible to put m pigeons into n holes such that every pigeon flies to at least one hole and at most one
pigeon flies to each hole. PHPmn depends on variables pi,j for i ∈ [m] and j ∈ [n] and pi,j = 1 iff the i-th
pigeon flies to the j-th hole. PHPmn is the conjunction of m(m−1)n

2 hole axioms and m pigeons axioms.
For every i ∈ [m] PHPmn contains a pigeon axiom (pi,1 ∨ pi,1 ∨ · · · ∨ pi,n). And for every j ∈ [n] and every
k 6= ` ∈ [n], PHPmn contains a hole axiom (¬pk,j ∨ ¬p`,j). PHPmn is unsatisfiable iff m > n.

For an undirected graph G(V,E), the formula PMG encodes in CNF that G has a perfect matching.
The formula PMG has |E| variables, each of them corresponds to an edge of G, xe is the variable corre-
sponding to e ∈ E. PMG =

∧
v∈V

(
(
∨
e is incident to v xe) ∧

∧
e1 6=e2 are incident to v(¬xe1 ∨ ¬xe2)

)
. PMG is

unsatisfiable if G does not have a perfect matching.
Theorem 10 ([Opa16]). Let G be a graph with n vertices, which has no perfect matching. Then the
formula PMG has a tree-like Res(⊕) refutation of size 2O(n).
Proposition 11 ([IS14]). Let G be a graph with an odd number of vertices. Then the formula PMG has
a tree-like Res(⊕) refutation of size poly(n).

The binary pigeonhole principle BPHPm2` states that there are m different `-bit binary strings
s1, s2, . . . , sm. BPHPm2` has m` variables corresponding to the bits of si for i ∈ [m]. Then BPHPm2` =∧
i 6=j∈[m] si 6= sj , where the predicate si 6= sj is encoded as a 2`-CNF formula of size 2` as follows:∧
α∈{0,1}`(si 6= α ∨ sj 6= α); notice that the predicate (si 6= α ∨ sj 6= α) can be represented by a clause

with 2` literals. If m > 2`, then the formula BPHPm2` is unsatisfiable.
Let ϕ be a CNF formula with n variables, and g : {0, 1}k → {0, 1} be a Boolean function. Then ϕ ◦ g

denotes a CNF formula on kn variables that represents ϕ(g(−→x1), g(−→x2), . . . , g(−→xn)), where −→xi denotes a
vector of k new variables. ϕ ◦ g is constructed by applying the substitution to every clause C of ϕ and
converting the resulting function C ◦ g to CNF in some fixed way.

3 Communication protocols from tree-like Res(PCd) proofs

Let ϕ be an unsatisfiable CNF formula with n variables. Let us define the communication problem
⊕kSearch(ϕ) with k parties as follows. Assume that the ith party has an assignment αi ∈ {0, 1}n written
on the forehead. They aim to find a clause of ϕ falsified by the assignment

∑k
i=1 αi.

Lemma 1. Let ϕ be an unsatisfiable CNF formula. If there exists a tree-like Res(PCd) proof of ϕ of
length m, then R1/3

pub(⊕d+1Search(ϕ)) = O(d · logm).

A slightly weaker version of the following lemma was implicitly proved in [IS20]:
Lemma 12 (see proof of Theorem 3.11 from [IS20]). Let T be a binary tree with m vertices such that
the ith vertex is labeled with ai ∈ {0, 1} with the hereditary property : for each inner vertex i with direct
descendants c1 and c2, if ai = 1, then ac1 = 1 or ac2 = 1. We also assume that if r is the root of T , then
ar = 1. Assume that we have a one-sided bounded error oracle access to ai i.e. if we request a value of
ai and ai = 0 we get 1 with probability at most 1

2 and 0 with probability at least 1
2 ; if ai = 1 we get 1

with probability 1. Then there exists an algorithm A that with probability at least 2
3 returns a leaf ` of

T with a` = 1 and makes O(logm) oracle queries to a1, . . . , am.
Proof. See Appendix A.

Proof of Lemma 1. Let F1, . . . , Fm be a tree-like Res(PCd)-refutation of ϕ with the underlying tree T ,
where vertices of T are identified with [m]. Then the leaves of T correspond to the clauses of ϕ and m is
the root of T .

Let α1, . . . , αd+1 be the assignments written on the foreheads of d+ 1 parties. Let α =
∑d+1

i=1 αi. Let
ai = 1 iff α falsifies Fi for i ∈ [m]. Then am = 1 since Fm is identically false. For any inner node v of T ,
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if av = 1 then for the direct descendants of v, c1 and c2 either ac1 = 1 or ac2 = 1. In the next paragraphs
we show that for any i ∈ [m] there exists a NOF (d+ 1)-party protocol that computes ai such that
• for each j ∈ [d+ 1] the jth party has αj written on their forehead;
• the protocol transmits O(d) bits;
• the protocol has one-sided bounded error: if ai = 1 then the protocol returns 1 with probability 1

and if ai = 0 the protocol returns 0 with probability at least 1
2 .

Then we use this protocol to compute ai as an oracle in the algorithm given by Lemma 12 and thus show
that there is a NOF (d+1)-party protocol computing ⊕d+1Search(ϕ) with communication cost O(d logm).

Now we show that for every ` ∈ [m], F`(α) can be computed by a (d + 1)-party NOF protocol
with one-sided error using O(d) bits of communication. Let F` =

∨t
j=1(fj = 1), where f1, . . . , ft are

polynomials over F2 of degree at most d. Let z1, . . . , zn be the variables of ϕ. Let us introduce new variables
y1,1, . . . , y1,n, . . . , yd+1,1, . . . , yd+1,n and assume that for each i ∈ [d + 1] the ith party has the value of
variables yi,1, yi,2, . . . , yi,n written on the forehead or in other words αi assigns values of yi,1, yi,2, . . . , yi,n.
Let f̄j denote fj after substitution z` := y1,` + y2,` + . . . + yd+1,` for ` ∈ [n]; j ∈ [t]. Since for all j ∈ [t],
deg f̄j = deg fj ≤ d, we can represent f̄j = f̄

(1)
j + . . . + f̄

(d+1)
j such that f̄ (s)

j does not contain variables

ys,1, . . . , ys,n for each s ∈ [d+1]. Then the ith party can compute f̄ (i)
1 (α1, . . . , αd+1), . . . , f̄

(i)
t (α1, . . . , αd+1).

Notice that F` = ¬
(∧t

j=1(fj = 0)
)
. Take a random uniformly distributed vector (e1, . . . , et) ∈ Ft2. Then

all parties compute
∑t

j=1 ejfj(α) =
∑d+1

i=1

t∑
j=1

ej f̄
(i)
j︸ ︷︷ ︸

ith party

with O(d) bits of communication and it will be the

result of the protocol.
We use the following well-known statement:

Proposition 13 (Random subsum principle). For any x ∈ Fk2 \ {0k}, Pry←U(Fk
2)

[∑k
i=1 yixi = 1

]
= 1

2 .

If F`(α) = 1 then Pr
[∑t

j=1 ejfj(α) 6= 0
]

= 1
2 by the random subsum principle. If F`(α) = 0, then

Pr
[∑t

j=1 ejfj(α) = 0
]

= 1.

Remark 14. Similarly to the proof of Lemma 1 one can prove that if an unsatisfiable CNF formula ϕ has
a tree-like Tcc

os(k, c) refutation of length `, then for any k-partition of the variables, there is a randomized
bounded-error k-party NOF protocol for Search(ϕ) with communication cost O(c log `). Thus, the bound
from Lemma 9 can be slightly improved in the case of one-sided error.

4 Perfect matching

In this section we prove the following theorem:

Theorem 2. The size of any tree-like semantic Res(⊕) refutation of the formula PMKn+2,n is 2Ω(n).

By Lemma 1, to prove Theorem 2 it is sufficient to show that R1/3
pub

(
⊕2Search

(
PMKn+2,n

))
= Ω(n).

Consider the communication problem ⊕PMm
n that is defined as follows: Alice and Bob have matrices

X and Y over F2 respectively, each of the matrices has size m× n, where m 6= n. Their goal is to find an
all-zero row or column or two 1-cells in the same row or column in the matrix X + Y .
Proposition 15. R1/3

pub

(
⊕2Search

(
PMKn+2,n

))
≥ R1/3

pub(⊕PMn+2
n ).

Proof. A Boolean matrix of size (n + 2) × n naturally corresponds to a subset of edges of Kn+2,n. A
falsified clause encoding that a vertex must be covered by a matching corresponds to an all-zero row or
column of the matrix; a falsified clause, encoding that a vertex can not be covered by a matching twice,
corresponds to two ones in the same row or column.

Theorem 2 follows from Proposition 15 and the following theorem.
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Theorem 16. R1/3
pub(⊕PMn+2

n ) = Ω(n).
Proof. We assume that n = 4m + 1, where m is a non-negative integer. If the theorem is true for all n
with the residue 1 modulo 4, then it also holds for all other n. Indeed, the protocol for ⊕PMn+3

n+1 can be
used for ⊕PMn+2

n by adding to Alice’s matrix an extra column and a row with exactly one 1-cell on their
intersection and to Bob’s matrix an extra column and a row with all zeros.

