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Abstract

We propose a diagonalization-based approach to several important questions in proof
complexity. We illustrate this approach in the context of the algebraic proof system IPS and in
the context of propositional proof systems more generally.

We give an explicit sequence of CNF formulas {φn} such that VNP 6= VP iff there are no
polynomial-size IPS proofs for the formulas φn. This provides the first natural equivalence
between proof complexity lower bounds and standard algebraic complexity lower bounds. Our
proof of this fact uses the implication from IPS lower bounds to algebraic complexity lower
bounds due to Grochow and Pitassi together with a diagonalization argument: the formulas φn
themselves assert the non-existence of short IPS proofs for formulas encoding VNP 6= VP at a
different input length. Our result also has meta-mathematical implications: it gives evidence
for the difficulty of proving strong lower bounds for IPS within IPS.

More generally, for any strong enough propositional proof system R we propose a new explicit
hard candidate, the iterated R-lower bound formulas, which inductively asserts the non-existence
of short R proofs for formulas encoding this same statement at a different input length. We show
that these formulas are unconditionally hard for Resolution following recent results of Atserias
and Müller and of Garlik. We further give evidence in favour of this hypothesis for other proof
systems.

1 Introduction

Diagonalization has been used to show many of the foundational results in logic, including Cantor’s
theorem about the uncountability of the reals, Gödel’s Incompleteness Theorems, and Turing’s proof
of the undecidability of the Halting Problem. It has also found extensive application in complexity
theory, where many unconditional lower bounds use diagonalization directly or indirectly. However,
surprisingly in the area of resource bounded proofs, namely proof complexity, diagonalization has
had very little impact so far.

Propositional proof complexity is concerned with the question of whether tautologies have short
proofs in a given proof system. Cook and Reckhow [CR79] showed that NP 6= coNP if and only if
there are hard instances for every propositional proof system R, i.e., a sequence of instances that
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does not have short R-proofs. It is known that there are hard instances for relatively weak proof
systems such as resolution [Hak85] and constant-depth Frege [Ajt88, KPW95, PBI93], but thus far
it remains completely open whether the same is the case for strong proof systems like Frege and
Extended Frege. Lower bounds on these systems seem extremely hard to attain, and there is even
a shortage of good explicit candidates for hard instances.

In this paper, we propose a diagonalization-based approach to make progress on several
important directions in proof complexity, including connections between proof complexity and
circuit complexity, meta-mathematics of proof complexity lower bounds and explicit hard instances
for propositional proof systems. We first give some background on each of these directions.

Connections Between Proof Complexity and Circuit Complexity: It is an intrigu-
ing fact that many of the known proof complexity lower bounds are shown using techniques
that were originally developed in the context of circuit complexity, e.g., the technique of random
restrictions. Intuitively, it seems as though progress on lower bounds in both areas is stalled for
similar reasons, but there are few formal connections known between the two areas. For weak
proof systems, the notion of feasible interpolation [Kra97] provides such a connection, enabling us
to derive small circuits for certain computational problems from short proofs of related formulas.
In the converse direction, recent lifting results [GKRS19] give a way to derive circuit complexity
lower bounds for weak circuit classes from proof complexity lower bounds for related weak proof
systems.

For strong proof systems, there are some intriguing connections known to algebraic complexity
(cf. [PT16] for a survey). First, the strong algebraic proof system IPS (Ideal Proof System)
introduced by Grochow and Pitassi in [GP18] was introduced in part to relate proof complexity
lower bounds to complexity class separations such as VP vs. VNP. Furthermore, we know that
some natural conjectures from algebraic circuit complexity, such as the Shub and Smale conjecture
[SS95] about hardness of expressing factorial numbers with 0, 1,−1 constants and ×,+ gates,
imply lower bounds on the IPS as shown recently in [AGHT20]. Moreover, unconditional lower
bounds on some restricted versions of IPS have been shown to follow from certain algebraic
circuits lower bounds in [FSTW16], while [LTW18] established connections between Frege
lower bounds and lower bounds on the weak model of noncommutative formulas. Finding further
connections is an important problem, so that progress in either area can be transferred to the other.

Meta-mathematics of Proof Complexity Lower Bounds: Proof complexity lower bounds
seem to be difficult to show, but there seems to be little formal justification for this. In contrast,
the difficulty of showing computational complexity lower bounds is evidenced by barriers such
as the relativization barrier and the natural proofs barrier. Understanding the barriers to lower
bounds better in the context of proof complexity might help us to make progress. One approach
is via connections to circuit complexity. Grochow and Pitassi [GP18] show that super-polynomial
lower bounds for CNFs in the algebraic proof system IPS imply VNP 6= VP; thus if we believe
VNP 6= VP is hard to show, then we must believe the same for IPS lower bounds. In a recent work,
[PS19] take a different approach, formulating an analogue of the natural proofs barrier for proof
complexity. They show unconditionally that for some (non-uniform) propositional proof system
R, super-polynomial lower bounds on R-proofs for random truth table formulas cannot be shown
efficiently in any non-uniform propositional proof system. However, their proof is non-constructive,
and does not seem to yield any new information for commonly studied proof systems such as Frege
and Extended Frege.

Explicit Hard Instances for Propositional Proof Systems: Known proof complexity
lower bounds for proof systems such as Resolution and constant-depth Frege hold for explicit
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formulas, indeed the Pigeonhole Principle is hard in both cases. However, for Frege and above,
there are few explicit candidates for hard instances, as discussed in [Raz15]. Random CNFs of
constant clause-to-variable density and random truth table formulas are plausible candidates, but
are not explicit. The only plausible explicit candidates of which we are aware, apart from canonical
examples such as reflection principles for strong proof systems1, are explicit circuit lower bound
tautologies and the more general proof complexity generators [ABSRW04, Kra01]. However, even
explicit circuit lower bound tautologies are no longer hard candidates for strong propositional
proof systems that can prove circuit lower bounds - such a strong proof system can be defined by
adding a circuit lower bound tautology as an axiom to Frege, if circuit lower bounds do indeed
hold for functions in exponential time. In general, there is a need for more plausible candidates for
hardness, prior to any approach to showing lower bounds for strong proof systems.

We make progress along the three directions above in the context of the algebraic proof system
IPS and for propositional proof systems in general. We next explain our results.

1.1 Our Results

In the first part of this work we show how our diagonlisation applies to strong algebraic proof
systems with relation to algebraic circuit lower bounds. In the second part we introduce our iterated
lower bounds formulas as a means to attain proof complexity lower bounds via diagonalisation for
general propositional proof systems.

1.1.1 Proof complexity characterisation of VP 6= VNP

Our main technical result is an equivalence between super-polynomial algebraic circuit lower bounds
for the Permanent and non-existence of IPS short refutations for a certain sequence of explicit CNFs.
In the following informal statement of the result we use “VNP 6= VP” to denote appropriate CNF
encodings of VNP 6= VP (itself a sequence of statements asserting that the Permanent, as given by
its list of monomials at a given input length, lacks small algebraic circuits) over a finite field F, and
lbIPS(“φn”, s) to denote appropriate CNF encodings of the statements that there are no IPS-proofs
of φn of size s(|φ|), where s : N → N is a function (below, m refers to the size of “VNP 6= VP”).2

Theorem 1.1 (Equivalence between Algebraic Circuit Lower Bounds and IPS Lower Bounds;
informal). VNP 6= VP over finite fields iff there is a constant c such that there are no polynomial-
size IPS proofs of the CNF formula lbIPS(“VNP 6= VP”,mc).

Note that the explicit CNF formulas which lack efficient IPS proofs iff VNP 6= VP are themselves
encodings of IPS lower bounds for the statement VNP 6= VP - this is how we use diagonalization.
Our argument combines diagonalization ideas with the result of Grochow and Pitassi [GP18] that
IPS lower bounds for CNFs imply circuit lower bounds. We give more details on the proof ideas
in the next section. Our proof ideas generalize to give an analogue of Thm. 1.1 for every algebraic
proof system that efficiently simulates IPS.

It is important to clarify that the formulas lbIPS(“VNP 6= VP”,mc) are not necessarily tautolo-
gies: we do not know if there are IPS lower bounds against proving VNP 6= VP (let alone whether
VNP 6= VP holds). We work with formulas that are conjectured to be tautologies, and show that
for these conjectured tautologies, their proof complexity hardness is equivalent to VNP 6= VP. It
is possible that VNP 6= VP actually has polynomial-size IPS proofs, in which case Thm. 1.1 holds

1That is, principles expressing the soundness of proof systems that are conjectured to be stronger than the proof
system we wish to lower bound.

2Here and elsewhere we abuse the terminology by writing “IPS proof of a CNF formula expressing a statement”
to formally mean an IPS refutation refuting the unsatisfiable CNF expressing the negation of the statement.
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because lbIPS(“VNP 6= VP”,mc) is not a tautology and hence trivially lacks small IPS proofs.
This, however, cannot happen if we assume a natural algebraic analogue of Razborov’s Conjecture
[Raz15, Kra04b] as we now explain.

Razborov conjectured that under standard circuit complexity assumptions, Frege cannot effi-
ciently prove super-polynomial circuit lower bounds for any Boolean function (as expressed in the
so-called truth table formulas). Let us formulate a reasonable algebraic analogue of Razborov’s
Conjecture: IPS cannot efficiently prove super-polynomial algebraic circuit lower bounds for any
polynomial. Note that this algebraic variant of Razborov’s conjecture, ruling out short IPS proofs
of VNP 6= VP, does not rule out short proofs of the statement expressing that “there are no short
IPS proofs of VNP 6= VP”. Thm. 1.1 shows that assuming this variant of Razborov’s conjecture,
VNP 6= VP is equivalent to a lower bound on IPS proofs of this latter statement.3

Thm. 1.1 is relevant to two of the three directions we cited as motivation earlier. It gives a
new connection between algebraic complexity and proof complexity, which could be useful in either
direction. The proof of Thm. 1.1 also provides an argument that can be applied more generally: it
shows a way to flip the direction of any reduction that reduces proof hardness to circuit hardness, to
obtain a reduction that reduces circuit hardness to proof hardness (or more precisely to non-efficient
provability), as explained in Subsection 1.2. Thm. 1.1 is also relevant to the meta-mathematics of
IPS lower bounds. For a certain natural explicit family of formulas expressing algebraic circuit
lower bounds for the Permanent, super-polynomial IPS lower bounds are themselves hard to show
in IPS, if we believe that VNP 6= VP. Thus, under reasonable complexity conjectures, namely that
VNP 6= VP and that the algebraic analogue of Razborov’s conjecture holds, IPS finds it hard to
reason about itself.

1.1.2 Iterated lower bounds formulas

Thm. 1.1 gives evidence that IPS finds it hard to reason efficiently about itself - could this hold for
proof systems more generally4? A heuristic way to think of Thm. 1.1 is as a fixed point result in
the following sense: consider lbR(·,m

ω(1)) for a proof system R as an operator mapping formulas to
formulas, namely ϕ 7→ lbR(ϕ,m

ω(1)) (in applications we take instead ofmω(1) a concrete polynomial
lower bound mc, for a constant c). Let lb2R be the composition of this operator with itself, namely
ϕ 7→ lbR(lbR(ϕ,m

ω(1)),mω(1)). Then the sequence of formulas expressing that VNP 6= VP is a
fixed point for lb2R in the sense that it preserves truth when R is IPS: if VNP 6= VP holds then
lbR(lbR(VNP 6= VP,mω(1)),mω(1)) holds. Indeed, our diagonalisation approach is inspired partly
by Atserias and Müller, and Garlik [AM20, Gar19], who showed implicitly that every sequence of
formulas is such a fixed point for lb2R when R is Resolution, and by [PS19] who showed implicitly
that for every strong enough (nonuniform) propositional proof system R (simulating Extended
Frege), the distribution of random truth table formulas is a fixed point for lb2R.

Here we explore the idea that iterating lbR provides an explicit hard sequence of formulas for
R. Assume that R is not polynomially bounded, and let φ be a fixed formula that does not have
|φ|c size R-proofs, for some constant c.

3Razborov conjectured in [Raz15] that Frege cannot efficiently prove super-polynomial circuit lower bounds for any
Boolean function. More specifically, [Raz15, Conjecture 1] with suitable parameters for the underlying combinatorial
designs implies under some hardness assumptions that Frege cannot efficiently prove that SAT 6⊆ P/poly. Further
conjectures about the impossibility of Extended Frege to efficiently prove circuit lower bounds have been circulated
in the proof complexity literature and discussions (cf. [Raz16, Raz21, Kra11]).

4Independently of our work, Pudlák [Pud20] poses the same question.
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We define the iterated lower bound formulas lbkR(φ, n
c) inductively as follows:

1. lb0R(φ, n
c) = φ;

2. lbk+1
R (φ, nc) = lbR(lb

k
R(φ, n

c), nc) .

We propose the Iterated Lower Bound Hypothesis: for every reasonably strong5 propo-
sitional proof system R that is not polynomially bounded, there is a φ such that the sequence
{lbkR(φ, n

c)}∞k=0 is a sequence of hard instances for R.

This generically gives a candidate family of hard instances for every strong enough proof sys-
tem. We believe that there is a win-win aspect to studying this hypothesis - even if it fails, this
gives us information about whether propositional proof systems can reason about lower bounds
for themselves. We are not currently aware of any natural propositional proof system R that is
capable of this. Though there have been discussions on whether constant-depth Frege for example
can efficiently prove its known lower bounds, even if this is the case our hypothesis would make
sense for strong proof systems, as well as for weak proof systems.

We provide evidence in favour of the hypothesis. First, as a corollary to [AM20, Gar19], it
follows that the hypothesis holds for Resolution.

Theorem 1.2. The Iterated Lower Bounds Hypothesis holds for Resolution.

Second, we show that under a conjecture of Rudich [Rud97] about non-existence of short propo-
sitional proofs for random truth table formulas, any finite number of iterations preserves hardness
for random truth table formulas, for some strong propositional proof system R that efficiently
simulates Extended Frege.

