
Improved Merlin-Arthur Protocols for Central Problems in
Fine-Grained Complexity∗

Shyan Akmal
MIT

naysh@mit.edu

Lijie Chen
MIT

lijieche@mit.edu

Ce Jin
MIT

cejin@mit.edu

Malvika Raj
UC Berkeley

malvika@berkeley.edu

Ryan Williams
MIT

rrw@mit.edu

Abstract

In a Merlin-Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with
probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such
a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new
Merlin-Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof
systems have optimal running time. Our main results include:

• Certifying that a list of n integers has no 3-SUM solution can be done in Merlin-Arthur time
Õ(n). Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic
algorithm running in Õ(n1.5) time (that is, there is a proof system with proofs of length Õ(n1.5)
and a deterministic verifier running in Õ(n1.5) time).

• Counting the number of k-cliques with total edge weight equal to zero in an n-node graph can be
done in Merlin-Arthur time Õ(ndk/2e) (where k ≥ 3). For odd k, this bound can be further improved
for sparse graphs: for example, counting the number of zero-weight triangles in an m-edge graph
can be done in Merlin-Arthur time Õ(m). Previous Merlin-Arthur protocols by Williams [CCC’16]
and Björklund and Kaski [PODC’16] could only count k-cliques in unweighted graphs, and had
worse running times for small k.

• Computing the All-Pairs Shortest Distances matrix for an n-node graph can be done in Merlin-
Arthur time Õ(n2). Note this is optimal, as the matrix can have Ω(n2) nonzero entries in general.
Previously, Carmosino et al. [ITCS 2016] showed that this problem has an Õ(n2.94) nondeterministic
time algorithm.

• Certifying that an n-variable k-CNF is unsatisfiable can be done in Merlin-Arthur time 2n/2−n/O(k).
We also observe an algebrization barrier for the previous 2n/2 ·poly(n)-time Merlin-Arthur protocol
of R. Williams [CCC’16] for #SAT: in particular, his protocol algebrizes, and we observe there is
no algebrizing protocol for k-UNSAT running in 2n/2/nω(1) time. Therefore we have to exploit
non-algebrizing properties to obtain our new protocol.

• Certifying a Quantified Boolean Formula is true can be done in Merlin-Arthur time 24n/5 ·poly(n).
Previously, the only nontrivial result known along these lines was an Arthur-Merlin-Arthur protocol
(where Merlin’s proof depends on some of Arthur’s coins) running in 22n/3 · poly(n) time.

Due to the centrality of these problems in fine-grained complexity, our results have consequences for
many other problems of interest. For example, our work implies that certifying there is no Subset Sum
solution to n integers can be done in Merlin-Arthur time 2n/3 · poly(n), improving on the previous best
protocol by Nederlof [IPL 2017] which took 20.49991n · poly(n) time.

∗Supported by NSF CCF-1909429, NSF CCF-2127597, and NSF CCF-2129139. Shyan Akmal was partially supported by
a Siebel Scholarship. Lijie Chen was also partially supported by an IBM Fellowship. Malvika Raj was supported by a Fano
Undergraduate Research and Innovation Scholarship at MIT.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 165 (2021)

1 Introduction
Fine-grained complexity has identified core problems that act as bottlenecks to obtaining faster algorithms
for various tasks in computer science. Perhaps the most prominent problems among these are Satisfiability
(SAT), Orthogonal Vectors (OV), 3-SUM, and All-Pairs Shortest Paths (APSP). The hypotheses that the
known algorithms for these problems are essentially optimal have led to far-reaching consequences for the
exact complexity of many problems of interest (see for example the survey by Vassilevska Williams [Vas18]).
There is now a vast web of “fine-grained” reductions among computational tasks, which has led to large
equivalence classes of problems [Pǎt10, VW18, LVW18, AGV15, BDT16, GIKW19, CW19], many of which
a priori look unrelated. For each of these equivalence classes, solving one problem in the class faster means
that all problems in that class have more efficient algorithms.

Recently there has been growing interest in obtaining efficient Merlin-Arthur (MA) proof systems for
problems studied in fine-grained complexity. Recall that in a Merlin-Arthur proof system, the probabilistic
verifier (Arthur) always accepts valid proofs (from the prover Merlin), and rejects invalid proofs with proba-
bility arbitrarily close to 1. Williams [Wil16] shows (among other results) that the OV problem1 for sets of n
vectors with dimension d can be solved by a Merlin-Arthur protocol in near-optimal Õ(nd) time,2 achieving
a nearly quadratic speedup compared to the fastest known algorithms for OV [AWY15, CW21]. One con-
sequence of this result is the refutation of the Merlin-Arthur Strong Exponential-Time Hypothesis, which
could be viewed as evidence against the Nondeterministic Strong Exponential-Time Hypothesis (NSETH)
proposed by Carmosino et al. [CGI+16].3

The main technical component in Williams’ work is a “batch evaluation” protocol for low-degree arith-
metic circuits, with which Merlin can quickly convince Arthur of the outputs of a circuit C on a set of
points a1, . . . , aK , faster than evaluating C independently on each point ai. This protocol can be used to
obtain efficient Merlin-Arthur protocols for various other problems, such as #SAT, counting dominating pairs
of vectors, and counting Hamiltonian cycles [Wil16]. Building on Williams’ batch-evaluation protocol and
employing additional algebraic techniques, Björklund and Kaski [BK16] obtained improved Merlin-Arthur
protocols4 for more problems, such as #k-Clique, Graph Coloring, and Set Cover. For many of these problems,
the obtained Merlin-Arthur protocols achieve quadratic speedup compared to the fastest known algorithms.
Variants of these protocols have been used as Proofs of Work based on fine-grained hardness assumptions
[BRSV18], which have led to further work in fine-grained cryptography and average-case fine-grained com-
plexity [BRSV17, GR18a, BBB19, LLV19, GR20b, DLV20, HS21]. In [GR18b, GR20a], doubly efficient proof
systems for #k-SUM, #k-Clique, and APSP were constructed, in which the prover runs in polynomial time (for
constant k) and the verifier runs in “almost linear” time (i.e., N1+o(1) time, where N is the input length).5
Efficient batch verification using interactive protocols with a constant (but greater than two) number of
rounds has also been developed for problems with polynomial-time verifiable, unique witnesses [RRR18]
and problems which can be solved by algorithms with small space complexity [RRR21]. A different line of
work in the stream verification setting has developed sublinear space protocols for various graph problems
[CG19, CGT20].

Given the interest in fine-grained complexity and proof systems, a natural question is to understand the
Merlin-Arthur time complexity of core problems in fine-grained complexity. How efficiently can solutions to
these problems be verified, with a randomized verifier? As seen above, such questions may have cryptographic
applications, and in general they may give insight into the structure of these problems. Williams [Wil16]
already showed that OV admits near-optimal Merlin-Arthur protocols. In this work, we present improved
Merlin-Arthur protocols for 3-SUM, APSP, and many more core computational tasks. For several of these
problems our protocols yield optimal running times (up to polylogarithmic factors) for the verifier.

1The OV problem is the following: Let d = ω(logn); given two sets A,B ⊆ {0, 1}d with |A| = |B| = n, determine whether
there exist a ∈ A and b ∈ B so that

∑d
i=1 ai · bi = 0.

2We use Õ(f(n)) to hide polylog(f(n)) factors.
3Informally, NSETH says that unsatisfiable CNFs on n variables require proofs of length at least 2n−εn for all ε > 0. More

formally, NSETH states that for every ε > 0 there exists k such that unsatisfiability of k-CNF formulas cannot be decided in
nondeterministic 2(1−ε)n time.

4Björklund and Kaski [BK16] actually work in a more restricted setting they call “Camelot algorithms,” where Merlin’s proof
can be prepared efficiently by a parallel algorithm.

5The protocols for #k-SUM and #k-Clique have O(k logn) rounds (or O(k/ε) rounds at the cost of making verifier running time
n1+ε) and the protocol for APSP has constant rounds. We also remark that in our Merlin-Arthur protocols from Theorem 1.1
and Theorem 1.5, the prover runs in polynomial time for constant k as well.

1

1.1 Our Results
In this section, we describe our new results and compare them with previous work.

Faster Protocols for k-SUM and Related Problems. In the k-SUM problem, we are given n integers
from [−nc, nc] for some constant c (only depending on k), and wish to determine if some k of them sum
to zero. The unparameterized version of this problem is the Subset Sum problem, in which we are given n
positive integers less than or equal to 2cn, for some constant c, and a target integer t, and must decide if
some subset of the input integers sums to t.

Our first result is a Merlin-Arthur protocol for certifying there is no k-SUM solution, which is significantly
more efficient than the best known nondeterministic algorithm [CGI+16] for the same task, which runs in
Õ(nk/2) time.6

Theorem 1.1. For any fixed integer k ≥ 3, certifying that a list of n integers has no k-SUM solution can
be done in Merlin-Arthur time Õ(nk/3).

In particular, our protocol for 3-SUM runs in near-optimal Õ(n) time. As an immediate corollary, we
obtain a faster Merlin-Arthur protocol for certifying a Subset Sum instance has no solution.

Corollary 1.2. Certifying that a list of n integers has no Subset Sum solution can be done in 2n/3 · poly(n)
Merlin-Arthur time.

The previous best Merlin-Arthur protocol for Subset Sum was presented by Nederlof in [Ned17] and takes
20.49991n · poly(n) time.7 Note that Subset Sum can be solved deterministically in O(2n/2) time [HS74].

In the MinPlus Convolution problem, we are given two integer arrays

a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1),

and want to compute the array c whose entries are defined by taking

ck = min
i+j=k

{ai + bj} (for 0 ≤ k ≤ 2n− 2).

The best known algorithm for MinPlus Convolution takes n2/2Ω(
√

logn) time [Wil18, BCD+14, CW21]. It
is known that MinPlus Convolution has a fine-grained reduction to 3-SUM [VW13, Pǎt10, CMWW19]. We
observe that these reductions combined with Theorem 1.1 imply a near-linear time Merlin-Arthur protocol
for MinPlus Convolution.

Corollary 1.3. MinPlus Convolution can be solved in Merlin-Arthur time Õ(n).

The All-Numbers k-SUM problem is a seemingly harder version of k-SUM, where we want to decide for
every input integer whether or not it belongs to a set of k inputs that sum to zero. It is known that All-
Numbers k-SUM and k-SUM are fine-grained equivalent [VW18, Theorem 8.1] in the sense that one of the
problems can be solved in O(ndk/2e−ε) time for some ε > 0 if and only if the other problem can also be
solved in that running time, but with possibly a different ε. We observe that our k-SUM protocol can be
extended to solve All-Numbers k-SUM in the same running time.

