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Abstract9

We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof10

system if and only if it is randomly reducible via an honest polynomial-time reduction to a promise11

problem for Kolmogorov-random strings, with a superlogarithmic additive approximation term.12

This extends recent work by Saks and Santhanam (CCC 2022). We build on this to give new13

characterizations of Statistical Zero Knowledge SZK, as well as the related classes NISZKL and SZKL.14
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1 Introduction21

In this paper, we give the first non-trivial characterization of a computational complexity22

class in terms of reducibility to the Kolmogorov random strings.23

Some readers may be surprised that this is possible. After all, the set of Kolmogorov24

random strings is undecidable, and undecidable sets typically do not figure prominently25

in complexity-theoretic investigations.1 But what does it mean to be reducible to the26

Kolmogorov-random strings? Let us consider the prefix-free Kolmogorov complexity K27

(which is one of the most-studied types of Kolmogorov complexity), and recall that different28

universal Turing machines U give a slightly different Kolmogorov measure KU . Then if29

we say “A is reducible to the K-random strings” we probably mean that A is reducible30

to the KU random strings, no matter which universal machine U we are using. But it31

turns out that the class of languages that can be solved in polynomial time with an oracle32

that returns KU (q) for any query q—regardless of which universal machine U is used—is a33

complexity class that contains NEXP and lies in EXPSPACE [27, 13, 35].2 There has been34

substantial interest in obtaining a precise understanding of which problems can be reduced35

in this way to the Kolmogorov complexity function under different notions of reducibility36

[2, 3, 9, 7, 8, 12, 13, 14, 24, 27, 36, 35, 38, 40, 53], but until now, no previously studied37

∗ A preliminary version of this work appeared as [19].
1 We do wish to highlight the recent work of Ilango, Ren, and Santhanam [44], who related the existence

of one-way functions to the average case complexity of computing Kolmogorov complexity.
2 More specifically, it is shown in [13] that all decidable sets with this property lie in EXPSPACE, and it

is shown in [27] that there are no undecidable sets with this property. Hirahara shows in [36] that every
set in EXPNP (and hence in NEXP) has this property.
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2 Kolmogorov Complexity Characterizes Statistical Zero Knowledge

complexity class has been characterized in this way, with the exception of P [8, 53]. (The38

characterizations of P obtained in this way can be viewed as showing that certain limited39

polynomial-time reductions are useless when using the Kolmogorov complexity function as40

an oracle.)41

Faced with this lack of success, it was proposed in [3, Open Question 4.8] that a more42

successful approach might be to consider reductions to approximations to the Kolmogorov43

complexity function. Saks and Santhanam [53] took the first significant step in this direction,44

by showing the following results:45

▶ Theorem 1 (Saks & Santhanam [53]). 1. Although (by the work of Hirahara [36]) every46

language in EXPNP is reducible in deterministic polynomial time to any function that47

differs from K by at most an additive O(log n) term, no decidable language outside of P48

is reducible to all approximations to K that differ by an error margin e(n) = ω(log n) via49

an “honest” deterministic polynomial-time nonadaptive reduction.50

2. Although (by the work of Hirahara [35]) every language in NEXP is reducible via random-51

ized nonadaptive reductions to any function that differs from K by at most an additive52

O(log n) term, no decidable language outside of AM ∩ coAM is reducible to all approxi-53

mations to K that differ by an error margin e(n) = ω(log n) via an “honest” probabilistic54

polynomial-time nonadaptive reduction.55

3. No decidable language outside of SZK is randomly m-reducible to each ω(log n) approxi-56

mation to the K-random strings.357

This is not the first time that the complexity class SZK (for Statistical Zero Knowledge58

has arisen in the context of investigations relating to Kolmogorov complexity. In particular,59

SZK and its “non-interactive” subclass NISZK have been studied in connection with a version60

of time-bounded Kolmogorov complexity, which in turn is studied because of its connection61

with the Minimum Circuit Size Problem (MCSP) [11, 14]. These problems lie at the heart of62

what has come to be called meta-complexity: the study of the computational difficulty of63

answering questions about complexity.64

Allender [2] proposed an intriguing research program towards the P = BPP conjecture.65

The class P can be characterized as the class of languages reducible to the set of Kolmogorov-66

random strings under polynomial-time disjunctive truth-table reductions [8]. Similarly, he67

conjectured that BPP can also be characterized by polynomial-time truth-table reductions68

to the set of Kolmogorov-random strings, and envisioned that such a completely new69

characterization of complexity classes would give us new insights into BPP, especially from70

the perspective of computability theory. However, his conjecture was refuted by Hirahara71

[36] under a plausible complexity-theoretic assumption.72

In this paper, we show that SZK, NISZK and their logspace variants SZKL and NISZKL73

can be characterized by reductions to approximations to the Kolmogorov complexity function.74

More specifically, we define a promise problem R̃K whose YES instances are strings of75

high Kolmogorov complexity, and whose NO instances are strings with significantly lower76

Kolmogorov complexity, and we show the following:77

3 Although the statement of this theorem in [53] does not mention “honesty,” the proof requires that the
approximation error be ω(log n), where n is the input size, rather than the query size [54]. The proof of
[53, Theorem 39] shows that, under this assumption, all queries on an input x can be assumed to have
the same length, greater than |x|. (See Lemma 6 for a similar result.) An earlier version of our paper
[18] mistakenly interpreted this as holding when the approximation error is a function of the query size,
and consequently our main theorems were stated without assuming “honesty”.
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1. A decidable promise problem is randomly reducible to R̃K via an honest polynomial time78

reduction if and only it is in NISZK. (Theorem 15)79

2. A decidable promise problem is randomly reducible to R̃K via an honest logspace or NC0
80

reduction if and only it is in NISZKL. (Theorem 33)81

3. Analogous characterizations of SZK and SZKL are given in terms of probabilistic honest82

nonadaptive reductions. (Theorems 29 and 35)83

We hope that our new characterization of these complexity classes will improve our under-84

standing of zero knowledge interactive proof systems in the future. Zero knowledge interactive85

proof systems have many applications in cryptographic protocols, and they have been studied86

very widely. We refer the reader to the excellent survey by Vadhan for more background [56].87

For our purposes, the complexity classes of interest to us (SZK, NISZK, SZKL, and NISZKL)88

can be defined in terms of their complete problems. But first, we need to define some basic89

notions and provide some background.90

2 Preliminaries91

We assume familiarity with basic complexity classes such as P, L, and AC0; we view these92

as classes of functions, as well as of languages. We also will refer to the class of functions93

computed in NC0, where each output bit depends on at most O(1) input bits. For circuit94

complexity classes such as NC0, and AC0, by default we assume that the circuit families are95

“First-Order-uniform” as discussed in [5, 22, 45]. This coincides with Dlogtime-uniform AC0,96

and what one might call “Dlogtime-uniform AC0-uniform” NC0. (We refer the reader to [58]97

for more background on circuit uniformity.) When we need to refer to nonuniform circuit98

complexity, we will be explicit.99

All of these classes give rise to restrictions of Karp reducibility ≤P
m, such as ≤L

m, ≤AC0

m ,100

and ≤NC0

m . We will also discuss projections (≤proj
m ), which are ≤NC0

m reductions in which each101

output bit depends on at most one input bit. Thus projections are computed by circuits102

consisting of constants, wires, and NOT gates.103

For any class of functions C and type of reducibility r (such as m-reducibility, truth-table104

reducibility, Turing reducibility, or other notions considered in this paper) if there is some105

ϵ > 0 such that all queries made by the ≤C
r reduction on inputs of length n have length at106

least nϵ, the reduction is said to be “honest”, and we use the notation ≤C
hr to denote this.107

A promise problem A is a pair of disjoint sets (YA, NA) of YES instances and NO instances,108

respectively. A solution to a promise problem is any set B such that YA ⊆ B and NA ⊆ B.109

A don’t-care instance of A is any string that is not in YA ∪ NA. A language can be viewed as110

a promise problem that has no don’t-care instances.111

We say that a promise problem A = (Y, N) is decidable if Y and N are decidable sets.4112

Note that the property of being a decidable promise problem is not the same as having a113

decidable solution: If A = (Y, N) is decidable, then the set Y is a solution to A, and thus114

every decidable promise problem has a decidable solution, but the converse need not hold.115

For instance, if B = (Y ′, N ′) with Y ′ ⊆ Y and N ′ ⊆ N , then any solution to A is also116

a solution to B, and thus B has a decidable solution. Since there are uncountably many117

subsets of Y and N for any nontrivial promise problem, clearly not every promise problem118

with a decidable solution is decidable according to our definition. For complexity classes such119

as SZK, every promise problem in the class is ≤NC0

m reducible to a decidable promise problem,120

4 Such promise problems have also been called totally decidable promise problems [31].
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and thus our main theorems (which are stated in terms of decidable promise problems) have121

wide applicability.122

When defining reductions between two promise problems A and B, there are two options.123

Either124

for every solution S to B there is a reduction from A to S, or125

there is a reduction that correctly decides A when given any solution S for B as an oracle.126

As it turns out, these two notions are equivalent [34, 50]. Thus we shall always use the127

second approach, when defining notions of reducibility between promise problems.128

We assume that the reader is familiar with Kolmogorov complexity; more background129

on this topic can be found in references such as [48, 29]. Briefly, KU (x|y) = min{|d| :130

U(d, y) = x}, and KU (x) = KU (x|λ) where λ denotes the empty string.5 Although this131

definition depends on the choice of the Turing machine U , we pick some “universal” machine132

U ′ and define K(x|y) to be KU ′(x|y); for every machine U , there is a constant c such that133

K(x|y) ≤ KU (x|y) + c. One important non-trivial fact regarding Kolmogorov complexity is134

known as symmetry of information:135

▶ Theorem 2. (Symmetry of Information)

K(x, y) = K(x) + K(y|x) ± O(log(K(x, y))).

