
Notes on Boolean Read-k and Multilinear Circuits *

Stasys Jukna†

Faculty of Mathematics and Computer Science, Vilnius University, Lithuania

Abstract

A monotone Boolean (∨,∧) circuit computing a monotone Boolean function f is a read-k circuit
if the polynomial produced (purely syntactically) by the arithmetic (+,×) version of the circuit
has the property that for every prime implicant of f , the polynomial contains a monomial with the
same set of variables, each appearing with degree ⩽ k. Every monotone circuit is a read-k circuit
for some k. We show that monotone read-1 circuits have the same power as: tropical (min,+)
circuits solving 0/1 minimization problems, monotone arithmetic (+,×) circuits computing multi-
linear homogeneous polynomials, as well as non-monotone (∨,∧,¬) circuits computing monotone
homogeneous Boolean functions. Finally, we show that already monotone read-2 circuits can be
exponentially smaller than monotone read-1 circuits.

Keywords: arithmetic circuit, multilinear circuit, tropical circuit, lower bounds
MSC: 68Q17, 94C11

1 Introduction and Results

Proving lower bounds on the size of arithmetic (+,×,−) circuits as well as of Boolean (∨,∧,¬)
circuits remains a notoriously hard problem. Although the problem has received a great deal of
attention for decades, the best lower bounds we know for arithmetic circuits are barely super-linear,
while for Boolean circuits the lower bounds are even not super-linear. This happens mainly because
general circuits can use cancellations x− x = 0 in the arithmetic, and can use cancellations x∧ x = 0 in
the Boolean case. Understanding the role of cancellations in arithmetic and Boolean circuits remains
the main goal of circuit complexity.

Monotone arithmetic circuits cannot use cancellations x− x = 0, while monotone Boolean circuits
cannot use cancellations x∧ x = 0. Still, the task of proving lower bounds for monotone Boolean
circuits turned out to be much more difficult than that for monotone arithmetic circuits. This happens
because Boolean circuits can use idempotence lows x∨ x = x and x∧ x = x as well as the absorption
low x∨ xy = x, while arithmetic circuits cannot use any of these lows. It turned out that the absence of
additive idempotence x∨ x = x in arithmetic circuits (where x+ x is 2x, not x) is not a crucial issue:
most (albeit not all) lower bounds on the monotone arithmetic (+,×) circuit complexity are proved by
only using the structure of monomials and fully ignoring actual values of their (nonzero) coefficients.
But the absence of multiplicative idempotence x∧ x = x together with absorption x∨ xy = x in the
arithmetic world turned out to already be crucial even in the case of monotone circuits.

*Revised version. Added Corollary 1, Section 6.2, Facts 1 and 3 to 5, Remarks 4 and 5.
†Email: stjukna@gmail.com. Homepage: https://web.vu.lt/mif/s.jukna/.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 94 (2022)

https://web.vu.lt/mif/s.jukna/

The goal of this article is to show that already a very restricted use of multiplicative idempotence
x∧ x = x (in combination with absorption) makes a big difference between Boolean and arithmetic
circuits. To fine grain the “degree of idempotence,” we introduce so-called “read-k” (∨,∧) circuits.

Every monotone Boolean (∨,∧) circuit F defines a unique arithmetic polynomial in a natural way:
replace every OR gate with an addition gate, and every AND gate with a multiplication gate. The
obtained monotone arithmetic (+,×) circuit produces (purely syntactically) some polynomial P. If
f is the monotone Boolean function computed by F , then the polynomial P has the following two
properties: (i) every monomial of P contains all variables of at least one prime implicant of f , and
(ii) every prime implicant

∧
i∈I xi of f has at least one its “shadow” in P, that is, a monomial ∏i∈I xdi

i
with the same set of variables (this is a “folklore” observation, see Fact 2). Property (i) reflects the
absorption property x∨ xy = x, while property (ii) reflects the multiplicative idempotence x∧ x = x. In
read-k circuits we restrict property (ii) and require that every prime implicant of f has at least one
“shadow” monomial in P with the degree di ⩽ k of each its variable. There are no restriction on the
degrees of other monomials of P.

We show that already read-1 circuits are tightly related to dynamic programming (DP). Many
classical DP algorithms for minimization problems are “pure” in that they only use (min,+) operations
in their recursion equations. Prominent examples of pure DP algorithms are the Bellman–Ford–Moore
shortest s-t path algorithm [2, 7, 21], the Roy–Floyd–Warshall all-pairs shortest paths algorithm [6, 30,
36], the Bellman–Held–Karp travelling salesman algorithm [3, 10], the Dreyfus–Levin–Wagner Steiner
tree algorithm [5, 19], and many others. Pure DP algorithms are (special, recursively constructed)
tropical (min,+) circuits.

We also show that read-1 circuits are related to monotone arithmetic (+,×) circuits, as well as
to so-called multilinear (not necessarily monotone) DeMorgan (∨,∧,¬) circuits, where the Boolean
functions computed at the inputs to any AND gate must depend on disjoint sets of variables. For
example, g = x∨ xy and h = y∨ xy depend on disjoint sets of variables: g only depends on x, while h
only depends on y.

Our main results are the following.
1. Read-1 (∨,∧) circuits have the same power as monotone arithmetic (+,×) circuits: the minimum

size of a (+,×) circuit computing a homogeneous multilinear polynomial P(x) =∑S∈F cS ∏i∈S xi

with positive coefficients cS > 0 coincides with the minimum size of a read-1 (∨,∧) circuit
computing f (x) =

∨
S∈F

∧
i∈S xi (Theorem 1).

2. Read-1 (∨,∧) circuits have the same power as tropical (min,+) circuits solving 0/1 mini-
mization problems: the minimum size of a (min,+) circuit solving a minimization problem
P(x) = minS∈F ∑i∈S xi coincides with the minimum size of a read-1 (∨,∧) circuit computing
f (x) =

∨
S∈F

∧
i∈S xi (Theorem 2).

3. Read-1 (∨,∧) circuits are not weaker than multilinear (∨,∧,¬) circuits: if a multilinear (∨,∧,¬)
circuit computes a Boolean function f (x), then a not larger read-1 (∨,∧) circuit computes
f▽(x) :=

∨
z⩽x f (z) (Theorem 3). If f is monotone and homogeneous, then the minimum size of

a multilinear (∨,∧,¬) circuit computing f coincides with the minimum size of a read-1 circuit
computing f (Corollary 1).

4. Read-2 (∨,∧) circuits can be exponentially smaller than read-1 (∨,∧) circuits and, hence,
exponentially smaller than tropical (min,+), monotone arithmetic (+,×), and multilinear
(∨,∧,¬) circuits (Lemma 9).

Organization: In the preliminary Section 2, we recall one simple but important concept—the set of
exponent vectors “produced” (purely syntactically) by a circuit over any semiring. Read-k circuits

2

are introduced in Section 3. The aforementioned relation of read-1 circuits to monotone arithmetic
circuits is established in Section 4, the relation of read-1 circuits to tropical circuits is established in
Section 5, and the relation of read-1 circuits to multilinear DeMorgan (∨,∧,¬) circuits is established
in Section 6. In Section 7 we recall one relatively simple argument to show high lower bounds for
monotone arithmetic (+,×) circuits. This is aimed to demonstrate the power of idempotence and
absorption in Boolean circuits. An exponential gap between read-1 and read-2 circuits is shown in
Section 8. All proofs are fairly simple.

2 Preliminaries

Recall that a (commutative) semiring (R,⊕,⊙) consists of a set R closed under two associative and
commutative binary operations “addition” x⊕ y and “multiplication” x⊙ y, where multiplication
distributes over addition: x⊙ (y⊕ z) = (x⊙ y)⊕ (x⊙ z). That is, in a semiring, we can “add” and
“multiply” elements, but neither “subtraction” nor “division” are necessarily possible. We will assume
that semirings contain a multiplicative neutral element 1 ∈ R such that x⊙1= 1⊙ x = x.

A circuit F over a semiring (R,⊕,⊙) is a directed acyclic graph; parallel edges joining the same
pair of nodes are allowed. Each indegree-zero node (an input node) holds either one of the variables
x1, . . . ,xn or a semiring element c ∈ R. Every other node, a gate, has indegree two and performs one of
the two semiring operations ⊕ or ⊙ on the values computed at the two gates entering this gate. The size
of a circuit is the total number of gates in it. A circuit F computes a function f : Rn → R if F(x) = f (x)
holds for all x ∈ Rn.

In this article, we will consider circuits over the following three semirings (R,⊕,⊙): the arith-
metic semiring (R+,+,×), where R+ is the set of nonnegative real numbers, the tropical semiring
(R+,min,+), and the Boolean semiring ({0,1},∨,∧). That is, we will consider the following three
types of circuits1:

◦ x⊕ y := x+ y and x⊙ y := xy (monotone arithmetic circuits);
◦ x⊕ y := x∨ y and x⊙ y := x∧ y (monotone Boolean circuits);
◦ x⊕ y := min(x,y) and x⊙ y := x+ y (tropical circuits).

Note that the multiplicative neutral element 1 is constant 1 in arithmetic and Boolean semirings, but is
constant 0 in the tropical semiring (because x+0 = x).

Produced polynomials Every circuit F(x1, . . . ,xn) over a semiring (R,⊕,⊙) not only computes
some function f : Rn → R, but also produces (purely syntactically) an n-variate polynomial over this
semiring in a natural way. Namely, at each source node u holding a constant c ∈ R, the constant
polynomial Pu = c is produced, and at a source node u holding a variable xi, the polynomial Pu = xi

is produced. At an “addition” gate u = v⊕w, the “sum” Pu = Pv ⊕Pw of the polynomials Pv and Pw

produced at its inputs is produced. Finally, at a “multiplication” gate u = v⊙w, the polynomial Pu

obtained from Pv ⊙Pw by distributivity of ⊙ over ⊕ is produced; that is, we “multiply” (⊙) every
monomial of Pv with every monomial of Pw, and take the “sum” (⊕) of the obtained monomials. No
terms are canceled along the way. The polynomial produced by the entire circuit F is the polynomial

P(x) = ∑
b∈B

cb

n

∏
i=1

xbi
i (1)

produced at its output gate. Here, B ⊆ Nn is some set of exponent vectors, xk
i stands for the k-times

“multiplication” xi ⊙ xi ⊙·· ·⊙ xi, and x0
i = 1 (the multiplicative neutral element).