Theorem 1.3. Assuming Rudich’s Conjecture, there is a propositional proof system R efficiently
simulating Extended Frege such that for every large enough constant c and every fixed positive integer
k, lbkR(φ, |φ|

c) does not have R-proofs of size |lbkR(φ, |φ|
c)|c with high probability over the truth table

formula φ expressing that a random Boolean function on n variables does not have circuits of size
nc.

1.2 Overview of Techniques

We give a high-level overview of the ideas required to show Thm. 1.1. Informally, we would like to
show that VNP 6= VP iff IPS cannot efficiently prove IPS lower bounds for “VNP 6= VP”.

The proof builds on several technical constructions. The gist of the argument is a form of
diagonalisation: the existence of a short proof of a proof complexity lower bound for the statement
VNP 6= VP implies in fact that there is a short proof of VNP 6= VP (at a smaller input length) due
to the reduction of Grochow and Pitassi [GP18], that we show is efficiently formalizable already
inside IPS. Note that as we mentioned above in Sect. 1.1.1, this argument can be applied more
generally: for any proof system P and any circuit lower bound statement denoted Circuit-Hard,
the existence of a short P proof of the statement that P does not admit short proofs of Circuit-Hard
implies in fact that there is a short P proof of Circuit-Hard (at a smaller input length), assuming
a proof complexity lower bound on P proofs implies Circuit-Hard (and as long as we can formalise
this implication efficiently in P ).

For the purpose of our argument we make the following assumptions, which we will justify later:
(1) There is a reasonable CNF encoding of “VNP 6= VP”; (2) there is a reasonable CNF encoding of
the statement that there are no IPS lower bounds of size s for a CNF φ; (3) if φ is a tautology and

5We formally define “reasonably strong” later.
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there are short IPS proofs of “IPS does not efficiently prove φ”, then there are short IPS proofs
of “VNP 6= VP”. Assumption 3 can be thought of as the formalization of the Grochow-Pitassi
implication from IPS lower bounds for CNFs to VNP 6= VP within IPS. A priori, it is hard to see
how to establish Assumption 3 since we only know that φ is a tautology and do not have proofs of
this fact. It will turn out that the parameters can be set so that truth-table proofs of φ suffice.

Given these assumptions, we proceed as follows. First, we show the forward direction. Assume
VNP 6= VP. Then “VNP 6= VP” is a CNF tautology, using Assumption 1. Assume for the sake of con-
tradiction that lbIPS(“VNP 6= VP”, nω(1)) has polynomial-size proofs in IPS. Then by Assumption
3, “VNP 6= VP” has polynomial-size proofs in IPS. But this contradicts the soundness of IPS, since
IPS has polynomial-size proofs of the statement that “VNP 6= VP” requires superpolynomial-size
IPS-proofs.

For the backward direction, either φ = “lbIPS(“VNP 6= VP”, nω(1))” is true or it is not. If it
is true, then lbIPS(φ, n

ω(1)) implies VNP 6= VP by [GP18], using Assumption 2. If it is false, then
“VNP 6= VP” has poly-size proofs in IPS. By the soundness of IPS, this implies VNP 6= VP.

The above is only a template and hides many technical issues and details. For example, in
practice, we work with the statement VNP 6= VP at a given input length, and we need to clarify
how the input lengths of different occurrences of the statement relate to each other.

Technically, for the sake of the formalisation in IPS we need to be able to speak at the IPS proof
level about circuit lower bounds, proof complexity lower bounds, and the reduction between them
as in [GP18]. To formalise statements about IPS proofs and circuit class separations we express
polynomials as vectors of coefficients. To express the existence of small circuits we use universal
circuits as defined in Raz [Raz10]. To express that a given polynomial is computable by a small
circuit we use a set of equations. Each equation states that the coefficient of a monomial computed
by the universal circuit has the appropriate value.

Using this formalisation of polynomials computed by small circuits we can encode VP 6= VNP

as the statement expressing that the coefficient vector of the permanent polynomial is not equal to
the coefficient vector of any small universal circuit. Similarly, the IPS proof predicate is expressed
by stating the existence of a small universal circuit that computes (similarly, based on its monomial
coefficients) the IPS certificate of a given CNF. For the purpose of expressing statements about
algebraic circuits such as VP 6= VNP as CNF formulas we first need to work over finite fields, and
second need to devise ways to move from CNF formulas encoding circuits to the circuit they express.

1.3 Related Work

Following on unpublished work of Friedman [Fri79], Pudlak [Pud86, Pud87] showed finitistic ver-
sions of Gödel’s Theorem: for any strong enough first-order theory T of arithmetic, there is a
constant ǫ > 0 such that the finitistic consistency principle ConT (n) stating that there are no
T -proofs of 1 = 0 of size at most n requires T-proofs of size at least nǫ. For first-order theories
satisfying additional properties, stronger lower bounds approaching n can be obtained [Pud87]. By
the standard translation between first-order theories and propositional proof systems, this yields
non-trivial lower bounds on the Q-proof size of the reflection principle for Q when Q is a strong
enough propositional proof system. However, the lower bounds obtained in this way are sub-linear
in the formula size, while we are interested in the question of super-polynomial size lower bounds.
Note that the reflection principle in fact has proofs of polynomial size [Pud86].

Diagonalization techniques have also been explored in work of Krajicek [Kra04c, Kra04a]. In
[Kra04c], the notion of implicit proofs is defined and studied. This concept is used in [Kra04a] to
show a conditional result: if E requires exponential-size circuits and NP = coNP, then there is no
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p-optimal propositional proof system. Our techniques here are very different, and our results seem
unrelated to those in [Kra04a].

On the other hand, the results of Grochow and Pitassi [GP18] are crucial to our work. Grochow
and Pitassi defined the Ideal Proof System, an algebraic proof system for which proofs are verifiable
by polynomial size circuits (and in polynomial time under a standard derandomization assumption).
They showed that super-polynomial IPS lower bounds for CNFs would imply VNP 6= VP. This
connection between proof complexity lower bounds and circuit complexity lower bounds has been
further developed in [FSTW16, LTW18, AGHT20]. However, none of these previous works establish
an equivalence between proof complexity lower bounds and standard circuit lower bounds, as in
Theorem Thm. 1.1.

We are also inspired by recent work of [AM20, PS19]. Atserias and Muller [AM20] settle the
long-standing open problem of whether Resolution is automatable (assuming P 6= NP) by giving
a reduction from SAT to proof complexity lower bounds for Resolution via variants of the proof
complexity lower bound formulas. Their reduction relies on the hardness of the Pigeonhole Principle,
which only holds for weak proof systems such as Resolution, while we are interested here in strong
proof systems such as IPS. Pich and Santhanam [PS19] unconditionally establish a version of the
Natural Proofs barrier [RR97] in proof complexity, but they do so for a proof system that is defined
non-constructively and moreover for instances which are randomly generated. In contrast, we are
interested here in the meta-mathematics of proof complexity for well-studied and concrete proof
systems such as IPS and for explicit instances. We do use ideas from [AM20, PS19] to give evidence
for the Iterated Lower Bounds Hypothesis.

Finally, the idea of iterating proof complexity lower bounds is novel to the best of our knowledge.
Nevertheless, as discussed above, considering the proof complexity of proof complexity lower bounds
has been investigated to different degrees of explicitness in the literature. And we refer the reader
to the recent excellent survey by Pudlak [Pud20] that explores this and other related questions.

2 Preliminaries

2.1 Basic Algebraic Complexity

For an excellent treatise on algebraic circuits and their complexity see Shpilka and Yehudayoff
[SY10]. Let G be a ring. Denote by G[X] the ring of (commutative) polynomials with coefficients
from G and variables X := {x1, x2, . . . }. A polynomial is a formal linear combination of monomials,
where a monomial is a product of variables. Two polynomials are identical if all their monomials
have the same coefficients. The degree of a polynomial is the maximal total degree of a monomial
in it.

Algebraic circuits and formulas over the ring G compute polynomials in G[X] via addition and
multiplication gates, starting from the input variables and constants from the ring. More precisely,
an algebraic circuit C is a finite directed acyclic graph (DAG) with input nodes (i.e., nodes of in-
degree zero) and a single output node (i.e., a node of out-degree zero). Input nodes are labeled with
either a variable or a ring element in G. All the other nodes have fan-in (that is, in-degree) two and
are labeled by either an addition gate + or a product gate ×. Every node in an algebraic circuit C
computes a polynomial as follows: an input node computes the variable or scalar that labels it. A
+ (or ×) gate is said to compute the addition (product, resp.) of the (commutative) polynomials
computed by its incoming nodes. The polynomial computed by a node u in an algebraic circuit
C is denoted û. Given a circuit C, we denote by Ĉ the polynomial computed by C, that is, the
polynomial computed by the output node of C. The size of a circuit C is the number of nodes
in it, denoted |C|, and the depth of a circuit is the length of the longest directed path in it. For
an algebraic circuit C we write C(a/x) to denote the substitution instance of C in which every
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occurrence of the node x is replaced by the sub-circuit a; in case C(x) is written with its displayed
variable(s) x we can write C(x)(a/x) for this substitution instance. We say that a polynomial is
homogeneous whenever every monomial in it has the same (total) degree.

Definition 2.1 (Syntactic-degree sdeg(·)). Let C be a circuit (without division) and v a node in
C. The syntactic-degree sdeg(v) of v is defined as follows:

1. If v is a field element or a variable, then sdeg(v) := 0 and sdeg(v) := 1, respectively;

2. If v = u+ w then sdeg(v) := max{sdeg(u), sdeg(w)};

3. If v = u · w then sdeg(v) := sdeg(u) + sdeg(w).

An algebraic circuit is said to be syntactic-homogeneous if for every plus gate u+ v, deg(u) =
deg(v).

Algebraic Complexity Classes. We now recall some basic notions from algebraic complexity
(for more details see [SY10, Sec. 1.2]). Over a ring R, VPR (for “Valiant’s P”) is the class of families
f = (fn)

∞
n=1 of formal polynomials fn such that fn has poly(n) input variables, is of poly(n) degree,

and can be computed by algebraic circuits over R of poly(n) size. VNPR (for “Valiant’s NP”) is the
class of families g of polynomials (gn)

∞
n=1 such that gn has poly(n) input variables and is of poly(n)

degree, and can be written as

gn

(
x1, . . . , xpoly(n)

)
=

∑

e∈{0,1}poly(n)

fn(e, x)

for some family (fn)
∞
n=1 ∈ VPR.

A polynomial f(x) is a projection of a polynomial g(y) if f(x) = g(L(x)) identically as polyno-
mials in x, for some map L that assigns to each yi either a variable or a constant. In other words,
a projection of g(y) is a substitution instance of g(y) in which y variables are substituted by x
variables or field elements. A family of polynomials (fn) is a polynomial projection or p-projection
oft another family (gn) if there is a function t(n) = nΘ(1) such that fn is a projection of gt(n) for all
(sufficiently large) n. The permanent polynomial

∑
σ∈Sn

∏n
i=1 xi,σ(i) (for Sn the permutation group

on n elements) is complete under p-projections for VNP when the ring R is a field of characteristic
different from 2. The determinant polynomial on the other hand is known to be in VP but is not
known to be complete for VP under p-projections.

Two central questions in algebraic complexity theory are whether the permanent is a p-
projection of the determinant (a stronger variant speaks about quasi-polynomial projections); and
whether VP equals VNP [Val79b, Val79a, Val82]. Since the permanent is complete for VNP (under
p-projections), showing VP 6=VNP amounts to proving that the permanent cannot be computed by
polynomial-size algebraic circuits.

2.2 Algebraic Proof Systems

Grochow and Pitassi [GP18] suggested the following algebraic proof system which is essentially
a Nullstellensatz proof system ([BIK+96]) written as an algebraic circuit. A proof in the Ideal
Proof System is given as a single polynomial. We provide below the boolean version of IPS (which
includes the boolean axioms), namely the version that establishes the unsatisfiability over 0-1 of a
set of polynomial equations. In what follows we follow the notation in [FSTW16]:
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Definition 2.2 ((boolean) Ideal Proof System (IPS), Grochow-Pitassi [GP18]). Let
f1(x), . . . , fm(x), p(x) be a collection of polynomials in F[x1, . . . , xn] over the field F. An IPS

proof of p(x) = 0 from {fj(x) = 0}mj=1, showing that p(x) = 0 is semantically implied
from the assumptions {fj(x) = 0}mj=1 over 0-1 assignments, is an algebraic circuit C(x, y, z) ∈
F[x, y1, . . . , ym, z1, . . . , zn] such that (the equalities in what follows stand for formal polynomial
identities6):

1. C(x, 0, 0) = 0; and

2. C(x, f1(x), . . . , fm(x), x21 − x1, . . . , x
2
n − xn) = p(x).

The size of the IPS proof is the size of the circuit C. The variables y, z are called the placeholder
variables since they are used as placeholders for the axioms. An IPS proof C(x, y, z) of 1 = 0 from
{fj(x) = 0}j∈[m] is called an IPS refutation of {fj(x) = 0}j∈[m] (note that in this case it must
hold that {fj(x) = 0}mj=1 have no common solutions in {0, 1}n).

Notice that the definition above adds the equations {x2i − xi = 0}ni=1, called the set of boolean
axioms denoted x2−x, to the system {fj(x) = 0}mj=1. This allows to refute over {0, 1}

n unsatisfiable
systems of equations. Also, note that the first equality in the definition of IPS means that the
polynomial computed by C is in the ideal generated by y, z, which in turn, following the second
equality, means that C witnesses the fact that 1 is in the ideal generated by f1(x), . . . , fm(x), x21 −
x1, . . . , x

2
n − xn (the existence of this witness, for unsatisfiable set of polynomials, stems from the

Nullstellensatz theorem [BIK+96]).
In order to use IPS as a propositional proof system (namely, a proof system for propositional

tautologies), we need to fix the encoding of clauses as algebraic circuits.

