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Abstract

In (ToCT’20) Kumar surprisingly proved that every polynomial can be approximated as a
sum of a constant and a product of linear polynomials. In this work, we prove the converse
of Kumar’s result which ramifies in a surprising new formulation of Waring rank and border
Waring rank. From this conclusion, we branch out into two different directions, and implement
the geometric complexity theory (GCT) approach in two different settings.

In the first direction, we study the orbit closure of the product-plus-power polynomial,
determine its stabilizer, and determine the properties of its boundary points. We also
connect its fundamental invariant to the Alon-Tarsi conjecture on Latin squares, and prove
several exponential separations between related polynomials contained in the affine closure of
product-plus-product polynomials. We fully implement the GCT approach and obtain several
equations for the product-plus-power polynomial from its symmetries via representation
theoretic multiplicity obstructions.

In the second direction, we demonstrate that the non-commutative variant of Kumar’s result
is intimately connected to the constructions of Ben-Or andCleve (SICOMP’92), and Bringmann,
Ikenmeyer, Zuiddam (JACM’18), which describe algebraic formulas in terms of iterated matrix
multiplication. From this we obtain that a variant of the elementary symmetric polynomial is
complete for V3F, a large subclass of VF, under homogeneous border projections. In the regime
of quasipolynomial complexity, our polynomial has the same power as the determinant or as
arbitrary circuits, i.e., VQP. This is the first completeness result under homogeneous projections
for a subclass of VBP. Such results are required to set up the GCT approach in a way that avoids
the no-go theorems of Bürgisser, Ikenmeyer, Panova (JAMS’19).

Finally, using general geometric considerations, we significantly improve the relationship
between theWaring rank and the borderWaring rank of polynomials. In particular, if the border
Waring rank of a homogeneous polynomial f is k, then, the Waring rank of f can be at most
exp(k) · d, while previously it was known to be O(dk).
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1 Introduction

Geometric Complexity Theory (GCT) is an approach towards proving algebraic variants of the
P ̸= NP conjecture using algebraic geometry and representation theory [MS01, MS08]. Let
pern := Σσ∈Sn Πn

i=1xi,σ(i) be the permanent polynomial (on n2 variables). An algebraic version
of the P ̸= NP conjecture, often called Valiant’s determinant vs. permanent conjecture, states that the
smallest size of a matrix A whose entries are affine linear polynomials such that det(A) = pern,
is not polynomially bounded (equivalently, VNP ⊈ VBP). Mulmuley and Sohoni strengthened
the conjecture by allowing arbitrary approximations while computing the permanent polynomial,
i.e. VNP ⊈ VBP. This question is the central question of GCT.

The Mulmuley–Sohoni conjecture can be rephrased as ℓm−npern ̸∈ GLm2 detm, if m = poly(n);
here GLm2 := GL(Cm×m) acts on the space of homogeneous degree m polynomials in m2 variables
by (invertible) linear transformation of the variables, and ℓ is some linear form (one can assume
ℓ := x1,1). The polynomial ℓm−npern is called the ‘padded permanent’, and the phenomenon of
multiplying with a power of a linear form is called padding. The representation theoretic attack
on the problem is done by using so-called obstructions. Padding is a serious issue in GCT, whose
challenges were first highlighted by Kadish and Landsberg [KL14]. This eventually lead to the
breakthrough work [BIP19], where it was shown that occurrence obstructions are not sufficient to
prove Mulmuley and Sohoni’s conjecture. Remarkably, in that no-go result, one can replace the
permanent by any homogeneous polynomial of degree m in m2 variables. The proof crucially
relies on the padding of the polynomial. This is the main motivation to study padding-free models
of computation, and homogeneous models are one way to go about it. An Algebraic formula,
also called arithmetic formula, is one of the most robust models of computation that are studied
in Algebraic Complexity. In this work, we introduce a GCT formulation for formulas, that
circumvents padding.

1.1 Definition (Algebraic Formula). An algebraic formula, over a field F, is a directed tree with a unique
sink vertex called the root. The source vertices are labelled by either formal variables or field constants, and
each internal node of the graph is labelled by either + or ×. Nodes compute formal polynomials in the input
variables in the natural way. The polynomial computed by the formula is defined as the polynomial computed
by the root.

The size of a formula is the number of vertices of the tree. VF is the class of polynomial families
( fn)n∈N, with formula-size of fn being polynomially bounded. Replacing the tree of Definition 1.1
with a directed acyclic graph (i.e., the out degree of a node can be≥ 2), gives the notion of algebraic
circuit. Similarly, the size of an algebraic circuit is the number of vertices in the graph. The class VP
contains polynomial families ( fn)n∈N, with both circuit-size and degree of fn being polynomially
bounded. Another importantmodel of computation is the algebraic branching program (ABP)model.
It is a classical result that every homogeneous degree d polynomial f can be written as a product

f = ( ℓ1,1,1 ℓ1,2,1 ··· ℓ1,n,1 )

(
ℓ1,1,2 ··· ℓ1,n,2

... . . . ...
ℓn,1,2 ··· ℓn,n,2

)(
ℓ1,1,3 ··· ℓ1,n,3

... . . . ...
ℓn,1,3 ··· ℓn,n,3

)
· · ·
(

ℓ1,1,d−1 ··· ℓ1,n,d−1

... . . . ...
ℓn,1,d−1 ··· ℓn,n,d−1

)(
ℓ1,1,d

...
ℓn,1,d

)

of matrices whose entries are homogeneous linear forms. If f can be computed in the above form,
we say that f has a small ABP of width n. In fact, if we define w( f ) to be the smallest possible such
n, then for a sequence of homogeneous polynomials ( fn)n∈N we have that

( fn)n∈N ∈ VBP iff w( fn) is polynomially bounded.6 (1.2)
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It is known that VF ⊆ VBP ⊆ VP [Val79]. For any class C, we can define its (Zariski) closure C,
which contains polynomial families, where the polynomials can be efficiently approximated
arbitrarily closely; for a formal definition, see Section 2. It is not known how to homogenize
arithmetic formulas with only a polynomially large blow-up in size; this makes padding-free study
of formulas quite challenging. In this regard, here is a meta-question.
1.3 Meta-Question. Prove (pern)n∈N ̸∈ VF, or, equivalently VNP ⊈ VF, via padding-free GCT
techniques.

Seemingly unrelated (to the above), the central model of our interest is the following: α ·(
∏i∈[m](1 + ℓi)− 1

), for n-variate linear forms ℓi ∈ C[x]1, and α ∈ C. Note that, any polynomial f
computed by the above model has degree = m and is constant-free (constant term is 0). Further,
f has a trivial formula size of O(mn).
1.4 Problem. How powerful is the model α · (∏i∈[m](1 + ℓi)− 1), for linear forms ℓi?
Note that this is not a complete model: for instance, a simple monomial x1 · · · xn cannot be written
as α · (∏i∈[m](1+ ℓi)− 1); for a quick proof see Lemma 4.3. But, what if we allow ℓi ∈ C(ϵ)[x]1, α ∈
C(ϵ), and look at the limit polynomials limϵ→0 α · (∏i∈[m](1+ ℓi)− 1), if it exists? Howmuchmore
can it compute? In this work, we answer this question in fair details by proving the converse of a
recent result of Kumar [Kum20]. We also showa surprising, intimate relation toMeta-Question 1.3;
for details, see Section 2.

The starting point of the paper is the study of Kumar’s model in Section 4. The other sections
relate to this as follows.

§4, §2.a

§7, §2.e

VFH, V3F,
elem. symm.§6 §4.a, §2.a

§6.a–§6.d, §2.c§6.f, §2.b §6.e, §8, §2.b, §2.d

matrix-valued
approx. linear approx.

converse to Kumar

de-bordering

Waring rank

separations border WR,
prod. + power GCT setups

WR vs WR
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2 Our Results

In this section, we state our results. Among many, some of the results are de-bordering results.
A de-bordering result is an upper bound on the complexity of all polynomials which have low
approximation complexity. Before stating our results, we unify some of our basic notations that
will be used throughout. Let V := C[x1, . . . , xn]1 := Span({x1, . . . , xn}) be the space of linear
forms in x1, . . . , xn. Let SdV := C[x1, . . . , xn]d =: C[V∗]d, and let f ∈ SdV be a homogeneous
polynomial of degree d. We introduce the following notions of projection and degeneration.

2.1 Definition. Let U, W be finite dimensional complex vector spaces and let f ∈ C[U]d, g ∈ C[W]d.
We say that f is a projection of g, and write f ≤ g if f ∈ {g ◦ A | A : U → W linear}. We say
that f is a degeneration of g, and write f ⊴ g, if f ∈ {g ◦ A | A : U →W linear}. Write f ≤aff g, if
f ∈ {g ◦ A | A : U → W affine linear} = {v 7→ g(Av + b) | A : U → W linear, b ∈ W}. Write
f ⊴aff g if f ∈ {g ◦ A | A : U →W affine linear}.

All closures inDefinition 2.1 can be taken, equivalently, in the Euclidean or the Zariski topology,
see e.g. [Kra85, AI.7.2 Folgerung].
Closure. For C ∈ {VF,VBP,VP,VNP} define C via ( fn)n ∈ C ⇐⇒ ∃(gn)n ∈ C ∀n : fn ⊴aff gn

7.

2.a Kumar’s complexity

For a polynomial f , let Kumar’s complexity, denoted, Kc( f ) be the smallest m such that there exists
a constant α and homogeneous linear polynomials ℓi such that

f = α
(( m

∏
i=1

(1 + ℓi)
)
− 1
)
. (2.2)

If no such m exists, we set Kc( f ) := ∞. Note that for this definition the field does not matter, but
in this paper we often restrict our attention to the complex numbers C. Clearly, if Kc( f ) is finite,
then the highest degree homogeneous part of f is a product of homogeneous linear forms, hence
not all f have a finite Kc.

For fϵ, gϵ ∈ C(ϵ)[x] we write fϵ ≃ gϵ if both limits limϵ→0 fϵ and limϵ→0 gϵ exist, and both
limits coincide. Algebraically this means that fϵ, gϵ ∈ C[[ϵ]][x] and fϵ ≡ gϵ mod ⟨ϵ⟩. Let Kc( f )
denote the smallest m such that there exists fϵ ∈ C(ϵ)[x] and ℓi ∈ C(ϵ)[x]1, α ∈ C(ϵ) with fϵ ≃ f
and ∀β ̸= 0 : Kc( fϵ|ϵ=β) ≤ m. An equivalent definition for Kc is the smallest m such that f ≃ fϵ

with fϵ = α
((

∏m
i=1(1 + ℓi)

)
− 1
)
, where α ∈ C(ϵ) and ℓi ∈ C(ϵ)[x]1.8 Kumar [Kum20] proved

that Kc( f ) is indeed always finite for homogeneous polynomials (in this introductory section we
limit our discussion to homogeneous polynomials for the sake of a clearer exposition, but of course
using padding one sees immediately that this also works for inhomogeneous polynomials):

4.4 Proposition. For all homogeneous f we have Kc( f ) ≤ deg( f ) ·WR( f ).

In the above,WR( f ), theWaring rank of a homogeneous degree-d polynomial f , is the minimal
r in an expression f = ∑i∈[r] ℓ

d
i , where ℓi are linear forms. We also denoteWR( f ), the border Waring

rank of f , as the minimum r such that f = limϵ→0 ∑i∈[r] ℓ
d
i , where ℓi ∈ C(ϵ)[x]1 are linear forms.

7For a more general definition of the closure see [IS22]
8It is often more convenient to work with approximations in C[ϵ−1, ϵ] instead of C(ϵ). This can always be achieved

by first representing rational functions by their Laurent series at 0, thus going from C(ϵ) to C((ϵ)) = C[[ϵ]][ϵ−1], and
then truncating the Laurent series at degree high enough so that it does not affect approximations.
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In this work, we prove the converse of the above statement. Let δ f := 1 if f is a product of
homogeneous linear forms, and define δ f = ∞ otherwise. The following theorem explains the
relation between border Waring rank and Kumar’s complexity.
4.7 Theorem (Border Waring rank via Kumar’s complexity). For all homogeneous f we have

min{deg( f ) · δ f , WR( f )} ≤ Kc( f ) ≤ deg( f ) ·min{δ f , WR( f )}.

4.8 Corollary (De-bordering Kc). For all homogeneous f , Kc( f ) = m =⇒ either WR( f ) ≤ m, or
f is a product of linear forms.

What if we only allow linear approximations? Interestingly, then the converse of Proposition 4.4
is also almost true! To this end, wedefine: Kc−1 ( f ) is the smallestm such that there ∃ℓi ∈ C[x]1, M ≥
1, γ ∈ C with f ≃ γϵ−M(∏m

i=1(1 + ϵℓi)− 1
).

4.12 Proposition (Waring rank via Kumar’s complexity). For any homogeneous polynomial f of
degree d, we have WR( f ) ≤ Kc−1 ( f ) ≤ d ·WR( f ).

Therefore, the above two theorems show that variants of Kumar’s complexity exactly capture
the two classical measures, namely Waring rank and border Waring rank.

2.b Orbit closures of restricted binomials

Fix integers d, r, s, with d ≥ 3, and consider the polynomial P[d]
r,s = ∑r

i=1 ∏d
j=1xji + ∑s

i=1 yd
i , in the

rd + s variables x11, . . . , xdr, y1, . . . , ys. We sometimes also use new x-variables for the y-variables.
Hüttenhain [Hüt17] studied a polynomial family, called generic binomials (we use bnd to denote it
throughout the paper):

bnd(x, y) := P[d]
2,0 = ∏i∈[d] xi + ∏i∈[d] yi .

The goal in [Hüt17] was to (completely) describe the components of the boundary ∂Ωbnd =

GL2d bnd \ GL2d bnd. Surprisingly, in the affine closure model, Kumar’s result [Kum20] showed
the following:

For every f ∈ C[x]d we have f ⊴aff bne for some e ≤ exp(log n, d) (2.3)

On the other hand, [DDS22] showed that if f ⊴aff bnd, then f has a small ABP. To this end, we
define the product-plus-k-powers P[d]

k as:

P[d]
k := P[d]

1,k = ∏i∈[d] xi + ∑i∈[k] xd
d+i .

In particular, when k = 1, we write P[d] := P[d]
1 , a product-plus-power. For a

polynomial f ∈ SdV that does not involve some variable xi we write f ⊴
xj
xi g if f ∈

{g ◦ A | A : U →W linear and A(Cxj) = Cxi}. This definition is inspired by the definition of a
parabolic subgroup of the general linear group. If f does not involve x0, we observe that

Kc( f ) ≤ m ⇐⇒ xm−d
0 f ⊴xd+1

x0 P[m] =⇒
⇍= xm−d

0 f ⊴ P[m] ⇐⇒ f ⊴aff P[m]

6.20 Theorem (De-bordering product-plus-power). Let f ∈ SdV, such that f ⊴ P[d],then either
f ≤ P[d] or or WR( f ) ≤ (d + 1)3(d2 + 1).
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Similarly, we call P[d]
2 a product-plus-two-powers; it is also a special binomial, since,

∏i∈[d] xi + xd
d+1 + xd

d+2 = ∏i∈[d] xi + ∏i(xd+1 + ζ ixd+2), where ζ is the 2d− th root of unity .

The following theorem shows that we can de-border product-plus-two-powers.

6.25 Theorem (De-bordering product-plus-two-powers). Let f ∈ SdV, such that f ⊴ P[d]
2 , then,

either
1. f ≤ P[d]

2 , or, 2. f ≤ ∏i∈[d] yi + yd−1
0 · yd+1, or, 3. WR( f ) ≤ O(d7).

2.4 Remark. As argued before, both product-plus-power and product-plus-two-powers are special
binomials, and hence, from [DDS22] it follows that their orbit closures are contained in VBP. Our
results (both Theorem 6.20 & Theorem 6.25) are more fine-grained de-bordering than VBP, since
WR( f ) ≤ poly(d) =⇒ f ∈ VBP [For16, GKS17, BDI21], and the converse does not necessarily
hold, because WR(detd) = exp(d) [Sax08, CKW11].

Exponential separation within the binomial.
Perhaps, the de-bordering results aremust-to-understand, to understand the limitations andpower
of computations/approximations in different models. However, identifying explicit polynomials
which are hard to compute/approximate, and proving it remains a major template in algebraic
complexity. Often, proving lower bounds on the homogeneous model turns out to be easier than
in its affine model, because of the non-trivial cancellations in the latter model.

In [DS22], it was established that if trnd ⊴aff bne, where trnd := Πi∈[d]xi +Πi∈[d]yi +Πi∈[d]zi, is a
trinomial, then e ≥ exp(d). In fact, such an exponential hierarchy exists, because of the exponential
gap between a k-monomial, to (k+ 1)-monomial; by k-monomial, wemean k-many sum of product
of distinct variables (for e.g., 2-monomial is nothing but binomial). In this work, since, we are
working over two restricted models of binomial, we are interested in gaps between the models (if
possible). Indeed, we show that these affine models in the border, are exponentially separated.

6.34 Theorem. If P[d]
2 ⊴aff P[e], then e ≥ exp(d).

6.35 Theorem. If bnd ⊴aff P(e)
2 , then e ≥ exp(d).

2.5 Remark (Optimality). Both Theorem 6.34 and Theorem 6.35 are optimal, since, Kumar’s result
[Kum20] (see Equation (2.3)), we know that there exists e ≤ exp(d) such that P[d]

2 ⊴aff P[e], and
similarly bnd ⊴aff P[e].

2.c Stabilizers, fundamental invariants, and the Alon-Tarsi conjecture on Latin
Squares

At a first glance the polynomial P[d] := ∏i∈[d] yi + yd
0 looks very similar to the well-studied product

polynomial ∏i∈[d] yi, which was also used in several GCT papers [Kum15, BI17, DIP20, IK20]. A
set of set-theoretic equations is known due to Brill and Gordon [Gor94], and their representation
theoretic structure has been recently described by Guan [Gua18]. It is of interest to know how
much of the theory can be transferred from the product to P[d], and howmuch of theGCT approach
can be implemented. We start by determining the stabilizer of P[d].

6.2 Theorem (simplified version). The stabilizer of P[d] in GLd+1 is Zd × (TSLd ⋊Sd).
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This is promisingly close to the stabilizer of the product polynomial. We then study the
multiplicities in the coordinate ring of the orbit via classical representation theoretic branching
rules. Recall, the irreducible representations of GLd+1 are indexed by partitions λ = (λ1, λ2, . . .),
λ1 ≥ λ2 ≥ ... with ℓ(λ) ≤ d + 1, see Section 6.b. We denote by Sλ(C

d+1) the irreducible
representation of type λ. For a GLd+1-representation V we write multλ(V) to denote the
multiplicity of λ in V , i.e., the dimension of the space of equivariant maps from Sλ(C

d+1) to V ,
or equivalently, the number of summands of isomorphism type λ in any decomposition of V into
a direct sum of irreducible representations.
6.3 Proposition. For λ ⊢ dD we have multλ(C[GLd+1 P[d]]) = dim(SλV)H =

∑D
δ=0 ∑µ⊢δd,µ⪯λ,ℓ(µ)≤d aµ(d, δ), where aµ(d, δ) is the plethysm coefficients, i.e., the multiplicity

of µ in Symd(Symδ(V)).
We implement this formula and indeed find an abundance of multiplicity obstructions, see

appendix A, whose detailed study seems to be a promising future direction.
The product polynomial is polystable, which means that its SL-orbit is closed. The fundamental

invariant Φ of a polystable polynomial f ∈ SymDV is the smallest degree SL(V)-invariant function
in C[GL(V) f ], see Def. 3.8 in [BI17]. It describes the connection between the orbit and the orbit
closure, more formally C[GL(V) f ]Φ ≃ C[GL(V) f ] is the localization at Φ, see [BI17, Pro. 3.9]. This
connection can be used to exhibit multiplicity obstructions, as was done in [IK20]. For the product
polynomial, if d is even, the degree of Φ is d, iff the Alon-Tarsi conjecture on Latin squares is true
for d; otherwise it is of higher degree. A Latin square of side length d is a d× d matrix filled with
numbers from {1, . . . , d} such that each row and column is a permutation. Hence, each column of
a Latin square has a sign in {−1, 1}, which is the sign of the permutation. The column sign of a
Latin square is the product of the signs of all its columns. If d is odd, then it is easy to see that the
number of side length d Latin squares with column sign +1 and the number of side length d Latin
squares with column sign −1 are the same. The Alon-Tarsi conjecture is that for all even d, the
number of side length d Latin squares with column sign +1 and the number of side length d Latin
squares with column sign−1 are different. This is known to be true for every side length p+ 1 and
p− 1 for odd primes p, which means that the smallest unknown case is d = 26, see [Dri97, Gly10].