1An exception is Section 6, where we also consider non-monotone Boolean (∨,∧,¬) circuits.

3

Produced sets of exponent vectors Of interest for us will be not as much the polynomials Pv

produced at gates v of a circuit F themselves but rather the sets Bv ⊆ Nn of exponent vectors of these
polynomials. These sets are inductively obtained as follows, where 0⃗ is the all-0 vector, and e⃗i ∈ {0,1}n

has exactly one 1 in the ith position:
◦ if v is an input node holding a constant c ∈ R, then Bv = {⃗0};
◦ if v is an input node holding a variable xi, then Bv = {⃗ei};
◦ if v = u⊕w, then Bv = Bu ∪Bw (set-theoretic union of sets Bu and Bw);
◦ if v = u⊙w, then Bv = Bu +Bw := {a+b : a ∈ Bu,b ∈ Bw} (Minkowski sum of sets Bu and Bw).

The set of exponent vectors produced by the entire circuit F is the set B = Bv of vectors produced at the
output gate v of F . Since the exponent vector of a “product” (⊙) of two monomials is the sum of their
exponent vectors, this set B is exactly the set of exponent vectors of the polynomial Eq. (1) produced
by the circuit F .

It is clear that the same circuit F with “addition” (⊕) and “multiplication” (⊙) gates can compute
different functions over different semirings. Say, the circuit F = (x⊙ y)⊕ z computes xy+ z over
the arithmetic (+,×) semiring, but computes min{x+ y,z} over the tropical (min,+) semiring. It is,
however, important to note that:

• The set of exponent vectors of the polynomial produced by a circuit over any semiring is always
the same—it only depends on the circuit itself, not on the underlying semiring.

Notation. We will use standard terminology and notation regarding Boolean functions (see, for
example, the books by Wegener [37] or Crama and Hammer [4]). In particular, for two Boolean
functions f ,g : {0,1}n →{0,1}, we write g ⩽ f iff g(a)⩽ f (a) holds for all a ∈ {0,1}n; hence, g = f
iff g(a) = f (a) holds for all a ∈ {0,1}n. A term is an AND of literals, each being a variable xi or its
negation xi. A term is a zero term if it contains a variable and its negation. An implicant of a Boolean
function f (x1, . . . ,xn) is a nonzero term t such that t ⩽ f holds, that is, t(a) = 1 implies f (a) = 1.
An implicant t of f is a prime implicant of f if no proper subterm t ′ of t has this property, that is, if
t ⩽ t ′ ⩽ f , then t ′ = t. For example, if f = xy∨ xyz, then xy, xyz and xz are implicants of f , but xyz is
not a prime implicant (since xyz ⩽ xz). A Boolean function f is monotone if a ⩽ b implies f (a)⩽ f (b).

3 Read-k Circuits

A monotone Boolean circuit is a circuit over the Boolean semiring (R,⊕,⊙) with x⊕ y := x∨ y and
x⊙ y := x∧ y; the domain is R = {0,1}. We will always assume that such circuits are constant-free:
constant inputs 0 and 1 can be easily eliminated without increasing the circuit size (to avoid trivialities,
we will only consider circuits computing non-constant functions).

A lowest one of a (not necessarily monotone) Boolean function f : {0,1}n → {0,1} is a vector
a ∈ {0,1}n such that f (a) = 1 but f (b) = 0 for all vectors b ⩽ a, b ̸= a. We will denote the set of all
lowest ones of f by A f , that is, A f := {a ∈ f−1(1) : f (b) = 0 for all b ⩽ a, b ̸= a}. Note that the set
A f is always an antichain: a ∈ A and b ⩽ a imply a = b.

In this section, we will only consider monotone Boolean functions. Note that if the function f is
monotone, then A f uniquely determines the entire function f :

f (x1, . . . ,xn) =
∨

a∈A f

∧
i∈sup(a)

xi ,

where here and throughout, sup(x) := {i ∈ [n] : xi ̸= 0} stands for the support of a vector x ∈ Rn,
that is, for the set of its nonzero positions. The following fact is well known (see, for example, [4,
Theorem 1.21]).

4

Fact 1 (Folklore). Prime implicants of monotone Boolean functions do not contain negated variables.

Proof. Let f (x1, . . . ,xn) be a monotone Boolean function. Suppose for a contradiction that t = xit ′ is a
prime implicant of f . Since t is prime, t ′ is not an implicant of f . That is, there is a vector a ∈ {0,1}n

such that t ′(a) = 1 but f (a) = 0 and, hence, also t(a) = 0. Thus, ai = 1. Since the function f is
monotone, we also have f (b) = 0 for the vector b obtained by flipping to 0 the ith bit of a. But t(b) = 1
implies f (b) = 1, a contradiction.

Thus, for every monotone Boolean function f , we have:

A f = set of characteristic 0-1 vectors of prime implicants of f .

The upward closure of a set A ⊆ Nn of vectors is the set A↑ := {b ∈ Nn : b ⩾ a for some a ∈ A} of
integer vectors containing at least one vector of A. A shadow of a vector a ∈ Nn is any vector b ∈ Nn

with sup(b) = sup(a). For a set A ⊆ Nn of vectors, let Sup(A) := {sup(a) : a ∈ A} ⊆ 2[n] denote the
family of supports of its vectors.

We start with the following simple (also “folklore”) property of sets of exponent vectors produced
by monotone Boolean circuits. Let f be the monotone Boolean function, and A f ⊆ f−1(1) be the set of
lowest ones of f . Let also F be a monotone Boolean (∨,∧) circuit, and B ⊆ Nn be the set of exponent
vectors produced by F , that is, the set of exponent vectors of the polynomial produced by the monotone
arithmetic (+,×) version of F .

Fact 2. The circuit F computes f if and only if B ⊆ (A f)
↑ and Sup(A f)⊆ Sup(B).

Proof. Let A := A f . Hence, our Boolean function f is of the form f (x) =
∨

a∈A
∧

i∈sup(a) xi, while the
Boolean function computed by the circuit F is of the form F(x) =

∨
b∈B

∧
i∈sup(b) xi. The “if” direction

follows from the simple observation: for every input x ∈ {0,1}n, we have f (x) = 1 iff sup(x)⊇ sup(a)
for some a ∈ A. Hence, B ⊆ A↑ yields F(x)⩽ f (x), while Sup(A)⊆ Sup(B) yields f (x)⩽ F(x).

Now assume that the circuit F computes f . If b ̸∈ A↑ held for some vector b ∈ B, then on the input
x ∈ {0,1}n with xi = 1 iff i ∈ sup(b), we would have sup(a) \ sup(b) ̸= /0 for all a ∈ A and, hence,
f (x) = 0. But F(x) = 1, a contradiction. To show the inclusion Sup(A) ⊆ Sup(B), suppose for the
contradiction that there is a vector a ∈ A such that sup(b) ̸= sup(a) holds for all vectors b ∈ B. Since
B ⊆ A↑ and since A is an antichain, sup(b)⊂ sup(a) (proper inclusion) cannot hold, for otherwise, the
vector a ∈ A would contain another vector of A. So, we have sup(b)\ sup(a) ̸= /0 for all vectors b ∈ B.
But then F(a) = 0 while f (a) = 1, a contradiction.

In general, shadows b ∈ B of vectors a ∈ A f guaranteed by Fact 2 may have large entries (as large
as 2s, where s is the size of the Boolean circuit F computing f): we only know that sup(b) = sup(a)
holds. In read-k circuits, we restrict the magnitude of entries in shadows b ∈ B. A vector b ∈ Nn is
k-bounded if no its entry is larger than k.

Definition 1 (Read-k circuits2). Let F be a monotone (∨,∧) circuit computing a Boolean function f ,
and let B ⊆ Nn be the set of exponent vectors produced by F . The circuit F is a read-k circuit if every
lowest one a ∈ A f of f has at least one k-bounded its shadow in B. In particular, F is a read-1 circuit
iff the inclusions A ⊆ B ⊆ (A f)

↑ hold.

That is, the (arithmetic) polynomial P produced by the monotone arithmetic (+,×) version of the
(∨,∧) circuit F must now contain, for every prime implicant of f , at least one monomial with the

2The term “read-k circuit” is by analogy with the established term “read-k branching programs.”

5

same set of variables and with each variable appearing in that monomial with a power not exceeding k.
There are no restrictions on the degrees of other monomials of P. By Fact 2, every monotone (∨,∧)
circuit of size s is a read-k circuit for some k ⩽ 2s.

Remark 1. The arithmetic (+,×) version F ′ of a monotone Boolean (∨,∧) circuit F obtained by
replacing OR gates by + gates, AND gates by × gates. The polynomial produced by F ′ is of the form
P(x) = ∑S∈F cS ∏i∈S xdi

i for some family F ⊆ 2[n], some integer constants cS ⩾ 1 (telling how often
the corresponding monomial ∏i∈S xdi

i appears in the polynomial), and all positive exponents di ⩾ 1.
Fact 2 implies that F computes a given Boolean function f iff (i) for every monomial ∏i∈S xdi

i of P, the
term

∧
i∈S xi is an implicant of f (property B ⊆ (A f)

↑), and (ii) for every prime implicant
∧

i∈I xi of f ,
the polynomial contains a monomial ∏i∈S xdi

i with S = I (property Sup(A f)⊆ Sup(B)); in the case of
read-k circuits, we have an additional restriction di ⩽ k for all i ∈ I in the property (ii).

Example 1. The Boolean circuit F = (x∨ y)(x∨ z)∨ xy computes the Boolean function f (x,y,z) =
x∨ yz, whose prime implicants are x and yz; hence, A f = {(1,0,0),(0,1,1)}. The arithmetic version
F ′ = (x+y)(x+z)+xy of F produces the polynomial P= x2+2xy+xz+yz. Hence, the set of exponent
vectors produced by the Boolean circuit F is B = {(2,0,0),(1,1,0),(1,0,1),(0,1,1)} ⊆ (A f)

↑. The
circuit is a read-2 but not read-1 circuit, because the only shadow x2 of the prime implicant x of f in
the polynomial P has degree 2.