Let P0 be a protocol for ⊕PMn+2
n transmitting at most k bits. We are going to apply P0(X,Y )

only to the instances where the matrix X + Y does not contain all-zero rows or columns. Thus, we
assume that with probability at least 2/3 P0 returns a tuple (r1, c1, r2, c2) ∈ ([n + 2] × [n])2 such that

(X + Y )r1,c1 = (X + Y )r2,c2 = 1 and either

{
r1 = r2

c1 6= c2

or

{
r1 6= r2

c1 = c2

. With O(1) bits of communication

Alice and Bob can verify, whether the answer of P0 is correct and return ⊥ (failure) if it is not. Also, we
can reduce the failure probability by the repetition of the protocol. Let P be a protocol for ⊕PMn+2

n under
the promise that X+Y does not contain all-zero rows and columns that uses O(k) bits of communication
and returns a correct answer with probability at least 99

100 and ⊥ otherwise.
We are going to construct a protocol for DISJm transmitting O(k) bits, where m = n−1

4 . Since by
Theorem 8 any protocol for DISJm transmits Ω(m) bits, we conclude that k = Ω(m). Let Alice’s input
for DISJm be a1, . . . , am and Bob’s input be b1, . . . , bm.
Lemma 17. There exist matrices A(0), A(1), B(0), B(1) ∈ F4×4

2 such that A(x) +B(y) is a permutation
matrix iff x ∧ y is 0 and

A(1) +B(1) =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

. (1)

Proof. We simply present matrices that satisfy the conditions:

A(0) =


0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 0

; A(1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

; B(0) =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

; B(1) =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

.

Notice that Lemma 17 immediately allows to reduce DISJm to the problem of checking whether the
sum of Alices and Bobs matrices is a permutation matrix. In order to achieve that, Alice builds a matrix
A = diag(A(a1), . . . , A(am)), Bob builds a matrix B = diag(B(b1), . . . , B(bm)). It is easy to see that
A+ B is a permutation matrix iff DISJm(a, b) = 1.

Let us describe the reduction of DISJm to ⊕PMn+2
n . Alice and Bob first construct matrices X0 and

Y0 of the following form:

X0 =


A 0(n−1)×1

01×(n−1) 1

01×(n−1) 1

01×(n−1) 1

; Y0 =


B 0(n−1)×1

01×(n−1) 0

01×(n−1) 0

01×(n−1) 0

, then X0 + Y0 =


A+ B 0(n−1)×1

01×(n−1) 1

01×(n−1) 1

01×(n−1) 1

,
where A+B is a permutation matrix iff DISJm(a, b) = 1. Then if P(X0, Y0) returns two cells that do not
belong to the column n we may conclude that DISJm(a, b) = 0. If P(X0, Y0) returns two cells from the
nth column, then the value of DISJm(a, b) can not be uniquely determined. Notice that for X0 and Y0

constructed as above the protocol always returning (n+ 1, n, n+ 2, n) solves ⊕PMn+2
n .

If DISJm(a, b) = 0, then the matrix X0 + Y0 contains at least two columns with three ones and these
columns are indistinguishable from each over. To make use of that, we randomly shuffle rows and columns.
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We are going to construct a protocol T for DISJm as follows: Alice and Bob choose permutations
π ∈ Sn, τ ∈ Sn+2 and a matrix ∆ ∈ F(n+2)×n

2 uniformly at random. We define matrices Xτ,π
0 and Y τ,π

0

from Fn+2×n
2 such that for each i ∈ [n+2] and j ∈ [n], (Xτ,π

0 )i,j = (X0)τ(i),π(j) and (Y τ,π
0 )i,j = (Y0)τ(i),π(j).

Alice and Bob run the protocol P for inputsX = Xτ,π
0 +∆, Y = Y τ,π

0 +∆. Notice thatX+Y = Xτ,π
0 +Y τ,π

0 ,
thus X + Y can be obtained from X0 + Y0 by shuffling rows and columns. If P(X,Y ) returns two cells
from the column π(n), Alice and Bob return 1, if P(X,Y ) returns two cells from other column or row,
Alice and Bob return 0. If P(X,Y ) returns ⊥, then Alice and Bob return ⊥.

First notice that if DISJm(a, b) = 1, then T returns a correct answer or ⊥ with probability 1 (and the
probability of ⊥ is at most 1

100), since in that case X+Y has exactly one column with three 1-cells, each of
the other columns and rows contains exactly one 1-cell. Let us fix a, b ∈ {0, 1}m such that DISJm(a, b) = 0.
We denote p := Pr[T (a, b) = 0], we will show that p ≥ 99

200 . We can then increase this probability to 2/3
by repeating the protocol twice (if T (a, b) returns 0 at least once, we return 0, if T (a, b) always return ⊥,
we return ⊥, otherwise we return 1).

Let us describe random bits used by the constructed protocol T . First, we use random bits r to run
the protocol P. Second, we use random bits to generate π, τ , and ∆. Since DISJm(a, b) = 0, we can fix
i ∈ [m] such that ai = bi = 1. In that case the submatrix of X0 + Y0 formed by rows and columns with
the indices 4(i− 1) + 1, 4(i− 1) + 2, 4(i− 1) + 3, 4(i− 1) + 4 coincides with the matrix (1). Let us denote
by col(j) for j ∈ [n] the set of all tuples (x, j, y, j) ∈ ([n+ 2]× [n])2.

p = Pr
π,τ,∆,r

[Pr(X,Y ) 6∈ col(π(n))]−
=:p⊥

Pr
π,τ,∆,r

[Pr(X,Y ) = ⊥]

= 1− Pr
π,τ,∆,r

[Pr(X,Y ) ∈ col(π(n))]− p⊥

= 1−
∑
π0,τ0

Pr
r,∆

[Pr(Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆) ∈ col(π0(n))] Pr
π,τ

[π = π0, τ = τ0]− p⊥

Observe that for fixed π0 and τ0 the random variable (Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆) is uniformly distributed
over the pairs of matrices with the sum Xτ0,π0

0 + Y τ0,π0
0 . Let α ∈ Sn be the transposition swapping n and

4(i − 1) + 1. Let β ∈ Sn+2 be the permutation swapping n and 4(i − 1) + 2, n + 1 and 4(i − 1) + 3,
n + 2 and 4(i − 1) + 3 (i.e. β is a product of three transpositions). By the construction of α and β,
(X0 + Y0) = (Xβ,α

0 + Y β,α
0 ), thus (Xτ,π

0 + Y τ,π
0 ) = (Xτ◦β,π◦α

0 + Y τ◦β,π◦α
0 ) for every π, τ . Thus the random

variable (Xτ0◦β,π0◦α
0 + ∆, Y τ0◦β,π0◦α

0 + ∆) has the same distribution with (Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆), thus
we can continue the sequence as follows:

p = 1−
∑
π0,τ0

Pr
r,∆

[Pr(Xτ0◦β,π0◦α
0 + ∆, Y τ0◦β,π0◦α

0 + ∆) ∈ col(π0(n))] Pr
π,τ

[π = π0, τ = τ0]− p⊥

= 1−
∑
π0,τ0

Pr
r,∆

[Pr(Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆) ∈ col(π0 ◦ α−1(n))] Pr
π,τ

[π = π0, τ = τ0]− p⊥

= 1− Pr
π,τ,∆,r

[Pr(X,Y ) ∈ col((π ◦ α−1)(n))]− p⊥

≥ 1− Pr
π,τ,∆,r

[Pr(X,Y ) 6∈ col(π(n))]− p⊥ = 1− p− p⊥

Thus, p ≥ 1− p− p⊥ and p ≥ 1−p⊥
2 = 99

200 .

5 Bit pigeonhole principle with parity gadget

In this section, we prove the following theorem.
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Theorem 3. Let ` and k be natural numbers such that 2 ≤ k ≤ ` − 7. Then
R

1/3
pub

(
⊕kSearch

(
BPHP2`+2k

2`

))
= Ω

(
2`/2

k23k/2

)
. For k = 2 the stronger bound holds:

R
1/3
pub

(
⊕2Search

(
BPHP2`+4

2`

))
= Ω

(
2`
)
.

We consider a combinatorial analogue of the communication problem ⊕kSearch
(
BPHPm2`

)
. Assume

that each of k parties gets m binary strings from {0, 1}`, where m > 2`. The ith party has numbers
ai,1, . . . , ai,m ∈ {0, 1}` on their forehead. Based on these strings we form the following set of m vectors
from F`2: x1, x2, . . . , xm, where xj =

∑k
i=1 ai,j . The goal of the parties is to find a pair of different

indices t, s ∈ [m] such that xt = xs. We denote this problem by ⊕kBPHPm2` . It is straightforward
that R1/3

pub

(
⊕kSearch

(
BPHPm2`

))
≥ R

1/3
pub

(
⊕kBPHPm2`

)
, hence it is sufficient to prove a lower bound on

R
1/3
pub

(
⊕kBPHPm2`

)
.

Theorem 18. Let ` and k be natural numbers such that 2 ≤ k ≤ ` − 7. Then R1/3
pub

(
⊕kBPHP2`+2k

2`

)
=

Ω
(
R

1/3
pub

(
UDISJk,2`−k−1

)
− `
)
.

Corollary 19. R1/3
pub

(
⊕kBPHP2`+2k

2`

)
= Ω

(
2`/2

k23k/2

)
. For k = 2 the stronger bound holds:

R
1/3
pub

(
⊕2BPHP2`+4

2`

)
= Ω

(
2`
)
.

Proof of Corollary 19 . Follows from Theorem 18 and Theorem 7; for k = 2 we should apply Theorem 8.

Theorem 3 immediately follows from Corollary 19.

5.1 Warm-up example

We start with the simpler statement that, however, demonstrates the main idea of Theorem 18. Consider
the following communication problem Distinctk,`: let each of k parties has a matrix from F2`×`

2 on their
forehead. The goal is to determine, whether all rows of the sum of all these matrices are distinct. A version
of this problem without the xor-gadget is referred to as Element Distinctness (ED) in the literature [Nec66].
Proposition 20. R1/3

pub(Distinctk,`) ≥ R
1/3
pub

(
UDISJk,2`−k

)
.

Let Sk denote the set of matrices from {0, 1}2k×k with all distinct rows. Let Kk ∈ {0, 1}2
k×k

be a matrix such that its ith row equals bink(i − 1 − ((i − 1) mod 2)), i.e. the rows of Kk are
bink(0), bink(0), bink(2), bink(2), . . . , bink(2k−1− 2), bink(2k−1− 2). Notice that every row of Kk starts
with zero and appears exactly twice.