Definition 2.3 (algebraic translation of CNF formulas). Given a CNF formula in the variables x,
every clause

∨
i∈P xi ∨

∨
j∈N ¬xj is translated into

∏
i∈P (1 − xi) ·

∏
j∈N xj = 0. (Note that these

terms are written as algebraic circuits as displayed, where products are not multiplied out.)

Notice that in this way a 0-1 assignment to a CNF is satisfying iff the assignment is satisfying
all the equations in the algebraic translation of the CNF.

Therefore, using Definition 2.3 to encode CNF formulas, boolean IPS is considered as a proposi-
tional proof system for the language of unsatisfiable CNF formulas, sometimes called propositional
IPS. We say that an IPS proof is an algebraic IPS proof, denoted IPSalg, if we do not use the
boolean axioms x2−x in the proof. In our applications we are going to use algebraic IPS refutations,
while sometimes explicitly adding the boolean axioms for some variables (while leaving them out
for some other variables). As a default when referring to IPS we mean the boolean IPS version.
When we use algebraic IPS we will say that explicitly.

The following is the main structural-complexity result for IPS. Notice that it already works for
algebraic IPS and this will be important for us.

Theorem 2.4 (Grochow-Pitassi [GP18]). For any ring R, a super-polynomial lower bound on
algebraic IPS refutations (and hence also on IPS refutations) over R for any family of CNF formulas
implies VNPR 6= VPR. The same result hold if we assume that the IPS refutation size lower bound
holds only infinitely often.

The following lemma is the key to the proof of the Theorem, and is used in our application:

Lemma 2.5. Every family of unsatisfiable CNF formulas (ϕn) has a family of algebraic IPS (and
hence also of IPS) certificates (Cn) in VNPR.

6That is, C(x, 0, 0) computes the zero polynomial and C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x

2
n − xn) computes the

polynomial p(x).
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Proof of Thm. 2.4, assuming Lemma 2.5. For a given set F of unsatisfiable polynomial equations
F1 = · · · = Fm = 0, a lower bound on algebraic IPS refutations of F is equivalent to giving the same
circuit lower bound on all IPS certificates for F . A super-polynomial lower bound on IPS implies
that some function in VNP—namely, the VNP-IPS certificate guaranteed by Lemma 2.5—cannot
be computed by polynomial-size algebraic circuits, and hence that VNP 6= VP.

2.2.1 Conventions and Notations for IPS Proofs

An IPS (algebraic or not) proof over a specific field or ring is sometimes denoted IPSF specifying
explicitly it is over F. For two algebraic circuits F,G, we define the size of the circuit equation
F = G to be the total circuit size of F and G, namely, |F |+ |G|. For a set F of equations between
circuits we denote by |F| to be the total size of the equations in the set.

Let F denote a set of polynomial equations {fi(x) = 0}mi=1, and let C(x, y, z) ∈ F[x, y, z] be an
IPS proof of f(x) from F as in Definition 2.2. Then we write C(x,F , x2 − x) to denote the circuit
C in which yi is substituted by fi(x) and zi is substituted by the boolean axiom x2i − xi. By a
slight abuse of notation we also call C(x,F , x2−x) = f(x) an IPS proof of f(x) from F and x2−x
(that is, displaying C(x, y, z) after the substitution of the placeholder variables y, z by the axioms
in F and x2 − x, respectively).

The following fact shows that polynomial identities are proved for free in IPS:

Fact 2.6 ([AGHT20]). If F (x) is a circuit in the variables x over the field F that computes the
zero polynomial, then there is an IPS proof of F (x) = 0 of size |F |.

Proof of fact. The IPS proof of F (x) = 0 is simply C(x, z) := F (x) (note that we do not need to
use the boolean axioms nor any other axioms in this case). Observe that both conditions 1 and 2
for IPS hold in this case (Definition 2.2).

For two polynomials f(x), g(x), an IPS proof of f(x) = g(x) from the assumptions F is an IPS
proof of f(x)− g(x) = 0 (note that in case f(x) and g(x) are identical as polynomials this is trivial
to prove by Fact 2.6).

We denote by C : F IPS

s
p = 0 (resp. C : F IPS

s
p = g) the fact that p = 0 (resp. p = g) has

an IPS proof C(x, y, z) of size s from assumptions F , and we use IPS

s, d

when we want to specify
that the degree of the IPS proof is upper bounded by d. Assumptions F can be written either as a
set of equations or as a sequence of equations or sets thereof separated by commas. We may also
suppress “= 0” and write simply C : F IPS

s
p for C : F IPS

s
p = 0. Whenever we are only interested

in claiming the existence of an IPS proof of size s of p = 0 from F we suppress the C from the
notation. Similarly, we can suppress the size parameter s from the notation. If F is a circuit
computing a polynomial F̂ ∈ F[x], then we can talk about an IPS proof C of F from assumptions

F , in symbols C : F IPS F , meaning an IPS proof of F̂ . Accordingly, for two circuits F, F ′ such

that F̂ = F̂ ′, we may speak about an an IPS proof C of F from assumptions F to refer to an IPS
proof of F ′ from assumptions F . If {pi = 0}∞i=1 and {F i}

∞
i=0 are sequences of circuit equations and

sets of circuit equations, respectively, then we write F i IPS

∗
pi = 0 to denote that there is an IPS

proof of pi = 0 from the assumptions F i of size polynomial in |F i|+ |pi|.
When we deal with algebraic IPS proofs we will use the same notation as above, only using

IPSalg instead of IPS.

3 Proof Complexity Characterization of VP 6= VNP

We show that IPS cannot efficiently prove that the algebraic circuit class separation VP 6= VNP

is hard to prove in IPS. Note that this result is unconditional : IPS unconditionally does not have
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polynomial-size refutations of the statement asserting the existence of short IPS refutations for
VP = VNP. On the other hand, if VP 6= VNP is in fact easy to prove in IPS or if VP = VNP, then the
result is less interesting, since then the result stems simply from soundness of IPS. Similarly, if the
IPS refutations of VP = VNP are of exponential degree, then the result becomes trivially true again,
since there is a polynomial-size refutation of our formulation of VP = VNP (since the formulation
is exponential in itself). The more interesting scenario is under the reasonable assumption that
indeed algebraic circuit class separations are hard to establish in polynomial-degree IPS, and in
this case we show that this fact would not have efficient proofs in IPS.

3.1 Formalisations

3.1.1 CNF Encoding of Algebraic Circuit Equations

We are going to work at times with IPS that does not have the boolean axioms for all variables (but
only for some variables that will be explicitly specified), namely algebraic IPS, denoted IPSalg. If
we show that it is hard to refute that IPS without the boolean axioms has small refutations of some
statements, then we also show that it is hard to refute that an IPS with the boolean axioms has
small refutations of this statement (otherwise, a short refutation of the existence of IPS refutation
with boolean axioms would imply a short refutation of the existence of a refutation in a weaker
system). Hence in what follows even when we discuss CNF formulas translated to the algebraic
setting we shall write precisely what the boolean axioms that we add to the formulas are.

For an algebraic circuit C and b a field element, we call C = b a circuit equation (we sometimes
use the same notion for equations between two circuits). We work over a finite field Fq. This is
necessary in our argument to be able to switch between formulas in CNF and algebraic circuit
equations. Recall that a formula in CNF (“a CNF” for short) is a conjunction of clauses, where
a clause is a disjunction of literals, and literals are variables or their negation. The algebraic
translation of a formula in CNF is defined according to Definition 2.3. When we work with CNF
formulas in IPS we assume that the CNF formulas are translated according to Definition 2.3. The
size of objects like circuits, circuit equations, sets of circuit equations and formulas in CNF are
denoted by | · | (where “·” is replaced by the respective object).

Definition 3.1 (Algebraic extension axioms and unary bits). Given a circuit C and a gate g in C
we call the equation

xg =

q−1∑

i=0

i · xgi

the algebraic extension axiom of g, with each variable xgi being the ith unary-bit of g.

Note that if the unary-bits of g are taken over {0, 1} and assuming that xgi = 1 for precisely
one 0 ≤ i ≤ q − 1, then xg = i iff xgi = 1. Note also that the unary-bits are disjoint from the
(algebraic input) variables of the circuit C.

Definition 3.2 (Plain CNF encoding of algebraic circuits; cnf (C(x))). Let C(x) be a circuit in
the variables x. The plain CNF encoding of the circuit C(x) denoted cnf (C(x)) consists of the
following CNFs in the unary-bits variables of all the gates in C (and only in the unary-bit variables):

1. If xi is an input gate in C, the plain CNF encoding of C uses the variables xxi0, . . . , xxi(q−1)

that are the unary-bits of xi, and contains the clauses that express that precisely one unary-bit
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is 1 and all other unary-bits are 0: 7

q−1∨

j=0

xxij ∧
∧

j 6=ℓ∈{0,...,1}

(¬xxij ∨ ¬xxiℓ). (1)

2. If α ∈ Fq is a scalar input gate in C, the plain CNF encoding of C contains the {0, 1}
constants corresponding to the unary-bits of α. These constants are used when they are fed
to (translations of) gates according to the wiring of C in item 4.

3. For every gate g in C(x) and every satisfying assignment α to the plain CNF encoding, the
corresponding unary-bit xgi evaluates to 1 iff the value of g is i ∈ {0, . . . , q − 1} (when the
algebraic inputs x ∈ (Fq)

∗ to C(x) take on the values corresponding to the boolean assignment
α; “∗” here means the Kleene star). This is ensured with the following equations: if g = u◦v
is an internal gate in C (including the output gate, but excluding the input gates of C), for
◦ ∈ {+,×}, we have a CNF ϕg in the unary-bits variables of g, u, v that is satisfied by an
assignment precisely when the output unary-bits of g get their correct values based on the
(constant-size) truth table of ◦ over Fq and the input unary-bits of u, v (we ensure that if
more than one unary-bit is assigned 1 in any of the unary-bits of g, u, v then the CNF is
unsatisfiable).

4. For every unary-bit variable xgi we have the boolean axiom (recall we write these boolean
axioms explicitly since we are going to work with IPSalg):

x2gi − xgi = 0 .

We now define the same encoding, only for a circuit equation instead of merely a circuit, namely
the CNF is satisfied by an assignment to the unary-bits precisely when the gates encode correctly
the computation of the circuit and additionally the output gate evaluates to zero.

Definition 3.3 (Plain CNF encoding of algebraic circuit equations; cnf (C(x) = 0)). Let C(x) = 0
be a circuit equation in the variables x. The plain CNF encoding of the circuit equation

C(x) = 0 denoted cnf (C(x) = 0) consists of the plain CNF encoding from Definition 3.2 in the
unary-bits variables of all the gates in C (and only in the unary-bit variables), together with the
equations

xgout0 = 1 and xgouti = 0, for all i = 1, . . . , q − 1,

which express that gout = 0, where gout is the output gate of C.

Definition 3.4 (Extended CNF encoding of a circuit equation (circuit, resp.); ecnf (C(x) = 0)
(ecnf (C(x)), resp.)). Let C(x) be a circuit in the x variables over the finite field Fq. Then the
extended CNF encoding of the circuit equation C(x) = 0 (circuit C(x), resp.), in symbols
ecnf (C(x) = 0) (ecnf (C(x)), resp.), is defined to be a set of algebraic equations over Fq in the
variables xg and xg0, . . . , xgq−1 which are the unary-bit variables corresponding to node g in C, that
consists of:

1. the plain CNF encoding of the circuit equation C(x) = 0 (circuit C(x), resp.), namely,
cnf (C(x) = 0) (cnf (C(x)), resp.); and

2. the algebraic extension axiom of g, for every gate g in C.

7This conditions is needed only for inputs. For internal gates the CNFs expressing the truth table for the gate
will make sure that only one output unary-bit takes on the value one.
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Notice that the extended CNF encoding is not formally a CNF since it uses the algebraic
extension axioms which are not clauses. Also, note that the extended CNF encoding does not
contain the boolean axioms for the algebraic extension variables xg, for g a gate in C, as these
variables are meant to range over all Fq and not merely {0, 1} (while it does contain the boolean
axioms for the unary-bit variables).

Since we work with extension variables for each gate in a given circuit equation C(x) = 0, it is
more convenient to express circuit equations as a set of equations that correspond to the straight
line program of C(x) (which is an equivalent in strength formulation to algebraic circuits):

Definition 3.5 (Straight line program (SLP)). An SLP of a circuit C(x) is a sequence of equations
between variables such that the extension variable for the output gate computes the value of the
circuit assuming all equations hold. Formally, we choose any topological order g1, g2, . . . , gi, . . . , g|C|

on the gates of the circuit C (that is, if gj has a directed path to gk in C then j < k) and define the
following set of equations to be the SLP of C(x):

gi = gj ◦ gk for ◦ ∈ {+,×} iff gi is a ◦ gate in C with two incoming edges from gj and gk.

An SLP representation of a circuit equation C(x) = 0 means that we add to the SLP above the
equation g|C| = 0, where g|C| is the output gate of the circuit.

Using the concept of extended CNF encoding we can show how to efficiently go within IPS
from a circuit equation written as a set of equations for the corresponding SLP to a CNF, and vice
versa. The idea is to augment the SLP of C(x) = 0 with xg =

∑q−1
i=0 i · xgi which is the algebraic

extension axiom of g, for every gate g in C. We show that, efficiently in IPS, we can go from this
representation of C(x) = 0 to its extended CNF encoding, and vice versa.

Proposition 3.6 (Translating between extended CNFs and circuit equations). Let F be a finite
field, and let C(x) be a circuit in the x variables over F that is written as a set of equations corre-

sponding to the SLP of C(x). Then, the following both hold (recall that
IPSalg

∗
means polynomial-size

proofs):

ecnf (C(x) = 0)
IPSalg

∗
C(x) = 0 (2)

{
xg =

q−1∑

i=0

i · xgi : g a node in C

}
,

{
x2gi − xgi = 0 : g is a node in C, 0 ≤ i < q

}
,

{
q−1∑

i=0

xgi = 1 : g is a node in C

}
, C(x) = 0

IPSalg

∗
ecnf (C(x) = 0) (3)

Note that in eq. 3 the first set of axioms from the left are the algebraic extension axioms, the
second are the boolean axioms for the unary bits, and the bottom left set of axioms expresses that
each gate has only one unary-bit equal to 1.