We prove that P[d] is polystable, which implies that a fundamental invariant exists, see
Proposition 6.4. We then prove that the situation is similar to the situation of the product
polynomial:
6.6 Theorem. Let d be even. The degree of the fundamental invariant of P[d] is d + 1 if and only if
the Alon-Tarsi conjecture for d is true, otherwise it is in a higher degree.

2.d Fixed-parameter de-bordering of border Waring rank

In §8.b we prove a de-bordering result for borderWaring rank which has the following form: there
exists a function φ : N→N such that if a homogeneous polynomial f of degree d hasWR( f ) ≤ r,
thenWR( f ) ≤ φ(r) · d. By analogy with fixed-parameter tractability in parameterized complexity,
we call this fixed-parameter de-bordering for border Waring rank.
8.11 Theorem (simplified). Let f ∈ SdV be such thatWR( f ) = r. Then, WR( f ) ≤ exp(r) · d.

Comparison with previous bounds. To the best of our knowledge, previous methods only allow
upper bounds of the order dr or rd. Clearly, the gap is significant even when r = O(log d), since,
the multiplier function in our theorem is such that it gives exp(r) = poly(d), when r = O(log d),
while the previous methods could only give min(dr, rd) = dlog d, a quasipolynomial upper bound.
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To get WR( f ) ≤ O(dr), one can note that a polynomial with border Waring rank r can
be transformed into a polynomial only in r variables using a linear change of variables (for
e.g., see Theorem 5.2), and then, one can argue that the maximal possible Waring rank of an
r-variate d-degree can be at most O(dr) (constant depending on r) [BT15].

Alternatively, one can use the fact that a polynomialwith borderWaring rank r can be computed
by an noncommutative ABP of width r [BDI21]. An upper boundWR( f ) ≤ 2d−1rd can be obtained
by writing an ABP as a sum of at most rd products, one for each path.

Other known de-bordering techniques, such as the interpolation technique using the
approximation degree bound of Lehmkuhl and Lickteig [LL89] or the DiDIL technique
from [DDS22] can be applied in the border Waring rank setting, but do not improve over the
simpler results discussed above.

We also characterize WR( f ) ≤ 3, in an elementary way (compared to [LT10]). For details,
see Theorem B.1 & Theorem B.2.

2.e Homogeneous complexity for formulas

For n, d ∈N we define the homogeneous degree d n×n iterated matrix multiplication polynomial

IMM(d)
n := ( x1,1,1 x1,2,1 ··· x1,n,1 )

( x1,1,2 ··· x1,n,2

... . . . ...
xn,1,2 ··· xn,n,2

)( x1,1,3 ··· x1,n,3

... . . . ...
xn,1,3 ··· xn,n,3

)
· · ·
( x1,1,d−1 ··· x1,n,d−1

... . . . ...
xn,1,d−1 ··· xn,n,d−1

)( x1,1,d

...
xn,1,d

)
,

which is a polynomial on (d − 2)n2 + 2n variables. We define H to be the set of sequences of
homogeneous polynomials. We write VBPH instead of VBP∩ H for brevity. Equation (1.2) gives a
characterization ofVBPH in terms of the polynomially bounded growth of w, which is a complexity
measure in a homogeneous model of computation. This is desirable from the viewpoint of
geometric complexity theory. It allows to set up a geometric complexity theory approach without
having to rely on the padding of the hard polynomial, i.e., the border complexity of perd can be
defined as the smallest n such that perd ∈ GL(d−2)n2+2n IMM(d)

n . The statement “VNP ⊆ VBP” is
equivalent to “the border complexity of perd is polynomially bounded” 9. Note that the classical
analogue for determinantal complexity requires padding [MS01, MS08, BLMW11]: the border
determinantal complexity of perd is the smallest n such that xn−d

n,n · perd ∈ GLn2 detn. The padding
leads to the problems explained in [KL14] [IP17, BIP19]. A padded setup is equivalent to a setup
with general affine groups instead of general linear groups, see for example [MS21]. In classical
algebraic geometry, the Waring rank, Chow rank, and related notions also do not rely on any
padding [Lan15]. Wewould like to describemore complexity classes without padding, potentially
easier ones than VBP. In this paper we provide such an example for VF in Corollary 7.5 and an
even nicer example for a subclass V3F that we define in §7.c. We formalize the desired properties
with the notion of a collection in Definition 2.6.

One approach would be to study sums of products of homogeneous linear polynomials,
but note that Nisan and Wigderson [NW97] showed that every homogeneous sum of products
of d homogeneous linear polynomials computing the determinant detd must have 2Ω(d) many
summands, hence polynomially sized (or even quasipolynomially sized) homogeneous ΣΠΣ
circuits do not capture efficient computation.

A p-family is a sequence of polynomials such that the number of variables and the degree is
polynomially bounded. We write gn,d for the homogeneous degree d part of the n-th element of a
p-family (g).

9This is due to the fact that the homogenization of algebraic branching programs works over every field, so also over
C(ϵ).
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2.6 Definition. A collection (( f )) is a map f : N ×N → C[x1, x2, . . .] such that every f (n, d) is
homogeneous of degree d. Let C be a class of p-families (for example, C = VF). We say that a collection
(( f )) is C-p-hard if for every (g) ∈ C there exists a polynomially bounded function q such that ∀d > 0, n :
gn,d ≤ fq(n),d. If q is only quasipolynomially bounded, we say (( f )) is C-qp-hard. We define C-p-hardness
and C-qp-hardness analogously with ⊴ instead of ≤.

Note that in this definition it is important that the maps are homogeneous, see Definition 2.1. It
is clear that homogeneous linear projections fix the constant coefficient of polynomials, hence we
have d > 0 in the definition. Clearly, if (( f )) is C-p-hard, then (( f )) is also C-p-hard.

For example, the power sum collection xd
1 + · · · + xd

n is p-hard for VWaring. And the
homogeneous iterated matrix multiplication collection IMM(d)

n is p-hard for VBP.
A degree d monomial on 6n variables variables xi,j,k, (j, k) ∈

{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}, is called suitable if when we sort the variables increasingly
by their first index, the first variable is of type x∗,1,∗ and the last variable is of type x∗,2,∗, and for
each variable xi,j,k the next variable xi′,j′,k′ satisfies j′ = k. Let Dn,d := ∑m suitable m.

7.5 Corollary (simplified). The collection Dn,d is VF-p-hard.

Our main result in this direction is about the collection of parity-alternating elementary
symmetric polynomials Cn,d := ∑(i1,i2,...,id)∈P xi1 xi2 · · · xid , where P be the set of length d increasing
sequences of numbers i1 < i2 < . . . < id from 1, . . . , n in which for all j the parity of ij differs from
the parity of ij+1, and i1 is odd. Let V3F ⊆ VFH be the class of p-families that can be computed by
formulas whose inputs are homogeneous linear (no constants allowed) and whose product gates
have arity exactly 3 (in order to compute polynomials f of even degree we also allow to compute
all ∂ f /∂xi instead, see Section 7.c).

7.11 Theorem. The collection Cn,d is V3F-p-hard and VQPH-qp-hard.

This gives a very nice candidate for setting up a clean (i.e., without padding) geometric
complexity theory by considering how large n has to be for perd ∈ GLn Cn,d to hold and asking
if that n is (quasi-)polynomially bounded in d. This is polynomially bounded iff VNPH ⊆ V3P,
and it is quasipolynomially bounded iff VQNP ⊆ VQP.

3 Proof Ideas

In this section, we will briefly discuss the techniques and overall ideas which are used to derive
the main results.
Proof idea of Theorem 6.20: De-bordering product-plus-power. If f = limϵ→0(T1 + T2), where
T1 := ℓ1 · · · ℓd, and T2 := ℓd

0, for ℓi ∈ C[ϵ, ϵ−1][x]1, then of course a trivial limit point (polynomial)
is when individually limϵ→0 Ti exists. This readily gives that f ≤ P[d]. Otherwise, one canmultiply
with large power ϵM (where M ≥ 1), both sides, andwork over C[ϵ]. In particular, one can assume
that f = limϵ→0 1/ϵM · (T1 + T2), where T1 := ℓ1 · · · ℓd, and T2 := ℓd

0, for ℓi ∈ C[ϵ][x]1. One can
further assume that ℓi,0 := ℓi|ϵ=0 ̸= 0, for all i, since otherwise ϵ-power can be properly extracted
and cancelled. Hypothetically, let us assume the simplest affine 10 setup when ℓi = 1 + ϵ · ℓ̂i, for
i ∈ [d], and ℓ0 = 1. This is exactly the affine Kc setup; an approximate Newton Identities-based
proof implies that Kc( f ) = d =⇒ f ∈ Σ[O(d2)] ∧ Σ (the affine border Waring rank, for definition,

10Note that the given form is not in the affine setup.
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see Section 5); also for details see Theorem 6.14. Since, ℓ0 ≡ 1 mod (ℓ0− 1), we would like to in fact
reduce the general case to the affine Kc setup by working ideal that contains (ℓ0 − 1).

In particular, we work with Iϵ,α, where Iϵ,α := ⟨ℓ0 − α, ϵ⟩, for some α ∈ C. Note that,
Iϵ,α = ⟨ℓ0,0 − α, ϵ⟩. One can reconstruct f , from (d + 1)-many fα, where fα := f mod Iϵ,α =
f mod (ℓ0,0 − α), by simple interpolation. Furthermore, one can show the following low rank
property: rank (ℓi,0 | i ∈ [0, d]) = 1. This helps to prove that Kc( fα) ≤ d. As mentioned above,
this implies that each fα has small affine border Waring rank. Since, affine border Waring rank is
sub-additive, this finishes the proof.
Proof idea of Theorem 6.25: De-bordering product-plus-two-powers. This case becomes a bit
more complicated, although the heart of the proof lies in a similar idea as above – (i) show a low
rank property, and (ii) collect enough information to reconstruct f . Let f = limϵ→0(T1 + T2 + T3),
where T1 := ℓ1 · · · ℓd, and T2 := ℓd

0, and T3 = ℓd
d+1, for ℓi ∈ C(ϵ)[x]1. The most interesting case

is when individually limϵ→0 Ti does not exist, and there is a nontrivial cancellation among them.
Similarly as before, we clear out by multiplying ϵM, and hence, f = limϵ→0 1/ϵM · (T1 + T2 + T3).

If life were easy, one would have worked with Iϵ,α,β := ⟨ℓ0 − α, ℓd+1 − β, ϵ⟩, for α, β ∈
C, and ‘hope’ that ℓi mod Iϵ,α,β becomes 1 + ϵ · ℓ̂i, so that (T1 + T2 + T3) mod Iϵ,α,β ≡ γ ·(

∏i(1 + ϵ · ℓ̂i)− 1
)
, andwe knowhow to de-border affineKc complexity (see Theorem 6.14). Note

that, fα,β = f mod Iϵ,α,β = f mod ⟨ℓ0,0 − α, ℓd+1,0 − β⟩, where ℓi,0 := ℓi|ϵ=0. Therefore, once one
shows that Kc( fα,β) is small, one can interpolate to get f .

The fundamental problem with this approach is there could be cases when 1 ∈ Iϵ; in that
case, working with mod Iϵ does not make sense. A plausible example could be ℓ0 := x1, and
ℓd+1 := 2x1, clearly 1 ∈ Iϵ. However, a careful newton identities-based analysis would show
that even when g ≃ (∏i(1 + ϵai)−∏i(1 + ϵbi)), for ai, bi ∈ C[ϵ][x]1, for some g, then g has small
affine border Waring rank Theorem 6.17. Hence, the idea would be to actually reduce the initial
form to the above one. This again follows from the low-rank property: rank (ℓi,0 | i ∈ [0, d]) ≤ 2.
This low-rank property crucially depends on the structure of border Waring rank = 2; for details,
see Theorem B.1. Hence, by fixing at most 2 linear forms, one can eventually show that the
‘reduced’ f (of the form fα,β) has small border Waring rank; One can now interpolate, and show
that f has small border Waring rank. The proof is far complicated (and case-analysis dependent),
however overall this is the idea.
Proof ideas for lower bounds (Theorem 6.34 & Theorem 6.35). For Theorem 6.34, let P[d]

2 ⊴aff P[e].
If one homogenizes wrt x0, it requires (both-side padding), and the new formulation becomes
xe−d

0 · P[d]
2 ⊴ P[e]. By Theorem 6.20 implies – either (i) xe−d

0 · P[d]
2 = ∏i∈[e] ℓi + ℓe

0, for some linear
forms ℓi ∈ C[x], or (ii) WR(xe−d

0 · P[d]
2 ) = O(e5). We show that (i) is an impossibility, while (ii) can

happen only when e ≥ exp(d). Part (ii) follows because a simple extension of results in [Oed19]
implies that WR(xe−d

0 · P[d]
2 ) should be exponential. On the other hand, the impossibility result,

at least intuitively, follows from the fact that f is ‘robust’ enough such that, f mod I ̸= 0, where
I := ⟨ℓi, ℓ0⟩, for some i ∈ [d], while trivially the RHS ∏i∈[e] ℓi + ℓe

0 mod I = 0, a contradiction.
For Theorem 6.35, a similar ideal-based argument work, for the impossibility, while the lower

bound on e again follows from large border Waring rank. For details, see Section 6.f.
Proof ideas for invariant-theoretic properties of product-plus-powers (Theorem 6.2,
Proposition 6.3 & Proposition 6.4).

Theorem 6.2 determines the stabilizer of the polynomial P[d]
r,s = ∑r

i=1 ∏d
j=1xji + ∑s

i=1 yd
i . This

is done in two steps. First, the identity component of the stabilizer is computed via Lemma 6.1, a
general result on the Lie algebra of stabilizers of sums of polynomials in disjoint sets of variables.
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The discrete part of the stabilizer is then computed via a geometric argument, studying the action on
the singular locus of the hypersurface determined by the polynomial; this is similar to the argument
followed in [Lan17, Sec. 6.6].

With the stabilizer, we then determine the representation theoretic multiplicities in the orbit,
which is equal to the invariant space dimension dim SλCd+1. We split this process into two parts,
first determining the TSLd × Sd-invariants, and then determining the Zd-invariants within the
invariant space. The proof is finished by an application of Gay’s theorem. The polystability of
P[d] is obtained using the simple criterion of [BI17], which is based on work by Hilbert, Mumford,
Luna, and Kempf. The connection to the Alon-Tarsi conjecture is established by interpreting the
evaluation of the invariant as a tensor contraction. We closely mimic the corresponding proof for
the product polynomial and observe that the extra summand does not interfere.
Proof idea of Theorem 8.11: De-bordering Waring rank. For the Waring rank, we show a
de-bordering result of the formWR( f ) ≤ exp(WR( f )) · deg f . The main ideas for this proof come
from apolarity theory and the study of 0-dimensional schemes in projective space, but we provide
elementary proofs which do not use the language of algebraic geometry and are based on partial
derivative techniques.

To prove the de-bordering, we transform a border Waring rank decomposition for f into a
generalized additive decomposition [Iar95, BBM14] of the form f = ∑m

k=1 ℓ
d−rk+1
k gk where ℓk are linear

forms and gk are homogeneous polynomials of degrees rk − 1. We then obtain an upper bound
on the Waring rank by decomposing each gk with respect to a basis consisting of powers of linear
forms.

To construct a generalized additive decomposition, we divide the summands of a border
rank decomposition into several parts such that cancellations only happen between summands
belonging to the same part. The key insight is that if the degree of polynomials involved is high
enough (deg f ≥ WR( f )− 1), then all parts of the decomposition are “local” in the sense that the
lowest order term in each summand is a multiple of the same linear form. Each local part gives
one summand of the form ℓd−r+1g where r is the number of summands in the part and ℓ is the
common lowest order linear form.

Consider for example the family of polynomials fd = xd−1
0 y0 + xd−1

1 y1 + 2(x0 + x1)
d−1y2 (This

example is adapted from [BB15]). If d > 3, then the border Waring rank of f is 6, as evidenced by
the decomposition

fd = lim
ε→0

1
dε

[
(x0 + εy0)

d − xd
0 + (x1 + εy1)

d − xd
1 + 2(x0 + x1 + εy2)

d − 2(x0 + x1)
d
]

(3.1)

and a lower bound obtained by considering the dimension of the space of second order partial
derivatives. The summands of the decomposition (3.1) are divided into three pairs. The first two
summands have x0 as the lowest order linear form, the second two have x1, and the last two —
(x0 + x1). For each pair, the sum individually tends to a limit as ε → 0, these limits are xd−1

0 y0,
xd−1

1 y1, and 2(x0 + x1)
d−1y2, the summands of a generalized additive decomposition for f .

When d = 3, the polynomial f is an example of a “wild form” [BB15]. It has border Waring
rank 5 given for example by the decomposition

f3 = lim
ε→0

1
9ε

[
3(x0 + εy0)

3 + 3(x1 + εy1)
3 + 6(x0 + x1 + εy2)

3 − (x0 + 2x1)
3 − (2x0 + x3)

3] . (3.2)

Unlike the previous decomposition, this one cannot be divided into parts that have limits
individually, and is not local — all summands have different lowest order terms. This is only
possible if the degree is low.
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The condition on the degree is related to algebro-geometric questions about regularity
of 0-dimensional schemes [IK99, Thm. 1.69], but for the schemes arising from border rank
decompositions this is ultimately a consequence of the fact that r distinct linear forms have linearly
independent d-th powers when d ≥ r− 1.
Proof idea for Homogeneous complexity for VF (Corollary 7.5, Theorem 7.11). If one generalizes
Kumar’s complexity to 3× 3 matrices, one observes that one gets a structure that is very similar to
the proof of Ben-Or and Cleve that describes VF via affine projections of the 3× 3 iterated matrix
multiplication polynomial. Note that Dn,d is the homogeneous degree d part of the (1, 2) entry of 1 x1,1,2 x1,1,3

x1,2,1 1 x1,2,3
x1,3,1 x1,3,2 1

 · · ·
 1 xn,1,2 xn,1,3

xn,2,1 1 xn,2,3
xn,3,1 xn,3,2 1

−
1 0 0

0 1 0
0 0 1

 ,

which makes the connection to Equation (2.2) clear. Pursuing this route, we homogenize Ben-Or
& Cleve and get Corollary 7.5. Here we have to pay close attention to avoid the introduction of
constants. In particular, we prove a homogeneous version of Brent’s depth reduction.

Note that (for odd d) Cn,d is the homogeneous degree d part of the (1, 2) entry of(
1 x1
0 1

)(
1 0
x2 1

)
· · ·
(

1 xn
0 1

)
−
(

1 0
0 1

)
,

For Theorem 7.11 we analyze the proof of [BIZ18], but their construction of the product gate
seems to be inherently affine. We convert it into an arity 3 homogeneous product gate and then
have to deal with arithmetic circuits and formulas that have only arity 3 product gates. This is
surprisingly subtle, because we have to disallow constant input gates, so arity 2 product gates
cannot be simulated directly. The collection Cn,d can be seen as a homogeneous variant of the
continuant in [BIZ18]. This gives the V3F-p-hardness of Cn,d.

To see the VQP-qp-hardness, we have to show that V3F and VF coincide when replacing
polynomial complexity by quasipolynomial complexity. This is done in two steps: We first show
that VFH ⊆ V3P, see Theorem 7.13, where we first “parity-homogenize” the formula (every gate
has only even or only odd nonzero homogeneous components), and then compute z · f at each
even-degree gate instead of f , where z is a new variable. This additional factor z is then later
replaced, which is themain reasonwhy the output of this construction is a circuit andnot a formula.
Since we know that V3F ⊆ VFH, we conclude our proof by showing that VQ3F = VQ3P, for details
see Theorem 7.14. It uses an arity-3 basis variant of the Valiant-Skyum-Berkowitz-Rackoff circuit
depth reduction [VSBR83], which is a bit more subtle than the original result.