In the proof of Proposition 20 as well as in the proof of Theorem 18 we will use the following combi-
natorial lemma that we prove in Subsection 5.4.
Lemma 21. There exist matrices A1(0), A1(1), . . . , Ak(0), Ak(1) ∈ F2k×k

2 such that
∑k

i=1Ai(1) = Kk

and for all b1, b2 . . . , bk ∈ {0, 1}, if
∧k
i=1 bi = 0, then

∑k
i=1Ai(bi) ∈ Sk.

Proof of Proposition 20. Let (xi,1, . . . , xi,2`−k) be an input of the ith party of the problem UDISJk,2`−k .
For all i ∈ [k] we construct a matrix Di of size 2` × ` and put it on the forehead of the ith party. Let
Ai(b) for i ∈ [k], b ∈ {0, 1} be matrices of size 2k × k from Lemma 21. Let Jt for t ∈ [1, . . . , 2`−k] be a
matrix of size 2k × (`− k) such that all its rows are equal to bin`−k(t− 1).

Let us define

D1 :=


J1 A1(x1,1)
...

...
Jj A1(x1,j)
...

...
J2`−k A1(x1,2`−k)

; Di :=



02k×(`−k) Ai(xi,1)
...

...
02k×(`−k) Ai(xi,j)

...
...

02k×(`−k) Ai(xi,2`−k)

 for i ∈ {2, . . . , k}.
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By Lemma 21, the matrix D1 + D2 + · · · + Dk has the following property: for all j ∈ [2`−k], its
submatrix formed by the rows with numbers from [2k · (j − 1) + 1, 2k · j] has two equal rows if and only
if x1,j = x2,j = . . . = xk,j = 1. Thus, the communication complexity of UDISJk,2`−k is at most the
communication complexity of Distinctk,`.

5.2 Proof of Theorem 18

In order to prove Theorem 18 we modify the proof of Proposition 20 in order to reduce UDISJk,2`−k−1 to
⊕kBPHP2`+2k

2`
by adding “fake” rows (such rows do not correspond to the input of the unique disjointness)

to matrices D1, D2, . . . , Dk. We also use some randomization in order to hide “fake” rows among other
rows.
Proof of Theorem 18. Let N > 2`, consider a k-party communication problem ROW ⊕k BPHPN2` , where
ith party has a matrix Mi ∈ FN×`2 on their forehead and their goal is to find the value of a row of
M1 + · · ·+Mk that appears in this matrix at least twice. The difference with the problem ⊕kBPHPN2` is
that we are looking for values of a repeated row rather than numbers of equal rows.
Claim 22. If R1/3

(
⊕kBPHPN2`

)
≤ t, then there exists a communication protocol P for ROW⊕k BPHPN2`

using O(t + `) bits of communication such that P either returns the correct answer or ⊥ (failure) and
Pr[P(M1, . . . ,Mk) =⊥] ≤ 1

100 for all input matrices Mi, i ∈ [k].
Proof. P executes a randomized protocol for ⊕kBPHPN2` and verifies its answer by transferring additional
O(`) bits. The probability of failure can be reduced by repetition.

Let us describe a protocol for the problem UDISJk,2`−k−1 that uses a protocol P for ROW ⊕k
BPHP2`+2k

2`
from Claim 22.

Let x1, . . . , xk ∈ {0, 1}2
`−k−1 be inputs of the communication problem UDISJk,2`−k−1. Let xi,j denote

the jth bit of xi for i ∈ [k], j ∈ [2`−k − 1]. Let −→x = (x1, x2, . . . , xk).

Important matrices. Let γ be a bijection from [2`−k − 1] ∪ {∗} to {0, 1}`−k, we define k matrices
D1(x1, γ) and D2(x2), D3(x3), . . . , Dk(xk) of size (2` + 2k)× ` similar to Proposition 20.

Let Ai(b) for i ∈ [k], b ∈ {0, 1} be matrices of size 2k × k from Lemma 21. Let for every t ∈ {0, 1}`−k,
Jt be a matrix of size 2k × (`− k) such that all its rows are equal to t. Let W be some fixed matrix from
Sk.

We define

D1(x1, γ) :=



Jγ(1) A1(x1,1)
...

...
Jγ(j) A1(x1,j)
...

...
Jγ(2`−k−1) A1(x1,2`−k−1)

Jγ(∗) W

Jγ(∗) W


; Di(xi) :=



02k×(`−k) Ai(xi,1)
...

...
02k×(`−k) Ai(xi,j)

...
...

02k×(`−k) Ai(xi,2`−k−1)

02k×(`−k) 02k×k
02k×(`−k) 02k×k


for i ∈ [k] \ {1}.

Notice that the submatrix of D1(x1, γ) formed by the last 2k+1 rows of the matrix D1(x1, γ) contains
every its row exactly two times.

We define H−→x (γ) := D1(x1, γ) +D2(x2) + · · ·+D(xk). By Lemma 21 the matrix H−→x (γ) satisfies the
following key property w.r.t. (γ,−→x ) in the standard basis:

Definition 23. Let M be a matrix from F(2k+2`)×`
2 , γ be a bijection from [2`−k − 1] ∪ {∗} to {0, 1}`−k

and e1, e2, . . . , e` be a basis in F`.
We say that M satisfies the key property w.r.t (γ,−→x ) in the basis (e1, e2, . . . , e`) if the following

properties hold
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• If s is a row among the last 2k+1 rows of M , then
– the first `− k coordinates of s in the basis (e1, e2, . . . , e`) are γ(∗)1, . . . γ(∗)`−k;
– s appears in M exactly twice.

• If s is a row of M among the rows with numbers [2k(i− 1) + 1; 2ki] for i ∈ [2`−k − 1], then
– the first `− k coordinates of s in the basis (e1, e2, . . . , e`) are γ(i)1, . . . , γ(i)`−k;
– if

∧k
j=1 xi,j = 0, then s appears in M exactly once.

– if
∧k
j=1 xi,j = 1, then s appears in M exactly twice and (` − k + 1)th coordinate of s in the

basis (e1, e2, . . . , e`) is 0.
Consider an invertible matrix E ∈ F`×`2 . Let e1, e2, . . . , e` be the rows of E. Since E is invertible,

e1, e2, . . . , e` form a basis. Let us define C−→x (γ,E) := H(−→x , γ)E. Rows of C−→x (γ,E) can be viewed as
vectors with coordinates in the basis e1, e2, . . . , e` corresponding to the rows of H(−→x , γ). Hence, C−→x (γ,E)
satisfies the key property w.r.t. (γ,−→x ) in the basis (e1, e2, . . . , e`).

For a bijection γ from [2`−k − 1] ∪ {∗} to {0, 1}`−k and an invertible matrix E ∈ F`×`2 we define a set
Fake(γ,E) ⊆ F`2 as a set of the last 2k+1 rows of the matrix C−→x (γ,E). Notice that by the construction this
set does not depend on −→x . By the key property rows from Fake(γ,E) appear exactly twice in C−→x (γ,E).

Random variables. Our protocol uses the following public random variables. In order to distinguish
random variables from their values, we highlight random variables in bold.
• γγγ is a random bijection from [2`−k − 1] ∪ {∗} to {0, 1}`−k distributed uniformly among all such

bijections.
• EEE is a random invertible matrix from F`×`2 distributed uniformly among all such matrices.
• πππ is a random permutation of the set [2` + 2k] and Mπππ is a permutation matrix of size (2` + 2k)×

(2` + 2k) corresponding to the permutation πππ (i.e. (Mπππ)i,j = 1 ⇐⇒ πππ(i) = j).
• ∆∆∆1,∆∆∆2, . . . ,∆∆∆k are random matrices from F(2`+2k)×`

2 distributed uniformly on the set of all matrices
∆1,∆2, . . . ,∆k such that ∆1 + ∆2 + . . .+ ∆k is the zero matrix.

We define random matrices PPP 1,PPP 2, . . . ,PPP k as follows: PPP i = Mπππ · Di(xi) · EEE + ∆∆∆i for i ≥ 2 and PPP 1 =
Mπππ ·D1(x1, γγγ) ·EEE + ∆∆∆1.
• The addition of ∆∆∆i makes PPP i indistinguishable from the random matrix for every i ∈ [k].
•
∑k

i=1PPP i = MπππC−→x (γγγ,EEE) and this matrix is obtained from C−→x (γγγ,EEE) by the permutation πππ applied
to its rows.

Recall that P is the protocol for ROW ⊕k BPHP2`+2k

2`
from Claim 22. Let N be a constant to be

chosen later. The protocol T solving UDISJk,2`−k−1 is described by Algorithm 1.

Protocol analysis. Let us analyze the protocol T . Since it executes the protocol P a constant number
of times, T transmits O(t + `) bits. Assume that x1, x2, . . . , xk is a 1-instance of UDISJk,2`+2k . Then
by the key property of C−→x (γγγ,EEE) all repeated rows of

∑k
i=1PPP i are in Fake(γγγ,EEE), hence the protocol T

returns either ⊥ or the correct answer. Since P is executed N times independently, the probability that
Z = {⊥} is at most 1

100N
, hence T returns 1 with probability at least 1− 1

100N
.

The rest of the proof is devoted to the analysis of the case, where x1, x2, . . . , xk is a 0-instance of
UDISJk,2`+2k . This is the most technically involved part of the proof. So it is a good point to give a
large scale overview of the further proof strategy. Our goal is to show that if x1, x2, . . . , xk is a
0-instance of UDISJk,2`+2k , then the probability that P(PPP 1, . . . ,PPP k) returns a value from Fake(γγγ,EEE) is
bounded by some constant less than 1. The random variable P(PPP 1, . . . ,PPP k) depends on random bits used
by the protocol P and on random bits needed for sampling PPP 1, . . . ,PPP k. Let R denote the set of all random
strings used by the protocol P (i.e. we assume that P sample a random string from R and use it as public
randomness) and S denote the set of all random strings used for sampling PPP 1, . . . ,PPP k. We would like to
construct two bijections α and β on the set S such that for every s ∈ S the following two properties hold.

