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Abstract

Random linear codes are a workhorse in coding theory, and are used to show the existence
of codes with the best known or even near-optimal trade-offs in many noise models. However,
they have little structure besides linearity, and are not amenable to tractable error-correction
algorithms.

In this work, we prove a general derandomization result applicable to random linear codes.
Namely, in settings where the coding-theoretic property of interest is “local” (in the sense of
forbidding certain bad configurations involving few vectors—code distance and list-decodability
being notable examples), one can replace random linear codes (RLCs) with a significantly de-
randomized variant with essentially no loss in parameters. Specifically, instead of randomly
sampling coordinates of the (long) Hadamard code (which is an equivalent way to describe
RLCs), one can randomly sample coordinates of any code with low bias. Over large alphabets,
the low bias requirement can be weakened to just large distance. Furthermore, large distance
suffices even with a small alphabet in order to match the current best known bounds for RLC
list-decodability.

In particular, by virtue of our result, all current (and future) achievability bounds for list-
decodability of random linear codes extend automatically to random puncturings of any low-
bias (or large alphabet) “mother” code. We also show that our punctured codes emulate the
behavior of RLCs on stochastic channels, thus giving a derandomization of RLCs in the context
of achieving Shannon capacity as well. Thus, we have a randomness-efficient way to sample
codes achieving capacity in both worst-case and stochastic settings that can further inherit
algebraic or other algorithmically useful structural properties of the mother code.
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1 Introduction

Random linear codes (RLCs) are ubiquitous in coding theory, serving as a fundamental building
block in the construction of codes since the works of Shannon. RLCs are extensively studied, and
known to enjoy excellent combinatorial properties. In particular, they achieve Shannon capacity,
the Gilbert-Varshamov rate vs. distance trade-off, and are list-decodable up to capacity.

An RLC of length n and rate1 0 < R < 1 over alphabet Fq is the row span of a matrix A, sampled
uniformly from Fk×nq , where k = Rn. Here, Fq denotes the finite field of order q. Equivalently, one

can think of A as a matrix with n random independent columns, each sampled uniformly from Fkq .
In this work we study derandomizations of RLCs. Specifically, we consider a code C generated

by a matrix whose columns are independently sampled from some distribution µ, where the support
of µ is a much smaller set than Fkq (possibly exponentially so). We are able to prove that, under
fairly modest and general assumptions on µ, this random code C is similar to an RLC with respect
to local properties, a notion which will soon be explained. A special case of this result is that C is
very likely to achieve list-decoding capacity, since RLCs are known to do so (in fact, the convergence
of RLCs to list-decoding capacity has been extensively studied). Independently of this result, we
also show that, similarly to an RLC, C is likely to achieve capacity with regard to every memoryless
additive-noise channel.

To describe our result more formally, we turn to the notion of punctured codes. Puncturing
is a basic operation by which new codes are constructed from existing ones. A puncturing of a
code D ⊆ Fmq is a code C ⊆ Fnq (where we usually think of m as being much large than n) whose
coordinates are taken from those of D. More precisely, C is a puncturing of D if C = {(xi1 , . . . , xin) |
x = (x1 . . . xm) ∈ D}, for some integers i1, . . . , in ∈ [m]. We sometimes refer to D as the mother
code. When i1, . . . , in are sampled uniformly and independently from [m], we say that C is a random
n-puncturing of D. Puncturing generally increases the rate of a code, and we often take D to be a
code of rate approaching 0, while the rate of C is a constant in (0, 1).

An equivalent way to describe an RLC of length n and rate R is as a random puncturing
of the Hadamard code of length qk (where k = Rn). The Hadamard code has very poor rate.
Consequently, to obtain a punctured code of length n and constant rate from a Hadamard mother
code, the mother code must be taken to have length exponential in n. Our motivating question is
whether, in this construction, one can replace the Hadamard code by a shorter mother code and
still obtain a punctured code with the excellent combinatorial properties of an RLC. In Theorem A,
below, we give this question a strong positive answer.

Of the many special properties of a Hadamard code, the property crucial for that code’s excellent
performance as a mother code turns out be its optimal bias. Focusing for simplicity on the case
q = 2, the bias of a binary code D of length m is defined as

max

{
|number of ones in x− number of zeros in x|

m
| x ∈ D \ {0}

}
.

The bias of a Hadamard code is the smallest possible, namely, zero. The following informal result
can thus be seen as an extension of the statement “A random puncturing of a Hadamard code is
an RLC ”.

1More accurately, R is the design rate of the code. The actual rate, rankA
n

, equals R if and only if A is of full
rank—an event which holds with very high probability. See Lemma 2.3 for more details.
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Theorem A (Main result about puncturing of low-bias codes). Let D be a linear code with small
bias and let C be a random puncturing of D. Then, C is likely to have any monotone-decreasing
local property that is typically satisfied by an RLC of similar rate.

Theorem B, below, gives broad conditions under which the hypothesis of Theorem A can be
further relaxed, from requiring low bias to just large distance of the mother code D.

Informally, a code property P is monotone-decreasing and local if, whenever a code C does
not satisfy P, there exists a small “bad set” of codewords in C that bears witness to this fact.
By monotone-decreasing we mean that adding codewords to the code can only make the property
harder to satisfy. A code that has the same monotone-decreasing local properties as an RLC is said
to be locally similar to an RLC. Local properties of codes were originally introduced in [MRRSW20],
with the motivation of studying the list-decodability of Gallagher’s LDPC codes. We turn to explain
this connection.

List-decodability. In the model of list-decoding, the goal is to decode beyond the unique-decoding
radius. A code is said to be (combinatorially) list-decodable up to radius ρ (0 < ρ < 1− 1

q ) if every
Hamming ball of radius ρn in Fnq has intersection of size at most L (where L is small, say constant
in n) with the code. Being list-decodable is a monotone-decreasing local property. Indeed, to show
that a code is not list-decodable, it suffices to point to a set of L + 1 codewords that all reside
within the same radius ρ Hamming ball. A list-decodable code, when accompanied by a decoding
algorithm, will allow the correction of a ρ fraction of errors up to some bounded ambiguity in the
worst-case. We refer the reader to [Gur06] for a detailed discussion of the motivation, usefulness,
and potential of the list-decoding model.

The list-decodability of RLCs has been extensively studied in previous works [ZP81; GHK11;
CGV13; Woo13; RW14b; RW18; LW21; GLMRSW20]. The paper [ZP81] already establishes that
RLCs are list-decodable up to capacity. Namely, for any fixed R and ρ satisfying R < 1−hq(ρ), an 2

RLC of rate R is almost surely list-decodable up to radius ρ with constant list-size L = L(R, ρ, q).
The focus of the later works is pinpointing the exact dependence of the list-size L on the other
parameters.

Since list-decodability is a monotone-decreasing local property, the aforementioned results about
list-deocdability of an RLC also apply to any code that is locally similar to an RLC. Therefore,
Theorem A yields a powerful reduction, allowing us to apply these results about RLCs to the
punctured code C. Moreover, any positive RLC list-decoding bound discovered in the future would
also immediately apply to C. The latter may be relevant since there are still some gaps in our
knowledge of RLC list-decodability, especially in the low-rate non-binary regime.

In addition to list-decodability, Theorem A also applies to other local properties, such as list-
recoverability, and its special case, the perfect hashing property. Hence, Theorem A immediately
yields a positive result (see Section 6.3) about the list-recoverability of C, via reduction to established
results about the list-recoverability of an RLC.

Theorem A and RLC derandomization. Perhaps more importantly than its specialization
to any concrete local property, Theorem A is a statement about the robustness of the mechanism
by which an RLC is generated: The theorem says that it is possible to choose a code D that is
radically different from a Hadamard code, randomly puncture it, and end up with a code that, in
a local view, has the same desirable properties as an RLC.

2The q-ary entropy function hq is formally defined in Section 4.5

2



Theorem A allows us great flexibility in choosing the mother code D. While the only structural
property of an RLC is its linearity, the punctured code C of Theorem A can be made to have
additional structure via certain choices of the mother code. For example, D can be taken to be a
dual-BCH code, namely, a code in which every codeword encodes a low-degree polynomial over F2`

(` ∈ N) by the trace of its evaluations over F2` . In a random puncturing C of D, the codewords
correspond to evaluations over a random subset of F2` . It is well-known (see [GR11]) that dual-
BCH codes have small bias, so Theorem A applies. Hence, this code C enjoys both an algebraic
structure and local similarity to an RLC.

Enforcing a structure on C has potential algorithmic advantages. For example, recall that the
local similarity of C to an RLC only guarantees with high probability the combinatorial property
of list-decodability, but not the existence of an efficient list-decoding algorithm for C. Indeed,
for the RLC ensemble itself, it is very likely that no efficient list-decoding algorithm exists for
any constant radius ρ. Hopefully, by choosing a suitable structure for C, one may be obtain a
code which is not only combinatorially list-decodable up to capacity, but also amenable to efficient
list-decoding algorithms.

Another application of Theorem A is a direct derandomization of RLCs. Utilizing constructions
such as [ABNNR92; Ta-17], D can be taken to be an explicit low-bias linear code of length O(n)
(where n is the desired length of C). With such a short mother code, only O(n) random bits are
needed to construct the punctured code C, which is locally similar to an RLC. This is in contrast to
the O(n2) random bits needed to construct an actual RLC of the same length. While methods to
sample linear codes with O(n) randomness were known in some settings, the approach and analysis
was tailored to the specific setting (e.g, via random Toeplitz matrices for the Gilbert-Varshamov
trade-off). In contrast, our approach applies uniformly for all local properties. For list-decoding,
this gives the first linear randomness method to sample codes that achieve the trade-offs of RLCs.

The idea of relating the local properties of a more structured code C to those of an RLC already
figures prominently in the previously mentioned [MRRSW20], where a Gallagher LDPC Code is cast
in the role of C. While our methods in the present work are very different, our proof of Theorem A
does use the framework of [MRRSW20], as well as the RLC Threshold Theorem [MRRSW20, Thm.
2.8] proven there.

Replacing low bias by large distance. A linear code of low bias necessarily has large minimal
distance. For example, in the binary case, the normalized Hamming weight of a codeword x ∈ D\{0}
is at least 1−bias(D)

2 . Theorem B extends Theorem A by considering the case in which the mother
code D has large minimal distance, but not necessarily low bias. For large enough alphabet size q,
large minimal distance of D is enough to guarantee the conclusion of Theorem A. For small q, while
we do not have such a general result, we are able to use specific characteristics of the the property
of list-decodability to prove that C is, with high probability, list-decodable up to capacity.

Theorem B (Main result about puncturing of large-distance codes). Let D be a linear code whose
minimal distance is near 1− 1

q , and let C be a random puncturing of D of rate R. Then:

1. Let P be a monotone-decreasing local property that is likely satisfied by an RLC of rate
R− 2 logq 2. Then, C is likely to satisfy P.

2. Regardless of its alphabet size, C is likely to be list-decodable and list-recoverable up to capacity
(similarly to an RLC of rate R).
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Achieving Shannon capacity with punctured codes. Theorems A and B are most relevant
when considering the performance of C as an error correcting code in the worst-case error model.
To complete the picture, we also prove the following result, dealing with the random error model.
It is well-known that RLCs achieve capacity with regard to any memoryless additive noise channel.
The following informal theorem generalizes this statement to our punctured code C.

