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Abstract

The influence of a variable is an important concept in the analysis of Boolean functions. The more
general notion of influence of a set of variables on a Boolean function has four separate definitions
in the literature. In the present work, we introduce a new definition of influence of a set of variables
which is based on the auto-correlation function and develop its basic theory. Among the new results
that we obtain are generalisations of the Poincaré inequality and the edge expansion property of the
influence of a single variable. Further, we obtain new characterisations of resilient and bent functions
using the notion of influence. We show that the previous definition of influence due to Fischer et al.
(2002) and Blais (2009) is half the value of the auto-correlation based influence that we introduce.
Regarding the other prior notions of influence, we make a detailed study of these and show that each
of these definitions do not satisfy one or more desirable properties that a notion of influence may be
expected to satisfy.
Keywords: Boolean function, influence, Fourier transform, Walsh transform, auto-correlation,
junta, bent functions, resilient functions.

1 Introduction

Boolean functions play an important role in diverse areas of mathematics and computer science, in-
cluding combinatorics, probability, complexity theory, learning theory, cryptography and coding theory.
We refer to two excellent books on Boolean functions, namely [11] and [6]. The first book focuses on
Boolean functions in the context of theoretical computer science, while the second book focuses on
Boolean functions in relation to cryptography and coding theory.

The notion of influence of a variable on a Boolean function was introduced by Ben-Or and Linial [2].
Subsequently, this concept has become central to the study of Boolean functions in various contexts.
See [11] for a very comprehensive account of such applications. The notion of influence, however, has
not received much attention in the context of cryptographic applications of Boolean functions. We know
of only two works [9, 3] which studied influence in relation to cryptographic properties.

The notion of influence of a variable on a function has been extended to consider the influence of a
set of variables on a function. We have been able to locate four different definitions of the influence of a
set of variables on a Boolean function. The first definition appears in the work of Ben-Or and Linial [2]
itself in 1989. A different definition due to Fischer et al. [7] appeared in 2002 and the same definition
was considered in 2009 by Blais [4]. A third definition was given by Gangopadhyay and Stănică [9] in
2014 and a fourth definition was given by Tal [16] in 2017. All of these definitions coincide with each
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other in the case of a single variable, but in the case of more than one variable, in general the values
provided by the four definitions of influence are different.

The motivation of our work is to make a systematic and comprehensive study of the notion of
influence of a set of variables on a Boolean function. To this end, we introduce a definition of influence
based on the auto-correlation function, which is a very useful tool for analysing certain cryptographic
properties of Boolean functions. Two Walsh transform based characterisations of influence are obtained
and some basic intuitive properties are derived. Several results on the influence of a single variable are
generalised. These include Poincaré inequality and edge expansion property of influence of a variable.
In the context of cryptographic properties, we provide characterisations of resilient and bent functions
using the notion of influence.

The definition of influence given in [7, 4] is shown to be half the value of the notion of influence that
we introduce. We also argue that the definition of influence considered in [9] does not satisfy a basic
desirable property, namely that the influence of a set of variables can be zero even if the function is not
degenerate on these variables.

Next we define a quantity called pseudo-influence, obtain its Walsh transform based characterisation
and derive certain basic properties. We show that the pseudo-influence does not satisfy some intuitive
properties that one would expect a notion of influence to satisfy, which is why we call it pseudo-influence.
From the Walsh transform based characterisation, it follows that the definition of influence considered
by Tal [16] is the notion of pseudo-influence that we introduce. Our motivation for introducing pseudo-
influence and analysing it is to show that the notion of influence considered in [16] is not satisfactory.

Lastly, we make a systematic study of the Ben-Or and Linial (BL) notion of influence [2]. We show
that the BL notion of influence satisfies some desirable properties, but it does not satisfy sub-additivity.
Further, we argue that compared to the auto-correlation based definition, the BL notion of influence is
a more coarse measure.

Section 2 introduces the background and the notation and also describes the previous definitions of
influence of a set of variables. The definition of influence from auto-correlation is introduced in Section 3
and its Walsh transform based characterisations and basic properties are derived. The concept is further
developed in several subsections. The path expansion property of influence is derived in Section 3.1,
two probabilistic interpretations of influence are given in Section 3.2, the relation of influence to juntas
and cryptographic properties are described in Section 3.3 and 3.4 respectively, and a general form the
Fourier entropy/influence conjecture is mentioned in Section 3.5. The notion of pseudo-influence is
defined in Section 4 and its properties as well as its relation to influence are studied. Section 5 makes
a detailed investigation of the notion of influence introduced by Ben-Or and Linial and its relation to
the auto-correlation based notion of influence. A discussion of the new results in this paper and their
importance is given in Section 6. Finally, Section 7 concludes the paper.

2 Background and Notation

Let F2 = {0, 1} denote the finite field consisting of two elements with addition represented by ⊕ and
multiplication by ·; often, for x, y ∈ F2, the product x · y will be written as xy.

By [n] we will denote the set {1, . . . , n}. For x = (x1, . . . , xn) ∈ Fn
2 , the support of x will be denoted

by supp(x) which is the set {i : xi = 1}; the weight of x will be denoted by wt(x) and is equal to
#supp(x). For i ∈ [n], ei denotes the vector in Fn

2 whose i-th component is 1 and all other components
are 0. By 0n and 1n we will denote the all-zero and all-one vectors of length n respectively. For
x = (x1, . . . , x2),y = (y1, . . . , yn) ∈ Fn

2 , we write x ≤ y if xi = 1 implies yi = 1 for i = 1, . . . , n. The
inner product ⟨x,y⟩ of x and y is defined to be ⟨x,y⟩ = x1y1 ⊕ · · · ⊕ xnyn. For a subspace E of Fn

2 , E
⊥
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will denote the subspace {x ∈ Fn
2 : ⟨x,y⟩ = 0n, for all y ∈ E}. For T ⊆ [n], χT denotes the vector in

Fn
2 where the i-th component of χT is 1 if and only if i ∈ T ; further, T will denote the set [n] \ T .
An n-variable Boolean function f is a map f : Fn

2 → F2. Variables will be written in upper case and
vector of variables in bold upper case. For X = (X1, . . . , Xn), an n-variable Boolean function f will
be written as f(X). The support of a Boolean function f will be denoted by supp(f) which is the set
{x : f(x) = 1}; the weight of f will be denoted by wt(f) and is equal to #supp(f). The expectation of
f , denoted as E(f) (taken over a uniform random choice of x ∈ Fn

2 ), is equal to wt(f)/2n. The function
f is said to be balanced if wt(f) = 2n−1, i.e., Ex∈Fn

2
(f) = 1/2. Noting that f2 = f , the variance of f ,

denoted as Var(f) is equal to E(f2)− E(f)2 = E(f)(1− E(f)).

Remark 1 In the literature, n-variable Boolean functions have variously been considered to be maps
from {−1, 1}n to {−1, 1}, or maps from {−1, 1}n to {0, 1}, or maps from {0, 1}n to {−1, 1}. As stated
above, in this paper, we will consider Boolean functions to be maps from Fn

2 to F2. Results stated in
this representation will be somewhat different from, though equivalent to, the results stated in the other
representations.

Let X = (X1, . . . , Xn) be a vector of variables and suppose ∅ ≠ T = {i1, . . . , it} ⊆ [n], where
i1 ≤ · · · ≤ it. By XT we denote the vector of variables (Xi1 , . . . , Xit). Suppose f(X) is an n-variable
Boolean function. For α ∈ Ft

2, by fXT←α(XT ) we denote the Boolean function on n − t variables
obtained by setting the variables in XT to the respective values in α. The function f is said to be
degenerate on the set of variables {Xi1 , . . . , Xit} if these variables do not influence the output of the
function f , i.e., for any α,β ∈ Ft

2 if we set fα = fXT←α(XT ) and fβ = fXT←β(XT ), then the functions
fα and fβ are equal.

Let ψ : Fn
2 → R. The Fourier transform of ψ is a map ψ̂ : Fn

2 → R which is defined as follows.

ψ̂(α) =
1

2n

∑
x∈Fn

2

ψ(x)(−1)⟨x,α⟩. (1)

Given ψ̂, it is possible to recover ψ using the following inverse formula.

ψ(x) =
∑
α∈Fn

2

ψ̂(α)(−1)⟨x,α⟩. (2)

The Poisson summation formula (see Page 77 of [6]) provides a useful relation between a function
ψ : Fn

2 → R and its Fourier transform. Let E be a subspace of Fn
2 and a,b ∈ Fn

2 . Then∑
w∈a+E

(−1)⟨b,w⟩ψ̂(w) =
#E

2n
(−1)⟨a,b⟩

∑
u∈b+E⊥

(−1)⟨a,u⟩ψ(u). (3)

The (normalised) Walsh transform of a Boolean function f is a map Wf : Fn
2 → [−1, 1] which is

defined as follows.