Corollary 1.4. For any fixed integer k ≥ 3, the All-Numbers k-SUM problem can be solved in Merlin-Arthur
time Õ(nk/3).

6Carmosino et al. [CGI+16] gave a co-nondeterministic algorithm for 3-SUM running in Õ(n3/2) time. It is straightforward
to extend their algorithm to nondeterministically certify an instance of k-SUM has no solution in Õ(nk/2) time for all k ≥ 3.

7In the arXiv version of [Ned17], it was claimed that combining [Wil16] and [AKKN16] would yield a Merlin-Arthur protocol
in 20.3113n · poly(n) time. The author later confirmed that this claim had a bug [Ned21].

2

Counting zero-weight cliques. In the #Zero-Weight k-Clique problem, we are given a simple undirected
graph G on n vertices and m edges with integer edge weights from [−nc, nc] for a positive constant c, and
are tasked with counting the number of k-cliques in G whose edge weights sum to zero. The easier #k-Clique
problem is equivalent to the special case of #Zero-Weight k-Clique where all edge weights in the input graph
are zero.

These two problems have been extensively studied in fine-grained complexity. The trivial brute-force
algorithm for both problems runs in O(nk) time. The #k-Clique problem can be solved faster using fast
matrix multiplication [IR78, NP85]. For the detection versions of these problems, it has been conjectured
that Zero-Weight k-Clique cannot be solved faster than nk−ε, and that k-Clique cannot be solved faster than
nkω/3−ε (where 2 ≤ ω < 2.373 denotes the matrix multiplication exponent [Vas12, LG14, AV21]), for any
constant ε > 0 [ABV18, LVW18]. Some recent works employ even stronger conjectures about the hardness
of k-Clique for integers k not divisible by 3 [AGI+19]. For k = 3, the Zero-Weight k-Clique problem is simply
the Zero-Weight Triangle problem, and it is known that any truly subcubic algorithm for this problem would
refute both the APSP conjecture and the 3-SUM conjecture [VW13, VW18].

It is known that #k-Clique can be solved faster using Merlin-Arthur protocols. Williams [Wil16] showed
that #k-Clique can be solved in Merlin-Arthur time Õ(nbk/2c+2). This was later improved by Björklund and
Kaski’s [BK16] protocol which solves #k-Clique (for integers k divisible by 6) in Merlin-Arthur time Õ(nkω/6),
achieving a quadratic speedup compared to the best known algorithm in Õ(nkω/3) time [IR78, NP85].

We present an improved Merlin-Arthur protocol for the harder #Zero-Weight k-Clique problem.

Theorem 1.5. For any fixed integer k ≥ 3, #Zero-Weight k-Clique on a graph with n nodes and m edges
can be solved by a Merlin-Arthur protocol with proof length Õ(nbk/2c) and verification time Õ

(
ndk/2e ·(

m/n2
)b(k+1)/4c

+ nbk/2c
)
.

For even integers k ≥ 4 the protocol has proof length and verification time Õ(nk/2), and for odd k ≥ 3
the protocol has proof length Õ(n(k−1)/2) and verification time

Õ(n(k+1)/2 ·
(
m/n2

)b(k+1)/4c
+ n(k−1)/2

)
≤ Õ(mdk/4e + n(k−1)/2).

Two notable cases are k = 3 and k = 4, for which Theorem 1.5 shows that #Zero-Weight 4-Clique can
be solved in Merlin-Arthur time Õ(n2) which is near-optimal for dense graphs, and #Zero-Weight Triangle
can be solved with proof length Õ(n) and verification time Õ(m), which is near-optimal for graphs of any
sparsity. Applying known reductions [VW18] immediately implies quadratic time Merlin-Arthur protocols
for the following problems, which we define later in Section 4.

Corollary 1.6. MinPlus Product, APSP, and #Negative Triangle can be solved in Merlin-Arthur time Õ(n2).

Unsatisfiability of k-CNFs. We give a Merlin-Arthur protocol for certifying the unsatisfiability of a
k-CNF (i.e., solving the k-UNSAT problem), which runs faster than the previously known 2n/2 ·poly(n)-time
protocol.

Theorem 1.7. There is a universal constant δ > 0 such that for all sufficiently large integers k > 0, we can
verify any unsatisfiable n-variable m-clause k-CNF with a Merlin-Arthur protocol running in 2n(1/2−δ/k) ·
poly(n,m) time.

Previously, Williams [Wil16] had shown it is possible to count the number of satisfying assignments
to CNFs on n variables and m clauses with a Merlin-Arthur protocol in 2n/2 · poly(n,m) time. We find
Theorem 1.7 intriguing, not just because it runs more efficiently, but also because the result provably must
not algebrize (in the sense of [AW09, IKK09]). In particular, we observe that

• Williams’ Merlin-Arthur protocol for #SAT algebrizes, and

• there is no algebrizing protocol for k-UNSAT running in 2n/2/nω(1) time.

More formally, we have the following two theorems:

3

Proposition 1.8 (Williams’ Protocol Algebrizes). For every oracle A, #CNF-SATA on formulas with n
variables and size poly(n) can be computed in Merlin-Arthur time 2n/2 · poly(n) with oracle access to the
multilinear extension of A over any field of characteristic greater than 2n (and order at most 2poly(n)).

Proposition 1.9 (Follows from [AW09]). There is an oracle A such that there is no Merlin-Arthur protocol
running in 2n/2/nω(1) time for 1-UNSATA, even for protocols with oracle access to the multilinear extension
of A (over any field of order 2poly(n)).

Therefore the properties exploited in the protocol of Theorem 1.7 (which applies an earlier reduction
of [IP01] from fine-grained complexity) are provably non-algebrizing. We are hopeful that further study of
such results may lead to new progress in lower bounds via algorithms.

Quantified Boolean Formulas. A Quantified Boolean Formula in prenex normal form (QBF), is a
formula

(Q1x1) · · · (Qnxn) F (x1, . . . , xn),

consisting of a propositional formula F of size m over n variables, preceded by quantifiers Qi ∈ {∃,∀}.
Deciding whether a given QBF is true is a canonical PSPACE-complete problem.

Williams [Wil16] gave a 3-round interactive protocol (i.e., an AMA protocol) for true QBFs that runs
in 22n/3 · poly(n,m) time. The same work [Wil16] raised the question of whether there is a Merlin-Arthur
(two-round) protocol for deciding true QBFs which runs in 2(1−ε)n ·poly(n,m) time for some constant ε > 0.
We resolve this open problem in the affirmative:

Theorem 1.10. True Quantified Boolean Formulas (TQBF) with n variables and size m ≤ 2n can be
certified by a Merlin-Arthur protocol running in 24n/5 · poly(n,m) time.

1.2 Organization
In Section 2 we provide definitions and some useful known results. In Section 3 we present Merlin-Arthur
protocols for the k-SUM problem and several related problems. In Section 4 we present a Merlin-Arthur
protocol for counting zero-weight k-cliques, and show that it implies near-optimal protocols for many related
fine-grained problems such as APSP. In Section 5 we present a Merlin-Arthur protocol for certifying unsatis-
fiability of k-CNFs. Then, in Section 6 we describe two barriers for obtaining better Merlin-Arthur protocols.
In Section 7 we present a Merlin-Arthur protocol for the True Quantified Boolean Formulas problem. Finally
we conclude with some open questions in Section 8.

2 Preliminaries
We assume basic familiarity with computational complexity and algorithms. The following notions will be
particularly important for this paper.

Merlin-Arthur Protocols. We say that a function f : {0, 1}? → {0, 1} has a Merlin-Arthur protocol
(or proof system) running in T (n) time with proofs of length P (n) if there is a probabilistic algorithm V
such that for all binary strings x with |x| = n:

• If f(x) = 1, then there is a y ∈ {0, 1}P (n) such that V (x, y) accepts in T (n) time, with probability 1.

• If f(x) = 0, then for every y ∈ {0, 1}P (n), V (x, y) rejects in T (n) time, with probability at least 2/3.

Concretely, we assume Arthur’s verification algorithm V runs in the word-RAM model with words of
length log(n). We only consider protocols where the proof length P (n) is bounded above by the verification
time T (n). We often refer to T (n) as the Merlin-Arthur time of the protocol. If we say a problem can be
“solved in Merlin-Arthur time T (n),” we mean it has a Merlin-Arthur protocol running in time T (n).

4

Williams’ Multipoint Evaluation Protocol. We will use Williams’ protocol [Wil16] for the Multipoint
Circuit Evaluation problem, defined as follows.

Definition 2.1 ([Wil16, Definition 1.1]). The Multipoint Circuit Evaluation problem: given an arithmetic
circuit C on n variables over a finite field F, and a list a1, . . . , aK ∈ Fn, output (C(a1), . . . , C(aK)) ∈ FK .

Theorem 2.2 (Williams [Wil16, Theorem 3.1]). For every prime power q and ε > 0, Multipoint Circuit
Evaluation for K points in (Fq)n on an arithmetic circuit C of n inputs, s gates, and degree d has an
MA-proof system where:

• Merlin sends a proof of O(Kd · log(Kqd/ε)) bits, and,

• Arthur tosses at most log(Kqd/ε) coins, outputs (C(a1), . . . , C(aK)) incorrectly with probability at most
ε, and runs in time (K ·max{d, n}+ s · poly(log s)) · poly(log(Kqd/ε)).

Fast Polynomial Evaluation and Interpolation. We need the following classical results on algebraic
algorithms. We write [n] = {1, 2, . . . , n} to denote the set of the first n positive integers.

Theorem 2.3 (Fast Multipoint Evaluation [Fid72], multivariate version). Let k be a fixed positive integer.
Given a k-variate polynomial p(x1, x2, . . . , xk) ∈ F[X1, . . . , Xk] with each variable having individual degree
less than n, presented as at most nk coefficients, and given kn points αj,i ∈ F (1 ≤ j ≤ k, 1 ≤ i ≤ n), we
can compute p(α1,i1 , α2,i2 , . . . , αk,ik) for all (i1, . . . , ik) ∈ [n]k in Õ(nk) additions and multiplications in F.

Theorem 2.4 (Fast Interpolation [Hor72], multivariate version). Let k be a fixed positive integer. Given
kn points αj,i ∈ F (1 ≤ j ≤ k, 1 ≤ i ≤ n), together with the values of p(α1,i1 , α2,i2 , . . . , αk,ik) ∈ F for all
(i1, . . . , ik) ∈ [n]k, we can output the coefficients of the unique such polynomial p ∈ F[X1, . . . , Xk] in which
every variable has individual degree less than n, in Õ(nk) additions and multiplications in F.