Theorem C (Puncturing of large-distance codes in stochastic channels). Let D be a linear code
whose minimal distance is near 1− 1

q , and let C be a random puncturing of D with rate R. Let N
be a memoryless additive noise channel with capacity at least R+ ε. Then, it is possible to reliably
communicate across N using C.

1.1 Previous work

Randomly punctured codes have recently gotten a lot of attention, motivated by the study of
Reed-Solomon (RS) codes [RW14a; ST20; GLSTW20; FKS20; GST21]. The RS code of dimension
1 ≤ k ≤ q over the set S ⊆ Fq is defined as

RSFq (S; k) = {(f(α1), . . . , f(αn)) | f ∈ Fq[x], deg(f) < k} .

The length of the code is n = |S|. A classical algorithm [GS99] can efficiently list-decode an RS
code up to the Johnson radius 1−

√
R− o(1).

An important open question is whether efficient list-decoding of some RS codes is possible all
the way up to the capacity radius 1−R−o(1). A necessary condition for such an algorithmic result
is to have RS codes which are combinatorially list-decodable up to capacity, and such codes are yet
unknown. In fact, even the existence of RS codes that are combinatorially decodable beyond the
Johnson bound was only recently proven [ST20].

Our freedom in constructing an RS code lies mainly in the choice of the evaluation set S. A
natural choice is to take S to be a uniformly random subset of Fq of the desired size n. When S
is sampled this way, the code RSFq (S; k) is essentially a random puncturing of the full RS code
RSFq (Fq; k). All of the aforementioned works [RW14a; ST20; GLSTW20; FKS20; GST21] take this
viewpoint. In particular, in [RW14a; FKS20; GST21], the main results about list-decodability of
RS codes are all immediate special cases of more general results about randomly punctured codes.
Our Theorems A and B are similar in spirit to the latter. We note that our work is the first in this
line to yield punctured codes that achieve list-decoding capacity, and we do so for every choice of
rate. The previous works showed trade-offs that were bounded away from list-decoding capacity
for all rates.

1.2 On an error in a previous version of this paper regarding RS codes

The full RS code RSFq (Fq; k) for small k has near-optimal distance, and thus it would seem that
one could apply Theorem B to it, proving that an RS code over a random evaluation set is likely to
be locally-similar to an RLC, and, in particular, list-decodable up to capacity. Unfortunately, the
large distance requirement of the theorem becomes stricter as the alphabet q grows, and impossible
to achieve whenever q is larger than n (see Theorem 4). An earlier version of the current paper
erroneously claimed to overcome this difficulty by passing to trace codes over a smaller alphabet,
and use it to deduce the list-decodability of certain RS codes. Later, prompted by a question from
Zeyu Guo, we have found an error in the proof and retracted this claim.
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2 Main Results

Before stating our main results, we formally define some of the relevant notions.

Definition 2.1 (Random puncturing). Fix some prime power q. Let m,n ∈ N. An (m → n)
puncturing map is a function ϕ : Fmq → Fnq of the form ϕ(u = (u1, . . . , um)) = (ui1 , ui2 , · · · , uin) for
some i1, . . . , in ∈ [m]. If i1, . . . , in are sampled i.i.d. and uniformly from [m], we say that ϕ is a
random (m→ n) puncturing map.

A random n-puncturing of a code D ⊆ Fmq is a random code C = ϕ(D) = {ϕ(u) | u ∈ D}, where

ϕ : Fmq → Fnq is a random puncturing map. The design rate of C is
logq |D|
n .

Definition 2.2. Let D ⊆ Fmq , where q is a power of some prime p, be a linear code and let η > 0.

1. If every u ∈ D \ {0} has wt(u) ≥ (q−1)(1−η)
q , we say that D has η-optimal distance. Here,

wt(u) = |{i∈[m]|ui 6=0}|
m denotes the normalized Hamming weight of u ∈ Fmq .

2. A vector u ∈ Fmq is said to be η-biased if
∣∣∑m

i=1 ω
tr(a·ui)

∣∣ ≤ mη for all a ∈ F∗q. Here, ω = e
2πi
p

and tr : Fq → Fp is the field trace map (see Section 4.4). The code D is said to be η-biased if
every u ∈ D \ {0} is η-biased.

As shown in Lemma 4.13, an η-biased code also has η-optimal distance, so the former is a
stronger notion. For intuition, note that in the binary case η-bias implies 1−η

2 ≤ wt(u) ≤ 1+η
2 for

any u ∈ D \ {0}, whereas η-optimal distance only implies the lower bound on wt(u).

It may be simpler for the reader to focus on the case where q is a prime, i.e., q = p. In this
case, tr is merely the identity map.

If C is a random n-puncturing of a code D, the rate of C is clearly bounded from above by
its design rate. The following lemma shows that when D is of almost optimal distance, these two
terms are very likely to coincide. In light of this lemma, we blur the distinction between design
rate and actual rate.

Lemma 2.3 (Actual rate equals design rate whp). Let D ⊆ Fmq be a linear code of η-optimal
distance, and let C be a length-n random puncturing of D, of design rate R ≤ 1− logq(1 + ηq)− ε.
Then, with probability at least 1− q−nε, the rate of C is equal to its design rate.

Proof. The rate of C is smaller than R if and only if there exists a non-zero word u ∈ D such
that only coordinates i ∈ [m] for which ui = 0 are sampled for inclusion in C. For a given u, this
happens with probability

(1− wt(u))n ≤
(

1

q
+
q − 1

q
η

)n
≤
(

1

q
+ η

)n
= q−n(1−log(1+qη)) .

The claim follows by a union bound over the non-zero words of D, of which there are qRn − 1, and
the assumed upper bound on R.

Definition 2.4 (clustered sets and list-decodability). Fix ρ ∈ [0, 1]. A set of vectors W ⊆ Fnq is
called ρ-clustered if there exists some z ∈ Fnq such that wt(u − z) ≤ ρ for each u ∈ W . A code
C ⊆ Fnq is said to be (ρ, L)-list-decodable if it does not contain any ρ-clustered set of codewords of
size L+ 1.
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2.1 A framework for studying properties of codes

In order to formulate our results, we need to recall some of the framework for studying local and
row-symmetric properties of linear3 codes, established in [MRRSW20; GMRSW21].4

A property P of length-n linear codes over Fq is a collection of linear codes in Fnq . A linear code
C ⊆ Fnq such that C ∈ P is said to satisfy P. If P is upwards closed with regard to containment, it
is said to be monotone-increasing.5

Definition 2.5 (Local and row-symmetric properties). Let P be a monotone-increasing property
of linear codes in Fnq . We define the following notions.

1. Fix b ∈ N. Suppose that there exists a family BP of sets of words, such that every B ∈ BP is
a subset of Fnq with |B| ≤ b, and such that

C satisfies P ⇐⇒ ∃B ∈ BP B ⊆ C .

Then, we say that P is a b-local property.

2. Suppose that, whenever a code C ⊆ Fnq satisfies P and π is a permutation on {1, . . . , n}, the
code {πx | x ∈ C} also satisfies P. We then say that P is row-symmetric6. Here, πx is the
vector obtained by permuting the coordinates of x according to π.

The following is immediate from the definition of (ρ, L)-list-decodability.

Observation 2.6. Let q be a prime power and n ∈ N. Fix ρ ∈ (0, 1), L ∈ N, and let P be the
monotone-increasing property consisting of codes in Fnq that are not (ρ, L) -list-decodable. Then, P
is (L+ 1)-local and row-symmetric.

Let P be a monotone-increasing property over Fnq . Suppose that P is nonempty, namely, that
it is satisfied by the complete code Fnq . We denote its threshold by

RLC(P) = min

{
R ∈ [0, 1] | Pr

[
Cn,qRLC(R) satisfies P

]
≥ 1

2

}
,

where Cn,qRLC(R) is a random linear code of rate R in Fnq .

This terminology is motivated by the following theorem, which states that the probability of an
RLC of rate R satisfying a local, row-symmetric and monotone-increasing property P, as a function
of R, rapidly climbs near the threshold from o(1) to 1− o(1).

3This framework makes sense for linear as well as non-linear codes. In this work we restrict ourselves to the linear
case.

4The notion of a local property from [MRRSW20] was later refined and split into two parts in [GMRSW21], where
it appears as a row-symmetric and local property. We follow the latter convention.

5While Section 1 discussed monotoned-decreasing properties, it will henceforth be more convenient to deal with
monotone-increasing properties. Note that the negation of a monotone-decreasing property is monotone-increasing.
Hence, the statement “the code C satisfies every monotone-decreasing local property typically satisfied by an RLC”
is equivalent to “every monotone-increasing local property typically not satisfied by an RLC is also not satisfied by
C.

6The reason for this terminology will be made clear in Observation 6.2.
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Theorem 2.7 (Thresholds for local and row-symmetric properties [MRRSW20, Thm. 2.8]). 7 Let
P ⊆ Fnq be a random linear code of radius R and Let P be a monotone-increasing, b-local and

row-symmetric property over Fnq , where n
logq n

≥ ωn→∞
(
q2b
)
. The following now holds for every

ε > 0.

1. If R ≤ RLC(P)− ε then

Pr [C satisfies P] ≤ q−(ε−on→∞(1))n .

2. If R ≥ RLC(P) + ε then

Pr [C satisfies P] ≥ 1− q−(ε−on→∞(1))n .

2.2 Theorem A: Randomly punctured low-bias codes

Theorem 1, below, is a formal statement of Theorem A.

Theorem 1 (Puncturings of low-bias linear codes are locally similar to random linear codes). Let
q be a prime power, and let P be a monotone-increasing, row-symmetric and b-local property over
Fnq , where n

logn ≥ ωn→∞
(
q2b
)
. Let D ⊆ Fmq be a linear code. Let C be a random n-puncturing of D

of design rate R ≤ RLC(P)− ε for some ε > 0. Suppose that D is
(
εb ln q
qb

)
-biased. Then,

Pr [C satisfies P] ≤ q−(ε−on→∞(1))n .

2.3 Applications of Theorem 1 for list-decodability

In our discussion of list-decoding capacity in Section 1 we treated the rate R as fixed, and the
list-decoding capacity radius ρ as a function of R and the field size. Henceforth we will prefer to
think of R as depending on some fixed ρ.

The List-Decoding Capacity Theorem [GRS, Thm. 7.4.1] states that the optimal rate for radius
ρ list-decoding over the field Fq is R∗ = 1− hq(ρ), where

hq(ρ) = −ρ logq ρ− (1− ρ) logq(1− ρ) + ρ logq(q − 1) (1)

is the q-ary entropy function (see Section 4.5). In other words, there exist infinite families of codes
of rate R∗ − ε that are list-decodable up to radius ρ with list-size independent of the block length
n, but no such families exist for rate R∗ + ε.