Wf (α) =
1

2n

∑
x∈Fn

2

(−1)f(x)⊕⟨x,α⟩ = 1− wt(f(X)⊕ ⟨α,X⟩)
2n−1

. (4)

In other words, the Walsh transform of f is the Fourier transform of (−1)f .
Note thatWf (α) = 0 if and only if the function f(X)⊕⟨α,X⟩ is balanced. From Parseval’s theorem

(see Page 79 of [6]), it follows that ∑
α∈Fn

2

(Wf (α))2 = 1. (5)
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So the values
{
(Wf (α))2

}
can be considered to be a probability distribution on Fn

2 , which assigns to

α ∈ Fn
2 , the probability (Wf (α))2. For k ∈ {0, . . . , n}, let

p̂f (k) =
∑

{u∈Fn
2 :wt(u)=k}

(Wf (u))
2 (6)

be the probability assigned by the Fourier transform of f to the integer k. Note that p̂f (0n) =
(1− 2E(f))2 and so 1− p̂f (0n) = 4E(f)(1− E(f)) = 4Var(f).

The (normalised) auto-correlation function of f is a map Cf : Fn
2 → [−1, 1] defined as follows.

Cf (α)

=
1

2n

∑
x∈Fn

2

(−1)f(x)⊕f(x⊕α) = 1− wt(f(X)⊕ f(X⊕α))

2n−1
= 1− 2 Pr

x∈Fn
2

[f(x) ̸= f(x⊕α)]. (7)

Note that Cf (0) = 1.
For a Boolean function f , the Wiener-Khintchine formula (see Page 80 of [6]) relates the Walsh

transform to the auto-correlation function.

(Wf (α))2 = Ĉf (α) =
1

2n

∑
x∈Fn

2

(−1)⟨α,x⟩Cf (x). (8)

Applying the inverse Fourier transform given by (2) to Ĉf (α), we obtain

Cf (x) =
∑
α∈Fn

2

(Wf (α))2 (−1)⟨α,x⟩. (9)

Applying (3) with ψ = Cf and a = b = 0n and then using (8), we obtain the following result (see
Proposition 5 of [5]). ∑

w∈E
(Wf (w))2 =

#E

2n

∑
u∈E⊥

Cf (u). (10)

Let T ⊆ [n] with #T = t and for α ∈ Fn−t
2 , let fα denote fXT←α(XT ). Then fα is a t-variable

function. From the second order Poisson summation formula (see Page 81 of [6] for the general statement
of this result), we have ∑

w≤χT

(Wf (w))2 =
1

2n−t

∑
α≤χT

(Wfα(0t))
2 . (11)

Remark 2 We have normalised the Walsh transform and the auto-correlation function by 2n so that
the values lie in the range [−1, 1]. The non-normalised versions have also been used in the literature.
We note in particular that [6] uses the non-normalised versions. When we use results from [6], we
normalise them appropriately.

Some Boolean function classes. Let f be an n-variable Boolean function.

• The function f is said to be bent [13] if Wf (α) = ±2−n/2 for all α ∈ Fn
2 . Bent functions exist if

and only if n is even.
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• The function f is said to satisfy propagation characteristics [12] of degree k ≥ 1, written as PC(k)
if Cf (u) = 0 for all u ∈ Fn

2 with 1 ≤ wt(u) ≤ k.

• The function f is said to be m-resilient [15, 17] if Wf (α) = 0 for all α ∈ Fn
2 with 0 ≤ wt(α) ≤ m.

• The function f is said to be an s-junta if there is a subset S ⊆ [n] with #S ≤ s such that f is
degenerate on the variables indexed by S.

2.1 Influence

Let f(X) be an n-variable Boolean function where X = (X1, . . . , Xn). For i ∈ [n], the influence of Xi

on f is denoted by inff (i) and is defined to be the probability (over a uniform random choice of x ∈ Fn
2 )

that f(x) is not equal to f(x⊕ ei), i.e.,

inff (i) = Pr
x∈Fn

2

[f(x) ̸= f(x⊕ ei)]. (12)

The total influence inf(f) of the individual variables is defined to be the sum of the influences of the
individual variables, i.e. inf(f) =

∑
i∈[n] inff (i).

Let f be an n-variable Boolean function and ∅ ̸= T ⊆ [n] with t = #T . The influence of the set of
variables indexed by T on f has been defined in the literature in four different ways. These definitions
are given below.

Ben-Or and Linial [2]. The definition of influence introduced in [2] is the following.

If (T ) = Pr
α∈Fn−t

2

[
fXT←α(XT ) is not constant

]
. (13)

Fischer et al. [7] and Blais [4]. The same quantity has been defined in two different ways in Fischer
et al. [7] and Blais [4]. In [7], this quantity was called ‘variation’ and in [4], it was termed ‘influence’.
Here we provide the formulation as given in [4]. For x,y ∈ Fn

2 , let Z(T,x,y) denote the vector z ∈ Fn
2 ,

where zi = yi, if i ∈ T and zi = xi otherwise. The definition of influence given in [4] is the following.

If (T ) = Pr
x,y∈Fn

2

[f(x) ̸= f(Z(T,x,y))] . (14)

Gangopadhyay and Stănică [9]. The definition of influence introduced in [9] is the following.

Jf (T ) = Pr
x∈Fn

2

[f(x) ̸= f(x⊕ χT )] =
1

2
(1− Cf (χT )) . (15)

Tal [16]. For β ∈ Ft
2, let fβ denote the function fXT←β. Let DT f : {0, 1}n−t → [−1, 1] be defined

as follows. For y ∈ Fn−t
2 , (DT f)(y) = 1/2t ×

∑
β∈Ft

2
(−1)wt(β)+fβ(y). The definition of influence given

in [16] is the following.

Jf (T ) = E
y∈Fn−t

2

[
(DT f(y))

2
]
. (16)
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3 Influence from Auto-Correlation

The auto-correlation function is a very useful tool for expressing various properties of Boolean functions.
We refer to [6] for the many uses of the auto-correlation function in the context of cryptographic
properties of Boolean functions. Given an n-variable Boolean function f and α ∈ Fn

2 , the value of the
auto-correlation function Cf at α, i.e., Cf (α) is the number of places f(X) and f(X ⊕ α) are equal
minus the number of places they are unequal (normalised by 2n). So the auto-correlation function at α
to some extent captures the effect on f of flipping all the bits in the support of α. This suggests that
the auto-correlation function is an appropriate mechanism to capture the influence of a set of variables
on a Boolean function. We note that for i ∈ [n], inff (i) can be written as follows.

inff (i) =
1

2
(1− Cf (ei)) = 1− 1

2
(Cf (0) + Cf (ei)) . (17)

Let f(X1, . . . , Xn) be an n-variable Boolean function and ∅ ≠ T = {i1, . . . , it} ⊆ [n]. We denote the
influence of the set of variables {Xi1 , . . . , Xit} corresponding to T = {i1, . . . , it} on the Boolean function
f by inff (T ). Following the auto-correlation based expression of the influence of a single variable on a
Boolean function given by (17), we put forward the following definition of inff (T ).

inff (T ) = 1− 1

2#T

 ∑
α≤χT

Cf (α)

 . (18)

It is easy to note that for a singleton set T = {i}, inff (T ) = inff (i). Further, one may note that
inff (T ) = 21−t ×

∑
S⊆T Jf (S).

Remark 3 We note that inff (T ), If (T ), Jf (T ) and Jf (T ) (defined in Section 2.1) agree with each
other when #T = 1. Also, we later show that If (T ) = inff (T )/2.

It is perhaps not immediately obvious that the definition of influence given by (18) is appropriate.
We later show in Theorem 5 that this definition satisfies a set of intuitive desiderata that any notion of
influence may be expected to satisfy.

Let f be an n-variable function and t be an integer with 1 ≤ t ≤ n. Then the t-influence of f is
the total influence (scaled by

(
n
t

)
) obtained by summing the influence of every set of t variables on the

function f , i.e.,

t-inf(f) =

∑
{T⊆[n]:#T=t} inff (T )(

n
t

) . (19)

Note that 1-inf(f) is equal to inf(f)/n, i.e., 1-inf(f) is the sum of the influences of the individual variables
scaled by a factor of n.

The following result provides a characterisation of influence in terms of the Walsh transform.