1. The three values of random variable (PPP 1, . . . ,PPP k) sampled using three strings s, α(s) and β(s) as a
random source, are the same.
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Algorithm 1 Protocol T solving UDISJk,2`−k−1

Input x1, x2, . . . , xk ∈ {0, 1}2
`−k−1; xi is written on the forehead of the ith party for every i ∈ [k].

Z := ∅
loop repeat N times

Sample π ← πππ, E ← EEE, γ ← γγγ,
−→
∆ ←

−→
∆
−→
∆
−→
∆ . Use fresh public random bits

P1 := Mπ ·D1(x1, γ) · E + ∆1 . Can be computed by parties 2, 3, . . . , k

Pi := Mπ ·Di(xi) · E + ∆i for i ≥ 2 . Can be computed by all parties except the ith
z := P(P1, . . . , Pk) . Use fresh random bits for P and assume that Pi is

written on the ith party’s forehead.
Z := Z ∪ {z}

if Z = {⊥} then return ⊥
else if Z \ {⊥} ⊆ Fake(γ,E) then return 1 . Intuitively this step means that most likely there

are no more repeated rows in C−→x (γ,E) except
Fake(γ,E) and, hence, DISJ(x1, x2, . . . , xk) = 1

by the key property of C−→x (γ,E).
return 0

2. Let (γ,E), (γα, Eα) and (γβ, Eβ) be values of the random variable (γγγ,EEE) that is sampled using three
strings s, α(s) and β(s) as a random source. Then Fake(γ,E) ∩ Fake(γα, Eα) ∩ Fake(γβ, Eβ) = ∅.

Consider arbitrary strings r ∈ R and s ∈ S. The first property implies that for random variables
sampled using strings (r, s), (r, α(s)) and (r, β(s)) as a random source values of P(P1P1P1, . . . ,PkPkPk) are the
same. The second property implies that for at least one of this cases this value does not belong to
Fake(γγγ,EEE). Then, using that α and β are bijections, we get Pr[P(P1P1P1, . . . ,PkPkPk) ∈ Fake(γγγ,EEE)] ≤ 2

3 .
Since we have many random variables, it is a tedious task to construct such α and β. In order to

simplify this task we slightly relax the properties. We will define bijections α and β not on all strings
S but only on the part of bits corresponding to sampling of γγγ and EEE. More precisely we will define two
bijections α and β on the set of values of the random variable (γγγ,EEE). We relax the first property as
follows:
1’. For every γ and E the three conditional distributions of the random variable (P1P1P1, . . . ,PkPkPk) un-

der the following three conditions coincide: (a) (γγγ,EEE) = (γ,E), (b) (γγγ,EEE) = α(γ,E) and
(c) (γγγ,EEE) = β(γ,E).

Unfortunately, we were not able to construct such bijections on the set of all pairs (γ,E). Thus we
take a set Ξ consisting 1−δ fraction of all values of (γγγ,EEE) and we will claim that α and β are bijections on
Ξ. Such relaxation will weaken the bound of the probability up to 2

3 + δ. We formalize the requirements
to Ξ, α and β in Definition 24. Then we verify in Claim 25 that these requirements are sufficient to bound
Pr[P(P1P1P1, . . . ,PkPkPk) ∈ Fake(γγγ,EEE)]. The construction of Ξ, α and β is given in Subsection 5.3.
Definition 24. Let x1, . . . , xk be a 0-instance of UDISJk,2`−k−1 and 1 > δ ≥ 0 be an arbitrary constant.
Let Ξ be a set consisting of pairs (γ,E), where γ is a bijection from [2`−k − 1] ∪ {∗} to {0, 1}`−k, E is
an invertible matrix from F`×`2 . Let α and β be bijections from Ξ to Ξ. We say that (Ξ, α, β) forms a
(1− δ)-symmetry randomness space for −→x if the following conditions hold:
• (Largeness) Pr[(γγγ,EEE) ∈ Ξ] ≥ 1− δ.
• (Difference) For all (γ,E) ∈ Ξ, Fake(γ,E) ∩ Fake(α(γ,E)) ∩ Fake(β(γ,E)) = ∅.
• (Symmetry) For all (γ,E) ∈ Ξ the matrices C−→x (γ,E), C−→x (α(γ,E)) and C−→x (β(γ,E)) differ only by

a permutation of rows.
Claim 25. Assume that x1, . . . , xk is a 0-instance of UDISJk,2`−k−1, 1 > δ ≥ 0 is a constant. Let (Ξ, α, β)
form a (1− δ)-symmetry randomness space for −→x
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Then
Pr[P(PPP 1,PPP 2, . . . ,PPP k) ∈ Fake(γγγ,EEE)] ≤ 2

3
+ δ.

Proof. Let us denote
−→
PPP = (PPP 1,PPP 2, . . . ,PPP k),

−→
∆∆∆ = (∆∆∆1,∆∆∆2, . . . ,∆∆∆k) and

−→
D(−→x , γ) =

(D1(x1, γ), D2(x2), . . . , Dk(xk)).−→
PPP = (∆∆∆1 + MπππD1(x1, γγγ)EEE,∆∆∆2 + MπππD2(x2)EEE, . . . ,∆∆∆k + MπππDk(xk)EEE), for brevity we use the vector

notation
−→
PPP =

−→
∆∆∆ +Mπππ(

−→
D(−→x ,γγγ)EEE).

Let p := Pr
[
P
(−→
PPP
)
∈ Fake(γγγ,EEE)

]
.

p =
∑
γ,E

Pr
[
P
(−→

∆∆∆ +Mπππ

(−→
D(−→x , γ) · E

))
∈ Fake(γ,E)

]
· Pr[γγγ = γ,EEE = E]

(Largeness)
≤

∑
(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γ) · E

))
∈ Fake(γ,E)

]
· Pr[γγγ = γ,EEE = E] + δ

Notice that for fixed γ,E the random variable
−→
∆∆∆ + Mπππ ·

(−→
D(−→x , γ) · E

)
is distributed uniformly on

the set of tuples (L1, . . . , Lk) of k matrices from F(2`+2k)×`
2 such that

∑k
i=1 Li differs from C−→x (γ,E)

only by a permutation of rows. Let (γα−1 , Eα−1) = α−1(γ,E). By the symmetry condition, matrices
C−→x (γ,E) and C−→x (γα−1 , Eα−1) differ only by permutation of rows. Thus, for every set A the probability
Pr
[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γ) · E

))
∈ A

]
= Pr

[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γα−1) · Eα−1

))
∈ A

]
. Hence,

p ≤
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γα−1) · Eα−1

))
∈ Fake(γ,E)

]
· Pr[γγγ = γ,EEE = E] + δ

=
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γ) · E

))
∈ Fake(α(γ,E))

]
· Pr[(γγγ,EEE) = α(γ,E)] + δ

=
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γ) · E

))
∈ Fake(α(γ,E))

]
· Pr[(γγγ,EEE) = (γ,E)] + δ

= Pr
[
P
(−→
PPP
)
∈ Fake(α(γγγ,EEE)), (γγγ,EEE) ∈ Ξ

]
+ δ.

Analogously, p ≤ Pr
[
P
(−→
PPP
)
∈ Fake(β(γγγ,EEE)), (γγγ,EEE) ∈ Ξ

]
+ δ. Also the inequality p ≤

Pr
[
P
(−→
PPP
)
∈ Fake(γγγ,EEE), (γγγ,EEE) ∈ Ξ

]
+ δ follows by the largeness condition. Then,

3(1− p) ≥Pr
[
P
(−→
PPP
)
6∈ Fake(β(γγγ,EEE)) ∨ (γγγ,EEE) 6∈ Ξ

]
+ Pr

[
P
(−→
PPP
)
6∈ Fake(α(γγγ,EEE)) ∨ (γγγ,EEE) 6∈ Ξ

]
+ Pr

[
P
(−→
PPP
)
6∈ Fake(γγγ,EEE) ∨ (γγγ,EEE) 6∈ Ξ

]
− 3δ

≥Pr
[
P
(−→
P
)
6∈ Fake(γγγ,EEE) ∩ Fake(α(γγγ,EEE)) ∩ Fake(β(γγγ,EEE)) ∨ (γγγ,EEE) 6∈ Ξ

]
− 3δ

=1− 3δ.

The last equality follows by the difference condition. Hence, 3(1− p) ≥ 1− 3δ, thus p ≤ 2
3 + δ.

We prove the following lemma in Subsection 5.3
Lemma 26. Let x1, . . . , xk be a 0-instance of UDISJk,2`−k−1. Then for some δ < 1

3 −
1

100 there exists a
(1− δ)-symmetry randomness space for −→x .
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Lemma 26 and Claim 25 imply that there is a constant ε > 0 such that

Pr[P(PPP 1,PPP 2, . . . ,PPP k) 6∈ Fake(γγγ,EEE)] ≥ ε+
1

100
.

Thus,
Pr[P(PPP 1,PPP 2, . . . ,PPP k) 6∈ Fake(γγγ,EEE) ∪ {⊥}] ≥ ε.

Then, for N = O
(
log 1

ε

)
, T gives a correct answer for every 0-instance with probability at least 2

3 .

5.3 Constructions of Ξ, α and β

Proof of Lemma 26. Assume that x1, . . . , xk is a 0-instance UDISJk,2`−k−1. Let i0 ∈ [2`−k − 1] be such
that x1,i0 = x2,i0 = . . . = xk,i0 = 1.

Hereinafter γ denotes a bijection from [2`−k − 1] ∪ {∗} to {0, 1}`−k, E denotes an invertible matrix
from F`×`2 and e1, e2, . . . , e` denote rows of E.

Before presenting constructions of Ξ, α, and β we explain how we are going to establish symmetry and
difference properties from Definition 24.

For every s ∈ {0, 1}`−k and b ∈ {0, 1} we introduce the following notation:

R(s, b, E) :=
{

(s, b, z) · E | z ∈ Fk−1
2

}
.