As mentioned in Section 1, the list-decodability of RLCs has been extensively studied. Pos-
itive and negative results of this sort can be stated, respectively, as lower and upper bounds on
RLC (LDρ,L,q), where LDρ,L,q is the monotone-increasing property of a code over Fq not being
(ρ, L)-list-decodable. For example, the main result of [GHK11] can be stated as

RLC (LDρ,L,q) ≥ 1− hq(ρ)−Oρ,q
(

1

L

)
(2)

7The theorem as stated in [MRRSW20] deals only with the regime of constant q and b. The current statement,
which allows q and b to depend on n, follows by inspecting the proof in [MRRSW20].
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for all ρ, q and L. In the binary regime, the main result of [LW21] together with a negative result
from [GLMRSW20] yield the very precise bound

1− h2(ρ) · L− 1

L− 2
≤ RLC (LDρ,L,2) ≤ 1− h2(ρ)

L+ 1

L
(3)

for all ρ and L ≥ 3. By Observation 2.6, LDρ,L,q is (L+ 1)-local and row-symmetric, so Theorem 1
applies to it. Plugging in Eqs. (2) and (3) yields the following corollary.

Corollary 2 (Puncturings of certain linear codes are locally similar to random linear codes). Fix

a prime power q, ρ ∈
(

0, 1− 1
q

)
, L ∈ N and ε > 0. Let D ⊆ Fmq be an

(
ε(L+1) ln q

qL+1

)
-biased linear

code . Let C be a random n-puncturing of D of design rate R, where n
logn ≥ ωn→∞

(
q2(L+1)

)
. Then,

1. If R < 1− hq(ρ)− Cρ,q
L − ε then C is (ρ, L) -list-decodable with probability 1− q−(ε−on→∞(1))n.

Here, Cρ,q is a constant depending on ρ and q.

2. If q = 2, L ≥ 3 and R < 1 − h2(ρ) · L−1
L−2 − ε then C is (ρ, L) -list-decodable with probability

1− 2−(ε−on→∞(1))n.

Other positive results about RLC list-decodability (e.g., [Woo13]) can be similarly used to
obtain bounds on the list-decodability of randomly punctured codes.

List-recoverability is another property of interest to which Theorem 1 applies, similarly allowing
us to reduce from known results about RLCs. See Section 6.3 for more details.

2.4 Derandomization of RLCs

As discussed in Section 1, Theorem 1 can be invoked to derandomize RLCs by casting a code of
short block length and low bias in the role of the mother code D. One result that can be achieved
via this method is the following theorem. For simplicity, we focus on the binary case.

Theorem 3 (Codes locally similar to an RLC with linear randomness). There exists a randomized
algorithm that, given b ∈ N, ε > 0, R∗ ∈ [ε, 1] and n ∈ N, where n

log2 n
≥ ωn→∞

(
22b
)

and

n ≥ ωn→∞(1/ε), samples a generating matrix for a linear code C ⊆ Fn2 of rate R = R∗ − ε such
that

Pr [C satisfies some property P ∈ K] ≤ 2−Ω(εn). (4)

Here, K is the family of all monotone-increasing, b-local and row-symmetric properties P over Fn2
for which the threshold RLC(P) is at least R∗. This algorithm uses O

(
n
(
b+ log2

1
ε

))
random bits,

and works in time polynomial in n.

2.5 Theorem B: Randomly punctured codes of near-optimal distance

Theorems 4 and 5 are detailed version of, respectively, the two parts of Theorem B. These theorems
extend Theorem 1, in certain scenarios, to the case where the mother code D has near-optimal
distance but not necessarily low bias. Theorem 4 states that the conclusion of Theorem 1 is still
valid, provided that the alphabet q is large enough, and the property P is scalar-invariant—a new
definition given here.
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Definition 2.8 (Scalar invariant property). Let P be a property of codes in Fnq . Suppose that,
for every code C satisfying P and for every diagonal full-rank matrix Λ ∈ Fn×nq , the code ΛC :=
{Λu | u ∈ C} also satisfies P. Then, P is said to be scalar-invariant.

It is not hard to see that (ρ, L)-list-decodability (as well as its negation, the property of not
being (ρ, L) -list-decodable) is a scalar-invariant property for all ρ and L. The same holds for
list-recoverability (see Section 6.3).

Theorem 4 (Puncturings of near-optimal distance linear codes with large alphabet are locally
similar to random linear codes). Let q be a prime power, and let P be a monotone-increasing, row-
symmetric, b-local and scalar-invariant property over Fnq , where n

logn ≥ ωn→∞
(
q2b
)
. Let D ⊆ Fmq

be a linear code of q−b-optimal distance. Let C be a random n-puncturing of D of design rate
R ≤ RLC(P)− ε− 2 logq 2 for some ε > 0. Then,

Pr [C satisfies P] ≤ q−(ε−on→∞(1))n .

Theorem 5 deals specifically with list-decodability rather than a general code property. The
theorem exploits certain characteristics of the proof of [GHK11] (see Eq. (2)), and shows that this
specific result about list-decodability of RLCs can be applied to our randomly-punctured code C
as long as the mother code has near-optimal distance, regardless of the alphabet size. The relevant
characteristics of [GHK11] are discussed in Remark 6.14.

Theorem 5 (A puncturing of a near-optimal distance code is whp list-decodable up to capacity).
Fix a prime power q. Let L, n ∈ N and 0 < ρ < q−1

q , such that n
logq n

≥ ωn→∞
(
qL+1

)
. Let D ⊆ Fmq

be a linear code with η-optimal distance, where η = q−L+1. Let C be a random n-puncturing of D
of design rate R, where R ≤ 1− hq(ρ)− K

L for some constant K = Kρ,q. Then,

Pr [C is (ρ, L) -list-decodable] ≥ 1− q−Ω(n) .

Furthermore, one can take

Kρ,q ≤ exp

(
O

(
(log q)2

min {(1− 1/q − ρ)2, ρ}

))
(5)

and, in particular, Kρ,q ≤ poly(q) whenever ρ is bounded away from 0 and 1− 1
q .

2.6 Theorem C: Randomly punctured codes in the stochastic error model

Definition 2.9 (Additive noise channel). Let ν be a distribution over Fq. The ν-memoryless additive
noise channel with distribution ν takes as input a vector x ∈ Fnq and outputs the vector x+ z, where
z ∈ Fnq has entries independently sampled from ν.

For z ∈ Fnq , we write ν(z) =
∏n
i=1 ν(zi) for the probability of z under the product distribution νn.

The capacity of the ν-memoryless additive noise channel is 1−Hq(ν). Here, Hq(ν) is the base-q
entropy

Hq(ν) = −
∑

x∈supp(ν)

ν(x) logq ν(x) .
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The maximum likelihood decoder under uniform prior (MLDU) for a code C ⊆ Fnq with regard to
the ν-memoryless additive noise channel receives a word y ∈ Fnq and returns a codeword x ∈ C for
which ν(y − x) is maximal. In other words, x maximizes the likelihood of the channel outputting
y given input x.

It is well-known that an RLC with MLDU decoding achieves capacity with regard to any
memoryless additive noise channel. Theorem C, stated here formally as Theorem 6, generalizes
this fact to random puncturings of low-bias codes.

Theorem 6 (A puncturing of a low-bias code achieves capacity with regard to memoryless additive
noise). Fix a prime power q, a distribution ν over Fq and 0 < ε < 1. Let D ⊆ Fmq be an ε

3(q−1) -

biased linear code. Let C be a random n-puncturing of D of design rate R ≤ 1−Hq(ν)− ε. Then,
with probability 1− q−Ων(εn), it holds for all x ∈ C that

Pr
z∼νn

[the MLDU outputs x on input x+ z] ≥ 1− 2q−cνε
2n , (6)

for some cν > 0 that depends only on ν.

2.7 Organization

The rest of the paper is organized as follows. In Section 3 we survey our techniques by sketching a
proof for a weaker version of Corollary 2. Section 4 establishes some general definitions and lemmas
used in the main proofs. In Section 5 we prove Theorem 5 about list-decodability of randomly
punctured codes, based on the result of [GHK11]. In Section 6 we give more details on the code
property framework, and prove Theorems 1 and 4 about punctured codes that are locally-similar
to an RLC. In Section 7 we prove Theorem 3, dealing with derandomization of RLCs. Finally,
Theorem 6 about punctured codes in the stochastic error model is proved in Section 8.

3 Technical overview

For the sake of exposition, we begin by proving Theorem 7—a weaker version of Corollary 2.
Theorem 7 showcases the techniques by which we prove our main results in a simplified setting.
Rather than reducing from state of the art results about RLC list-decodability, Theorem 7 is proven
directly, resulting in worse bounds on the list-size. For simplicity, we restrict ourselves to the binary
regime.

Theorem 7. Let ρ ∈
(
0, 1

2

)
and L ∈ N. Then, there exist η(L) > 0 and ε(L) > 0 with ε(L) −−−−→

L→∞
0,

such that the following holds. Let D ⊆ Fm2 be a linear η-biased code, and let C be a random
n-puncturing of D of design rate R ≤ 1 − h2(ρ) − ε. Then C is (ρ, L) -list-decodable with high
probability as n→∞.

Proof sketch. Let ϕ : Fm2 → Fn2 be the random puncturing map by which C is generated from D.
Write b = dlog2(L + 1)e. Now any set of L + 1 vectors in Fn2 must contain a subset of b linearly-
independent vectors. In particular, for C to contain a ρ-clustered set of size L+ 1, it must contain
a ρ-clustered set of b linearly-independent vectors (this argument originated in [ZP81]). Thus, the
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probability, taken over the random puncturing ϕ, that C is not (ρ, L) -list-decodable is at most

Pr [∃v1, . . . , vb ∈ C which are ρ-clustered and linearly-independent]

= Pr [∃u1, . . . , ub ∈ D s.t. ϕ(u1), . . . , ϕ(ub) are ρ-clustered and linearly-independent]

≤ Pr [∃u1, . . . , ub ∈ D which are linearly independent, s.t. ϕ(u1), . . . , ϕ(ub) are ρ-clustered]

≤
∑

u1,...ub∈D
linearly independent

Pr [ϕ(u1), . . . , ϕ(ub) are ρ-clustered] ,

where the penultimate inequality is because linear-independence of u1, . . . , ub is a necessary con-
dition for linear-independence of ϕ(u1), . . . , ϕ(ub). The sum on the right hand side has at most
|D|b = 2bRn terms, so it suffices to show that

Pr [ϕ(u1), . . . , ϕ(ub) are ρ-clustered] ≤ 2−bRn−ω(1) (7)

whenever u1, . . . , ub ∈ D are linearly independent.

Let B ∈ Fm×b2 be the matrix whose columns are u1, . . . , ub, and let σ denote the distribu-
tion, over Fb2, of a uniformly random row of B. Let A ∈ Fn×b2 be the matrix whose columns are
ϕ(u1), . . . , ϕ(ub). A crucial observation is that A is a random matrix whose rows are sampled
independently from σ. At this point, if σ were the uniform distribution over Fb2, we would be
done. Indeed, σ being uniform means that the columns of A, call them c1, c2, . . . , cb, are sampled
independently and uniformly from Fn2 . This establishes Eq. (7) since

Pr
c1,...,cb∼U(Fn2 )

[c1, . . . , cb are ρ-clustered] ≤
∑
z∈Fn2

∑
y1,...,yb∈B(z,ρn)

Pr
c1,...,cb∼U(Fn2 )

[
b∧
i=1

(ci = yi)

]

=
∑
z∈Fn2

∑
y1,...,yb∈B(z,ρn)

(2−b)n (8)

≤
∑
z∈Fn2

2bh2(ρ)n(2−b)n = 2n(bh2(ρ)−b+1)

≤ 2−bRn−n , (9)

where B(z, ρn) denotes the Hamming ball of radius ρn around z, and the last inequality Eq. (9)

holds for, say, ε = 2
b . Note that ε ≤ O

(
1

logL

)
.