Theorem 1 Let f be an n-variable Boolean function and ∅ ≠ T ⊆ [n]. Then

inff (T ) =
∑

{u∈Fn
2 :supp(u)∩T ̸=∅}

(Wf (u))
2 . (20)
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Proof: Let #T = t. Let E be the subspace {x ∈ Fn
2 : x ≤ χT }. Then #E = 2n−t and E⊥ = {y ∈

Fn
2 : y ≤ χT }. Using (10), we obtain∑

x≤χT

(Wf (x))
2 =

2n−t

2n

∑
y≤χT

Cf (y) =
1

2#T

∑
y≤χT

Cf (y). (21)

Using (21) with (18) and (5) we have

inff (T ) = 1−
∑
x≤χT

(Wf (x))
2 =

∑
w∈Fn

2

(Wf (w))2 −
∑
x≤χT

(Wf (x))
2 =

∑
u̸≤χT

(Wf (u))
2 .

The condition u ̸≤ χT is equivalent to supp(u) ∩ T ̸= ∅. □
It is a well known result (see Page 52 of [11]) that for an n-variable Boolean function, the total

influence of the individual variables, i.e., inf(f) is the expected value of a random variable which takes
the value k with probability p̂f (k) for k = 0, . . . , n. We generalise this result to the case of t-inf(f) for
t ≥ 1.

For positive integers n, t and k with, 1 ≤ t ≤ n and 0 ≤ k ≤ n, fix a subset S of [n] with #S = k
and let Nn,t,k be the number of subsets of [n] of size t which contains at least one element of S. Then

Nn,t,k =

(
n

t

)
−
(
n− k

t

)
=

min(k,t)∑
i=1

(
k

i

)(
n− k

t− i

)
. (22)

It follows that Nn,t,0 = 0, Nn,t,k =
(
n
t

)
for n− t+ 1 ≤ k ≤ n, and Nn,1,k = k for k = 0, . . . , n.

Theorem 2 Let f be an n-variable function and t ∈ [n]. Then

t-inf(f) =
1(
n
t

) n∑
k=1

Nn,t,k p̂f (k) =
1(
n
t

)E[Z], (23)

where Z is the number of t-element subsets of [n] which have a non-empty intersection with a set S ⊆ [n]
chosen with probability (Wf (χS))

2.

Proof: We start with the proof of the first equality in (23). Consider u ∈ Fn
2 with #supp(u) = k.

For 1 ≤ i ≤ min(k, t), the number of subsets T of [n] of cardinality t whose intersection with supp(u)
is of size i is

(
k
i

)(
n−k
t−i
)
. Summing over i provides the number of subsets T of [n] of cardinality t with

which supp(u) has a non-empty intersection. From (19) and Theorem 1, we have

t-inf(f) =
1(
n
t

) n∑
k=1

∑
{u∈Fn

2 :wt(u)=k}

min(k,t)∑
i=1

(
k

i

)(
n− k

t− i

)
(Wf (u))

2

=
1(
n
t

) n∑
k=1

min(k,t)∑
i=1

(
k

i

)(
n− k

t− i

) ∑
{u∈Fn

2 :wt(u)=k}

(Wf (u))
2

=
1(
n
t

) n∑
k=1

Nn,t,kp̂f (k)

=
1(
n
t

)E[Z].
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The second equality in (23) follows from the observation that if #S = k, then Z = Nn,t,k. □
Poincaré inequality (see Page 52 of [11]) states that the total influence of the individual variables,
i.e., inf(f) is bounded below by 4Var(f). We obtain a generalisation of this result as a corollary of
Theorem 2.

Corollary 1 Let f be an n-variable Boolean function and t ∈ [n]. Then

t-inf(f) ≥ 4t

n
Var(f). (24)

Equality is achieved for t = n.

Proof: Note that for 0 ≤ k ≤ n, n− i+1 > 0 for 2 ≤ i ≤ k and so 1− t/(n− i+1) < 1 for 2 ≤ i ≤ k.
Using this, we have(

n−k
t

)(
n
t

) =

(
1− t

n

)(
1− t

n− 1

)
· · ·
(
1− t

n− k + 1

)
≤ 1− t

n
.

It follows that for k ∈ [n], Nn,t,k/
(
n
t

)
≥ t/n, where equality is achieved for t = n. So from (23),

t-inf(f) ≥ t

n

n∑
k=1

p̂f (k) =
t

n
(1− p̂f (0n)) =

4t

n
Var(f).

□
The Fourier/Walsh transform based expression for the total influence given by Theorem 2 is a useful

result. Corollary 1 above provides a direct application of Theorem 2. In Theorem 6, proved later, we
use the expression given by Theorem 2 to characterise the functions which achieve the maximum value
of the total influence as resilient functions. In Theorem 7, also proved later, the expression is used to
show that total influence is monotonic increasing in t. An additional application of Theorem 2 is given
next.

Given an n-variable Boolean function f , we say that the Fourier spectrum of f is ϵ-concentrated
on coefficients of weights up to k if

∑
i≥k p̂i(f) ≤ ϵ. Proposition 3.2 on Page 69 of [11] shows that the

Fourier spectrum of f is ϵ-concentrated on coefficients of weights up to k, where k is the least positive
integer such that k ≥ n× 1-inf(f)/ϵ and 1-inf(f) ≤ ϵ ≤ 1. The following theorem generalises this result
to arbitrary values of t.

Theorem 3 For any n-variable Boolean function, t ∈ [n] and ϵ ∈ [t-inf(f), 1], the Fourier spectrum of
f is ϵ-concentrated on coefficients of weights up to kt, where kt is the least positive integer such that

kt ≥ t− 1 + (n− t+ 1)
(
1− (1− xt)

1/t
)
, (25)

and xt =
t-inf(f)

ϵ .

Proof: The condition given by (25) holds if and only if (n− kt) ≤ (n− t+ 1)(1− xt)
t which holds

if and only if

(n− kt)
t

t!
≤ (n− t+ 1)t

t!
(1− xt). (26)

8



Using the inequalities
(
n−kt

t

)
≤ (n − kt)

t/t! and (n − t + 1)t/t! ≤
(
n
t

)
, from (26) we obtain

(
n−kt

t

)
≤(

n
t

)
(1− xt), which holds if and only if(

n

t

)
−
(
n− kt
t

)
≥

(
n

t

)
xt =

(
n

t

)
t-inf(f)

ϵ
. (27)

Let if possible that the Fourier transform of f is not ϵ-concentrated on coefficients of weights up to kt.
Then for kt satisfying (27), we have

∑n
k=kt

p̂k(f) > ϵ. From (23), we have

t-inf(f) =
1(
n
t

) n∑
k=1

Nn,t,k p̂f (k)

=
1(
n
t

)
kt−1∑

k=1

Nn,t,k p̂f (k) +

n∑
k=kt

Nn,t,k p̂f (k)


≥ 1(

n
t

) n∑
k=kt

((
n

t

)
−
(
n− k

t

))
p̂f (k) (using (22))

≥ 1(
n
t

) ((n
t

)
−
(
n− kt
t

)) n∑
k=kt

p̂f (k)

>
1(
n
t

) ((n
t

)
−
(
n− kt
t

))
ϵ (by assumption)

≥ t-inf(f) (using (27)).

This gives us the desired contradiction. □
An alternative Walsh transform based characterisation of influence is given by the following result.

Theorem 4 Let f be an n-variable function and ∅ ≠ T ⊆ [n]. Then

inff (T ) = 1− 1

2n−t

∑
α∈Fn−t

2

(Wfα(0t))
2 , (28)

where fα denotes fXT←α.

Proof: Let #T = t. Let E = {x ∈ Fn
2 : x ≤ χT } and so E⊥ = {x ∈ Fn

2 : x ≤ χT }. Using (10)
and (11) we have

1

2t

∑
u≤χT

Cf (u) =
1

2n−t

∑
α∈Fn−t

2

(Wfα(0t))
2 .

Using the definition of influence given in (18), we obtain the required result. □

Remark 4 Theorems 1 and 4 provide two different Walsh transform based characterisations of inff (T ).
The expression for inff (T ) given by (28) can be computed in O(2n) time, while the expression given
by (20) in general will require O(n2n) time using the fast Fourier transform algorithm to compute the
required values of the Walsh transform.

We obtain the following corollary of Theorem 4.

9



Corollary 2 Let f be an n-variable Boolean function and ∅ ≠ T ⊆ [n]. Then

inff (T ) =
1

2n−2−t

∑
α∈Fn−t

2

Var(fα) (29)

where fα denotes fXT←α.

Proof: Using (28), we have

inff (T ) = 1− 1

2n−t

∑
α∈Fn−t

2

(Wfα(0t))
2

=
1

2n−t

∑
α∈Fn−t

2

(
1− (Wfα(0t))

2
)

=
1

2n−t

∑
α∈Fn−t

2

4E (fα) (1− E (fα))

=
1

2n−2−t

∑
α∈Fn−t

2

Var(fα). (30)

□
One may consider some basic desiderata that any reasonable measure of influence should satisfy.