Using the key property of the matrix C−→x (γ,E) we can describe rows of C−→x (γ,E) in terms of R(s, b, E).
Claim 27. • The set of the last 2k+1 rows of C−→x (γ,E) is R(γ(∗), 0, E) ∪ R(γ(∗), 1, E) and each

of this rows appears exactly twice. Recall that we already denote this set as Fake(γ,E). Hence,
Fake(γ,E) = R(γ(∗), 0, E) ∪R(γ(∗), 1, E).
• The set of rows of C−→x (γ,E) with indices from [2k(i − 1) + 1; 2ki] for i ∈ [2`−k−1] \ {i0} is exactly
R(γ(i), 0, E) ∪R(γ(i), 1, E) and every such row appears exactly once.
• The set of rows of C−→x (γ,E) with indices from [2k(i0 − 1) + 1; 2ki0] is exactly R(γ(i0), 0, E) and

every such row appears exactly twice.
Claim 28. R(s, b, E) can be represented as a shift of the linear space Span(e`−k+2, . . . , e`):

R(s, b, E) =

`−k∑
j=1

sjej + b · e`−k+1

+ Span(e`−k+2, . . . , e`).

Proof.

R(s, b, E) =
{

(s, b, z) · E | z ∈ Fk−1
2

}
=
{

(s, b, z) · (e1, e2, . . . , e`)
T | z ∈ Fk−1

2

}
=

`−k∑
i=j

sjej + b · e`−k+1 +

k−1∑
i=1

zie`−k+1+i | z ∈ Fk−1
2

 =

`−k∑
j=1

sjej + b · e`−k+1

+ Span(e`−k+2, . . . , e`).

Claim 29. For every s ∈ {0, 1}`−k and b ∈ {0, 1}, |R(s, b, E)| = 2k−1.

Proof. By Claim 28, |R(s, b, E)| =
∣∣∣(∑`−k

j=1 sjej + b · e`−k+1

)
+ Span(e`−k+2, . . . , e`)

∣∣∣ =

|Span(e`−k+2, . . . , e`)| = 2k−1.
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Claim 30. Sets R(s, b, E) for s ∈ {0, 1}`−k and b ∈ {0, 1} are disjoint.
Proof. Consider two vectors u ∈ R(s, b, E) and v ∈ R(s′, b′, E) such that (s, b) 6= (s′, b′). Then, by
Claim 28, u and v have different coordinates in the basis e1, e2, . . . , e`, hence u 6= v.

Claim 31. Assume that γ, γ′ are bijections from [2`−k− 1]∪{∗} to {0, 1}`−k and E and E′ are invertible
matrices from F`×`2 such that
• R(γ(i0), 0, E) ∪R(γ(∗), 0, E) ∪R(γ(∗), 1, E) = R(γ′(i0), 0, E′) ∪R(γ′(∗), 0, E′) ∪R(γ′(∗), 1, E′);
• R(γ(i0), 1, E) = R(γ′(i0), 1, E′).

Then matrices C−→x (γ,E) and C−→x (γ′, E′) differ only by a permutation of rows.
Proof. By Claim 27, rows from R(γ(i0), 1, E) do not appear in C−→x (γ,E), rows from R(γ(i0), 0, E) ∪
R(γ(∗), 0, E) ∪ R(γ(∗), 1, E) appear in C−→x (γ,E) exactly twice. The matrix C−→x (γ,E) has 2` + 2k rows.
All rows of C−→x (γ,E) that are not in R(γ(i0), 1, E) ∪ R(γ(∗), 0, E) ∪ R(γ(∗), 1, E), by Claim 27, appear
in C−→x (γ,E) exactly once.

By Claims 29 and 30, |R(γ(i0), 0, E) ∪ R(γ(∗), 0, E) ∪ R(γ(∗), 1, E)| = 3 · 2k−1, hence, the number of
rows of C−→x (γ,E) that are not in R(γ(i0), 1, E)∪R(γ(∗), 0, E)∪R(γ(∗), 1, E) equals 2`−2k+1. By Claims 29
and 30, the number of `-bit strings not from R(γ(i0), 1, E)∪R(γ(i0), 0, E)∪R(γ(∗), 0, E)∪R(γ(∗), 1, E)
is also 2`−2k+1. Hence, all rows from {0, 1}` \(R(γ(i0), 0, E)∪R(γ(∗), 0, E)∪(γ(∗), 1, E)∪R(γ(i0), 1, E))
appear in C−→x (γ,E) exactly once. Thus, matrices C−→x (γ,E) and C−→x (γ′, E′) have the same set of rows and
each row appears the same number of times in each of these matrices.

For α, β : Ξ→ Ξ we denote α(γ,E) = (γα, Eα) and β(γ,E) = (γβ, Eβ). We are going to construct α
and β such that for all (γ,E) ∈ Ξ the following equalities are satisfied.

R(γ(i0), 1, E) = R(γα(i0), 1, Eα) = R(γβ(i0), 1, Eβ);
R(γ(i0), 0, E) = R(γα(∗), 0, Eα) = R(γβ(∗), 0, Eβ);
R(γ(∗), 1, E) = R(γα(∗), 1, Eα) = R(γβ(i0), 0, Eβ);
R(γ(∗), 0, E) = R(γα(i0), 0, Eα) = R(γβ(∗), 1, Eβ).

(2)

Notice that by Claim 31, equations (2) imply the symmetry property. Equations (2) also imply the
difference property. Indeed,
• Fake(γ,E) = R(γ(∗), 1, E) ∪R(γ(∗), 0, E);
• Fake(γα, Eα) = R(γα(∗), 1, Eα) ∪R(γα(∗), 0, Eα) = R(γ(∗), 1, E) ∪R(γ(i0), 0, E);
• Fake(γβ, Eβ) = R(γβ(∗), 1, Eβ) ∪R(γβ(∗), 0, Eβ) = R(γ(∗), 0, E) ∪R(γ(i0), 0, E).
Hence, by Claim 30, Fake(γ,E) ∩ Fake(γα, Eα) ∩ Fake(γβ, Eβ) = ∅.
In order to complete the proof of the lemma we have to construct Ξ and bijections α, β из Ξ→ Ξ such

that
• (Largeness) Pr[(γγγ,EEE) ∈ Ξ] > 2

3 + 1
100 ;

• and for all (γ,E) ∈ Ξ the equations (2) are satisfied.
Definition of Ξ. A pair (γ,E) is in Ξ iff there exist m,n ∈ [`− k] such that (γ(∗))m = 1, (γ(i0))m = 0
and (γ(∗))n = 0, (γ(i0))n = 1. In other words, γ(∗) и γ(i0) are not comparable with respect to coordinate-
wise comparison.

Notice that γγγ(i0) and γγγ(∗) are distributed uniformly among non-equal elements of {0, 1}`−k. Let SSS
and TTT are two independent random variables distributed uniformly on the set of all subsets of [` − k].
Then,

Pr[(γγγ,EEE) ∈ Ξ] =1− Pr[γγγ(i0) ≤ γγγ(∗) ∨ γγγ(∗) ≤ γγγ(i0)] ≥ 1− 2 Pr[γγγ(i0) ≤ γγγ(∗)]
=1− 2 Pr[SSS ⊆ TTT | SSS 6= TTT ] ≥ 1− 2 Pr[SSS ⊆ TTT ]

=1− 2
`−k∏
j=1

(1− Pr[j ∈ SSS ∧ j 6∈ TTT ]) = 1− 2

(
3

4

)`−k
>

2

3
+

1

100
if `− k ≥ 7.

Hence, the largeness property is satisfied.
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Construction of α. Let (γ,E) ∈ Ξ, we define α(γ,E) = (γα, Eα), where Eα is a matrix with rows
defined by vectors (e′1, . . . , e

′
`) = (e1, . . . , e`−k, e`−k+1 +

∑`−k
j=1(γ(i0)j + γ(∗)j)ej , e`−k+2, . . . , e`), and

γα(i) =


γ(∗) if i = i0

γ(i0) if i = ∗
γ(i) otherwise

.

Claim 32. α is a bijection from Ξ→ Ξ.
Proof. Notice that rows of E′ form a basis since

∑`−k
j=1(γ(i0)j + γ(∗)j)ej ∈ Span(e1, . . . , e`−k). The

mapping γ 7→ γα is bijective since it just swaps γ(i0) and γ(∗). Since the condition on γ(i0) and γ(∗)
does not change after application of α, we get that α(Ξ) ⊆ Ξ. Notice that

∑`−k
j=1(γ(i0)j + γ(∗)j)ej =∑`−k

j=1(γα(i0)j + γα(∗)j)e′j , hence α(γα, Eα) = (γ,E), hence α is bijective.

Claim 33. For all (γ,E) ∈ Ξ the following equalities hold
1. R(γα(i0), 1, Eα) = R(γ(i0), 1, E);
2. R(γα(i0), 0, Eα) = R(γ(∗), 0, E);
3. R(γα(∗), 0, Eα) = R(γ(i0), 0, E);
4. R(γα(∗), 1, Eα) = R(γ(∗), 1, E).

Proof. We use Claim 28. Let us denote S := Span(e`−k+2, . . . , e`) = Span(e′`−k+2, . . . , e
′
`).

1. R(γα(i0), 1, Eα) =
(∑`−k

j=1 γα(i0)je
′
j + e′`−k+1

)
+ S =

(∑`−k
j=1 γ(∗)jej + e′`−k+1

)
+ S =(∑`−k

j=1 γ(i0)jej + e`−k+1

)
+ S = R(γ(i0), 1, E);

2. R(γα(i0), 0, Eα) =
(∑`−k

j=1 γα(i0)je
′
j

)
+ S =

(∑`−k
j=1 γ(∗)jej

)
+ S = R(γ(∗), 0, E);

3. R(γα(∗), 0, Eα) =
(∑`−k

j=1 γα(∗)je′j
)

+ S =
(∑`−k

j=1 γ(i0)jej

)
+ S = R(γ(i0), 0, E);

4. R(γα(∗), 1, Eα) =
(∑`−k

j=1 γα(∗)je′j + e′`−k+1

)
+ S =

(∑`−k
j=1 γ(i0)jej + e′`−k+1

)
+ S =(∑`−k

j=1 γ(∗)jej + e`−k+1

)
+ S = R(γ(∗), 1, E).