For a monotone Boolean function f , let

Bk(f) := min size of a monotone read-k (∨,∧) circuit computing f .

Remark 2. Note that already read-1 circuits are “universal:” every monotone Boolean function f can
be computed by such a circuit (for example, as an OR of prime implicants of f). But read-k circuits for
small k can be very inefficient: we will show in Section 8 that already the gap B1(f)/B2(f) can be
exponential.

4 From Monotone Arithmetic to Boolean Read-1

The main difference of (monotone) arithmetic (+,×) circuits from Boolean and tropical circuits is
that they produce what they compute. This can be easily shown using the following extension to
multivariate polynomials of a basic fact that no univariate polynomial of degree d can have more than
d roots (see, for example, Alon and Tarsi [1, Lemma 2.1]):

(∗) If P is a nonzero n-variate polynomial with every variable occurring with degree ⩽ d, and if
S ⊆R is a set of |S|⩾ d +1 numbers, then P(x) ̸= 0 holds for at least one point x ∈ Sn.

This is proved in [1] by an easy induction on the number n of variables.

Fact 3. If a monotone arithmetic circuit computes a given polynomial, then the circuit also produces
that polynomial.

Proof. Let F be a monotone arithmetic circuit computing a polynomial P1, and let P2 be the polynomial
produced by F . Since the circuit F is monotone, it has no negative constant inputs. So, the coefficients
in both polynomials P1 and P2 are positive. Suppose for a contradiction that the polynomials P1 and
P2 do not coincide (as formal expressions). Then P = P1 −P2 is a nonzero polynomial of a (possibly
large but) finite degree, and (∗) implies that P1(x)−P2(x) ̸= 0 for some x ∈Rn

+, a contradiction with
our assumption that the circuit F computes the polynomial P1.

6

Say that two polynomials with positive coefficients are similar if they have the same monomials
(with possibly different coefficients). An arithmetic circuit is constat-free if it has no constants as
inputs. For a set A ⊆ Nn of vectors, let

Arith(A) := smallest size of a monotone constant-free arithmetic circuit computing

a polynomial similar to P(x) = ∑a∈A ∏
n
i=1 xai

i .

The lower envelope ⌊A⌋ ⊆ A of a set A ⊆ Nn of vectors consists of all vectors a ∈ A of smallest
degree, where the degree of a vector a ∈ Nn be the sum a1 + · · ·+an of its entries. A set is A ⊆ Nn

homogeneous of degree m, if all its vectors have the same degree m; note that then, ⌊A⌋= A holds. The
lower envelope of a polynomial P(x) = ∑a∈A ca ∏

n
i=1 xai

i is the polynomial Q(x) = ∑a∈⌊A⌋ ca ∏
n
i=1 xai

i
consisting of terms of P of smallest degree.

Jerrum and Snir [12, Theorem 2.4] observed that, by appropriately discarding some addition
gates, every monotone arithmetic circuit computing a polynomial can be transformed into a monotone
arithmetic circuit computing its lower envelope.

Lemma 1 (Envelope lemma [12]). For every A ⊆ Nn, Arith(⌊A⌋)⩽ Arith(A).

Proof. Take a monotone arithmetic circuit F computing a polynomial P(x) = ∑a∈A ca ∏
n
i=1 xai

i with
positive coefficients ca > 0. By Fact 3, the circuit also produces the polynomial P. We can obtain a
(+,×) circuit producing the lower envelope Q(x) = ∑a∈⌊A⌋ ca ∏

n
i=1 xai

i of P by appropriately discarding
some of the edges entering addition (+) gates. For a gate v in the circuit F , let Av ⊆ Nn be the
set of exponent vectors of the polynomial produced at v. If v = u×w is a multiplication gate, then
Av = Au +Aw (Minkowski sum). Since the degree of a sum of two vectors is the sum of their degrees,
we have ⌊Av⌋= ⌊Au +Aw⌋= ⌊Au⌋+ ⌊Aw⌋. So, we do nothing in this case.

Now let v = u+w be an addition gate. In this case, we have Av = Au ∪Aw. If the minimum degree
of a vector in Au is the same as the minimum degree of a vector in Aw, then ⌊Av⌋ = ⌊Au ∪Aw⌋ =
⌊Au⌋∪⌊Aw⌋, and we do nothing in this case. If the minimum degree of a vector in Au is smaller than
the minimum degree of a vector in Aw, then ⌊Av⌋ = ⌊Au ∪Aw⌋ = ⌊Au⌋. In this case, we discard the
edge (w,v): delete that edge, delete the + operation labeling the gate v, and contract the edge (u,v). If
the minimum degree of a vector in Aw is smaller than the minimum degree of a vector in Au, then we
discard the edge (u,v).

A monotone Boolean function f is homogeneous if the set A f ⊆ f−1(1) of its lowest ones is
homogeneous (all prime implicants of f have the same number of variables); note that then ⌊A f ⌋= A f

holds.

Theorem 1. For every monotone Boolean function f , Arith(⌊A f ⌋) ⩽ B1(f) ⩽ Arith(A f) hold. In
particular, if f is homogeneous, then Arith(A f) = B1(f).

Proof. Let A := A f ⊆ f−1(1) be the set of lowest ones of f ; hence, f (x) =
∨

a∈A
∧

i∈sup(a) xi. To show
the first inequality Arith(⌊A⌋) ⩽ B1(f), let F be a monotone read-1 Boolean (∨,∧) circuit of size
s = B1(f) computing f , and let B ⊆ Nn be the set of exponent vectors produced by F . Consider
the arithmetic (+,×) version F ′ of the circuit F obtained by replacing OR gates by + gates, and
AND gates by × gates. The arithmetic circuit F ′ produces the same set B of exponent vectors.
Thus, Arith(B)⩽ s. Since the (Boolean) circuit F was a read-1 circuit, we know that the inclusions
A ⊆ B ⊆ A↑ hold. This yields ⌊B⌋= ⌊A⌋. Thus, the polynomial Q(x) = ∑a∈⌊A⌋ ca ∏

n
i=1 xai

i is the lower
envelope of the polynomial P(x) = ∑b∈B cb ∏

n
i=1 xbi

i produced by the circuit F ′, and Lemma 1 yields
Arith(⌊A⌋) = Arith(⌊B⌋)⩽ Arith(B)⩽ s.

7

To show the inequality B1(f) ⩽ Arith(A), let F be a monotone constant-free arithmetic (+,×)
circuit of size Arith(A) computing some polynomial P(x) = ∑a∈A ca ∏

n
i=1 xai

i whose set of exponent
vectors is A. By Fact 3, the circuit F also (syntactically) produces this polynomial. Hence, A is the set
of exponent vectors produced by F . Convert the arithmetic circuit F into a monotone Boolean (∨,∧)
circuit: replace every addition gate with an OR gate, and every multiplication gate with an AND gate.
The resulting Boolean circuit F ′ produces the same set A of exponent vectors. Hence, F ′ computes the
Boolean version f (x) =

∨
a∈A

∧
i∈sup(a) xi of the polynomial P.

5 From Tropical (min,+) to Boolean Read-1

In the tropical (min,+) semiring, powering xai
i = xi⊙xi⊙·· ·⊙xi (ai ∈N times) turns into multiplication

by scalars aixi = xi + xi + · · ·+ xi. So, a generic monomial ∏
n
i=1 xai

i turns into the tropical “monomial”
⟨a,x⟩ = a1x1 + · · ·+ anxn, the scalar product of vectors a and x, and a polynomial ∑a∈A ca ∏

n
i=1 xai

i
turns into the tropical (min,+) polynomial f (x) = mina∈A⟨a,x⟩+ ca with “exponent” vectors a ∈ A
and “coefficients” ca. The corresponding minimization problem (represented by such a polynomial)
is constant-free if ca = 0 for all a ∈ A. A (min,+) circuit F solves a given minimization problem f
if F(x) = f (x) holds for all input weightings x ∈ Rn

+. A (min,+) circuit F is constant-free if it has
no constants other than 0 as inputs. The constant-free version of a (min,+) circuit F is obtained by
replacing all constant inputs with constant 0.

Lemma 2 ([16]). If a (min,+) circuit F solves a constant-free minimization problem f , then the
constant-free version of F also solves f .

Proof. Let f (x) = mina∈A⟨a,x⟩ be a (constant-free) polynomial computed by the circuit F , and let
g(x) = minb∈B ⟨x,b⟩+ cb be the tropical (min,+) polynomial produced by F . Since constant inputs
can only affect the “coefficients” cb, the polynomial produced by the constant-free version Fo of F is
the constant-free version go(x) = minb∈B ⟨x,b⟩ of the polynomial g(x). Since the circuit F computes f ,
we have g(x) = f (x) for all input weightings x ∈Rn

+. We have to show that go(x) = f (x) holds for all
x ∈ Rn

+ as well. Since the constants cb are nonnegative, we clearly have go(x) ⩽ g(x) = f (x) for all
x ∈Rn

+. So, it remains to show that also f (x)⩽ go(x) holds for all x ∈Rn
+.

Suppose for the sake of contradiction that f (x0)> go(x0) holds for some input weighting x0 ∈Rn
+.

Then the difference d = f (x0)−go(x0) is positive. We can assume that the constant c := maxb∈B cb is
also positive, for otherwise, there would be nothing to prove. Take the scalar λ := 2c/d > 0. Since
go(x0) = f (x0)−d, we obtain g(λx0)⩽ go(λx0)+c = λ ·go(x0)+c = λ [f (x0)−d]+c = f (λx0)−c ,
which is strictly smaller than f (λx0), a contradiction with f (x) = g(x) for all x ∈Rn

+.

Sets of “exponent” vectors produced by constant-free tropical (min,+) circuits have the following
properties, which are even stronger than those for monotone Boolean circuits, as given by Fact 2.