The original references for these two theorems only proved the univariate case (k = 1), but one can easily
prove the multivariate versions above by applying the univariate algorithms to each variable one by one.
Here we provide a sketch of the reduction from multivariate interpolation to univariate interpolation.

The original univariate versions of these theorems were also used in Williams’ protocol [Wil16].

Proof Sketch of Theorem 2.4. We will show how the univariate version [Hor72] of the interpolation algorithm
easily implies the k-variate case.

We prove the result by induction on k. Recall that the n points on the xk coordinate are αk,1, αk,2, . . . , αk,n.
Consider the (k − 1)-variate polynomials

qj(x1, . . . , xk−1) := p(x1, . . . , xk−1, αk,j)

for all 1 ≤ j ≤ n, obtained from substituting xk = αk,j into the original k-variate polynomial p. Since
for each 1 ≤ j ≤ n we know the values of qj(α1,i1 , . . . , αk−1,ik−1

) on all (i1, . . . , ik−1) ∈ [n]k−1), by the
induction hypothesis we know that the {qj}j∈[n] are uniquely determined and can be computed by running
the (k − 1)-variate interpolation algorithm in Õ(n · nk−1) = Õ(nk) total time. Finally, for each tuple

(d1, . . . , dk−1) ∈ {0, 1, . . . , n− 1}k−1

of degrees, the coefficients of the monomials xd11 · · ·x
dk−1

k−1 in the polynomials {qj}j∈[n] taken together uniquely
determine the coefficients of xd11 · · ·x

dk−1

k−1 x
d
k in the polynomial p for all 0 ≤ d ≤ n− 1. These coefficients can

again be recovered by the univariate interpolation algorithm, taking in Õ(n) time for each tuple.

3 An Improved Merlin-Arthur Protocol for k-SUM
Let k be a positive integer. In the k-SUM problem, we are given n integers a1, . . . , an with magnitude at
most nc for some constant c, and are tasked with determining if there exist indices i1, . . . , ik (not necessarily
distinct) such that

ai1 + · · ·+ aik = 0.

5

We call a list of indices i1, . . . , ik satisfying the above equation a k-SUM solution. We remark that another
popular version of k-SUM from the literature, which we call k-SUM-Distinct, additionally requires the indices
i1, . . . , ik in the solution to be distinct. Here, for convenience and consistency with the definition used in
[CGI+16], we focus on the k-SUM problem, and later in Section 3.1 note how k-SUM-Distinct can be easily
reduced to k-SUM.

In the Merlin-Arthur setting, it is trivial to verify a k-SUM solution exists since Merlin can just send
Arthur a solution. Certifying that no k-SUM solutions exist is much more challenging. Our protocol for this
problem is based on the following protocol for quickly computing a coefficient in a product of polynomials.

Lemma 3.1. Let F1(x), . . . , Fk(x) be univariate polynomials over Fq each of degree at most d, for some
prime q. Let M be the total number of nonzero coefficients appearing among these polynomials. Then given
any integer t and error rate δ ∈ (0, 1), there is a Merlin-Arthur protocol for determining the coefficient of xt
in the product

P (x) =

k∏
i=1

Fi(x)

with proof size Õ
(

(k
√
d)(log q)

)
and runtime Õ

(
(M + k

√
d)(log q)(log(1/δ))

)
.

Proof. We may assume that 0 ≤ t ≤ kd, since otherwise the coefficient of xt in P is zero. Let

P (x) =

kd∑
`=0

p`x
`

be the product of all the Fi polynomials.
Set m = b

√
dc. The protocol works as follows.

1. For each nonnegative integer ` ≤ kd with ` ≡ t (mod m), Merlin sends Arthur some c` ∈ Fq. Each
such c` term is Merlin’s claim for the value of the corresponding coefficient p` in P (x).

2. Arthur takes an integer h such that qh ≥ kd/δ and then samples w ∈ Fqh uniformly at random. To
construct the field Fqh , Arthur just needs a polynomial of degree h irreducible over Fq. As noted in
[Wil16], we can do this efficiently by having Merlin send such a polynomial, and then having Arthur
verify the polynomial is irreducible in asymptotically

h1+o(1)(log q)2+o(1) = ((log(kd) + log(1/δ)) (log q))
1+o(1)

time using known irreducibility tests [KU11, Section 8.2].

For the rest of this protocol, Arthur performs all computations over Fqh .
For each polynomial

Fi(x) =

d∑
`=0

fi,`x
`

of degree at most d, we say its reduced form is the polynomial

Gi(x) =

m−1∑
b=0

(∑
`≡b mod m

w`fi,`

)
xb, (1)

formed by reducing the polynomial Fi(wx) modulo xm − 1.

Arthur first constructs the reduced forms Gi of Fi for each 1 ≤ i ≤ k, in Õ(M) time. Then, using fast
polynomial multiplication, Arthur computes the product

R(x) =

k∏
i=1

Gi(x) =

k(m−1)∑
`=0

r`x
`

6

in Õ(km) time. By adding the coefficients of this polynomial and appealing to the definition of the
reduced polynomials in Eq. (1), Arthur can compute the quantity

∑
`≡t mod m

r` =
∑

b1+···+bk≡t mod m
`i≡bi mod m ∀i ∈ [k]

w`1+···+`k
k∏
i=1

fi,`i =
∑

`≡t mod m
`1+···+`k=`

w`
k∏
i=1

fi,`i =
∑

`≡t mod m

p`w
`. (2)

In the second summation above, we are summing over a subset of k-tuples (`1, . . . , `k) with the property
that 0 ≤ `i ≤ d for each i. We define bi to be the residue of `i modulo m for each i, and only consider
those k-tuples in the sum if the sum of their residues modulo m is congruent to t modulo m. In the
transition from the second to the third summation above, we note that this is equivalent to summing
over all k-tuples (`1, . . . , `k) such that 0 ≤ `i ≤ d for each i and the sum of the `i is congruent to some
integer t modulo m.

After computing the sum from Equation (2), Arthur also computes∑
`≡t mod m

c`w
` (3)

in Õ(M) time using the values Merlin sent. If this sum and the value of the sum from Eq. (2) agree
over Fqh , then Arthur accepts and returns ct as the coefficient of xt in P (x). If the sums disagree, then
Arthur rejects the proof.

In the above protocol, if Merlin sends integers with c` = p` for all ` ≤ kd with ` ≡ t (mod m), then the
values from Eq. (2) and Eq. (3) will agree. If this happens, Arthur will accept and correctly determine pt as
the value of the desired coefficient.

The only way for Arthur to accept an incorrect value for the coefficient is if qt 6= pt. In this case,

Q(x) =
∑

`≡t mod m

p`x
`

and
C(x) =

∑
`≡t mod m

c`x
`

are distinct polynomials over Fq of degree at most kd. This means they agree on at most kd points. So, for
uniform random w ∈ Fqh , we have Q(w) 6= C(w) with probability at least

1− kd

qh
≥ 1− δ

by our choice of h. Thus with probability at least 1− δ, Arthur rejects an incorrect proof.

Remark 3.2. Recall that in the Subset Sum problem, we are given input integers a1, . . . , an, and must
decide if some collection of the inputs sums to a given target integer t. Although framed somewhat differently,
Nederlof’s Merlin-Arthur protocol for Subset Sum from [Ned17] employs a similar tactic, and can be recovered
by applying Lemma 3.1 to check if the coefficient of xt in the product

(1 + xa1)(1 + xa2) · · · (1 + xan)

is nonzero or not.

Reminder of Theorem 1.1. For any fixed integer k ≥ 3, certifying that a list of n integers has no k-SUM
solution can be done in Merlin-Arthur time Õ(nk/3).

Before proving Theorem 1.1, we first informally describe the three primary ideas underlying our Merlin-
Arthur protocol.

7

First, solving k-SUM corresponds to checking the coefficient of some product of polynomials, where the
degree of the polynomials is related to the magnitude maxi |ai| of the input integers. This is hard in general
since these magnitudes could be large polynomials in n, but could be made more efficient if there was a
simple way to reduce the sizes of the inputs.

The second idea comes from the conondeterministic algorithm of [CGI+16, Lemma 5.8] for k-SUM: we
have Merlin send a small prime p such that “few” sums of the k input integers vanish modulo p. Given p,
Arthur can easily count the number of these sums (intuitively, because Arthur can replace each ai with its
residue modulo p to reduce the size of the input integers). If Merlin then sends all the k-tuples of inputs
that sum to zero modulo p, Arthur can check that the number of tuples sent matches the count computed,
and then scan through the list to verify that none of the given sums equal zero over the integers.

The third and final idea is to employ the protocol for fast polynomial multiplication from Lemma 3.1.
We now describe the protocol.

Proof of Theorem 1.1. Suppose we are given a k-SUM instance on n integers a1, . . . , an ∈ [−nc, nc] for some
constant c > 0. Merlin first sends a prime p = Θ̃(n2k/3). Let

S = {(i1, . . . , ik) | ai1 + · · ·+ aik ≡ 0 (mod p)}

be the the set of k-tuples whose sums vanish modulo p. Merlin additionally sends a set T of k-tuples of
indices such that |T | ≤ Õ(nk/3) and claims that T = S.

Now, for each i ∈ [n] let bi be the residue of ai modulo p. Define the polynomial

B(x) =

n∑
i=1

xbi .

The coefficients of the kth power of this polynomial encode information that will help us solve the k-SUM
problem. In particular, we leverage the following simple observation.

Claim 3.3. The sum of the coefficients of x0, xp, . . . , and x(k−1)p of the polynomial

B(x)k

is equal to the number of k-tuples (i1, . . . , ik) ∈ [n]k such that

ai1 + · · ·+ aik ≡ 0 (mod p).

Proof. We can expand

B(x)k =

(
n∑
i=1

xbi

)k
=

∑
i1,...,ik

xbi1+···+bik =

k(p−1)∑
`=0

s`x
`

where s` denotes the number of k-tuples (i1, . . . , ik) ∈ [n]k such that

bi1 + · · ·+ bik = `.

Now, since each bi is the residue of ai modulo p, we know that

ai1 + · · ·+ aik ≡ 0 (mod p)

precisely when
bi1 + · · ·+ bik ≡ 0 (mod p).