4 Kumar’s complexity and border Waring rank

In this section, we prove the results connecting Waring and border Waring rank to Kc-complexity
and its variants. First, we record an immediate observation that will be useful throughout:
4.1 Remark. It is easy to observe that

m

∏
i=1

(1 + xi) =
m

∑
j=0

ej(x)

where x = (x1, . . . , xm) and ej is the elementary symmetric polynomial of degree j; recall that
by definition e0 = 1. In particular, given a homogeneous polynomial f ∈ C[x]d of degree d, if
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f = α(∏m
i=1(1 + ℓi)− 1) for homogeneous linear forms ℓ1, . . . , ℓm, then

ej(ℓ1, . . . , ℓm) = 0 for j ̸= d,

ed(ℓ1, . . . , ℓm) =
1
α f .

To demystify Kc-complexity, we will often use Newton identities, see Proposition 4.2. Let
ek(x1, . . . , xn) denotes the k-th elementary symmetric polynomial, defined by

ek(x1, . . . , xn) := ∑
1≤j1<j2<···<jk≤n

xj1 · · · xjk ;

let pk(x1, . . . , xn), the k-th power sum polynomial, defined as pk(x) := xk
1 + · · ·+ xk

n.

4.2 Proposition (Newton Identities, see e.g. [Mac95], Section I.2). Let n, k be integers with n ≥ k ≥ 1.
Then

k · ek(x1, . . . , xn) = ∑
i∈[k]

(−1)i−1ek−i(x1, . . . , xn) · pi(x1, . . . , xn) .

As observed in Section 1, the Kc model is not complete. In fact, the only homogeneous
polynomials with finite Kc-complexity are powers of linear forms, as the following lemma shows.

4.3 Lemma. Let f ∈ C[x]d be a homogeneous polynomial such that Kc( f ) < ∞. Then Kc( f ) = d and f
is a power of a linear form.

Proof. If f is a homogeneous polynomial of degree d, then it is immediate that Kc( f ) ≥ deg( f ).
Notice that for any linear form ℓ, we have ℓd = ∏d

i=1(1 + ζ iℓ)− 1 where ζ is a primitive d-th
root of 1. This shows Kc(ℓd) ≤ d, hence equality holds.

Assume f ∈ C[x]d is a homogeneous polynomial with Kc( f ) = m < ∞. By definition f =
α (∏m

i=1(1 + ℓi)− 1) for some homogeneous linear forms ℓi ∈ C[x]. Write ℓ = (ℓ1, . . . , ℓm). By
Remark 4.1, we have, ed(ℓ) =

1
α f and ej(ℓ) = 0 for j ̸= d.

First, observe m = d. Indeed, if m > d, we have 0 = em(ℓ) = ℓ1 · · · ℓm, which implies ℓi = 0 for
some i, in contradiction with the minimality of m. Since Kc( f ) ≥ deg( f ), we deduce m = d.

Nowwe show that if ℓ = (ℓ1, . . . , ℓd) satisfies e1(ℓ) = · · · = ed−1(ℓ) = 0 then ed(ℓ) = (−1)d−1 ·
ℓd

d; in particular, by unique factorization, all ℓi’s are equal up to scaling. Write ℓ̂ = (ℓ1, . . . , ℓd−1).
We use induction on j to prove that ej(ℓ̂) = (−1)j · ℓj

d for j = 1, . . . , d− 1. For j = 1, we have

0 = e1(ℓ) = (ℓ1 + · · ·+ ℓd−1) + ℓd = e1(ℓ̂) + ℓd

which proves the statement. For j = 2, . . . , d− 1, consider the recursive relation

ej(ℓ) = ej(ℓ̂) + ℓdej−1(ℓ̂).

By assumptionwe have ej(ℓ) = 0 and the induction hypothesis guarantees ej−1(ℓ̂) = (−1)j−1 · ℓj−1
d ;

we deduce ej(ℓ̂) = −ℓd · (−1)j−1 · ℓj−1
d = (−1)jℓ

j
d which proves the statement.

Finally, notice f = ed(ℓ) = ℓd · (−1)d−1 · ed−1(ℓ̂) = −ℓd
d, which concludes the proof.

However, themodel is complete if one allows approximations, as shown by the following result,
which appears in [Kum20].

4.4 Proposition (Kumar). For all homogeneous f we have Kc( f ) ≤ deg( f ) ·WR( f ).
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Proof. The proof is based on a construction by Shpilka [Shp02]. Let f = ∑r
i=1 ℓ

d
i . Let ζ be a primitive

d-th root of unity. Then one verifies that

f = −ed(−ζ0ℓ1,−ζ1ℓ1, . . . ,−ζd−1ℓ1, . . . . . . ,−ζ0ℓr,−ζ1ℓ1, . . . ,−ζd−1ℓr)

and for all 0 < i < d we have

ei(−ζ0ℓ1,−ζ1ℓ1, . . . ,−ζd−1ℓ1, . . . . . . ,−ζ0ℓr,−ζ1ℓ1, . . . ,−ζd−1ℓr) = 0.

Hence f ≃ −ϵ−d(((1− ϵζ0ℓ1) · · · (1− ϵζd−1ℓr)
)
− 1
). Therefore Kc( f ) ≤ rd.

In fact, a slightly stronger statement is true:

4.5 Proposition. For all homogeneous f we have Kc( f ) ≤ deg( f ) ·WR( f ).

Proof. Analogously to the proof in Proposition 4.4, f ≃ ∑r
i=1 ℓ

d
i = −ed(−ζ0ℓ1, . . . ,−ζd−1ℓr).

Moreover, for all 0 < i < d we have ei(−ζ0ℓ1, . . . ,−ζd−1ℓr) = 0. Choose M large enough
so that for all d < i ≤ dr we have that ϵ−Mdei(−ϵMζ0ℓ1, . . . ,−ϵMζd−1ℓr) ≃ 0. It follows that
f ≃ −ϵ−Md(((1− ϵMζ0ℓ1) · · · (1− ϵMζd−1ℓr)

)
− 1
). Therefore Kc( f ) ≤ rd.

Proposition 4.4 and Proposition 4.5 show that if WR( f ) is small then Kc( f ) is small. However,
there are polynomials with large Waring (border) rank but small Kumar complexity, such as
products of linear forms. NoticeWR(x1 · · · xn) = 2n−1 [Oed19, Corollary 1.9].

4.6 Lemma. If f = ℓ1 · · · ℓd is a product of homogeneous linear forms ℓi, then Kc( f ) = d.

Proof. The lower bound is immediate because Kc( f ) ≥ deg( f ). For the upper bound, notice f ≃
ϵd((∏d

i=1(1 + ϵ−1ℓi)
)
− 1
).

The main result of this section is a converse of the above statements. Informally, homogeneous
polynomials with small borderWaring rank and product of linear forms are the only homogeneous
polynomials with small border Kumar complexity. In order to state this precisely, we introduce the
following notation. For f ∈ C[x]d, let δ f = 1 if f is a product of homogeneous linear forms, and
define δ f = ∞ otherwise. The following result explains the relation between border Waring rank
and Kumar’s complexity.

4.7 Theorem. For all homogeneous f we have

min{deg( f ) · δ f , WR( f )} ≤ Kc( f ) ≤ deg( f ) ·min{δ f , WR( f )}.

Proof. The right inequality follows from Proposition 4.5 and Lemma 4.6. The left inequality is a
combination of Lemma 4.9, Proposition 4.10, and Theorem 4.11 below.

4.8 Corollary (De-bordering Kc). Let f ∈ C[x]d be a homogeneous polynomial. If Kc( f ) = m then
eitherWR( f ) ≤ m, or f is a product of linear forms.

Proof. By Theorem 4.7, if Kc( f ) = m then min{deg( f ) · δ f , WR( f )} ≤ m. Now, if deg( f ) · δ f ≤
WR( f ), then the minimum is deg( f ) · δ f , which implies δ f ̸= ∞; in this case δ f = 1, so f is a
product of linear forms. Otherwise,WR( f ) is the minimum, which implies thatWR( f ) ≤ m.

Note that in the definition of Kc, the factor α can be assumed to be a scalar times a power of ϵ,
because only the lowest power of ϵ in α would contribute to the limit. We distinguish three cases,
depending on the sign of the exponent of ϵ in α.
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• Kc+( f ) is the smallest m such that f ≃ γϵN(∏m
i=1(1 + ℓi)− 1

) for some N ≥ 1, γ ∈ C and
ℓi ∈ C[ϵ±1][x]1; set Kc+( f ) = ∞ is such an m does not exist;

• Kc−( f ) is the smallest m such that f ≃ γϵ−M(∏m
i=1(1 + ℓi)− 1

) for some M ≥ 1, γ ∈ C and
ℓi ∈ C[ϵ±1][x]1; set Kc−( f ) = ∞ is such an m does not exist;

• Kc=( f ) is the smallest m such that f ≃ γ
(

∏m
i=1(1 + ℓi) − 1

) for some γ ∈ C and ℓi ∈
C[ϵ±1][x]1; set Kc=( f ) = ∞ is such an m does not exist.

We observe that Kc( f ) = min
{
Kc+( f ), Kc=( f ), Kc−( f )

}.
4.9 Lemma. For all homogeneous f we have deg( f ) · δ f ≤ Kc+( f ).

Proof. Let d := deg( f ). The lower bound deg( f ) ≤ Kc+( f ) is clear. Therefore, it suffices to show
that if Kc+( f ) is finite, then f is a product of linear forms. Let f ≃= γϵN(∏m

i=1(1 + ℓi)− 1
) with

N ≥ 1. Since ϵN ≃ 0, we have f ≃ γϵN ∏m
i=1(1 + ℓi), namely f is limit of a product of affine linear

polynomials. The property of being completely reducible is closed, therefore we deduce that f is a
product of affine linear polynomials. Since f is homogeneous, its factors are homogeneous as well.
This shows δ f = 1 and the statement follows.

4.10 Proposition (Newton Identities). For all homogeneous f we haveWR( f ) ≤ Kc=( f ).

Proof. Let d := deg( f ). Suppose Kc=( f ) = m and write f ≃ fϵ := γ
(

∏m
i=1(1 + ℓi) − 1

). One
can verify that if even one of the ℓi diverges, then the j-th homogeneous part of fϵ diverges, where
j is the number of diverging ℓi. Hence all ℓi converge and we set ϵ to zero. Hence, Kc=( f ) =
Kc( f ). Now, since f is homogeneous, each homogeneous degree i part of fϵ vanishes, i < d.
In other words, ei(ℓ) = 0 for all 1 ≤ i < d, where ℓ = (ℓ1, . . . , ℓm). Hence s(ℓ) = 0 for all
symmetric polynomials of degree < d. Therefore the Newton identity pd = (−1)d−1 · d · ed +

∑d−1
i=1 (−1)d+i−1ed−i · pi gives that ed(ℓ) and pd(ℓ) are same up to multiplication by a scalar. Hence

WR( f ) ≤ m.

4.11 Theorem (Approximate Newton Identities). For all homogeneous f : WR( f ) ≤ Kc−( f ).

Proof. Let d := deg( f ). Let f ≃ fϵ := γϵ−M(∏m
i=1(1+ ℓ′i)− 1

)with M ≥ 1. From the convergence
of fϵ we deduce that for each i we have ℓ′i = ϵℓi with ℓi ∈ C[ϵ][x]1, because otherwise the
homogeneous degree j part diverges, where j is the number of ℓ′i that do not satisfy this property.

Now, let fϵ,j denote the homogeneous degree j part of fϵ. Since f is homogeneous of degree d,
for 0 ≤ j < d we have fϵ,j ≃ 0. By expanding the product, observe that for all 0 < j < d we have
0 ≃ fϵ,j = γϵ−Mej(ϵℓ1, . . . , ϵℓm) = γϵ−M+jej(ℓ1, . . . , ℓm). We now show by induction that for all
1 ≤ j < d we have ϵ−M+j pj(ℓ1, . . . , ℓm) ≃ 0. This is clear for j = 1, because p1 = e1. For the step
from j to j + 1 we use Newton’s identities:

pj+1 = (−1)j (j + 1) ej+1 + ∑
j
i=1(−1)j+iej+1−i · pi.

Hence ϵ−M+(j+1)pj+1(ℓ)

= (−1)j (j + 1) ϵ−M+(j+1)ej+1(ℓ)︸ ︷︷ ︸
≃0

+
j

∑
i=1

(−1)j+i ϵ−M+(j+1)−iej+1−i(ℓ)︸ ︷︷ ︸
≃0

· ϵM︸︷︷︸
≃0

· ϵ−M+i pi(ℓ)︸ ︷︷ ︸
≃0

≃ 0.
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This finishes the induction proof, but we use Newton’s identities again in the same way to see that
ϵ−M+d pd(ℓ) ≃ (−1)d−1 · d · ϵ−M+ded(ℓ):

ϵ−M+d pd(ℓ) = (−1)d−1 · d · ϵ−M+ded(ℓ) +
d−1

∑
i=1

(−1)d−1+i ϵ−M+d−ied−i(ℓ)︸ ︷︷ ︸
≃0

· ϵM︸︷︷︸
≃0

· ϵ−M+i pi(ℓ)︸ ︷︷ ︸
≃0

.

We are done now, because f ≃ fϵ,d = γϵ−M+ded(ℓ1, . . . , ℓm) ≃ γϵ−M+d · 1
d · (−1)d−1 pd(ℓ1, . . . , ℓm)

and henceWR( f ) ≤ m.

4.a Linear approximations and Waring rank

We demonstrated the inequality Kc( f ) ≤ deg( f ) · WR( f ) in Proposition 4.4. In the proof
of Proposition 4.4, only “linear approximations” have been used; we prove here a converse of
Proposition 4.4 in the restricted setting of linear approximation. Given a homogeneous polynomial
f ∈ C[x]d, let Kc−1 ( f ) be the smallest m such that there exist linear forms ℓ1, . . . , ℓm ∈ C[x]1 and
M ≥ 1 such that f ≃ γϵ−M(∏m

i=1(1 + ϵℓi)− 1
).

4.12 Proposition. For any homogeneous polynomial f of degree d, we have WR( f ) ≤ Kc−1 ( f ) ≤ d ·
WR( f ).

Proof. The inequality Kc−1 ( f ) ≤ d ·WR( f ) is clear from the proof of Proposition 4.4, as there we
obtained an expression of the form described in the definition of Kc−1 . Suppose Kc−1 ( f ) = m and
write f ≃ fϵ := γϵ−M(∏m

i=1(1+ ϵℓi)− 1
)with M ≥ 1 and ℓi ∈ C[x]1. It is immediate that m ≥ M,

f = γeM(ℓ) and ej(ℓ) = 0 for j < M, where ℓ = (ℓ1, . . . , ℓm). Via the Newton identity for the
power sum polynomial, we have

pM(ℓ) = (−1)M−1MeM(ℓ) +
M−1

∑
i=1

(−1)M+i−1eM−i(ℓ) · pi(ℓ).

Since ej(ℓ) = 0 for all 1 ≤ j < M, we obtain:

pM(ℓ) = (−1)M−1MeM(ℓ) =
1
γ
(−1)M−1M f .

We concludeWR( f ) = WR(pM(ℓ)) ≤ WR(pM) = m = Kc−1 ( f ), as desired.

5 Preliminaries

Notation. Let V = ⟨x1, . . . , xn⟩ be the space of linear forms in x1, . . . , xn. Let SdV = C[x1, . . . , xn]d
and let f ∈ SdV be a homogeneous polynomial of degree d. We denote [n] = {1, · · · , n}, and
[a, b] = {a, a + 1, · · · , b}, for a, b ∈N≥0.
⟨ℓ1, · · · , ℓk⟩ is the ideal generated by k-many linear polynomials, i.e., g ∈ ⟨ℓ1, · · · , ℓk⟩, must be

of the form g = ∑i∈[k] giℓi, for some gi ∈ C[x].

Waring and border Waring rank. For f ∈ SdV, denote byWR( f ) theWaring rank of f , that is the
minimum r in an expression f = ∑r

i=1 ℓ
d
i , for linear forms ℓi ∈ C[x]1. Denote by WR( f ) the border

Waring rank of f , that is the minimum r such that f = limϵ→0 ∑r
i=1 ℓ

d
i , where ℓi ∈ C[ϵ±1][x]1 are

linear forms depending (rationally) on ϵ.
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Given a polynomial f ∈ C[x] (not necessarily homogeneous), the affine Waring rank of f ,
denoted WRaff( f ), is the minimum r in an expression f = ∑i∈[r] ℓ

ei
i , for affine linear polynomials

ℓi, and ei ∈ N. In this case, write f ∈ Σ[r] ∧ Σ, with maximum exponent e = maxi∈[r] ei. The affine
border Waring rank of f , denotedWRaff( f ) is the minimum r such that f = limϵ→0 ∑r

i=1 ℓ
ei
i , where ℓi,

are affine linear polynomials with coefficients in C[ϵ±1] and ei ∈N. In this case, write f ∈ Σ[r] ∧ Σ
with maximum exponent e = maxi∈[r] ei.

Essential variables. We define the concept of essential variables below, which is an important
concept, both in algebraic geometry and GCT.

5.1 Definition (Essential variables). Given f ∈ C[x]d, we call the essential number of variables of f
the smallest integer r for which there exists a set of linear forms ℓ1, . . . , ℓr such that f ∈ C[ℓ1, . . . , ℓr].

It is a classical fact, which essentially already appears in [Syl52], that the first catalecticant
matrix controls the number of essential variables of a homogeneous polynomial. We refer to
[Car06] and [KS07, Lemma B.1] for modern proofs of this result.

5.2 Theorem. Let f ∈ C[x1, . . . , xn]d, and T = C[∂1, . . . , ∂n] denote the ring of differential operators.
Then,

Ness( f ) = rank(C f ) ,

i.e. the number of essential variables of f is the rank of its first catalecticant matrix, and

EssVar( f ) = ⟨D ◦ f | D ∈ Td−1⟩ ,

i.e. the essential variables of f span the space of its (d− 1)-th partial derivatives.

6 Orbit closure of restricted binomials

Fix integers d, r, s, with d ≥ 3, and consider the polynomial

P[d]
r,s =

r

∑
i=1

∏d
j=1xji +

s

∑
i=1

yd
i ,

in the rd+ s variables x11, . . . , xdr, y1, . . . , ys. In the special case r = s = 1, the polynomial P[d] = P[d]
1,1

coincides with the restricted binomial defining Kumar’s complexity in Section 2.b.
In this section, we study computational and invariant theoretic properties of P[d]

r,s . Theorem 6.2
determines the stabilizer of P[d]

r,s under the action of the group GLrd+s acting on the variables. The
knowledge of the stabilizer, allows us to determine the representation theoretic structure of the
coordinate ring of the orbit of P[d], which is achieved in Proposition 6.3. In Proposition 6.4, we prove
that P[d]

r,s is polystable, in the sense of invariant theory. This guarantees the existence of a fundamental
invariant, in the sense of [BI17]: in Proposition 6.6, we show a connection between the degree of
this fundamental invariant and the Alon-Tarsi conjecture on Latin squares in combinatorics.

Section 6.e focuses on complexity results for P[d] and P[d]
1,2. These can be regarded as

generalizations of Theorem 4.7. Finally, in Section 6.f we determine lower bounds for P[d] in certain
computational models.
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6.a Stabilizer

The general linear group GLn acts on C[x1, . . . , xn] by linear change of variables as described in
Section 1. For a homogeneous polynomial f ∈ C[x]d, write StabGLn( f ) for its stabilizer under
this action. It is an immediate fact that StabGLn( f ) is a closed algebraic subgroup of GLn. It may
consists of several connected (irreducible) components: the identity component, denoted Stab0

GLn
( f )

is the connected component containing the identity; Stab0
GLn

( f ) is a closed, normal subgroup of
StabGLn( f ) [Ges16, Lemma 2.1]; the quotient StabGLn( f )/ Stab0

GLn
( f ) is a finite group.