Lemma 3. Let F be a constant-free (min,+) circuit, B ⊆ Nn be the set of “exponent” vectors
produced by F, and A ⊆ {0,1}n be an antichain. Then the circuit F solves the minimization problem
fA(x) = mina∈A⟨a,x⟩ iff the inclusions A ⊆ B ⊆ A↑ hold.

Proof. Since constant inputs can only affect the “coefficients,” tropical polynomials produced by
constat-free circuits are also constant-free. Thus, the minimization problem solved by the circuit F is
of the form fB(x) = minb∈B⟨b,x⟩. For the “if” direction, suppose that the inclusions A ⊆ B ⊆ A↑ hold,
and take an arbitrary input weighting x ∈Rn

+. Then A ⊆ B implies fA(x)⩾ fB(x), while B ⊆ A↑ implies
fA(x)⩽ fB(x) (the weights are nonnegative). Thus, the circuit F solves our minimization problem fA

8

For the “only if” direction, assume that the circuit F solves the minimization problem fA. Then,
in particular, fA(x) = fB(x) holds for all input weightings x ∈ {0,1,n+ 1}n. To show the inclusion
B ⊆ A↑, take an arbitrary vector b ∈ B, and consider the weighting x ∈ {0,1}n such that xi := 0 for
i ∈ sup(b), and xi := 1 for i ̸∈ sup(b). Take a vector a ∈ A on which the minimum fA(x) = ⟨a,x⟩ is
achieved. Then ⟨a,x⟩ = fA(x) = fB(x) ⩽ ⟨b,x⟩ = 0. Thus, sup(a) ⊆ sup(b). Since a is a 0-1 vector
and b ∈ Nn, this yields b ⩾ a, as desired.

To show the inclusion A ⊆ B, take an arbitrary vector a ∈ A, and consider the weighting x ∈
{1,n+ 1}n with xi := 1 for all i ∈ sup(a) and xi := n+ 1 for all i ̸∈ sup(a). Take a vector b ∈ B for
which ⟨b,x⟩= fB(x) holds. Hence, ⟨b,x⟩= fB(x) = fA(x)⩽ ⟨a,x⟩= ⟨a,a⟩⩽ n. If bi ⩾ 1 held for some
i ̸∈ sup(a), then we would have ⟨b,x⟩⩾ bixi = bi(n+1)> n, a contradiction. Thus, sup(b)⊆ sup(a).
Since B ⊆ A↑, there is a vector a′ ∈ A such that a′ ⩽ b. Hence, sup(a′)⊆ sup(b)⊆ sup(a). Since both
a and a′ are 0-1 vectors, this yields a′ ⩽ a. Since the set A is an antichain, we have a′ = a, and the
equality sup(b) = sup(a) follows. Thus, ⟨b,a⟩= ⟨b,x⟩⩽ ⟨a,a⟩. Together with sup(b) = sup(a) and
b ∈ Nn, we have b = a, meaning that our vector a ∈ A belongs to the set B, as desired.

For a finite set A ⊆ Nn of vectors, let

Min(A) := smallest size of a (min,+) circuit computing fA(x) = mina∈A⟨a,x⟩.

Theorem 2. For every monotone Boolean function f , we have Min(A f) = B1(f).

Proof. Let A := A f ⊆ f−1(1) be the set of lowest ones of f ; hence, A is an antichain and f (x) =∨
a∈A

∧
i∈sup(a) xi. To show the inequality Min(A)⩽ B1(f), take a monotone read-1 (∨,∧) circuit F of

size B1(f) computing the Boolean function f , and let B ⊆ Nn be the set of exponent vectors produced
by F . By Fact 2, we have B ⊆ A↑. Since the circuit F is a read-1 circuit, we also have the inclusion
A ⊆ B. The tropical (min,+) version F ′ of F (obtained by replacing OR gates with min gates, and
AND gates with addition gates) is constant-free and produces the same set B of “exponent” vectors.
Since the inclusions A ⊆ B ⊆ A↑ hold, Lemma 3 implies that the circuit F ′ solves the minimization
problem fA(x) = mina∈A⟨a,x⟩. Hence, Min(A)⩽ B1(f) holds.

To show the inequality B1(f)⩽ Min(A), take a tropical (min,+) circuit F of size Min(A) solving
the minimization problem fA(x) = mina∈A⟨a,x⟩, and let B ⊆Nn be the set of exponent vectors produced
by the circuit F . By Lemma 2, we can assume that the circuit F is constant-free. So, the polynomial
fB(x) = minb∈B⟨b,x⟩ produced by F is also constant-free. Since the circuit F solves the problem fA,
and since A = A f is an antichain, Lemma 3 gives us the inclusions A ⊆ B ⊆ A↑. The Boolean (∨,∧)
version F ′ of F (obtained by replacing min gates by OR gates, and addition gates by AND gates)
produces the same set B of “exponent” vectors. Together with Fact 2 and the definition of read-1
circuits, inclusions A ⊆ B ⊆ A↑ imply that F ′ is a read-1 circuit and computes the Boolean function f .

6 From Non-Monotone Multilinear to Monotone Read-1

Due to the lack of strong lower bounds for general (non-monotone) arithmetic (+,×,−) circuits, and
because they seem to be the most intuitive circuits for computing multilinear polynomial functions, a
successful approach has been to consider a restriction called “multilinearity” of arithmetic circuits, first
introduced by Nisan and Wigderson [22].

Recall that a polynomial in the ring R[x1, . . . ,xn] is multilinear if in each of its monomials, the
power of every input variable is at most one. An arithmetic (+,×,−) circuit F is syntactically
multilinear if the formal polynomial produced at each gate of the circuit is multilinear. A natural

9

relaxation was to call the circuit F (semantically) multilinear if the polynomial functions computed
by the produced polynomials are multilinear. For example, the polynomial function f = y computed
at a gate producing a formal polynomial P = x2 + y− x2 is multilinear. In other words, the circuit
F is semantically multilinear if the polynomial functions g and h computed at the inputs to any
multiplication (×) gate depend on disjoint sets of variables. (Multilinearity can only be destroyed at
multiplication gates.) Monotone (+,×) circuits do not have cancellations x− x = 0; hence, monotone
semantically multilinear (+,×) circuits are also syntactically multilinear. Raz [25, Proposition 2.1]
observed that also minimal semantically multilinear (+,×,−) formulas (circuits with fanout ⩽ 1 gates)
are syntactically multilinear. However, it is not clear if every semantically multilinear circuit can be
efficiently simulated by a syntactically multilinear circuit.

There are several impressing results concerning multilinear (as well as syntactically multilinear)
arithmetic (+,×,−) circuits and formulas; see, for example, the survey [34]. In particular, Raz [25]
proved that any multilinear arithmetic formula computing the permanent or the determinant of an n×n
matrix is of size nΩ(logn). Furthermore, Raz [24] proved that a gap between multilinear arithmetic
formulas and circuits can be super-polynomial. Proving super-polynomial lower bounds for the size of
multilinear arithmetic circuits remains an open problem.

Due to the lack of even super-linear lower bounds for (unrestricted) DeMorgan (∨,∧,¬) circuits,
and by analogy with arithmetic circuits, the multilinearity restriction was also imposed on DeMorgan
circuits. Recall that a DeMorgan (∨,∧,¬) circuit F fanin-2 AND and OR gates; inputs are the variables
x1, . . . ,xn and their negations x1, . . . ,xn. As before, the size of a circuit is the total number of gates
in it. A monotone Boolean circuit is a DeMorgan circuit without negated input literals as inputs.
Being DeMorgan is not a real restriction: every Boolean (∨,∧,¬) circuit (with negations applied not
necessary to only inputs) can be easily transformed into an equivalent DeMorgan (∨,∧,¬) circuit by
only doubling the circuit size (see, e.g., [37, p. 195]): we double all AND and OR gates, one output of
a pair is negated, the other one not; after that we can apply the DeMorgan rules without increasing the
number of gates.

A DeMorgan (∨,∧,¬) circuit F is syntactically multilinear if the two subcircuits rooted at inputs
of any AND gate have no input literals of the same variable in common. For example, the circuit
F = (x ∨ xy)y is not syntactically multilinear. Sengupta and Venkateswaran [32] considered the
connectivity function which accepts an input x ∈ {0,1}(

n
2) iff the graph Gx specified by the 0-1 input

vector x is connected. By adopting the proof of Jerrum and Snir [12] of a lower bound (4/3)n−1/n on
the minimum size of monotone arithmetic circuits computing the directed spanning tree polynomial,
it was shown in [32] that every monotone syntactically multilinear Boolean circuits computing the
connectivity function must also have at least (4/3)n−1/n gates. Krieger [17] has shown that minimal
syntactically multilinear (∨,∧,¬) circuits computing monotone functions f are monotone, and that if
the set A f of lowest ones of a monotone Boolean function f is cover-free (that is, if a,b,c ∈ A f and
a+b ⩾ c imply c ∈ {a,b}), then every syntactically multilinear (∨,∧,¬) circuit computing f must
have at least |A f |−1 gates.

Remark 3. Already in 1976, Schnorr [31] has proved a lower bound Arith(A)⩾ |A|−1 on monotone
arithmetic circuit complexity of polynomials, whose sets A of exponent vector are cover-free. This
surprising similarity of the bound in [17] with Schnorr’s bound, as well as a possibility to adopt the
argument of Jerrum and Snir in [32], served as an indication that there “should” be some general
relation between multilinear Boolean (∨,∧,¬) and monotone arithmetic circuits. Our Theorem 3
below gives such a relation, even for semantically (not only syntactically) multilinear (∨,∧,¬) circuits:
such circuits are not stronger than monotone arithmetic circuits.

Following the analogy with arithmetic circuits, Ponnuswami and Venkateswaran [23] relaxed the

10

syntactic multilinearity restriction of Boolean circuits to their semantic multilinearity. Recall that a
Boolean function f (x1, . . . ,xn) depends on the ith variable xi if f (a) ̸= f (b) holds for some two vectors
a,b ∈ {0,1}n that differ only in the ith position. The following fact is well known; see, for example, [4,
Theorem 1.17].