Because 0 ≤ bi ≤ p− 1 for each index i, we know that

bi1 + · · ·+ bik ≡ 0 (mod p)

if and only if
bi1 + · · ·+ bik ∈ {0, p, . . . , (k − 1)p} .

8

Combining these observations, we get that

s0 + sp + · · ·+ s(k−1)p

is equal to the number of k-tuples (i1, . . . , ik) ∈ [n]k such that

ai1 + · · ·+ aik ≡ 0 (mod p)

which proves the desired result.

Returning to the protocol, Merlin and Arthur run k instances of the protocol from Lemma 3.1 in parallel8,
for a field of size q, for some prime q > nk, with error rate δ = 1/(kn), to determine the coefficients sp` of
xp` in B(x)k for all ` ∈ {0, 1, . . . , k − 1}. Arthur rejects if Merlin fails to convince him of the values of any
of these coefficients.

Otherwise, Arthur checks that
s0 + sp + · · ·+ s(k−1)p = |T |. (4)

He also checks that for each (i1, . . . , ik) ∈ T , we have

ai1 + · · ·+ aik 6= 0

over the integers. If both these checks pass, Arthur accepts. Otherwise, he rejects.
We now explain why this Merlin-Arthur proof system is correct.
First, suppose that no k of the ai sum to zero. We show that Merlin has a proof which always convinces

Arthur to accept.
By the prime number theorem, there exists some constant C such that there are at least n2k/3 distinct

primes in the interval I = [n2k/3, Cn2k/3 log n]. Now, by assumption, each sum

ai1 + · · ·+ aik (5)

is a nonzero integer with magnitude at most knc, and thus has at most c(log n+log k) distinct prime divisors.
Thus by the pigeonhole principle, there exists a prime in the interval I which divides at most

nk · c(log n+ log k)

n2k/3
≤ Õ(nk/3)

of the nk sums of the form presented in Eq. (5).
So, Merlin can send a prime p satisfying the desired properties to Arthur. He also sends T = S, the

list of sums of the form given in Eq. (5) which are divisible by p, which has |T | ≤ Õ(nk/3) by the choice of
p. If Merlin sends the correct values for s0, sp, . . . , s(k−1)p, then Eq. (4) will hold by Claim 3.3, and Arthur
accepts. Now, suppose that some k of the ai do in fact sum to zero. In this case, we show that with high
probability Arthur will reject.

First, if the set T which Merlin sends contains a k-tuple corresponding to a list of k inputs whose sum
does not vanish modulo p, or a sum which sums to zero over the integers, then Arthur will automatically
reject. Otherwise, by assumption, the set T is missing some tuple (j1, . . . , jk) such that

aj1 + · · ·+ ajk = 0.

Reducing the above equation modulo p, we see that

bj1 + · · ·+ bjk ≡ 0 (mod p).

Then by Claim 3.3, if Merlin and Arthur have decided on the correct coefficients of B(x)k, we have

s0 + sp + · · ·+ s(k−1)p < |T |

and Arthur will reject. By union bound and Lemma 3.1, Arthur correctly rejects with probability at least

1− kδ = 1− 1

n
.

8By running k protocols in parallel, we mean that Merlin concatenates the k messages he would send Arthur in each protocol,
and Arthur verifies each message independently.

9

3.1 Implications of the k-SUM protocol
We now show the implications of our k-SUM protocol.

We first consider the k-SUM-Partitioned problem, where we are given k input lists A(1), A(2), . . . , A(k)

each consisting of n integers from [−nc, nc] for some constant c, and want to determine if there exist indices
i1, . . . , ik such that A(1)

i1
+A

(2)
i2

+ · · ·+A(k)
ik

= 0 (this problem has also been called k-SUM’ [GO95] and Colorful
k-SUM). We note there is a deterministic reduction from k-SUM-Partitioned to k-SUM, extending the case
of 3-SUM [GO95].

Corollary 3.4. For any fixed integer k ≥ 3, certifying that a k-SUM-Partitioned instance has no solution
can be done in Merlin-Arthur time Õ(nk/3).

Proof Sketch. Let M = d10knce. We create a k-SUM instance as follows. For every 1 ≤ i ≤ k and every
integer a from the input list A(i), we include the integer{

2i ·M + a if 1 ≤ i ≤ k − 1,

−(2 + 4 + · · ·+ 2k−1) ·M + a if i = k

in the k-SUM instance. A solution to the k-SUM-Partitioned immediately implies a solution of the new
k-SUM instance. Conversely, it can be shown that any k-SUM solution must recover a solution of the
k-SUM-Partitioned instance.

Hence, applying the protocol from Theorem 1.1 to this k-SUM instance of kn integers can solve the
original k-SUM-Partitioned instance.

Recall that in the k-SUM-Distinct problem, we are given n integers a1, . . . , an with magnitude at most
nc and need to determine if there exist k distinct indices i1, . . . , ik such that ai1 + · · ·+ aik = 0. We will use
a folklore deterministic reduction from k-SUM-Distinct to k-SUM-Partitioned.

Corollary 3.5. For any fixed integer k ≥ 3, certifying that a list of n integers has no k-SUM-Distinct solution
can be done in Merlin-Arthur time Õ(nk/3).

Proof. Given a k-SUM-Distinct instance a1, a2, . . . , an, we will deterministically create (log n)O(1) many in-
stances of k-SUM-Partitioned in which the k input lists are disjoint subsets of {a1, . . . , an}, so that every
possible k distinct indices i1, . . . , ik ∈ [n] are isolated at least once. Then the k-SUM-Distinct instance has
no solution if and only if none of these k-SUM-Partitioned instances have solutions, and the statement then
follows from Corollary 3.4.

Take any k distinct indices i1, . . . , ik ∈ [n] and consider their binary expansions

bin(i1), . . . , bin(ik) ∈ {0, 1}logn.

Observe that there must exist a set of coordinates C ⊆ [log n] of size |C| ≤ k − 1, so that the projections
bin(i1)|C , . . . , bin(ik)|C are still distinct. Hence, for every possibility of

(bin(i1)|C , . . . , bin(ik)|C) = (v1, v2, . . . , vk) ∈
(
{0, 1}k−1

)k
,

we create a k-SUM-Partitioned instance (A(1), . . . , A(k)) where A(j) = {ai : i ∈ [n], bin(i)|C = vj}. The total
number of instances created is at most ck · (log n)k−1 for some constant ck.

By another folklore reduction, our protocol for the 3-SUM-Partitioned problem immediately implies an
improved protocol for the Subset Sum problem.
Reminder of Corollary 1.2. Certifying that a list of n integers has no Subset Sum solution can be done
in 2n/3 · poly(n) Merlin-Arthur time.

Proof. Suppose we have an instance of Subset Sum consisting of n inputs a1, a2, . . . , an and a target integer
t. We partition the set [n] into the disjoint union of three subsets A,B,C ⊆ [n], each with size at most
dn/3e, and define the sets

X =

{∑
i∈S

ai | S ⊆ A

}
, Y =

{∑
i∈S

ai : S ⊆ B

}
, Z =

{
−t+

∑
i∈S

ai : S ⊆ C

}
.

10

Then there exists a subset S ⊆ [n] such that
∑
i∈S ai = t if and only if there exist x ∈ X, y ∈ Y, z ∈ Z

such that x+ y + z = 0, which is a 3-SUM-Partitioned instance. Note that X,Y, Z each have at most 2dn/3e

elements. Applying Corollary 3.4 solves the problem in 2n/3 · poly(n) time.

Reminder of Corollary 1.4. For any fixed integer k ≥ 3, the All-Numbers k-SUM problem can be solved
in Merlin-Arthur time Õ(nk/3).

Proof. For every index i such that ai is part of a k-SUM solution, Merlin simply sends a witnessing solution
to Arthur. Let S ⊆ [n] be the set of remaining indices, which do not participate in any solution. It remains
to verify that S is correct.

Denoting M := maxi∈[n] |ai|, construct a k-SUM instance with input integers A ∪B, where

A := {10M + ai : i ∈ [n]} and B := {−10(k − 1)M + ai : i ∈ S}.

By our choice of M , every k-SUM solution in this new instance must use exactly one integer from B, and
hence corresponds to a k-SUM solution in the original instance that uses ai for some i ∈ S. So it suffices to
use the protocol from Theorem 1.1 to prove that this new k-SUM instance has no solution.

Reminder of Corollary 1.3. MinPlus Convolution can be solved in Merlin-Arthur time Õ(n).

Proof Sketch. Merlin first sends the correct values of ck, each accompanied with a witness pair (i, j) such
that i+ j = k and ai + bj = ck. Then it remains to verify that ai + bj ≥ ci+j for all i, j, which is equivalent
to the MaxConv UpperBound problem defined in [CMWW19].

In [CMWW19, Appendix A], it was shown (using the techniques from [VW13, Theorem 3.3]) that Max-
Conv UpperBound can be deterministically reduced to the 3-SUM Convolution problem. In this problem, we
are given three integer arrays a, b, c and want to decide whether there exists a pair of indices (i, j) such that

ai + bj = ci+j .

The 3-SUM Convolution problem easily reduces to the 3-SUM-Partitioned problem on lists {a′i}, {b′j}, {c′k}
defined as a′i = iM + ai, b

′
j = jM + bj , c

′
k = −kM − ck for large enough M , which can be solved by the

near-linear-time Merlin Arthur protocol from Corollary 3.4.

In the Zero-Weight Triangle problem, we are given an undirected graph G on n vertices and m edges with
weights from [−nc, nc] for some positive constant c, and are tasked with determining if G contains a triangle
whose edge weights sum to zero.

Corollary 3.6. Certifying that a given graph has no zero-weight triangles can be done in Merlin-Arthur
time Õ(m).

Proof Sketch. We first make the graph directed by replacing each edge connecting vertices u and v with two
arcs, one going from u to v and the other going from v to u. Then by making three copies of the original
graph, we may assume without loss of generality that the graph is tripartite with three parts A,B,C, and
edges are oriented from A to B, B to C, and C to A.

We use the reduction described in [JV16]. Merlin first assigns integer node labels 0 ≤ `(u) ≤ poly(n) to
each node u in the graph. For each edge (u, v) of weight w, insert an integer `(u) − `(v) + w to the 3SUM
instance. Then it is easy to see that any zero-weight triangle (a, b, c) would lead to a 3SUM solution

(`(a)− `(b) + w(a, b)) + (`(b)− `(c) + w(b, c)) + (`(c)− `(a) + w(c, a)) = 0.

On the other hand, if the graph does not contain a zero-weight triangle, then a simple probabilistic argument
implies the existence of a way to pick the node labels so that the resulting 3-SUM instance has no solution.