We now use a certain formulation of the Vazirani XOR-Lemma (see, e.g., [Gol11]) to show that
σ is in fact arbitrarily close to the uniform distribution over Fb2. This allows us to finish the theorem
by extending the above argument from uniform σ to almost-uniform σ.

Lemma 3.1 (Vazirani XOR-Lemma). Let σ be a distribution over Fb2 such that for every y ∈
Fbq \ {0}, we have 1−η

2 ≤ Prx∼σ [〈x, y〉 = 1] ≤ 1+η
2 . Then, σ is

(
2b · η

)
-close in total-variation

distance to the uniform distribution over Fb2.

In our case, Prx∼σ [〈x, y〉 = 1] = wt(By). Since the columns of B belong to D and are linearly-
independent, By is a non-zero codeword of D. Our assumption about D having small bias means
that wt(By) is very close to 1

2 , so the hypothesis of Lemma 3.1 is satisfied. Thus, in the above
calculation the rows of A are sampled i.i.d from a distribution σ ∼ Fb2 which has statistical distance

11



at most 2bη from uniform. Therefore, we can replace the 2−b term in Eq. (8) by an upper bound
(2−b + 2bη). By taking η small enough, say at most 2−2b, the bound in Eq. (9) remains valid by
slightly adjusting parameters (e.g., taking ε = 3

b ).

4 Preliminaries

4.1 General notation

We denote the uniform distribution over a finite nonempty set S by U(S).

For a, b ∈ R, we denote expa(b) = ab.

The constants implied by asymptotic notation are universal unless stated otherwise. To indicate
that the hidden constant may depend on, e.g., for the parameter p, we write “Op(·)”.

If A ∈ Fm×bq and C ⊆ Fmq , we write A ⊆ C to mean that each column of A is a codeword in C.
Given a puncturing map ϕ : Fmq → Fnq , let ϕ(A) denote the matrix obtained from A by applying ϕ
to each column.

4.2 A characterization of list-decodable linear codes

Recall the notion of a ρ-clustered set (Definition 2.4.)

Definition 4.1. Fix ρ ∈ [0, 1], L ∈ N. A matrix A ∈ Fn×bq (1 ≤ b ≤ L) with rankA = b is
(ρ, L)-span-clustered if the column-span of A contains a ρ-clustered set of size L.

Note that for a linear code C ⊆ Fnq we have

C is not (ρ, L) -list-decodable ⇐⇒ ∃A ∈ Fn×bq such that A is (ρ, L+ 1)-span-clustered and A ⊆ C .

Furthermore, we can always take b to be in the range [logq(L+ 1), L+ 1]. Indeed, a matrix of rank
smaller than logq(L+ 1) cannot be (ρ, (L+ 1))-span-clustered since its span has cardinality smaller
than L+ 1. On the other hand, a rank larger than L+ 1 is never needed since, given a ρ-clustered
set W ⊆ C with |W | = L+ 1, one can take A to be a matrix whose columns are a maximal linearly
independent subset of W .

4.3 The scalar-multiplied code ΛC and scalar-expanded code D∗

Let
Γn =

{
Λ ∈ Fn×nq | Λ is diagonal and of full-rank

}
.

Recall that, for Λ ∈ Γn and a code C ⊆ Fnq , we denote ΛC = {Λu | u ∈ C} (Definition 2.8). If P is
a scalar-invariant property (such as list-decodability), the question of whether a code C satisfies P
reduces to that of any code of the form ΛC. To take advantage of this reduction, we shall focus on
the random code ΛC where Λ ∼ U(Γn). If C is a random puncturing of some code D, we can realize
the code ΛC as a puncturing of the code D∗, which we now define.

Definition 4.2. Given u ∈ Fmq , let u∗ ∈ Fm(q−1)
q denote the vector

u∗ =�a∈F∗
q

(au) ,
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where� stands for concatenation of vectors. Given a matrix B ∈ Fm×bq with columns a1, . . . , ab, let

B∗ ∈ Fm(q−1)×b
q be the matrix whose columns are a∗1, . . . , a

∗
b . Denote D∗ = {u∗ | u ∈ D} ⊆ Fm(q−1)

q .

Observation 4.3. The code ΛC, where Λ ∼ U(Γn) and C is a random n-puncturing of D, is
distributed identically to a random n-puncturing of D∗.

4.4 Fourier transform

We recall the following elementary facts about the Fourier transform8 of a function f : Fbq → C.

Definition 4.4 (Fourier (and inverse Fourier) transform). Suppose that q = pr for some prime p,

and let ω = e
2πi
p . Let b ∈ N and let f : Fbq → C. Then f̂ : Fbq → C is defined by

f̂(y) =
∑
x∈Fbq

f(x) · χy(x), where χy(x) = ωtr〈x,y〉 .

Here, tr : Fq → Fp stands for the field trace function tr(x) =
∑r−1

i=0 x
pi. We also have the Fourier

inversion formula:

f(x) = q−b
∑
y∈Fbq

f̂(y)χy(x) .

Fact 4.5 (Parseval’s identity). Let f, g : Fbq → C. Then,∑
x∈Fbq

f(x)g(x) = Ey∼U(Fbq)

[
f̂(y)ĝ(y)

]
.

In particular,
∑

x∈Fbq |f(x)|2 = Ey∼U(Fbq)

[∣∣∣f̂(y)
∣∣∣2].

4.5 Entropy and KL-divergence

Given x ∈ [0, 1], we write

hq(x) = −x logq x− (1− x) logq(1− x) + x logq(q − 1)

for the base-q entropy of a random variable over {0, . . . , q−1}, which takes 0 with probability 1−x
and each i ∈ {1, . . . , q − 1} with probability x

q−1 .

The q-ary Kullback-Leibler Divergence of two distributions τ, σ over a finite set S is

DKLq (τ ‖ σ) =
∑
s∈S

τ(s) logq
τ(s)

σ(s)
.

8Our convention is to use counting norm for f and expectation norm for f̂ .
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4.6 The empirical distribution of the rows of a matrix

Definition 4.6. Given a vector a ∈ Fnq we define its empirical distribution Empa over Fq by

Empa(x) = Pr
i∈[n]

[ai = x] .

More generally, given A ∈ Fn×bq , let EmpA denote its empirical row distribution, that is, the

distribution over Fbq defined by
EmpA(x) = Pr

i∈[n]
[Ai = x] ,

where Ai denotes the i’th row of A.

Fact 4.7 ([CT06, Thm. 11.1.4]). Let X ∈ Fn×bq have rows sampled identically and independently

from some distribution σ over Fbq. Then, for any distribution τ over Fbq,

Pr [EmpA = τ ] ≤ q−DKLq(τ‖σ)·n .

Definition 4.8. Let τ be a distribution over Fbq. We denote dim(τ) = dim supp(τ). If dim(τ) = b,
we say that τ is a full-rank distribution.

Definition 4.9 (Matrix of a particular distribution). Let τ be a distribution over Fbq (where b ∈ N).
For n ∈ N, we denote

Mn,τ =
{
A ∈ Fn×bq | EmpA = τ

}
.

A distribution τ over Fbq is said to be n-feasible if τ(x)·n is an integer for all x ∈ Fbq. Observe that

any n-feasible distribution over Fbq corresponds to a partition of n identical balls into qb buckets.
The bound below thus follows immediately.

Fact 4.10. The number of n-feasible distributions over Fbq is at most (n+ 1)q
b
.

Clearly, n-feasibility of τ is a necessary condition for Mn,τ to be nonempty. When this con-
dition holds, |Mn,τ | is equal to the multinomial coefficient n!∏

x∈Fbq
(τ(x)n)! . By standard bounds on

multinomial coefficients, we have

n−O(qb) · qn·Hq(τ) ≤ |Mn,τ | ≤ qn·Hq(τ) . (10)

4.6.1 The Fourier transform of an empirical distribution

We record several useful properties of the function ÊmpA for a given matrix A. The following is
immediate.

Fact 4.11. A vector u ∈ Fnq is η-biased (η > 0) if and only if
∣∣∣Êmpu(a)

∣∣∣ ≤ η for all a ∈ F∗q.

The following identity shows that the Fourier transform of EmpA (where A ∈ Fn×bq ) is in fact

composed of the Fourier transforms of EmpAy over y ∈ Fbq. Let a ∈ Fq. Then,

ÊmpA(ay) =
∑
x∈Fbq

EmpA(x)ω−tr(a〈x,y〉) = Ex∼EmpA

[
ω−tr(a〈x,y〉)

]
= Ez∼EmpAy

[
ω−tr(az)

]
= ÊmpAy(a) .

(11)
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By Fact 4.5, the normalized Hamming Weight of a vector u ∈ Fnq can be conveniently expressed
in terms of the Fourier transform of Empu.

wt(u) =
∑
x∈Fq

1x 6=0 ·Empu(x) =
q − 1

q
· Êmpu(0)− 1

q
·
∑
a∈F∗q

Êmpu(a) =
q − 1

q
− 1

q
·
∑
a∈F∗q

Êmpu(a). (12)

This yields the following relation between bias and weight.

Lemma 4.12. Let u ∈ Fnq be η-biased for some η > 0. Then

q − 1

q
(1− η) ≤ wt(u) ≤ q − 1

q
(1 + η) .

Proof. By Eq. (12) and Fact 4.11,∣∣∣∣wt(u)− q − 1

q

∣∣∣∣ =

∣∣∣∣∣∣1q ·
∑
a∈F∗q

Êmpu(a)

∣∣∣∣∣∣ ≤ q − 1

q
· η .

We have the following immediate conclusion.

Lemma 4.13. For any η ≥ 0, an η-biased code also has η-optimal distance.

5 A random puncturing of a near-optimal-distance code is likely
to be list-decodable

Our goal in this section is to prove Theorem 5 on the list-decodability of random puncturings of
any mother code of sufficiently high distance.

5.1 GHK list-decodability bound for random linear codes revisited

The main result of [GHK11] gives bounds on the list-size for list-decoding of RLCs up to capacity.
Here, we go deeper and slightly reformulate9 the main technical claim of that paper.

Theorem 5.1 ([GHK11, Thm. 6.1]). Let q be a prime power and let ρ ∈ (0, 1− 1/q). Then, there
is a constant K ′ = K ′ρ,q ≥ 1 such that, for all b, L ∈ N, we have∣∣∣{A ∈ Fn×bq | A is (ρ, L+ 1)-span-clustered

}∣∣∣ ≤ q(bhq(ρ)−4)·n

whenever L ≥ K ′ · b and n is large enough, and∣∣∣{A ∈ Fn×bq | A is (ρ, L+ 1)-span-clustered
}∣∣∣ ≤ q(bhq(ρ)+1)·n (13)

in general.