Fact 4 (Folklore). A Boolean function f (x1, . . . ,xn) depends on the ith variable iff xi or xi appears in
at least one prime implicant of f .

Proof. The “only if” direction follows from the obvious fact that every Boolean function f is an OR
of its prime implicants. So, if neither xi nor xi appears in any prime implicant of f , then f does not
depend on the ith variable. To show the “if” direction, let t = zt ′ be a prime implicant of f , where
z ∈ {xi,xi}. Since the implicant t is prime, the term t ′ is not an implicant of f . That is, there is a vector
a ∈ {0,1}n such that t ′(a) = 1 but f (a) = 0 and, hence, also t(a) = 0. Let b be the vector a with its ith
bit ai replaced by 1−ai. Then t(b) = 1 and, hence, also f (b) = 1, meaning that the function f depends
on the ith variable.

We say that two Boolean functions are independent if they depend on disjoint sets of variables.
Thus, by Fact 4, two Boolean functions are independent iff their prime implicants share no common
variables (negated or not). For example, the functions g = x∨ xy and h = y∨ yz are independent.

Definition 2 (Multilinear circuits). A DeMorgan (∨,∧,¬) circuit F is multilinear (or semantically
multilinear) if the two Boolean functions g and h computed at the inputs to any AND gate are
independent.

It is clear that every syntactically multilinear DeMorgan circuit is also (semantically) multilinear.
But the converse does not need to hold: for example, the circuit F = (x∨xy)(y∨yz) is not syntactically
multilinear, but is (semantically) multilinear.

The upward closure of a Boolean function f : {0,1}n →{0,1} is the monotone Boolean function

f▽(x) :=
∨
z⩽x

f (z) .

For example, the upward closure of the parity function f = x1 ⊕ x2 ⊕·· ·⊕ xn is f▽ = x1 ∨ x2 ∨·· ·∨ xn.
Note that f▽ = f holds for monotone functions f . It is also easy to verify that the lowest ones of f and
of f▽ are the same, that is, A f▽ = A f holds.

Our goal in this section is to prove the following general lower bounds. For a Boolean function f ,
let Blin(f) denote the minimum size of a multilinear DeMorgan (∨,∧,¬) circuit computing f . For a
monotone Boolean function f , let B+

lin(f) denote the minimum size of a monotone multilinear (∨,∧)
circuit computing f . Recall that A f ⊆ f−1(1) is the set of lowest ones of a (not necessarily monotone)
Boolean function f , that is, the set of vectors a such that f (a) = 1 but f (b) = 0 for all b ⩽ a, b ̸= a.

Theorem 3. For every Boolean function f , we have

Blin(f)⩾ B+

lin(f▽)⩾ B1(f▽)⩾ Arith(⌊A f ⌋) . (2)

We will first prove the following consequence of Theorem 3 for monotone Boolean functions f ,
and then will prove the theorem itself (for arbitrary functions f). A monotone Boolean function is
homogeneous if all its prime implicants have the same number of variables, and is k-homogeneous if
this number is k.

Recently, Lingas [20] has shown that if a monotone Boolean function f is k-homogeneous, then
B+

lin(f) ⩾ Arith(A f)/O(k2). Theorem 3 implies that, for such functions f , we actually have the

11

equality B+

lin(f) = Arith(A f), and even the equality Blin(f) = Arith(A f) (for non-monotone multilinear
circuits). That is, the minimum size of a multilinear (∨,∧,¬) circuit computing a Boolean function
f (x) =

∨
S∈F

∧
i∈S xi, where all sets S ∈ F are of the same size, coincides with the minimum size of a

monotone arithmetic (+,×) circuit computing a polynomial similar to P(x) = ∑S∈F ∏i∈S xi.

Corollary 1. For every monotone Boolean function f , we have Blin(f) = B+

lin(f). If f is monotone
and homogeneous, then Blin(f) = B+

lin(f) = B1(f) = Arith(A f).

Proof. Since f is monotone, we have f▽ = f . So, the equality Blin(f) = B+

lin(f) for monotone Boolean
functions f follows from the lower bound Blin(f)⩾ B+

lin(f▽) = B+

lin(f) given by Eq. (2), and from a
trivial upper bound Blin(f)⩽ B+

lin(f).
Suppose now that the function f is monotone and homogeneous. By Eq. (2), it is enough to show

that then B+

lin(f) = Arith(A) holds for the set A := A f of the lowest ones of the function f . Since f
is homogeneous, we have ⌊A⌋ = A. Hence, Eq. (2) yields B+

lin(f) ⩾ Arith(⌊A⌋) = Arith(A), and ir
remains to show the inequality B+

lin(f)⩽ Arith(A).
For this, take a monotone constant-free arithmetic (+,×) circuit F of size s = Arith(A) computing

some polynomial similar to P(x) = ∑a∈A ∏
n
i=1 xai

i . By Fact 3, the circuit F also produces the set A
of exponent vectors of P. Let F ′ be the Boolean version of the circuit F obtained by replacing each
+-gate by an OR gate, and each ×-gate by an AND gate. The circuit F ′ produces the same set A of
exponent vectors and, hence, computes our Boolean function f (x) =

∨
a∈A

∧
i∈sup(a) xi. So, it remains

to show that the circuit F ′ is multilinear.
To show this, take an arbitrary AND gate u = v∧w in the Boolean circuit F ′. We have to show

that the Boolean functions fv and fw computed at the inputs v and w of this gate are independent. In
the arithmetic circuit F , this was a multiplication gate u = v×w. Let Bv ⊆ Nn and Bw ⊆ Nn be the
sets of exponent vectors of the polynomials Pv and Pw produced at the gates v and w of F . Since the
polynomial P produced by the entire circuit F is multilinear, the polynomials produced at its gates must
be multilinear. In particular, the polynomial Pu produced at the gate u = v×w must be also multilinear.
Thus, the sets Bv and Bw must consist of vectors (actually, of 0-1 vectors due to multilinearity) with
disjoint supports, that is, sup(x)∩ sup(y) = /0 must hold for all vectors x ∈ Bv and y ∈ Bw.

In the Boolean version F ′ of the circuit F , the same sets Bv and Bw of exponent vectors are produced
at the inputs v and w of the AND gate u = v∧w. By Fact 2, the inclusions3 Sup(A fv)⊆ Sup(Bv) and
Sup(A fw)⊆ Sup(Bw) hold. That is, for every lowest one b ∈ A fv of the function fv computed at the gate
v there is a vector x ∈ Bv with sup(x) = sup(b), and for every lowest one c ∈ A fw of fw there is a vector
y ∈ Bw with sup(y) = sup(c). Thus, sup(b)∩ sup(c) = /0 holds for all lowest ones b ∈ A fv and c ∈ A fw

as well. Since prime implicants of a monotone Boolean function have no negated literals (Fact 1), and
since lowest ones of such a function are characteristic 0-1 vectors of its prime implicants, this means
that prime implicants of fv and fw share no variables in common. Thus, by Fact 4, the functions fv and
fw are independent, as desired.

6.1 Proof of Theorem 3

Since lowest ones of a Boolean function f and of its upward closure g := f▽ are the same, we have
⌊Ag⌋ = ⌊A f ⌋ and, hence, also Arith(⌊Ag⌋) = Arith(⌊A f ⌋). By Theorem 1, B1(g) ⩾ Arith(⌊Ag⌋) =
Arith(⌊A f ⌋). This shows the last inequality in Eq. (2). To prove the first two inequalities in Eq. (2), we
first establish (in Lemmas 4 and 5) the behavior of sets Ag of lowest ones as well as of upward closures
g▽ of functions g computed at the gates of DeMorgan (∨,∧,¬) circuits. In both cases, we will use the
following simple fact.

3Recall that Sup(A) = {sup(a) : a ∈ A} ⊆ 2[n] is the family of supports sup(a) = {i ∈ [n] : ai ̸= 0} of vectors in A.

12

Fact 5. Let g,h : {0,1}n →{0,1} be Boolean functions, and let b ∈ Ag and c ∈ Ah be their lowest ones.
If g and h are independent, then sup(b)∩ sup(c) = /0 and g(b∨ c) = h(b∨ c) = 1.

Proof. Note that t(b) = 1 holds for some prime implicant t =
∧

i∈S xi ∧
∧

j∈T x j of g with S = sup(b):
we have S ⊆ sup(b) since t(b) = 1, and sup(b) ⊆ S since g(b) = 1 and b is a lowest one of g. So,
since g and h are independent, the disjointness sup(b)∩ sup(c) = /0 follows from Fact 4. In particular,
b+ c = b∨ c is a 0-1 vector. Since the function g does not depend on any variable xi with i ∈ sup(c),
we have g(b∨c) = g(b+c) = g(b+ 0⃗) = g(b) = 1. Similarly, since function h does not depend on any
variable xi with i ∈ sup(b), we also have h(b∨ c) = h(b+ c) = h(⃗0+ c) = h(c) = 1.

Lemma 4 (Lowest ones). For any Boolean functions g,h : {0,1}n →{0,1} we have Ag∨h ⊆ Ag ∪Ah
and Ag∧h ⊆ (Ag ∨Ah)

↑, with Ag∧h ⊆ Ag ∨Ah if g and h are monotone. If g and h are independent, then
Ag∧h ⊆ Ag +Ah.

Proof. Let first f = g∨h, and take an arbitrary lowest one a ∈ A f of f . Then g(a) = 1 or h(a) = 1,
and both g(b) = 0 and h(b) = 0 hold for every vector b ⩽ a, b ̸= a. Thus, either a ∈ Ag or a ∈ Ah, as
desired.

Now let f = g∧h, and take an arbitrary lowest one a ∈ A f of f . Since then g(a) = 1 and h(a) = 1,
there are lowest ones b ∈ Ag and c ∈ Ah such that b ⩽ a and c ⩽ a. Hence, a ⩾ b∨ c, meaning that
vector a belongs to (Ag ∨Ah)

↑, as desired. If g and h are monotone, then g(b) = 1 implies g(b∨c) = 1,
and h(c) = 1 implies h(b∨ c) = 1. Hence, f (b∨ c) = 1. Since b∨ c ⩽ a and a is a lowest one of f , we
actually have an equality a = b∨ c, meaning that a ∈ Ag ∨Ah, as desired.