Let R̃K be the promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that136

K(y) ≥ |y|/2 and the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2−e(|y|)137

for some approximation error term e(n), where e(n) = ω(log n) and e(n) = no(1). All of our138

theorems hold for any e(n) in this range. We will sometimes assume that e(n) is computable139

in AC0, which is true for most approximation terms of interest.140

Since the approximation error e(n) is superlogarithmic, it is worth noting that R̃K can be141

defined equivalently either in terms of prefix-free or plain Kolmogorov complexity (because142

these two measures are within an additive logarithmic term of each other).143

Any language that is reducible to R̃K via any of the reducibilities that we consider is144

decidable, by a theorem of [27]. However, it is not known whether this carries over in any145

meaningful way to promise problems.146

The reader may wonder about the justification for the threshold K(y) ≥ |y|/2 in the147

definition of R̃K . The following proposition indicates that, for large error bounds e(n), using148

a larger threshold reduces to R̃K . Later, we show a related result for smaller thresholds.149

▶ Proposition 3. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)} for150

some AC0-computable threshold t(n) ≥ n
2 , and where N = {y : K(y) ≤ t(|y|) − |y|ϵ} for some151

1 > ϵ > 0. Then A≤proj
m R̃K .152

Proof. Let δ = ϵ
2 . Given an instance y of length n (for all large n), in AC0 we can find the153

least integer i < n such that 2t(n) − n + 5 log n + (2(2n)δ − nϵ) ≤ i ≤ 2t(n) − n − 6 log n.154

Let z = y0i. Then K(z) ≤ K(y) + 2 log i + O(1). Similarly, K(y) ≤ K(z) + 2 log i + O(1),155

and hence K(z) ≥ K(y) − 2 log i − O(1).156

Thus if y ∈ Y , then K(z) ≥ t(n) − 2 log i − O(1) > (t(n) − n
2 ) + n

2 − 3 log n ≥ n+i
2 = |z|

2 .157

And if y ∈ N , then K(z) ≤ t(n) − nϵ + 2 log i + O(1) < (t(n) − n
2 ) + n

2 − nϵ + 2 log i + O(1) ≤158

n+i
2 − (n + i)δ = |z|

2 − |z|δ < |z|
2 − e(|z|).159

5 This is actually the definition of so-called “plain” Kolmogorov complexity, although the letter K is
traditionally used for the “prefix-free” Kolmogorov complexity. These two measures differ by at most
a logarithmic term, and our theorems hold for either measure. For simplicity, we have presented the
simpler definition.
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Thus y ∈ Y implies z ∈ Y
R̃K

and y ∈ N implies z ∈ N
R̃K

. ◀160

Randomized reductions play a central role in the results that we will be presenting. Here161

is the basic definition:162

▶ Definition 4. A promise problem A = (Y, N) is ≤RP
m -reducible to B = (Y ′, N ′) with163

threshold θ if there is a polynomial p and a deterministic Turing machine M running in time164

p such that165

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.166

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] = 1.167

If there is some ϵ > 0 such that, for every x and every r of length p(|x|), M(x, r) has length168

≥ |x|ϵ, then we say that M computes an “honest” reduction, and we write A≤RP
hmB.169

Randomized reductions were introduced by Adleman and Manders, as a probabilistic170

generalization of ≤P
m reducibility6 [1]. They used the threshold θ = 1

2 . One of the most171

important applications of randomized reductions is the theorem of Valiant and Vazirani172

[57], where they showed that SAT reduces to Unique Satisfiability (USAT) via a randomized173

reduction, with threshold θ = 1
4n .7 The reader may expect that—as is so often the case with174

probabilistic notions in computational complexity theory—the choice of threshold is arbitrary,175

and can be changed with no meaningful consequences. However, this does not appear to be176

true; we refer the reader to the work of Chang, Kadin, and Rohatgi [28] for a discussion of this177

point. As they point out, different thresholds are appropriate in different situations. If A≤RP
m B178

with threshold 1
4n (for instance), where the set ORB = {(x1, . . . , xk) : ∃i, xi ∈ B}≤P

mB, then179

it is indeed true that A≤RP
m B with threshold 1 − 1

2n [28]. But Chang, Kadin, and Rohatgi180

point out that it is far from clear that USAT has this property. We are concerned here with181

problems that are ≤RP
hm-reducible to R̃K ; just as in the case with randomized reductions182

to USAT, we must be careful about which threshold θ we choose. For the remainder of183

this paper, we will use the threshold θ = 1 − 1
nω(1) . (For a discussion of why we select this184

threshold, see Remark 17.)185

The following proposition is the counterpart to Proposition 3, for thresholds smaller than186

n
2 .187

▶ Proposition 5. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)}188

for some polynomial-time computable threshold t(n) ≤ n
2 , and where N = {y : K(y) ≤189

t(|y|) − |y|ϵ} for some 1 > ϵ > 0. Then A≤RP
hmR̃K .190

Proof. Given an instance y of length n (for all large n), in polynomial time we can find the191

least integer i < n such that 2t(n) − 2nϵ + 2e(3n) + 4 log n ≤ i ≤ 2t(n) − e(n) − 2c log n (for192

a constant c that will be picked later).193

Pick a random string r of length n. Let z = yr0i. Then K(z) ≤ K(y) + 2 log i + |r|.194

Also, by symmetry of information, K(z) ≥ K(yr0i|y0i) + K(y0i) − c′ log n (for some fixed195

constant c′, and hence with probability at least 1 − 1
nω(1) , K(z) ≥ (n − e(n)

2 ) + K(y) − c log n196

(for some fixed c, which is the constant c that we use above in defining i).197

Thus if y ∈ Y , then with high probability K(z) ≥ t(n) + (n − e(n)
2 ) − c log n > n + i

2 = |z|
2 .198

And if y ∈ N , then K(z) ≤ (t(n) − nϵ) + 2 log i + |r| ≤ n + i
2 − e(3n) ≤ |z|

2 − e(|z|).199

Thus y ∈ Y implies z ∈ Y
R̃K

(with probability ≥ 1 − 1
nω(1) ), and y ∈ N implies200

z ∈ N
R̃K

. ◀201

6 We assume that the reader is familiar with Karp reducibility ≤P
m.

7 Recently, there have also been several papers showing that certain meta-complexity-theoretic problems
are NP-complete under randomized reductions, including [10, 37, 41, 42, 43, 49, 51].
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We will also need the following lemma, which states that short queries to R̃K can be202

replaced by (longer) padded queries. Since R̃K is defined so as to distinguish between strings203

of length n having Kolmogorov complexity ≥ n/2 and those with complexity ≤ n/2−ω(log n),204

the idea is to pad the (short) query with a string that has complexity around half of its205

length — with some room to adjust for the difference needed to preserve the Yes and No206

instances.207

▶ Lemma 6 (Query padding). Let R̃K(g) denote the parameterized version of R̃K with Yes208

instances y satisfying K(y) ≥ |y|/2 and No instances satisfying K(y) ≤ |y|/2 − g(|y|). If209

g(n) = ω(log n) is nondecreasing and computable in AC0 and A≤RP
hmR̃K(g), then for some210

δ > 0, A≤RP
hmR̃K(2g(nδ)/3) via a reduction in which all queries on input x have the same211

length.212

Proof. If A≤RP
hmR̃K(g) via a reduction computable in time p(n) where each query has length213

at least nϵ, consider the reduction that replaces each query q of length k by queries of the214

form qy = qr0 m−k
2 −a(n) where m = p(n) and r ∈ {0, 1} m−k

2 +a(n) is sampled uniformly at215

random. (Here, a(n) is a function that will be specified below.) Pick δ so that p(n)δ < nϵ.216

We recall that by the Symmetry of Information theorem :217

K(q) + K(y|q) − s log m ≤ K(qy) ≤ K(q) + K(y|q) + s log m218

for some constant s > 0.219

Case 1 : q ∈ Y
R̃K (g)

220

Thus K(q) ≥ k
2 , and hence, if we set b(n) = (log(g(nϵ)/ log n)) log n = ω(log n), then with221

probability at least 1 − 1
nω(1)222

K(qy) ≥ K(q) + K(y|q) − s log m ≥ k

2 + m − k

2 + a(n) − b(n) − s log m223

where the second inequality holds with probability 1− 1
nω(1) since there are at most 1

nω(1) frac-224

tion of y ∈ {0, 1} m−k
2 +a(n) satisfying K(y|q) ≤ (m−k)

2 + a(n) − b(n). Setting a(n) = g(nϵ)/4225

gives K(qy) ≥ m
2 with probability at least 1 − 1

nω(1) for all large n.226

227

Case 2 : q ∈ N
R̃K (g)

228

We have K(q) ≤ k
2 − g(k) ≤ k

2 − g(nϵ) and need to show that K(qy) ≤ m
2 − 2g(mδ)/3.229

K(qy) ≤ K(q) + K(y|q) + s log m ≤ k

2 − g(nϵ) +
(

m − k

2 + g(nϵ)/4
)

+ O(log m)230

<
m

2 − g(nϵ) + g(nϵ)/3 <
m

2 − 2g(mδ)/3.