In the next section we will see that we can actually count the number of zero-weight triangles by a
different Merlin-Arthur protocol with essentially the same time complexity.

11

4 Counting Zero-Weight Cliques
In this section we present the Merlin-Arthur protocol for #Zero-Weight k-Clique and prove Theorem 1.5,
which is restated below. We assume the input graph is a simple undirected graph with n nodes and m
weighted edges, where m ≥ Ω(n) and all edge weights are in [−nc, nc] for some constant c.
Reminder of Theorem 1.5. For any fixed integer k ≥ 3, #Zero-Weight k-Clique can be solved by a Merlin-
Arthur protocol with proof length Õ(nbk/2c) and verification time Õ

(
ndk/2e ·

(
m/n2

)b(k+1)/4c
+ nbk/2c

)
.

Proof. Without loss of generality, we assume that the input graph is a k-partite graph with k parts of nodes
A1, A2, . . . , Abk/2c, B1, B2, . . . , Bdk/2e, each containing n nodes, and every edge connects two nodes coming
from different parts. We identify the nodes with integers {1, 2, . . . , kn}. We also denote

A :=

bk/2c⋃
i=1

Ai and B :=

dk/2e⋃
j=1

Bj .

We encode the edge weights in binary, and will use arrow notation to emphasize that they are bit-vectors
of length O(log n). For each node b ∈ B and node a ∈ A, let ~fb(a) be the binary encoding of the weight of
edge (a, b) (if this edge does not appear in the input graph, we simply treat its edge weight as a large enough
positive number M so that it can never participate in a zero-weight k-clique). We extend ~fb(a) to a vector
polynomial ~fb(x) of degree |A| = O(n). Note that ~fb(x) consists of O(log n) many scalar polynomials each
corresponding to one bit in the binary encoding of edge weights. These scalar polynomials are over the field
Fp for some prime p = poly(n) and p > nk.

Then, define a bk/2c-variate vector polynomial ~h(x1, . . . , xbk/2c), such that for every

a1 ∈ A1, . . . , abk/2c ∈ Abk/2c,

the vector ~h(a1, . . . , abk/2c) encodes the total weight of the clique formed by the nodes a1, . . . , abk/2c. Note
that ~h(x1, . . . , xbk/2c) has individual degree O(n).

For nodes b1 ∈ B1, . . . , bdk/2e ∈ Bdk/2e, let ~w(b1, . . . , bdk/2e) denote the binary encoding of the total weight
of the clique formed by nodes b1, . . . , bdk/2e. Then, define

P (x1, . . . , xbk/2c)

:=
∑

b1∈B1,...,bdk/2e∈Bdk/2e

forming a clique

Q
(
~h(x1, . . . , xbk/2c), ~w(b1, . . . , bdk/2e), ~fb1(x1), ~fb1(x2), . . . , ~fbdk/2e(xbk/2c)

)
, (6)

where Q takes 2 + dk/2e · bk/2c input integers (encoded in binary), and outputs 1 if the input integers sum
to exactly zero, and outputs 0 otherwise. Hence, by definition,∑

a1∈A1,...abk/2c∈Abk/2c

P (a1, . . . , abk/2c) (7)

equals the number of zero-weight k-cliques in the input graph.
Note that Q only involves a constant number of additions and a comparison, which can be implemented

by an AC0 circuit with O(log n) input gates and polylog(n) size. We can convert Q into an equivalent
arithmetic circuit of polylog(n) size and degree. It then follows that P is a polynomial (over Fp) of degree
at most n · polylog(n).

At the beginning of the protocol, Merlin sends the polynomial P defined in Equation (6) to Arthur,
represented as Õ(nbk/2c) many coefficients. Then, Arthur can evaluate the values of P (a1, . . . , abk/2c) for all
(a1, . . . , abk/2c) ∈ A1 × · · · × Abk/2c in Õ(nbk/2c) time using Theorem 2.3. Then Arthur can easily compute
the count of zero-weight k-cliques using Equation (7).

To verify that P is correct, Arthur picks random r1, . . . , rbk/2c ∈ Fp and verifies that Equation (6) holds
at the point (x1, . . . , xbk/2c) = (r1, . . . , rbk/2c). In order to evaluate the sum in Equation (6) (with x1 :=
r1, . . . , xbk/2c := rbk/2c), Arthur first needs to perform the following preprocessing steps by interpolation:

12

1. Compute ~h(r1, . . . , rbk/2c).

2. For every node b ∈ B, compute ~fb(r1), . . . , ~fb(rbk/2c).

After performing these preprocessing steps, Arthur can straightforwardly evaluate Equation (6) at the cho-
sen point, which involves at most mbdk/2e/2c · ndk/2e mod 2 = ndk/2e ·

(
m/n2

)b(k+1)/4c summands (since
(b1, b2), (b3, b4), . . . must be edges in the input graph).

It remains to analyze the time complexity for these preprocessing steps.

• Step 1. Compute ~h(r1, . . . , rbk/2c).

This can be done by straightforward interpolation in Õ(nbk/2c) time (Theorem 2.4).

• Step 2. For every node b ∈ B, compute ~fb(r1), . . . , ~fb(rbk/2c).

Let N(b) denote the set of neighbors of node b in A. We will show that, after Õ(n)-time preprocessing,
this step can be performed in |N(b)| ·polylog(n) time for every node b, and thus the total running time
is Õ(n+

∑
b∈B |N(b)|) = Õ(m).

Recall that ~fb(a) encodes the edge weight of w(a, b) if a ∈ N(b), or encodes integer M if a /∈ N(b).
Since the O(log n) coordinates of the vector will be considered separately, in the following we only need
to discuss how to process one of these coordinates. Abusing notation, we use fb(a) to indicate the value
of ~fb(a) on the coordinate under consideration, and use w(a, b) and M to denote the corresponding
values on this coordinate. That is, fb(a) = w(a, b) if a ∈ N(b), and fb(a) = M if a ∈ A \N(b).

By Lagrange interpolation, we have

fb(x) = M +
∑

a∈N(b)

(w(a, b)−M) ·
∏
a′∈A\{a}(x− a′)∏
a′∈A\{a}(a− a′)

.

The denominator
∏
a′∈A\{a}(a − a′) can be easily computed for all a in Õ(n) total time (recall that

the node set A is identified with the integer set {1, 2, . . . , bk/2c ·n}). For each x = ri, one can perform
a simple Õ(n)-time preprocessing so that for each a ∈ A, the numerator

∏
a′∈A\{a}(ri − a′) can be

computed in constant field operations. Then, it only takes O(|N(b)|) field operations to evaluate fb(ri).

In summary, the total time complexity for Arthur is Õ
(
ndk/2e ·

(
m/n2

)b(k+1)/4c
+ nbk/2c + m

)
, and the

proof length is Õ(nbk/2c).

We remark that the protocol of Theorem 1.5 can be also used to count cliques with other kinds of
restrictions on the edge weights, by simply modifying the predicate Q in Equation (6). For example, our
protocol can also apply to the #Negative k-Clique problem, which asks to count the number of k-cliques whose
sum of edge weights is negative.

Corollary 4.1. Theorem 1.5 still holds if we replace #Zero-Weight k-Clique by #Negative k-Clique.

By modifying Q in Eq. (6) we can also count the number of any 4-node (induced or not-necessarily-
induced) subgraphs in the input graph, in near-optimal Õ(n2) Merlin-Arthur time. See [VWWY15] for the
best known algorithms to detect 4-node subgraphs in the input graph.

Corollary 4.2. For any 4-node pattern graph H, counting the number of (induced or not-necessarily-induced)
copies of H in the input graph can be done in Õ(n2) Merlin-Arthur time.

Combining known reductions with Corollary 4.1, our protocol for #Negative Triangle implies near-optimal
protocols for MinPlus Product and APSP. Recall that in the MinPlus Product problem, we are given two n×n
integer matrices A,B, and want to compute matrix C defined as Ci,j = minnk=1{Ai,k +Bk,j}.

13

Proof of Corollary 1.6. We first show that MinPlus Product can be solved in Merlin-Arthur time Õ(n2).
Merlin first sends to Arthur the correct product C, together with the witness arg minnk=1{Ai,k + Bk,j}
for each entry Ci,j in the product. Arthur checks the validity of these witnesses, and then verifies that
Ai,k + Bk,j ≥ Ci,j hold for all i, j, k. This task easily reduces to the Negative Triangle problem [VW18]
as follows: create a tripartite graph (X,Y, Z) with edge weights defined as w(Xi, Yk) = Ai,k, w(Yk, Zj) =
Bk,j , w(Zj , Xi) = −Ci,j , and certify that this new graph has no negative triangles, using Corollary 4.1.

Using the Merlin-Arthur protocol for MinPlus Product, we immediately obtain an Õ(n2) time Merlin-
Arthur protocol for APSP via the standard repeated squaring procedure. In particular, Merlin can send
the matrices obtained from all O(log n) repeated squarings upfront, along with Õ(n2)-length proofs of their
correctness; Arthur can verify each squaring is correct in Õ(n2) time, one by one.

Given a simple undirected graph and a parameter t, the Triangle Listing problem [Pǎt10, BPVZ14, VX20]
asks to report min(t, z) triangles in the graph, where z denotes the total number of triangles in the graph.
Our results immediately imply a near-optimal protocol for this task.

Corollary 4.3. Triangle Listing can be solved in Merlin-Arthur time Õ(m+ t).

Proof. Merlin uses Theorem 1.5 to prove that the input graph has z triangles in Õ(m) time, and then sends
min(t, z) many triangles to Arthur, who verifies that these triangles are valid and distinct.

5 Unsatisfiability of k-CNFs
In this section, we will present a 2n−n/O(k) · poly(n,m) time Merlin-Arthur protocol for k-UNSAT with n
variables andm clauses in Theorem 1.7 (note thatm ≤ O(nk) in a k-CNF formula). This beats the previously
known protocol for k-UNSAT running in 2n/2 ·poly(n,m) time, which follows directly from [Wil16, Theorem
3.4]. We need the following useful theorems.

Theorem 5.1 (Impagliazzo-Paturi [IP01, Lemma 2]). Let F be a k-CNF formula on m clauses such that
every satisfying assignment to F has at least δn variables set to true for any δ > 0. For any ε > 0, there
exists a k′ > 0 and F ′, which is a disjunction of at most 2εn k′-CNFs on at most n(1 − δ/(ek)) variables
such that F is satisfiable iff F ′ is satisfiable. Moreover F ′ can be computed from F in 22εnpoly(m) time.