The Lie algebra g of an algebraic group G can be geometrically identifiedwith the tangent space
to G at the identity element. Moreover, if G is a subgroup of GLn, then g is naturally a subalgebra
of gln = End(Cn); moreover g uniquely determined the identity component of G.

It is a classical fact that the Lie algebra of StabGLn( f ) is the annihilator of f under the Lie
algebra action of gln on C[x]d; denote this annhilator by anngln( f ). Typically, in order to determine
StabGLn( f ), one first computes anngln( f ), which uniquely determines Stab0

GLn
( f ). Then, one

determines StabGLn( f ) as a subgroup of the normalizer NGLn Stab0
GLn

( f ).
First, we record a general result regarding the stabilizer of sums of polynomials in disjoint sets

of variables. This is the symmetric version of [CGL+21, Thm. 4.1(i)].
6.1 Lemma. Let V = V1⊕V2 and let f ∈ C[V∗]d = SdV be a homogeneous polynomial with f = f1 + f2,
where fi ∈ SdVi are both concise, with d ≥ 3. Then

(i) anngl(V)( f1) = anngl(V1)( f1)⊕Hom(V2, V);

(ii) anngl(V)( f1 + f2) = anngl(V1)( f1)⊕ anngl(V2)( f2).

Proof. For both statements, the inclusion of the right-hand term into the left-hand term is clear. We
prove the reverse inclusion.

For X ∈ gl(V), write X = ∑2
i,j=1 Xij, with Xij ∈ Hom(Vi, Vj).

The proof of (i) amounts to showing that if X ∈ anngl(V)( f1), then X12 = 0 and X11 ∈
anngl(V1)( f1). Suppose X. f1 = 0. Notice X. f1 = X11. f1 + X12. f1; here X11. f1 ∈ SdV1 and
X12. f1 ∈ V2 ⊗ Sd−1V1. In particular, both terms must vanish. The term X12. f1 is a sum of at most
dim V2 linearly independent elements, each of which is a linear combination of first order partials
of f1. Since f1 is concise, X12. f1 = 0 if and only if X12 = 0. The condition X11. f1 = 0 is, by definition,
equivalent to X11 ∈ anngl(V1)( f1). This conclude the proof of (i).

To prove (ii), we show that if X ∈ anngl(V)( f ), then X12 = 0,X21 = 0 and Xii ∈ anngl(Vi)( fi).
Suppose X. f = 0. We have X. f = (X11 + X12). f1 + (X21 + X22). f2. Now, (X11 + X12). f1 ∈ SdV1 ⊕
V2 ⊗ Sd−1V1, and similarly (X21 + X22). f2. Since d ≥ 3, the two terms are linearly independent,
hence they both must vanish. This shows (X11 + X12) ∈ anngl(V)( f1), therefore X12 = 0 and X11 ∈
anngl(V1)( f1) from the previous part of the proof. The analogous condition holds for X21 and X22
and this completes the proof.

We can nowdetermine the stabilizer of P[d]
r,s . Let TSLn denote the subgroup of diagonal elements

in SLn.
6.2 Theorem. For d ≥ 3 and for every r, s, we have

StabGL(V)(P[d]
r,s ) = ([TSLd ⋊Sd] ≀Sr)× (Zd ≀Ss);

each copy of TSLd ⋊Sd acts by rescaling and permuting the variables in one of the r sets {xji : i = 1, . . . , d}
for j = 1, . . . , r; the groupSr permutes (set-wise) these sets; the group Zd ≀Ss acts by rescaling (by a d-th
root of 1) and permuting the variables in the set {yi : i = 1, . . . , s}.
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Proof. It is clear that the group on the right-hand side is contained in the stabilizer StabGL(V)(P[d]
r,s ).

We show the reverse inclusion.
First, we determine the identity component of StabGL(V)(P[d]

r,s ). By Lemma 6.1, the annihilator of
P[d]

r,s in gl(V) is the direct sum of the annihilators of its summands. This guarantees that the identity
component of the stabilizer of P[d]

r,s is Stab0
GL(V)(P[d]

r,s ) = (TSLd)×r, where the j-th copy of TSLd acts
by rescaling the variables x1j, . . . , xdj; see, e.g., [Lan17, Sec. 7.1.2].

Since Stab0
GL(V)(P[d]

r,s ) is a normal subgroup of StabGL(V)(P[d]
r,s ), we have

StabGL(V)(P[d]
r,s ) ⊆ NGL(V)(T

SLd
×r
) = ([TSLd ⋊Sd] ≀Sr)⋊ Q

where Q is the parabolic subgroup stabilizing the subspace spanned by the xij variables.
In order to determine the discrete component, we follow the same argument as the one used for

the power sum polynomial P[d]
0,s in [Lan17, Section 8.12.1]. In particular, StabGL(V)(P[d]

r,s ) stabilizes
the Hessian determinant of P[d]

r,s , up to scaling. A direct calculation shows that this Hessian
determinant, up to scaling, is

H = (∏
i,j

xij ∏
k

yk)
d−2.

Unique factorization implies that StabGL(V)(P[d]
r,s ) ∩ Q ⊆ T ⋊Ss, where T is the torus of diagonal

matrices acting on the yj variables. Hence this subgroup commutes with [TSLd ⋊Sd] ≀Sr and we
deduce

StabGL(V)(P[d]
r,s ) ∩Q = StabGLs(y

d
1 + · · ·+ yd

s ) = Zd ≀Ss.

This concludes the proof.

6.b Multiplicities in the coordinate ring of the orbit

A partition λ = (λ1, λ2, . . .) is a finite nonincreasing sequence of nonnegative integers. We write
ℓ(λ) := max{i | λi ̸= 0}, and λ ⊢ D means ∑i λi = D. To each partition λ we associate its
Young diagram, which is a top-left justified array of boxes with λi boxes in row i. For example,

the Young diagram to λ = (4, 4, 3) is . The transpose of the Young diagram is obtained

by switching rows and columns. We denote the partition corresponding to this Young diagram
by λt, for example (4, 4, 3)t = (3, 3, 3, 2). A group homomorphism ϱ : GLD → GL(V), where V
is a finite dimensional complex vector space, is called a representation of GLD. A representation is
polynomial if each entry of thematrix corresponding to the linearmap ϱ(g) is given by a polynomial
in the entries of GLD. A linear subspace that is closed under the group operation is called a
subrepresentation. A representation with only the two trivial subrepresentations is called irreducible.
The irreducible polynomial representations ofGLd+1 are indexed by partitions λ with ℓ(λ) ≤ d+ 1,
see for example [Ful97, Ch. 8]. We denote by Sλ(C

d+1) the irreducible representation of type λ. For
aGLd+1-representation V wewritemultλ(V) to denote themultiplicity of λ in V , i.e., the dimension
of the space of equivariant maps from Sλ(C

d+1) to V , or equivalently, the number of summands of
isomorphism type λ in any decomposition of V into a direct sum of irreducible representations.

In this section we care about the special case r = s = 1 (which is the homogenization of
Kumar’s case, see Section 2.b, and we set P[d] := P[d]

1,1, and G := GLd+1. We now use the stabilizer
to determine the multiplicities in the coordinate ring of the group orbit multλ(C[GLd+1 P[d]]).
Let H := StabG(P[d]) ≃ Zd × (TSLd ⋊ Sd). A standard consideration in GCT is that since H
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is reductive, the orbit GP[d] is an affine variety ([BLMW11, §4.2], [Mat60]) and a homogeneous
space that is isomorphic to the quotient G/H. Its coordinate ring is determined by the Algebraic
Peter-Weyl Theorem [GW09, Thm. 4.2.7]: we have C[GP[d]] ≃ C[G/H] ≃ C[G]H, and therefore
multλ(C[GP[d]]) = dim(SλV)H. We show how this invariant space dimension can be determined
by classical representation branching rules in Proposition 6.3.

For partitions µ and λ we define µ ⪯ λ iff µ ⊆ λ (i.e. ∀i : µi ≤ λi) and the skew diagram λ/µ
has at most 1 box in each column (i.e., λt

i − µt
i ≤ 1). Let aµ(d, D) := multµ(Sd(SD(W))) for any W

of dimension at least d, sometimes called the plethysm coefficient.

6.3 Proposition. For λ ⊢ dD we have

multλ(C[GLd+1 P[d]]) = dim(SλCd+1)H =
D

∑
δ=0

∑
µ⊢δd
µ⪯λ

ℓ(µ)≤d

aµ(d, δ).

Proof.

(SλCd+1)H = (Sλ(C⊕Cd) ↓GLd+1
GL1×GLd

)Zd×(TSLd⋊Sd) Pieri’s rule
=

⊕
µ⪯λ

ℓ(µ)≤d

(S|λ|−|µ|C
1)Zd ⊗ (SµCd)TSLd⋊Sd ,

where Pieri’s rule is a well-known decomposition rule, see for example [FH91, p. 80, Exe. 6.12].
Now, dim((S|λ|−|µ|C1)Zd) = 1 iff |λ| − |µ| is a multiple of d iff |µ| is a multiple of d. Otherwise it
is 0. Hence

dim(SλV)H =
d

∑
δ=0

∑
µ⊢δd
µ⪯λ

ℓ(µ)≤d

dim(SµCd)TSLd⋊Sd︸ ︷︷ ︸
=aµ(d,δ)

The last underbrace equality is Gay’s theorem [Gay76].

Note that the ℓ(µ) ≤ d requirement is not actually necessary, because if ℓ(µ) > d, then
aµ(d, δ) = 0.

A computer calculation (see appendix) shows that this indeed gives multiplicity obstructions.
We used the HWV software [BHIM22] to directly calculate that (10, 6, 4, 4) and (8, 8, 4, 4) are
the only types in the vanishing ideal for D = 8, d = 3. For d = 3 there are no equations in
degree 1, . . . , 7. In particular, none of Brill’s equations (which all are of degree d + 1) vanishes on
GLd+1 P[d] ∩ SdCd.

6.c Polystability

A polynomial f ∈ SdV is called polystable if its SL(V)-orbit is closed. Polystability is an important
property in GCT, as it implies the existence of a fundamental invariant that connects the GL-orbit
with the GL-orbit closure, see [BI17, Def. 3.9 and Prop. 3.10]. This connection can be used to
exhibit multiplicity obstructions, as was done in [IK20].

6.4 Proposition. Let d ≥ 2. The polynomial P[d]
r,s is polystable, i.e., the orbit SL(V)P[d] is closed.

Proof. If d = 2, then P[2]
r,s is a polynomial of degree 2 defining a quadratic form of maximal rank.

This is polystable.
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Suppose d ≥ 3. Proposition 2.8 in [BI17] gives a criterion for polystability, based on works of
Hilbert, Mumford, Luna, and Kempf.

In order to apply this criterion, consider the group R = StabGL(V)(P[d]
r,s )∩TGL(V), where TGL(V)

denotes the torus of diagonal matrices, in the basis defined by the variables. By Theorem 6.2, we
deduce R = (TSLd)×r ×Z×s

d . This is a group consisting entirely of diagonal matrices and it is easy
to verify that its centralizer in SL(V) coincides with TSL(V). This proves the first property of the
criterion.

For the second property, consider the exponent vectors of the monomials appearing in P[d]
r,s . For

a monomial m, write wt(m) for its exponent vector. It is immediate to verify that
r

∑
i=1

wt(xi1 · · · xid) +
1
d

s

∑
j=1

wt(yd
j ) = (1, . . . , 1);

this shows that the vector (1, . . . , 1) lies in the convex cone generated by the exponent vectors of
the monomials of P[d]

r,s . This proves the second part of the criterion and concludes the proof.

Proposition 6.4 reduces to the following in the special case r = s = 1:

6.5 Corollary. Let d ≥ 2. The polynomial P[d] is polystable, i.e., the orbit SLd+1 P[d] is closed.

6.d Fundamental invariants and the Alon-Tarsi conjecture

The fundamental invariant Φ of a polystable polynomial f ∈ SDV is the smallest degree
SL(V)-invariant function in C[GL(V) f ], see Def. 3.8 in [BI17]. It describes the connection between
the orbit and the orbit-closure of f : more formally C[GL(V) f ]Φ ≃ C[GL(V) f ] is the localization
at Φ, see [BI17, Pro. 3.9]. This connection can be used to exhibit multiplicity obstructions, as was
done in [IK20].

It is known that for even d the orbit closureGLd(x1 · · · xd) has fundamental invariant of degree d
if and only if the Alon-Tarsi conjecture on Latin squares holds for d, see [BI17, Pro. 3.26]; otherwise
the fundamental invariant has higher degree. In this section we show an analogous result for the
orbit closure GLd+1(x1 · · · xd + xd

d+1): if d is even this orbit closure has fundamental invariant of
degree d + 1 if and only if the Alon-Tarsi conjecture on Latin squares holds for d; otherwise the
fundamental invariant has higher degree.

6.6 Proposition. Let d be even. The degree of the fundamental invariant of P[d] is d + 1 if and only if the
Alon-Tarsi conjecture for d is true, otherwise it is in a higher degree.

Proof. We follow the presentation in [CIM17, BI17, BDI21]. For a partition λ we place positive
integers into the boxes of the Young diagram and call it a tableau T of shape λ. The vector of
numbers of occurrences of 1s, 2s, etc, is called the content of T. The content is n× d if T has exactly
d many 1s, d many 2s, . . ., d many ns. The set of boxes of the Young diagram of λ is denoted by
boxes(λ). The boxes that have the same number are said to form a block.

Let m = n + 1. Fix a tableau T of shape λ with content n× d and fix a tensor p = ∑r
i=1 ℓi,1 ⊗

· · · ⊗ ℓi,d ∈ ⊗dCm. A placement
ϑ : boxes(λ)→ [r]× [d]

is called proper if the first coordinate of ϑ is constant in each block and the second coordinate of
ϑ in each block is a permutation. We define the determinant of a matrix that has more rows than
columns as the determinant of its largest top square submatrix.
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For a tableau T with content ∆× d we define the polynomial fT via its evaluation on p:

fT(p) := ∑
proper ϑ

λ1

∏
c=1

det ϑ,c with det ϑ,c := det
(
ℓϑ(1,c) . . . ℓϑ(µc,c)

)
(6.7)

The degree of fT is ∆. The polynomial fT is SLm-invariant if and only if the shape of T is
rectangular with exactly m many rows. It is easy to see that fT = 0 if T has any column in which a
number appears more than once. Moreover, it is easy to see that fT is fixed (up to sign) when two
entries in T are exchanged within a column. So, up to sign, there is only one T that could give an
SLm-invariant of degree d + 1: It is the tableau with m = d + 1 many rows and d columns that has
only entries i in row i. For n = 4 it looks as follows.

T =

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

For this T it remains to verify that fT does not vanish identically on to orbit closure
GLd+1(x1 · · · xd + xd

d+1). Since fT is SLd+1-invariant, this is equivalent to fT not vanishing at
the point x1 · · · xd + xd

d+1. So we now evaluate fT(x1 · · · xd + xd
d+1). The nonzero summands

in Equation (6.7) must place (d + 1, ∗) into one of the blocks. We can partition the summands
according to the row in which (d + 1, ∗) is placed. Since the number of columns is even, each
part of the partition contributes the same number to the overall sum. That number is the column
sign of the unique Latin square that is obtained when removing the row in which (d + 1, ∗) is
placed. Hence the whole sum if d + 1 times the difference of the column-even and column-odd
Latin squares, so its nonvanishing is equivalent to the Alon-Tarsi conjecture for d.

6.e De-bordering: Characterizing special binomials

In this section, we de-border two special binomials, namely product-plus-power and
product-plus-two-powers, as defined in Section 2.b. Before proving them, we state and prove some
basic lemmas which will be crucially used in the proof.
6.8 Proposition ([CCG12]). For a ≤ b ≤ c, WR(xayb) = b + 1, and WR(xaybzc) = (b + 1)(c + 1).

6.9 Lemma (Interpolation). Let f (x) ∈ C[x] of degree d such that f (βi, x2, . . . , xn) ∈ Σ[s] ∧ Σ, for
distinct βi ∈ C, i ∈ [d + 1], and let the maximum exponent in all the cases be e(≥ d). Then, f (x) ∈
Σ[s(d+1)2(e+1)] ∧ Σ, with the maximum exponent being at most e + d.

Proof. Let f (x) = ∑d
j=0 f jx

j
1. Trivially, there exists αij ∈ C, such that f j =

∑i∈[d+1] αij f (βi, x2, . . . , xn). By assumption, f (βi, x2, . . . , xn)+ ϵ ·Si(ϵ, x2, . . . , xn) = ∑j∈[s] ℓ
ej
ij , where

ℓij are linear polynomials over C(ϵ), and ej ≤ e. Hence, trivially,

f j(x) + ϵ · ( ∑
i∈[d+1]

αijSi) = ∑
i∈[d+1]

∑
j∈[s]

αijℓ
ej
ij =⇒ f j(x) ∈ Σ[s(d+1)] ∧ Σ .

Note that, for any affine linear polynomial ℓ, the affine Waring rank of (ℓe · xj
1) is e + 1 (since j ≤

d ≤ e), with the maximum exponent being e + j; this follows from Proposition 6.8. Therefore,
f jx

j
1 ∈ Σ[s(d+1)(e+1)] ∧ Σ, with the maximum exponent being at most e + j. Finally, adding up, we

get f (x) ∈ Σ[s(d+1)2(e+1)] ∧ Σ, with the maximum exponent being at most e + d.
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By applying the lemma twice, we get the following.
6.10 Corollary. Let f (x) ∈ C[x] of degree d such that f (βi, γj, x3, . . . , xn) ∈ Σ[s] ∧ Σ, for distinct βi ∈ C,
(and similarly γj), i, j ∈ [d + 1], and let the maximum exponent in all the cases be e(≥ d). Then, f (x) ∈
Σ[O(sed4] ∧ Σ, with the maximum exponent being at most e + 2d.

Next lemma is about going from Σ ∧ Σ to border waring rank in the homogeneous setting.
6.11 Lemma. Let f (x) ∈ C[x]d, such that f (x) ∈ Σ[s] ∧ Σ. Then, WR( f ) ≤ s.

Proof. By assumption, f (x) + ϵ · S(x, ϵ) = ∑i∈[s](αi + ℓi)
ei , where αi ∈ C(ϵ), and ℓi ∈ C(ϵ)[x]1.

Since, degree of f is d, taking the degree d part of RHS gives ∑i∈[s]|ei≥d (
ei
d)ℓ

d
i αei−d

i . Trivially, this
implies that WR( f ) ≤ s.

6.12 Lemma (Folklore). Let f (x) ∈ C[x], and A ∈ GLn(C). If f (Ax) ∈ Σ[s] ∧ Σ ⇐⇒ f (x) ∈
Σ[s] ∧ Σ.

Proof. This follows trivially, since this is just the (GLn(C) group action.
The next lemma says how to extract ϵ-powers to separate out the ϵ-free part, from the rest.

6.13 Lemma. Let R[x]1 ∋ ℓ := x1 + ϵ · ℓ̌, for some linear form ℓ̌ (not necessarily x1-free), where R :=
C[ϵ]/⟨ϵM⟩, for some M ∈ N, then there exist another linear form ℓ̃ ∈ R[x]1, such that ℓ = ℓ̃ over the
ringR, where ℓ̃ = γ · (x1 + ϵ · ℓ̂), for some γ ∈ R, with γ ≡ 1 mod ⟨ϵ⟩, and ℓ̂ ∈ R[x]1 which is x1-free.

Proof. ℓ = x1 + ϵℓ̌. Suppose, ℓ̌ = cx1 + ℓ0, where ℓ0 is x1-free, and c ∈ R. Rewrite ℓ as ℓ =
(1 + cϵ)x1 + ϵ · ℓ0. Define,R ∋ γ := (1 + cϵ) mod ⟨ϵ⟩M. Note that

1
1 + cϵ

≡
(

M−1

∑
i=0

(−cϵ)i

)
mod ⟨ϵ⟩M =: γ′ ∈ R .

Hence, overR, the following equality holds:
ℓ = γx1 + ϵ · ℓ0 = γ(x1 + ϵ · γ′ · ℓ0) =: ℓ̃ .