◀231

▶ Corollary 7. For any of the honest probabilistic reductions to R̃K that we consider in this232

paper, we may assume without loss of generality that, for each input x, all queries made by233

the reduction on input x have the same length.234

Proof. If A is reducible to R̃K using some approximation error e(n) with e(n) = ω(log n)235

and e(n) = no(1), then, by Lemma 6, it is also reducible to R̃K using approximation error236

2e(nδ)
3 , which also is ω(log n) and no(1) via a reduction with the desired characteristics. ◀237

We will also need a “two-sided error” version of random reducibility, analogous to the238

relationship between RP and BPP.239
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▶ Definition 8. A promise problem A = (Y, N) is ≤BPP
m -reducible to B = (Y ′, N ′) with240

threshold θ > 1
2 if there is a polynomial p and a deterministic Turing machine M running in241

time p such that242

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.243

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] ≥ θ.244

Similar to the definition of ≤RP
hm, we say that A≤BPP

hm B if M is honest.245

The complexity classes SZK (Statistical Zero Knowledge) and NISZK (Non-Interactive246

Statistical Zero Knowledge) are defined in terms of interactive proof protocols (with a Prover247

interacting with a probabilistic polynomial-time Verifier, together with a Simulator that248

can produce a distribution on transcripts that is statistically close to the distribution on249

messages that would be exchanged by the prover and the verifier on YES instances. (See,250

e.g. [56, 33].) But for our purposes, it will suffice (and be simpler) to present alternative251

definitions of these classes, in terms of their standard complete problems.252

▶ Definition 9 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

YEA = {(C, k) | H(X) > k + 1}
NEA = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.253

▶ Theorem 10 ([33]). EA is complete for NISZK under honest ≤P
m reductions.254

We will actually take this as a definition; we say that (Y, N) is in NISZK if and only if255

(Y, N)≤P
mEA.256

▶ Definition 11 (Promise-SD). SD (Statistical Difference) is the promise problem

YSD =
{

(C, D)
∣∣∣∣ ∆(C, D) >

2
3

}
,

NSD =
{

(C, D)
∣∣∣∣ ∆(C, D) <

1
3

}
.

where ∆(C, D) denotes the statistical distance between the distributions represented by the257

circuits C and D.258

▶ Theorem 12 ([52]). SD is complete for SZK under honest ≤P
m reductions.259

Thus we will define SZK to be the class of promise problems (Y, N) such that (Y, N)≤P
mSD.260

We will also be making use of a restricted version of the NISZK-complete problem EA:261

▶ Definition 13 (Promise-EA′). We define Promise-EA′ to be the promise problem

YEA′ = {C | H(X) > n − 2}

NEA′ = {C | |Supp(X)| < 2n−nϵ

}

where C is a circuit C : {0, 1}m → {0, 1}n representing a probability distribution X on {0, 1}n
262

induced by the uniform distribution on {0, 1}m, and Supp(X) denotes the support of X, and263

ϵ is some fixed constant, 0 < ϵ < 1.264

▶ Lemma 14. EA′ is complete for NISZK under honest ≤P
m reductions.265
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Proof. Lemma 3.2 in [33] shows that the following promise problem A is complete for NISZK:266

All instances are of the form (C, 1s), where C is a circuit with m inputs and n outputs,267

representing a distribution (also denoted C) on {0, 1}n. (C, 1s) is a YES instance if C has268

statistical distance at most 2−s from the uniform distribution on {0, 1}n. (C, 1s) is in the set269

of NO instances if the support of C has size at most 2n−s. Furthermore, the reduction g270

from EA to A has the property that the parameter s is at least nϵ for some constant ϵ > 0.271

Also, it is observed in Lemma 4.1 of [33] that the mapping (C, 1s) 7→ (C, n − 3) (i.e., the272

mapping that leaves the circuit C unchanged) is a reduction from A to EA. Combining these273

two results from [33] completes the proof of the lemma. ◀274

3 A New Characterization of NISZK275

We are now ready to present the characterization of NISZK by reductions to the set of276

Kolmogorov-random strings.277

▶ Theorem 15. The following are equivalent, for any decidable promise problem A:278

1. A ∈ NISZK.279

2. A≤RP
hmR̃K .280

3. A≤BPP
hm R̃K .281

Proof. In order to show that A ∈ NISZK implies A≤RP
hmR̃K , it suffices to reduce the NISZK-282

complete problem EA′ to R̃K (by Lemma 14).283

Corollary 18 of [14] states that every promise problem in NISZK reduces to the problem284

of computing the time-bounded Kolmogorov complexity KT via a probabilistic reduction285

that makes at most one query along any computation path. Here we observe that the same286

approach can be used to obtain a ≤RP
hm reduction to R̃K .287

Consider a probabilistic reduction that takes an instance C of EA′ and constructs a string288

y that is the concatenation of t random samples from C (i.e., y = C(r1)C(r2) . . . C(rt) for289

uniformly chosen random strings r1, . . . , rt, for some polynomially-large t). Lemma 16 of [14]290

shows that, with probability exponentially close to 1, if C is a YES instance of EA′, then291

the time-bounded Kolmogorov complexity KT(y) is greater than a threshold θ of the form292

θ = t(n − 2) − t1−α for some constant α > 0. (Briefly, this is because a good approximation293

to the entropy of a sufficiently “flat” distribution can be obtained by computing the KT294

complexity of a string composed of many random samples from the distribution [16].)295

As in the argument of [14, Theorem 17], we can choose t to be an arbitrarily large296

polynomial nk. Choosing k to be large enough (relative to 1/α, and also so that nk is297

large relative to |C|), we have θ > nk(n − 3) for all large n, and hence for all large YES298

instances we have that, with probability exponentially close to 1, the string y satisfies299

KT(y) > nk(n − 3) = ℓ − ℓδ for some δ < 1, where |y| = tn = ℓ. The focus of [14] was on the300

measure KT, but (as was previously observed in [4, Theorem 1]) the analysis in [14, Lemma301

16] carries over unchanged to the setting of non-resource-bounded Kolmogorov complexity K.302

(That is, in obtaining the lower bound on KT(y), the probabilistic argument is just bounding303

the number of short descriptions, and not making use of the time required to build y from304

a description.) Thus, with high probability, the probabilistic routine, when given a YES305

instance of EA′, produces a string y where K(y) ≥ |y| − |y|δ.306

On the other hand, if C is a NO instance, then the support of C has size at most 2n−nϵ ,307

and thus any string z in the support of C has K(z|C) ≤ n − nϵ + O(1). Thus any string y of308

length ℓ = tn = nk+1 that is produced by M in this case has K(y) ≤ t(n−nϵ)+ |C|+O(1) =309

nk(n − nϵ) + |C| + O(1). Since t = nk was chosen to be large (with respect to the length310
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of the input instance C), we may assume |C| < nk+ϵ − 4nk. Thus if C is any large NO311

instance, we have K(y) < nk(n−4) = ℓ−ℓδ′ for some δ′ > δ. To summarize, with probability312

1, the probabilistic routine, when given a NO instance of EA′, produces a string y where313

K(y) ≤ |y| − |y|δ′ ≤ (|y| − |y|δ) − |y|ρ for some ρ > 0. We can now conclude that EA′≤RP
hmR̃K314

by appealing to Proposition 3.315

To complete the proof of the theorem, we need to show that if A is any decidable promise316

problem that has a randomized poly-time m-reduction (≤BPP
hm ) with error 1/nω(1) to the317

promise problem R̃K then A ∈ NISZK. This was essentially shown by Saks and Santhanam318

[53, Theorem 39], but we present a complete argument here. Let M be the probabilistic319

machine that computes this ≤BPP
hm reduction.320

Let y = f(x, r) ∈ {0, 1}m denote the output that M produces, where x is an instance321

of A and r denotes the randomness used in the reduction. By Corollary 7, we may assume322

that, for each x, all outputs of the form f(x, r) have the same length. Given an x ∈ {0, 1}n,323

observe that there is a polynomial-sized circuit Cx such that Cx(r) = f(x, r). According to324

the correctness of the reduction, we have325

x ∈ YA ⇒ Pr
r

[M(x, r) ∈ Y
R̃K

] ≥ 1 − 1/nω(1) and326

327

x ∈ NA ⇒ Pr
r

[M(x, r) ∈ N
R̃K

] ≥ 1 − 1/nω(1).328

In other words, if x is a YES instance, then K(y) ≥ |y|/2 with probability at least329

1 − 1/nω(1) and if x is a NO instance, then K(y) ≤ |y|/2 − e(|y|) with probability at least330

1 − 1/nω(1). (Recall that e(n) is the error term in the approximation R̃K .) We will now show331

that there is an entropy threshold that separates these two distributions, which will provide332

an NISZK upper bound on resolving A.333

▷ Claim 16. The following holds for all large strings x. If x is a YES instance, then the334

entropy of the distribution Cx(r) is at least m/2 − e(m)/2 + 1 and if x is a NO instance,335

then the entropy of Cx(r) is at most m/2 − e(m)/2 − 1.336

We first show that if the claim holds, then A ∈ NISZK. Let k = m/2 − e(m)/2. The337

reduction given above reduces membership in A to the Entropy Approximation (EA) problem338

on the circuit description Cx with threshold k. Given x, we can compute the map x 7→ Cx339

in time nO(1). Recall that EA is complete for NISZK. Since NISZK is closed under ≤P
m340

reductions, we can conclude that A ∈ NISZK.341

Proof of Claim 16. Assume the claim is false, and let x be the lexicographically first string342

that violates the above claim (for some length n). Since the reduction is a computable343

function, and since A is a decidable promise problem, K(x) = O(log n). We have the following344

two cases to consider:345

Case 1 — x is a YES instance: From the correctness of the reduction we have that346

with probability 1 − 1/nω(1) the output y is a string with Kolmogorov complexity at least347

|m|/2. Since x is a violator, we have H(Cx(r)) < k + 1 = m/2 − e(m)/2 + 1.348

First, we present some intuition. On one hand, the distribution Cx(r) has large enough349

probability mass on the high-complexity strings (because the reduction succeeds). On the350

other hand, we have that since x is a low-complexity string itself, the elements of Cx(r)351

with highest mass can be identified by short descriptions. This leads to a contradiction of352

simultaneously having large enough mass on the low and the high K-complexity strings.353