Since we are considering normalised measures, the value of influence should be in the set [0, 1] and
it should take the value 0 if and only if the function is degenerate on the set of variables. Further,
by expanding a set of variables, the value of influence should not decrease, i.e. influence should be
monotonic non-decreasing. Also, sub-additivity is a desirable property. The following result shows
these properties for inff (T ) and also characterises the condition under which inff (T ) takes its maximum
value 1.

Theorem 5 Let f be an n-variable Boolean function and ∅ ≠ T, S ⊆ [n]. Then

1. 0 ≤ inff (T ) ≤ 1.

2. inff (T ) = 0 if and only if the function f is degenerate on the variables indexed by T .

3. inff (T ) = 1 if and only if fα is balanced for each α ∈ Fn−t
2 , where fα denotes fXT←α.

4. inff (S ∪ T ) ≥ inff (T ).

5. inff (S ∪ T ) = inff (S) + inff (T ) −
∑

u∈U (Wf (u))
2, where U = {u ∈ Fn

2 : supp(u) ∩ S ̸= ∅ ̸=
supp(u)∩T}. Consequently, inff (S∪T ) ≤ inff (S)+ inff (T ) (i.e., inff (T ) satisfies sub-additivity).

Proof: The first point follows from Theorem 1 and Parseval’s theorem. The fourth and fifth points
also follow from Theorem 1. The third point follows from Theorem 4.

Consider the second point. From (28), inff (T ) = 0 if and only if
∑

α∈Fn−t
2

(Wfα(0t))
2 = 2n−t. Since

(Wfα(0t))
2 ≤ 1, it follows that

∑
α∈Fn−t

2
(Wfα(0t))

2 = 2n−t if and only if (Wfα(0t))
2 = 1 (equivalently,

fα is constant) for all α ∈ Fn−t
2 . The last condition is equivalent to the statement that f is degenerate

on the set of variables indexed by T . □
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Remark 5 For the Gangopadhyay and Stănică notion of influence Jf (T ) (see 15) the second point of
Theorem 5 does not hold. It is possible that f is not degenerate on the variables indexed by T , yet
Jf (T ) = 0. For example, let f(X1, X2, X3, X4) = (1 ⊕X1)X2(X3 ⊕X4) and T = {3, 4}. Then it may
be checked that Jf (T ) = 0, but f is not degenerate on the set of variables {X3, X4} as f(0, 1, 0, 0) =
0 ̸= f(0, 1, 0, 1).

If a function is not degenerate on the set of variables indexed by T , then these variables have an
effect on value of f . Any reasonable measure of influence should ensure that if f is not degenerate on a
set of variables, then the value of the measure for this set of variables is positive. Since this condition
does not hold for Jf (T ), this measure cannot be considered to be a satisfactory measure of influence of
a set of variables.

Theorem 6 Let f be an n-variable Boolean function and t be an integer with 1 ≤ t ≤ n.

1. t-inf(f) takes its maximum value 1 if and only if f is (n− t)-resilient.

2. t-inf(f) takes its minimum value 0 if and only if f is a constant function.

Proof: From (23) and recalling that Nn,t,0 = 0 and Nn,t,k =
(
n
t

)
for n− t+ 1 ≤ k ≤ n, we have

t-inf(f) =
1(
n
t

) n∑
k=1

Nn,t,kp̂f (k)

=
1(
n
t

) (n−t∑
k=0

((
n

t

)
−
(
n− k

t

))
+

n∑
k=n−t+1

(
n

t

))
p̂f (k)

=
1(
n
t

) ( n∑
k=0

(
n

t

)
−

n−t∑
k=0

(
n− k

t

))
p̂f (k)

= 1− 1(
n
t

) n−t∑
k=0

(
n− k

t

)
p̂f (k). (31)

From (31), t-inf(f) takes its maximum value of 1 if and only if
∑n−t

k=0

(
n−k
t

)
p̂f (k) = 0 which holds if

and only if p̂f (k) = 0 for k = 0, . . . , n − t, i.e., if and only if f is (n − t)-resilient. This shows the first
point.

For the second point, from (31), t-inf(f) = 0 if and only if(
n

t

)
p̂f (0) +

(
n− 1

t

)
p̂f (1) + · · ·+

(
t

t

)
p̂f (t) =

(
n

t

)
. (32)

If f is a constant function, then p̂f (0) = 1 and p̂f (k) = 0 for k ∈ [n]. So (32) holds. On the other hand,
if f is not a constant function, then p̂f (0) < 1. In this case,(

n

t

)
p̂f (0) +

(
n− 1

t

)
p̂f (1) + · · ·+

(
t

t

)
p̂f (t)

≤
(
n

t

)
p̂f (0) +

(
n− 1

t

)
(p̂f (1) + · · ·+ p̂f (n))

=

(
n

t

)
p̂f (0) +

(
n− 1

t

)
(1− p̂f (0)) <

(
n

t

)
.

□
The next result shows that as t increases, the value of t-inf(f) is non-decreasing.

11



Theorem 7 Let f be an n-variable Boolean function. For t ∈ [n], t-inf(f) increases monotonically with
t.

Proof: For t ∈ [n− 1], the following calculations show that t-inf(f) is at most (t+ 1)-inf(f).

t-inf(f) ≤ (t+ 1)-inf(f)

⇐⇒ 1−
n−t∑
k=0

(
n−k
t

)(
n
t

) p̂f (k) ≤ 1−
n−t−1∑
k=0

(
n−k
t+1

)(
n

t+1

) p̂f (k)
⇐⇒

n−t∑
k=0

(
n−k
t

)(
n
t

) p̂f (k) ≥
n−t−1∑
k=0

(
n−k
t+1

)(
n

t+1

) p̂f (k)
⇐⇒ 1(

n
t

) p̂f (n− t) +

n−t−1∑
k=0

((
n−k
t

)(
n
t

) −
(
n−k
t+1

)(
n

t+1

) ) p̂f (k) ≥ 0

⇐⇒ 1(
n
t

) p̂f (n− t) +
n−t−1∑
k=0

(
(n− k)!(n− t− 1)!

n!(n− k − t− 1)!

k

n− t− k

)
p̂f (k) ≥ 0. (33)

For k in the range 0 to n− t− 1, it follows that k/(n− t− k) ≥ 0. So the relation in (33) holds showing
that t-inf(f) ≤ (t+ 1)-inf(f).

□

3.1 Geometric Interpretation

Let Hn be the n-dimensional hypercube, i.e., Hn is a graph whose vertex set is Fn
2 and two vertices u

and v are connected by an edge if v can be obtained from u by flipping one of the bits of u, i.e., if
wt(u ⊕ v) = 1. Let A be a subset of the vertices of Hn and A = Fn

2 \ A. Let e(A,A) be the number
of edges between A and A. Suppose f is an n-variable Boolean function such that supp(f) = A. It
is known that inf(f) = e(A,A)/2n−1 (see [10] and Page 52 of [11]). This relation is called the edge
expansion property of influence. In this section, we obtain a general form of this relation for t-inf(f).

Suppose u is a vertex of Hn and α ∈ Fn
2 with T = supp(α) and t = #T . Let v = u ⊕ α. Then v

is obtained from u by flipping the bits of u which are indexed by T . Since these bits can be flipped in
any order, there are a total of t! paths of length t in Hn between u and v.

Let A be a subset of Hn and f be an n-variable Boolean function such that supp(f) = A. For
α ∈ Fn

2 , let nα be the number of paths between A and A such that the two ends u and v of any such
path satisfy u⊕ v = α. The following result relates nα to the autocorrelation of f at α.

Proposition 1 Cf (α) = 1− nα
(wt(α))!2n−2

.

Proof: Let xα = #{(u,v) : u ∈ A, v ∈ A, u⊕ v = α}. Then

nα = (wt(α))!xα. (34)

Note that xα = #{u ∈ Fn
2 : f(u) = 1 and f(u⊕α) = 0}. Let g(X) = f(X)⊕ f(X⊕α). Then

wt(g) = #{u ∈ Fn
2 : either f(u) = 1 and f(u⊕α) = 0, or f(u) = 0 and f(u⊕α) = 1}

= 2#{u ∈ Fn
2 : f(u) = 1 and f(u⊕α) = 0}

= 2xα. (35)

12



From the definition of Cf (α) given in (7), it follows that wt(g) = 2n−1(1 − Cf (α)) which combined
with (34) and (35) shows the result. □

Remark 6 Proposition 1 connects auto-correlation to number of paths and consequently provides a
geometric interpretation of the auto-correlation function. Combining Proposition 1 with (8), we obtain

(Wf (β))
2 = ∆β − 1

22n−2

∑
α∈Fn

2

(−1)⟨α,β⟩ nα
(wt(α))!