The proof uses the fact that over finite fields the truth table of each algebraic gate is easy to
describe and can be reasoned about efficiently.

Proof: The proof of eq. 2 is as follows. For every gate g = u ◦ v (for ◦ ∈ {+,×}) we have the
corresponding truth table CNF for ◦ over Fq that is satisfied only when the unary-bits of gate
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g, denoted collectively as xgi, correspond to the correct output of g given the unary-bits of u, v
as inputs, denoted accordingly by xui, xvi, respectively. Denote this CNF by plus(xgi, xui, xvi) or
times(xgi, xui, xvi), for ◦ = +, ◦ = ×, respectively. In ecnf (C(x) = 0) we also have the algebraic
extension axioms for g, v, u. It remains to prove that from

plus(xgi, xui, xvi), and (4)

xg =

q−1∑

i=0

i · xgi, xu =

q−1∑

i=0

i · xui, xv =

q−1∑

i=0

i · xvi (5)

we can derive with a constant-size IPS derivation

xg = xu + xv , (6)

and similarly for the product gate. This suffices to conclude the proof because the collection of all
eq. 6 for all gates g in C are precisely the SLP of C(x).

We prove the case for plus gates (the case of product gates is similar). Observe that the boolean
axioms for the unary-bits and eq. 4 semantically imply (over Fq)

q−1∑

i=0

i · xgi =

q−1∑

i=0

i · xui +

q−1∑

i=0

i · xvi . (7)

By implicational completeness of IPS over 0-1 assignments (this is proved by induction on the
number of variables, essentially trying out all possible 0-1 assignments to the variables) we get that
from the boolean axioms and eq. 4 we have a constant-size derivation of eq. 7 (since the number of
variables involved is constant and all variables involved have their corresponding boolean axioms).
By substituting eq. 5 in eq. 7 we finish.

The proof of eq. 3 is identical, only that we go in the other direction: we show that from
eq. 6 and eq. 5 we can derive efficiently eq. 4. For that purpose, replace in eq. 6 the right hand
sides of eq. 5. This substitution, together with the boolean axioms for the unary-bits that are
given as assumptions, semantically imply eq. 4, and by implicational completeness of IPS over 0-1
assignments (since this derivation involves only unary-bit variables, hence all variables have their
own boolean axioms) we conclude the case for the plus gate. The case of the product gate is
similar.

We wish to speak about CNF formulas and not extended CNF formulas. This is necessary since
the work of [GP18], showing that an IPS lower bound implies VNP 6= VP, is known to hold only
for lower bounds against CNF formulas.

We have the following simple proposition:

Proposition 3.7. Let C(x) = 0 be a circuit equation over Fq. Then, C(x) = 0 is unsatisfiable over
Fq iff cnf (C(x) = 0) is an unsatisfiable CNF iff ecnf (C(x) = 0) is an unsatisfiable set of equations
over Fq.

Proof: ecnf (C(x) = 0) only adds to cnf (C(x) = 0) the algebraic extension axioms in the new vari-
ables xg, for every gate g in C, where xg does not occur anywhere else in ecnf (C(x) = 0) (recall
there are no boolean axioms for the variables xg). Hence, every 0-1 satisfying assignment to
cnf (C(x) = 0) (recall that cnf (C(x) = 0) includes the boolean axioms for all of its variables hence
a satisfying assignment to it must be a 0-1 assignment) can be extended to a satisfying assignment
of ecnf (C(x) = 0), and every satisfying assignment of ecnf (C(x) = 0) is also a satisfying assignment
to cnf (C(x) = 0) (when restricted to the variables in cnf (C(x) = 0)).

The fact that C(x) = 0 is unsatisfiable over Fq iff cnf (C(x) = 0) is an unsatisfiable CNF follows
from the construction of cnf (C(x) = 0) (Definition 3.3).
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Corollary 3.8. If ecnf (C(x) = 0) is unsatisfiable over Fq then it has an IPSalg refutation in VNP.

Proof: By Prop. 3.7 cnf (C(x) = 0) is an unsatisfiable CNF. By [GP18] every unsatisfiable CNF has
an IPSalg refutation computable in VNP, namely a refutation that does not use the boolean axioms.
Since by definition cnf (C(x) = 0) ⊆ ecnf (C(x) = 0), the IPSalg refutation of cnf (C(x) = 0) is also
a refutation of ecnf (C(x) = 0). (Note that in this IPSalg refutation we can assume we do not use
the boolean axioms of the unary-bit variables from item 4 in Definition 3.2, even though we added
these axioms explicitly to the system of equations.)

3.1.2 Encoding Universal Circuits

To express in the theory that a circuit computes a certain polynomial we will use the concept of
a universal circuit as introduced by Raz [Raz10]. A universal circuit is an algebraic circuit that,
loosely speaking, embeds all possible circuits of a certain size. More precisely, a universal circuit
for the class of polynomials in F[x] that have algebraic circuits of size at most t is a circuit U(x,w)
with two sets of variables x and w, such that f(x) ∈ F[x] has circuit of size at most t iff there is a
fixed choice of values α to w for which U(x, α) = f(x) (as a polynomial identity). Intuitively one
can think of the w variables as the circuit variables, while the x variables are the algebraic variables
of the circuit that is encoded by the w variables. Formally, w describe the edge labels put on edges
of a universal circuit.

Raz [Raz10] showed the existence of small algebraic universal circuits for homogeneous polyno-
mials (see also an intuitive description in [SY10]):

Theorem 3.9 (Existence of universal circuits for homogeneous polynomials; Raz [Raz10]). Let F
be a field and x be n variables, and let Chom

t,d denote the class of all homogeneous polynomials of
total degree exactly d in F[x] that have algebraic circuits of size at most t. Then there is a circuit
U(x,w) ∈ F[x,w] of size O(dt4) and syntactic-degree d such that w are t variables which are disjoint
from x, that is universal for Chom

t,d in the following sense: f(x) ∈ Chom
t,d iff there exists α ∈ F

t such
that U(x, α) = f(x).

The idea behind the proof of Thm. 3.9 is to provide a normal form for circuits: every syntactic
homogeneous circuit of degree d is reduced with a small increase in size to a normal form in which
different choices of edge labels determine the polynomial the circuit computes.

Since we do not necessarily work with homogeneous circuits and polynomials we will assume
that the universal circuit U(x,w) is in fact universal for general (non-homogeneous) circuits of
a given degree d and size t. We can assume this by defining a universal circuit as a sum of the
universal circuits for each homogeneous degree as follows (this does not constitute a restriction
when considering polynomial degrees, since the classical result of Strassen [Str73] shows that every
algebraic circuit computing a degree at most d polynomial can be written as a sum of homoge-
neous circuits for each of the homogeneous components of the polynomial; where in addition each
homogeneous circuit has size polynomially bounded in the original circuit size).

Definition 3.10. The universal circuit for degree d and size t circuits is defined as:

U(x,w) =
d∑

i=0

Ui(x,w), (8)

where Ui(x,w) is the universal circuit for homogeneous x-polynomials of i degree Chom
t,i and where

the w-variables in each distinct Ui(x,w) are pairwise disjoint (namely, no variable wl appears in
both Ui(x,w) and Uj(x,w) for i 6= j).
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By Thm. 3.9 the size of U(x,w) is
∑d

i=0O(it4) = O(d2t4).
In our formalisation we are going to express that a circuit computes a polynomial in F[x] by

stating that the coefficient vector of a universal circuit described by edge variables w equals some
fixed vector in F

N , with N being the total number of possible x-monomials in a degree at most
d polynomial with a given number of variables, usually n. Hence, we represent a circuit of size s
using s variables w for the s edges in the circuit U(x,w). Note that U(x,w) is a circuit in both x,w,
while our formalisation will not use in the end the x-variables: each x-monomial will be encoded
as a polynomial in the w-variables representing the coefficient of this x-monomial. In other words,
the coefficient vector of the polynomial in the x-variables computed by U(x,w) is a vector of N
polynomials in the w variables, where N is the total number of x-monomials.

We need to show how to compute given U(x,w) the coefficient of an x-monomial M as a
polynomial in the edge variables w. Such a polynomial is denoted CoeffM (U(x,w)).

Let f(x,w) ∈ F[x,w] be a polynomial, and let M =
∏

i∈I x
αi

i ·
∏

j∈J w
βj

j be a monomial in
f(x,w), for some αi, βi ∈ N (where 0 ∈ N). Then, we call

∑
i∈I αi the x-degree of M .

Definition 3.11 (CoeffM (·)). Let f(x,w) be a polynomial in F[x,w] in the disjoint sets of variables
x,w. Let M be an x-monomial of degree j. Then, CoeffM (f(x,w)) is the (polynomial) coefficient
in F[w] (that is, in the w-variables only) of M in f(x,w).8

Note that f(x,w) =
∑

Mi
Mi ·CoeffMi

(f(x,w)), where the Mi’s are all possible x-monomials of
degree at most d, for d the maximal x-degree of a monomial in f(x,w).

Proposition 3.12 (Computation of coefficients). Let f(x,w) ∈ F[x,w] be a polynomial in F[x,w]
in the disjoint sets of variables x,w. Suppose that M is an x-monomial of degree d, and assume
that there is an algebraic circuit computing f(x,w) of size s and syntactic-degree ℓ. Then, there is
a circuit of size O(7d · s) computing CoeffM (f(x,w)) of syntactic-degree ℓO(1).

Proof: For a variable xi we show how to construct circuits that compute the polynomials g, h,
respectively, such that xi · g + h = f , with h having no occurrences of xi (i.e., xi does not appear
with a positive power in any monomial in h). Thus, g is the polynomial coefficient of xi in f . We
then continue in this manner to extract the polynomial coefficient of M in f . Each such circuit-
construction increases the size of f by a constant factor of 7 according to the claim below. Hence,
using d such iterations for each of the d variables in M we shall get a O(7d · s)-size circuit D
computing the polynomial coefficient of M in f(x,w). However, this polynomial coefficient may
contain also monomials in both the x and w variables (while by Definition 3.11 it should not), and
to eliminate these monomials we simply assign zeroes to all x-variables in D.

It remains to prove the following claim (recall that Ĉ is the polynomial computed by a circuit

C and that |C| is the size of C; we denote by Ĉ(x) ↾xi=0 the polynomial Ĉ(x) where xi is assigned
0).

Claim 3.13. Let C(x) be a circuit of syntactic-degree ℓ in the x variables over the field F. Then,
for every variable xi there is a circuit of size 7|C| and syntactic-degree ℓO(1) that computes the

polynomial g(x), such that Ĉ(x) = xi · g(x) + Ĉ(x) ↾xi=0.

Proof of claim: The proof is by induction on the circuit size. Denote by p the polynomial computed
by C and for every gate v in C denote by pv the polynomial computed at gate v.

Denote by Pxi
(pv) the unique polynomial such that pv = xi · Pxi

(pv) + pv ↾xi=0 (note that
Pxi

(pv) can contain xi because pv is not necessarily linear in xi). For every gate v in C we add at

8Note that there can be polynomial coefficients in F[x,w] of M that involve also the x-variables. But we wish
to consider the polynomial coefficients in the w-variables alone. For this reason, in Prop. 3.12 we shall assign zero
values to the x-variables after taking the polynomial coefficient of M in the w-variables.
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most 7 new gates. The gate v itself is duplicated twice so that the first duplicate computes Pxi
(pv)

and the second duplicate computes pv ↾xi=0.

Base case:
Case 1: C(x) = xi. Then, Pxi

(p) := 1 and p ↾xi=0:= 0.
Case 2: C(x) = xj , for j 6= i. Then, Pxi

(p) := 0 and p ↾xi=0:= xj .
Case 3: C(x) = α, for α ∈ F. Then, Pxi

(p) := 0 and p ↾xi=0:= α.

Induction step:
Case 1: C(x) = w + u. Then, Pxi

(p) := Pxi
(pw) +Pxi

(pu) and p ↾xi=0:= pw ↾xi=0 +pu ↾xi=0.
Case 2: C(x) = w · u. Then,

Pxi
(p) := Pxi

(pw) · xi ·Pxi
(pu) +Pxi

(pw) · (pu ↾xi=0) +Pxi
(pu) · (pw ↾xi=0), and

p ↾xi=0:= (pu ↾xi=0) · (pw ↾xi=0).

Note that the construction results in a circuit and not a formula, that is, in the induction step
above we re-use gates that where already used if necessary (in correspondence with the wiring and
re-usage of gates in the original circuit C). This brings us to a circuit of size at most 7|C|, and by
construction syntactic-degree ℓO(1). Claim

By immediate inspection of Claim 3.13 we have:

Corollary 3.14. Let C(w) be a circuit that contains only the w-variables and M be an x-monomial
(with w and x pair-wise disjoint). Then, C(w) stays intact under the construction of CoeffM (·),
namely CoeffM (C(w)) = C(w).

Remark 3.15. It will be important for us that there are small universal circuits, namely that the
size of U(x,w) is small, since our hypothesized hard candidates will use a circuit computing U(x,w).
The diagonalisation argument works regardless of the size of the instance, only that if the size of the
formulas proved is too big, and specifically exponential in the number of variables, we land in the
uninteresting case in which there will be no short refutations of the statement Φ expressing short
IPS refutations of VNP = VP, simply because Φ is satisfiable, namely there are polynomial-size (in
the unsatisfiable input CNF) refutations of VP = VNP. We explain this further in Subsection 3.2.

3.1.3 Formalising VNP 6=VP

The class VP is expressed using a universal circuit while the class VNP is expressed explicitly as
the coefficient vector of the permanent polynomial, where permanent is known to be complete for
VNP [Val79a].