Now, we present a more detailed argument. Let t be the entropy of the distribution Cx(r).354

Thus, for large x, t + O(log m) < t + e(m)/2 − 1 < m/2. Let Y = {y1 . . . y2t+log m} be the355
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heaviest elements (in terms of probability mass) of Cx(r) in decreasing order. (Note that356

Pr[y2t+log m ] ≤ 1
2t+log m .) Conditioned on x, the K complexity of any of these strings yi is at357

most t+O(log m). Since K(x) = O(log n) = O(log m), we have K(yi) ≤ t+O(log m) < m/2.358

Next, we will show that there is at least mass 1
m on these strings within Cx(r). This will359

contradict the correctness of the reduction for x ∈ L since it cannot output strings with K360

complexity at most |m|/2 with probability 1/nΩ(1).361

Assume not, i.e., the mass on elements of Y is at most 1
m . Observe that elements362

of Supp(Cx(r)) − Y have mass no more than 2−(t+log m) each. Thus t = H(Cx(r)) >363 ∑
y ̸∈Y Pr[y] log( 1

Pr[y] ) >
∑

y ̸∈Y Pr[y](t + log m) > (1 − 1/m)(t + log m) > t − t/m + log m >364

t − 1
2 + log m > t, which is a contradiction.365

Case 2 — x is a NO instance: From the correctness of the reduction we have that366

with probability at least 1 − 1/nω(1) the output f(x, r) is a string with K complexity at most367

m/2 − e(m). Since x is a violator, we also have H(Cx(r)) > k − 1 = m/2 − e(m)/2 − 1.368

We claim that the following holds:369

Pr
y∼f(x,r)

[K(y) > m/2 − e(m)] ≥ 1/m.370

Assume not. Then, since371

there are at most 2m/2−e(m) strings y with K(y) ≤ m/2 − e(m), and372

entropy is maximized when probabilities are flat within a partition, and373

any element in the support has probability at least 1
2m374

it follows that the entropy of f(x, r) is at most (1/m)(m) + (1 − 1/m)(m/2 − e(m)) ≤375

m/2 − e(m) + 1 < m/2 − e(m)/2 − 1, which contradicts the lower bound on the entropy of376

f(x, r) above.377

Since the claim holds, with probability at least 1/m the output of the reduction is not an378

element of the set N
R̃K

. Thus, the reduction fails with probability 1/nΩ(1). ◁379

This completes the proof of Theorem 15. ◀380

▶ Remark 17. The proof of the preceding theorem illustrates why we define the error threshold381

in our randomized reductions to be 1
nω(1) . If we assumed that A were ≤BPP

hm -reducible to382

R̃K with an inverse polynomial threshold (say q(n)−1), then by Corollary 7 we may assume383

that the length of each output produced has length Q(n) = ω(q(n)) (by padding with some384

uniformly-random bits). For strings x that are NO instances of A, when the reduction to385

R̃K fails with probability 1/q(n), our calculation of the entropy of Cx will involve a term of386

1
q(n) Q(n) (because the queries made in this case can have nearly Q(n) bits of entropy). This387

is more than the entropy gap between the distributions corresponding to the YES and NO388

outputs.389

▶ Remark 18. Although our focus in this paper is on R̃K , we note that one can also define390

an analogous problem R̃KT in terms of the time-bounded measure KT. The approach used391

in Theorem 15 also shows that every problem in NISZK is ≤BPP
hm reducible to R̃KT, although392

we do not know how to show hardness under ≤RP
hm reductions. (A random sample from the393

low-entropy distribution is guaranteed to always have low K-complexity, but the tools of394

[14, 16] only guarantee that the output has low KT-complexity with high probability.)395

4 More Powerful Reductions396

Just as ≤RP
m and ≤BPP

m reducibilities generalize the familiar ≤P
m (Karp) reducibility to the397

setting of probabilistic computation, so also are there probabilistic generalizations of determin-398

istic non-adaptive reductions (also known as truth-table reductions). Before presenting these399
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probabilistic generalizations, let us review the previously-studied deterministic non-adaptive400

reducibilities that are relevant for this investigation. Some of them may be unfamiliar to the401

reader.402

Ladner, Lynch, and Selman [47] considered several possible ways to define polynomial-time403

versions of the truth-table reducibility that had been studied in computability theory, before404

settling on the definition of ≤P
tt reducibility below. They considered only reductions between405

languages; the corresponding generalization to promise problems is due to [52]. In order to406

state this generalization formally, let us define the characteristic function χA of a promise407

problem A = (Y, N) to take on the following values in three-valued logic:408

If x ∈ Y , then χA(x) = 1.409

If x ∈ N , then χA(x) = 0.410

If x ̸∈ (Y ∪ N), then χA(x) = ∗.411

A Boolean circuit with n variables, when given an assignment in {0, 1, ∗}n, can be evaluated412

using the usual rules of three-valued logic. (See, e.g., [52, Definition 4.6].)413

▶ Definition 19. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤P
ttB if414

there is a function f computable in polynomial time, such that, for all x, f(x) is of the form415

(C, z1, z2, . . . , zk) where C is a Boolean circuit with k input variables, and (z1, . . . , zk) is a416

list of queries, with the property that417

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.418

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.419

This definition ensures that the circuit C, viewed as an ordinary circuit in 2-valued logic,420

correctly decides membership for all x ∈ (Y ∪ N) when given any solution S for B as an421

oracle.422

If C is a Boolean formula, instead of a circuit, then one obtains the so-called “Boolean423

formula reducibility” (denoted by A≤P
bfB), which was discussed in [47] and studied further424

in [46, 26]. (See also [25, 6].)425

▶ Theorem 20. SZK = {A : A≤P
bfEA} = {A : A≤P

hbfEA}.426

Proof. EA ∈ NISZK ⊆ SZK. Sahai and Vadhan [52, Corollary 4.14] showed that SZK is427

closed under NC1-truth-table reductions, but the proof carries over immediately to ≤P
bf428

reductions. Thus {A : A≤P
bfEA} ⊆ SZK. The other inclusion was shown in [33, Proposition429

5.4] (and the reduction to EA they present is honest). ◀430

Notably, it is still an open question if SZK is closed under ≤P
tt reducibility.431

Our characterization of SZK in terms of reductions to R̃K relies on the following proba-432

bilistic generalization of ≤P
bf :433

▶ Definition 21. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
bf B434

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial435

time, and a polynomial p, such that, for all x, f(x) is a Boolean formula C (with k = |x|O(1)
436

variables), with the property that437

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,438

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,439

where440

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ441

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ442

χg,B(x, i) = ∗ otherwise.443
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Intuitively, ≤BPP
bf reductions generalize ≤P

bf reductions, in that the queries are now generated444

probabilistically, and the probability that any query returns a definite YES or NO answer is445

bounded away from 1
2 . Again, if all queries are of length at least nϵ, then we write A≤BPP

hbf B.446

The following proposition is immediate from the definitions.447

▶ Proposition 22. If A≤P
hbfB and B≤BPP

hm C with threshold θ, then A≤BPP
hbf C with threshold448

θ.449

▶ Corollary 23. SZK ⊆ {A : A≤BPP
hbf R̃K} with threshold 1 − 1

nω(1) .450

Proof. Immediate from Theorem 20 and Theorem 15. ◀451

There are (at least) three other variants of probabilistic nonadaptive reducibility that452

we should mention. The first of these is the notion that goes by the name “nonadaptive453

BPP reducibility” or “randomized nonadaptive reductions” in work such as [53, 14, 23] and454

elsewhere.455

▶ Definition 24. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
tt B456

if there are a function f computable in polynomial time and a polynomial p such that, for all457

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean458

circuit with k input variables, and (z1, . . . , zk) is a list of queries, with the property that459

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .460

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0 ≥ 2
3 .461

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , by the usual method462

of taking the majority vote of several independent trials.)463

Saks and Santhanam showed that if A≤BPP
htt R̃K , then A ∈ AM ∩ coAM [53]. The most464

important ways in which ≤BPP
bf and ≤BPP

tt reducibility differ from each other, are (1) in ≤BPP
bf465

reducibility, the query evaluation is performed by a Boolean formula, instead of a circuit,466

and (2) in ≤BPP
tt reducibility, the circuit that is chosen to do the evaluation depends on the467

choice of random bits, whereas in ≤BPP
bf reducibility, the formula is chosen deterministically.468

Making different choices in these two dimensions gives rise to two other notions:469

▶ Definition 25. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
rbf B470

if there are a function f computable in polynomial time and a polynomial p such that, for all471

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean472

formula with k input variables, and (z1, . . . , zk) is a list of queries, with the property that473

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .474

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0] ≥ 2
3 .475

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , simply by incorpo-476

rating a Boolean formula that takes the majority vote of several independent trials.).477

The notation ≤BPP
rbf is intended to suggest “random Boolean formula”, since the Boolean478

formula is chosen randomly.479

▶ Definition 26. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
circ B480

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial481

time, and a polynomial p, such that, for all x, f(x) is a Boolean circuit (with k = |x|O(1)
482

variables), with the property that483

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,484

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,485

where486
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χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ487

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ488

χg,B(x, i) = ∗ otherwise.489

If the reduction is honest, we write A≤BPP
hcircB.490

We show in this paper that SZK is the class of problems ≤BPP
hbf reducible to R̃K . We are491

not able to show that the class of problems (honestly) ≤BPP
rbf reducible to R̃K is contained in492

SZK, although we do observe that SZK is closed under this type of reducibility.493