Furthermore, one can take

K ′ ≤ exp

(
O

(
(log2 q)

2

min {(1− 1/q − ρ)2, ρ}

))
. (14)

9See Remark 5.2 for the differences in our formulation.
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Remark 5.2. There are several differences between our formulation of the theorem and the one
that appears in [GHK11]. We list and justify them here.

(i) The random vectors X1, . . . , X` from the original formulation have become the columns of the
matrix A, and we changed the name ` to b.

(ii) The original statement of [GHK11, Thm. 6.1 ] only deals with matrices whose span contains
a large set clustered around 0. In our statement we already apply the reduction to a ball with
arbitrary center, which appears in [GHK11, Thm. 2.1].

(iii) Eq. (13) is a rather naive bound, originally derived as part of the proof of [GHK11, Thm.
2.1].

(iv) The asymptotic statement about K ′ρ,q comes from inspecting the proof in [GHK11]. Specifi-
cally, in the notation of that paper, [GHK11, Lem. 6.3] yields a 2-increasing chain of length
d = Ω(logqK

′) whenever L ≥ K ′ · b. The exponent in the q-ary analog of [GHK11, Lem 4.1]

satisfies δp = Θ

min

{
ρ,
(

1− 1
q
−ρ
)2}

log2 q

. Finally, the requirement in [GHK11, Thm. 6.1] is that

K ′ be large enough so that d · δp ≥ Ω(1).

It will be convenient to formulate a corollary from Theorem 5.1 in terms of the row-distributions
of certain matrices.

Definition 5.3. Fix a prime power q. Let b, n ∈ N and let τ be an n-feasible distribution over Fbq.
If a matrix A ∈ Mn,τ is (ρ, L + 1)-span-clustered, we say that τ is (ρ, L + 1)-span-clustered (with
regard to n).

Remark 5.4. Observe that the notion of τ being (ρ, L + 1)-span clustered is well defined, and
in particular does not depend on the choice of A in Definition 5.3. In other words, either every
matrix in Mn,τ is (ρ, L + 1)-span-clustered, or none of them are. Indeed, suppose that A ∈ Fn×bq

is (ρ, L + 1)-span-clustered with regard to some center z ∈ Fnq , and let B be a matrix obtained
from A by permuting the rows of the latter according to some permutation π over [n]. Then, B is
(ρ, L+ 1)-span-clustered with regard to the center vector resulting from applying π to z.

The above observation is a result of the fact that containing a (ρ, L+ 1) -span-clustered matrix
is a row-symmetric code property (see Definition 2.5).

Corollary 5.5. In the setting of Theorem 5.1, every (ρ, L + 1)-span-clustered (with regard to n),
n-feasible distribution τ over Fbq satisfies

Hq(τ) ≤ b ·
(
hq(ρ) +

5K ′ρ,q
L

)
− 3 .

for every b and n such that n
logq n

≥ ω
(
qL+1

)
.

Proof. By Remark 5.4,Mn,τ ⊆
{
A ∈ Fn×bq | A is (ρ, L+ 1)-span-clustered

}
. Thus, Eq. (10) and The-

orem 5.1 yield the following:
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If L ≥ K ′ρ,q · b:

Hq(τ) ≤ logq |Mn,τ |+O

(
qb · logq n

n

)
≤ bhq(ρ)− 4 +O

(
qb · logq n

n

)

If L < K ′ρ,q · b:

Hq(τ) ≤ logq |Mn,τ |+O

(
qb · logq n

n

)
≤ bhq(ρ) + 1 +O

(
qb · logq n

n

)

≤ bhq(ρ) +
5bK ′ρ,q
L

− 4 +O

(
qb · logq n

n

)
.

The claim now follows from our assumption that n
logq n

≥ ω
(
qL+1

)
.

5.2 Proof of Theorem 5

We now turn to proving Theorem 5, restated here.

Theorem 5 (A puncturing of a near-optimal distance code is whp list-decodable up to capacity).
Fix a prime power q. Let L, n ∈ N and 0 < ρ < q−1

q , such that n
logq n

≥ ωn→∞
(
qL+1

)
. Let D ⊆ Fmq

be a linear code with η-optimal distance, where η = q−L+1. Let C be a random n-puncturing of D
of design rate R, where R ≤ 1− hq(ρ)− K

L for some constant K = Kρ,q. Then,

Pr [C is (ρ, L) -list-decodable] ≥ 1− q−Ω(n) .

Furthermore, one can take

Kρ,q ≤ exp

(
O

(
(log q)2

min {(1− 1/q − ρ)2, ρ}

))
(5)

and, in particular, Kρ,q ≤ poly(q) whenever ρ is bounded away from 0 and 1− 1
q .

Before proving the theorem, we compare it to several known results about list-decodability of
RLCs. By the List-Decoding Capacity Theorem, Theorem 5 achieves the optimal trade-off between
q, ρ and R. We thus turn to discuss the secondary trade-off, which involves the former three
parameters and the list-size L. As mentioned in Section 2.5, Theorem 5 is derived by reduction
to the result of [GHK11] on list-decodability of RLCs. The main theorem of [GHK11] states

that a RLC of rate R = 1 − hq(ρ) − K′ρ,q
L is with high probability is (ρ, L) -list-decodable, where

K ′ρ,q ≤ exp
(
O
(

(log q)2

min{(1−1/q−ρ)2,ρ}

))
is proportional to the constant Kρ,q that appears in Theorem 5.

Denoting the gap-to-capacity of the rate by ε = 1 − hq(ρ) − R, [GHK11] shows that an RLC of

rate R is almost surely (ρ, L) -list-decodable with L ≈ K′ρ,q
ε . In Theorem 5, we have ε =

Kρ,q
L , so

L =
Kρ,q
ε = O

(
K′ρ,q
ε

)
. Thus, we can informally state Theorem 5 as “A random puncturing of a code

of near-optimal distance is very likely to be list-decodable up to capacity, with a similar list-size
trade-off to that guaranteed by [GHK11] for RLCs.”
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The list-size L guaranteed by Theorem 5 inherits some desirable properties from [GHK11]: it
is constant in terms of n, and has linear dependence on 1

ε , which is tight for RLCs [GN14, Thm.
16]. As for the dependence on q and ρ, we get good list-size bounds when q is not too large and
ρ is bounded away from 0 and 1− 1

q , but, unfortunately, the constant Kρ,q grows exponentially as

ρ→ 1− 1
q . In comparison with [GHK11], other works on RLC list-decodability are more specialized,

and give tighter upper bounds on the list-size in specific regimes. Notably, [Woo13] does well when
ρ is large and ε is of similar magnitude to R, and [LW21] gives an extremely tight upper bound
(see [GLMRSW20]) on the list-size for every ρ and ε, when q = 2.

We note that, while Theorem 5 only achieves the analogue of [GHK11] for randomly punctured
codes, Theorems 1 and 4, with their somewhat stronger hypotheses, achieve (in particular) ana-
logues of all known and future positive results about list-decodability of RLCs. The obstacle to
concluding such a broad result solely from the hypothesis of Theorem 5 is discussed in Remark 6.14.

Our proof of Theorem 5 relies on the following lemma, whose proof we defer to Section 5.3.

Lemma 5.6 (Puncturings of large-distance codes are locally similar in expectation to random
linear codes). Fix b ∈ N and a full-rank distribution τ over Fbq. Let D ⊆ Fmq be a linear code
of η-optimal distance (η ≥ 0). Let Λ ∼ U(Γn) and, independently, let ϕ be a random (m → n)

puncturing map. Denote R =
logq |D|

n . Then,

E [|{A ∈Mn,τ | A ⊆ Λ · ϕ(D)}|] ≤ expq

(
n ·
(
Hq(τ)− (1−R)b+ logq

(
1 + ηqb

)
+ logq 2

))
Remark 5.7. Lemma 5.6 bounds the expected number of τ -distributed matrices in the code Λ·ϕ(D).
The lemma says that this number is not much larger than the expected number of τ -distributed
matrices in a random linear code of similar rate. Indeed, for a given matrix A, the probability of
A being contained in the random linear code Cn,qRLC(R) is q−n(1−R)·rank(A). Thus, by Eq. (10),

E
[∣∣{A ∈Mn,τ | A ⊆ Cn,qRLC(R)

}∣∣] = |Mn,τ | · qn(R−1)·b ≈ qn(Hq(τ)−(1−R)b) .

Using Lemma 5.6, we conclude Theorem 5 from Theorem 5.1.

Proof of Theorem 5. Take Kρ,q = 5K ′, where K ′ρ,q is as in Theorem 5.1. We need to show that

Pr [C is not (ρ, L) -list-decodable] ≤ q−Ω(εn).

Since being not (ρ, L) -list-decodable is a scalar-invariant property (see Definition 2.8 and Sec-
tion 4.3), it suffices to show instead that

Pr [ΛC is not (ρ, L) -list-decodable] ≤ q−Ω(εn) , (15)

where the matrix Λ is sampled uniformly from Γn.

Now, if ΛC is not (ρ, L) -list-decodable, then ΛC contains some (ρ, L+ 1)-span-clustered matrix
A ∈ Fn×bq for some b, logq(L+ 1) ≤ b ≤ L+ 1. Hence,

Pr [ΛC is not (ρ, L) -list-decodable]

≤
L+1∑

b=dlogq(L+1)e

Pr
[
∃A ∈ Fn×bq s.t. A is (ρ, L+ 1) -span-clustered and A ⊆ ΛC

]

≤
L+1∑

b=dlogq(L+1)e

E
[∣∣∣{A ∈ Fn×bq | A is (ρ, L+ 1) -span-clustered and A ⊆ ΛC

}∣∣∣] .
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By Remark 5.4, we can write{
A ∈ Fn×bq | A is (ρ, L+ 1) -span-clustered

}
=
⋃
τ∈Tb

Mn,τ

where Tb is a set of n-feasible distributions over Fbq. Therefore, by Lemma 5.6 and our assumption

that η ≤ q−L+1 ≤ q−b, the probability that ΛC is not (ρ, L) -list-decodable is at most

L+1∑
b=dlogq(L+1)e

∑
τ∈Tb

E [|{A ∈Mn,τ | A ⊆ ΛC}|]

≤
L+1∑

b=dlogq(L+1)e

∑
τ∈Tb

expq

(
n ·
(
Hq(τ)− (1−R)b+ logq(1 + ηqb) + logq 2

))

≤
L+1∑

b=dlogq(L+1)e

∑
τ∈Tb

expq(n · (Hq(τ)− (1−R)b+ 2)) .

By Corollary 5.5, each term of the inner sum is at most q−n. Therefore, by Fact 4.10,

Pr [ΛC is not (ρ, L) -list-decodable] ≤
L+1∑

b=dlogq(L+1)e

∑
τ∈Tb

q−n ≤ q−n
L+1∑
b=1

(n+1)q
b ≤ q−n(L+1)(n+1)q

L+1
,

and the theorem follows due to our assumption that n
logq n

≥ ω
(
qL+1

)
.

5.3 Proof of Lemma 5.6

Lemma 5.6 follows from Lemmas 5.8 to 5.10, stated and proven below. The proof of Lemma 5.6 is
then completed at the end of this section.