Let perm(x) be the permanent polynomial on the variables x. We are going to encode the
negation of VP 6= VNP (since we work with the refutation system IPS, we prove statements by
refuting their negations):

Definition 3.16 (Formalisation of VP = VNP). The formalisation of VNP = VP(t, n, d) denoted
“VNP = VP(t, n, d)”, expressing that there is a universal circuit for degree d ≥ n and size t circuits
that computes the permanent polynomial of dimension n (with x being the n2 variables of the
permanent), is the following set of polynomial equations (in the w-variables only9):

{CoeffMi
(U(x,w)) = bi : 1 ≤ i ≤ N} , (9)

9Recall that CoeffM (U(x,w)) is a polynomial in the w-variables only, for M an x-monomial.
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where b = coeffs(perm(x)) ∈ F
N is the coefficient vector of the permanent polynomial of dimension

n, w are the t edge variables, {Mi}
N
i=1 is the set of all possible x-monomials of degree at most d,

and N =
∑d

j=0

(
n2+j−1

j

)
= 2O(n2+d) is the number of monomials of total degree at most d over n2

variables.

By Prop. 3.12 the size of each circuit equation in eq. 9 is O(7j · |U(x,w)|) = O(7n · d2t4) (with
j ≤ d the degree of the x-monomial Mi), meaning that

the size of “VNP = VP(t, n, d)” is O(7n · d2t4 ·N) = t4 · 2O(n2+d), (10)

and the syntactic-degree of each circuit equation in eq. 9 is dO(1).

Remark 3.17.

1. Note that “VNP = VP(t, n, d)” (which we denote by “VNP = VP” when we do not care for the
parameters t, n, d) does not contain the x variables, rather only the w variables.

2. The degree d parameter is displayed in “VNP = VP(t, n, d)”due to technical reasons: we would
want the universal circuit that purportedly computes VNP to have unbounded syntactic-degree
d (and not merely syntactic-degree n), because in our diagonalization argument later we will
turn this universal circuit and the statement “VNP = VP(t, n, d)” into the statement asserting
that there is a small IPS refutation of degree d (computed by the universal circuit) and not
merely an IPS refutation of smaller degree n. (It is worth mentioning again that any circuit
computing a polynomial of degree n can be converted with only a polynomial increase in size
to a circuit of syntactic-degree n, following standard homogenization [Str73].)

3. Note that assuming VNP 6= VP, “VNP = VP(t, n, d)” is indeed an unsatisfiable set of polyno-
mial equations over Fq for n big enough and t polynomially bounded in n: any assignment
for the w variables that satisfies “VNP = VP(t, n, d)” means that there is a t-size circuit (in-
duced by the edge variables w-assignment) that computes the permanent polynomial (in the x
variables).

3.1.4 Formalising IPS Refutations

To express an IPS lower bound as a set of polynomial equations we will formalise the negation of
this statement, namely the existence of a small IPS refutation for a specific CNF formula.

Definition 3.18 (IPS refutation predicate IPSref(t, d,F)). Let F be a CNF formula with m clauses
and (for simplicity, since we deal with matrix inputs) n2 variables x written as a set of polynomial
equations according to Definition 2.3. Let U(x, y, w) be a universal circuit for degree d and size t
circuits in the x variables and the m placeholder variables y (both of these sets of variables are
the algebraic variables in a polynomial computed by the universal circuit when assigned field values
to the edge labels w), and the t edge label variables w. We formalise the existence of a size t and
degree d circuit that computes the IPS refutation of F , denoted IPSref(t, d,F), with the following
set of circuit equations (in the w-variables only):

CoeffMi
(U(x,0, w)) = 0 , (11)

CoeffMi

(
U(x,F , w)

)
=

{
1, Mi = 1 (i.e., the constant 1 monomial);

0, otherwise ,
(12)

where i ranges over i ∈ [N ] so that {Mi}
N
i=1 are the set of all possible x-monomials of degree at

most d, and N =
∑d

j=0

(
n2+j−1

j

)
= 2O(n2+d) is the number of monomials of total degree at most d

over n2 variables, 0 is the all-zero vector of length m (replacing the y-variables in U(x, y, w)).
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By Prop. 3.12 the size of each circuit equation in eq. 11 and eq. 12 is O(7j · |U(x, y, w)| · |F|) =
O(7d · d2t4 · |F|) (with j ≤ d the degree of the x-monomial Mi), meaning that

the size of IPSref(t, d,F) is O(7d · d2t4 · |F| ·N) = t4 · |F| · 2O(n2+d), (13)

and the syntactic-degree of each circuit equation in eq. 11 and eq. 12 is dO(1).
Encoding an IPS lower bound is simply providing an ostensible unsatisfiable set of polynomials

that express the existence of size at most t and degree at most d IPS refutation of a CNF F . Thus
refuting this set of polynomials amounts to proving an IPS lower bound.

Remark 3.19. Note that our results are interesting only for IPS refutations of degrees d that do not
exceed our purported lower bound t. More precisely, if d = Ω(t) then the size of λ = IPSref(t, d,F)

is 2Ω(t) by eq. 13, and since t is the number of variables in λ there is a polynomial-size (in |λ|)
IPS refutation of λ. Namely, our candidate λ is in fact easy (hence, although the diagonalisation
argument still holds if d = Ω(t), it holds merely because even when λ is indeed unsatisfiable it has
a polynomial-size IPS refutation since the number of variables is polynomial in its size). See also
Sect. 3.2.2 for a discussion of the different parameters.

3.2 Characterizing VNP 6= VP as a Proof Complexity Lower Bound

We are now ready to prove our main theorem that IPS cannot prove certain IPS lower bounds
assuming VNP 6= VP. The gist of the argument is showing how from a short IPS proof of an IPS
lower bound on an unsatisfiable CNF formula one gets a short IPS proof that VP 6= VNP—this can
be considered a formalisation in IPS of the Grochow and Pitassi argument [GP18]. Since we work
with a refutation system, we will show equivalently that if IPS efficiently refutes the existence of
small IPS refutations of some CNF formula, then there is an efficient IPS refutation of VP = VNP.
We shall start from the CNF “VP = VNP” and reach a contradiction (in IPS). The idea now is
this: if we have the CNF “VNP = VP(t, n, d)”, meaning that perm(x) of dimension n is computable
by size t circuits (of syntactic-degree d), then we know in particular, by the completeness of the
permanent for VNP and the fact that every unsatisfiable CNF has an IPS refutation computable
in VNP (Thm. 2.4), that there is a “projection”, namely, an assignment a of variables and field
elements to x, such that perm(x ↾ a) is the IPS refutation of the CNF “VP = VNP” of some
lower dimension. Since the class of size t circuits is closed under assignments we conclude that
perm(x ↾ a) has a size t circuit, that is, there is a small IPS refutation of “VP = VNP” of some
lower dimension. But we assumed that IPS can (efficiently) refute the existence of such small IPS
refutations for “VP = VNP”, and by soundness of IPS we arrived at a contradiction.

We are going to use the following lemma which will allow us to express a proof complexity
lower bound on a seemingly stronger (“less satisfiable”) statement (and hence, stating such a
refutation lower bound seemingly weakens our lower bound statement). In particular we will
extend the statement of VP = VNP with additional extension axioms for certain new circuits
Ci(x). These extension axioms include the equations for gates in Ci(x) written as SLPs and the
algebraic extension axioms for each gate g in Ci(x). On the other hand, these extension axioms
do not express that any of the Ci(x) equals any specific value. In particular this means that
these additional extension axioms do not add any information to the statement (that is, they do
not actually make the statement “less satisfiable”). In return we will be able to state that such
additional extension axioms do not make a refutation lower bound against the statement a too
strong assumption by itself, in the sense that if we can efficiently refute the stronger (extended)
statement then we can efficiently refute also the weaker (non extended) statement:
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Lemma 3.20 (Disjoint extension axioms do not make refutations easier, provably in IPS). Let F
be a set of circuit equations written as SLPs, E be a set of different circuits (not circuit equations10)
each written as an SLP with extension variables that do not appear in F for every gate g in the
circuits in E, together with the algebraic extension axioms for each such gate g. Then11,

cnf
(
IPSalgref

(
t, ecnf

(
F ∪ E

)))
IPS

∗
cnf

(
IPSalgref

(
t, ecnf

(
F
)))

. (14)

Proof: The argument is a straightforward substitution to the extension axioms in E by some con-
stants that satisfy the extension axioms (the variables in E do not occur in F , and E correctly
express circuits, and not circuit equations, and so is satisfiable by definition). Note that we must
insist on using IPSalg refutations here in the internal IPSalg proof predicate (in contrast to IPS), as
otherwise the use of boolean axioms for the algebraic extension variables for nodes g in the circuits
E may make the equations in E unsatisfiable (hence, may make the refutation of ecnf

(
F ∪ E

)
eas-

ier than that of ecnf
(
F
)
. Similarly, if E are circuit equations instead of merely circuits, this may

make E unsatisfiable, and hence the lemma not true). We omit the details of this formalisation.

Lemma 3.21 (Algebraic extension axioms do not make refutations easier, provably in IPS). For
every set of circuit equations F written as SLPs the following holds:

cnf
(
IPSalgref

(
t, ecnf

(
F
)))

IPS

∗
cnf

(
IPSalgref

(
t, cnf

(
F
)))

. (15)

Proof: As before, the argument is a substitution. Specifically, consider an IPS refutation of ecnf
(
F
)
.

If we substitute a variable by a polynomial in a refutation it is still a refutation (namely, a polyno-
mial computing 1) only that we need to make sure that the axioms in the new refutation belong
to the set we want to refute, in our case cnf

(
F
)
.

Let xg be a variable in an algebraic extension axiom (Definition 3.1) xg =
∑q−1

i=0 i·xgi in ecnf
(
F
)

(which formally appears as xg−
∑q−1

i=0 i ·xgi in the IPS refutation). We substitute the variable xg in

the refutation by
∑q−1

i=0 i · xgi. Hence, all the algebraic extension axioms vanish (i.e., equal 0), and
since the variables xg do not occur in any other axiom of ecnf

(
F
)
(though may occur somewhere

else in the refutation nevertheless) we get a refutation of the original axioms of cnf
(
F
)
.

As mentioned in Remark 3.19 we are interested in the case where the syntactic degree d does
not exceed the size lower bound parameter t. Therefore, in what follows

we let d : N → N be a (monotone) size function d(t) = tǫ for some constant 0 < ǫ < 1.

The function d stands for the syntactic-degree of the universal circuit used in either the IPS refu-
tations or the universal circuits for computing the permanent.

Let ϕcnf
r,m,d denote the CNF encoding of the circuit equation “VNP = VP(r,m, d(r))” over the

field Fq expressing that there are size r and syntactic-degree d(r) circuits for the permanent of

dimension m over Fq. Let Φt,r,m,d denote the CNF formula cnf
(
IPSref

(
t, d, ϕcnf

r,m,d

))
expressing

that IPS refutes ϕcnf
r,m,d in size t and degree d(t) over Fq.

10Recall that this means that we simply add the SLP for the circuit without stating that the circuit’s output gate
evaluates to any specific value.

11Note that ecnf
(

F ∪ E
)

= ecnf
(

F
)

∪ ecnf
(

E
)

by Definition 3.4, where F are circuit equations, and E are circuits.

Also notice that the variables in ecnf
(

F
)

and in ecnf
(

E
)

are disjoint.
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Theorem 3.22 (main). VP 6= VNP over Fq iff the CNF family {Φt,r,m,d} does not have polynomial-
size IPS refutations infinitely often in the following sense: for every sufficiently large constant c0
there exists a constant c1 such that for infinitely many12 t, r,m ∈ N and every sufficiently large
constant c2, if t > |ϕcnf

r,m,d|
c1 and mc1 < r < mc2, Φt,r,m,d has no IPS refutation of size at most

|Φt,r,m,d|
c0.

Note that for every proof complexity lower bound nc0 that we want to establish, there exists a
hard instance stating a proof complexity lower bound of nc1 (where n is the size of the formulas
refuted or proved).

Proof of direction (⇐) of Thm. 3.22. This is the easier direction. Assume that there exist suffi-
ciently big constants c0, c1, c2 such that for infinitely many m ∈ N the family of CNF formulas
{cnf (IPSref (s, d, ϕt,m,d))}

∞
n=1 does not have polynomial-size IPS refutations where t < mc0 (that

is, the purported circuit for the permanent of dimension m is polynomially bounded in m) and
s < |ϕt,m,d|

c1 (that is, the purported size of an IPS refutation of the formula ϕt,m,d is polynomially
bounded in the size of the formula).

If {cnf (IPSref (s, ϕt,m,d))}
∞
n=1 is an unsatisfiable CNF family for infinitely many m ∈ N, then by

Thm. 2.4 [GP18] VNP 6= VP over Fq (note that the result of [GP18] holds also for lower bounds on
IPS without the boolean axioms).

Otherwise, {cnf (IPSref (s, d, ϕt,m,d))}
∞
n=1 is a satisfiable CNF family for infinitely many m ∈ N.

Thus, by Prop. 3.7 the set of polynomial equations IPSref (s, d, ϕt,m,d) is satisfiable over Fq for
infinitely many m ∈ N and hence there is an IPS refutation of ϕt,m,d for infinitely many m ∈ N and
by soundness of IPS we get that infinitely often there is no size at most mc0 for the permanent of
dimension m, and we are done.

3.2.1 Proof of direction (⇒) of Thm. 3.22

We work over Fq. First, consider the plain CNF encoding ϕcnf
r,m,d = cnf (“VNP = VP(r,m, d(r))”)

and the extended CNF encoding ϕecnf
r,m,d = ecnf (“VNP = VP(r,m, d(r))”). Denote by ϕ⋆

r,m,d the

extended CNF ϕecnf
r,m,d together with additional extension axioms E for some new set of circuits

written as SLPs and a new set of algebraic extension axioms for all the gates in these new circuits
that we will specify later (all the variables in these new equations will be disjoint from the original
variables in ϕecnf

r,m,d). Note that E are circuits but not circuit equations, so we have not added new

constraints to the original instance (that may make it easier to refute, as we show below).13

We assume that:
Assumption 1: VP 6= VNP over Fq. Namely, there is no constant c such that for all but constant
many n ∈ N, the permanent polynomial perm(x) of dimension n has an algebraic circuit of size at
most nc, over Fq.