▶ Theorem 27. SZK = {A : A≤BPP
rbf EA}.494

Proof. The inclusion of SZK in {A : A≤BPP
rbf EA} is immediate from Theorem 20. For the495

other direction, let A≤BPP
rbf EA. Thus there are a function f computable in polynomial496

time, and a polynomial p such that, for all x and all r of length p(|x|), f(x, r) is of the497

form (C, z1, z2, . . . , zk), where evaluating the Boolean formula C(χB(z1), . . . , χB(zk)) gives498

a correct answer for all x ∈ Y ∪ N with error at most 2−n2 . Here is a zero-knowledge499

interactive protocol for A. The verifier sends a random string r to the prover. The prover500

and the verifier can each compute f(x, r) = (C, z1, z2, . . . , zk), and then (as in [52, Corollary501

4.14]) compute an instance (D, E) of SD such that (D, E) is a YES instance of SD if502

C(χB(z1), . . . , χB(zk)) = 1, and (D, E) is a NO instance of SD if C(χB(z1), . . . , χB(zk)) = 0.503

The prover and the verifier can then run the SZK protocol for the SD instance (D, E). The504

verifier clearly accepts each YES instance with high probability, and cannot be convinced to505

accept any NO instance with more than negligible probability. The simulator, given input506

x, will generate the string r uniformly at random, and then compute f(x, r) and compute507

the instance (D, E) as above, and then produce the transcript that is produced by the508

SD simulator on input (D, E). It is straightforward to observe that, if x ∈ Y , then this509

distribution is very close to the distribution induced by the honest prover and verifier. ◀510

It is straightforward to observe that ≤BPP
tt and ≤BPP

rbf are transitive relations. It is not511

clear that ≤BPP
bf and ≤BPP

circ are transitive. But for promise problems that reduce to R̃K , a512

similar property holds.513

▶ Theorem 28. If A≤BPP
bf B and B≤BPP

hbf R̃K , then A≤BPP
hbf R̃K .514

Proof. If B≤BPP
bf R̃K , then B ∈ SZK by Theorem 29. Since A≤BPP

bf B ∈ SZK, it follows that515

A≤BPP
rbf B≤BPP

rbf EA and hence (by Theorem 27) A ∈ SZK. Thus (by Theorem29) A≤BPP
hbf R̃K . ◀516

5 A New Characterization of SZK517

▶ Theorem 29. The following are equivalent, for any decidable promise problem A:518

1. A ∈ SZK.519

2. A≤BPP
hbf R̃K with threshold 1 − 1

nω(1) .520

Proof. Corollary 23 states that all problems in SZK ≤BPP
hbf -reduce to R̃K . Thus we need521

only show the converse containment. Let A≤BPP
hbf R̃K . As in the proof of Theorem 15, we522

will build circuits Cx,i(r) that model the computation that produces the ith query that is523

asked on input x, when using random bits r. As in the proof of Theorem 15, we claim that524

if a 1 − 1
nω(1) fraction of the strings of the form Cx,i(r) are in Y

R̃K
, then Cx,i represents a525

distribution with entropy at least m/2 − e(m)/2 + 1, and if a 1 − 1
nω(1) fraction of the strings526

of the form Cx,i(r) are in N
R̃K

, then Cx,i represents a distribution with entropy at most527

m/2 − e(m)/2 − 1. Indeed, the proof is essentially identical. Assume that there are infinitely528
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many x that are not don’t care instances, where replacing the R̃K oracle with the EA oracle529

does not yield the correct answer. Given n, we can find the lexicographically-least string x530

of length n for which the reduction fails. Since the reduction fails, there must be some i such531

that the ith query in the formula yields the wrong answer. Thus, given (n, i), we can find x532

and build the circuit Cx,i of Kolmogorov complexity O(log n) that yields a correct answer533

when given R̃K as an oracle, but fails when queries are made to EA instead. The analysis is534

identical to the argument in the proof of Theorem 15. ◀535

We have nothing to say, regarding the problems that are reducible to R̃K via ≤BPP
tt or536

≤BPP
rbf reductions, other than to refer to the AM ∩ coAM upper bound provided by Saks and537

Santhanam [53]. We do have a somewhat better bound to report, regarding ≤BPP
circ reducibility.538

▶ Theorem 30. The following are equivalent, for any decidable promise problem A:539

1. A≤BPP
hcircR̃K with threshold 1 − 1

nω(1) .540

2. A≤P
httEA.541

3. A≤P
ttB for some B ∈ SZK.542

Proof. Item 2 obviously implies item 3. To see that item 3 implies item 1, observe543

that if A≤P
ttB for some B ∈ SZK, then we know that A≤P

httB × 0∗ ∈ SZK, and hence544

A≤P
httEA≤BPP

hm R̃K . The composition of a ≤P
htt reduction with a ≤BPP

hm reduction is clearly545

a ≤BPP
hcirc reduction (as in Proposition 22). Finally, the proof of the remaining implication546

(item 1 implies item 2) follows along the same lines as the proof of Theorem 29. We still547

build circuits Cx,i that produce the ith query, and use the oracle for EA to determine if548

those circuits represent distributions of high or low entropy. Since we are assuming only that549

A≤BPP
hcircR̃K (instead of A≤BPP

hbf R̃K) we end by concluding only A≤BPP
htt R̃K . ◀550

6 Less Powerful Reductions551

The standard complete problems EA and SD remain complete for NISZK and SZK, respectively,552

even under more restrictive reductions such as ≤L
m, ≤AC0

m , ≤NC0

m and ≤proj
m . In this section, we553

show that it is worthwhile considering probabilistic versions of ≤L
m, ≤AC0

m and ≤NC0

m reducibility554

to R̃K .555

▶ Definition 31. For a class C, a promise problem A = (Y, N) is ≤RC
m -reducible to B =556

(Y ′, N ′) with threshold θ if there are a function f ∈ C and a polynomial p such that557

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.558

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] = 1.559

A is ≤BPC
m -reducible to B with threshold θ if there are a function f ∈ C and a polynomial p560

such that561

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.562

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.563

We are particularly interested in the cases C = L, C = AC0, and C = NC0. Note especially564

that, in the definitions of ≤RL
m and ≤BPL

m , the logspace computation has full (two-way) access565

to the random bits r. This is consistent with the way that probabilistic logspace computation566

is used in the context of the “verifier” and “simulator” in the complexity classes SZKL and567

NISZKL [30, 14].568

SZKL, the “logspace version” of SZK, was introduced in [30], primarily as a tool to569

discuss the complexity of problems involving distributions realized by extremely limited570

circuits (such as NC0 circuits). It is shown in [30] that SZKL contains many of the problems571
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of cryptographic significance that lie in SZK. NISZKL was introduced in [14] as the “non-572

interactive” counterpart to SZKL, by analogy with NISZK, primarily as a tool to investigate573

the complexity of computing time-bounded Kolmogorov complexity. It was subsequently574

studied in [15], where it was shown to be robust to several changes to the definition. It575

is shown in [30, 14] that complete problems for SZKL and NISZKL arise by considering576

restrictions of the standard complete problems for SZK and NISZK where the distributions577

under consideration are represented either by branching programs (in EABP), or by NC0
578

circuits where each output bit depends on at most 4 input bits (in SDNC0 and EANC0).579

Following the pattern we established in Section 2, we now define SZKL and NISZKL in580

terms of their complete problems, rather than presenting the definitions in terms of interactive581

proofs:582

▶ Definition 32. SZKL = {A : A≤proj
m SDNC0} = {A : A≤L

mSDBP}583

NISZKL = {A : A≤proj
m EANC0} = {A : A≤L

mEABP}.584

▶ Theorem 33. The following are equivalent, for any decidable promise problem A:585

A ∈ NISZKL586

A≤RNC0

hm R̃K587

A≤BPNC0

hm R̃K588

A≤RAC0

hm R̃K589

A≤BPAC0

hm R̃K590

A≤RL
hmR̃K591

A≤BPL
hm R̃K592

Proof. The proof that A ∈ NISZKL implies A≤RNC0

hm R̃K proceeds as in the proof of Theo-593

rem 15. Whereas the proof of Theorem 15 takes as its starting point the problem EA′, we594

make use of the analogous problem EA’NC0 , defined exactly as EA′ except that the input is595

an NC0 circuit where each output bit depends on at most four input bits. It is shown in596

[15, Theorem 13] that a promise problem denoted SDU’NC0 is complete for NISZKL under597

uniform projections. The problem SDU’NC0 has YES instances consisting of distributions with598

statistical distance at most 2−nϵ from the uniform distribution, and NO instances consisting599

of distributions with suppport of size at most 2n−nϵ for some fixed ϵ > 0. Thus, precisely600

as in the proof of Lemma 14, we obtain that EA’NC0 is complete for NISZKL under uniform601

projections.602

We continue to follow the outline of the proof of Theorem 15. The second paragraph of603

that proof makes use of Corollary 18 of [14], and instead we appeal to the analogous result604

[14, Corollary 43] (presenting a nonuniform ≤proj
m reduction from EANC0 to R̃K).605

In more detail: as in the proof of Theorem 15, given x, our reduction constructs a606

sequence of independent copies of insteances of EA’NC0 . The proof of Corollary 43 in [14]607

shows that these NC0 circuits can be constructed via uniform projections. Let f(x, r) denote608

the function that takes input x (an instance of the promise problem A) and random sequence609

r as input, and first constructs (via a projection) the sequence C1, C2, ..., C|x|O(1) of NC0
610

circuits, and then produces as output the result of partitioning the bits of r into inputs ri for611

each Ci, computing Ci(ri), and concatenating the results. Thus each output bit of f(x, r)612

is computed by a gadget that is connected to O(1) random bits (i.e., the bits that are fed613

into the circuit computing the distribution), along with at most one bit from the input x614