Now suppose that the (not necessarily monotone) functions g and h are independent, and take an
arbitrary lowest one a ∈ A f . As just shown, a ⩾ b∨c holds for some lowest ones b ∈ Ag and c ∈ Ah. By
Fact 5, we have b∨ c = b+ c and g(b+ c) = h(b+ c) = 1; hence, also f (b+ c) = 1. Since a ⩾ b+ c
and since vector a is a lowest one of f , this yields the equality a = b+ c. Thus, a ∈ Ag +Ah, as desired.

Remark 4. In general, the inclusion Ag∧h ⊆ Ag ∨Ah does not need to hold. Take, for example g =
x1x2x3∨x1x2 and h = x1x2x3∨x2x3; hence, g∧h = x1x2x3. The only lowest one of g∧h is a = (1,1,1),
the only lowest one of g is b = (1,0,0), and the only lowest one of h is b = (0,0,1). But a ̸= b∨ c.

Lemma 5 (Upward closures). For any Boolean functions g and h, we have (g∨h)▽ = g▽∨h▽ and
(g∧h)▽ ⩽ g▽∧h▽. If g and h are independent, then (g∧h)▽ = g▽∧h▽.

Proof. Let first f = g∨h. To show the inequality f▽ ⩽ g▽∨h▽, take any vector x ∈ {0,1}n for which
f▽(x) = 1 holds. Then x ⩾ a for some lowest one a ∈ A f . By Lemma 4, we have a ∈ Ag or a ∈ Ah.
Hence, either g▽(x) = 1 or h▽(x) = 1, as desired. To show the opposite inequality f▽ ⩾ g▽∨h▽, take
any vector x ∈ {0,1}n for which g▽(x) = 1 holds. Then g(z) = 1 and, hence, also f (z) = 1 holds for
some z ⩽ x, meaning that f▽(x) = 1, as desired. The same happens if h▽(x) = 1 holds.

Now let f = g∧h. Then the inequality f▽ ⩽ g▽∧h▽ is trivial: if f▽(x) = 1, then f (z) = 1 holds
for some vector z ⩽ x and, hence, both g(z) = 1 and h(z) = 1 hold. So, assume that the functions g
and h are independent. We have to show that then also g▽∧h▽ ⩽ f▽ holds. For this, take any vector
x ∈ {0,1}n for which both g▽(x) = 1 and h▽(x) = 1 hold. Then g(b) = 1 and h(c) = 1 hold for some
lowest one b ⩽ x of g and for some lowest one c ⩽ x of h. By Fact 5, we have g(b∨ c) = h(b∨ c) = 1
and, hence, also f (b∨ c) = 1. Since b∨ c ⩽ x, this yields f▽(x) = 1, as desired.

Remark 5. In general, the inequality g▽∧ h▽ ⩽ (g∧ h)▽ does not need to hold. Take, for example,
f = g∧ h with g = x1x2 ∨ x3 and h = x1x2 ∨ x3; hence, f = x3. On the vector a = (1,1,0), we have
f▽(a) = f (a) = 0, but g▽(a)⩾ g(1,0,0) = 1 and h▽(a)⩾ h(0,1,0) = 1.

13

Now we turn to the proof of the remaining two inequalities Blin(f) ⩾ B+

lin(f▽) and B+

lin(f▽) ⩾
B1(f▽) claimed in Theorem 3. This is done in Lemmas 6 and 7.

We can view every DeMorgan (∨,∧,¬) circuit F(x) computing a Boolean function f (x) of n
variables as a monotone (∨,∧) circuit H(x,y) of 2n variables with the property that f (x) = H(x,x)
holds for all x ∈ {0,1}n, where x = (x1, . . . ,xn) is the complement of x = (x1, . . . ,xn). The monotone
version of the circuit F(x) is the monotone circuit F+(x) = H(x,⃗1) obtained by replacing every negated
input literal xi with constant 1. For example, the monotone version of the circuit F = yz∨ x(y∨ xy) is
F+ = y ·1∨ x(1∨1 · y) = x∨ y.

Lemma 6 (Multilinear to monotone multilinear). Let F be a DeMorgan (∨,∧,¬) circuit computing a
Boolean function f . If F is multilinear, then the circuit F+ is also multilinear and computes f▽. In
particular, Blin(f)⩾ B+

lin(f▽) holds.

Proof. Suppose that the circuit F(x) = H(x,x) is multilinear. To verify that the circuit F+(x) = H(x,⃗1)
is also multilinear, take an arbitrary AND gate u = v∧w in F . By Fact 4, the prime implicants of the
Boolean functions fv and fw computed at gates v and w do not share common variables. The prime
implicants of the functions fv

+ and fw
+ computed at gates v and w in the monotone version F+ of F

are obtained from the prime implicants of fv and fw by replacing negated literals xi with constant 1. So
again, by Fact 4, the functions fv

+ and fw
+ are independent, as desired. It remains to show that the

circuit F+ computes the upward closure f▽ of the function f computed by F .
Upward closures of input variables xi are the variables x▽i = xi themselves, while upward closures

of negated input variables xi are constant-1 functions x▽i = 1. Let g and h be the Boolean functions
computed at the two inputs of an arbitrary gate of F . If this is an OR gate, then Lemma 5 yields the
equality (g∨h)▽ = g▽∨h▽. If this is an AND gate then, since the circuit F is multilinear, the functions
g and h are independent, and Lemma 5 also yields the equality (g∧h)▽ = g▽∧h▽. Thus, in the circuit
F+ = H(x,⃗1), the upward closures g▽ of the functions g computed at the gates of F are computed.
Since this also holds for the output gate of F , at which the function f was computed, the upward
closure f▽ of f is computed at this gate of the circuit F+, as desired.

Lemma 7 (Monotone multilinear to read-1). Monotone multilinear Boolean circuits are read-1 circuits.
In particular, B+

lin(f)⩾ B1(f) holds for every monotone Boolean function f .

Proof. Let F be a monotone multilinear Boolean circuit computing a monotone Boolean function f .
Let B ⊆ Nn be the set of exponent vectors produced by F . By Fact 2, the inclusion B ⊆ (A f)

↑ holds.
So, to show that F is a read-1 circuit, we have only to show that also the inclusion A f ⊆ B holds, i.e.,
that every lowest one a ∈ A f of f is produced by the circuit F .

Let F1 and F2 be the subcircuits of F whose output gates enter the output gate of F , and let f1 and
f2 be the monotone Boolean functions computed by these subcircuits. Let also B1 ⊆ Nn be the set of
exponent vectors produced by the subcircuit F1, and B2 ⊆ Nn be the set of exponent vectors produced
by the subcircuit F2. We argue by induction on the number s of gates in F . In the basis case s = 1,
we have F1 = xi and F2 = x j for some i, j ∈ [n]. Hence, B1 = {⃗ei}= A f1 and B2 = {⃗e j}= A f2 . So, if
F = F1 ∨F2 = xi ∨ x j then B = B1 ∪B2 = {⃗ei, e⃗ j} = A f . If F = F1 ∧F2 = xix j, then i ̸= j due to the
multilinearity of the circuit F . Hence, B = B1 +B2 = {⃗ei + e⃗ j}= A f .

Now suppose that the lemma holds for all monotone Boolean circuits of size at most s−1, and let
F be a monotone Boolean circuit of size s. Since the circuit F is multilinear, both subcircuit F1 and F2
are also multilinear. Since each of F1 and F2 has at most s−1 gates, the lemma holds for both these
subcircuits. Thus, both inclusions A f1 ⊆ B1 and A f2 ⊆ B2 hold.

If F = F1 ∨F2, then B = B1 ∪B2 and Lemma 4 gives the inclusion A f ⊆ A f1 ∪A f2 . So, the desired
inclusion A f ⊆ B follows from the induction hypothesis. If F = F1 ∧F2, then B = B1 +B2 (Minkowski

14

sum). Since the circuit F is multilinear, the functions f1 and f2 are independent, and Lemma 4 yields
A f ⊆ A f1 +A f2 . So, the desired inclusion A f ⊆ B follows again from the induction hypothesis.

6.2 Multilinear Circuits Impede Zero Terms

Lemma 6 rises a natural question: if F = F(x,x) is a DeMorgan (∨,∧,¬) circuit computing a Boolean
function f , when does its monotone version F+ = F(x,⃗1) computes f▽? It can be easily shown that
such are exactly DeMorgan circuits F that “impede zero terms” in the following sense.

Every DeMorgan (∨,∧,¬) circuit F produces (purely syntactically) a unique set T (F) of terms
in a natural way: T (F) = {z} if F = z is an input literal z ∈ {xi,xi}, T (F1 ∨F2) = T (F1)∪ T (F2),
and T (F1 ∧F2) = {t1 ∧ t2 : t1 ∈ T (F1), t2 ∈ T (F2)}. During the production of terms, we can use the
“shortening” rule z∧ z = z, but do not use the “annihilation” rule z∧ z = 0. So, T (F) can contain zero
terms, that is, terms with a variable xi and its negation xi. The positive factor t+ of a term t is obtained
by replacing every its negated literal xi with constant 1.

Let us say that a DeMorgan (∨,∧,¬) circuit F computing a Boolean function f impedes zero terms
if positive factors of zero terms produced by F (if there are any) are implicants of f▽, that is, if t+ ⩽ f▽

holds for every zero term t ∈ T (F). Note that such a circuit does not forbid production of zero terms as
such, but rather “impedes” produced zero terms to unfold the full power of cancellations x∧ x = 0.

Fact 6. Let F be a DeMorgan (∨,∧,¬) circuit computing a Boolean function f with f (⃗0) = 0. The
circuit F+ computes f▽ if and only if F impedes zero terms.