And we will prove that:
Conclusion 1: Let c0 be some sufficiently large constant. There exists a constant c1 such that
for every sufficiently big constant c2 > c1, for infinitely many t, r,m ∈ N with t > |ϕ⋆

r,m,d|
c1 and

mc1 < r < mc2 the following CNF

cnf
(
IPSalgref

(
t, d, ϕ⋆

r,m,d

))
(16)

12Here we mean infinitely many distinct t’s, infinitely many distinct r’s and infinitely many distinct m’s.
13Note that we cannot assume a priori that the extension axioms E are derivable for free in IPS, and this is the

reason we need to add them in ϕ⋆
r,m,d. It is reasonable to assume that extension axioms that use new variables do

not allow for shorter IPS refutations in a similar way that Extended Frege uses extension axioms and is polynomially
equivalent to substitution Frege [Kra95] (however, we are not aware of proofs for this statement).
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has no IPS refutations of size at most
∣∣∣cnf

(
IPSalgref

(
t, d, ϕ⋆

r,m,d

))∣∣∣
c0
.

Note that since ϕ⋆
r,m,d has more constraints than ϕr,m,d, apriori it may happen that IPS cannot

efficiently prove that ϕ⋆
r,m,d is hard for IPS, while IPS can efficiently prove that ϕr,m,d is hard for

IPS. We show that this is not the case, namely, we argue that as long as the set of new axioms
E in ϕ⋆

r,m,d have total algebraic circuit-size polynomial in |ϕcnf
r,m,d|, Conclusion 1 above suffices to

conclude the theorem:

Claim 3.23. If Conclusion 1 above holds then also the same conclusion holds when the CNF

cnf
(
IPSref

(
t, d, ϕcnf

r,m,d

))
(17)

replaces eq. 16 in Conclusion 1.

Proof of claim: This is established by showing that from a short refutation of eq. 17 we get a short
refutation of eq. 16, as follows:

cnf


IPSalgref (t, d,

ϕ⋆
r,m,d︷ ︸︸ ︷

ϕecnf
r,m,d ∪ E)


 IPS

sO(1)

cnf
(
IPSalgref (t, d, ϕ

ecnf
r,m,d)

)
by Lemma 3.20

IPS

sO(1)

cnf
(
IPSalgref (t, d, ϕ

cnf
r,m,d)

)
by Lemma 3.21

IPS

sO(1)

cnf
(
IPSref(t, d, ϕ

cnf
r,m,d)

)
because IPS is a subsystem of IPSalg,

where the last equality is because IPS is a subsystem of IPSalg, and where s is the size of

cnf
(
IPSalgref (t, d, ϕ

ecnf
r,m,d ∪ E)

)
and the constant power in the polynomial sO(1) is assumed without

loss of generality to be small enough (or else we choose the other constant and specifically c3 as
below to be big enough).

Notice that to invoke Lemma 3.20 and Lemma 3.21 we need to work with IPSalg and not IPS.

Claim

We are going to describe the general scheme of the argument first, and then prove separately
Lemma 3.25 which is a sort of formalisation of Grochow-Pitassi result within IPS, in what follows.

Scheme of the main argument. Under Assumption 1 above, let c3 be some fixed constant
(that is derived from the polynomial-size proof in Prop. 3.26), let c0 be any constant. Suppose that

t, r,m ∈ N are such that (recall that “ IPS

s, d

” means size s and degree d IPS proofs):

cnf


IPSalgref (t, d,

σ︷ ︸︸ ︷
ϕecnf
r,m,d)




︸ ︷︷ ︸
λ

IPS

|λ|c0 , d(|λ|)
1 = 0, (18)

where ϕecnf
r,m,d is unsatisfiable over Fq by Assumption 1 (for sufficiently big r,m and when r < mc2 for

a sufficiently big constant c2 that we pick in what follows), and moreover eq. 18 is by an assumption
that there are i.o. short, degree d(|λ|) refutations for the statement λ that expresses there are short
refutations of ϕecnf

r,m,d.
Note that if this latter assumption about t, r,m and eq. 18 is incorrect then we finish our proof,

since then there exists a constant c1 such that for a sufficiently big constant c2 > c1, and where
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t > |ϕecnf
r,m,d|

c1 and mc1 < r < mc2 , cnf
(
IPSalgref (t, d, ϕ

ecnf
r,m,d)

)
has no degree d(|λ|) IPS refutations of

size at most
∣∣∣cnf

(
IPSref(t, d, ϕ

ecnf
r,m,d)

)∣∣∣
c0

(and assuming c0 is big enough, there is no IPS refutation

of size at most
∣∣∣cnf

(
IPSref(t, d, ϕ

⋆
r,m,d)

)∣∣∣
c0

of cnf
(
IPSref(t, d, ϕ

⋆
r,m,d)

)
as well).

Let
γ = ϕ⋆

t,k,d and k = 6(ℓ+N ′),

where ℓ,N ′ are the number of variables and clauses in ϕr,m,d, respectively, and assume that eq. 18
holds and

t > kc1

for a constant c1 that we pick big enough so that

|γ|c3 + |λ|c0 = |γ|c3 + |γ|c
′·c0 < |γ|c1 (19)

(we use here that |λ| = |γ|c
′
for some constant c′, by eq. 10 and eq. 13); and moreover, as before,

ϕ⋆
t,k,d is ϕecnf

t,k,d augmented with additional extension axioms E for some new set of circuits written
as SLPs and a new set of algebraic extension axioms for all the gates in these new circuits that we
will specify later (all the variables in these new equations will be disjoint from the original variables
in ϕecnf

t,k,d).

In Lemma 3.25 in the sequel we construct an IPSalg derivation of IPSalgref (t, d, ϕ
ecnf
r,m,d) from ϕ⋆

t,k,d

of size at most |γ|c3 and degree at most d(|λ|), assuming that ϕecnf
r,m,d is indeed unsatisfiable (which,

as mentioned above, follows from our Assumption 1 and the fact that r,m are big enough and
r < mc2 for a sufficiently big constant c2 > c1), from which we can conclude, using eq. 18, that:

γ︷ ︸︸ ︷
ϕ⋆
t,k,d IPSalg

|γ|c3 , d(|γ|)
cnf


IPSalgref (t, d,

σ︷ ︸︸ ︷
ϕecnf
r,m,d)




︸ ︷︷ ︸
λ

IPS

|λ|c0 , d(|λ|)
1 = 0 (20)

(note that for a CNF T , if we have T IPS

s
1 = 0 we have also T

IPSalg

s
1 = 0, because all vari-

ables in the CNF T have boolean axioms explicitly added to T by Definition 3.3, hence we have

ϕ⋆
t,k,d IPSalg

|γ|c3 , d(|γ|)
cnf

(
IPSalgref (t, d, ϕ

ecnf
r,m,d)

)
IPSalg

|λ|c0 , d(|λ|)
1 = 0).

By eq. 22, eq. 20 means that there exists a w sized and degree d(|γ|) IPSalg refutation of

ϕ⋆
t,k,d whenever w ≥ |γ|c1 , namely IPSalgref (w, d, ϕ

⋆
t,k,d) is satisfiable over Fq. Thus, by Prop. 3.7

cnf
(
IPSalgref (w, d, ϕ

⋆
t,k,d)

)
is a satisfiable CNF formula, and so by soundness of IPS:

cnf


IPSalgref (w, d,

γ︷ ︸︸ ︷
ϕ⋆
t,k,d)


 6 IPS 1 = 0 . (21)

In other words, we have concluded that there are no IPS refutations of cnf
(
IPSalgref (w, d, ϕ

⋆
t,k,d)

)
,

and in particular no such IPS refutations of size at most
∣∣∣cnf

(
IPSalgref (w, d, ϕ

⋆
t,k,d)

)∣∣∣
c0

and degree at

most d(w) exist, whenever w ≥ |γ|c1 and t > kc1 , concluding the theorem.
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Remark 3.24. 1. Our lower bound in Conclusion eq. 16 and eq. 17 holds for all t > kc1. Note
that as t > kc1 becomes bigger refuting IPSref(t, d, ϕ

cnf
r,m,d) becomes even harder, hence if there

are no IPS refutations of IPSref(t, d, ϕ
cnf
r,m,d) of size |λ|c0 then there are no such refutations

also for bigger t’s.

2. Our lower bound in Conclusion eq. 16 and eq. 17 holds for all mc1 < r < mc2. Note that as
r > mc1 becomes bigger it becomes harder to refute ϕr,m,d (as this would establish a stronger
lower bound). Hence, the lower bound against IPSref(t, d, ϕ

cnf
r,m,d) becomes easier to prove.

On the other hand, once r > mc1 becomes too big, namely exceeds mc2, ϕr,m,d may become
satisfiable, hence, refuting IPSref(t, d, ϕ

cnf
r,m,d) becomes easier: since ϕcnf

r,m,d has a satisfying
assignment, we can use this assignment to refute the existence of a refutation of ϕcnf

r,m,d.

It remains to construct an IPSalg derivation of IPSalgref (t, d, ϕ
ecnf
r,m,d) from ϕ⋆

t,k,d of size at most

|ϕ⋆
t,k,d|

c3 :

Lemma 3.25. There is a constant c3 such that if ϕr,m,d is unsatisfiable, then under the above
notation and parameters:

γ︷ ︸︸ ︷
ϕ⋆
t,k,d IPSalg

|γ|c3 , d(|γ|)
cnf


IPSalgref (t,

σ︷ ︸︸ ︷
ϕecnf
r,m,d)


 .

Proof: We start with γ = ϕ⋆
t,k,d and recall that it is the extended CNF encoding (with some

small size of added extension axioms that we will specify later in the proof of Prop. 3.26) of the
equations “VNP = VP(t, k, d(t))” expressing that there exists a circuit of size t and syntactic-degree
d(t) computing the permanent of dimension k over Fq.

The following is the crux of the argument: since the permanent polynomial perm(x) of dimension
k is complete for VNP with k/6 = ℓ+N ′ variables [Val79b], and since every unsatisfiable CNF has
an IPS refutation whose certificate is computable in VNP by [GP18], and similarly every extended
CNF formula has an IPSalg refutation that is computable in VNP by Corollary 3.8, there exists an
assignment a of field Fq elements and x variables to x, with x having k number of variables, such
that perm(x ↾ a) is the IPSalg refutation of the extended CNF ϕecnf

r,m,d (here, it will be sufficient to
consider a refutation of ϕecnf

r,m,d instead of ϕ⋆
r,m,d). Formally we have the following (note that any

IPSalg derivation is also an IPS derivation, hence the formalisation is clearly doable also in IPS):

Proposition 3.26 (Grochow-Pitassi formalization in IPSalg). There is an IPSalg derivation from

ϕ⋆
t,k,d, denoted γ, of IPSalgref (t, d, ϕ

ecnf
r,m,d), with size at most |γ|b, for some constant b.

Proof of Prop. 3.26. Consider ϕ⋆
t,k,d which is defined to be the extended CNF of

“VNP = VP(t, k, d(t))” (written as a set of corresponding SLP equations over Fq) together
with the following additional extension axioms in new variables (that are needed to invoke
Prop. 3.6 in what follows):

extension axioms: for every circuit of the form CoeffMi
(U(x,w)) from eq. 9 in Definition 3.16

corresponding to “VNP = VP(r,m, d(r))” (note this is a smaller instance than
“VNP = VP(t, k, d(t))”—for the latter we already have the corresponding SLP equations in
ϕ⋆
t,k,d; note also that the variables in these two instances are disjoint) we have the following

two:

1. the corresponding SLPs equations between extension variables for the gates in the circuit;
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2. the algebraic extension axioms (Definition 3.1) for every gate in the circuit.

The size of ϕ⋆
t,k,d = γ is t4 · 2O(k2+d) by eq. 10. It is worth recalling that all our proofs use only

the w-variables because every polynomial in the x-variables will eventually be fed into a CoeffM (·)
operator for M an x-monomial, and this operator outputs w-variables polynomials.

First, use Prop. 3.6 to derive from the extended CNF ϕ⋆
t,k,d the corresponding circuit equations

“VNP = VP(t, k, d(t))”. The latter is formulated as a set of circuit equations expressing that the
coefficients of the monomials of a universal circuit of size t are the coefficients of perm(x) of
dimension k (see Definition 3.16).

Consider a : x→ x∪Fq to be the assignment of variables and field elements to the k x-variables
that results in perm(x ↾ a) being a (correct) IPSalg refutation of ϕecnf

r,m,d (such an assignment a

exists as discussed above). It is left to efficiently derive in IPSalg from “VNP = VP(t, k, d(t))” the

equations of IPSalgref (t, d, ϕ
ecnf
r,m,d). The latter is formulated by Definition 3.18 as a set of circuit

equations expressing that the coefficients of the monomials of a universal circuit of size s are
precisely the coefficients of a polynomial that constitutes an IPS refutation of the extended CNF
ϕecnf
r,m,d.
The idea is to use the equations of the form CoeffMi

(U(x,w)) = bi from eq. 9 in
“VNP = VP(t, k, d(t))”, and derive the equations that express that the coefficients of perm(x ↾ a)
are precisely those of a polynomial that constitutes an IPSalg refutation of the extended CNF
ϕecnf
r,m,d. Since we know that perm(x ↾ a) is a correct IPSalg refutation of ϕecnf

r,m,d, the equations for
all coefficients will satisfy the conditions of Definition 3.18. Note that we will use three different as-
signments: first, the assignment a that will make perm(x ↾ a) an IPSalg refutation in the variables x.
We then compose separately a with two different assignments: the assignment of all zeros to those
x-variables that are identified as the IPS “placeholder” variables (denoted y), and the assignment
of the clauses of ϕecnf

r,m,d to these placeholder variables. The size bound on the IPSalg proofs follows
from the construction, which concludes Prop. 3.26 (for some constant ℓ).