(determining the circuitry internal to the gadget). The rest of the analysis (showing that, if615

the EA’NC0 instance has high entropy, then f(x, r) has high Kolmogorov complexity with high616

probability, and if the EA’NC0 instance has small support, then f(x, r) has low Kolmogorov617

complexity) is similar to that in the proof of Theorem 15.618
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All of the other implications clearly follow, if we show that if A is decidable and A≤BPL
hm R̃K ,619

then A ∈ NISZKL.620

If A is decidable and A≤BPL
hm R̃K , then, as in the proof of Theorem 15, we build a device621

Cx(r) that simulates the computation that produces queries to R̃K on input x. However,622

now Cx is a branching program, and thus we replace queries to R̃K by queries to EABP. Since623

EABP ∈ NISZKL, this shows that A is also in NISZKL. Again, the analysis is similar to that624

in the proof of Theorem 15. ◀625

We end this section, with an analogous characterization of SZKL.626

▶ Definition 34. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤L
bfB627

if there is a function f computable in logspace such that, for all x, f(x) is of the form628

(C, z1, z2, . . . , zk) where C is a Boolean formula with k input variables, and (z1, . . . , zk) is a629

list of queries, with the property that630

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.631

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.632

Earlier work that studied ≤L
bf reducibility can be found in [25, 6].633

We say A≤BPL
bf B with threshold θ > 1

2 if there are functions f and g computable in634

deterministic logspace, and a polynomial p, such that, for all x, f(x) is a Boolean formula635

(with k = |x|O(1) variables), with the property that636

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,637

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,638

where639

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ640

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ641

χg,B(x, i) = ∗ otherwise.642

If the reduction is honest, then we write A≤BPL
hbf B643

(Similarly, one can define AC0 versions of ≤L
bf , although, since an AC0 circuit cannot644

evaluate a Boolean formula, we do not pursue that direction here.)645

▶ Theorem 35. The following are equivalent, for any decidable promise problem A:646

A ∈ SZKL.647

A≤L
bfEANC0 .648

A≤BPL
hbf R̃K with threshold 1 − 1

nω(1) .649

Proof. The first two items are equivalent, because (a) SZKL is closed under ≤L
bf reducibility650

[15], and (b) the argument in [33], showing that SZK ≤L
bf-reduces to NISZK carries over651

directly to SZKL and NISZKL. Furthermore, the reduction to EANC0 is length-increasing, and652

hence honest.653

Since EANC0 is complete for NISZKL, Theorem 33 implies that every A ∈ NISZKL is654

≤BPL
hbf -reducible to R̃K . The argument that every decidable A that ≤BPL

hbf -reduces to R̃K lies655

in SZKL is similar to the argument in Theorem 29. ◀656

7 How important is the “Honesty” Condition?657

Our main results (Theorems 15 and 33) rely on restricting randomized reductions to R̃K658

to be honest. In this section, we consider what happens when this “honesty” condition659

is dropped, for related notions of reducibility. First, we consider a seemingly much more660

powerful notion of reducibility, and show that we still obtain a complexity-theoretic upper661

bound.662
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▶ Theorem 36. Let A be a decidable promise problem. Let RKU
be the set {x : KU (x) ≥ |x|}.663

If A≤NP
m RKU

for every universal Turing machine U , then A has a solution in PPNP.664

Note that, in contrast to Theorem 15, we no longer assume any approximation error, we no665

longer assume that the reduction is honest, and we are assuming a ≤NP
m reduction, instead666

of a ≤RP
m reduction. This means that there is a deterministic Turing machine M running667

in polynomial time p(n) such that x ∈ AY implies there exists a string r of length at most668

p(|x|) such that M(x, r) ∈ RKU
, and x ∈ AN implies that no such string r exists.669

Proof. It will suffice to show that, for any decidable promise problem A that has no solution670

in PPNP, there is a universal Turing machine U such that A ̸≤NP
m RKU

. We will follow the671

approach of [8, Theorem 14].672

Let Ust be some “standard” universal Turing machine that is used to define K(x). Now673

define a new Turing machine U such that U(00d) = Ust(d) for every string d. Note that,674

for every string x, KU (x) ≤ K(x) + 2, and thus U is a Universal Turing machine. Next, we675

describe a stage construction that will define the behavior of U on inputs not in 00{0, 1}∗.676

We accomplish this by presenting an enumeration of pairs (d, y); that is, U(d) = y if the pair677

(d, y) appears in the enumeration. In stage i, we will guarantee that the ith nondeterministic678

Turing machine Ni (with a run-time of ni) does not define a ≤NP
m reduction of A to RKU

.679

At the start of stage i, there is a length ℓi with the property that at no later stage will680

any string d of length less than ℓi or any string y of length less than 2ℓi be enumerated into681

our list of pairs (d, y). (At stage 1, let ℓ1 = 1.)682

For any string x, denote by Qi(x) the set of outputs produced along some branch of683

Ni(x), and let Q′
i(x) be the set of strings in Qi(x) having length less than ℓi.684

In Stage i, the construction starts searching through all strings of length 2ℓi or greater,685

until two strings x0 and x1 are found, such that686

x0 ∈ AN ,687

x1 ∈ AY ,688

Q′(x0) = Q′(x1), and689

One of the following holds:690

Qi(x1) contains no more than 2⌊m/2⌋−2 elements from {0, 1}m for each length m ≥ 2ℓi,691

or692

Qi(x0) contains more than 2⌊m/2⌋−2 elements from {0, 1}m for some length m ≥ 2ℓi. .693

We argue below that strings x0 and x1 will be found after a finite number of steps.694

If Qi(x1) contains no more than 2⌊m/2⌋−2 elements from {0, 1}m for each length m ≥ ℓi,695

then for each string y of length m ≥ ℓi in Qi(x1), pick a different d of length ⌊m/2⌋ − 2 and696

add the pair (1d, y) to the enumeration. This guarantees that Qi(x1) contains no element of697

RKU
of length ≥ 2ℓi. Thus if Ni is to be a ≤NP

m reduction of A to RKU
, it must be the case698

that Q′
i(x1) contains an element of RKU

. However, since Q′
i(x1) = Q′

i(x0) and x0 ̸∈ A, we699

see that Ni is not a ≤NP
m reduction of A to RKU

700

If Qi(x0) contains more than 2⌊m/2⌋−2 elements from {0, 1}m for some length m ≥ 2ℓi,701

then note that at least one of these strings is not produced as output by U(00d) for any702

string d of length ≤ m
2 − 2. We will guarantee that U does not produce any of these strings703

on any description d ̸∈ 00{0, 1}∗, and thus one of these strings must be in RKU
, and hence704

Ni is not a ≤NP
m reduction of A to RKU

.705

Let ℓi+1 be the maximum of the lengths of x0, x1 and the lengths of the strings in Qi(x0)706

and Qi(x1).707

It remains only to show that strings x0 and x1 will be found after a finite number of708

steps. Assume otherwise. It follows that AY ∪ AN can be partitioned into a finite number709
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of equivalence classes, where y and z are equivalent if both y and z have length less than710

2ℓi, or if they have length ≥ 2ℓi and Q′
i(y) = Q′

i(z). Furthermore, for the equivalence classes711

containing long strings, if the class contains both strings in A and in A, then the strings712

in A are exactly the strings on which Ni queries more than 2⌊m/2⌋−2 elements of {0, 1}m
713

for some length m ≥ 2ℓi. This can be decided by making a truth-table reduction to the set714

{(x, m) : Ni(x) queries at least 2⌊m/2⌋−2 strings of length m}, which is in PPNP. Since PPB
715

is closed under polynomial-time truth-table reductions for every oracle B [32], it follows that716

A has a solution in PPNP, in contradiction to our choice of A. ◀717

Theorem 36 highlights a weakness of ≤NP
m reducibility, in comparison to ≤P

T reducibility.718

By [36], every problem in EXPNP is ≤P
T-reducible to RKU

for every universal machine U ,719

whereas Theorem 36 shows that any set ≤NP
m reducible to RKU

for every U lies in PPNP,720

which seems to be a much smaller class.721

Theorem 36 gives an upper bound on the complexity of problems ≤NP
m reducible to RKU

;722

what can we say about lower bounds? It is clear that every set in NP is ≤NP
m reducible to723

any set other than the empty set and Σ∗, and Theorem 15 implies that every problem in724

NISZK is also reducible to RKU
in this way. (Note that NISZK is not known to be contained725

in NP.) But if we impose an “honesty” restriction on ≤NP
m reductions, then it is not at all726

clear that all problems in NP reduce to RKU
, although Theorem 15 implies that problems727

in NISZK reduce not only to RKU
, but to the more restrictive problem R̃K , using the even728

more restrictive ≤RP
hm reductions.729

Now we turn to the ≤RP
m reductions that yield one of our characterizations of NISZK, but730

dropping the “honesty” condition.731

▶ Theorem 37. Let A be a decidable promise problem. If A≤RP
m R̃K , then A has a solution732

in AM ∩ coAM.733

Proof. If A≤RP
m R̃K , then there is a single reduction R such that, for each universal Turing734

machine U , R reduces A to RKU
for all large inputs. We make use of this (weaker)735

assumption, without relying on the ω(log n) “approximation” term in the definition of R̃K .736

Thus Theorem 37 is incomparable with the main result of [53], where the same upper737

bound of AM ∩ coAM is presented for more general nonadaptive reductions, but with an738

“honesty” restriction, and requring a superlogarithmic approximation term for the Kolmogorov739

complexity promise problem.740

We follow a similar strategy to the proof of Theorem 36, while also incorporating some of741

the techniques of [39, Theorem 2]. Let A be any decidable promise problem with no solution742

in AM. We will show that, for every machine R computing a (possible) ≤RP
m reduction, there743

is a universal Turing machine U such that there are infinitely many inputs on which R fails744

to reduce A to RKU
.745

Let R be any probabilistic polynomial-time Turing machine that (possibly) computes a746

≤RP
m reduction to RKU

for every U (for all large inputs), and let p(n) be the running time of747

R. Define δ(n) = 1/p(n)11, and let δ′(n) = 3p(n)δ(n).748

On input x, the reduction R may query strings of various lengths j. Let Rj(x) be the749

set of all random sequences r such that R(x, r) outputs a string of length j. For a given U ,750

define Pj(x) to be Pr[R(r, x) ∈ RKU
|r ∈ Rj(x)]. (The machine U under consideration will751

always be clear from context.)752

▷ Claim 38. If R is computing a ≤RP
m reduction to RKU

on input x, then753

If the reduction accepts on input x, then there is some j such that Pr[r ∈ Rj(x)] ≥ 2δ(n)754

and Pj(x) ≥ 1 − δ′(n).755
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If the reduction rejects on input x, then for all j such that Pr[r ∈ Rj(x)] > 0, Pj(x) = 0.756

Proof. The first item is proved along the lines of [39, Claim 14]: By definition, the probability
that the reduction accepts on input x is

Pr
r

[
KU (R(x, r)) ≥ |R(x, r)|

2

]
=

∑
j

Pr[r ∈ Rj(x)] · Pj(x).