,

where ∆β = 1 if β = 0n and 0 otherwise. This provides a geometric interpretation of the Walsh
transform. To the best of our knowledge, these geometric interpretations of the auto-correlation function
and the Walsh transform do not appear earlier in the literature.

Now we are ready to state the path expansion property of t-inf(f).

Theorem 8 Let f be an n-variable Boolean function and t ∈ [n]. Then

t-inf(f) = 1− 1

2n+t−2
(
n
t

) ∑
α∈Fn

2

(
n− wt(α)

t− wt(α)

)(
2n−2 − nα

(wt(α))!

)
. (36)

Proof: Using Proposition 1 in the definition of infT (f) given by (18), we have

infT (f) = 1− 1

2t

 ∑
α≤χT

Cf (α)


= 1− 1

2t

t∑
k=0

 ∑
α≤χT ,wt(α)=k

Cf (α)


= 1− 1

2t

t∑
k=0

 ∑
α≤χT ,wt(α)=k

(
1− nα

k!2n−2

) . (37)

For α ∈ Fn
2 with wt(α) = k, there are exactly

(
n−k
t−k
)
subsets T of [n] such that α ≤ χT . Using this

observation, we have

t-inf(f) =
1(
n
t

) ∑
T⊆[n],#T=t

inff (T )

= 1− 1

2t
(
n
t

) t∑
k=0

 ∑
{α:wt(α)=k}

(
n− k

t− k

)(
1− nα

k!2n−2

)
= 1− 1

2n+t−2
(
n
t

) ∑
α∈Fn

2

(
n− wt(α)

t− wt(α)

)(
2n−2 − nα

(wt(α))!

)
.

□
Putting t = 1 in (36), we obtain 1-inf(f) =

∑
i∈[n] nei/(n2

n−1) = e(A,A)/(n2n−1) which is the previ-
ously mentioned edge expansion property for inf(f) scaled by a factor of n.
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3.2 Probabilistic Interpretation

We have defined the influence of a set of variables using the auto-correlation function. In this section,
we provide two probabilistic interpretations of the influence.

Let f be an n-variable Boolean function and ∅ ̸= T ⊆ [n], with #T = t. We define the following
probability

µf (T ) = Pr
α≤χT ,u∈Fn

2

[f(u) ̸= f(u⊕α)]. (38)

In (38), α is required to be chosen uniformly at random from the set {x : x ≤ χT }. This is achieved
by fixing the positions of α corresponding to the elements of T to be 0, and choosing the bits of α
corresponding to the positions in T uniformly at random.

The definition of influence given by Fischer et al. [7] and Blais [4] is If (T ) and is given by (14). This
definition is made in terms of the function Z(T,x,y). For x,y ∈ Fn

2 , both x and Z(T,x,y) agree on
the bits indexed by T . In particular, the bits of y indexed by T do not play any role in the probability
Prx,y∈Fn

2
[f(x) ̸= f(Z(T,x,y))]. So this probability is the same as the probability of the event arising

from choosing β uniformly at random from Fn−t
2 , choosing w and z independently and uniformly from

Ft
2 and considering fβ(w) ̸= fβ(z). This shows that

If (T ) = Pr
β∈Fn−t

2 ,w,z∈Ft
2

[fβ(w) ̸= fβ(z)]. (39)

where fβ denotes fXT←β.
The following result relates the above two probabilities to influence.

Theorem 9 Let f be an n-variable Boolean function and ∅ ̸= T ⊆ [n]. Then µf (T ) = If (T ) =
inff (T )/2.

Proof: We separately show that µf (T ) = inff (T )/2 and If (T ) = inff (T )/2. Let t = #T .

µf (T ) =
1

2t

∑
α≤χT

Pr
u∈Fn

2

[f(u) ̸= f(u⊕α)]

=
1

2t

∑
α≤χT

1− Cf (α)

2
(using (7))

=
1

2

1− 1

2t

∑
α≤χT

Cf (α)


=

inff (T )

2
. (40)

If (T ) =
1

2n−t

∑
β∈Fn−t

2

Pr
w,z∈Ft

2

[fβ(w) ̸= fβ(z)]

=
1

2n−t

∑
β∈Fn−t

2

2×
wt(fβ)

2t

(
1−

wt(fβ)

2t

)

=
1

2n−1−t

∑
β∈Fn−t

2

E(fβ)(1− E(fβ))
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=
1

2n−1−t

∑
β∈Fn−t

2

Var(fβ)

=
inff (T )

2
(from (29)).

□
Using the third point of Theorem 5, a consequence of Theorem 9 is that both the probabilities µf (T )
and If (T ) are at most 1/2.

Remark 7 From Theorem 9, it follows that If (T ) = inff (T )/2. Some of the results for infT (f) that
we have proved have been obtained for If (T ) in [7, 4]. In particular, it has been shown that If (T ) is
equal to half the right hand side of (20) using a somewhat long proof which is different from the one
that we given. Since we defined influence using the auto-correlation function, we were able to use known
results on Walsh transform which make our proof simpler. Further, it has been proved in [7, 4] that
If (T ) ≤ If (S ∪ T ) ≤ If (S) + If (T ), i.e., monotonicity and sub-additivity properties hold for If . These
properties for inff (T ) are covered by Points 4 and 5 of Theorem 5.

3.3 Juntas

The total influence of the individual variable, i.e. inf(f), for an s-junta f is known to be at most s. The
following result generalises this to provide an upper bound on t-inf(f) for an s-junta.

Proposition 2 Let f be an n-variable function which is an s-junta for some s ∈ [n]. For t ∈ [n],
t-inf(f) ≤ 1−

(
n−s
t

)
/
(
n
t

)
.

Proof: Let T ⊆ [n] with #T = t. Since f is an s-junta, there is a subset S ⊆ [n], with #S ≤ s such
that f is degenerate on the variables indexed by S. So inff (T ) = 0 if T is a subset of S. This means
that for

(
n−s
t

)
possible subsets T , inff (T ) = 0. For the other

(
n
t

)
−
(
n−s
t

)
possible subsets T , inff (T ) ≤ 1.

The result now follows from the definition of t-inf(f) given in (19). □
For t = 1, the upper bound on 1-inf(f) given by Proposition 2 is s/n which is a scaled version of the
bound inf(f) ≤ s. Note that the upper bound on t-inf(f) increases as t increases and reaches 1 for
t > n− s.

An n-variable Boolean function f is said to be ϵ-far from being a s-junta if for every n-variable
s-junta g, Prx∈Fn

2
[f(x) ̸= g(x)] ≥ ϵ. It was proved in [4] that if f is ϵ-far from being an s-junta, then

for any set S ⊆ [n] with #S ≤ s, If (S) ≥ ϵ. The following result provides an equivalent statement for
inff (S). The reason for stating the result in the present work is that our proof is simpler than that
in [4].

Proposition 3 If an n-variable Boolean function f is ϵ-far from being an s-junta, then for any set
S ⊆ [n] with #S ≤ s, inff (S) ≥ 2ϵ.

Proof: Among all the s-juntas on the variables indexed by S, let g be the closest s-junta to f . For
α ∈ Fs

2, let fα = fXS←α(XS) and gα = gXS←α(XS) be functions on (n−s)-variables. Since g is a junta
on S, it is degenerate on all variables indexed by S. So gα is a constant function for all α ∈ Fs

2. Since
among all the juntas on the variables indexed by S, g is the closest s-junta to f , it follows that for each
α ∈ Fs

2, gα is either the constant function 0 or the constant function 1 according as wt(fα) ≤ 2n−s−1

(i.e. E(fα) ≤ 1/2) or wt(fα) > 2n−s−1 (i.e. E(fα) > 1/2) respectively. So

Pr
x∈Fn

2

[f(x) ̸= g(x)] =

∑
α∈Fs

2
wt(fα ⊕ gα)

2n
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=
1

2s

∑
α∈Fs

2

min (E(fα), 1− E(fα)) . (41)

Since f is ϵ-far from being an s-junta, it follows that ϵ ≤ Prx∈Fn
2
[f(x) ̸= g(x)]. Using Var(fα) =

E(fα)(1 − E(fα)), it is easy to check that min (E(fα), 1− E(fα)) ≤ 2Var(fα). The result now follows
by taking T = S in (29) and combining with (41). □

3.4 Cryptographic Properties

An n-variable Boolean function f is δ-close to an s-junta if there is an s-junta g such that Prx∈Fn
2
[f(x) ̸=

g(x)] ≤ δ. From the point of view of cryptographic design, it is undesirable for f to be δ-close to an
s-junta for δ close to 0 and s smaller than n. Since otherwise, g is a good approximation of f and a
cryptanalyst may replace f by g which may help in attacking a cipher which uses f as a building block.
For example, in linear cryptanalysis the goal is to obtain g to be a linear function on a few variables
such that it is a good approximation of f . To defend against such attacks, one usually requires f to
not have any good linear approximation on a small number of variables. In particular, an m-resilient
function cannot be approximated with probability different from 1/2 by any linear function on m or
smaller number of variables. A characterisation of resilient functions in terms of influence is given by
Theorem 6 which shows that an n-variable function is m-resilient if and only if (n−m)-inf(f) takes its
maximum value of 1.