Theorem 5.2 (#SAT for Boolean formulas [Wil16, Theorem 3.4]). For any k > 0, #SAT for Boolean
formulas with n variables and m connectives has a Merlin-Arthur proof system using 2n/2poly(n,m) time
with randomness O(n) and error probability 1/ exp(n).

Recall that the binary entropy function H(·) is defined by taking

H(p) = −p log p− (1− p) log(1− p)

for all p ∈ (0, 1). We prove the following result.

Theorem 5.3. For all δ ∈ (0, 1/2) and all sufficiently large integers k > 0, k-UNSAT has a Merlin-Arthur
protocol that runs in time (

2n(1/2−δ/(6k)) + 2H(δ)n
)

poly(n,m).

Proof. The idea behind this protocol is to handle the assignments with fewer than δn variables set to true,
and the assignments with more than δn variables set to true, separately. Once we have verified that there
are no assignments with δn variables set to true, we can make use of Theorem 5.1 to decompose the formula
into formulas with fewer variables. Formally, the protocol proceeds as follows:

Given a k-CNF F on n variables and m clauses, Merlin and Arthur certify the unsatisfiability of F as
follows:

1. Arthur enumerates over all possible O(2H(δ)n) assignments with at most δn variables set to true and
verifies that none of them satisfy F .

14

2. Arthur uses Theorem 5.1 with ε = 1/k2 to obtain at most t = 2n/k
2

k′-CNFs F ′1 . . . F ′t on n(1− δ/(ek))
variables each.

3. Then, Merlin and Arthur run the protocol from Theorem 5.2, with Merlin sending the proofs for each
of F ′1 . . . F ′t and Arthur verifying their unsatisfiability, taking 2n(1/2−δ/(2ek))poly(n,m) time for each.9

Verifying unsatisfiability for all the F ′i ’s in step 3 takes time

2n/k
2

· 2n/2−δ/(2ek)poly(n,m) ≤ 2n/2−δn/(6k)poly(n,m),

where the inequality holds for sufficiently large k (for example, k ≥ 60 suffices). Thus, the total time taken
by Arthur for verification is

(
2n/2−δn/(6k) + 2H(δ)n

)
poly(n,m). This completes the proof.

Reminder of Theorem 1.7. There is a universal constant δ > 0 such that for all sufficiently large
integers k > 0, we can verify any unsatisfiable n-variable m-clause k-CNF with a Merlin-Arthur protocol
running in 2n(1/2−δ/k) · poly(n,m) time.

Proof. We apply Theorem 5.3 by setting δ ∈ (0, 1/2) to be small enough thatH(δ) ≤ 2δ log2(1/δ) ≤ 1/2−δ/k
holds for every k ≥ 1. Then, the protocol of Theorem 5.3 runs in O(2n(1/2−δ/(6k))) time for all large enough
integers k.

6 Faster MA Protocols Require Non-Algebrizing Techniques
In this section, we observe that:

(a) Williams’ protocol for #SAT (which runs in poly(n,m) · 2n/2) algebrizes, and

(b) No algebrizing Merlin-Arthur protocol for UNSAT runs in time 2n/2/nω(1), even for unsatisfiability of
1-CNF formulas.

We stress that both of these are observations, which do not require any significant ideas that are not
already in the literature. However, we find them striking to consider in the context of our other Merlin-Arthur
protocols such as Theorem 1.7, which beat 2n/2 time by exploiting the structure of k-CNF formulas.

First, we observe that Williams’ protocol naturally algebrizes. Let A : {0, 1}? → {0, 1} be an arbitrary
oracle. For a constant k ∈ N, we say that a k-CNFA formula is a k-CNF in n variables x1, . . . , xn whose
atoms are either literals, or they are of the form A(xi1 , . . . , Aik′) where k′ ∈ [k] and each ij ∈ [n]. For
example,

(x1 ∨A(x2, x3) ∨A(x3, x3, x5)) ∧ (¬x2 ∨ ¬x3 ∨A(x7, x6, x7))

is a 3-CNFA formula. Recall that 3-CNF-SATA (where we are given a CNFA formula FA and are asked if
FA is satisfiable) is NPA-complete, and its corresponding counting version #3-CNF-SATA is #PA-complete.
This definition appeared in [Sch81, GJ93].
Reminder of Proposition 1.8. For every oracle A, #CNF-SATA on formulas with n variables and size
poly(n) can be computed in Merlin-Arthur time 2n/2 · poly(n) with oracle access to the multilinear extension
of A over any field of characteristic greater than 2n (and order at most 2poly(n)).

Proof Sketch. The proposition follows almost directly from the same sort of argument used by Aaronson
and Wigderson [AW09] to show that PSPACE = IP algebrizes, applying it to Williams’ protocol. Given
a #CNF-SATA instance FA on n variables with poly(n) size, we can think of FA as an AND of poly(n)
ORs of poly(n) literals plus copies of the oracle A which take variables as input. We convert FA into an
arithmetic circuit over Fp where p > 2n is a prime in the natural way, where the ANDs and ORs are replaced
by corresponding multilinear polynomials of degree at most poly(n), and the copies of oracle A are replaced
by calls to the multilinear extension Ã of A. This results in an arithmetic circuit C of at most poly(n)
degree that agrees with FA on all Boolean assignments, with the property that C can be evaluated on any

9Technically, Merlin speaks before Arthur in a Merlin-Arthur protocol, but note that Merlin could have sent all of his proofs
from step 3 prior to steps 1 and 2.

15

particular assignment in (Fp)n in poly(n) time, provided p < 2poly(n). Note that we are using the fact that
we have oracle access to Ã: without it, we would not necessarily be able to evaluate C in poly(n) time.

The Merlin-Arthur protocol then divides the set of variables into two halves, and creates a new arithmetic
circuit C ′ on n/2 variables, which equals the sum of C(x1, . . . , xn/2,~a) where ~a ranges over all 2n/2 Boolean
assignments to the second half of variables. Merlin tells Arthur a list of values v1, . . . , v2n/2 ∈ Fp, and
wishes to prove to Arthur that C ′(bi) = vi for all i = 1, . . . , 2n/2, where b1, . . . , b2n/2 ∈ {0, 1}n/2 is a list of
all Boolean assignments to the first half of variables (if Merlin can do so,

∑
i vi will equal the number of

satisfying assignments to FA). This is achieved by first defining “interpolating polynomials” Q1, . . . , Qn/2
such that for a fixed list of 2n/2 distinct elements α1, . . . , α2n/2 ∈ Fp, we have that Qi(αj) outputs the i-th
bit of the assignment bj . Note that each Qi has degree at most 2n/2. Merlin sends to Arthur a univariate
polynomial P (y) of degree 2n/2 ·poly(n) representing the circuit C ′ composed with these Qi’s. Arthur checks
P by:

(a) Picking a random point a ∈ Fp, and confirming that C ′(Q1(a), . . . , Qn/2(a)) = P (a), in 2n/2 · poly(n)
time (using the properties of our C and C ′), and

(b) Checking for all i = 1, . . . , 2n/2 that P (αi) = vi in 2n/2 ·poly(n) time, using fast univariate polynomial
evaluation.

Finally, Arthur concludes that
∑2n/2

i=1 vi equals the number of satisfying assignments to FA.

Definition 6.1 (DISJ). In the set-disjointness problem (DISJ), Alice and Bob get n-bit strings x and y,
respectively, and their goal is to determine whether

∑
i∈[n/2] xi · yi = 0 holds.

Recall that in a Merlin-Arthur communication protocol between Alice and Bob: Merlin sends a proof to
both Alice and Bob, and then Alice and Bob run a randomized communication protocol given their inputs
and the proof from Merlin to decide whether they accept or not. The complexity of this protocol is bounded
by the proof length of Merlin plus the maximum number of bits communicated between Alice and Bob.10

Now we show that this protocol is actually optimal among those which algebrize.
Reminder of Proposition 1.9. There is an oracle A such that there is no Merlin-Arthur protocol running
in 2n/2/nω(1) time for 1-UNSATA, even for protocols with oracle access to the multilinear extension of A
(over any field of order 2poly(n)).

Proof. Our proof directly follows the connection between communication complexity lower bounds and non-
algebrizing results that was already described in [AW09]. For completeness, we give a self-contained proof.

Suppose for contradiction that for all oracles A, there is a Merlin-Arthur protocol for instances of
1-UNSATA instance on n variables and poly(n) size that runs in 2n/2/nω(1) time where the protocol has
oracle access to Ã, the (unique) multilinear extension of A over Fq for some prime power q ≤ 2poly(n).
We will show that DISJ has a Merlin-Arthur communication protocol with o(

√
n) communication on n-bit

strings, contradicting the known
√
n lower bound for Merlin-Arthur protocols computing DISJ [Kla03].

Let Alice hold input x and Bob hold input y, each of length n/2 (without loss of generality, we assume
that n is a power of 2). We think of Alice as holding half the bits of an oracle A : [n/2]×{0, 1} → {0, 1} and
Bob holding the other half. More precisely,

x = A(1, 0)A(2, 0) · · ·A(n/2, 0) and y = A(1, 1)A(2, 1) · · ·A(n/2, 1).

We want to compute

DISJ(x, y) =

 ∑
i∈[n/2]

A(i, 0) ·A(i, 1) = 0

 ,
where [P] takes value 1 if the statement P is true, and 0 otherwise.

Letting t = log2(n/2) and letting our formula be

FA(z1, . . . , zt) = A(z1, . . . , zt, 0) ∧A(z1, . . . , zt, 1),

10As in standard Merlin-Arthur protocols, there exists a proof from Merlin making them accept with probability 1 given a
yes instance, and they reject every possible proof with high probability given a no instance.

16

it is clear that DISJ(x, y) = 1-UNSATA(FA) (note that FA is a 1-SATA formula).
By assumption, there is a Merlin-Arthur protocol (with access to the unique multilinear extension Ã)

running in time 2t/2/tω(1) for computing 1-UNSATA(FA). Let n1 = 2t/2/tω(1) =
√
n/(log n)ω(1). By

definition, the algorithm proceeds by guessing n1 bits, randomly choosing n1 bits, and then running an
n1-time algorithm that makes at most n1 calls to Ã.