If R is a ≤RP
m reduction to RKU

then this probability is 1 − 1
nω(1) ≥ 1 − δ(n)2. Assume by way757

of contradiction that Pj(x) < 1 − δ′(n) for every j such that Pr[r ∈ Rj(x) ≥ 2δ(n). Then758

1 − δ(n)2 ≤
∑

j

Pr[r ∈ Rj(x)] · Pj(x)759

=
∑

{j:Pj(x)≥2δ(n)}

Pr[r ∈ Rj(x)] · Pj(x) +
∑

{j:Pj(x)<2δ(n)}

Pr[r ∈ Rj(x)] · Pj(x)760

≤ (1 − δ′(n)) + p(n)2δ(n) = 1 − 3p(n)δ(n) + p(n)2δ(n) = 1 − p(n)δ(n)761
762

and thus p(n) ≤ δ(n) < 1, which is a contradiction.763

The second item follows immediately from the definition of a ≤RP
m reduction. If the764

reduction rejects on input x, then every query must be non-random. ◀765

Let us say that j is popular for x if Pr[r ∈ Rj(x)] ≥ 2δ(n). Since the running time of R766

is p(n), and since R outputs a string of some length (at most p(n)) along every path, there767

is always some j such that Pr[r ∈ Rj(x)] ≥ 1
p(n) ≥ 2δ(n), and thus there is always at least768

one j that is popular for x.769

Let Ust be some “standard” universal Turing machine that is used to define K(x). Now770

define a new Turing machine U such that U(00d) = Ust(d) for every string d. Note that,771

for every string x, KU (x) ≤ K(x) + 2, and thus U is a Universal Turing machine. Next, we772

describe a stage construction that will define the behavior of U on inputs not in 00{0, 1}∗.773

We accomplish this by presenting an enumeration of pairs (d, y); that is, U(d) = y if the774

pair (d, y) appears in the enumeration. In stage i, we will guarantee that there are at least i775

inputs on which R fails to reduce A to RKU
.776

At the start of stage i, there is a length ℓi with the property that at no later stage will777

any string d of length less than ℓi or any string y of length less than 2ℓi be enumerated into778

our list of pairs (d, y). (At stage 1, let ℓ1 = 1.)779

Let us say that a query q of length j is β-heavy on input x if Prr∈Rj
[R(x, r) = q] ≥ β.780

In Stage i, the construction starts searching through all strings of length 2ℓi or greater,781

until two strings x0 and x1 are found, such that782

x0 ∈ AN ,783

x1 ∈ AY , and784

For each y ∈ {x0, x1}, there is a j ≥ ℓi such that j is popular for y.785

One of the following holds:786

For some j ≥ ℓi that is popular for x1, letting m = ⌊j/2⌋, and setting β = 1
2m+13 ,787

Prr∈Rj(x1)[R(x, r) is β heavy] ≥ 1
4 .788

For every j ≥ ℓi that is popular for x0, as above letting m = ⌊j/2⌋, and setting789

β = 1
2m+13 , Prr∈Rj(x0)[R(x, r) is 211β heavy] ≤ 3

4 .790

We claim that some such pair (x0, x1) will be found after a finite number of steps, and791

that R fails to reduce A to RKU
on either x0 or x1. Thus, at the end of stage i we will have792

found at least i strings on which R fails to reduce A to RKU
. Then we set ℓi to be larger793



20 Kolmogorov Complexity Characterizes Statistical Zero Knowledge

than the length of any query that is made by R on either x0 and x1, and move on to the794

next stage.795

To see that a pair (x0, x1) will always be found, observe that otherwise, a string x796

of length greater than 2ℓi in AN ∪ AY is a YES instance if for every j ≥ ℓi that is797

popular for x, Prr∈Rj(x)[R(x, r) is β heavy] < 1
4 , and x is a NO instance if there is some798

j ≥ ℓi that is popular for x, where Prr∈Rj(x)[R(x, r) is 211β heavy] > 3
4 .8 But these799

conditions can both be checked in AM ∩ coAM, which places A in AM ∩ coAM, contrary800

to our choice of A. To see this, note that the distribution given by R(x, r) for uniformly801

sampled r ∈ Rj(x) is very close to a polynomial-time samplable distribution if j is popular.802

(Simply choose r uniformly at random for a large polynomial number of tries, until some803

r is found such that R(x, r) has length j, and output this R(x, r). By sampling r for a804

large enough polynomial number of times, the resulting distribution D has the property805

that | Prr∼D[R(x, r) is β heavy] − Prr∈Rj(x)[R(x, r) is β heavy]| < 1
8 ), and similarly the806

probabilities of sampling a 211β-heavy string in the two distributions are very close.) Thus807

we can appeal to the heavy samples protocol of Bogdanov and Trevisan [23], as presented in808

[39, Lemma 13]:809

▶ Lemma 39. Let q(n) be a polynomial. There is an AM ∩ coAM protocol that solves810

the following promise problem: Given a circuit of size q(n) producing output of length811

n representing a distribution D, and given a threshold β = a
b ∈ (0, 1) where a and b812

are represented in binary notation, accept if Pry∼D[y is 211β−heavy] ≥ 7
8 , and reject if813

Pry∼D[y is β−heavy] ≤ 1
8 .9814

This gives the desired AM ∩ coAM protocol. (More precisely, Arthur can use BPP compu-815

tation to determine which j are popular, and then construct the circuits that approximate816

the distributions required, to run the heavy samples protocol in parallel for each popular817

j ≥ ℓi.)818

If the pair (x0, x1) that is found in stage i satisfies the second condition (namely: for every819

j ≥ ℓi that is popular for x0, Prr∈Rj(x0)[R(x, r)is 211β heavy] ≤ 3
4 ) we can conclude that R820

does not define a ≤RP
m reduction of A to RKU

on x0, since (a) there must be some j ≥ ℓi that821

is popular for x0, and (b) there must be more than 2⌊j/2⌋ strings of length j that are queried822

by R on input x0, and thus at least one of them must be random. To see this, order the 2j
823

possible queries of length j in decreasing order of weight, q1, q2, . . . , q2m , . . . q2m+2 , . . . , q2j ,824

where m = ⌊j/2⌋ and 211β = 1
2m+2 . Let w(qi) denote the weight of qi; thus w(qi) ≥ w(qi+1)825

and w(qi) ≤ 1
i . It suffices to show that, if no more than 2m strings of length j are queried,826

8 There is actually one other possibility: that all j that are popular for x are less than ℓi. However, in this
case the probability given to longer queries is no more than p(n)δ(n) = 1

p(n)10 and thus the short queries
determine the outcome of the reduction. Thus in BPP we can determine which j ≤ ℓi are popular and
simulate the reduction on those short queries, using a finite table to answer all of the short queries.

9 This is not precisely the way that the heavy samples lemma is stated in [39], but the proof that is
presented there establishes this version of the lemma.
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then Prr∈Rj(x0)[R(x, r) is 211β heavy] > 3
4 .827

Pr
r∈Rj(x0)

[R(x, r) is 211β heavy] =
∑

{i:w(qi)≥2−m−2}

w(qi)828

= 1 −
∑

{i:w(qi)<2−m−2}

w(qi)829

> 1 −
∑

{i:w(qi)<2−m−2}

2−m−2
830

≥ 1 − (2m · 2−m−2) = 3
4 .831

832

On the other hand, if the pair that is found in stage i satisfies the first condition833

(namely: for some j ≥ ℓi that is popular for x1, Prr∈Rj(x1)[R(x, r) is 1
2m+13 heavy] ≥834

1
4 ), then – as above – order the 2j possible queries of length j in decreasing order of835

weight, q1, q2, . . . , q2m−2 , . . . q2m , . . . , q2j . For each q ∈ S = {qh : h ≤ 2m−2} choose a836

distinct description d of length m − 2 and enumerate (1d, q) into the description of U ,837

thereby assuring that the heaviest queries made by R on input x1 are all non-random.838

The probability mass of the heaviest queries is minimized if as much mass as possible is839

shifted to the lighter queries. Let i be the largest number such that w(qi) ≥ β. In this840

case, Prr∈Rj(x1)[R(x, r) is 1
2m+13 heavy] = iβ ≥ 1

4 , and hence i ≥ 2m+13. In particular,841

we can conclude that the probability that R(x1) outputs one of the 2m−2 strings in S842

(conditioned on R producing a string of length j with weight at least β) is minimized if all843

strings of weight at least β have equal probability, and in particular w(q2m−2) = β. Thus844