The next result provides a characterisation of bent functions in terms of influence.

Theorem 10 Let f be an n-variable Boolean function. Then f is bent if and only if for any non-empty
T ⊆ [n], inff (T ) = 1− 2#T .

Proof: First suppose that f is bent. So Wf (α) = ±2−n/2 for all α ∈ Fn
2 . From (9), it follows that

Cf (x) = 0 for all 0n ̸= x ∈ Fn
2 . Consequently, from (18) we have that for any non-empty T ⊆ [n],

inff (T ) = 1− 2#T .
Next we prove the converse. From (18), it follows that inff (T ) = 1− 2#T if and only if∑

0n ̸=α≤χT

Cf (α) = 0. (42)

For 0 ≤ i ≤ 2n−1, let binn(i) denote the n-bit binary representation of i. Let M be the (2n−1)×(2n−1)
matrix whose rows and columns are indexed by the integers in [2n − 1] such that the (i, j)-th entry of
M is 1 if binn(j) ≤ binn(i) and otherwise the entry is 0. It is easy to verify that M is a lower triangular
matrix whose diagonal elements are all 1. In particular, M is invertible.

Let C = [Cf (binn(i))]i∈[2n−1] be the vector of auto-correlations of f at all the non-zero points in Fn
2 .

The set of relations of the form (42) for all non-empty T ⊆ [n] can be expressed as MC⊤ = 0⊤. Since
M is invertible, it follows that C = 0, i.e. Cf (α) = 0 for all non-zero α ∈ Fn

2 . From (8), it now follows
that Wf (β) = ±2−n/2 for all β ∈ Fn

2 which shows that f is bent. □
For functions satisfying propagation characteristics, somewhat less can be said. From (18), it follows

that if f satisfies PC(k) then for any subset ∅ ≠ T ⊆ [n] with #T = t ≤ k, inff (T ) = 1 − 2−t and so
t-inf(f) = 1− 2−t.
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3.5 The Fourier Entropy/Influence Conjecture

The Fourier entropy H(f) of f is defined to be the entropy of the probability distribution {W 2
f (α)} and

is equal to

H(f) = −
∑
α∈Fn

2

W 2
f (α) logW 2

f (α), (43)

where log denotes log2 and the expressions 0 log 0 and 0 log 1
0 are to be interpreted as 0. For t ∈ [n], let

ρt(f) =
H(f)/n

t-inf(f)
. (44)

The Fourier entropy/influence conjecture [8] states that there is a universal constant C, such that for
all Boolean functions f , ρ1(f) ≤ C. A general form of this conjecture is that there is a universal
constant Ct, such that for all Boolean functions f and t ∈ [1, n], ρt(f) ≤ Ct. Since t-inf(f) increases
monotonically with t, it follows that ρt(f) decreases monotonically with t. So if the FEI conjecture
holds, then the conjecture on ρt(f) also holds for t ≥ 1. The converse, i.e if the conjecture holds for
some ρt with t > 1 then it also holds for ρ1, need not be true.

Remark 8 A weaker variant of the FEI conjecture replaces H(f) by the min-entropy of the distribution
p̂f (ω). In a similar vein, one may consider the conjecture on ρt(f) to be a weaker variant of the FEI
conjecture.

4 Pseudo-Influence

In this section, we define a quantity based on the auto-correlation function which we call the pseduo-
influence of a Boolean function. The main reason for considering this notion is that it turns out to be
the same as the notion of influence Jf (T ) introduced in [16]. We make a thorough study of the basic
properties of pseudo-influence. A consequence of this study is that pseudo-influence does not satisfy
some of the basic desiderata that a notion of influence may be expected to satisfy, which is why we call
it pseudo-influence. This shows that even though the quantity was termed ‘influence’ in [16], it is not
a satisfactory notion of influence.

Suppose f(X) is an n-variable Boolean function where X = (X1, . . . , Xn) and ∅ ≠ T = {i1, . . . , it} ⊆
[n]. We define pseudo-influence PIf (T ) of the set of variables {Xi1 , . . . , Xit} indexed by T on f in the
following manner.

PIf (T ) =
1

2#T

 ∑
α≤χT

(−1)wt(α)Cf (α)

 . (45)

For a singleton set T = {i}, PIf (T ) = inff (T ) = inff (i).
Let f be an n-variable function and t be an integer with 1 ≤ t ≤ n. Then the t-pseudo-influence of

f is the total pseudo-influence (scaled by
(
n
t

)
) obtained by summing the pseudo-influence of every set

of t variables on the function f , i.e.,

t-PI(f) =

∑
{T⊆[n]:#T=t} PIf (T )(

n
t

) . (46)

The characterisation of pseudo-influence in terms of the Walsh transform is given by the following
result.
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Theorem 11 Let f be an n-variable Boolean function and ∅ ≠ T ⊆ [n]. Then

PIf (T ) =
∑
u≥χT

(Wf (u))
2 . (47)

Consequently, for an integer t with 1 ≤ t ≤ n,

t-PI(f) =
1(
n
t

) n∑
k=t

(
k

t

)
p̂f (k) (48)

Proof: Let #T = t. Let E = {β ∈ Fn
2 : β ≤ χT }. Then #E = 2n−t and E⊥ = {α ∈ Fn

2 : α ≤ χT }.
From (45) and putting a = 1n, b = 0n and ψ = Cf in (3) we obtain the following:

PIf (T ) =
1

2t

∑
α≤χT

(−1)wt(α)Cf (α) =
1

2t

∑
α≤χT

(−1)⟨1n,α⟩Cf (α) =
∑

β∈1n+E

Ĉf (β) =
∑
β≥χT

Ĉf (β).

The result now follows from (8).
The expression for t-PI(f) can be seen as follows.

t-PI(f) =
1(
n
t

) n∑
k=t

∑
{u:wt(u)=k}

(
k

t

)
(Wf (u))

2

=
1(
n
t

) n∑
k=t

(
k

t

) ∑
{u:wt(u)=k}

(Wf (u))
2

=
1(
n
t

) n∑
k=t

(
k

t

)
p̂f (k)

=
1(
n
t

) n∑
k=t

(
k

t

)
p̂f (k). (49)

□
The following result states the basic properties of the pseudo-influence.

Theorem 12 Let f be an n-variable Boolean function and ∅ ≠ T ⊆ S ⊆ [n]. Then

1. 0 ≤ PIf (T ) ≤ 1.

2. If the function f is degenerate on the variables indexed by T , then PIf (T ) = 0.

3. PIf (S) ≤ PIf (T ).

Proof: The first point follows from Theorem 11 and Parseval’s theorem. The third point also follows
from Theorem 1.

Consider the second point. Suppose π is any permutation of [n] and define g(X) to be the function
f(Xπ(1), . . . , Xπ(n)). Then f is degenerate on the variables indexed by a set U = {i1, . . . , it} if and only
if g is degenerate on the variables indexed by the set V = {π(i1), . . . , π(it)}. Also, inff (U) = infg(V ).
In view of this, we consider the set T to be {1, . . . , t}.

For α ∈ Ft
2 and Y = (Xt+1, . . . , Xn), let fα(Y) = f(α,Y). The function f is degenerate on the

variables indexed by T if and only if fα(Y) = fβ(Y) for any α,β ∈ Ft
2. We show that the latter
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condition is equivalent to f(X) = f(X⊕γ) for any γ ≤ χT . Note that by the choice of T , we have that
for γ ≤ χT , γ = (δ,0) for some δ ∈ Ft

2. So it is sufficient to show that f(α,Y) = f((α,Y)⊕ (δ,0)) for
all α ∈ Ft

2. The latter condition is equivalent to fα(Y) = fα⊕δ(Y) = fβ(Y) where β = α ⊕ δ. This
completes the proof that f is degenerate on the variables indexed by T if and only if f(X) = f(X⊕ γ)
for all γ ≤ χT .