Alice and Bob compute DISJ as follows. First, they both know the formula FA (but not necessarily the
oracle A). So they just start simulating the MA protocol for 1-UNSATA(FA) separately. They can obviously
simulate the Merlin and Arthur steps in an MA communication protocol, by having “public” nondeterminism
of n1 bits followed by “public” randomness. To simulate the deterministic algorithm making oracle calls, Alice
and Bob have to communicate as follows. To handle all n1 oracle calls, they need to make up to n1 evaluations
of

Ã(a1, . . . , at, at+1)

on given tuples of points a in Ft+1
q (the tuple is determined by all the information computed so far, which

both Alice and Bob know). Note that because Ã is multilinear, we can always write

Ã(a1, . . . , at, at+1) = at+1 ·A1(a1, . . . , at) + (1− at+1)A0(a1, . . . , at)

for some multilinear A0 and A1.
Now, what are these A0 and A1? Well, when we plug in at+1 = 0, Ã = A0, and note the remaining

function has a truth table equal to x. Similarly when we plug in at+1 = 1, the remaining function has a
truth table equal to y, which is just A1. Therefore Alice can actually compute A0(a1, . . . , at) by herself,
and Bob can compute A1(a1, . . . , at). So to evaluate Ã(a1, . . . , at, at+1), the two only have to exchange
O(log(q)) bits (the values of A0 and A1 on these tuples). Thus they can simulate each query to Ã using
O(log(q)) ≤ poly(t) ≤ polylog(n) bits of communication. It follows that they can jointly compute DISJ with
only n1 · polylog(n) = o(

√
n) communication, contradicting the known

√
n lower bound for Merlin-Arthur

protocols computing DISJ.

7 Quantified Boolean Formulas
We consider Quantified Boolean Formulas (QBFs) in prenex normal form

(Q1x1) · · · (Qnxn) F (x1, . . . , xn),

where F is an arbitrary propositional formula of size m, preceded by quantifiers of the form Qi ∈ {∃,∀}.
Williams [Wil16] gave a 3-round interactive protocol (i.e., an AMA protocol) for QBFs that ran in

O∗(22n/3) time. It was asked as an open question [Wil16] whether there is a 2-round Merlin-Arthur protocol
for QBFs with O∗(2(1−ε)n) running time for some constant ε > 0. Here we resolve this open problem:
Reminder of Theorem 1.10. True Quantified Boolean Formulas (TQBF) with n variables and size
m ≤ 2n can be certified by a Merlin-Arthur protocol running in 24n/5 · poly(n,m) time.

Our new protocol follows the basic outline of Williams’ earlier AMA protocol [Wil16, Section 4], with
several key differences we highlight in the proof.

We will prove the following lemma.

Lemma 7.1. Let
φ = (Q1x1) · · · (Qnxn) F (x1, . . . , xn)

be a QBF. Suppose there exist integers 1 ≤ k ≤ ` ≤ n such that the last ` quantifiers, Qn−`+1, . . . , Qn,
contain at most k universal quantifiers. Then

• if φ is a true QBF, we can certify φ in Merlin-Arthur time (2n+k−` + 2`) · poly(n,m), and

• if φ is a false QBF, we can refute φ in Merlin-Arthur time (2n+2k−` + 2`+k) · poly(n,m).

Before proving Lemma 7.1, we show that it implies the claimed QBF protocol.

17

Proof of Theorem 1.10 using Lemma 7.1. Let φ = (Q1x1) · · · (Qnxn) F (x1, . . . , xn) be a true QBF to cer-
tify. Let 0 < α < δ < 1 be two constant parameters to be determined later. As in [Wil16], we di-
vide into two cases depending on the number of universal quantifiers contained in the last δn quantifiers,
(Qn−δn+1xn−δn+1) · · · (Qnxn).

• Case 1: The last δn quantifiers contain at most αn universal quantifiers.
In this case, the first item in Lemma 7.1 implies a Merlin-Arthur protocol in (2(1+α−δ)n+2δn)·poly(n,m)
time.

• Case 2: The last δn quantifiers contain more than αn universal quantifiers.
In this case, we prove that ¬φ is false using the second item in Lemma 7.1. Since the last δn quantifiers
in ¬φ has more than αn existential quantifiers and less than δn − αn universal quantifiers, applying
Lemma 7.1 gives a Merlin-Arthur protocol in (2(1+δ−2α)n + 2(2δ−α)n) · poly(n,m) time.

Setting α = 2/5, δ = 3/5 yields a 24n/5 · poly(n,m) time Merlin-Arthur protocol as claimed.

To complete the argument, it remains to prove Lemma 7.1.

Proof of Lemma 7.1. First, we apply the same strategy as in [Wil16]. Convert the propositional formula
F to an equivalent arithmetic formula P of poly(m) degree and size, by replacing A ∧ B with A · B and
replacing A ∨B with A+B −A ·B. Note that P outputs 0 or 1 on every Boolean input. Then, we convert
the subformula

φ′(x1, . . . , xn−`) = (Qn−`+1xn−`+1) · · · (Qnxn) P (x1, . . . , xn)

into an arithmetic formula P ′, by replacing each (∃xi) with a sum over xi ∈ {0, 1}, and each (∀xi) with
a product over xi ∈ {0, 1}. Note that for every a1, . . . , an−` ∈ {0, 1}n−`, P ′(a1, . . . , an−`) evaluates to a
positive integer if the subformula φ′(a1, . . . , an−`) is true, and evaluates to zero if φ′(a1, . . . , an−`) is false.

Note that P ′ has a depth-` binary tree structure with each leaf being a copy of P . The size of P ′ is
at most 2` · poly(m), and the degree of P ′ is at most 2k · poly(m), since there are at most k layers of
multiplication gates in this binary tree. For every Boolean input a1, . . . , an−` ∈ {0, 1}n−`, observe that the
output of P ′(a1, . . . , an−`) is a non-negative integer no larger than (2n ·m)O(2k).

Now we separately consider the two scenarios.

Case 1: To prove φ is true. In this case, Merlin sends Arthur a prime p from the interval [2, 22n2 ·
m], such that, for every a1, . . . , an−` ∈ {0, 1} with P ′(a1, . . . an−`) being a positive integer (over Z),
P ′(a1, . . . an−`) mod p is also non-zero (over Fp). The existence of such prime p was already proved in
[Wil16, Section 4] using a standard argument by considering the number of prime factors of P ′(a1, . . . an−`)
and applying a union bound.

Then, Merlin and Arthur perform Williams’ [Wil16] batch-evaluation protocol (Theorem 2.2) over the
field Fp: Merlin sends the correct values of P ′(a1, . . . an−`) mod p over all a1, . . . , an−` ∈ {0, 1}, together
with a proof of length Õ(2n−` · deg(P ′) · log(p)) ≤ 2n−`+k · poly(n,m). Then Arthur verifies the proof

Õ(2n−` · deg(P ′) + size(P ′)) · poly log(p) ≤ (2n−`+k + 2`) · poly(n,m)

time. Finally, Arthur uses these values to certify

φ = (Q1x1) · · · (Qn−`xn−`) φ′(x1, . . . , xn−`)

is true in O(2n−`) time.
The only concern is that the prime p sent by Merlin might not satisfy the required condition: there

could exist some (a1, . . . , an−`) ∈ {0, 1}n−` where P ′(a1, . . . , an−`) is non-zero over Z but is zero over Fp,
so that Arthur will be evaluating φ = (Q1x1) · · · (Qn−`xn−`)φ′(x1, . . . , xn−`) based on incorrect values of
φ′(a1, . . . , an−`). However, Merlin is not able to cheat by doing this, since the value of φ is monotone
increasing in the values of φ′(a1, . . . , an−`), and modifying some of these values from true to false will never
change the value of φ from false to true.

We remark that the only difference of this protocol from the previous AMA protocol [Wil16] is that we let
Merlin send the prime p, whereas [Wil16] let Arthur send a random p (which satisfies the required condition
with high probability), costing an extra round of interaction.

18

Case 2: To prove φ is false. Note that the previous protocol for the “φ is true” case no longer applies
here, since Merlin would be able to cheat by picking a prime p that makes many of the positive integers
P ′(a1, . . . , an−`) vanish in Fp.

Recall that these positive integers P ′(a1, . . . , an−`) are upper bounded by (2n ·m)O(2k). Instead of picking
a single prime p for the protocol, Merlin picks s distinct primes p1 < p2 < · · · < ps so that their product
p1p2 · · · ps is larger than this upper bound. In this way, by Chinese Remainder Theorem we can ensure that,
every positive integer P ′(a1, . . . , an−`) is non-zero mod pj for at least one 1 ≤ j ≤ s. Then, we can simply
run the previous protocol for every pj (1 ≤ j ≤ s), in total time s · (2n−`+k + 2`) · poly(n,m, log ps).

By choosing the smallest s primes p1 < · · · < ps such that p1p2 . . . ps > (2n ·m)Ω(2k), we can ensure the
above algorithm works with parameter choices s ≤ 2k · poly(n logm), and ps ≤ O(s · log s) by the prime
number theorem. Hence, the total time complexity is (2n−`+2k + 2k+`) · poly(n,m).

8 Open Questions
There remain many interesting open problems concerning the nondeterministic and Merlin-Arthur complexity
of problems in fine-grained complexity. A few questions which are particularly relevant to our work are
highlighted below.

• Is there a faster Merlin-Arthur protocol for solving Subset Sum? Corollary 1.2 gives a 2n/3 · poly(n)
time protocol using a linear-time protocol for 3-SUM. There are deterministic algorithms which solve
Subset Sum in 2n/2 · poly(n) time, so it seems plausible (by analogy with Williams’ Merlin-Arthur
protocol for counting satisfying assignments) that one could achieve a quadratic improvement over this
speed and certify that an instance of Subset Sum has no solution in 2n/4 · poly(n) Merlin-Arthur time.

Is there a 2n/4 · poly(n)-time Merlin-Arthur protocol for certifying that a Subset Sum instance has no
solutions? Such a protocol would exist, for example, if there was a linear time Merlin-Arthur protocol
for 4-SUM.

• Our Merlin-Arthur protocol for APSP presented in Corollary 1.6 yields near-optimal protocols for many
related graph problems on dense graphs. Can similar improvement be achieved on sparse graphs? For
example, is there a constant ε > 0 such that there exists an n2−ε-time Merlin-Arthur protocol for
computing the diameter of a graph with n nodes and O(n) edges?

• Our Merlin-Arthur protocol from Theorem 1.5 counts the number of zero-weight 5-cliques in Õ(nm)
time, which could be as large as n3 for dense graphs. Is there an Õ(n2.5)-time Merlin-Arthur protocol
for this problem (or, the problem of certifying that no such clique exists)? Achieving the constant 2.5
in the exponent of the runtime would yield a quadratic improvement over the deterministic n5-time
algorithm for zero-weight 5-clique.