Pr[R(x1, r) ∈ S|R(x1, r) has weight ≥ β and has length j] ≥ 2m−2

2m+13 = 1
215 . Thus845

Pr
r∈Rj(x1)

[R(x, r) ∈ S]846

= Pr
r∈Rj(x1)

[R(x, r) ∈ S|R(x, r) is 1
2m+13 heavy] · Pr

r∈Rj(x1)
[R(x, r) is 1

2m+13 heavy]847

≥ 1
215 · 1

4 .848
849

Thus, since j is popular for x1, R(x1, r) is producing as output a non-random string with850

probability at least 2δ(n)/217, which means that R is failing to compute a ≤RP
m reduction851

of A to RKU
(since this would require that R(x1) output a random string with probability852

1 − 1
nω(1) ).853

◀854

▶ Remark 40. The proof of Theorem 37 carries over, with only minor changes, to nonadaptive855

probabilistic reductions that make at most one query along any path.856

8 Discussion857

There are not many examples of natural computational problems that are known or conjec-858

tured to lie outside of P, such that the class of problems reducible to them via ≤P
m and ≤L

m859

(or ≤AC0

m ) reductions differ (or are conjectured to differ). Is it the case that the problems860

reducible to R̃K via ≤RP
hm and ≤RL

hm (or ≤RAC0

hm ) reductions differ? Or should this be taken as861

evidence that NISZK and NISZKL coincide?862

Similarly, there are not many examples of natural computational problems such that the863

classes of problems reducible to them via ≤P
tt and ≤P

bf reductions differ (or are conjectured to864
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differ). For example, these reducibilities coincide for SAT [26]. Is it the case that ≤BPP
bf and865

≤BPP
circ reducibilities differ for R̃K? Or should this be taken as evidence that SZK is closed866

under ≤P
tt reducibility?867

Perhaps our new characterizations of statistical zero knowledge classes will be useful in868

answering these questions.869

It is known that every promise problem in NISZKL reduces to R̃K via nonuniform870

projections [14, 4]. The following quote from [4] is worth paraphrasing here:871

. . . no complexity class larger than NISZKL is known to be (non-uniformly) ≤AC0

m872

reducible to the Kolmogorov-random strings [14]. It seems unlikely that this is optimal.873

The discussion in [4] was referring to reductions to an oracle for the exact Kolmogorov-874

complexity function. Our results show that, for reductions to an approximation to the875

Kolmogorov-complexity function, NISZKL is essentially “optimal”.876

9 An Application877

Finally, let us observe that our new characterizations of NISZKL may open new avenues878

of attack on questions such as whether NP = NL. MKTP, the problem of computing KT879

complexity, lies in NP and is hard for co-NISZKL under nonuniform projections [14]. If880

MKTP ∈ NISZKL, then there must be a nonuniform projection f that takes strings of881

low KT-complexity (and hence low K-complexity) to strings of high K complexity, and882

simultaneously maps strings of high KT complexity to strings of low K-complexity.10 It is883

plausible that one could show unconditionally that no such projection can exist. Among884

other things, this would show that NP ̸= DET (where DET is the complexity class, containing885

NL, of problems that reduce to the determinant) since DET ⊆ NISZKL [14].11
886

It may be useful to observe that, if MKTP ∈ NISZKL, then the projection discussed in the887

preceding paragraph can be assumed without loss of generality to have a very specific form.888

▶ Theorem 41. Let ϵ be any number greater than zero, and let e(m) be any function889

computable in AC0, where ω(log m) < e(m) < mo(1). If MKTP ∈ NISZKL, then there is a890

(non-uniform, polynomial-size) projection f mapping strings of length n to strings of length891

m, such that892

KT(x) ≤ n
3 implies K(f(x)) > m

2 , and893

KT(x) > n
3 implies K(f(x)) < m

2 − e(m)894

and furthermore, f(x) has the following form: Given input x = x1x2 . . . xn,

f(x) = yng1(x1)g2(x2) . . . gn(xn),

where yn has length ≥ m − mϵ and depends only on n, and each each gi depends on only a895

single bit of x, and all of the strings g1(0), g1(1), g2(0), g2(1), . . . , gn(0), gn(1) have the same896

length.897

Proof. (Sketch) If MKTP ∈ NISZKL, then the language A consisting of all strings x such that898

KT(x) < |x|
3 is also in NISZKL, and hence, by Theorem 33 A≤RNC0

hm R̃K , via a function f0(x, r)899

10 Similarly, under the same assumption, there is a nonuniform projection that takes strings of low KT
complexity to strings of high KT complexity, and simultaneously maps trings of high KT complexity to
strings of low KT complexity.

11 More precisely, as observed in [17], the Rigid Graph (non-) Isomorphism problem is hard for DET [55],
and the Rigid Graph Non-Isomorphism problem is in NISZKL [14, Corollary 23].
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computable in uniform NC0. Furthermore, as in Propositions 3 and 5, we may assume that900

many of the output bits in f0(x, r) do not depend on x at all, but are simply “padding”. In901

fact, as in [14, Theorem 39], the error probability for the reduction is exponentially small,902

and a deterministic (but nonuniform) reduction can be obtained by hardwiring in a fixed903

choice of r. As described in the proof of [14, Corollary 41], this yields a function f1(x) that904

is a projection; briefly, this is because each output bit of f0(x, r) depends on at most one bit905

of x (and depends on O(1) bits of r).906

Many of the output bits of f1(x) are fixed by the choice of r, and do not depend on x907

at all. In fact, since f0(x, r) is in uniform NC0, and since many of the output bits are the908

result of padding, there are at least m − mϵ bit positions that we can easily find that do909

not depend on x. Let yn be the string that results from concatenating those bit positions910

consecutively. All of the bit positions of f0(x, r) that do not correspond to a bit in yn are all911

connected to exactly one bit position of x. Let ki be the number of output bits connected to912

xi, and let k be the maximum of all of the ki; note that k can easily be computed, given n.913

Let gi(b) be the string of length k consisting of the concatenation of the bits of f0(x, r)914

that depend on xi, when xi = b (padded out with zeros, if necessary, to obtain a string of915

length k).916

Let f2(x) = yng1(x1) . . . gn(xn). It is easy to see that K(f1(x)) = K(f2(x)) ± O(1).917

(Given a short description of f1(x) or f2(x), the other string can be obtained by simply918

rearranging the bits, using the uniform description of f0 to indicate which bits should be919

moved where. This function f2 is the projection f in the statement of the theorem. The proof920

is completed, by noticing that the proof of Theorem 33 carries over for any promise problem921

defined as R̃K , but with the YES instances consisting of strings z with K(z) > |z|
2 + c for922

any constant c. ◀923

We do not know if a version of Theorem 41 holds, where K-complexity is replaced by924

KT-complexity.925

We have not been able to prove that there is no projection reducing MKTP to R̃K . In926

fact, we do not even know whether there is a projection reducing the halting problem to927

R̃K . The structure of the computably-enumerable degrees of languages under non-uniform928

projections does not seem to have been studied in any depth. Indeed, it is easy to observe that929

non-uniform projections do not behave similarly to the more-commonly studied m-reductions:930

▶ Theorem 42. The halting problem ≤proj
m -reduces to its complement.931

Proof. Let H = {(M, x) : M halts on input x}. Let nH = H ∩ {y : |y| ≤ n}. Note that932

the set A = {(y, i) : there are at least i strings x ̸= y in H having length at most n} is933

computably-enumerable, and thus there is a projection f reducing A to H. Let y have length934

n. Note that y ̸∈ H if and only if f(y, nH) ∈ H. ◀935

Although we do not know how to prove that there is no projection reducing MKTP to936

R̃K , we note there there is provably no projection reducing MKTP to a related problem R̃′
K ,937

where the “gap” between the YES and NO instances is larger than in R̃K . Define R̃′
K to938

have YES instances {x : K(x) ≥ 4|x|
5 } and NO instances {x : K(x) ≤ |x|

5 }.939

▶ Theorem 43. There is no projection reducing MKTP to R̃′
K .940

Proof. Since PARITY is in co-NISZKL, we know that PARITY ≤proj
m MKTP. Thus if941

MKTP≤proj
m R̃′

K it follows that PARITY ≤proj
m R̃′

K . We apply the techniques of [20, Lemma942

6] to show that no such projection can exist. More precisely, we show that if A is any language943
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that projection reduces to R̃′
K , then the 1-block sensitivity of A is at most 2. (Since the944

1-block sensitivity of PARITY is n, this suffices to prove the theorem.)945

Let x ∈ A be such that the block sensitivity at x is at least 3. Thus there are three946

disjoint blocks of input bits B1, B2, B3, such that flipping the bits in any block Bi produces a947

string xi ̸∈ A. If f is a projection reducing A to R̃′
K , then K(f(x)) ≥ 4m

5 , where m = |f(x)|,948

whereas K(f(xi)) ≤ m
5 . Let di be a short description of xi; thus U(di) = xi, where U is949

the universal Turing machine from the definition of Kolmogorov complexity. Any bit of the950

output of f depends on at most 1 input bit. Thus, for any i, the ith bit of f(x) agrees with951

the ith bit of at least 2 of {f(x1), f(x2), f(x3)} (since the blocks B1, B2, and B3 are disjoint).952

Thus we can simply take the majority vote of {U(d1), U(d2), U(d3)} to obtain any bit of f(x).953

It follows that K(f(x)) ≤ |d1| + |d2| + |d3| + O(log m) < 4m
5 . This is a contradiction. ◀954

In this vein, let us also remark that Kolmogorov complexity has already proved useful955

in developing nonrelativizing proof techniques [37], and also that the machinery of perfect956

randomized encodings (which were developed in [21] and which are essential to the results of957

[14]) also does not seem to relativize in any obvious way.958
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