This finishes the proof.
Now we prove the non-homogeneous generalisation of Theorem 4.11. The proof technique is

almost same as in the proof of Theorem 4.11.
6.14 Theorem (De-bordering affine Kc−). For any degree d polynomial f (x) ∈ C[x], not necessarily
homogeneous, with Kc−( f ) = m, we have f ∈ Σ[md+1] ∧ Σ, with maximum exponent being d.

Proof. Let f ≃ fϵ := γϵ−M(∏m
i=1(1 + ℓ′i)− 1

) with M ≥ 1. From the convergence of fϵ we deduce
that for each i we have ℓ′i = ϵℓi with ℓi ∈ C[ϵ][x]1, because otherwise the homogeneous degree j
part diverges, where j is the number of ℓ′i that do not satisfy this property.

Let fϵ,j denote the homogeneous degree j part of fϵ and analogously we use f j to denote the
homogeneous degree j part of f . First we note that fϵ,j = γϵ−Mej(ϵℓ1, . . . , ϵℓm) = γϵ−M+jej(ℓ). We
know that f j ≃ fϵ,j = γϵ−M+jej(ℓ). We now show by induction that for all 1 ≤ j ≤ d we have

pj(ℓ) ≡0 mod ⟨ϵM−j⟩
ej(ℓ) ≡0 mod ⟨ϵM−j⟩ (6.15)
pj(ℓ) ≡(−1)j−1 j

(
ej(ℓ)

)
mod ⟨ϵM−j+1⟩
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The base case j = 1 is trivially true because p1 = e1. By using Equation (6.15) for 1 ≤ i ≤ j, we
know that there exist Pi, Ei ∈ C[ϵ][x] such that

pi(ℓ) =ϵM−iPi

ej+1−i(ℓ) =ϵM−(j+1)+iEi

This implies that ej+1−i(ℓ) · pi(ℓ) = ϵM−iPiϵ
M−(j+1)+iEi = ϵ2M−(j+1)PiEi. Therefore, we have that

ej+1−i(ℓ) · pi(ℓ) ≡ 0 mod ⟨ϵM−j⟩ as M ≥ 1. Now for the induction step from j to j + 1 we use
Newton’s identities:

pj+1(ℓ) = (−1)j(j + 1)ej+1(ℓ) +
j

∑
i=1

(−1)j+iej+1−i(ℓ) · pi(ℓ)

The claim ej+1−i(ℓ) · pi(ℓ) ≡ 0 mod ⟨ϵM−j⟩ implies that pj+1(ℓ) ≡ (−1)j(j + 1)
(
ej+1(ℓ)

)
mod

⟨ϵM−j⟩. We also know that f j+1 ≃ fϵ,j+1 = γϵ−M+j+1 (ej(ℓ)
). Since fϵ,j+1 converges, ϵM−(j+1)

has to divide ej+1(ℓ). Therefore ej+1(ℓ) ≡ 0 mod ⟨ϵM−(j+1)⟩, which readily implies pj+1(ℓ) ≡
0 mod ⟨ϵM−(j+1)⟩. This proves the induction hypothesis. Hence

f j ≃ γϵ−M+j (ej(ℓ)
)
≃ γϵ−M+j · 1

j
· (−1)j−1 (pj(ℓ)

)
.

Which gives us that thatWR( f j) ≤ m. By the sub-additive property of the border Waring rank, we
obtain that f ∈ Σ[md+1] ∧ Σ. The exponents come from the exponents from pj(ℓ), which can be at
most d.

6.16 Corollary. In the above model, instead of −1, if it was any arbitrary α ∈ C[ϵ], such that α ≡ 1 mod
⟨ϵ⟩ i.e., f ≃ fϵ := γϵ−M (∏m

i=1(1 + ℓ′i)− α) the same proof goes through, this is essentially because α does
not contribute to the higher degree terms. Note that, α ≡ 1 mod ⟨ϵ⟩, because otherwise the limit does not
exist.

6.17 Theorem. For any degree d polynomial f (x) ∈ C[x], not necessarily homogeneous, suppose we have
f ≃ γϵ−M(∏m

i=1(1 + ϵai) −∏m
i=1(1 + ϵbi)

)
for some linear forms ai, bi ∈ C[ϵ][x]1 and γ ∈ C with

M ≥ 1. Then we have f ∈ Σ[2md+1] ∧ Σ, with the maximum exponent being d.

Proof. We have f ≃ fϵ := γϵ−M(∏m
i=1(1 + ϵai)−∏m

i=1(1 + ϵbi)
) with M ≥ 1. Let fϵ,j denote the

homogeneous degree j part of fϵ and analogously we use f j to denote the homogeneous degree
j part of f . Now, note that f j ≃ fϵ,j = γϵ−M (ej(ϵa1, . . . , ϵam)− ej(ϵb1, . . . , ϵbm)

). Therefore f j ≃
fϵ,j = γϵ−M+j (ej(a)− ej(b)

), where a = (a1, . . . , am) and similarly b = (b1, . . . , bm). We now show
by induction that for all 1 ≤ j ≤ d we have

pj(a) ≡pj(b) mod ⟨ϵM−j⟩
ej(a) ≡ej(b) mod ⟨ϵM−j⟩ (6.18)

pj(a)− pj(b) ≡(−1)j−1 j
(
ej(a)− ej(a)

)
mod ⟨ϵM−j+1⟩

The base case j = 1 is trivially true because p1 = e1 and f1 ≃ f1,1 = γϵ−M+1 (e1(a)− e1(b))
converges, therefore ϵM−1 has to divide e1(a) − e1(b) = p1(a) − p1(b). For the induction step
from j to j + 1, we use Newton’s identities:

pj+1 = (−1)j(j + 1)ej+1 + ∑
j
i=1(−1)j+iej+1−i · pi.
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Hence

pj+1(a)− pj+1(b) =(−1)j(j + 1)
(
ej+1(a)− ej+1(a)

)
+

j

∑
i=1

(−1)j+i (ej+1−i(a) · pi(a)− ej+1−i(b) · pi(b)
)

.

By using Equation (6.18) for 1 ≤ i ≤ j, we know that

pi(a) ≡pi(b) mod ⟨ϵM−i⟩
ej+1−i(a) ≡ej+1−i(b) mod ⟨ϵM−(j+1)+i⟩.

This means that there exist Pi, Ei ∈ C[ϵ][x] such that

pi(a) =pi(b) + ϵM−iPi

ej+1−i(a) =ej+1−i(b) + ϵM−(j+1)+iEi

Since, 1 ≤ i ≤ j, this implies tha

ej+1−i(a) · pi(a) = (ej+1−i(b) + ϵM−(j+1)+iEi)(pi(b) + ϵM−iPi)

= ej+1−i(b) · pi(b) + ϵM−jQi

for some Qi ∈ C[ϵ][x] . Therefore

pj+1(a)− pj+1(b) ≡ (−1)j(j + 1)
(
ej+1(a)− ej+1(a)

)
mod ⟨ϵM−j⟩

We also know that f j+1 ≃ fϵ,j+1 = γϵ−M+j+1 (ej(a)− ej(b)
). Since fϵ,j+1 converges, ϵM−(j+1) has

to divide ej+1(a) − ej+1(b). Therefore ej+1(a) ≡ ej+1(b) mod ⟨ϵM−(j+1)⟩, which readily implies
pj+1(a) ≡ pj+1(b) mod ⟨ϵM−(j+1)⟩. This proves the induction hypothesis. Hence

f j ≃ γϵ−M+j (ej(a)− ej(b)
)
≃ γϵ−M+j · 1

j
· (−1)j−1 (pj(a)− pj(b)

)
.

This easily implies that,WR( f j) ≤ 2m. By the sub-additive property of the border Waring rank, we
obtain that f ∈ Σ[2md+1] ∧ Σ.

6.19 Corollary. For any degree d polynomial f (x) ∈ C[x], not necessarily homogeneous, suppose we have
f ≃ γϵ−M(∏m

i=1(1 + ϵai)− α ·∏m
i=1(1 + ϵbi)− β

)
for some linear forms ai, bi ∈ C[ϵ][x], α, β ∈ C[ϵ],

such that α ̸≡ 0 mod ⟨ϵ⟩, and γ ∈ C with M ≥ 1. Then we have f ∈ Σ[2md+1] ∧ Σ, with maximum
exponent being d.

Proof sketch. This essentially follows from the same proof as Theorem 6.17. Note that, for j ≥ 1, β
does not contribute anything, and ej(a) ≡ αej(b) mod ⟨ϵM−j⟩; the same holds for pj. Therefore,
by induction we can show that

f j ≃ γϵ−M+j (ej(a)− αej(b)
)
≃ γϵ−M+j · 1

j
· (−1)j−1 (pj(a)− αpj(b)

)
.

This easily implies that,WR( f j) ≤ 2m. By the sub-additive property of the border Waring rank, we
obtain that f ∈ Σ[2md+1] ∧ Σ.
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6.20 Theorem (De-bordering product-plus-power). Let f ∈ SdV, such that f ⊴ P[d],then either f ≤
P[d], or, WR( f ) ≤ (d + 1)3(d2 + 1).

Proof. Since, f ⊴ ∏i∈[d] xi + xd
0, by definition, there are ℓi ∈ C(ϵ)[x]1, such that f =

limϵ→0

(
∏i∈[d] ℓi − ℓd

0

)
; here, we change ‘+′ to ‘−′, because over C, it is okay to do so, by an

appropriate rescaling. By multiplying large powers of ϵ powers on both sides (and renaming it),
one can say that there exists ℓi ∈ C[ϵ][x]1, S ∈ C[ϵ, ϵ−1][x]d, and M ∈ Z≥0, such that

ℓ1 · · · ℓd − ℓd
0 = ϵM · f + ϵM+1 · S(x, ϵ) .

If M = 0, then individually the limit must exist which implies that f must be of the form ∏ ℓ̂i − ℓ̂d
0,

for some linear forms ℓ̂i.
Hence, without loss of generality, assume that M ≥ 1. Let ℓi|ϵ=0 = ℓi0. We can assume that ℓi0

are nonzero for each i ∈ [d]; otherwise, say wlog ℓ10 = 0 =⇒ ℓ1 ≡ 0 mod ⟨ϵ⟩ =⇒ ∏i∈[d] ℓi ≡
0 mod ⟨ϵ⟩. Since, M ≥ 1, this must imply that ℓd

0 ≡ 0 mod ⟨ϵ⟩ =⇒ ℓ0 ≡ 0 mod ⟨ϵ⟩, and hence
we can further reduce M.

Since, M ≥ 1, by comparing the coefficient of ϵ0, we must have ∏i∈[d] ℓi0 = ℓd
00. This means ℓi0

are multiple of each other. So, wlog ℓi0 = x1, otherwise we can apply an invertible transformation
(x 7→ Ex, for E ∈ GLn(C)) which sends ℓ00 7→ x1 and xi 7→ xi, for i ∈ [2, n]. Here, we assumed
that ℓ00 has x1-variable, otherwise, we will work with a variable that is in ℓ00. Also note that the
desired forms in the theorem are preserved under the transformation.

So after the transformation, one can replace ℓi by ℓ̃i, using Lemma 6.13 such that ℓ = ℓ̃i, overR,
where R := C[ϵ]/⟨ϵM+1⟩, where ℓ̃i := ci(x1 + ϵ · ℓ̂i), such that ℓ̂i are x1-free, and ci ≡ 1 mod ⟨ϵ⟩.
Note that, by working overR,wemake sure that RHS stays unaffected mod ⟨ϵM+1⟩, which implies
the coefficient of ϵM, in the RHS, remains f (Ex).

Let us define α := ∏i∈[d] ci. Therefore, we will get the following form:

α · ∏
i∈[d]

(x1 + ϵ · ℓ̂i) − c0 · (x1 + ϵ · ℓ̂0)
d = ϵM · f (Ex) + ϵM+1 · Ŝ .

Here, both α and c0 are elements in R, such that they are ≡ 1 mod ⟨ϵ⟩. One can also divide both
side by α. Note that, γ := (c0/α mod ⟨ϵ⟩M+1) ∈ R, and further f (Ex)/α ≡ f (Ex) mod ⟨ϵ⟩. This
implies, even after dividing both side by α, the coefficient of ϵM remains unchanged. Moreover, we
get the following form:

∏
i∈[d]

(x1 + ϵ · ℓ̂i) − γ(x1 + ϵ · ℓ̂0)
d = ϵM · f (Ex) + ϵM+1 · S̃ . (6.21)

Let SdV ∋ g(x) := f (Ex). Note that it suffices to prove that each g(j, x2, · · · , xn) ∈ Σ[d2+1] ∧ Σ,
for each j ∈ [1, d + 1], with maximum exponent d, because of the following reasons:

1. If g(j, x2, · · · , xn) ∈ Σ[d2+1] ∧ Σ, for j = 1, . . . , d + 1, then by interpolation, we would get that
g(x) ∈ Σ[(d+1)3(d2+1)] ∧ Σ, see Lemma 6.9.

2. If g is homogeneous such that g(x) ∈ Σ[(d+1)3(d2+1)] ∧ Σ then WR(g) ≤ (d + 1)3(d2 + 1)
by Lemma 6.11.

3. If WR(g) ≤ (d + 1)3(d2 + 1), then by Lemma 6.12,WR( f ) ≤ (d + 1)3(d2 + 1).
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Our proof is basically the same for all j, so we will wlog work with j = 1, and show that
g(1, x2, . . . , xn) ∈ Σ[d2+1] ∧ Σ.

6.22 Claim. g(1, x2, . . . , xn) ∈ Σ[d2+1] ∧ Σ, with the maximum exponent being d.

Proof. Substitute x1 = 1− ϵ · ℓ̂0, in Equation (6.21). LHS becomes ∏i∈[d](1 + ϵ · Li)− γ, for some
linear forms Li in C[ϵ, x], which are x1-free. Also note that,

g(1− ϵ · ℓ̂0, x2, . . . , xn) = g(1, x2, . . . , xn) + ϵ · ĝ(x, ϵ) ,

for some ĝ ∈ C[ϵ][x]. Therefore, Equation (6.21) becomes

∏
i∈[d]

(1 + ϵ · Li) − γ = ϵM · g(1, x2, . . . , xn) + ϵM+1 · Š . (6.23)

By Theorem 6.14 and its corollary (Corollary 6.16), it follows that g(1, x2, . . . , xn) ∈ Σ[d2+1] ∧ Σ, as
desired.

Since, each g(j, x2, . . . , xn) ∈ Σ[d2+1] ∧ Σ, of fanin (d2 + 1) by Claim 6.22, we get that WR( f ) ≤
(d + 1)3(d2 + 1), as we wanted.

6.24 Remark. One can actually simply substitute x1 = j, in Equation (6.21), to get a form as of
in Theorem 6.17. However, in that case, there is a 2 multiplicative factor; in particular, by doing
that we would get that g(j, x2, . . . , xn) ∈ Σ[2d2+1] ∧ Σ, and hence WR( f ) ≤ (d + 1)3(2d2 + 1). For
this slightly better bound, we analyzes the proof as above.

6.25 Theorem (De-bordering product-plus-two-powers). Let f ∈ SdV, such that f ⊴ P[d]
2 , then,

either

1. f ≤ P[d]
2 , or,

2. f ≤ ∏i∈[d] yi + yd−1
0 · yd+1, or,

3. WR( f ) ≤ O(d7).

6.26 Remark. The first two cases, can be compiled as f = g + h, where g ≤ ∏i∈[d] yi, andWR(h) ≤
2. Note that, WR(h) ≤ 2, implies that WR(h) ≤ 2, or h ≤ yd−1

0 yd+1, form Theorem B.1. We will in
fact be using this form (of f = g + h) in the proof.

Proof. Since, f ⊴ P[d]
2 , by definition, there are linear forms Li ∈ C(ϵ)[x]1, and H ∈ C[ϵ][x], such

that
∏
i∈[d]

Li + Ld
0 + Ld

d+1 = f + ϵ · H(x, ϵ) .

B multiplying large powers of ϵ both the sides, we can make sure that we are only working over
C[ϵ]. In particular, we will have the following:

ϵa1 · ℓ1 · · · ℓd︸ ︷︷ ︸
T1

+ ϵa2 · ℓd
0︸︷︷︸

T2

+ ϵa3 · ℓd
d+1︸︷︷︸
T3

= ϵM · f + ϵM+1 · S(x, ϵ) .

In the above, ai, M ∈N≥0, and ℓi ∈ C[ϵ][x]1, such that ℓi|ϵ=0 = ℓi,0, is a nonzero linear form in C[x].
Further, wlog, one can assume the following (otherwise, the limit diverges, or easy de-borderings):
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1. min ai = 0, otherwise, we can divide by ϵM−min ai , both side. Note that, M ≥ min ai, because
otherwise, the limit f must be 0.

2. We can further assume that ai < M, for all i. Otherwise, say S := {i ∈ [3] | ai = M} ⊆ [3],
and S′ := [3]− S. Trivially,

f = ∑
i∈S

Ti|ϵ=0 + lim
ϵ→0

1/ϵM ·
(

∑
i∈S′

ϵai Ti

)
.

There are further subcases to consider.

(a) If S = [3] (and hence, S′ is empty), then f = g + h, where g is a product of linear forms
andWR(h) ≤ 2.

(b) If S = {1}, then f = g + h, where g is a product of linear forms, andWR(h) ≤ 2.
(c) S = {2} or S = {3}, then f1 := limϵ→0 1/ϵM · (∑i∈S′ ϵ

ai Ti) can be found
by Theorem 6.20: f1 is either of the form g + h1, where g is product of linear forms
and h1 is a power of linear form, orWR( f1) ≤ O(d5). In this case, since Ti|ϵ=0, for i ∈ S,
is a power of a linear form, combining them we get that either –

i. If f1 = g + h1, then f = g + h, where h := h1 + Ti(ϵ = 0), and trivially, WR(h) ≤ 2.
ii. IfWR( f1) ≤ O(d5), then again trivially, f = f1 + Ti|ϵ=0 =⇒ WR( f ) ≤ O(d5).

(d) If S has 2 elements, then S′ has exactly 1 element and thus, limϵ→0 1/ϵM · (∑i∈S′ ϵ
ai Ti) is

trivial (either a product or a power). Again, in this case, f = g + h, where g is a product
of linear forms andWR(h) ≤ 2.

3. min ai does not come from an unique element, i.e., there must exist at least two indices i and j
such that ai = aj = mink∈[3] ak. If not (i.e., if the minimum is unique), then M = min ai, and
hence f = Ti|ϵ=0, for some i, which is either a product of linear forms, or a power of a linear
form (which is trivially subsumed in the g + h form).

Therefore, the remaining cases are as follows:

Case I: a1 = a2 = a3 = 0. We can write this case as:

∏
i∈[d]

ℓi + ℓd
0 + ℓd

d+1 = ϵM · f + ϵM+1 · S(x, ϵ) .

Case II: a1 = a2 = 0 and a3 = a > 0. We can write this case as:

∏
i∈[d]

ℓi + ℓd
0 + ϵa · ℓd

d+1 = ϵM · f + ϵM+1 · S(x, ϵ) .

Case III: a2 = a3 = 0 and a1 = a > 0. We write the case as:

ϵa · ∏
i∈[d]

ℓi + ℓd
0 + ℓd

d+1 = ϵM · f + ϵM+1 · S(x, ϵ) .
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In the above, we have not considered the case a1 = a3 = 0, a2 > 0, because this is symmetric as
Case II. Since the minimum cannot be unique (point 3), many cases are discarded, and we have
covered all the cases. Therefore, it suffices to deborder these 3 cases. We show that in all these
casesWR( f ) ≤ O(d7). All the cases, although, have a similar proof-flow, have their own subtelties.

To begin with, here is a crucial claim.
6.27 Claim. In all the 3 above cases, rank(ℓ0,0, · · · , ℓd+1,0) ≤ 2.

Proof. Just for sanity, we will go case by case.
Case I: There are two subcases –

(i) If rank(ℓ0,0, ℓd+1,0) = 2, then since ∏i∈[d] ℓi,0 = −∏d
j=1(ℓ0,0 − ζ jℓd+1,0), where ζ is the 2d-th

root of unity, using the unique factorization and reducibility of linear forms, we get that
ℓi,0 ∈ ⟨ℓ0,0, ℓd+1,0⟩, for each i ∈ [d], and hence, rank(ℓ0,0, · · · , ℓd+1,0) = 2.