We first assert some polynomial identities. The following are polynomial identities, where i
ranges over i ∈ [N ] so that {Mi}

N
i=1 are the set of all possible x-monomials of degree at most d (as

in Definition 3.16):

U(x ↾ a, w) =
∑

i∈[N ]

CoeffMi
(U(x ↾ a, w)) ·Mi (22)

=


∑

i∈[N ]

CoeffMi
(U(x,w)) ·Mi


 ↾ a (23)

=
∑

i∈[N ]

CoeffMi
(U(x,w)) · (Mi ↾ a) . (24)

Equation eq. 22 holds by Definition 3.11 and Prop. 3.12, and eq. 23 holds because if we assign to
U and represent it as a sum of monomials or else we represent U as a sum of monomials and
then assign to it, we get the same polynomial. And eq. 24 is immediate because by construction
CoeffMi

(U(x,w)) (for some x-monomial Mi) is a circuit that contains only the w-variables. By
eq. 24 we have the following polynomial identity for every x-monomial M :

CoeffM (U(x ↾ a, w)) = CoeffM


∑

i∈[N ]

CoeffMi
(U(x,w)) · (Mi ↾ a))


 . (25)

Since b is the coefficient vector of the permanent polynomial, we have also the following poly-
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nomial identity:

∑

i∈[N ]

bi · (Mi ↾ a) = perm(x ↾ a). (26)

Let M be an x-monomial. By Corollary 3.14 and the fact that CoeffMi
(U(x,w)) (for some x-

monomialMi) contains only the w-variables, CoeffM (CoeffMi
(U(x,w))) = CoeffMi

(U(x,w)) which
by the construction of CoeffM (·) implies the following polynomial identity:

CoeffM


∑

i∈[N ]

CoeffMi
(U(x,w)) · (Mi ↾ a))


 =

∑

i∈[N ]

CoeffMi
(U(x,w)) · CoeffM (Mi ↾ a)). (27)

By Fact 2.6 polynomial identities are proved in IPS (and similarly in IPSalg) with a size that
is equivalent to the size of the circuits appearing in the equations. Therefore, in IPSalg we can
prove eq. 27 and then use substitutions of CoeffMi

(U(x,w)) for all i, by bi, using the axioms
CoeffMi

(U(x,w)) = bi. Thus, from eq. 25, eq. 26 and eq. 27 we get in IPSalg

CoeffM (U(x ↾ a, w)) = CoeffM


∑

i∈[N ]

bi · (Mi ↾ a)


 = CoeffM (perm(x ↾ a)), (28)

where the left equation is by substitutions in IPS, and the right equation is a polynomial identity.

By assumption, a was chosen such that perm(x ↾ a) is an IPSalg refutation of ϕecnf
r,m,d. This

in particular means that for the sake of clarity we can distinguish in x ↾ a two sets of variables:
the “placeholder” variables (denoted y in Definition 2.2) and the “original” variables (denoted x in
Definition 2.2). We do not need to use the placeholder variables z as in Definition 2.2 because we use
IPSalg which does not use the boolean axioms (though some boolean axioms appear independently
in ϕecnf

r,m,d). Let us partition x into x′ ⊎ y whereas we denote those x-variables in perm(x ↾ a) that
correspond to the placeholder variables by y, and all the rest of the x-variables in perm(x ↾ a) (and
similarly in perm(x) and in U(x,w)) by x′. Note that as an IPSalg refutation, perm(x ↾ a), or
perm(x′ ↾ a, y ↾ a) in the new notation, must have all placeholder variables y unassigned, hence a
leaves y intact, meaning that perm(x′ ↾ a, y ↾ a) = perm(x′ ↾ a, y) is the IPSalg refutation of ϕecnf

r,m,d.
Denote by ↾ y = 0 the restriction that assigns 0 to all y variables, and by ↾ y = ϕecnf

r,m,d the
restriction that assigns to each variable yi the corresponding ith equation from ϕecnf

r,m,d (equation
f = g here means the term f − g). Denote by ↾ a ∪ y = 0 the restriction that first assigns a to
the x′-variables and then assigns zeros to the y-variables (since x′ and y are disjoint the order of
assignments is unimportant). Similarly, denote by ↾ a∪y = ϕecnf

r,m,d the restriction that first assigns a

to the x′-variables and then assigns to each variable yi the corresponding ith equation from ϕecnf
r,m,d.

In the same way we proved eq. 28 in IPSalg using the assignment a we can prove with a linear
size proof the following, for every x-monomial M and for the assignment a ∪ y = 0:

CoeffM (U(x ↾ a ∪ y = 0, w)) = CoeffM (U(x′ ↾ a,0, w)) (by x = x′ ⊎ y)

= CoeffM


∑

i∈[N ]

bi · (Mi ↾ a ∪ y = 0)


 (similar to eq. 28)

= CoeffM (perm(x ↾ a ∪ y = 0))

= CoeffM (perm(x′ ↾ a, y ↾ 0)) = 0 , (29)
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where eq. 29 holds because by assumption perm(x ↾ a) is a correct IPSalg refutation of ϕecnf
r,m,d which

means that every nonzero monomial in it is a product of some placeholder y-variables, and we
assign zeros to the y-variables. In particular eq. 29 holds for every M monomial in the x′-variables,
which are precisely the desired first set of equations in IPSalgref (t, d, ϕ

ecnf
r,m,d) (corresponding to eq. 11

in Definition 3.18).
Similarly, we can consider the assignment a ∪ y = ϕecnf

r,m,d. Here we use the fact that ϕ⋆
t,k,d

provides all the extension axioms for gates in the circuits of ϕecnf
r,m,d, so that we can write ϕecnf

r,m,d with

SLPs (note that ϕecnf
r,m,d is a set of polynomials in the x′-variables). Hence, similarly as above, we

get a proof in IPSalg of:

CoeffM (U(x ↾ a ∪ y = ϕecnf
r,m,d, w)) = CoeffM (perm(x′ ↾ a, y ↾ ϕecnf

r,m,d))

=

{
1, M = 1 (i.e., the constant 1 monomial);

0, all other x′-monomials M .
(30)

It remains to inspect that the size of all the circuits in the IPSalg proofs above are bounded
by a polynomial in γ = |ϕ⋆

t,k,d| = t4 · 2O(k2+d). For this notice that when we apply CoeffM (·) with

M of degree d on a polynomial of size t4 · 2O(k2+d) as in eq. 27 we get by Prop. 3.12 a size of
7d · t4 · 2O(k2+d) = t4 · 2O(k2+d).

We are now in a position to complete the proof of Lemma 3.25:

ϕ⋆
t,k,d IPSalg

|γ|ℓ, d(|γ|)
IPSalgref (t, d, ϕ

ecnf
r,m,d) (by Prop. 3.26), (31)

and by using again Prop. 3.6 (in the other direction to that in Prop. 3.26) and the fact that we

have extension axioms for all the subcircuits in IPSalgref (t, d, ϕ
ecnf
r,m,d) by definition of ϕ⋆

t,k,d (this is
where we use the fact that we started with ϕ⋆

t,k,d and not merely ϕt,k,d), to get

IPSalg

|γ|ℓ
′
, d(|γ|)

ecnf
(
IPSalgref (t, d, ϕ

ecnf
r,m,d)

)
, (32)

for some constant ℓ′.
Since cnf (C = 0) ⊂ ecnf (C = 0) for every (set of) circuits C, we get an IPSalg derivation from

the right hand side of eq. 32 of cnf
(
IPSalgref (t, d, ϕ

ecnf
r,m,d)

)
. Overall, we got a derivation from ϕ⋆

t,k,d of

cnf
(
IPSalgref (t, d, ϕ

ecnf
r,m,d)

)
with size at most |γc3 | for some constant c3 ≥ ℓ+ ℓ′.

This concludes Lemma 3.25.

This concludes the proof of the (⇒) direction of Thm. 3.22.

3.2.2 The interesting range of parameters

Let us now discuss different ranges of parameters and what they mean for Thm. 3.22. In
Remark 3.19 we have already mentioned that the degree of IPS refutations we work with should
not be too big, as otherwise, although the argument is correct, it is trivial since there is always a
short refutation.

Similarly, it is important for us that the size of our formulas is small enough. The reason
is once more that otherwise we get to the following uninteresting case: the size of the formula

cnf
(
IPSref

(
t, d, ϕcnf

r,m,d

))
is exponential in the number of its variables, hence it must be easy to
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refute. Thus, if it is satisfiable it has no IPS refutation by soundness of IPS, and if it is unsatisfiable
it has an IPS refutation of size polynomial in its size; this bring us to Part 2 in the dichotomy
conjecture Thm. 4.5: the hard candidates alternate between being satisfiable and hence having no
short refutations by soundness, and being unsatisfiable but having a short refutation trivially.

More precisely, we distinguish between two types of exponential growth functions: good and
bad, as follows. By Sect. 3.1.3, the size of “VNP = VP(t, n, d)” is t4 · 2O(n2+d) with t the number

of variables. Whenever t ≥ (n2 + d)c, for some constant c > 1, the term t4 · 2O(n2+d) is considered
a good exponential because it is exponentially smaller than 2t, and the latter term is considered a
bad exponential (recall that the degree d ≤ tǫ for some 0 < ǫ < 1, hence t = (n2 + d)c is a valid
equality).

Corollary 3.27. Thm. 3.22 is interesting whenever t ≥ (n2 + d(t))c (and when we assume that
d(t) ≤ 2ǫ for some 0 < ǫ < 1), in the sense that in this range of parameters the hard candidate

cnf
(
IPSref

(
t, d, ϕcnf

r,m,d

))
is hypothesized to be both unsatisfiable and for which no polynomial-size

IPS refutations exist.

We also have the following immediate corollary:

Corollary 3.28. Thm. 3.22 holds for any proof system that simulates IPS.

4 Candidate Hard Formulas for Every Propositional Proof System

While the previous section dealt with algebraic proof systems and used the specific properties of the
IPS refutation systems, in this section we consider similar notions of diagonalisations for general
propositional proof systems.

4.1 Iterated Lower Bound Formulas

For basic definitions on propositional proof complexity, please refer to the comprehensive overview
of Krajicek [Kra19].

Definition 4.1. Given propositional proof system R, propositional formula φ and size function
s : N → N, lbR(⌈φ⌉, s) is a propositional DNF formula of size poly(|φ|+s(|φ|)) over poly(|φ|+s(|φ|))
variables expressing that there is no R-proof of φ having size s(|φ|).

More explicitly, the formula lbR(φ, s) contains s variables y1, . . . , ys encoding R-proofs of length
s and poly(|φ|+ s) auxiliary variables encoding the computation of the relation R 14, to verify that
y1, . . . , ys does not constitute an Rproof of φ. For a detailed description of how this encoding works,
see [Pud20].

Definition 4.2 (Reasonably Strong Proof System). We say that a propositional proof system R is
reasonably strong if it satisfies the following conditions:

1. R p-simulates Res (Resolution).

2. R is closed under partial assignments, i.e., if there are polynomial-size R-proofs of φ and a
is a partial truth assignment to the variables of φ, then there are polynomial-size R-proofs of
φ(a).

14A propositional proof system P can be interpreted as relation R where R(x, y) hold iff y is a P -proof of the
tautology encoded by x.
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3. R has poly-size proofs of its own reflection principle lbR(φ, s) ∨ φ.

4. R is closed under modus ponens, i.e., if there are polynomial-size R-proofs of τ ∨ ¬φ and of
φ ∨ ψ for DNFs τ, φ, ψ, then there are polynomial-size R-proofs of τ ∨ ψ.

The conditions above are satisfied for any standard strong enough propositional proof system,
eg., Frege and Extended Frege.

We now formally define iterated lower bound formulas relative to a propositional proof system
R.

Definition 4.3 (Iterated Lower Bound Formulas). Given propositional proof system R, proposi-
tional formula φ and size function s : N → N, the sequence {lbkR(φ, s)}, k = 0 . . .∞ is defined
inductively as follows:

1. lb0R(φ, s) = φ

2. lbk+1
R (φ, s) = lbR(lb

k
R(φ, s), s).

The meaning of the iterated lower bound formulas is thus that we consider a single fixed base
hard formula φ, and we iterate the statement that expresses the lower bound against this base hard
formula.

Lemma 4.4. Let R be any reasonably strong propositional proof system, and let τ be a non-
tautology. Then there are R-proofs of lbR(τ, s) of size poly(|lbR(τ, s)|).

Proof: Since τ is a non-tautology, there is an assignment a to the variables of τ such that τ(a)
evaluates to false. Since R is reasonably strong, it simulates Res and hence can prove ¬τ(a) by
substituting the assignment a into τ Since R is reasonably strong, R can prove its own reflection
principle efficiently, and since R is closed under partial assignments, it can also prove lbR(τ, s)∨τ(a),
using the fact that the variables of τ do not occur in lbR(τ, s). It follows from the closure under
modus ponens that R can prove lbR(φ, s) efficiently.

We show a dichotomy for iterated lower bound formulas: either they are all hard (and hence all
tautologies), or they divide up according to the parity of k, with one parity corresponding to non-
tautologies and the other parity corresponding to tautologies with short proofs. This dichotomy
shows there are only two extreme cases—the highly interesting and the trivial one, with nothing in
between: either the iterated lower bound formulas are all hard proof complexity instances, or none
of them is (since when they do not have short proofs it follows from them have no proof at all).

Theorem 4.5 (Dichotomy for Iterated Lower Bound Formulas). Let R be a reasonably strong
propositional proof system and s : N → N. There is a constant c such that for every s with
s(n) > nc for all n ∈ N and for every φ that does not have R-proofs of size s(|φ|), exactly one of
the following holds:

1. For every integer k ≥ 0, φk = lbkR(φ, s) is a tautology that does not have R-proofs of size
s(|φk|).

2. There is an integer k ≥ 0 such that for every integer i ≥ 0, φk+i is not a tautology (and hence
does not have R-proofs of any size) if i is odd, and φk+i is a tautology with R-proofs of size
at most poly(s(|φk+i|)) if i is even.