Construction of β. For (γ,E) ∈ Ξ, we define β(γ,E) = (γβ, Eβ), where γβ = γα and Eβ is defined
below. Let jmin = min{j ∈ [`− k] : (γ(∗))j = 1 ∧ (γ(i0))j = 0}; jmin is correctly defined since (γ,E) ∈ Ξ.
Now we define Eβ = (e′′1, . . . , e

′′
` ):

e′′j =


ej if j 6∈ {jmin, `− k + 1}∑`−k

i=1 (γ(∗)i + γ(i0)i)ei if j = `− k + 1

ejmin + e`−k+1 if j = jmin

.

Claim 34. β is a bijection from Ξ→ Ξ.
Proof. Let us verify that β is injective. Given γβ we can easily recover γ, hence we can recover jmin as
well. Then

`−k∑
i=1

(γ(i0)i + γ(∗)i)e′′i + e′′`−k+1 =
∑

i∈[`−k]\{jmin}

(γ(i0)i + γ(∗)i)ei +

e′′jmin︷ ︸︸ ︷
ejmin + e`−k+1 +e′′`−k+1

= e`−k+1 +
∑

i∈[`−k]\{jmin}

(γ(i0)i + γ(∗)i)ei + ejmin︸ ︷︷ ︸
e′′`−k+1

+e′′`−k+1 = e`−k+1.
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Thus, we can uniquely recover e`−k+1 and, hence, also recover ejmin = e′′jmin
+e`−k+1; for j ∈ [`]\{jmin, `−

k + 1}, ej = e′′j . Hence, β is injective. Notice that since we represent e1, . . . , e` as linear combinations of
e′′1, . . . , e

′′
` , then e′′1, . . . , e

′′
` is a basis, hence the matrix Eβ is invertible. Thus, we verify that β(Ξ) ⊆ Ξ

and β is injective, hence β is bijective.

Claim 35. For all (γ,E) ∈ Ξ the following equalities hold
1. R(γβ(i0), 1, Eβ) = R(γ(i0), 1, E);
2. R(γβ(i0), 0, Eβ) = R(γ(∗), 1, E);
3. R(γβ(∗), 0, Eβ) = R(γ(i0), 0, E);
4. R(γβ(∗), 1, Eβ) = R(γ(∗), 0, E);

Proof. We denote S := Span(e`−k+2, . . . , e`) = Span(e′′`−k+2, . . . , e
′′
` ). Recall that γ(∗)jmin = 1 and

γ(i0)jmin = 0.
1. R(γβ(i0), 1, Eβ) =

∑`−k
i=1 γβ(i0)ie

′′
i +e′′`−k+1+S =

∑`−k
i=1 γ(∗)iei+e`−k+1+e′′`−k+1+S =

∑`−k
i=1 γ(∗)iei+

e`−k+1 +
∑`−k

i=1 (γ(∗)i + γ(i0)i)ei + S =
∑`−k

i=1 γ(i0)iei + e`−k+1 + S = R(γ(i0), 1, E);
2. R(γβ(i0), 0, Eβ) =

∑`−k
i=1 γβ(i0)ie

′′
i + S =

∑`−k
i=1 γ(∗)iei + e`−k+1 + S = R(γ(∗), 1, E);

3. R(γβ(∗), 0, Eβ) =
∑`−k

i=1 γβ(∗)ie′′i + S =
∑`−k

i=1 γ(i0)iei + S = R(γ(i0), 0, E);
4. R(γβ(∗), 1, Eβ) =

∑`−k
i=1 γβ(∗)ie′′i + e′′`−k+1 + S =

∑`−k
i=1 γ(i0)iei + e′′`−k+1 + S =

∑`−k
i=1 γ(∗)iei + S =

R(γ(∗), 0, E).

Claims 33 and 35 imply the equations 2.

5.4 Proof of Lemma 21

To prove Lemma 21 it is sufficient to prove the following:
Proposition 36. There exist matrices T1, . . . , Tk ∈ F2k×k

2 , such that
• for α1, . . . , αk ∈ {0, 1} the matrix

∑k
i=1 αiTi is zero iff α1 = α2 = . . . = αk = 0, i.e. T1, . . . , Tk are

linearly independent;
• For every non-zero matrix M ∈ Span(T1, . . . , Tk), M +Kk ∈ Sk.

Proof of Lemma 21. Let for i ∈ {1, . . . , k−1}, Ai(0) = Ti and Ai(1) be the zero matrix. Let Ak(0) = Kk+
Tk, Ak(1) = Kk. For each b1, . . . , bk ∈ {0, 1},

∑k
i=1Ai(bi) =

∑k
i=1(1−bi)Ti+Kk. Then

∑k
i=1Ai(1) = Kk,

and if for at least one i ∈ [k], bi 6= 1, then by the first condition of Proposition 36,
∑k

i=1(1− bi)Ti differs
from zero, thus by the second condition of Proposition 36,

∑k
i=1Ai(bi) ∈ Sk.

Proof of Proposition 36. Let us prove the proposition by induction on k. We are going to prove a stronger
statement: namely, we additionally require that for arbitrary non-zero matrix M ∈ Span(T1, . . . , Tk) the
set of even-indexed rows of M + Kk ∈ Sk coincide with the set of odd-indexed rows of this matrix with
all bits flipped.

The base case k = 1. T1 =

(
0
1

)
, and K1 =

(
0
0

)
. It is easy to verify that all conditions hold.

Induction step from k to k + 1. Notice that Kk+1 =

(
Kk 02k×1

Kk 12k×1

)
. Let T1, . . . Tk be the matrices

from induction hypothesis for k. Then define T ′i =

(
Ti 02k×1

Ti 02k×1

)
for i ∈ [k] and T ′k+1 =

(
02k×k z0

12k×k z1

)
,

where z0 = (0, 1, 0, 1, . . . , 0, 1)T ∈ {0, 1}2k×1, and z1 = (1, 0, 1, 0 . . . , 1, 0)T ∈ {0, 1}2k×1.
Let us verify that all conditions hold. First we show that the matrices T ′1, T ′2, . . . , T ′k+1 are linearly

independent. Matrices T ′1, T ′2, . . . , T ′k are linearly independent since they contain linearly independent
blocks T1, . . . , Tk. The matrix T ′k+1 does not belong to Span(T ′1, . . . , T

′
k), since the last column of T ′k+1 is

non-zero, but the last columns of all T ′1, . . . , T ′k are zeros.
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Let us check that for any non-zero matrixM ∈ Span(T ′1, . . . , T
′
k, T

′
k+1), the conditionM+Kk+1 ∈ Sk+1

holds and the set of even-indexed rows of M + Kk+1 coincide with the set of odd-indexed rows of this
matrix with all bits flipped. Let us analyze the cases:

1. LetM be a non-zero matrix from Span(T ′1, . . . , T
′
k). Then,M has form

(
M ′ 02k×1

M ′ 02k×1

)
, whereM ′ is a

non-zero matrix from Span(T1, . . . , Tk), thusM ′+Kk ∈ Sk. ThenM+Kk+1 =

(
M ′ +Kk 02k×1

M ′ +Kk 12k×1

)
;

it follows from the induction hypothesis that all rows of this matrix are distinct, i.e. M + Kk+1 ∈
Sk+1. In order to verify that the set of even-indexed rows of this matrix coincide with the set of odd-
indexed rows with all bits flipped, observe that by induction hypothesis the first 2k−1 even-indexed
rows of M +Kk+1 coincide with the last 2k−1 odd-indexed rows of M +Kk+1 with all bits flipped,
and the first 2k−1 odd-indexed rows of M +Kk+1 coincide with the last 2k−1 even-indexed rows of
M +Kk+1 with flipped bits.

2. M = T ′k+1, then M + Kk+1 =

(
Kk z0

12k×k +Kk z0

)
. Let us show that all rows of this matrix are

distinct. The first 2k rows start with 0 and are obtained by appending zeroes and ones to the rows
of Kk in the alternating order. Since for every pair of coinciding rows of Kk they are adjacent, the
first 2k rows are distinct. The last 2k rows start from one, so they differ from the first 2k rows. The
proof that they are distinct is the same as for the first 2k rows. Observe that the (2i − 1)th row
of the matrix M +Kk+1 coincide with the (2k + 2i)th row of M +Kk+1 with flipped bits, and the
(2i)th row of M + Kk+1 coincide with the (2k + 2i − 1)th row of M + Kk+1 with flipped bits for
i ∈ [2k].

3. M = R + T ′k+1, where R is a non-zero matrix from Span(T ′1, . . . , T
′
k). Let R have the form(

R′ 02k×1

R′ 02k×1

)
, where R′ is a non-zero matrix from Span(T1, . . . , Tk). Then M + Kk+1 = R +

T ′k+1 +Kk+1 =

(
R′ +Kk z0

12k×k +R′ +Kk z0

)
. By the induction hypothesis, R′ +Kk ∈ Sk and its even-

indexed rows coincide with its odd-indexed rows with flipped bits. Then, all even-indexed rows of
M +Kk+1 end with 0, the first 2k−1 of them are even-indexed rows of R′+Kk with appended zero,
and the last 2k−1 of them are even-indexed rows of R′ + Kk with all bits flipped and appended 0.
Then, by the induction hypothesis, the set of the former rows does not intersect with the set of the
latter rows, therefore they are all distinct. By the same argument, all the rows of M + Kk+1 that
end with 1 are distinct. Thus, M +Kk+1 ∈ Sk+1.
Let us verify that the set of even-indexed rows of this matrix coincide with the set of odd-indexed
rows of this matrix with all bits flipped. Observe that if the ith row of R′ +Kk coincides with the
jth row of R′ +Kk with flipped bits, then the ith row of M +Kk+1 coincides with its jth row with
flipped bits, and the (2k + i)th row of M + Kk+1 coincides with its (2k + j)th row with all bits
flipped. The required property follows from the induction hypothesis.