• Is there a 2n/2 ·poly(n)-time Merlin-Arthur protocol for certifying True Quantified Boolean Formulas?
Currently, the best Merlin-Arthur protocol runs in 24n/5 · poly(n) time, and the best AMA protocol
takes 22n/3 · poly(n) time [Wil16].

• Suppose the Nonuniform NSETH holds (e.g., there is no infinite family of nondeterministic circuits
{Cn} of size 1.999n that correctly solves CNF unsatisfiability on n-variable formulas of poly(n) size).
This would also imply a lower bound for (one-round) Arthur-Merlin protocols. Would this hypothe-
sis further imply interesting Arthur-Merlin communication lower bounds? Proving non-trivial lower
bounds on two-party Arthur-Merlin communication complexity is an infamously difficult problem;
as far as we know, two-party Arthur-Merlin communication could be very powerful (see for exam-
ple [Kla11, GPW18]). Perhaps an interesting lower bound for the Disjointness problem follows from
Nonuniform NSETH?

• Given a universe U = {1, . . . , n} of n elements, a family F of subsets of U , and a target integer t, the
#Set Cover problem is the task of computing how many choices of t sets from F have the property
that their union equals U . Similarly, the #Exact Cover is the task of counting how choices of t pairwise
disjoint sets from F have their union equal to U .

19

Both these problems can be solved deterministically in 2n · poly(n) time. However, in the Merlin-
Arthur setting, although there is a

(
2n/2 + |F|

)
poly(n)-time protocol for solving #Exact Cover, the

fastest known protocol for solving #Set Cover takes 2n/2|F| · poly(n) time [BK16]. Is there a faster
Merlin-Arthur protocol for #Set Cover, or is #Set Cover truly harder than #Exact Cover in the Merlin-
Arthur setting for families consisting of 2Ω(n) sets?

• To what extent can our Merlin-Arthur protocols be derandomized to obtain better nondeterministc
algorithms for fine-grained problems? For example, derandomizing our protocol for 3-SUM without
a loss in the running time would imply a nondeterministic derandomization of Freivald’s verification
algorithm for Boolean Matrix Multiplication [Kün18, Theorem 1.1] and answer an open question raised
by [Kün18]. Finding faster nondeterministic verifiers in this way may also lead to new barriers in
deterministic fine-grained reductions between problems [CGI+16].

For all of the problems discussed above, evidence against the existence of a better algorithm or protocol
(via conditional hardness results) would also be interesting.

Acknowledgements
We thank Virginia Vassilevska Williams for offering helpful comments on early versions of our arguments.
We thank Jesper Nederlof for answering a question about his Merlin-Arthur protocol for Subset Sum [Ned21].

References
[ABV18] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique algo-

rithms are optimal, so is Valiant’s parser. SIAM J. Comput., 47(6):2527–2555, 2018. 3

[AGI+19] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis,
Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf. Faster Algorithms for All-
Pairs Bounded Min-Cuts. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), pages 7:1–7:15, 2019. 3

[AGV15] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences
between graph centrality problems, APSP and diameter. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 1681–1697, 2015.
1

[AKKN16] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense Subset Sum may be
the hardest. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science
(STACS 2016), pages 13:1–13:14, 2016. 2

[AV21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA 2021), pages 522–539, 2021. 3

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM
Trans. Comput. Theory, 1(1):2:1–2:54, 2009. 3, 4, 15, 16

[AWY15] Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2015), pages 218–230, 2015. 1

[BBB19] Enric Boix-Adserà, Matthew S. Brennan, and Guy Bresler. The average-case complexity of
counting cliques in Erdős-Rényi hypergraphs. In Proceedings of the 60th IEEE Annual Sympo-
sium on Foundations of Computer Science (FOCS 2019), pages 1256–1280, 2019. 1

20

[BCD+14] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Pǎtraşcu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014. 2

[BDT16] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maximum
weight rectangles. In Proceedings of the 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), pages 81:1–81:13, 2016. 1

[BK16] Andreas Björklund and Petteri Kaski. How proofs are prepared at Camelot: Extended abstract.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC
2016), pages 391–400, 2016. 1, 3, 20

[BPVZ14] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing tri-
angles. In Proceedings of the 41st International Colloquium on Automata, Languages, and
Programming (ICALP 2014), Part I, pages 223–234, 2014. 14

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-case fine-
grained hardness. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2017), pages 483–496, 2017. 1

[BRSV18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs of work from
worst-case assumptions. In Proceedings of the 38th Annual International Cryptology Conference
(CRYPTO 2018), Part I, pages 789–819, 2018. 1

[CG19] Amit Chakrabarti and Prantar Ghosh. Streaming verification of graph computations via graph
structure. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2019), volume 145 of LIPIcs, pages 70:1–70:20, 2019. 1

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science (ITCS 2016), pages 261–270, 2016. 1, 2, 6, 8, 20

[CGT20] Amit Chakrabarti, Prantar Ghosh, and Justin Thaler. Streaming verification for graph prob-
lems: Optimal tradeoffs and nonlinear sketches. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020), volume 176
of LIPIcs, pages 22:1–22:23, 2020. 1

[CMWW19] Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. On problems equiv-
alent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. 2, 11

[CW19] Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages
21–40. SIAM, 2019. 1

[CW21] Timothy M. Chan and R. Ryan Williams. Deterministic APSP, Orthogonal Vectors, and more:
Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021. 1,
2

[DLV20] Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New techniques for
proving fine-grained average-case hardness. In Proceedings of the 61st IEEE Annual Symposium
on Foundations of Computer Science (FOCS 2020), pages 774–785, 2020. 1

[Fid72] Charles M. Fiduccia. Polynomial evaluation via the division algorithm: The fast Fourier trans-
form revisited. In Proceedings of the 4th Annual ACM Symposium on Theory of Computing
(STOC 1972), pages 88–93, 1972. 5

[GIKW19] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
first-order properties on sparse structures with algorithmic applications. ACM Trans. Algo-
rithms, 15(2):23:1–23:35, 2019. 1

21

[GJ93] Judy Goldsmith and Deborah Joseph. Relativized isomorphisms of NP-complete sets. Comput.
Complex., 3:186–205, 1993. 15

[GO95] Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995. 10

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication complexity
classes. Comput. Complex., 27(2):245–304, 2018. 19

[GR18a] Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to average-case reduc-
tions and direct interactive proof systems. In Proceedings of the 59th IEEE Annual Symposium
on Foundations of Computer Science (FOCS 2018), pages 77–88, 2018. 1

[GR18b] Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient interactive proof systems for
locally-characterizable sets. In 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 18:1–
18:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 1

[GR20a] Oded Goldreich and Guy N. Rothblum. Constant-round interactive proof systems for AC0[2]
and NC1. In Computational Complexity and Property Testing - On the Interplay Between
Randomness and Computation, volume 12050 of Lecture Notes in Computer Science, pages
326–351. Springer, 2020. 1

[GR20b] Oded Goldreich and Guy N. Rothblum. Worst-case to average-case reductions for subclasses of
P. In Computational Complexity and Property Testing - On the Interplay Between Randomness
and Computation, volume 12050 of Lecture Notes in Computer Science, pages 249–295. Springer,
2020. 1

[Hor72] Ellis Horowitz. A fast method for interpolation using preconditioning. Inf. Process. Lett.,
1(4):157–163, 1972. 5

[HS74] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. J. ACM, 21(2):277–292, 1974. 2

[HS21] Shuichi Hirahara and Nobutaka Shimizu. Nearly optimal average-case complexity of count-
ing bicliques under SETH. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA 2021), pages 2346–2365, 2021. 1

[IKK09] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic approach
to algebrization. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC 2009), pages 695–704, 2009. 3

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. 4, 14

[IR78] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput.,
7(4):413–423, 1978. 3

[JV16] Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–343,
2016. 11

[Kla03] Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity. In
Proceedings of the 18th Annual IEEE Conference on Computational Complexity (CCC 2003),
pages 118–134, 2003. 16

[Kla11] Hartmut Klauck. On Arthur Merlin games in communication complexity. In Proceedings of
the 26th Annual IEEE Conference on Computational Complexity (CCC 2011), pages 189–199,
2011. 19

22

[KU11] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular compo-
sition. SIAM J. Comput., 40(6):1767–1802, 2011. 6

[Kün18] Marvin Künnemann. On Nondeterministic Derandomization of Freivalds’ Algorithm: Con-
sequences, Avenues and Algorithmic Progress. In Proceedings of the 26th Annual European
Symposium on Algorithms (ESA 2018), pages 56:1–56:16, 2018. 20

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pages
296–303, 2014. 3

[LLV19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key cryptography in
the fine-grained setting. In Proceedings of the 39th Annual International Cryptology Conference
(CRYPTO 2019), Part III, pages 605–635, 2019. 1

[LVW18] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2018), pages 1236–1252, 2018. 1, 3

[Ned17] Jesper Nederlof. A short note on Merlin-Arthur protocols for subset sum. Inf. Process. Lett.,
118:15–16, 2017. 2, 7

[Ned21] Jesper Nederlof. Personal communication, 2021. 2, 20

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985. 3

[Pǎt10] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proceedings of
the 42nd ACM Symposium on Theory of Computing (STOC 2010), pages 603–610, 2010. 1, 2,
14

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification for UP. In
Proceedings of the 33rd Computational Complexity Conference (CCC 2018), pages 22:1–22:23,
2018. 1

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. SIAM J. Comput., 50(3), 2021. 1

[Sch81] Uwe Schöning. A note on complete sets for the polynomial-time hierarchy. SIGACT News,
13(1):30–34, January 1981. 15

[Vas12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Proceedings of the 44th Symposium on Theory of Computing Conference (STOC 2012), pages
887–898, 2012. 3

[Vas18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the International Congress of Mathematicians, pages 3447–3487. World Scientific,
2018. 1

[VW13] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM J. Comput., 42(3):831–854, 2013. 2, 3, 11

[VW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5), August 2018. 1, 2, 3, 14

[VWWY15] Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng Yu.
Finding four-node subgraphs in triangle time. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 1671–1680, 2015. 13

23

[VX20] Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle listing and
APSP. In Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer
Science (FOCS 2020), pages 786–797, 2020. 14

[Wil16] Richard Ryan Williams. Strong ETH breaks with Merlin and Arthur: Short non-interactive
proofs of batch evaluation. In Proceedings of the 31st Conference on Computational Complexity
(CCC 2016), pages 2:1–2:17, 2016. 1, 2, 3, 4, 5, 6, 14, 17, 18, 19

[Wil18] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. 2

24
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