29



Proof: Suppose that for every integer k ≥ 0, φk is a tautology. We show that this implies that φk is
also hard in the sense that it does not have R-proofs of size s(|φk|). Indeed, since φj is a tautology
for every j, it follows that φk+1 is a tautology. Since φk+1 asserts that φk does not have R-proofs
of size s(|φk|), it follows that φk is indeed hard as claimed. Thus, in this case, the first item in the
statement of the theorem holds.

Otherwise, since φ0 = φ is a tautology with no R-proofs of size s(|φ|), there is a least positive
integer k such that φk is a tautology but φk+1 is a non-tautology. Since φk+1 asserts that φk does
not have R-proofs of size s(|φk|), it follows that φk does indeed have R-proofs of size s(|φk|). We
will show by induction in this case that for each integer i ≥ 0 the following statement S(i) holds:
φk+2i+1 is not a tautology (and hence does not have R-proofs of any size), and φk+2i is a tautology
with R-proofs of size at most s(|φk+2i|).

We first establish the base case S(0). When i = 0, by assumption on φk, we have that φk+2i = φk
is a tautology with R-proofs of size at most s(|φk|). Also, by assumption on k, φk+1 is a non-
tautology, and since R is sound, it follows that φk+1 does not have R-proofs of any size.

For the inductive step, we assume that S(i) has been shown and deduce S(i + 1). Since S(i)
is true, we have that φk+2i is a tautology with R-proofs of size at most s(|φk+2i|) and φk+2i+1 is
not a tautology (and hence does not have R-proofs of any size). We have that φk+2i+2 asserts that
φk+2i+1 does not have R-proofs of size s(|φk+2i+1|), which is tautologous since φk+2i+1 does not
have R-proofs of any size. In order to show that φk+2i+2 has R-proofs of size at most s(|φk+2i+2|),
we simply apply Lemma 4.4 with τ = φk+2i+1, where c is a constant such that lbR(τ, s) has R-proofs
of size at most |lbR(τ, s)|

c. Since s(n) > nc for all n ∈ N, we have that lbR(τ, s) has R-proofs of size
at most s(|lbR(τ, s)|). It follows that φk+2i+3 is not a tautology, since φk+2i+3 asserts that φk+2i+2

does not have R-proofs of size at most s(|φk+2i+2|), which is false by the previous line, and we are
done.

We call the first item of Thm. 4.5 the useful case of the dichotomy, as this is the case that gives
us hard tautologies for R.

Iterated Lower Bound Hypothesis: Let R be a reasonably strong propositional proof
system that is not polynomially bounded. Then there is a super-polynomial function
s : N → N and a formula φ with no R-proofs of size s(|φ|) such that for all non-negative
integers k, φk = lbkR(φ, s) is a tautology that does not have R-proofs of size s(|φk|).

We observe that the Iterated Lower Bounds Hypothesis fails if optimal proof systems exist. The
existence of optimal proof systems is not widely believed; indeed, under this assumption, there is
a complexity collapse.

Proposition 4.6. Suppose there exists an optimal proof system R that is reasonably strong. Then
for any time-constructible super-polynomial function s : N → N and any formula φ, there is a
positive integer k such that φk = lbkR(φ, s) is not a tautology.

Proof: Suppose there exists an optimal proof system R that is reasonably strong. Assume, for the
sake of contradiction, that there is a formula φ and a time-constructible super-polynomial function
s such that φk = lbkR(φ, s) is a tautology for every positive integer k. Define the propositional proof
system R′ which is R plus the formulas φk added as axioms. Thus R′ has polynomial-size (indeed
size zero) proofs of φk for each k. R′ is indeed a propositional proof system: it is complete since R is
a propositional proof system, it is sound since the formulas φk are tautologies by assumption, and it
is polynomially verifiable since R is polynomially verifiable and the sequence φk is polynomial-time
computable by time-constructibility of s.

Since R is optimal, we have that R polynomially simulates R’. Since R′ has constant-size proofs
of each φk, this means that there are R-proofs of φk of size at most |φk|

c for each k, where c is a
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constant. Choose k large enough so that s(|φk|) > |φk|
c. Since φk+1 is a tautology, we have that

φk does not have proofs of size s(|φk|) and hence does not have proofs of size |φk|
c, which is a

contradiction.

Recently, it was shown that Resolution is NP-hard to automate, by using a reduction based on
proof complexity lower bound formulas [AM20, Gar19].

Theorem 4.7 (Atserias-Muller [AM20], Garlik [Gar19]). Let s : N → N be any super-polynomial

function such that s(n) = 2n
o(1)

. For any formula φ, if φ is a tautology, then τ = lbRes(φ) does not
have Res-proofs of size s(|τ |).

It follows by induction, since the base formula φ is hard, that the Iterated Lower Bounds
Hypothesis holds at least for the relatively weak proof system Resolution:

Corollary 4.8. Let s : N → N be any super-polynomial function such that s(n) = 2n
o(1)

and let φ
be a tautology with no Resolution proofs of size s(|φ|) (e.g., the Pigeonhole Principle). Then for all
non-negative integers k, φk = lbkRes(φ, s) is a tautology that does not have R-proofs of size s(|φk|).

4.2 Iteration Preserves Hardness for Random Truth Table Formulas

The Iterated Lower Bounds hypothesis is about the hardness of a fixed propositional formula to
which the proof complexity lower bound operator is applied an unbounded number of times. In
this section, we give partial evidence in favour of the Hypothesis by considering a candidate hard
distribution on formulas, and showing that under a reasonable hypothesis, applying the proof
complexity lower bound operator a fixed number of times to a formula sampled from the distribution
does not decrease hardness. The interesting aspect of this result is that the hardness holds for a
sufficiently strong propositional proof system R rather than a relatively weak one such as Resolution.

Definition 4.9 (Truth Table Formulas [PS19]). Given a boolean function fn on n variables and
a size parameter t, ttable(f, t) is a propositional DNF formula of size N = Õ(2ns3) over Õ(s)
variables expressing that f does not have boolean circuits of size s. The distribution Randtt(n, t)
over ttable(f, t), where f is chosen uniformly at random from all boolean functions on n variables,
is called the distribution of random truth table formulas.

Conjecture 4.10 (Rudich’s Conjecture [Rud97]). There is a constant ℓ for which there is no
sequence of polynomial-size non-deterministic circuits {Cm} such that for infinitely many m for
which m = 2n for some non-negative integer n:

1. If Cm accepts a string y, then y is the truth table of a boolean function fn that does not have
boolean circuits of size nℓ.

2. Cm accepts at least an inverse polynomial fraction of all inputs.

Definition 4.11 (Distributional Iterated Lower Bound Formulas). Let D = {DN} be a sequence
of distributions, where DN is supported on propositional formulas of size N . Given propositional
proof system R, non-negative integer k and size function s : N → N, the sequence of distributions
lbkR(D, s) is defined via induction on k as follows:

1. lb0R(D, s) = D;

2. lbk+1
R (D, s) is the sequence of distributions on formulas lbR(φ, s) where φ is sampled from

lbkR(D, s)

The following theorem strengthens Lemma 3 in [PS19], which corresponds to the case k = 2.
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Theorem 4.12. If Rudich’s Conjecture holds, then there exist a propositional proof system R
efficiently simulating Extended Frege and a constant ℓ > 0 such that for every large enough c > 0
and every non-negative integer k, lbkR(DN , N

c) is a tautology with no R-proofs of size |lbkR(DN , N
c)|c

with probability 1 − o(1) for all large enough N , where DN = Randtt(n, nℓ) (for N an appropriate
function of n and ℓ as given by Definition 4.9).

Proof: The proof is by induction on k. Let ℓ > 0 be the constant in Conjecture 4.10 and let R be
a propositional proof system and c be a large enough constant to be specified later.

We will establish the case k = 0 for every propositional proof system R, under Rudich’s Con-
jecture. We have that lbkR(DN , N

c) = DN . Since a random boolean function on n variables has
circuits of size nℓ with exponentially small probability, a formula τ sampled according to DN is
a tautology with high probability. Moreover, Rudich’s Conjecture implies that τ does not have
R-proofs (or indeed proofs in any propositional proof system) of size N c with high probability. To
see this, note that R with size bound s defines a non-deterministic algorithm AR running in time
poly(s) for the problem MCSP[nℓ] asking whether a given truth table y of a boolean function f
on n bits requires circuits of size greater than nℓ: AR checks if ttable(f, nℓ) has R-proofs of size
s. AR only accepts on hard boolean functions, by the soundness of R, satisfying the first item of
Conjecture 4.10. If AR accepted τ for even a 1/N fraction of truth-table tautologies τ , this would
contradict the second item of Conjecture 4.10.

We define R to be the propositional proof system that is Extended Frege together with axioms
stating that ttable(fSATn , 2nℓ) holds, where fSATn is the truth table of SAT on n variables. The
axioms indeed hold under Rudich’s Conjecture, as Rudich’s Conjecture implies that NP does not
have polynomial-size circuits. It is not hard to verify that R is reasonably strong according to
Definition 4.2.

Now suppose we have established the assertion for all non-negative integers smaller than k and
would like to establish it for k. The inductive strategy builds partly on ideas in [PS19]. We have by
the inductive assumption that with probability 1− o(1) for ψ sampled from DN , lbk−1

R (ψ,N c) does

not have R-proofs of size |lbk−1
R (ψ,N c)|c. It follows immediately that with probability 1− o(1), for

ψ sampled from DN , lbkR(ψ,N
c) is a tautology.

For the lower bound on lbkR(DN , N
c), we will treat k differently depending on its parity.

Case 1: k is even. We will show inductively that if ψk = lbkR(ψ,N
c) is a tautology, then so is ψ.

Indeed, this is trivially true when k = 0, and we show that if ψk is a tautology, then so is ψk−2.
Assume contrapositively that ψk−2 is not a tautology. This means that ψk−1 is a tautology with
R-proofs of size |ψk−1|

c, since R is reasonably strong, using Lemma 4.4, where c is greater than the
exponent of the polynomial in Lemma 4.4. But this implies ψk is not a tautology, contradicting
our assumption on ψ.

Now we use the assumption of Rudich’s Conjecture to complete the inductive step. It remains
to prove that with probability 1 − o(1), for ψ sampled from DN , lbkR(ψ,N

c) does not have R-
proofs of size |lbkR(ψ,N

c)|c. Suppose, for the sake of contradiction that with probability Ω(1), for
infinitely many N , for ψ sampled from DN , lbkR(ψ,N

c) has R-proofs of the desired size. We use
this to define a non-deterministic polynomial-time algorithm that accepts a constant fraction of
truth tables of hard boolean functions on n bits and does not accept any easy boolean functions
on n bits, for infinitely many n, in contradiction to Rudich’s Conjecture. Given a truth table of
a boolean function fn, the algorithm checks if there is an R-proof of ψk = lbkR(ψ,N

c) of size at
most |ψk|

c, where ψ = ttable(fn, n
ℓ), and accepts if yes. If the algorithm does accept on ψk, then

by the soundness of R, ψk is a tautology, and since k is even, so is ψ by the inductive argument
in the previous paragraph. Hence f is indeed a hard boolean function, as desired. Moreover, for
fn chosen uniformly at random, the algorithm accepts with probability Ω(1) by assumption, for
infinitely many n, contradicting Rudich’s Conjecture.
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Case 2: k is odd. We need a slightly more involved argument, which generalizes the argument used
to show Lemma 2 in [PS19]. Since Rudich’s Conjecture holds, it follows that there are succinct
hitting sets against polynomial-size non-deterministic circuits, i.e., a sequence {Hm} of sets of
strings in {0, 1}m, where each string in Hm is a truth table of a boolean function on log(m) inputs
with circuits of size log(m)ℓ (we assume without loss of generality that m is a power of 2), such that
for every sequence {Cm} of non-deterministic circuits that accept a Ω(1) fraction of their inputs,
at least one element of Hm is accepted by Cm for all large enough m. Also, as mentioned before,
since Rudich’s Conjecture holds, it follows that SAT does not have polynomial-size circuits. Using
a straightforward argument, the sequence {H ′

m} of sets of strings in {0, 1}m, where each H ′
m is

fSATlog(m) ⊕ y for y ∈ Hm, is also a hitting set sequence against polynomial-size non-deterministic

circuits, but in this case the sets consist of truth tables of hard boolean functions on log(m) inputs.
We have that ttable(z, nℓ) is a tautology for z ∈ H ′

m when m = 2n is large enough. Moreover,
by the same argument as in the proof of Lemma 2 in [PS19], for each z ∈ H ′

m, ttable(z, nℓ) has
R-proofs of size at most |ttable(z, nℓ)|c, using the fact that R p-simulates Extended Frege and has
ttable(fSATn , 2nℓ) as an axiom.

These facts can be used to show by the inductive argument in the proof of Thm. 4.5 that the
second item of Thm. 4.5 holds for the formulas ψk = lbkR(ψ,N

c) where ψ = ttable(z, nℓ) for z ∈ H ′
m:

they are tautologies with short R-proofs when k is even, and non-tautologies (and hence without
any R-proofs at all) when k is odd. In the current case of our inductive step, k is odd, and hence
every such formula ψk is a non-tautology, and hence does not have short proofs. Now suppose for
the sake of contradiction, that with probability Ω(1) over uniformly chosen boolean function fn on
n variables, for infinitely many n, lbkR(ψ,N

c) has short R-proofs, where ψ = ttable(fn, n
ℓ). This

means that the polynomial-time non-deterministic algorithm that on input fn checks if there is a
short R-proof of lbkR(ttable(fn, n

ℓ), N c) accepts a constant fraction of functions fn. However, none
of the functions z for z ∈ H ′

m is accepted. This contradicts the assumption that {H ′
m} is a hitting

set sequence for all m, and hence also contradicts Rudich’s Conjecture.
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[Kra95] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory, volume 60 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1995. 13
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