(ii) If rank(ℓ0,0, ℓd+1,0) = 1, then it is obvious to see that each ℓi0 is also a constant multiple of
ℓd+1,0, implying rank(ℓ0,0, · · · , ℓd+1,0) = 1.

Case II: Since, M′ > a > 0, it must happen that ∏i∈[d] ℓi,0 = ℓd
0,0, which implies that

rank(ℓ0,0, · · · , ℓd,0) = 1. Therefore, rank(ℓ0,0, · · · , ℓd+1,0) ≤ 2.
Case III: In this case, we have ℓd

0 + ℓd
d+1 ≡ 0 mod ⟨ϵa⟩. Since, a ≥ 1, we invoke Theorem B.1, to

deduce that the coefficient of ϵa in ℓd
0 + ℓd

d+1 must be of the form ℓd−1
0,0 · ℓ′, for some linear form ℓ′,

with trivially rank(ℓ0,0, ℓd+1,0) = 1; this basically follows from the proof of Theorem B.1.
Comparing the ϵa-th coefficient both side, we get that ∏i∈[d] ℓi,0 = −ℓd−1

0,0 · ℓ′, it follows that each
ℓi,0 (except one) is a constant multiple of ℓ0,0, and the remaining one is constant multiple of ℓ′. This
readily implies that rank(ℓ0,0, · · · , ℓd+1,0) ≤ 2. This finishes the claim.

Nowwe return to the proof of de-bordering. We divide all the three cases into two bigger cases
of (a) & (b) [notation: By Case I(a), we will mean Case (a) along with the rank constraints, as per
below]:

Case I-II(a): rank(ℓ0,0, ℓd+1,0) = 2. [We do not consider Case III(a) because in Case III, rank=2 is not
possible from the proof of Claim 6.27.]

Case I-III(b): rank(ℓ0,0, ℓd+1,0) = 1.

Case I(a): Apply an invertible linear transformation (x 7→ Rx, for R ∈ GLn(C)), which sends
ℓ0,0 7→ x1, ℓd+1,0 7→ x2, and xi 7→ xi, for i ∈ [3, n]. Here, we assumed that ℓ0,0 has x1-variable, and
ℓd+1,0 has x2, otherwise, we will work with the variables that are in them (and there must exist at
least two, otherwise their rank is 1). Also note that the border waring rank is preserved under this
transformation (Lemma 6.12).

So after the transformation and clubbing the x1 and x2-terms together, each ℓ̂i := ℓi(Rx), for i ∈
[d], becomes of the form cix1 + c′ix2 + ϵ · ℓ̃i, where ℓ̃i are x1, x2-free, ci, c′i ∈ C[ϵ], such that both ci or c′i
must be ̸≡ 0 mod ⟨ϵ⟩. The reason being, ∏i∈[d]

(
ℓ̂i mod ⟨ϵ⟩

)
= −(xd

1 + xd
2) = −∏i∈[d](x1 + ζ ix2),

where ζ is the 2d-th root of unity, implying that each ℓ̂i mod ⟨ϵ⟩ should depend upon both x1, x2
by using the fact that polynmial ring is a UFD.
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Similarly, ℓ0(Rx) := ℓ̂0 becomes c0x1 + c′0x2 + ϵ · ℓ̃0, where ℓ̃0 are x1, x2-free, and c0 ≡ 1 mod ⟨ϵ⟩,
and c′0 ≡ 0 mod ⟨ϵ⟩. The reason of c0 being ≡ 1 mod ⟨ϵ⟩ is similar as before; see proof
of Lemma 6.13. To see c′0 ≡ 0 mod ⟨ϵ⟩, note that the constant term of ℓ0 is x1, by assumption
and hence, x2 terms always come up with multiple in ϵ. Similarly, ℓd+1(Rx) := ℓ̂d+1 becomes
cd+1x1 + c′d+1x2 + ϵ · ℓ̃d+1, where ℓ̃i are x1, x2-free, and cd+1 ≡ 0 mod ⟨ϵ⟩, and c′d+1 ≡ 1 mod ⟨ϵ⟩.

Since, ℓ̂d
0 + ℓ̂d

d+1 can be rewritten as ∏i∈[d](ℓ̂0 + ζ i · ℓ̂d+1), where ζ is the 2d-th root of unity. Let
ℓ̌i := ℓ̂0 + ζ i · ℓ̂d+1 = (c0 + ζ icd+1)x1 + (c′0 + ζ i · c′d+1)x2 + ϵ · (ℓ̃0 + ζ i ℓ̃d+1). Hence,

∏
i∈[d]

ℓ̂i + ∏
i∈[d]

ℓ̌i = ϵM · f (Rx) + ϵM+1 · Ŝ . (6.28)

Let us define ci,0 := ci mod ⟨ϵ⟩, for i ∈ {0} ∪ [d+ 1], and similarly c′i,0 := c′i mod ⟨ϵ⟩. Therefore,
c0,0 = c′d+1,0 = 1. Pick a set {β1, . . . , βd+1} =: Y ⊆ C, such that

1. |Y| = d + 1, and

2. ci,0β j + c′i,0βk ̸= 0, for any β j, βk ∈ Y, and i ∈ [d].

3. β j + ζ iβk ̸= 0, for i ∈ [d], and j, k ∈ [d + 1].

Such a Y trivially exists (in fact a random Y also works). Once we have chosen Y, we now show
how to deborder in this case.

The main idea is as follows: If we substitute x1 = β1, and x2 = β2 in Equation (6.28), by the
property of Y, we get that

∏
i∈[d]

(ĉi + ϵℓ̃i) + ∏
i∈[d]

(či + ϵ · (ℓ̃0 + ζ i ℓ̃d+1)) = ϵM · f (Rx)(β1, β2, x3, . . . , xn) + ϵM+1 · S̃ . (6.29)

In the above, ĉi := ciβ1 + c′iβ2. Note that, (ĉi mod ⟨ϵ⟩) = ci,0β1 + c′i,0β2 ̸= 0, by assumption.
Similarly, či := (c0 + ζ icd+1)β1 + (c′0 + ζ i · c′d+1)β2. Since, c0,0 = c′d+1,0 = 1, by assumption (on Y):
(či mod ⟨ϵ⟩) = β1 + ζ iβ2 ̸= 0. Therefore, we can directly apply Corollary 6.19, to deduce that
WRaff( f (Rx)(β1, β2, x3, . . . , xn)) ≤ O(d2).

Note that the same holds if we substitute x1 = β j, and x2 = βk, for any j, k ∈ [d + 1]. Therefore,
we have

WRaff( f (Rx)(β j, βk, x3, . . . , xn)) ≤ O(d2), for j, k ∈ [d + 1]
Corollary 6.10

=⇒ WR( f (Rx)) ≤ O(d7) .

In the above, we used the fact that the maximum exponent can be at most O(d). Finally, by
Lemma 6.12,WR( f (Rx)) ≤ O(d7) =⇒ WR( f ) ≤ O(d7), as desired.

Case II(a): Case II(a) is almost the same as Case I(a), except one small point which we discuss
now. Note that, we would not be able to directly factor ℓ̂d

0 + ϵa ℓ̂d
d+1, if d ∤ a. But, we can actually

replace ϵ 7→ ϵ′d, for a variable ϵ′. Note that, ϵ → 0 ⇐⇒ ϵ′ → 0. By doing that, we can now
factor ℓ̂d

0 + ϵ′ad ℓ̂d
d+1 = ∏i∈[d](ℓ̂0 + ϵ′aζ i ℓ̂d+1). The rest follows similarly, by defining an appropriate

Y, substituting β j and using Corollary 6.19, and finally interpolating back f .
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Case I(b): Case I(b) is as follows:

∏
i∈[d]

ℓi + ℓd
0 + ℓd

d+1 = ϵM · f + ϵM+1 · S(x, ϵ) ;

where rank(ℓ0,0, ℓd+1,0) = 1. By using Claim 6.27 (& its proof), it easily follows that
rank(ℓ0,0, · · · , ℓd+1,0) = 1.

One can apply an invertible linear transformation (x 7→ Rx) that sends ℓ0,0 7→ x1. We can
club x1 terms together. So, ℓ̂i := ℓi(Rx), for i ∈ [0, d + 1], becomes cix1 + ϵ · ℓ̃i, where ℓ̃i is x1-free,
ci ∈ C[ϵ], such that ci ̸≡ 0 mod ⟨ϵ⟩. Let us define ci,0 := ci mod ⟨ϵ⟩, which are non-zero. Fix any set
(of distinct elements) Y = {β1, . . . , βd+1} ⊆ C. We would like to substitute x1 = (β j − ϵ · ℓ̃0)/c0,
for j ∈ [d + 1], so that ℓ̂0 becomes β j. Since, we want to work over C[ϵ], we can simply substitute
x1 = (β j − ϵ · ℓ̃0) · c̃0, where C[ϵ] ∋ c̃0 := 1/c0 mod ⟨ϵ⟩M+1. This exists since c0,0 ̸= 0. Moreover,
note that,

lim
ϵ→0

f (Rx)((β j − ϵ · ℓ̃0) · c̃0, x2, . . . , xn) = f (Rx)(β j/c0,0, x2, . . . , xn) := hj(x2, . . . , xn) .

We will show that hj(x2, . . . , xn) ∈ Σ[O(d2)] ∧ Σ. By Lemma 6.9 and Lemma 6.12, it will follow that
f (x) ∈ Σ[O(d5)] ∧ Σ.

After the substitution, we have the following:

∏
i∈[d]

(c′i,j + ϵ · ℓ′i) + βd
j + (c′d+1,j + ϵ · ℓ′d+1)

d = ϵM · hj + ϵM+1 · S′(x, ϵ) ; (6.30)

where c′i,j := ciβ j c̃0 ∈ C[ϵ], and ℓ′i := ℓ̃i − ci c̃0ℓ̃0, for i ∈ [0, d + 1], and j ∈ [d + 1]. Note that,
c′i,j mod ⟨ϵ⟩ = ci,0β j/c0,0 ̸= 0. Moreover, ℓ′i ∈ C[ϵ][x2, . . . , xn]1, i.e., are x1-free. We can further
take out ∏i c′i,j, and divide both side and work over R := C[ϵ]/⟨ϵM+1⟩. Clearly, the ϵM coefficient
in RHS becomes hj/(ci,0β j/c0,0). In particular, after extracting and dividing (similar to the proof
of Lemma 6.13), we have the following:

∏
i∈[d]

(1 + ϵ · ℓ̌i) + α · (1 + ϵ · ℓ̌d+1)
d = ϵM · hj/(ci,0β j/c0,0) + ϵM+1 · Š .

By Theorem 6.17 and its Corollary 6.19, we deduce that indeed hj(x2, . . . , xn) ∈ Σ[O(d2)] ∧ Σ, with
maximum exponent being d. Therefore, as argued before,WR( f ) ≤ O(d5). This finishes this case.

Case II(b): This is almost identical to Case I(b). In this case, we can make ℓ̂d+1 a constant after
appropriate substitution (by x1), and we will again get an expression of the form Equation (6.30).

Case III(b): Two possible cases can happen – (i) rank(ℓ0,0, ℓd+1,0) = rank(ℓ0,0, ℓ1,0, · · · , ℓd+1,0) = 1,
(ii) rank(ℓ0,0, ℓd+1,0) = 1, but rank(ℓ0,0, ℓ1,0, · · · , ℓd+1,0) = 2.

The first case is again very similar to the above (Subcase 1), and hence we do not repeat it. For
the second subcase, we will use an important structure. We rewrite this with slight change of sign
(where a > 0):

ϵa · ∏
i∈[d]

ℓi + ℓd
0 − ℓd

d+1 = ϵM · f + ϵM+1 · S(x, ϵ) .

Since, ℓd
0 ≡ ℓd

d+1 mod ⟨ϵ⟩a, by Theorem B.1, we know that, wlog, we can rewrite the above (after
applying an invertible transformation E ∈ GLn(C) such that:

ϵa ∏
i∈[d]

ℓi + (c0x1 + ϵa ℓ̌0)
d − (cd+1x1 + ϵa ℓ̌d+1)

d = ϵM · f (Ex) + ϵM+1 · Š(x, ϵ) ,
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where ci ∈ C[ϵ], such that c0 ≡ cd+1 ̸≡ 0 mod ⟨ϵ⟩, ℓ̌i ∈ C[ϵ][x2, . . . xn]1, and Š ∈ C[ϵ][x]. Let
ℓ̌i = ∑j ℓ̌i,jϵ

j, for i ∈ {0, d + 1}. Since, a < M, ∏i ℓi,0 = c0,0xd−1
1 (ℓ̌d+1,0 − ℓ̌1,0), where C ∋ c0,0 ≡

c0 mod ⟨ϵ⟩. Therefore, one can rescale the linear forms and assume that ℓi,0 = x1, for i ∈ [d −
1], and ℓd,0 = c0,0(ℓ̌d+1,0 − ℓ̌1,0). By assumption, rank(ℓ0,0, . . . , ℓd+1,0) = 2, it follows that x1 and
ℓ̌d+1,0− ℓ̌1,0 are linearly independent. Wlog, x2 appears in the form ℓ̌d+1,0− ℓ̌1,0. As before, one can
apply an invertible linear transformation A, which sends x1 7→ x1, ℓ̌d+1,0 − ℓ̌1,0 7→ x2, and xi 7→ xi,
for i ∈ [3, n]. After this and clubbing appropriately, we get the following:

ϵa · (c̃dx2 + ϵℓ̃d) · ∏
i∈[d−1]

(c̃ix1 + ϵℓ̃i) + (c̃0x1 + ϵa ℓ̃0)
d− (c̃d+1x1 + ϵa ℓ̃d+1)

d = ϵM · f (Bx)+ ϵM+1 · S̃(x, ϵ) ,

where c̃i ∈ C[ϵ], such that c̃i ≡ 1 mod ⟨ϵ⟩, for i ∈ [d − 1], and c̃0 ≡ c̃d ≡ c̃d+1 ≡ c0,0 mod ⟨ϵ⟩;
ℓ̃i ∈ C[ϵ][x2, . . . xn]1, for i ∈ [d − 1], and ℓ̃d ∈ C[ϵ][x1, x3, . . . , xn]1, and S̃ ∈ C[ϵ][x], and B :=
A−1E ∈ GLn(C). The proof goes similarly as before.

Fix S = {β1, . . . , βd+1} ⊆ C. Substitute x1 = (β j − ϵa ℓ̃1) · ĉ0, where C[ϵ] ∋ ĉ0 ≡ 1/c̃0 mod
⟨ϵ⟩M+1. The second term (power) becomes βd

j , while the third term becomes ĉ0c̃d+1β j + ϵax2 +

ϵa+1 · ℓd+1, where ℓd+1 ∈ C[ϵ][x2, . . . , xn]1. This is particularly because of themap A so that, ℓ̃d+1,0−
ℓ̃1,0 = x2. The coefficient of ϵM on RHS becomes f (Bx)(β j, x2, . . . , xn). Next, we also substitute
x2 = (βk − ϵℓd+1). Note that after this substitution, we get the following:

ϵa ∏
i∈[d]

(γi + ϵℓ̂i) + γ0 = ϵM · f (Bx)(β j, βk, x3, . . . , xn) + ϵM+1Ŝ(x3, . . . , xn, ϵ) .

In the above, γi ∈ C[ϵ], such that the ϵ-free terms of γi are nonzero, and ℓ̂i ∈ C[ϵ][x3, . . . , xn]1.
This clearly implies that ϵa | γ0, and dividing out by ϵa both side, and invoking Theorem 6.14,
f (Bx)(β j, βk, x3, . . . , xn) ∈ Σ[O(d2)] ∧ Σ, with maximum exponent being at most d. Interpolating
over βi’s using Corollary 6.10, we get that f (Bx) ∈ Σ[O(d7)] ∧ Σ, which implies that f (x) ∈
Σ[O(d7)] ∧ Σ, by Lemma 6.12, as we wanted. This finishes the proof.

6.f Lower Bounds

In this section, we prove several exponential separations between related polynomials contained
in the affine closure of binomials.
6.31 Lemma. The polynomial ∏i∈[d] xi + xd

d+1 + xd
d+2 cannot be written as a product of linear forms.

Remark. One can show that the above polynomial is in fact irreducible overC. But for our purpose,
the above suffices.
Proof. Any homogeneous polynomial f of degree d which is a product of linear forms, clearly has
at most d essential variables. But ∏i∈[d] xi + xd

d+1 + xd
d+2 clearly has d + 2 essential variables.

6.32 Lemma. The polynomial ∏d
i=1 xi + ∏2d

i=d+1 xi cannot be written as a product of linear forms.

Proof. It easily follows from a proof similar to that of Lemma 6.31.
6.33 Lemma. For the polynomial f (x) := ∏i∈[d] xi + xd

d+1 + xd
d+2, we haveWR( f ) ≥ 2d−1.

Proof. IfWR( f ) < 2d−1 then by substituting xd+1 = xd+2 = 0, we obtain thatWR(∏i∈[d] xi) < 2d−1,
which contradicts the fact thatWR(∏i∈[d] xi) = 2d−1, proved in [Oed19].
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6.34 Theorem (First exp. gap theorem). If P[d]
2 ⊴aff P[e], then e ≥ exp(d).

Proof. Let P[d]
2 ⊴aff P[e]. If one homogenizes wrt x0, it requires (both-side padding), and the new

formulation becomes xe−d
0 · P[d]

2 ⊴ P[e]. By Theorem 6.20, we know that xe−d
0 · P[d]

2 ⊴ P[e] implies –
either (i) xe−d

0 · P[d]
2 = ∏i∈[e] ℓi + ℓe

0, for some linear forms ℓi ∈ C[x], or (ii)WR(xe−d
0 · P[d]

2 ) = O(e5).
We show that (i) is an impossibility while (ii) can happen only when e ≥ exp(d).
Proof of Part (ii): Fix a random x0 = α ∈ C. Note that, this implies that P[d]

2 + ϵg = ∑i∈[k] ℓ
e
i for

some affine forms ℓi ∈ C(ϵ)[x] and g ∈ C[ϵ][x] with k ∈ O(e5). Since P[d]
2 is homogeneous, this

also implies that WR(P[d]
2 ) ≤ k. But then Lemma 6.33 implies that k ≥ 2d−1, which in turn implies

that e ≥ exp(d).
Proof of Part (i): Let xe−d

0 · P[d]
2 = ∏i∈[e] ℓi + ℓe

0. Note that, by a simple derivative space
argument, one can show that the number of essential variables (for definition and characterization,
see Theorem 5.2) in the LHS is at least d + 2, while the number of essential variables of the
expression in RHS is at most e+ 1; since trivially ∏i∈T ℓi, for T ⊂ [e], such that |T| = e− 1, and ℓe−1

0
certainly span the space of single partial derivatives. Therefore, e ≥ d + 1. This will be important
since we will use the fact that e− d ≥ 1, in the below.

Further, we can assume that x0 ∤ ℓ0. Otherwise, say ℓ0 = c · x0, for some c ∈ C, which implies
that xe−d

0 | ∏i∈[e] ℓi. Hence, wlog we can assume that ℓi = x0, for i ∈ [e − d] (we are assuming
constants to be 1, because we can always rescale and push the constants to the other linear forms).
Therefore, RHS is divisible by xe−d

0 . By dividing it out and renaming the linear forms appropriately,
we get

P[d]
2 = ∏

i∈[d]
ℓ̂i + cxd

0 ,

where ℓ̂i ∈ C[x]. Further, we can put x0 = 0. Note that, x0 ∤ ℓ̂i, for any i, since otherwise x0 divides
RHS, but it doesn’t divide the LHS. After substituting x0 = 0, we get that

P[d]
2 = ∏

i∈[d]
ℓ̃i ,

where C[x1, . . . , xd+2] ∋ ℓ̃i = ℓ̂i|x0=0 ̸= 0. From Lemma 6.31, it follows that this is not possible.
A similar argument shows that x0 ∤ ℓi, for any i ∈ [d]; because otherwise that implies x0 | ℓ0, and
hence the above argument shows a contradiction.