The condition f(X) = f(X ⊕ γ) for all γ ≤ χT is equivalent to Cf (γ) = 1 for all γ ≤ χT . So f is
degenerate on the set of variables indexed by T if and only if Cf (γ) = 1 for all γ ≤ χT . Using this in
the definition of pseudo-influence given by (45), we obtain the the second point. □

Theorem 12 states that if f is degenerate on the variables indexed by T , then PIf (T ) = 0. The
converse, however, is not true. Suppose f is an n-variable function such that Wf (1n) = 0 and let
T = [n]. Then from (47), PIf (T ) = 0. This example can be generalised. Suppose g is an n-variable,
m-resilient function and let f(X) = ⟨1,X⟩ ⊕ g(X). Using (4), we have Wf (α) = Wg(1 ⊕ α) for all
α ∈ Fn

2 . Since, g is m-resilient, Wg(ω) = 0 for all ω with wt(ω) ≤ m. So Wf (α) = 0 for all α with
wt(α) ≥ n − m. Consequently, for any ∅ ≠ T ⊆ [n], with #T ≥ n − m, it follows that PIf (T ) = 0.
There are known examples of non-degenerate resilient functions. See for example [14].

Remark 9 By the above discussion, PIf (T ) can be zero even if f is non-degenerate on the variables
indexed by T . Further, the third point of Theorem 12 shows that PIf (T ) is non-increasing with T . As
a consequence, sub-additivity does not hold for PIf (T ). So PIf (T ) violates some of the basic desiderata
that one may expect a notion of influence to fulfill.

For u ∈ Fn
2 and ∅ ≠ T ⊆ [n], u ≥ χT is equivalent to supp(u) ⊇ T which in particular implies that

supp(u) ∩ T ̸= ∅. So from (20) and (47), we have the following result which states that influence is
always at least as large as the pseudo-influence.

Proposition 4 Let f be an n-variable Boolean function and ∅ ≠ T ⊆ [n]. Then inff (T ) ≥ PIf (T ).
Consequently, t-inf(f) ≥ t-PI(f) for 1 ≤ t ≤ n.

Theorem 13 Let f(X) be an n-variable Boolean function where X = (X1, . . . , Xn) and t be an integer
with 1 ≤ t ≤ n.

1. t-PI(f) takes its maximum value of 1 if and only if f is of the form f(X) = ⟨1,X⟩.

2. t-PI(f) takes its minimum value of 0 if and only if f is of the form f(X) = ⟨1,X⟩ ⊕ g(X), where
g(X) is (n− t)-resilient.

Proof: From (48), t-PI(f) takes its maximum value of 1 if and only if

n∑
k=t

(
k

t

)
p̂f (k) =

(
n

t

)
. (50)

If f(X) = ⟨1,X⟩, then p̂f (n) = 1 and p̂f (k) = 0 for 0 ≤ k ≤ n−1. On the other hand, if f(X) ̸= ⟨1,X⟩,
then p̂f (n) < 1 and we have(

t

t

)
p̂f (t) +

(
t+ 1

t

)
p̂f (t+ 1) + · · ·+

(
n

t

)
p̂f (n)

≤
(
n− 1

t

)
(p̂f (0) + · · ·+ p̂f (n− 1)) +

(
n

t

)
p̂f (n)
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=

(
n− 1

t

)
(1− p̂f (n)) +

(
n

t

)
p̂f (n) <

(
n

t

)
.

This completes the proof of the first point.
For the second point, from (48), one may note that the values p̂f (0), . . . , p̂f (t− 1) do not affect the

expression for t-PI(f). So t-PI(f) = 0 if and only if p̂f (t) = · · · = p̂f (n) = 0. The latter condition holds
if and only if f is of the stated form. □
Using the second point of Theorem 13, it is possible to obtain examples of non-degenerate functions f
such that t-PI(f) is 0.

Remark 10 The quantity Jf (T ) (see (16)) was put forward by Tal [16] as a measure of influence of
the set of variables indexed by T on the function f . It was shown in [16] that Jf (T ) is equal to the right
hand side of (47). So it follows that Jf (T ) = PIf (T ). This is somewhat surprising since the definition
of Jf (T ) given in (16) and that of PIf (T ) given in (45) are very different. It is perhaps only through the
characterisations of both these quantities in terms of the Walsh transform that they can be seen to be
equal. The quantity

∑
{T :#T=t} Jf (T ) was considered in [16] and the expression (48) was also obtained

in [16]. Since Jf (T ) = PIf (T ), from Remark 9 it follows that Jf (T ) is not a satisfactory notion of
influence.

For an n-variable Boolean function f , define L1,t =
∑

u=t |Wf (u)| and W≥t(f) =
∑

i≥t p̂f (i).

Lemma 31 of [16] showed that if for all t, t-PI(f) ≤ C · ℓt for some constant C, then W≥k(f) ≤
C · e · ℓ · e−(k−1)/(eℓ) for all k. Lemma 34 of [16] showed that L1,t(f) ≤ 2t · t-PI(f). Since Proposition 4
shows that t-inf(f) ≥ t-PI(f) for 1 ≤ t ≤ n, we obtain simple extensions of the Lemmas 31 and 34
of [16] by replacing t-PI(f) with t-inf(f) in the above statements. Lemma 29 of [16] provides a converse
of Lemma 31. This converse does not necessarily hold if t-PI(f) is replaced with t-inf(f). Lemmas 29
and 31 of [16] relate spectral tail bounds to bounds on pseudo-influence. We note that a spectral
concentration result for t-inf(f) is given by Theorem 3.

5 Ben-Or and Linial Definition of Influence

The first notion of influence of a set of variables on a Boolean function was proposed by Ben-Or and
Linial in [2]. In this section, we introduce this notion, prove some of its basic properties and show its
relationship with the notion of influence defined in Section 3.

For an n-variable function f and ∅ ≠ T ⊆ [n], with t = #T , the notion of influence introduced in [2]
is If (T ) and is given by (13). For t ∈ [n], we define

t-I(f) =

∑
{T⊆[n]:#T=t} If (T )(

n
t

) . (51)

The following result provides an alternative description of If (T ).

Proposition 5 For an n-variable function f and ∅ ≠ T ⊆ [n], with t = #T ,

If (T ) = 1−
#
{
α ∈ Fn−t

2 : (Wfα(0t))
2 = 1

}
2n−t

(52)

=
#
{
α ∈ Fn−t

2 : (Wfα(0t))
2 ̸= 1

}
2n−t

, (53)

where fα denotes fXT←α.
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Proof: From (13), it clearly follows that

If (T ) = 1− #{α ∈ Fn−t
2 : fα is constant}

2n−t

= 1− #{α ∈ Fn−t
2 : wt(fα) = 0, or 2t}

2n−t

= 1−
#{α ∈ Fn−t

2 :Wfα(0t) = ±1}
2n−t

.

This shows (52), and (53) follows directly from (52). □
Some basic properties of If (T ) are as follows.

Theorem 14 Let f be an n-variable function and ∅ ≠ T ⊆ S ⊆ [n]. Let #T = t.

1. 0 ≤ If (T ) ≤ 1.

2. If (T ) = 0 if and only if f is degenerate on the variables indexed by T .

3. If (T ) = 1 if and only if fα is a non-constant function for every α ∈ Fn−t
2 , where fα denotes

fXT←α. In particular, if T = [n], then If (T ) = 1.

4. If (T ) ≤ If (S).

Proof: The first point is obvious.
For the second point, using (52) note that If (T ) = 0 if and only if for every α ∈ Fn−t

2 ,Wfα(0t) = ±1,
i.e., if and only if wt(fα) = 0, or 2t, i.e., if and only if fα is constant. The latter condition holds if and
only if the variables indexed by T have no effect on the value of f , i.e., if and only if f is degenerate on
the variables indexed by T .

To see the third point, note that If (T ) = 1 if and only if for every α ∈ Fn−t
2 , (Wfα(0t))

2 ̸= 1, which
holds if and only if fα is a non-constant function.

Let #S = s. For the fourth point, it is sufficient to consider s = t + 1, since otherwise, we may
define a sequence of sets T ⊂ S1 ⊂ S2 ⊂ · · · ⊂ S, with #T + 1 = #S1, #S1 + 1 = #S2, . . . , and argue
If (T ) ≤ If (S1) ≤ · · · ≤ If (S). Further, without loss of generality, we assume T = {n − t + 1, . . . , n}
and S = {n − t, . . . , n} as otherwise, we may apply an appropriate permutation on the variables to
ensure this condition. Then T = {1, . . . , n− t} and S = {1, . . . , n− t− 1}.

Let T = {α ∈ Fn−t
2 : fα is constant} and S = {β ∈ Fn−t−1

2 : fβ is constant}, where fβ is a
shorthand for fXS←β. Note that if β ∈ S, then (β, 0), (β, 1) ∈ T . So #T ≥ 2#S which implies

#T
2n−t

≥ 2#S
2n−t

≥ #S
2n−t−1

.

Consequently,

If (T ) = 1− #T
2n−t

≤ 1− #S
2n−t−1

= If (S).