Proof. Since F computes f , we have f =
∨

t∈T t, where T = T (F) is the set of all terms produced
by the circuit F . Since f (⃗0) = 0, none of the terms t ∈ T consist of solely negated variables. For
every term t, we have t▽ = 0 (the constant 0 function) if t is a zero term, and t▽ = t+ if t is a nonzero
term. So, if T ′ ⊆ T is the set of all nonzero terms in T , then (where the second equality follows from
Lemma 5):

f▽ =

(∨
t∈T

t
)▽

=
∨
t∈T

t▽ =
∨

t∈T ′

t+ ⩽
∨
t∈T

t+ = F+

with the equality iff t ⩽ f▽ holds for all terms t ∈ T \T ′.

DeMorgan (∨,∧,¬) circuits that do not produce zero terms at all were considered by several
authors, starting with Kuznetsov [18] (already in 1981, under the name “circuits without null-chains”),
where he proved a lower bound | f−1(1)|d/(n+d) on the size of such circuits for any Boolean function
f such that the Hamming distance between any two vectors a ̸= b ∈ f−1(1) is at least d (this gives
a lower bound 2Ω(

√
n) for the characteristic function of Reed–Muller codes), and a surprisingly high

lower bound 2n/3 on the size of such circuits computing another explicit n-variate Boolean function.
Sengupta and Venkateswaran [33] also considered DeMorgan (∨,∧,¬) circuits that do not produce
zero terms (under the name of “non-cancellative circuits”). They showed that for every such circuit F
computing a Boolean function f , the monotone version F+ of F computes f▽. Since non-cancellative
circuits produce no zero terms, this also follows from Fact 6.

Multilinear DeMorgan (∨,∧,¬) circuits already can produce zero terms. For example, the DeMor-
gan (∨,∧,¬) circuit F = (x∨ xy)(y∨ yz) computing f = xy is multilinear but produces zero terms xyy
and xyyz. Still, together with Lemma 6, Fact 6 implies that multilinear DeMorgan circuits impede the
produced zero terms as well.

15

7 An easy lower bound on Arith(A)
There are relatively many strong lower bounds on the monotone arithmetic (+,×) circuit complexity
Arith(A) of explicit polynomials P(x) = ∑a∈A ∏

n
i=1 xai

i , for example [8, 9, 12, 15, 26, 31, 35]. The
obtained bounds are quite high, some even of the form Arith(A)⩾ 2n/2−o(n) (see [9, Theorem 3] or [15,
Appendix E]). By Theorems 1 to 3, these bounds extend to Boolean multilinear, to monotone read-1,
and to tropical circuits.

To demonstrate that the absence of multiplicative idempotence x∧ x = x and absorption x∨ xy = x
in arithmetic circuits can make the task of proving lower bounds much easier than in the case of
monotone Boolean circuits, let us recall a simple “decomposition trick” for arithmetic circuits observed
already by Hyafil [11, Theorem 1] and Valiant [35, Lemma 3].

A set A ⊆ Nn of vectors is m-homogeneous if x1 + · · ·+ xn = m holds for all vectors x ∈ X . A
rectangle is a Minkowski sum X +Y = {x+ y : x ∈ X ,y ∈ Y} of sets X ,Y ⊆ Nn of vectors. Such a
rectangle is r-homogeneous if the set X is r-homogeneous. Let hr(A) denote the maximum possible
number |X +Y | of vectors in an r-homogeneous rectangle X +Y ⊆ A. Note that we only have to
consider rectangles lying entirely within the set A—this is in stark contrast to Boolean and even to
tropical circuits (where also “redundant things” can be produced along the way).

Lemma 8 ([11, 35]). Let m ⩾ 3, and let A ⊆ {0,1}n be m-homogeneous. Then Arith(A)⩾ |A|/hr(A)
holds for some r between m/3 and 2m/3.

Proof. By the definition, Arith(A) is the minimum size s of a monotone arithmetic circuit F computing
a polynomial f (x) = ∑a∈A ca ∏

n
i=1 xai

i whose set of exponent vectors is the set A. By Fact 3, the
polynomial f is also produced by F . Since the polynomial f is multilinear, the circuit is also multilinear
in that the polynomial produced at each its gate is multilinear. We will prove that the polynomial
f can be written as a sum f = g1h1 + · · ·+ gtht of t ⩽ s polynomials, where each polynomial gi is
homogeneous of degree lying between m/3 and 2m/3. If Xi and Yi are the sets of exponent vectors
of polynomials gi and hi, then the rectangle Xi +Yi is the set of exponent vectors of the product
polynomial gihi. Thus, the set A of exponent vectors of the polynomial f can be written as a union
A = (X1 +Y1)∪ ·· ·∪ (Xt +Yt) of t ⩽ s rectangles, each being r-balanced for some m/3 ⩽ r ⩽ 2m/3,
and the lower bound s ⩾ |A|/hr(A) follows.

The proof of the decomposition f = g1h1 + · · ·+ gtht is based on the observation that, due to
deg(gh) = deg(g) + deg(h), there must be a gate u in a given circuit F of size s for f , at which
a polynomial g1 of degree m/3 < deg(g1) ⩽ 2m/3 is computed: start at the output gate and go
backwards by always choosing that input gate, the polynomial computed at which has larger degree.
If we replace the gate u by a new input variable y then, due to the multilinearity of the circuit F ,
the variable y appears in each monomial of the produced polynomial f ′(x1, . . . ,xn,y) with degree 0
or 1. Hence, f ′ is of the form f ′ = y · h1 + f1, where the polynomials h1 and f1 do not depend on
y, and f1 is the polynomial produced by the circuit F ′ obtained after substitution y = 0. Hence, we
have a decomposition f = g1 ·h1 + f1. If deg(f1)< m, then f1 = 0 (since the entire polynomial f is
homogeneous of larger degree m), and we are done. Otherwise, we have deg(f1) = m, and can apply
the same argument to the circuit F ′ of size s−1 producing the polynomial f1.

Example 2 (Perfect matchings). The perfect matching function is a monotone Boolean function
f =Matchn which accepts a subgraph of Kn,n iff it contains a perfect matching. The set A=A f of lowest
ones of this function consists of |A|= n! characteristic 0-1 vectors of all perfect matchings (viewed
as sets of their edges). Since the set A is homogeneous, Theorems 1 to 3 yield Blin(f) ⩾ Min(A) =
B1(f)⩾ Arith(A). Moreover, using Lemma 8, one can show a lower bound Arith(A)⩾

(n
n/3

)
= 2Ω(n).

16

To show this, take any rectangle X +Y such that X +Y ⊆ A and the set X is r-homogeneous. Fix
an arbitrary vector x ∈ X ; hence, x is the characteristic 0-1 vector of a matching with r edges. Since
x+Y ⊆ A, all vectors in x+Y = {x+ y : y ∈ Y} are characteristic 0-1 vectors of |x+Y |= |Y | perfect
matchings. Since all these perfect matchings contain all r edges of the (fixed) matching corresponding
to x, we have |Y |= |x+Y |⩽ (n− r)!. Similarly, every vector y ∈ Y corresponds to a matching with
n− r edges, and we have |X |= |X + y|⩽ r!. Thus, |X +Y |= |X | · |Y |⩽ (n− r)!r! = n!

(n
r

)−1. Since(n
r

)
⩾
(n

n/3

)
for every n/3 ⩽ r ⩽ 2n/3, this yields hr(A)⩽ n!

(n
n/3

)−1 for every such r, and the claimed
lower bound Arith(A)⩾ |A|/hr(A) =

(n
n/3

)
follows.

Remark 6. Ponnuswami and Venkateswaran [23] used direct arguments to prove a lower bound
B+

lin(f) = Ω(2.459n) for f = Matchn. On the other hand, using arguments tighter than in Example 2,
Jerrum and Snir [12] have proved a lower bound Arith(A f)⩾ n(2n−1 −1) for f = Matchn. Together
with Theorem 3, this yields lower bounds B+

lin(f) = Blin(f)⩾ B1(f)⩾ n(2n−1 −1) for this particular
function.

8 The Read-1/Read-2 Gap Can be Exponential

Theorems 1 to 3 show that read-1 (∨,∧) circuits have the same power as tropical (min,+) and as
monotone arithmetic (+,×) circuits computing homogeneous multilinear polynomials, and are not
weaker than (non-monotone) multilinear (∨,∧,¬) circuits. Let us now show that already read-2 (∨,∧)
circuits can be much smaller than read-1 (∨,∧) circuits and multilinear (∨,∧,¬) circuits. For this,
consider the following monotone Boolean function whose inputs are Boolean n×n matrices x = (xi, j):

Isoln(x) = 1 iff every row and every column of x has at least one 1.

That is, Isoln(x) = 0 iff the matrix x has an “isolated” (all-0) row or column.

Lemma 9. For f = Isoln, we have B1(f) = 2Ω(n) but B2(f)⩽ 2n2.

Proof. The set A := f−1(1) consists of all Boolean n× n matrices a = (ai, j) with at least one 1 in
each line (row or column). None of such matrices can have fewer than n 1s, because then it would
have an all-0 row or an all-0 column. So, the smallest number of 1s in a matrix a ∈ A is n, and the
matrices in A with this number of 1s are permutation matrices (with exactly one 1 in each row and in
each column). This means that the lower envelope ⌊A⌋ of f is the set Ag of lowest ones of the perfect
matching function g = Matchn, and we already know that Arith(Ag) = 2Ω(n) holds (see Example 2).
Together with Theorem 1, this yields B1(f)⩾ Arith(⌊A⌋) = Arith(Ag) = 2Ω(n).

To show B2(f)⩽ 2n2, observe that f can be computed by a trivial monotone Boolean circuit

F(x) =
n∧

i=1

(n∨
j=1

xi, j
) n∧

j=1

(n∨
i=1

xi, j
)

of size at most 2n2. So, it remains to verify that F is a read-2 circuit. Let B ⊆ Nn×n be the set of
exponent vectors (or, better to say, of “exponent matrices”) of the polynomial

P(x) =
n

∏
i=1

(n

∑
j=1

xi, j
) n

∏
j=1

(n

∑
i=1

xi, j
)
= ∑

g,h:[n]→[n]
x1,g(1)x2,g(2) · · ·xn,g(n)xh(1),1xh(2),2 · · ·xh(n),n

produced by the arithmetic (+,×) version of the circuit F . Note that each matrix b ∈ B is the sum
b = x+ y of a matrix x (corresponding to the first product) with exactly one 1 is each row, and a matrix

17

y (corresponding to the second product) with exactly one 1 in each column, while each matrix a ∈ A f

is the entry-wise OR a = x∨ y of two such matrices. Since sup(x+ y) = sup(x∨ y), and since none of
the matrices b ∈ B has any entry larger than 2, the circuit F is a read-2 circuit.