Therefore, we assume that x0 ∤ ℓi, for i ∈ [0, d]. Now, there are two cases – (i) x0 appears in ℓ0,
(ii) x0 does not appear in ℓ0.

If x0 appears in ℓ0, then say ℓ0 = c0x0 + ℓ̂0, for some c0 ̸= 0. Note that ℓ̂0 ∈ C[x1, . . . , xd+2]1 is
non-zero, since we assume that x0 ∤ ℓ0. Substitute x0 = −ℓ̂0/c0 (so that ℓ0 vanishes). This implies:

(−ℓ̂0/c0)
e−d · P[d]

2 = ∏
i∈[e]

ℓ̂i ,

where ℓ̂i = ℓi|x0=−ℓ̂0/c0
. Since LHS is non-zero, so is each ℓ̂i. Since, everything is homogeneous,

and we have unique factorization, the above implies that upto renaming, P[d]
2 = c ·∏i∈[d] ℓ̂i, which

is a contradiction by Lemma 6.31.
If x0 does not appear in ℓ0, then there must exist an i ∈ [e] such that x0 appears in ℓi, otherwise

RHS is x0-free which is trivially a contradiction. We also know that x0 cannot divide ℓi, by our
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assumption. So, say ℓi = cix0 + ℓ̂i, where ℓ̂i is x0-free, and ci ∈ C is a nonzero element. Substitute
x0 = −ℓ̂i/ci, so that ℓi vanishes. Since ℓ0 is x0-free, we immediately get that

(−ℓ̂0/c0)
e−d · P[d]

2 = ℓe
0 .

Again, by unique factorization, we get that P[d]
2 = c · ℓd

0, for some c ∈ C, which is a contradiction
by Lemma 6.31. This finishes the proof.

6.35 Theorem (Second exp. gap theorem). If bnd ⊴aff P(e)
2 , then e ≥ exp(d).

Proof. Let bnd ⊴aff P(e)
2 . If one homogenizes wrt x0, it requires (both-side padding), and the new

formulation becomes xe−d
0 · bnd ⊴ P[e]. By Theorem 6.25 (& its remark), we know that xe−d

0 · bnd ⊴

P(e)
2 implies – either (i) xe−d

0 · bnd = g+ h, where g = ∏i∈[e] ℓi, for some linear forms ℓi ∈ C[x]1, and
WR(h) ≤ 2, or (ii)WR(xe−d

0 ·bnd) = O(e7). Similarly, as before, we show that (i) is an impossibility
while (ii) can happen only when e ≥ exp(d). Part (ii) proof is exactly to the argument in the proof
of Theorem 6.34.

To prove the Part (i), there are two cases – (a) h = ℓe
0 + ℓe

e+1, for ℓi ∈ C[x]1, or, (b) h = ℓe−1
0 · ℓe+1.

Case (a): Let xe−d
0 · bnd = ∏i∈[e] ℓi + ℓe

0 + ℓe
e+1. We assume that x0 does not divide ℓi, for some

i ∈ {0, e + 1}, and each ℓi, for i ∈ [e], otherwise, we can divide by the maximum power of x0 on
both the sides.

Note that, by a simple derivative space argument, one can show that the number of essential
variables (for definition and characterization, see Theorem 5.2) in the LHS is at least 2d (it is 2d+ 1,
if e > d), while the number of essential variables of the expression in RHS is at most e + 2; since
trivially ∏i∈T ℓi, for T ⊂ [e], such that |T| = e− 1, and ℓe−1

0 , ℓe
e−1 certainly span the space of single

partial derivatives. Therefore, e ≥ 2d− 2.
Now, we divide this into subcases –
(a1) x0 does not appear in ℓi, for any i ∈ [e],
(a2) x0 appears in ℓi, for some i ∈ [e].

Case (a1): x0 does not appear in ℓi, for i ∈ [e]. In that case, say ℓ0 = c0x0 + ℓ̂0, and ℓe+1 =

ce+1x0 + ℓ̂e+1, where ℓ̂0 and ℓ̂e+1 are x0-free, and c0, ce+1 are constants (might be 0 as well, but both
cannot be 0 since then RHS becomes x0-free). Therefore, the coefficient of xe−d

0 (as a polynomial)
in RHS is γ0ℓ̂d

0 + γe+1ℓ̂
d
e+1, where γ0 = (e

d)c
e−d
0 , and similarly γe+1 = (e

d)c
e−d
e+1. Comparingwith LHS,

we get that bnd = γ0ℓ̂d
0 + γe+1ℓ̂

d
e+1. Trivially, over C, γ0ℓ̂d

0 + γe+1ℓ̂
d
e+1 is a product of linear forms,

which is a contradiction, using Lemma 6.32.
Case (a2): If x0 appears in one of the ℓi, it can appear in two ways, either ℓi is a constant multiple
of x0, or ℓi = cix0 + ℓ̂i, where ℓ̂i is a nonzero linear form which is x0-free. Let S1 ⊆ [e] such that
x0 appears in ℓi = ci · x0, for i ∈ S1, for some nonzero constant ci ∈ C, and S2 ⊆ [e], such that
ℓi = cix0 + ℓ̂i, where ℓ̂i is nonzero.

Note that if |S1|+ |S2| < e− d, then xe−d
0 cannot be contributed from the product and hence it

only gets produced from ℓe
0 + ℓe

e+1, and we get a contradiction in the same way as above. Hence,
wlog assume that |S1|+ |S2| ≥ e− d.

If S2 is non-empty, say j ∈ S2, then substitute x0 = −ℓ̂j/cj, so that ℓj becomes 0. This
substitution gives us the following:

(−ℓ̂j/cj)
e−d · bnd = ℓ̃e

0 + ℓ̃e
e+1 .
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Since, ℓ̃e
0 + ℓ̃e

e+1 can be written as a product of linear forms, from the unique factorization, it follows
that f must be a product of linear forms, which is a contradiction from Lemma 6.32. Hence, we are
done when |S2| is non-empty.

If S2 is empty, since |S1|+ |S2| ≥ e− d by assumption, we have |S1| ≥ e− d. In particular, xe−d
0 |

LHS −∏ ℓi =⇒ xe−d
0 | ℓe

0 + ℓe
e+1 = ∏i(ℓ0− ζ iℓe+1), where ζ is 2e-th root of unity. Since, e− d ≥ 2

for d ≥ 4, this simply implies that there are two indices i1 and i2 such that ℓ0 − ζ i1ℓe+1 = ci1 x0,
and ℓ0 − ζ i2ℓe+1 = ci2 x0. Together, this implies that both ℓ0 and ℓe+1 are multiples of x0, which is
a contradiction, since we assumed that x0 cannot divide each ℓi, for i ∈ [0, e + 1]. Hence, we are
done with case (a).
Case (b): Let xe−d

0 · bnd = ∏i∈[e] ℓi + ℓe−1
0 · ℓe+1. We assume that x0 does not divide both ℓi, for

some i ∈ [e], and one of the ℓ0 or ℓe+1, otherwise, we can divide by the maximum power x0 both
side. Again, a similar essential variable counting argument shows that e ≥ 2d− 2.

Similarly, as before, we divide into subcases –
(b1) x0 does not appear in ℓi, for any i ∈ [e],
(b2) x0 appears in ℓi, for some i ∈ [e].

Case (b1): If x0 does not appear in the first product, i.e,. any of ℓi, for i ∈ [e], then it must appear
in ℓ0 (because if it only appears in ℓe+1, the degree of x0 is 1 in RHS, a contradiction). Note that,
x0 ∤ ℓ0 (and similarly ℓe+1), because otherwise, substituting x0 = 0 makes LHS 0, while RHS
remains ∏i∈[e] ℓi. Hence, let ℓ0 := c0x0 + ℓ̂0, where ℓ̂0 is x0-free. Substitute x0 = −ℓ̂0/c0, so that

(−ℓ̂0/c0)
e−d · bnd = ∏

i∈[e]
ℓi .

This in particular implies that bnd is a product of linear forms, which is a contradiction by
Lemma 6.32.
Case (b2): In this case, wlog x0 appears in ℓ1. Note that, x0 cannot divide ℓ1, because otherwise,
it must divide LHS-∏i∈[e] = ℓe−1

0 ℓe+1, which implies that x0 must divide one of the ℓ0 or ℓe+1,
contradicting the minimality of x0-division. Therefore, ℓ1 = c1x0 + ℓ̂1, where c1 is a nonzero
constant, and ℓ̂1 is a nonzero linear form which is x0-free. Substitute x0 = −ℓ̂1/c1, both side to
get that

(−ℓ̂1/c1)
e−d · bnd = ℓ̂e−1

0 ℓ̂e+1 .

Therefore, again by unique factorization, we get that f must a product of linear forms, which is a
contradiction by Lemma 6.32.

7 Homogeneous complexity and the parity-alternating elementary
symmetric polynomial

7.a Input-homogeneous-linear computation

We start with a technicality in the definition of arithmetic circuits. In this section every edge of
an arithmetic circuit is labelled with a field constant. Instead of just forwarding the computation
result of a gate to another gate, these edges rescale the polynomial along the way. For arithmetic
formulaswe do not allow this, as we will see that it is unnecessary.

An arithmetic formula/circuit is called input-homogeneous-linear (IHL) if all its leaves
are labelled with homogeneous linear forms, in particular (contrary to ordinary arithmetic
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formulas/circuits) we do not allow any leaf to be labelled with a field constant. It now becomes
clear why we needed the technicality: For any α ∈ C, if an IHL circuit with s gates computes a
polynomial f , then using the scalars on the edges there exists an IHL circuit computing α f with
also only s many gates. For formulas this rescaling can be simulated by rescaling a subset of the
leaves. Indeed, we rescale the root of the formula by induction: we rescale a summation gate by
rescaling both children, we rescale a product gate by rescaling an arbitrary child. Alternatively, if f
is homogeneous, one can rescale the input gates by the d

√
α. The latter techniqueworks for formulas

and circuits alike, but we will not use this method. It is easy to see that IHL formulas/circuits
can only compute polynomials f with f (0) = 0. But other than that, being IHL is not a strong
restriction, as the following simple lemma shows. We write f̂ := f − f (0).
7.1 Lemma. Given an arithmetic circuit of size s computing a polynomial f , then there exists an IHL
arithmetic circuit of size 6s and depth 3s computing f̂ .

There exists a polynomial q such that: Given any arithmetic formula of size s computing a polynomial f ,
then there exists an IHL arithmetic formula of size q(s) and depth O(log(s)) computing f̂ .

Proof. We treat the case of formulas first. We first use Brent’s depth reduction [Bre74] to ensure
that the size is poly(s) and the depth is O(log(s)). We now proceed in a way that is similar to
the homogenization of arithmetic circuits. Let F be the formula computing f . We replace every
computation gate (that computes somepolynomial g) by a pair of gates (and some auxiliary gates),
one computing g(0) and one computing ĝ. Clearly, ((g + h)(0), ĝ + h

)
=
(

g(0) + h(0), ĝ + ĥ
),

hence an addition gate is just replaced by 2 addition gates. Moreover, ((g · h)(0), ĝ · h
)
=
(

g(0) ·
h(0), g(0) · ĥ + ĝ · h(0) + ĝ · ĥ

), hence a multiplication gate is replaced by 4 multiplication gates
and 2 addition gates (and this gadget has depth 3). We copy the subformulas of g(0), h(0), ĝ,
and ĥ, which maintains the depth, and it keeps the size poly(s). In this construction additions
happen only between constants or between non-constants, but never between a constant and a
non-constant. Therefore eachmaximal subformula of constant gates can be evaluated and replaced
with a single constant gate, and these gates are multiplied with non-constant gates (with the one
exception of the gate for f (0)). But in a formula, scaling a non-constant gate by a field element
does not require a multiplication gate, and instead we can recursively pass this scaling operation
down to the children, as explained before this lemma. At the end we remove the one remaining
constant gate for f (0) and are done.

For circuits we proceed similarly. We skip the depth reduction step. Let C be the formula
computing f . We replace every computation gate (that computes some polynomial g) by a pair
of gates (and some auxiliary gates), one computing g(0) and one computing ĝ. Clearly, ((αg +

βh)(0), ̂αg + βh
)
=
(
αg(0) + βh(0), αĝ + βĥ

), hence an addition gate is just replaced by 2 addition
gates. Moreover, ((αg · βh)(0), α̂g · βh

)
=
(
αg(0) · βh(0), αg(0) · βĥ + αĝ · βh(0) + αĝ · βĥ

), hence
a multiplication gate is replaced by 4 multiplication gates and 2 addition gates (and this gadget
has depth 3). Here we have no need to copy subformulas, and we re-use the computation instead.
In this construction additions happen only between constants or between non-constants, but never
between a constant and a non-constant. Therefore eachmaximal subcircuit of constant gates can be
evaluated and replaced with a single constant gate v, and each of these gates is multiplied with a
non-constant gate w (with the one exception of the gate for f (0)). This rescaling of the polynomial
computed at w can be simulated by just rescaling all the edge labels of the outgoing edges of w,
so v can be removed. At the end we also remove the one remaining constant gate for f (0) and are
done.

The following corollary is obvious.
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7.2 Corollary. VP is the set of p-families ( fn)n∈N for which the IHL circuit size complexity of the sequence
( f̂n)n∈N is polynomially bounded. VF is the set of p-families ( fn)n∈N for which the IHL formula size
complexity of the sequence ( f̂n)n∈N is polynomially bounded.

Proof. Themissing constant can be added to the IHL circuit/formula as the very last operation.

7.b IHL Ben-Or and Cleve is exactly Kumar’s complexity for 3× 3 matrices

Quite surprisingly, the 3 × 3 matrix analogue of Kumar’s complexity model turns out to be the
homogeneous version of Ben-Or and Cleve’s construction [BC92], as the proof of the following
Proposition 7.3 shows. Let Ei,j denote the 3 × 3 matrix with a 1 at the entry (i, j) and zeros
elsewhere. Let id3 denote the 3× 3 identity matrix.
7.3 Proposition. Fix i, j ∈ {1, 2, 3}, i ̸= j. Let f be a polynomial admitting an IHL formula of depth δ.
Then there exist 3× 3 matrices A1, . . . , Ar with r ≤ 4δ having homogeneous linear entries and such that

f · Ei,j = (id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3.

Proof. Consider the six positions {(i, j) | 1 ≤ i, j ≤ 3, i ̸= j} of the zeros in the 3× 3 unit matrix.
Given an IHL formula, to each input gate and to each computation gate we assign one of the 6
positions in the following way. We start at the root and assign it position (i, j). We proceed by
assigning position labels recursively: For a summation gate with position (i′, j′), both summands
get position (i′, j′). For a product gate with position (i′, j′), one factor gets position (i′, k) and the
other gets position (k, j′), k ̸= i′, k ̸= j′. We now prove by induction on the depth D of the gate g
(the depth of a gate it the depth of its subformula: the input have depth 0; the root has the highest
depth) with position (i′, j′) that for each gate there is a list of at most 4D matrices (A1, . . . , Ar) such
that

(id3 + A1)(id3 + A2) · · · (id3 + Ar) = id3 + gE(i′,j′)

and the same number of matrices B1, . . . , Br such that

(id3 + B1)(id3 + B2) · · · (id3 + Br) = id3 − gE(i′,j′).

For an input gate (i.e., depth 0)with position (i′, j′) and input label ℓ, we set A1 := ℓ · Ei′,j′ and B1 :=
−ℓ · Ei′,j′ . For an addition gate with position (i′, j′) let (A1, . . . , Ar), (B1, . . . , Br) and (A′1, . . . , A′r′),
(B′1, . . . , B′r′) be the lists coming from the induction hypothesis. We define the list for the addition
gate as the concatenations (A1, . . . , Ar, A′1, . . . , A′r′) and (B1, . . . , Br, B′1, . . . , B′r′). Observe that
(id3 + f E(i′,j′)) · (id3 + gE(i′,j′)) = id3 + ( f + g)E(i′,j′) and that (id3 − f E(i′,j′)) · (id3 − gE(i′,j′)) =
id3 − ( f + g)E(i′,j′), so this case is correct. For a product gate with position (i′, j′) let (A1, . . . , Ar),
(B1, . . . , Br) and (A′1, . . . , A′r′), (B′1, . . . , B′r′) be the lists coming from the induction hypothesis, i.e.,
(id3 + A1)(id3 + A2) · · · (id3 + Ar) = id3 + f E(i′,k), (id3 + B1)(id3 + B2) · · · (id3 + Br) = id3 −
f E(i′,k), (id3 + A′1)(id3 + A′2) · · · (id3 + A′r) = id3 + gE(k,j′), (id3 + B′1)(id3 + B′2) · · · (id3 + B′r) =
id3 − gE(k′,j′). Observe that(

id3 + f E(i′,k)
)(

id3 + gE(k,j′)
)(

id3 − f E(i′,k)
)(

id3 − gE(k,j′)
)
= id3 + f gE(i′,j′)

and analogously(
id3 − f E(i′,k)

)(
id3 + gE(k,j′)

)(
id3 + f E(i′,k)

)(
id3 − gE(k,j′)

)
= id3 − f gE(i′,j′).

For illustration, in the notation of [BIZ18] the product with position (1,3) can be depicted as
follows.
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=
f

g

− f

−g f g

Since 4 · 4D−1 = 4D, the size bound is satisfied.

Since the trace of a matrix can sometimes be preferrable to the (i, j)-entry, we present the result
with the trace, provided approximations are allowed.

7.4 Proposition. For every IHL formula of depth δ there exist ≤ 4δ many 3 × 3 matrices Ai with
homogeneous linear entries over C[ϵ, ϵ−1] and α ∈ C[ϵ, ϵ−1] such that

E1,1 · f = lim
ϵ→0

(
α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
.

Proof. The IHL formula is a sum of products of subformulas g1 · h1, g2 · h2, . . ., gr · hr, and r ≤ 2δ by
induction. We compute subformulas for ϵg1, −ϵg1, ϵh1, −ϵh1, ϵg2, −ϵg2, . . . , −ϵhr as in the proof
of Proposition 7.3 with position (1, 2) for each ±ϵgi and position (2, 1) for each ±ϵhi. It turns out
that

Ma := (id3 + ϵgaE1,2)(id3 + ϵhaE2,1)(id3 − ϵgaE1,2)(id3 − ϵhaE2,1) = id3 + ϵ2 fagaE1,1 + O(ϵ3).

Pictorially:

= +O(ϵ3)

1 + ϵ2haga

ϵga ϵha −ϵga −ϵha

Hence M1M2 · · ·Mr = id3 + ϵ2(h1g1 + h2g2 + · · ·+ hrgr) + O(ϵ3). We choose α = ϵ−2.

Let ([n]d ) denote the set of cardinality d subsets of [n]. For a subset S ⊆ [n] let sort(S) denote
the tuple whose elements are the elements of S, sorted in ascending order. Let sort(([n]d )) :={sort(S) | S ∈ ([n]d )

}. Let ed(X1, . . . , Xn) := ∑I∈sort(([n]d ))
XI1 · · ·XId denote the elementary

symmetric polynomial over noncommuting variables X1, . . . , Xn.

7.5 Corollary. Fix any nonzero linear form L on the space of 3× 3 matrices, for example the trace. If L is

supported outside the main diagonal, then the collection L(ed(A1, . . . , An)), where Ai =

( 0 x1,2,i x1,3,i
x2,1,i 0 x2,3,i
x3,1,i x3,2,i 0

)
,

is p-hard for VFH, otherwise it is p-hard for VFH.

Proof. Given a p-family ( f ) of homogeneous polynomials. If fn has polynomially bounded
arithmetic formula size, then it also has IHL formulas of logarithmic depth and polynomial size
(apply Brent’s depth reduction and then Lemma 7.1). The first case is treated with Proposition 7.3,
the second is treated completely analogously with Proposition 7.4. We only handle the slightly
more difficult second case. We obtain 4O(log n) = poly(n) many matrices Ai with

fn = lim
ϵ→0

L
(

α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
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As in §4 we can assume that α = βϵk is a scalar times a power of ϵ. Since fn is homogeneous of
some degree d, we have

fn = lim
ϵ→0

L
(

αed(A1, . . . , Ar)
)
= lim

ϵ→0
L
(

ed(
d
√

βϵk A′1, . . . , α d
√

βϵk A′r)
)

where A′i arises from Ai by replacing every ϵ by ϵd.