Lemma 5.8 is a variation of the Vazirani XOR-Lemma (see [Gol11], and Lemma 3.1 for a special
case). Given a distribution σ over Fbq , the XOR-Lemma relates the total-variation distance of σ

from the uniform distribution over Fbq, to the maximum of |σ̂(y)| over all y 6= 0. In Lemma 5.8,
rather than taking a maximum, we consider the `1 norm of σ̂, which yields a tighter bound when
only a small number of entries of σ̂ are large in absolute value.

Lemma 5.8. Fix a prime power q, and b ∈ N. Let σ be a distribution over FLq and let f : Fbq → R
be a non-negative function. Then,

Ex∼σ [f(x)] ≤

∑
y∈Fbq

|σ̂(y)|

 · Ex∼U(Fbq) [f(x)] .

Proof. We have

σ(x) = q−b
∑
y∈Fbq

σ̂(y)ω−tr(〈x,y〉) ≤ q−b
∑
y∈Fbq

|σ̂(y)|
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for all x ∈ Fbq. So

Ex∼σ [f(x)] =
∑
x∈Fbq

σ(x)f(x) ≤ q−b
∑
y∈Fbq

|σ̂(y)|

·
∑
x∈Fbq

f(x)

 =

∑
y∈Fbq

|σ̂(y)|

·Ex∼U(Fbq) [f(x)] .

We next bound the expectation of an arbitrary non-negative test function over the empirical
row-distribution of a given matrix B, assuming that the column-span of B has good bias or distance.
The bias based bound is an immediate application of Lemma 5.8. The weight based bound requires
an additional trick, and only yields a result relating to the row-distribution of B∗ rather than B
itself (recall Definition 4.2 for a reminder about B∗). One reason for the difference between the
two cases is that under the weight-based hypothesis we have an upper bound only on the entries
of the Fourier transform (Eq. (18)), rather than on their absolute value.

Lemma 5.9. Let B ∈ Fm×bq have rankB = b, and let f : Fbq → R be a non-negative function.
Then, the following holds for all η ≥ 0:

1. Suppose that the column-span of B (as a code in Fmq ) is η-biased. Then,

Ex∼EmpB [f(x)] ≤ (1 + qbη) · Ex∼U(Fbq) [f(x)] .

2. Suppose that the column-span of B has η-optimal distance. Then,

Ex∼EmpB∗ [f(x)] ≤ 2(1 + qbη) · Ex∼U(Fbq) [f(x)] .

Proof. We first prove Item 1. Hence, by Lemma 5.8 it suffices to show that∑
y∈Fbq

∣∣∣ÊmpB(y)
∣∣∣ ≤ 1 + qbη .

By Eq. (11), the above is equivalent to∑
y∈Fbq

∣∣∣ÊmpBy(1)
∣∣∣ ≤ 1 + qbη . (16)

For y = 0 we have ÊmpBy(1) = Êmp0(1) = 1. For any y ∈ Fbq \ {0}, since B has full column-rank,

By is a non-zero codeword of D. By hypothesis, By is η-biased, so Fact 4.11 yields
∣∣∣ÊmpBy(1)

∣∣∣ ≤ η,

establishing Eq. (16).

We now turn to Item 2. Let σ denote the distribution, over Fbq, of the random variable a · x,
where a ∼ U(F∗q) and x is independently sampled from EmpB. By Lemma 5.8, to prove Item 2 it
suffices to show that ∑

y∈Fbq

|σ̂(y)| ≤ 2
(

1 + qbη
)
. (17)

By Eq. (12) followed by Eq. (11),

wt(By) =
q − 1

q
− 1

q
·
∑
a∈F∗q

ÊmpBy(a) =
q − 1

q
− 1

q
·
∑
a∈F∗q

ÊmpB(ay) =
q − 1

q
· (1− σ̂(y)) ,
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so σ̂(y) = 1− q
q−1 · wt(By).

In particular, if y 6= 0 then By is a non-zero element in the column-span of B. Hence, by
hypothesis,

σ̂(y) = 1− q

q − 1
· wt(By) ≤ η . (18)

Let P = {y ∈ Fbq | σ̂(y) ≥ 0} and N = Fbq \ P . By Eq. (18),∑
y∈P\{0}

σ̂(y) ≤ qbη .

Note that σ̂(0) =
∑

x∈Fbq σ(x) = 1, and thus,∑
y∈P

σ̂(y) = 1 +
∑

y∈P\{0}

σ̂(y) ≤ 1 + qbη .

Consequently,

0 ≤ qb · σ(0) =
∑
y∈Fbq

σ̂(y) =
∑
y∈P

σ̂(y) +
∑
y∈N

σ̂(y) ≤ 1 + qbη +
∑
y∈N

σ̂(y)

and so, ∑
y∈N
|σ̂(y)| = −

∑
y∈N

σ̂(y) ≤ 1 + qbη .

Eq. (17) now follows since∑
y∈Fbq

|σ̂(y)| =
∑
y∈P
|σ̂(y)|+

∑
y∈N
|σ̂(y)| ≤ 2(1 + qbη) .

Lemma 5.10 bounds the probability of a random puncturing of a given matrix B having a
certain empirical distribution τ . Due to the concavity argument in Eq. (20), this lemma gives
tighter bounds when EmpB is close to the uniform distribution over Fbq. Notably, as Lemma 5.9
shows, good bias or similar properties of the column-span of B ensure that EmpB is indeed close
to uniform.

Lemma 5.10. Fix some distribution τ over Fbq. Let B ∈ Fm×bq have rankB = b. Let ϕ : Fmq → Fnq
be a random puncturing map. Then,

Pr [ϕ(B) ∈Mn,τ ] ≤ expq
(
n
(
logq Ex∼EmpB [τ(x)] +Hq(τ)

))
.

Proof. By Fact 4.7,

Pr [ϕ(B) ∈Mn,τ ] = Pr
[
Empϕ(B) = τ

]
≤ q−n·DKLq(τ‖EmpB) . (19)

By concavity of log,

DKLq (τ ‖ EmpB) =
∑
x∈Fbq

τ(x) logq
τ(x)

EmpB(x)
= −Hq(τ)−

∑
x∈Fbq

τ(x) logq EmpB(x)

≥ −Hq(τ)− logq Ex∼EmpB [τ(x)] . (20)

The claim follows from Eq. (19) and Eq. (20).
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Proof of Lemma 5.6. By Observation 4.3, Λ · ϕ(D) is distributed identically to ϕ∗(D∗), where ϕ∗

is a random ((q − 1)m→ n) puncturing map. Thus,

E [|{A ∈Mn,τ | A ⊆ Λ · ϕ(D)}|] = E [|{A ∈Mn,τ | A ⊆ ϕ∗(D∗)}|]

≤ E
[∣∣∣{B ∈ Fm×bq | B ⊆ D and ϕ∗(B∗) ∈Mn,τ

}∣∣∣] . (21)

We proceed to bound the expectation of the right-hand side.

Suppose that ϕ∗(B∗) ∈ Mn,τ . Because τ is of full-rank, we have rankB = rankB∗ ≥
rankϕ∗(B∗) = b, so rankB = b.

Let B ∈ Fm×bq such that rankB = b and B ⊆ D. Since the column-span of B is contained in D,
it is of η-optimal distance. Hence, by Item 2 of Lemma 5.9,

Ex∼EmpB∗ [τ(x)] ≤ Υ , (22)

where Υ = 2q−b
(
1 + qbη

)
. Lemma 5.10 yields

E
[∣∣∣{B ∈ Fm×bq | B ⊆ D and ϕ∗(B∗) ∈Mn,τ

}∣∣∣] =
∑

B∈Fm×bq

B⊆D
rankB=b

Pr
Λ,ϕ

[ϕ∗(B∗) ∈Mn,τ ]

≤ qbRn · expq
(
n
(
logq Υ +Hq(τ)

))
, (23)

and the claim follows from Eqs. (21), (22) and (23).

6 Random puncturings of certain codes are locally-similar to RLCs

In this section we prove Theorems 1 and 4, restated below.

Theorem 1 (Puncturings of low-bias linear codes are locally similar to random linear codes). Let
q be a prime power, and let P be a monotone-increasing, row-symmetric and b-local property over
Fnq , where n

logn ≥ ωn→∞
(
q2b
)
. Let D ⊆ Fmq be a linear code. Let C be a random n-puncturing of D

of design rate R ≤ RLC(P)− ε for some ε > 0. Suppose that D is
(
εb ln q
qb

)
-biased. Then,

Pr [C satisfies P] ≤ q−(ε−on→∞(1))n .

Theorem 4 (Puncturings of near-optimal distance linear codes with large alphabet are locally
similar to random linear codes). Let q be a prime power, and let P be a monotone-increasing, row-
symmetric, b-local and scalar-invariant property over Fnq , where n

logn ≥ ωn→∞
(
q2b
)
. Let D ⊆ Fmq

be a linear code of q−b-optimal distance. Let C be a random n-puncturing of D of design rate
R ≤ RLC(P)− ε− 2 logq 2 for some ε > 0. Then,

Pr [C satisfies P] ≤ q−(ε−on→∞(1))n .
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6.1 Monotone-increasing properties and minimal sets

A monotone-increasing property P of codes has a unique minimal-set MP , namely, a matrix A ⊆
Fn×bq (b ∈ N) of full column-rank belongs to MP if the code consisting of the column-span of A
satisfies P, but no proper linear subspace of that code does so.

Example 6.1 (Minimal set for list-decodability). Fix a prime power q, n,L ∈ N and ρ ∈ [0, 1].
Consider the monotone-increasing property P consisting of all linear codes in Fnq that are not
(ρ, L) -list-decodable. Then,

MP =
{
A ⊆ Fn×bq | b ∈ N, A is (ρ, L+ 1) -span-clustered

}
.

We can reformulate the notions of local, row-symmetric and scalar-invariant monotone-increasing
properties in terms of the minimal set MP (see Definitions 2.5 and 2.8).

Observation 6.2 (Local, row-symmetric and scalar-invariant properties in terms of MP). Let P
be a monotone-increasing property of linear codes in Fnq .

1. Fix b ∈ N. Then, P is b-local if and only every matrix in MP has at most b columns.

2. The property P is row-symmetric if and only if, for each A ∈MP , it holds that every matrix
obtained by permuting the rows of A also belongs to MP .

3. The property P is scalar-invariant if, for each A ∈ MP and every full-rank diagonal matrix
Λ ∈ Fn×nq it holds that ΛA ∈MP .

6.2 Row-symmetric b-local properties in terms of distributions over Fbq
Thresholds for row-symmetric and local properties can be characterized in terms of empirical dis-
tributions of certain matrices. We recall this connection.

Fact 6.3 ([GMRSW21, Fact 2.15]). Let P be a monotone-increasing, b-local, row-symmetric prop-

erty over Fnq . Then, there exists a set TP of distributions over Fbq such that |TP | ≤ (n + 1)q
b
, and

MP =
⋃
τ∈TPMn,τ .

Definition 6.4 (Implied distribution [MRRSW20, Def. 2.6]). Let τ be a distribution over Fbq and

let D ∈ Fb×aq such that rankD = a for some a ≤ b. The distribution (over Faq) of the random
vector xD, where x ∼ τ (note that x is a row vector), is said to be τ -implied. We denote the set of
τ -implied distributions by Iτ .