□

Remark 11 We note that the sub-additivity property does not hold for If (T ). As an example, consider
a 6-variable function f which maps 06 to 1 and all other elements of F6

2 to 0; let S = {4, 5, 6} and
T = {2, 3, 6}. Then If (S ∪ T ) = 1/2 > 1/8 + 1/8 = If (S) + If (T ).
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Next, we show that the Ben-Or and Linial notion of influence is always at least as much as the
notion of influence defined in (18).

Theorem 15 Let f be an n-variable function and ∅ ̸= T ⊆ [n]. Then inff (T ) ≤ If (T ). Further,
equality holds if and only if (Wfα(0t))

2 = 0 or 1 for each α ∈ Fn−t
2 , where fα denotes fXT←α.

Proof: We rewrite (28) in the following form.

inff (T ) =
1

2n−t

∑
α∈Fn−t

2

(
1− (Wfα(0t))

2
)
. (54)

Consider the expressions for inff (T ) and If (T ) given by (54) and (53) respectively. Both the expressions
are sums over α ∈ Fn−t

2 . Suppose α is such that (Wfα(0t))
2 = 1. The contribution of such an α to

both (54) and (53) is 0. Next suppose (Wfα(0t))
2 ̸= 1; the contribution of such an α to (53) is 1 and

the contribution to (54) is at most 1, and the value 1 is achieved if and only if Wfα(0t) = 0. □
One may compare the properties of If (T ) given by Theorem 14 to the desiderata that a notion of

influence may be expected to satisfy (see the discussion before Theorem 5). The measure If (T ) satisfies
some of the desiderata, namely, it is between 0 and 1; takes the value 0 if and only if f is degenerate
on the variables indexed by T ; and it is monotone increasing with the size of T . On the other hand, as
noted above, it does not satisfy the sub-additivity property.

Compared to inff (T ), the value of If (T ) rises quite sharply. To see this, it is useful to view the
following expressions for the two quantities.

2n−t × inff (T ) =
∑

α∈Fn−t
2

(
1− (Wfα(0t))

2
)
, (55)

2n−t × If (T ) = #
{
α ∈ Fn−t

2 : (Wfα(0t))
2 ̸= 1

}
. (56)

Suppose α ∈ Fn−t
2 is such that fα is a non-constant function, so that (Wfα(0t))

2 ̸= 1. Then such an
α contributes 1 to (56), while it contributes a value which is at most 1 to (55). More generally, α
contributes either 0 or 1 to (56) according as fα is constant or non-constant; on the other hand, the
contribution of α to (55) is more granular. Consequently, the value of If (T ) rises more sharply than
the value of inff (T ). In particular, if f and g are two distinct functions such that for all α, both fα and
gα are non-constant functions, then both If (T ) and Ig(T ) will be necessarily be equal to 1, whereas
the values of inff (T ) and infg(T ) are neither necessarily 1 nor necessarily equal. In other words, the
discerning power of If (T ) as a measure of influence is less than that of inff (T ), i.e., If (T ) is a more
coarse measure of influence. So while both inff (T ) and If (T ) share some intuitive basic properties
expected of a definition of influence, the facts that If (T ) does not satisfy sub-additivity and has less
discerning power make it a less satisfactory measure of influence compared to inff (T ).

Theorem 15 shows that inff (T ) ≤ If (T ). The difference between If (T ) and inff (T ) can be quite
large. For example, if we take f(X) = X1 · · ·Xn (i.e., the Boolean AND function), then If ([n]) = 1
while inff ([n]) = 1− (1− 1/2n−1)2. In other words, the influence of the set of all variables as measured
by If is 1, while the influence as measured by inff is close to 0. The influence of [n] on the degenerate
n-variable constant all-zero function is 0 as measured by both If and inff . The AND function differs
from the all-zero function by a single bit and so one would expect the influence of [n] to remain close
to 0. This is indeed the case for inff , while for If the value jumps to 1. The example of the AND
function can be generalised to a balanced function in the following manner. Let 1 ≤ t < n and
define f(X1, X2, . . . , Xn) = X1 · · ·Xt ⊕ Xt+1 ⊕ · · · ⊕ Xn. It is easy to verify that f is balanced. Let
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T = {1, . . . , t}. One may check that If (T ) = 1 and inff (T ) = 1 − (1 − 1/2t−1)2. As in the case of the
AND function, it can be argued that one would expect the influence of T to be close to 0 rather than
being equal to 1.

The following result characterises the minimum and maximum values of t-I(f).

Theorem 16 Let f be an n-variable Boolean function and t be an integer with 1 ≤ t ≤ n.

1. t-I(f) takes its maximum value of 1 if and only if for every subset T of [n] of size t, and for every
α ∈ Fn−t

2 , the function fXT←α
(XT ) is non-constant.

2. t-I(f) takes its minimum value of 0 if and only if f is a constant function.

Proof: The proof of the first point follows from the third point of Theorem 14.
For the second point, we note that if f is a constant function, then from (13), If (T ) = 0 for every

subset T of [n] and so t-I(f). On the other hand, if t-I(f) = 0, then from Theorem 15, it follows that
t-inf(f) = 0 and so from the second point of Theorem 6 we have that f is a constant function. □

Remark 12 Upper bounds on If (T ) for T with bounded size have been proved in [1]. Since inff (T ) ≤
If (T ), it follows that these upper bounds also hold for inff (T ).

6 Discussion

We have introduced a new definition of influence of a set of variables on a Boolean function which is
based on the auto-correlation function. Using the new definition, we have proved a number of results.
In this section, we highlight the new insights into Boolean functions that are obtained from the new
results which follow from the new definition.

As proved in Section 3.2, the quantity If (T ) defined in [7, 4] is half the value of the influence (namely,
inff (T )) that we have defined. Some results for If (T ) have been obtained earlier. Remark 7 mentions
the results which were previously obtained in [7, 4]. The quantity If (T ) was used in [7, 4] as a tool
for junta testing. The crucial result for such testing is Proposition 3. We have provided a new and
simpler proof of this proposition. Apart from Proposition 3 and the results mentioned in Remark 7,
all other results in Section 3 and its various subsections appear for the first time in this paper. We
highlight interesting aspects of some of the new results, particularly those aspects which arise due to
the auto-correlation function based definition.

Theorem 8 connects total influence to the path expansion property of a set of vertices A of the
hypercube. This result provides a geometric interpretation of the notion of influence which generalises
the well known connection of the total influence of a single variable to the edge expansion property of
A. The geometric interpretation of total influence in terms of path expansion is obtained through the
connection of the auto-correlation function to path expansion and the new definition of influence using
the auto-correlation function. The Fourier/Walsh transform and the auto-correlation function are well
studied tools in the theory of Boolean functions. In Proposition 1 and Remark 6 we have explained the
new geometric insight into these tools that our results provide.

The notion of influence has been studied for a long time, but has been restricted mostly to issues in
theoretical computer science. On the other hand, the notions of bent functions and resilient functions
have also been studied for a long time in the coding theory and cryptography literature. Our results
provide a previously unknown bridge between the notion of influence on the one hand, and the notions of
bent and resilient functions on the other hand. The first point of Theorem 6 provides a characterisation
of resilient functions in terms of total influence. Theorem 10 provides a characterisation of bent functions
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in terms of influence. Theorem 6 is itself based on the characterisation of total influence in terms of
Fourier/Walsh transform, while the proof of Theorem 10 uses the auto-correlation based definition of
influence. These new results provide interesting new insights into the connection between aspects of
Boolean functions studied in theoretical computer science and in coding theory and cryptography.

Remark 10 and the discussion following it mention the results on pseudo-influence which were
previously obtained in [16]. The other results in Section 4 are new to this work. In particular, the
inadequacy of pseudo-influence as a notion of influence is obtained as a consequence of Theorem 5, and
the characterisation of the conditions under which the total pseudo-influence achieves its minimum and
maximum values are given in Theorem 13.

All results in Section 5 on the BL definition of influence are new to this paper. These results establish
the basic properties of this notion of influence. We provide a detailed comparison of the BL definition
of influence and the auto-correlation function based definition of influence which highlight why the
BL definition is less satisfactory than the auto-correlation function based definition as a measure of
influence.

7 Conclusion

We introduced a definition of influence of a set of variables on a Boolean function using the auto-
correlation function. The basic theory around the notion of influence has been carefully developed
and several well known results on the influence of a single variable have been generalised. New char-
acterisations of resilient and bent functions in terms of influence have been obtained. A previously
introduced [7, 4] measure of influence of a set of variables is shown to be half the value of the influence
that we introduce. We also defined a notion of pseudo-influence, argued that it is not a satisfactory
measure of influence and showed that pseudo-influence is equal to a measure of influence previously
defined in [16]. Finally, we studied in details the definition of influence given by Ben-Or and Linial [2]
and brought out its relation to the auto-correlation based notion of influence.
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