5.5 Corollaries

Corollary 37. If k+ 7 ≤ `, then the size of any semantic Res(PCk−1) tree-like refutation of BPHP2`+2k

2`

is at least 2
Ω

(
2`/2

k23k/2

)
. For k = 2, the size of any tree-like semantic Res(⊕) refutation of BPHP2`+4

2`
in is

at least 2Ω(2`).
Proof. Follows from Theorem 3 and Lemma 1.

Corollary 38. Let 2 ≤ k ≤ `−7 and S be the minimal size of tree-like refutation of ϕ = BPHP2`+2k

2`
◦⊕k

in the semantic proof system Tcc(k, c). Then logS log logS ≥ c · Ω
(

2`/2

k23k/2

)
. For k = 2, logS log logS ≥
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c · Ω
(
2`
)
.

Proof. By Lemma 9, R
1/3
pub(Search(ϕ)) = O

(
logS log logS

c

)
. We also know that

R
1/3
pub

(
Search

(
BPHP2`

2`+2k ◦ ⊕k
))

≥ R
1/3
pub

(
⊕kSearch

(
BPHP2`

2`+2k

))
. Now the statement follows

from Theorem 3.

6 Bit pigeonhole principle

6.1 Reduction from BPHP ◦ ⊕k to BPHP

Let T ⊆ X1 ×X2 × · · · ×Xk × Y and S ⊆ Z1 × Z2 × · · · × Zk ×W be two relations. We say that S is
many-one reducible to T if there are k + 1 mappings f1 : X1 → Z1, f2 : X2 → Z2, . . . , fk : Xk → Zk and
g : W → Y such that if (f1(x1), . . . , fk(xk), y) ∈ T then (x1, . . . , xk, g(y)) ∈ S.
Lemma 39. If S is many-one reducible to T , then Rpub1/3(S) ≤ Rpub1/3(T ).
Proof. The ith party computes f(xj) for all j ∈ [k] \ {i} and then all parties run the optimal protocol for
T . As soon as all the parties learn an answer y they compute g(y) without communication.

Recall that BPHPM2n encodes that there exist M different strings s1, s2, . . . , sM from {0, 1}n. Let k be
a positive integer. Let us define the partition Πk of the variables of BPHPM2n into k parts. Let n = `k+ r

where 0 ≤ r < k. For each i ∈ [M ] the row si is partitioned into k parts s = s
(1)
i s

(2)
i · · · s

(k)
i such that

|s(t)
i | = `+ 1 if t ≤ r, and |s(t)

i | = ` if t > r. The partition Πk of the variables of BPHPM2n into k parts is
the following: the tth part consists of the variables s(t)

1 , s
(t)
2 , . . . , s

(t)
M .

We consider a search problem SearchPairM2n : given the values of the variables of BPHPM2n , that are
partitioned according to Πk find a pair of distinct indices i, j ∈ [M ], such that the values of si and sj
coincide.
Proposition 40. The relation SearchPairM2n is many-one reducible to Search

(
BPHPM2n

)
with variables

partitioned according to Πk.
Proof. The proof is straightforward.

Theorem 41. ⊕kBPHPm2` is many-one reducible to SearchPairm·2
(k−1)`

2k` .
Proof. Let us denote M = m · 2(k−1)`. Consider a set Z =

{
(y1, y2, . . . , yk) ∈ (F`2)k |

∑
i yi = 0}

}
. It is

easy to see that |Z| = 2(k−1)`. Let ϕ be a bijection between [M ] and Z × [m].
Let for i ∈ [m] and t ∈ [k], x(t)

i denote the ith string of the tth party in the communication problem
⊕kBPHPm2` . Let xi := (x

(1)
i , . . . , x

(k)
i ).

For every t ∈ [k] we define ft as follows: ft
(
x

(t)
1 , . . . , x

(t)
m

)
is a sequence of rows r(t)

1 , r
(t)
2 , . . . , r

(t)
M such

that for all i ∈ [M ], r(t)
i = zt + x

(t)
j , where (z, j) = ϕ(i) for all z ∈ Z and j ∈ [m] (recall that z ∈ Z is

divided on k parts of equal lengths and zt denotes the tth part).
Let us construct the function g from the definition of the reduction.
Let q, w ∈ [M ] and q 6= w. Assume that ϕ(q) = (j1, z) and ϕ(w) = (j2, y). We define g(C) := (j1, j2).
Let us verify that f1, f2, . . . , fk and g define a reduction. Let q, w ∈M be a pair of different numbers

such that the assignment α :=
{
si ← r

(1)
i r

(2)
i . . . r

(k)
i | i ∈ [M ]

}
satisfies sq = sw. Assume that g(q, w) =

(j1, j2). We need to verify that j1 6= j2 and
∑k

t=1 x
(t)
j1

=
∑k

t=1 x
(t)
j2
.

Notice that under the assignment α the value of sq is xj1 + z and the value of sw is xj2 + y, where
j1, j2 ∈ [m] and z, y ∈ Z such that (j1, z) = ϕ(q) and (j2, y) = ϕ(w). If j1 = j2, then xj1 + z = xj2 + y
implies z = y. Since ϕ is a bijection, we get q = w. Thus, j1 6= j2.

For each t ∈ [k], the following equality holds.

zt + x
(t)
j1

= yt + x
(t)
j2

(3)
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If we sum up equations (3) for all t ∈ [k] and use that y, z ∈ Z, we get
∑k

t=1 x
(t)
j1

=
∑k

t=1 x
(t)
j2
. Hence,

(j1, j2) is a correct answer for ⊕kBPHPm2` .

The following proposition deals with the case, where the number of bits is not divisible by k.
Proposition 42. Let n = k` + r, where 0 ≤ r < k. Let M > 2k`. Then SearchPairM2k` is many-one
reducible to SearchPairM2r

2n .
Proof. Let x1, x2, . . . , xM be the input of SearchPairM2k` , let x

(t)
j be the tth part of the row xj according to

the partition Πk. Given this input we construct an input for SearchPairM2r
2n . Let τ be a bijection between

[M ]× {0, 1}r and [M2r].
For each i ∈ [M ] we construct 2r rows yτ(i,α) one for each α ∈ {0, 1}r. Let Πk partition a row yτ(i,α)

into the following parts: y(1)
τ(i,α)y

(2)
τ(i,α) · · · y

(k)
τ(i,α). Let

y
(t)
τ(i,α) =

{
x

(t)
i if t > r

x
(t)
i αt if 0 ≤ t ≤ r

.

Now we can define the function ft(x
(t)
1 , . . . , x

(t)
M ) as y(t)

τ(i,α) for each i ∈ M and α ∈ {0, 1}r and t ∈ [k]

Observe that for each i ∈ [M ] the rows yi,α for α ∈ {0, 1}r are distinct. That allows us to define the
function g as g(τ(i1, α1), τ(i2, α2)) = (i1, i2). All the required properties can be easily verified.

Theorem 4. Let M = 2n+2k+n−bn/kc and n ≥ k(k+7). If variables of BPHPM2n are partitioned according
Πk, then R

pub
1/3

(
Search

(
BPHPM2n

))
= Ω

(
2n/2k−3k/2

k

)
.

For k = 2 a stronger bound holds: Rpub1/3

(
Search

(
BPHPM2n

))
= Ω(2n/2).

Proof. Let ` = bn/kc and r = n− `k.

Rpub1/3

(
Search

(
BPHPM2n

))
= Rpub1/3

(
Search

(
BPHP

(2k+2`)2(k−1)`+r

2n

))
(Proposition 40)

≥ Rpub1/3

(
SearchPair

(2k+2`)2(k−1)`+r

2n

)
(Proposition 42)

≥ Rpub1/3

(
SearchPair

(2k+2`)2(k−1)`

2k`

)
(Theorem 41)
≥ Rpub1/3

(
⊕kBPHP2k+2`

2`

) (Corollary 19)
= Ω

(
2`/2−3k/2

k

)
= Ω

(
2n/2k−3k/2

k

)
.

The case of k = 2 can be treated in the same way, the only difference is in the application of Corol-
lary 19.

6.2 Upper bound for communication complexity of Search(BPHPm
2n)

Proposition 5. For M > 2n and k ∈ {2, 3, . . . , n} there exists a deterministic NOF communication
protocol for Search

(
BPHPM2n

)
w.r.t. Πk transmitting O

(
2dn/ke · logM

)
bits.

Proof. The protocol is going to have only two active parties: the second party, which we call Alice, and
the first party, which we call Bob. We are going to use that Alice can see the variables s(1)

1 , . . . , s
(1)
M and

that Bob can see all other variables.
Let us denote s̄(1)

i = s
(2)
i s

(3)
i . . . s

(k)
i ∈ {0, 1}n−dn/ke the bits Bob sees in the ith line for i ∈ [M ]. Bob

finds a value α ∈ {0, 1}n−dn/ke such that the size of the set Sα =
{
i ∈ [M ] | s̄(1)

i = α
}
is larger than 2dn/ke.

Such α exists since M > 2n. Bob then picks an arbitrary subset S′ of Sα of size 2dn/ke + 1 and sends
the description of S′ to Alice using

(
2dn/ke + 1

)
· dlog2Me bits. Then, by the pigeonhole principle there

exists i 6= j ∈ S′ such that s(1)
i = s

(1)
j . Alice and Bob then spend O(logM + n) bits transmitting indices
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i and j and all the values of the ith and jth lines to each other. Both of them then find the falsified
clause of BPHPM2n with no communication because it only depends on variables si and sj and broadcast
its description to all of the parties using an additional O(n+ logM) bits.

For k = 2 this upper bound coincides with the lower bound given by Corollary 19 up to a logarithmic
factor. For the larger value of k the upper bound and the lower bound are polynomially related. This
upper bound shows that the dependence on k in the lower bound is not an artifact of the proof, but a
genuine phenomenon.