The motivation for Definition 6.4 is the following observation, which follows immediately from
the linearity of the code.

Observation 6.5. Let τ be a distribution over Fbq, and let τ ′ ∈ Iτ . Then, any linear code containing
a matrix in Mn,τ must also contain some matrix in Mn,τ ′.

We now have the following characterization of the threshold.
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Theorem 6.6 ([MRRSW20, Thm. 2.8]). 10 Let P be a monotone-increasing, b-local, row-symmetric
property over Fnq , and let TP be as in Fact 6.3. Then,

RLC(P) = min
τ∈TP

max
τ ′∈Iτ

(
1− Hq(τ

′)

dim(τ ′)

)
±

2q2b logq n

n
.

Below, we demonstrate Theorem 6.6 via the property of list-recoverability. The motivation is
two-fold. First, list-recoverability itself is a property of significant interest. Secondly, we will use
Theorem 6.6 in the proof of Theorems 1 and 4, and the special case of list-recoverability will help
familiarize the reader with this tool.

6.3 List-recoverability as a property of codes

List-recovery is an important generalization of list-decoding, where the decoder is given not one,
but a subset of ` symbols per position, and the goal is to list all codewords which “miss” at most
a fraction ρ of these subsets. We formally define the notion of (combinatorial) list-recoverability.

Definition 6.7. Fix 1 ≤ ` ≤ q and let ρ ∈ (0, 1 − `/q). The set W is said to be (ρ, `)-
recovery-clustered if there exist sets Z1, . . . , Zn ⊆ Fq, each of which is of size at most `, such
that |{i ∈ [n] | ui /∈ Zi}| ≤ ρn for all u ∈ W . A code C ⊆ Fnq is called (ρ, `, L) -list-recoverable if it
does not contain any (ρ, `)-recovery-clustered set of size L+ 1.

The following is immediate:

Observation 6.8. Fix a prime power q, 1 ≤ ` < q, ρ ∈ (0, 1 − `/q) and L ∈ N. Let P denote
the monotone-increasing linear-code property of codes in Fnq that are not (ρ, `, L) -list-recoverable.
Then, P is row-symmetric, (L+ 1)-local and scalar-invariant.

Say that a matrix A ∈ Fn×bq is (ρ, `, L) -recovery-span-clustered if the column span of A contains a
(ρ, `)-clustered set of size L+1. Then,MP is contained in the set of all (ρ, `, L) -recovery-span-clustered
matrices.

Note that list-recovery generalizes list-decodability (Definition 2.4), i.e., a set W is ρ-clustered
if and only if it is (ρ, 1)-recovery-clustered. Likewise, a code is (ρ, L) -list-decodable if and only if
it is (ρ, 1, L) -list-recoverable.

The List-Recovery Capacity Theorem [Res20, Thm. 2.4.12] gives the threshold rate for list-

recoverability as R∗ = 1 − hq,`(ρ), where hq,`(ρ) = ρ logq

(
q−`
ρ

)
+ (1 − ρ) logq

(
`

1−ρ

)
. Namely, for

every ε > 0 there exists a family of (ρ, `, Oρ,`,ε(1)) -list-recoverable codes of rate at least R∗ − ε
but, on the other hand, every (ρ, `, L) -list-recoverable family of codes of rate ≥ R∗ + ε has L
exponentially large in εn.

We now use Theorem 6.6 to prove that RLCs achieve list-recovery capacity11.

Proposition 6.9 (RLCs achieve list-recovery capacity). For any fixed q, ρ, ` and L, we have

RLCn,q(ρ, `, L) ≥ 1− hq,`(ρ)− `

logq L
− on→∞(1) .

10The precise error term does not appear in the statement of this theorem in [MRRSW20], but follows by inspecting
the proof there.

11Better lower bounds on RLCn,q(ρ, `, L) are known. See, e.g., [RW18].
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Proposition 6.9 means that RLCs get to within ε of the capacity rate for list-recovery with

list-size L ≈ q
`
ε .

To prove Proposition 6.9 we need the following claim.

Claim 6.10. Let B ∈ Fn×bq be a matrix whose columns form a (ρ, `) -recovery-clustered set. Denote

τ = EmpB. Then, Hq(τ) ≤ b · hq(`, ρ) + `, where hq,`(ρ) = ρ logq

(
q−`
ρ

)
+ (1− ρ) logq

(
`

1−ρ

)
.

Proof. Let Z1, . . . , Zn be subsets of Fq, each of size `, such that for all j ∈ [b], we have |{i ∈ [n] | Bi,j /∈ Zi}| ≤
ρn. Let i be sampled uniformly from [n]. We now have

Hq(τ) = Hq(Bi) ≤ Hq(Bi, Zi) = Hq(Zi) +Hq(Bi | Zi) ≤ Hq(Zi) +
b∑

j=1

Hq(Bi,j | Zi).

The number of different options for Zi is
(
q
`

)
so Hq(Zi) ≤ logq(

(
q
`

)
) ≤ ` . Let ρ′j (j ∈ [b]) denote the

probability that Bi,j /∈ Zi, and note that ρ′j ≤ ρ. Then,

Hq(Bi,j | Zi) ≤ hq,`(ρ′j) ≤ hq,`(ρ).

Consequently, Hq(τ) ≤ b · hq,`(ρ) + `, establishing the claim.

Proof of Proposition 6.9. Let P denote the property consisting of codes over Fnq that are not
(ρ, `, L) -list-recoverable. Let τ ∈ TP and let A ∈ Mn,τ be a matrix in Fn×aq (a ∈ N). By Observa-
tion 6.8, A is (ρ, `, L+ 1) -recovery-span-clustered. Let W be a (ρ, `)-recovery-clustered set of size
L+1, contained in the column-span of A. Note that W must contain a linearly-independent subset
U of size b := dlogq |W |e = dlogq(L + 1)e. Let D ∈ Fa×bq such that B := AD is the matrix whose
columns are the elements of U , and note that U is also (ρ, `) -recovery-clustered. Let τ ′ = EmpB.
By Claim 6.10, Hq(τ

′) ≤ b · hq,`(ρ) + `. Furthermore, we can express τ ′ as the distribution of the
random vector xD, where x ∼ τ . Consequently, τ ′ ∈ Iτ . Therefore,

max
τ ′′∈Iτ

(
1− Hq(τ

′′)

dim(τ ′)

)
≥ 1− Hq(τ

′)

b
≥ 1− hq,`(ρ)− `

b
.

The claim now follows by Theorem 6.6.

We note that the above derivation of Proposition 6.9 could also be achieved via more standard
arguments, which do not require Theorem 6.6. The actual power Theorem 6.6 is that it enables
reductions from other random code models to the RLC model, as demonstrated in the proof of
Theorems 1 and 4, via Lemma 6.12. This sort of argument involves an application of Theorem 6.6
in its less intuitive direction: rather than starting from an upper bound on Hq(τ) for some set
of distributions and using Theorem 6.6 to obtain a lower bound on RLC(P), we start from some
known lower bound on RLC(P) and use the theorem to get an upper bound on the entropy of
certain “bad distributions.” The latter entropy bound is then typically used in a union-bound
argument to obtain a lower bound on the threshold rate for some non-RLC model. This type of
argument was used in [MRRSW20] to prove that Gallagher LDPC codes are as list-decodable (and
list-recoverable) as RLCs.
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Remark 6.11 (Average versions of list-decodability and list-recoverability). Average-radius list-
decodability is a stronger property where we demand that for every L + 1 codewords their average
distance to any center exceeds ρ (as opposed to maximum distance for list-decodability). A code not
being (ρ, L)-average-radius list-decodable is also an (L+1)-local, row-symmetric and scalar-invariant
property.

For list-recovery, we can define a stronger variant where in Definition 6.7 we allow input sets
Zi such that the average size |Zi| over all i ∈ [n] is at most `. A violation of this stronger property
is also a local, row-symmetric and scalar-invariant property.

The generality of our framework thus means that we can get results for these variants also
automatically. We note that certain results for list-decodability for RLCs, e.g., [GHK11; LW21],
do not extend to average-radius list-decoding (or list-recovery).

6.4 Proof of Theorems 1 and 4

We are now ready to prove Theorems 1 and 4. Our proofs take advantage of Theorem 6.6 via the
following lemma.

Lemma 6.12 (A generic reduction to random linear codes). Let n ∈ N, q a prime power and b ∈ N
such that n

logq n
≥ ωn→∞

(
q2b
)
. Let C ∈ Fnq be a linear code of rate R ∈ [0, 1], sampled at random

from some ensemble. Suppose that, for every 1 ≤ a ≤ b, every distribution τ over Faq and every

matrix B ∈ FRn×aq with rankB = a, we have

EC [|{A ∈Mn,τ | A ⊆ C}|] ≤ q(Hq(τ)−a(1−R)+aε)n , (24)

for some fixed ε > 0. Then, for any row-symmetric and b-local property P over Fnq such that
R ≤ RLC(P)− 2ε, it holds that

Pr
C

[C satisfies P] ≤ q−n(ε−on→∞(1)) .

Proof. Let τ ∈ TP . By Theorem 6.6, there is some distribution τ ′ ∈ TP over Faq (where 1 ≤ a ≤ b)
such that

Hq(τ
′)

a
≤ 1− RLC(P) + on→∞(1) .

Now, by Observation 6.5, followed by Markov’s bound,

Pr [∃A ∈Mn,τ A ⊆ C] ≤ Pr
[
∃A ∈Mn,τ ′ A ⊆ C

]
≤ E

[∣∣{A ∈Mn,τ ′ | A ⊆ C
}∣∣]

≤ expq
((
Hq(τ

′)− a(1−R) + aε
)
n
)

≤ expq(an (R− RLC(P) + ε+ on→∞(1)))

≤ expq(−na(ε− on→∞(1))) .

Therefore, by Fact 6.3,

Pr [C satisfies P] ≤
∑
τ∈TP

Pr [∃A ∈Mn,τ A ⊆ C] ≤ |TP | q−n(ε−on→∞(1))

≤ (n+ 1)q
b
q−n(ε−on→∞(1)) ≤ q−n(ε−on→∞(1)) .
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We turn to proving the theorems.

Proof of Theorem 4. Let τ be a distribution over Faq , where a ≤ b. By Lemma 5.6,

EC [|{A ∈Mn,τ | A ⊆ ΛC}|] ≤ expq
(
n ·
(
Hq(τ)− (1−R)a+ logq (1 + ηqa) + logq 2

))
≤ expq

(
n ·
(
Hq(τ)− (1−R)a+ 2 logq 2

))
≤ expq(n · (Hq(τ)− (1−R)a+ ε))

≤ expq(n · (Hq(τ)− (1−R)a+ aε)) ,

where Λ ∼ U(Γn). By Lemma 6.12, ΛC satisfies P with probability at most q−n(ε−on→∞(1)). Since
P is scalar-invariant, the same holds for C.

Theorem 1 requires the following lemma, which is analogous to Lemma 5.6.