9 Concluding Remarks

It is clear that Bk(f)⩾ B(f) holds for any monotone Boolean function f and for any k ⩾ 1, where B(f)
is the minimum size of a monotone (∨,∧) circuit computing f . Super-polynomial lower bounds on
B(f) for explicit functions f are known since the celebrated Method of Approximations was invented
by Razborov [27, 28, 29]. Although strong lower bounds on B(f) were obtained for some explicit
functions, this method (and its latter symmetric versions) can be only applied to Boolean functions
with very special combinatorial properties: both minterms and maxterms must be highly “dispersed”
(not too many of them can share a given number of variables in common). For example, already the
application in [28] of the Method of Approximations to prove the lower bound B(f) = nΩ(logn) for the
perfect matching function f = Matchn is rather nontrivial (since the maxterms of f are dispersed not
highly enough), going deeply into the structure of maxterms of this particular function (see, e.g., [13,
Chapter 9] for more information).

On the other hand, the absence of multiplicative idempotence x∧ x = x and absorption x∨ xy = x
in arithmetic circuits was crucial in the proofs of all lower bounds for such circuits, including those
in [8, 9, 12, 15, 26, 31, 35, 38]. The absence of multiplicative idempotence and absorption was also
crucial in the elementary proof of the lower bound Arith(A f) = 2Ω(n) for f = Matchn in Section 7.

Problem 1. Can a super-polynomial lower bound on B2(f) be proved without using the Method of
Approximations? In particular, can this be done for f = Matchn?

Note that monotone Boolean read-2 circuits constitute the first model of computation—after tropical
and monotone arithmetic circuits—which can use multiplicative idempotence x∧ x = x and absorption
x∨ xy = x. It is worth to note that without absorption, idempotence alone cannot unfold its full power.
Namely, say that a monotone Boolean (∨,∧) circuit F computing a given Boolean function f is tight if
for every monomial ∏i∈I xdi

i of the polynomial produced by the arithmetic (+,×) version of F ,
∧

i∈I xi

is a prime implicant of f . In other words, a circuit is tight if it produces no “redundant” terms, that is,
implicants of f that are not prime implicants of f . Note that there are no restrictions on the degrees di

of variables in terms produced by tight circuits, only on the form of produced terms. As shown in [14,
Theorem 2], a lower bound 2Ω(n) for tight circuits computing the perfect matching function Matchn

can be proved using a similar (fairly simple) argument similar to that used in Section 7.
But this argument fails if also absorption x∨ xy = x (not only idempotence x∧ x = x) is allowed.

In the case of read-1 circuits, we were able (in Theorem 1) to eliminate the influence of absorption
by considering lower envelopes. But already in read-2 circuits, absorbtion can (at least potentially)
show its power. So, a solution of Problem 1 could probably shed more light on where the power of
multiplicative idempotence x∧x = x in combination with absorption x∨xy = x comes from. Of course,
the ultimate goal remains to understand the power of cancellations x− x = 0 in arithmetic (+,×,−)
circuits and, even more ultimately, to understand the power of cancellations x∧ x = 0 in Boolean
(∨,∧,¬) circuits.

References
[1] N. Alon and M. Tarsi, “Colorings and orientations of graphs,” Combinatorica, vol. 12, pp. 125–134, 1992.

18

[2] R. Bellman, “On a routing problem,” Quarterly of Appl. Math., vol. 16, pp. 87–90, 1958.
[3] ——, “Dynamic programming treatment of the Travelling Salesman problem,” J. ACM, vol. 9, no. 1, pp. 61–63, 1962.
[4] Y. Crama and P. L. Hammer, Eds., Boolean Functions: Theory, Algorithms, and Applications, ser. Encyclopedia of

Mathematics and Its Applications. Cambridge University Pess, 2011, vol. 142.
[5] S. Dreyfus and R. Wagner, “The Steiner problem in graphs,” Networks, vol. 1, no. 3, pp. 195–207, 1971.
[6] R. W. Floyd, “Algorithm 97, shortest path,” Comm. ACM, vol. 5, p. 345, 1962.
[7] L. R. Ford, “Network flow theory,” Rand Corp., Santa Monica, Calif., Tech. Rep. P-923, 1956.
[8] S. B. Gashkov, “On one method of obtaining lower bounds on the monotone complexity of polynomials,” Vestnik MGU,

Series 1 Mathematics, Mechanics, vol. 5, pp. 7–13, 1987.
[9] S. B. Gashkov and I. S. Sergeev, “A method for deriving lower bounds for the complexity of monotone arithmetic

circuits computing real polynomials,” Sbornik: Mathematics, vol. 203, no. 10, pp. 1411–1147, 2012.
[10] M. Held and R. M. Karp, “A dynamic programming approach to sequencing problems,” SIAM J. on Appl. Math., vol. 10,

pp. 196–210, 1962.
[11] L. Hyafil, “On the parallel evaluation of multivariate polynomials,” SIAM J. Comput., vol. 8, no. 2, pp. 120–123, 1979.
[12] M. Jerrum and M. Snir, “Some exact complexity results for straight-line computations over semirings,” J. ACM, vol. 29,

no. 3, pp. 874–897, 1982.
[13] S. Jukna, Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, 2012.
[14] ——, “Lower bounds for monotone counting circuits,” Discrete Appl. Math., vol. 213, no. 139–152, 2016.
[15] ——, “Tropical complexity, Sidon sets and dynamic programming,” SIAM J. Discrete Math., vol. 30, no. 4, pp.

2064–2085, 2016.
[16] S. Jukna and H. Seiwert, “Approximation limitations of pure dynamic programming,” SIAM J. on Comput., vol. 49,

no. 1, pp. 170–207, 2020.
[17] M. P. Krieger, “On the incompressibility of monotone DNFs,” Theory Comput. Syst., vol. 41, no. 2, pp. 211–231, 2007.
[18] S. E. Kuznetzov, “Circuits composed of functional elements without zero paths in the basis {&,∨,−},” Izv. Vyssh.

Uchebn. Zaved. Mat., vol. 228, no. 5, pp. 56–63, 1981, in Russian.
[19] A. Levin, “Algorithm for the shortest connection of a group of graph vertices,” Sov. Math. Dokl., vol. 12, pp. 1477–1481,

1971.
[20] A. Lingas, “A note on lower bounds for monotone multilinear Boolean circuits,” ECCC Report Nr. 85, Tech. Rep.,

2022.
[21] E. F. Moore, “The shortest path through a maze,” in Proc. Internat. Sympos. Switching Theory, vol. II, 1957, pp.

285–292.
[22] N. Nisan and A. Wigderson, “Lower bounds on arithmetic circuits via partial derivatives,” Comput. Complexity, vol. 6,

no. 3, pp. 217–234, 1997.
[23] A. K. Ponnuswami and H. Venkateswaran, “Monotone multilinear boolean circuits for bipartite perfect matching

require exponential size,” in Proc. of 24th Int. Conf. on Foundations of Software Technology and Theoret. Comput. Sci.
FSTTCS’04, ser. Lect. Notes in Comput. Sci., vol. 3328. Springer, 2004, pp. 460–468.

[24] R. Raz, “Separation of multilinear circuit and formula size,” Theory Comput., vol. 2, no. 6, pp. 121–135, 2006.
[25] ——, “Multi-linear formulas for Permanent and Determinant are of super-polynomial size,” J. of the ACM, vol. 56,

no. 2, pp. 1–17, 2009.
[26] R. Raz and A. Yehudayoff, “Multilinear formulas, maximal-partition discrepancy and mixed-sources extractors,” J.

Comput. Syst. Sci., vol. 77, no. 1, pp. 167–190, 2011.
[27] A. A. Razborov, “Lower bounds for the monotone complexity of some boolean functions,” Soviet Math. Dokl., vol. 31,

pp. 354–357, 1985.
[28] ——, “Lower bounds on monotone complexity of the logical permanent,” Math. Notes of the Acad. of Sci. of the USSR,

vol. 37, no. 6, pp. 485–493, 1985.
[29] ——, “On the method of approximations,” in Proc. of 21st Ann. ACM Symp. on Theory of Computing. ACM, 1989,

pp. 167–176.
[30] B. Roy, “Transitivité at connexité,” C. R. Acad. Sci. Paris, vol. 249, pp. 216–218, 1959, in French.
[31] C. P. Schnorr, “A lower bound on the number of additions in monotone computations,” Theor. Comput. Sci., vol. 2,

no. 3, pp. 305–315, 1976.
[32] R. Sengupta and H. Venkateswaran, “Multilinearity can be exponentially restrictive (preliminary version),” Georgia

Institute of Technology. College of Computing, Tech. Rep. GIT-CC-94-40, 1994.
[33] ——, “Non-cancellative boolean circuits: a generalization of monotone boolean circuits,” Theor. Comput. Sci., vol. 237,

pp. 197–212, 2000.
[34] A. Shpilka and A. Yehudayoff, “Arithmetic circuits: A survey of recent results and open questions,” Foundations and

Trends in Theoretical Computer Science, vol. 5, no. 3-4, pp. 207–388, 2010.
[35] L. G. Valiant, “Negation can be exponentially powerful,” Theor. Comput. Sci., vol. 12, pp. 303–314, 1980.

19

[36] S. Warshall, “A theorem on boolean matrices,” J. ACM, vol. 9, pp. 11–12, 1962.
[37] I. Wegener, The complexity of Boolean functions. Wiley-Teubner, 1987.
[38] A. Yehudayoff, “Separating monotone VP and VNP,” in Proc. of 51st Ann. ACM SIGACT Symp. on Theory of Computing,

STOC. ACM, 2019, pp. 425–429.

20

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