6.3 Short Th(log n) proof of BPHPm
n

In this section we give a short tree-like Th(log n) refutation of the bit pigeonhole principle BPHPmn . This
observation is similar to the one of [DGM19] that converts a resolution proof of the unary encoding of the
pigeonhole principle PHPmn to a proof of BPHPmn in Res(log n).

Namely we prove the following:
Proposition 43. If there exists a tree-like Th(1)-refutation of PHPm2` of size S. Then there exists a
tree-like Th(`)-refutation of BPHPm2` of size O(S).
Proof. Let pi,j for i ∈ [m] and j ∈ [2`] be a variable of PHPm2` indicating that the ith pigeon flies to the
jth hole. Let si,k for i ∈ [m], k ∈ [`] be a variable of BPHPm2` indicating the `th bit of the ith string si.

LetQj(x1, x2, . . . , x`) for j ∈ [2k] be a multilinear polynomial over reals such that for all a1, a2, . . . , a` ∈
{0, 1}`, Qj(a1, a2, . . . , a`) = 1 if (a1, a2, . . . , a`) = bin`(j − 1) and Qj(a1, a2, . . . , a`) = 0 otherwise. We
ma define Qj as follows Qj(x1, . . . , x`) =

∏`
k=1(1− xk + α`) for i ∈ [m], j ∈ [2k], where α = bin`(j − 1).

By the construction deg(Qj) = `.
Let Pi,j = Qj(si,1, si,2, . . . , si,`).
Consider a tree-like Th(1)-refutation of PHPm2` of size S: f1 ≥ 0, f2 ≥ 0, . . . , fS ≥ 0, where fi are

linear real polynomials over variables pi,j and fS ≥ 0 is unsatisfiable on Boolean cube. For each of the
inequalities on the following conditions hold: (a) fi ≥ 0 is semantically implied by fj ≥ 0 and fk ≥ 0 on
the Boolean cube for j, k < i. (b) fi is a linear representation of an axiom of PHPm2` ; Let Fi be a polynomial
obtained of substitution pj,k := Pj,k to fi for all j ∈ [m]; k ∈ [2`]. Consider a sequence of inequalities
F1 ≥ 0, . . . , FS ≥ 0. Observe that FS ≥ 0 is unsatisfiable on the Boolean cube since Pi,j ∈ {0, 1} on the
Boolean cube. Let us verify that the sequence F1 ≥ 0, . . . , FS ≥ 0 may be extended to a correct tree-like
Th(`) refutation of BPHPm2` :
(a) If fi ≥ 0 is semantically implied by fj ≥ 0 and fk ≥ 0, then Fi ≥ 0 is also implied by Fj ≥ 0 and

Fk ≥ 0, since Pi,j is Boolean on the Boolean cube.
(b) If fi is a linear representation of a

hole axiom then fi ≥ 0 is equivalent to the function (1− pa,b) + (1− pc,b) ≥ 1 on {0, 1}Vars(PHPm
2`

)

for a, c ∈ [m], b ∈ [2`]. Thus Fi ≥ 0 is also equivalent to (1 − Pa,b) + (1 − Pc,b) ≥ 1 on the
Boolean cube. Observe that the restriction of (1− Pa,b) + (1− Pc,b) ≥ 1 to the Boolean cube
coincides with the predicate sa 6= bin`(b) ∨ sc 6= bin`(b) which is an axiom of BPHPm2` .

pigeon axiom then fi ≥ 0 is equivalent to
∑2`

j=1 pa,j ≥ 1 on the Boolean cube for some a ∈ [m].

Thus Fi ≥ 0 is equivalent to
∑2`

j=1 Pa,j ≥ 1 on {0, 1}Vars(BPHPm
2`

). Observe that the latter
inequality is identically true, since Pa,j is equivalent to sa = bin`(j − 1), so for exactly one
value of j ∈ [2`], Pa,j = 1. Since Fi ≥ 0 is identically true it can be semantically derived from
two arbitrary axioms of BPHPm2` .

It is easy to see that the size of the resulting refutation is at most 3S.

Proposition 44 ([CCT87]). For m > n there exists a tree-like Cutting Planes (which is a subsystem of
Th(1)) refutation of PHPmn of size O(m2n) .

Proposition 6. For m > 2` there exists a tree-like Th(`) refutation of BPHPm2` of size O(m2 · 2`).
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Proof. Follows from Propositions 43 and 44.
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[GK18] Michal Garĺık and Leszek Aleksander Kolodziejczyk. Some subsystems of constant-depth frege
with parity. ACM Trans. Comput. Log., 19(4):29:1–29:34, 2018.
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A Proof of Lemma 12

Lemma 12. Let T be a binary tree with m vertices such that the ith vertex is labeled with ai ∈ {0, 1} with
the hereditary property: for each inner vertex i with direct descendants c1 and c2, if ai = 1, then ac1 = 1
or ac2 = 1. We also assume that if r is the root of T , then ar = 1. Assume that we have a one-sided
bounded error oracle access to ai i.e. if we request a value of ai and ai = 0 we get 1 with probability
at most 1

2 and 0 with probability at least 1
2 ; if ai = 1 we get 1 with probability 1. Then there exists an

algorithm A that with probability at least 2
3 returns a leaf ` of T with a` = 1 and makes O(logm) oracle

queries to a1, . . . , am.

Proof of Lemma 12. For a tree F we denote by |F | the number of nodes in F and for a node v of F we
denote by Subtree(F, v) the subtree of F with root v. Let Oracle(i) be the oracle function returning
the correct value of ai with probability at least 9

10 . We can implement such a function using the majority
vote of a constant number of initial oracle queries. Let C be a constant; an appropriate value of C we
choose later. Consider the following algorithm A.
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Algorithm 2
T0 := T . Initialize the tree
i := 0

for j := 1 to 3Cdlog3/2me do
r := root of Ti
if Oracle(r) = 0 then

i := max{0, i− 1} . Backtrack since the current tree may not contain a
1-leaf

else if |Ti| 6= 1 then
v := a centroid node of Ti . i.e. such that |Subtree(Ti, v)| ∈

[
1
3 |Ti|,

2
3 |Ti|

]
if Oracle(v) = 1 then

Ti+1 := Subtree(Ti, v)

else
Ti+1 := Ti−Subtree(Ti, v) . Ti+1 is obtained from Ti by the deletion of

Subtree(Ti, v)

i := i+ 1
return the only node of Ti, if |Ti| = 1

We claim that at any iteration Ti has the hereditary property. This is the case in the beginning and
if i decreases at some iteration, then the next Ti was considered at an earlier iteration. Otherwise, the
next Ti is either a subtree of the current Ti (in that case the hereditary property is clearly maintained),
or is obtained by removal a subtree with 0-labeled root (here we use that the oracle has a one-sided error)
from the previous Ti (the hereditary property is also maintained in that case).

We first consider a variant of the algorithm that works infinitely long (i.e., C = +∞) and compute
the expected number of the first iteration such that Ti consists of a single 1-labeled leaf of T . Notice that
after the first such iteration the value of Ti stays the same for all further iterations. We show that that
the expected value is at most C logm for some constant C. Then by running the algorithm for 3Cdlogme
iterations we obtain the required error probability by Markov’s inequality.

Let T(j) denote the value of Ti before the start of jth iteration, i(j) denote i at the start of jth iteration
and r(j) denote the root of T(j). Notice that if ar(j) = 1, then for every j′ > j, T(j′) is a subtree of T(j),
since the algorithm never backtracks if the true value of the roots label is 1. Hence, if ar(j) = ar(j′) = 1
for some j < j′, then i(j) ≤ i(j′).

Let us consider a sequence j1, j2, j3 . . ., where j1 = 0, js = min{j | ar(j) = 1 ∧ j > js−1 ∧ i(j) >
i(js−1)}, if such minimum exists.

Let us consider the iterations from js till js+1 − 1. We consider the random variables
Yjs , Yjs+1, . . . Yjs+1−1 corresponding to these iterations with the following properties:
• If T(j) coincides with T(js), then its root is labeled with 1. Then Yj = −1 if the second oracle query

returns the correct answer and Yj = 1 if the answer it incorrect. Notice that Pr[Yj = −1] ≥ 9
10 .

• If the root of T(j) is labeled with zero, then Yj = −1, if the first oracle query returns the correct
answer (i.e. the algorithm backtracks). Otherwise, if T(j) consists of a single node Yj = 0. Otherwise,
if the root of T(j + 1) is labeled with 0, then Yj = 1. If it is labeled with 1, then Yj = −∞. Notice
that Pr[Yj ≤ −1] ≥ 9

10 .
Notice that, js+1 = js+min{k |

∑js+k−1
j=js

Yj ≤ −1}. In order to estimate the expected value of js+1−js

we consider an auxiliary random variables Xjs , Xjs+1, . . . , Xjs+1−1, defined as Xj =

{
1, if Yj ≥ 0

−1, if Yj < 0
.

Notice then
∑js+k−1

j=js
Yj ≤

∑js+k−1
j=js

Xj . We can apply the following fact about random walks in a straight
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line to the random variables Xj :
Fact 45. (Section XII.2 of [Kes69]) Let X1, X2, . . . be a sequence of independent random variables that
take value in {−1, 1}. Assume that for all i, Pr[Xi = 1] ≤ 1

10 and Pr[Xi = −1] ≥ 9
10 . Let M be a random

variable that equals the minimal natural number k such that
∑k

i=1Xi = −1. Then the expected value of
M is at most C, where C ∈ R is an absolute constant.

Fact 45 implies that E[js+1−js] ≤ C. Then E[js] = E[js−js−1+(js−1−js−2)+· · ·+(j2−j1)+(j1−j0)] ≤
sC. Thus, by Markov’s inequality Pr[js ≤ 3sC] ≥ 2

3 . Since |Tjs | ≤
(

2
3

)s|Tj0 |, the algorithm that runs for
3Cdlog3/2me iterations terminates in a 1-labeled leaf with probability at least 2

3 .
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