Lemma 6.13 (Puncturings of low-bias codes are locally similar to random linear codes). Fix b ∈ N
and a full-rank distribution τ over Fbq. Let D ⊆ Fmq be an η-biased linear code (η ≥ 0). Let ϕ be a

random (m→ n) puncturing map. Denote R =
logq |D|

n . Then,

EC [|{A ∈Mn,τ | A ⊆ C}|] ≤ expq

(
n ·
(
Hq(τ)− (1−R)b+ logq

(
1 + ηqb

)))
Proof. Let τ be a full-rank distribution over Fbq. Item 1 of Lemma 5.9 yields B

Ex∼EmpB [τ(x)] ≤ q−b
(

1 + qbη
)
,

for all B ∈ Fm×bq such that rankB = b and B ⊆ D. By Lemma 5.10,

Pr [ϕ(B) ∈Mn,τ ] ≤ expq

(
n
(
−b+Hq(τ) + logq

(
1 + qbη

)))
.

The claim now follows by the union bound over the ≤ qRnb choices of .

Proof of Theorem 1. Let τ be a distribution over Faq with a ≤ b. Lemma 6.13 yields

EC [|{A ∈Mn,τ | A ⊆ C}|] ≤ expq
(
n ·
(
Hq(τ)− (1−R)a+ logq (1 + ηqa)

))
≤ expq

(
n ·
(
Hq(τ)− (1−R)a+

ηqa

ln q

))
= expq

(
n ·
(
Hq(τ)− (1−R)a+

εb

qb−a

))
≤ expq(n · (Hq(τ)− (1−R)a+ aε)) ,

which implies the claim by virtue of Lemma 6.12.

Remark 6.14 (On the conditions in Theorems 1 and 4, and comparison to Theorem 5). In the
above proof of Theorems 1 and 4, as in the proof of Theorem 5, the core of the proof is obtaining
an upper bound on terms of the form E [|{A ∈Mn,τ | A ⊆ ΛC}|] for certain distributions τ , where
C is a random puncturing of a mother code D.
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When our assumption about D is that of near-optimal distance, we bound this expectation via
Lemma 5.6, which includes a bothersome logq 2 term. This term needs to be bounded from above
by aε. One way to overcome this term is to take q large enough to make logq 2 negligibly small,
as we do in Theorem 4. In Theorem 5 where we use [GHK11], the problem is handled differently:
Corollary 5.5 provides us with a “slack” that dominates the logq 2 term whenever a is small, whereas
for large a the aε upper bound is not too restrictive. Finally, in Theorem 1 we avoid the bothersome
term altogether via Lemma 6.13, due to our assumption that D has small bias.

7 Derandomization of RLCs

In this section we prove Theorem 3, restated here.

Theorem 3 (Codes locally similar to an RLC with linear randomness). There exists a randomized
algorithm that, given b ∈ N, ε > 0, R∗ ∈ [ε, 1] and n ∈ N, where n

log2 n
≥ ωn→∞

(
22b
)

and

n ≥ ωn→∞(1/ε), samples a generating matrix for a linear code C ⊆ Fn2 of rate R = R∗ − ε such
that

Pr [C satisfies some property P ∈ K] ≤ 2−Ω(εn). (4)

Here, K is the family of all monotone-increasing, b-local and row-symmetric properties P over Fn2
for which the threshold RLC(P) is at least R∗. This algorithm uses O

(
n
(
b+ log2

1
ε

))
random bits,

and works in time polynomial in n.

Proof. Fix a property P ∈ K. Fix η = εb ln 2
2b

. Let D ⊆ Fm2 be an η-biased linear code of dimension
Rn, where m ≤ O(n · η−c) for some universal c ≥ 2. Explicit constructions of such a code D are
given in [ABNNR92; Ta-17]. We also assume that

m ≥ n

1− 2−
ε
2

, (25)

noting that m
n can be taken to be as large as desired.

Sample a random increasing sequence of n integers 1 ≤ i1 < i2 < · · · < in ≤ m uniformly from
among all such sequences. Note that such a sequence can be encoded by

log2

(
m

n

)
+O(1) ≤ n

(
log2

m

n
+O(1)

)
≤ O

(
n

(
b+ log2

1

ε

))
random bits, whose decoding can be done in poly(m) time.

Let C be the code defined by the random sequence i1, . . . , in via C = {(ui1 . . . uin) | u ∈ D} ⊆ Fn2 .
Clearly, a generating matrix for C can be obtained from that of D in poly(m) = poly(n) time.
Hence, to prove the theorem it suffices to show that C satisfies Eq. (4). Let C′ ⊆ Fn2 be a random
n-puncturing of D. Let T be the event that C′ satisfies P. Let J denote the event that no coordinate
of D is sampled more than once for inclusion in C′. Note that Pr [J ] ≥

(
1− n

m

)n
. By Theorem 1,

Pr [T ] ≤ 2−(ε−o(1))n. Thus,

Pr [T | J ] ≤ Pr [T ]

Pr [J ]
≤ exp2

((
−ε− log2

(
1− n

m

)
+ o(1)

)
n
)
≤ 2−Ω(εn) ,

where the last inequality follows from Eq. (25).
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By row-symmetry, P is invariant to coordinate permutations of C. Observe that a uniformly
random coordinate permutation of C yields a code distributed identically to the distribution of C′
conditioned on the event J . Therefore,

Pr [C satisfies P] = Pr [T | J ] ≤ 2−Ω(εn) (26)

for every P ∈ K.

It remains to show that Eq. (26) implies Eq. (4). Let K′ = (P ∈ K | |TP | = 1) (recall Fact 6.3
for the definition of TP). Observe that a necessary condition for the event in Eq. (4) is that C
satisfies some property in K′. Indeed, suppose that C satisfies a property P ∈ K and let τ ∈ TP
such that C contains a matrix in Mn,τ . Let P ′ denote the b-local, row-symmetric and monotone-
increasing property for which TP ′ = {τ}. Clearly, C satisfies P ′. Since P ′ implies P, we have
RLC(P ′) ≥ RLC(P) ≥ R∗ and so P ′ ∈ K′. Thus, to prove the theorem, it suffices to show that

Pr
[
C satisfies some property P ′ ∈ K′

]
≤ 2−Ω(εn) . (27)

Now, by Fact 4.10, |K′| ≤ (n+ 1)2b ≤ 2o(n). Thus, Eq. (27) follows from Eq. (26) by a union bound
on K′, noting that K′ ⊆ K.

8 Random puncturings of low-bias codes achieve capacity versus
memoryless additive noise

Here we prove Theorem 6.

Theorem 6 (A puncturing of a low-bias code achieves capacity with regard to memoryless additive
noise). Fix a prime power q, a distribution ν over Fq and 0 < ε < 1. Let D ⊆ Fmq be an ε

3(q−1) -

biased linear code. Let C be a random n-puncturing of D of design rate R ≤ 1−Hq(ν)− ε. Then,
with probability 1− q−Ων(εn), it holds for all x ∈ C that

Pr
z∼νn

[the MLDU outputs x on input x+ z] ≥ 1− 2q−cνε
2n , (6)

for some cν > 0 that depends only on ν.

We require the following lemma.

Lemma 8.1. Let C ⊆ Fnq be a random rate R puncturing of an η-biased linear code. Fix x ∈
Fnq \ {0}. Then,

Pr
C

[x ∈ C] ≤ qn·(−1+R+(q−1)η) .

Proof. Denote the mother code by D ⊆ Fmq and let ϕ : Fmq → Fnq be the puncturing map. By the
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union bound,

Pr [x ∈ C] ≤
∑
u∈D

Pr [ϕ(u) = x] =
∑

u∈D\{0}

n∏
i=1

Pr [ϕi(u) = xi]

=
∑

u∈D\{0}

n∏
i=1

|{j ∈ [m] | uj = xi}|
m

≤
∑

u∈D\{0}

n∏
i=1

(
1− q − 1

q
(1− η)

)
(by Lemma 4.12)

=
∑

u∈D\{0}

(
1 + (q − 1)η

q

)n
≤ qRn

(
1 + (q − 1)η

q

)n
≤ qn·(−1+R+(q−1)η) .

Proof of Theorem 6. Let J denote the event that our code C is MLDU-decodable with error prob-
ability at most 2q−cνε

2n with regard to the ν-memoryless additive noise channel (where cν > 0 shall
be chosen later). In other words, J means that Eq. (6) holds for all x ∈ C. By linearity of C, a
sufficient condition for the latter is that Eq. (6) holds for x = 0. By the definition of the MLDU,
the codeword 0 with noise vector z is decoded correctly whenever ν(z) > ν(z−x) for all x ∈ C\{0}.
Thus,

The code C satisfies J if Pr
z∼νn

[∀x ∈ C \ {0} ν(z) > ν(z − x)] ≥ 1− 2q−cνε
2n . (28)

Let z ∼ νn and let Mz denote the event that z belongs to an ε
3 -typical-set, namely, q−Hq(ν)n− εn

3 ≤
ν(z) ≤ q−Hq(ν)n+ εn

3 . It is well known (e.g., [YM12]) that

Pr
z∼νn

[Mz] ≥ 1− q−c′νε2n ,

for some positive constant c′ν .

Denote Ez =
{
x ∈ Fnq \ {0} | ν(z) ≤ ν(z − x)

}
. Since

∑
x∈Fnq ν(z − x) =

∑
x∈Fnq ν(x) = 1, we

have |Ez| ≤ 1
ν(z) . Now, for a fixed code C,

Pr
z∼νn

[∃x ∈ C \ {0} ν(z) ≤ ν(z − x)] = Pr
z∼νn

[Ez ∩ C 6= ∅]

≤ Pr
z∼νn

[Ez ∩ C 6= ∅ |Mz] + Pr
z∼νn

[
Mz

]
≤ Pr

z∼νn
[Ez ∩ C 6= ∅ |Mz] + q−c

′
νε

2n . (29)
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Let η = ε
3(q−1) . By Lemma 8.1, for any z such that Mz holds, we have

Pr
C

[Ez ∩ C 6= ∅] ≤
∑
x∈Ez

Pr
C

[x ∈ C]

≤
∑
x∈Ez

qn·(−1+R+(q−1)η) ≤ |Ez| · qn·(−1+R+(q−1)η)

≤ 1

ν(z)
· qn·(−1+R+(q−1)η)

≤ qn·(−1+R+(q−1)η+Hq(ν)+ ε
3)

≤ q−
εn
3 . (30)

Now,

Pr
C

[C does not satisfy J ]

≤ Pr
C

[
Pr
z∼νn

[∀x ∈ C \ {0} ν(z) > ν(z − x)] < 1− 2q−cνε
2n
]

(by Eq. (28)

= Pr
C

[
Pr
z∼νn

[∃x ∈ C \ {0} ν(z) ≤ ν(z − x)] ≥ 2q−cνε
2n
]

≤ Pr
C

[
Pr
z∼νn

[Ez ∩ C 6= ∅ |Mz] ≥ 2q−cνε
2n − q−c′νε2n

]
(by Eq. (29))

≤ EC [Prz∼νn [Ez ∩ C 6= ∅ |Mz]]

2q−cνε2n − q−c′νε2n
(by Markov’s inequality)

≤ q−
εn
3

2q−cνε2n − q−c′νε2n
. (by Eq. (30))

Taking cν = min
{
cν′ ,

1
4

}
makes the right-hand side q−Ων(εn), finishing the proof.
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