While Corollary 7.5 gives the first collection that is hard for VFH, the polynomials are similarly
unwieldy as IMM(d)

n . In the next sections we will prove that the parity-alternating elementary
symmetric polynomial is p-hard for a class V3F, which gives a polynomial that is just barely more
complicated than the elementary symmetric polynomial.

7.c IHL computation with arity 3 products

In the light of [BIZ18] we now study the 2 × 2 analogues of Proposition 7.3, Proposition 7.4,
Corollary 7.5. In order to do so, in this section we study IHL formulas and circuits where the
additions have arity 2, but the products have arity exactly 3. We call this basis the arity 3 basis.
This turns out to be rather subtle, because one would want to simulate an arity 2 product by an
arity 3 product in which one of the factors is a constant 1, but that violates the IHL property.
If a polynomial is computed by an IHL formula or circuit over the arity 3 basis, then all its
homogeneous even-degree parts are zero. We will mostly study homogeneous polynomials that
are computed over this basis. We want to also compute homogeneous even-degree polynomials
f in this basis, so we define that a multi-output IHL circuit/formula over the arity 3 basis
computes f if it computes each partial derivative ∂ f /∂xi at some output gate. Analogously to
Corollary 7.2, but only for homogeneous polynomials, we define V3P and V3F to be the set of
homogeneous p-families ( fn)n∈N for which the IHL circuit/formula complexity over the arity 3
basis is polynomially bounded. For a complexity class C we write CH := C ∩ H for brevity. We
have

V3F ⊆ VFH ⊆ VBPH ⊆ VPH,

⊆ (7.6)
V3P

where we prove the vertical inclusion in Theorem 7.13, and V3F ⊆ VFH follows from Euler’s
homogeneous function theorem that f = 1

deg( f ) ∑m
i=1 xi · ∂ f /∂xi, which lets us treat the even

degrees (arity 3 formulas for odddegree polynomials can be directly converted gate by gate into the
standard basis). Is is known that if we go to quasipolynomial complexity instead of polynomial
complexity, the three classical classes coincide: VQF = VQBP = VQP, which is an immediate
corollary of the circuit depth reduction result of Valiant-Berkowitz-Skyum-Rackoff [VSBR83]. We
prove in Theorem 7.14 that our two new classes also belong to this set: All classes in (7.6) coincide
if we go to quasipolynomial complexity instead of polynomial complexity, see (7.15).

The following proposition is an adaption of Brent’s depth reduction [Bre74] and it shows that
instead of polynomially sized formulas we can work with formulas of logarithmic depth. Both
properties, IHL and the arity 3 basis, require some changes to Brent’s original argument.

7.7 Proposition (Brent’s depth reduction for IHS formulas over the arity 3 basis). Let f be a
polynomial computed by an IHL formula of size s over the arity 3 basis. Then there exists an IHL formula
over the arity 3 basis of size poly(s) and depth O(log(s)) computing f .
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Proof. We discuss the odd-degree case, because in the even-degree case we just have one
odd-degree case for each partial derivative. The construction is recursive, just as in Brent’s original
argument. We follow the description in [Sap21]. We start at the root and keep picking the child
with the larger subformula until we reach a vertex v with 1

3 s ≤ |⟨v⟩| ≤ 2
3 s, where ⟨v⟩ is the

subformula at the gate v. We make a case distinction. In the first case we assume that on the path
from from v to the root (excluding v) there is no product gate. We reorder the gates as follows:

+
+

+

hk
hk−1

h1⟨v⟩

−→

+
+

+

⟨v⟩
hk

h2h1

The construction applied to a size s formula gives Depth(s) ≤ Depth( 2
3 s) + 1. The resulting size is

Size(s) ≤ 2 · Size( 2
3 s) + 1.

In the second case we assume that v is the child of a product gate.

∗

⟨v⟩ ⟨x⟩ ⟨y⟩

We now replace ⟨v⟩ by a new variable α and ⟨x⟩ by a new variable β. We observe that the
resulting polynomial F (interpreted as a bivariate polynomial in α and β) is linear in the product
αβ. Therefore F(α, β) = αβ(F(1, 1)− F(0, 0)) + F(0, 0). Both F(0, 0) and F(1, 1) can be realized as
an IHL formula over the arity 3 basis (because an arity 3 product gate with two 1s as inputs can be
replaced by just the third input, and an arity 3 product gate with two 0s as input can be replaced
by a constant 0, which can be simulated by removing gates), so we obtain:

+
∗

+

F(1, 1) −F(0, 0)

F(0, 0)

⟨v⟩ ⟨x⟩ (7.8)

The construction on a size s formula gives Depth(s) ≤ Depth( 2
3 s) + 2. The resulting size is

Size(s) ≤ 5 · Size( 2
3 s) + 3.

In the third case we assume that on the path from from v to the root (excluding v) there are
addition gates and then a product gate, so

∗

+
+

+

hk
hk−1

h1⟨v⟩

⟨x⟩ ⟨y⟩
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As a first step we make copies of ⟨x⟩ and ⟨y⟩ and call them ⟨x′⟩ and ⟨y′⟩, respectively, and re-wire
similarly as in the first case:

∗ ∗

+
+

+

+

hk
hk−1

h2h1

⟨x′⟩ ⟨y′⟩ ⟨v⟩ ⟨x⟩ ⟨y⟩

On the right-hand side of the tree we now proceed analogously as in the second case. We replace
⟨v⟩ by a new variable α and ⟨x⟩ by a new variable β. We observe that the resulting polynomial F
(interpreted as a bivariate polynomial in α and β) is linear in the product αβ. Therefore F(α, β) =
αβ(F(1, 1)− F(0, 0)) + F(0, 0). Both F(0, 0) and F(1, 1) can be realized as an input-homogeneous
formula over the arity 3 basis, so we obtain the same formula as in (7.8). The construction on a size
s formula gives Depth(s) ≤ Depth( 2

3 s) + 2. The resulting size is Size(s) ≤ 5 · Size( 2
3 s) + 3. Putting

all cases together, the construction has Depth(s) ≤ Depth( 2
3 s) + 2 and Size(s) ≤ 5 · Size( 2

3 s) + 3.
Hence applying the construction recursively gives logarithmic depth and polynomial size.

7.d The parity-alternating elementary symmetric polynomial

Let n be odd. For odd i let Xi =

(
0 xi
0 0

)
, and for even i let Xi =

(
0 0
xi 0

)
. Let A :=

ed(X1, X2, . . . , Xn). Note that in row 1 the matrix A has only one nonzero entry, and its position
depends on the parity of n. Let Cn,d := A1,1 + A1,2. A sequence a of integers numbers is called
parity-alternating if ai ̸= ai+1 mod 2 for all i, and a1 is odd. Let P be the set of length d increasing
parity-alternating sequences of numbers from {1, . . . , n}. It is easy to see that

Cn,d = ∑
(i1,i2,...,id)∈P

xi1 xi2 · · · xid . (7.9)

We usually only consider the case when the parities of d and n coincide, which is justified by the
following lemma.
7.10 Lemma. If n and d have different parity, then Cn,d = Cn−1,d.

Proof. If d is odd, each parity-alternating sequence always ends with an odd parity, so if n is even
we have Cn,d = Cn−1,d. If d is even, each parity-alternating sequence always ends with an even
parity, so if n is odd we have Cn,d = Cn−1,d.

Analogously to Corollary 7.5 we have the following theorem.
7.11 Theorem. Cn,d is V3F-p-hard and VQPH-qp-hard.
Proof. We start with proving V3F-p-hardness (which is the same as V3F-p-hardness). Given ( f ) ∈
V3F, then according to Proposition 7.7 we can assume that either (if fn is of odd degree) fn has
polynomially sized formulas of logarithmic depth δ = O(log n), or (if fn is of even degree) its
partial derivatives have polynomially sized formulas of logarithmic depth δ = O(log n). We can
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assume that the gates are additions and negative cubes (x 7→ −x3), because xyz = 1
24

(
(x + y +

z)3 − (x + y− z)3 − (x− y + z)3 + (x− y− z)3), and the rescalings by (±24)−
1
3 can be pushed to

the input gates. Let d be the degree of fn. Let Eodd =
(

0 1
0 0

) and let Eeven =
(

0 0
1 0

) and let id2 denote
the 2× 2 identitymatrix. We first treat the case of d being odd. We prove by induction on the depth
D of a gate that there exist ≤ 3D homogeneous linear forms ℓ1, . . . , ℓr over C[ϵ, ϵ−1, α] such that

α fn · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2

The induction starting at an input gate with label ℓ is done by ℓ1 = αℓ. The addition gate is handled
as follows. By induction hypothesis there exist ℓ1, . . . , ℓr and ℓ′1, . . . , ℓ′r′ with

α f · Eodd + id2 ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)

and
αg · Eodd + id2 ≃ (id2 + ℓ′1Eodd)(id2 + ℓ′2Eeven) · · · (id2 + ℓ′r′Eodd)

Therefore α( f + g) · Eodd + id2 = (α f · Eodd + id2)(αg · Eodd + id2) ≃

(id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)(id2 + ℓ′1Eodd)(id2 + ℓ′2Eeven) · · · (id2 + ℓ′r′Eodd)

Handling the negative cube gates is more subtle (the negative squaring gates are also the subtle
cases in [BIZ18]). By induction hypothesis we have ℓ1, . . . , ℓr such that

α f · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2 (7.12)

We replace each ϵ by ϵk in each ℓi, with k so large that even when we replace α by ϵ−1 or −ϵ−1,
we still have the equivalence of the LHS and RHS mod ϵ2. We call the resulting linear forms ℓ′i. It
follows that

α f · Eodd ≡
(
(id2 + ℓ′1Eodd)(id2 + ℓ′2Eeven) · · · (id2 + ℓ′rEodd)− id2

)
(mod ϵk)

Setting α to ϵ−1 we obtain

ϵ−1 f · Eodd ≡
(
(id2 + ℓ′′1 Eodd)(id2 + ℓ′′2 Eeven) · · · (id2 + ℓ′′r Eodd)− id2

)
(mod ϵ2)

Anaogously with α = −ϵ−1:

−ϵ−1 f · Eodd ≡
(
(id2 + ℓ̃′′1 Eodd)(id2 + ℓ̃′′2 Eeven) · · · (id2 + ℓ̃′′r Eodd)− id2

)
(mod ϵ2)

The induction hypothesis (7.12) also implies (set ϵ to ϵ3 and α to ϵ2α) that

ϵ2α f · Eodd ≡
(
(id2 + ℓ′′′1 Eodd)(id2 + ℓ′′′2 Eeven) · · · (id2 + ℓ′′′r Eodd)− id2

)
(mod ϵ3)

Transposing gives

ϵ2α f · Eeven ≡
(
(id2 + ℓ′′′r Eeven)(id2 + ℓ′′′r−1Eodd) · · · (id2 + ℓ′′′1 Eeven)− id2

)
(mod ϵ3)

We now observe:

(ϵ−1 f Eodd + id2 + ϵ2g1)(ϵ
2α f Eeven + id2 + ϵ3g2)(−ϵ−1 f Eodd + id2 + ϵ2g3) ≃ −α f 3Eodd + id2.

Pictorially:
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+O(ϵ2) +O(ϵ3) +O(ϵ2)

=ε−1 f ε2α f −ε−1 f −α f 3

+O(ϵ)

At the end, setting α = 1 we obtain

α fn · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2,

where r is only polynomially large, because we started with a formula of logarithmic depth. Since
fn is homogeneous of degree d, this implies

fn ≃ e(ℓ1Eodd, ℓ2Eeven, · · · , ℓrEodd)1,2 = Cr,d(ℓ1, . . . , ℓr).

We now treat the case where fn has even degree, using an argument similar to the one form
Proposition 7.4. By the above construction, for each i we find

α( 1
deg fn

∂ fn/∂xi) · Eodd ≃ (id2 + ℓi,1Eodd)(id2 + ℓi,2Eeven) · · · (id2 + ℓi,ri Eodd)− id2.

We replace all ϵ by ϵ3, replace all α by ϵ, and lastly add id2:

ϵ( 1
deg fn

∂ fn/∂xi) · Eodd + id2 ≡
(
(id2 + ℓ′i,1Eodd)(id2 + ℓ′i,2Eeven) · · · (id2 + ℓ′i,ri

Eodd)
)

(mod ϵ3).

Analogously, when replacing α by −ϵ instead:

−ϵ( 1
deg fn

∂ fn/∂xi) · Eodd + id2 ≡
(
(id2 + ℓ′′i,1Eodd)(id2 + ℓ′′i,2Eeven) · · · (id2 + ℓ′′i,ri

Eodd)
)

(mod ϵ3).

We also find corresponding linear forms for the transposes. Now observe that for any polynomials
a, b we have

(−ϵa ·Eodd+ id2 +O(ϵ3))(−ϵb ·Eeven+ id2 +O(ϵ3))(ϵa ·Eodd+ id2 +O(ϵ3))(ϵb ·Eeven+ id2 +O(ϵ3))

≡
(

1 + ϵ2a · b 0
0 1− ϵ2a · b

)
(mod ϵ3).

Pictorially:

=

1 + ϵ2ab

1− ϵ2ab
−ϵa −ϵb ϵa ϵb

+O(ϵ3) +O(ϵ3) +O(ϵ3) +O(ϵ3) +O(ϵ3)

Let M(c) :=
(

1 + ϵ2c 0
0 1− ϵ2c

)
. Now note that

(M(a1b1)+O(ϵ3)) · (M(a2b2)+O(ϵ3)) · · · (M(anbn)+O(ϵ3)) ≡ M(a1b1 + a2b2 + · · · anbn) (mod ϵ3).

Setting ai = xi and bi =
1

deg fn
∂ fn/∂xi, and using Euler’s homogeneous function theorem, we obtain

polynomially many linear forms ℓ1, . . . , ℓr so that

M( fn) ≡
(
(id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEeven)

)
(mod ϵ3)
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Subtracting id2 on both sides and taking the degree d homogeneous part of the (1, 1) entry (note
that fn is homogeneous of degree d):

ϵ2 fn ≡ ed(ℓ1Eodd, ℓ2Eeven, · · · , ℓrEeven)1,1︸ ︷︷ ︸
=Cr,d(ℓ1,...,ℓr)

(mod ϵ3)

We replace all ϵ by ϵd/2:
ϵd fn ≡ Cr,d(ℓ

′
1, . . . , ℓ′r) (mod ϵ3d/2).

Therefore
fn ≃ Cr,d(ϵ

−1 · ℓ′1, . . . , ϵ−1 · ℓ′r).

Both cases together prove that Cn,d is V3F-p-hard. The VQPH-qp-hardness now follows from
Theorem 7.14.

7.e Converting formulas to circuits over the arity 3 basis

In this section we prove the following theorem.

7.13 Theorem. VFH ⊆ V3P.

Proof. Let ( f ) ∈ VFH. ( f ) has formulas of polynomial size and logarithmic depth. If fn is of
even degree, observe that if fn has a formula of depth δ, then ∂ fn/∂xi has a formula of depth 2δ
(by induction, using the sum and product rules of derivatives, using the fact that the depth is
logarithmic), which by Lemma 7.1 implies the existence of an IHL formula of depth O(δ) (note
that ∂ fn/∂xi is homogeneous of odd degree). Now we apply the odd-degree argument below for
each partial derivative independently.

Let fn be of odd degree. As a first step we convert the IHL formula into an IHL formula
for which at each gate either all even homogeneous components vanish or all odd homogeneous
components vanish. The construction is similar to the Lemma 7.1). It works as follows. We replace
each gate v by two gates vodd and veven, where at veven the sum of the odd degree components is
computed, and at vodd the sum of the odd degree components is computed. Let f = feven+odd
be the decomposition of f into the even homogeneous parts and the odd homogeneous parts.(
( f + g)even, ( f + g)odd

)
= ( feven + geven, fodd + godd) so a sum gate is replaced by two sum gates.

Moreover, (( f · g)even, ( f · g)odd
)
= ( feven · geven+ fodd · godd, feven · godd+ fodd · geven), so a product

gate is replaced by 4 product gates and 2 summation gates. Here we use that the depth was
logarithmic.

We now convert such a formula to an IHL circuit with the same number of gates, but over the
arity 3 basis. We replace each even degree gate v that computes g with a gate that computes z · g,
where z is a dummy variable. Addition gates are not changed. For product gates there are three
cases.

• A product gate v of two odd-degree polynomials f and g. By induction we have an IHL
circuit over the arity 3 basis for f and for g. We construct the arity 3 product z× f × g.

• A product gate v that has an odd-degree polynomial f at its child w, and that has an
even-degree polynomial g at its child u. By induction we have IHL circuits C and D over
the arity 3 basis for f and for zg, respectively. We take C and D, delete all instances of z in D,
and feed the output of C instead. The resulting circuit computes f g.
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• A product of an even-degree polynomial f and an even-degree polynomial g. By induction
we have IHL circuits C and D over the arity 3 basis for z f and for zg, respectively. We take C
and D, delete all instances of z in D, and feed the output of C instead. The resulting circuit
computes z f g.

The size of the resulting circuit is less or equal to the size of the formula (even though the depth
can increase in this construction).

A short remark: Note that the replacements of z in the second and third bullet point can only be
done, because in a formula the outdegree of each gate is atmost 1, i.e., we do not reuse computation
results. After we replace z by f in a subcircuit that computes zg, the original subcircuit computing
zg will be gone and cannot be reused.

7.f Valiant-Skyum-Berkowitz-Rackoff over the arity 3 basis

7.14 Theorem. VQ3F = VQ3P.
Proof. The entire argument is over the arity 3 basis. Given a size s circuit that computes an
odd-degree polynomial, we use Theorem 7.16 to obtain a circuit of size poly(s) and depth
O(log2(s)) that computes the same polynomial. We unfold the circuit to a formula of the same
depth. The size is hence 3O(log2(s)) = sO(log s). If s = npolylog(n), then sO(log s) = npolylog(n) 11. The
even-degree case is done by treating each partial derivative independently.

Since we know that VQFH = VQBPH = VQPH and VQ3F = VQFH = VQ3P, the situation of
(7.6) simplifies:

VQ3F = VQFH = VQBPH = VQPH = VQ3P. (7.15)
The following Theorem 7.16 is needed in the proof of Theorem 7.14. It lifts the classical

Valiant-Skyum-Berkowitz-Rackoff [VSBR83] circuit depth reduction to the arity 3 basis. The
argument is an adaption of the original argument.
7.16 Theorem (VSBR depth reduction for IHL circuits over the arity 3 basis). Let f be a polynomial
computed by an IHL circuit of size s over the arity 3 basis, deg( f ) = d. Then there exists an IHL circuit
over the arity 3 basis of size O(poly(s)) and depth O(log(s) · log d) computing f .
Proof. We adapt the proof from [Sap21]. We treat the odd case, because in the even degree case we
can treat each partial derivative independently. We work entirely over the arity 3 basis (and hence
compute a polynomial whose even degree homogeneous parts all vanish), so every circuit and
subcircuit is over the arity 3 basis, and every product is of arity 3. A circuit whose root is an arity 3
product gate is denoted by x× y× z. A circuit whose root is an arity 2 addition gate is denoted by
x + y, just as usual. Notationally, we use the same notation for gates, for their subcircuits, and for
the polynomials they compute. If we want to specifically highlight that we talk about the circuit
with root w, then we write ⟨w⟩. We write v ≤ u is v is contained in the subcircuit with root u. We
write C ≡ C′ to denote that the circuits C and C′ compute the same polynomial.

Let z be a new dummy variable. Let the circuit [u : v] be defined via [u : v] := z if u = v, and if
u ̸= v we have

[u : v] :=


0 if u is a leaf
[u1 : v] + [u2 : v] if u = u1 + u2

[u1 : v]× u2 × u3 if u = u1 × u2 × u3 and u1 has the highest
degree among {[u1], [u2], [u3]}

11(nlogi(n))logj(nlogi (n)) = nlogi+ij+j(n)
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It can be seen by induction that [u : v] is zero or a homogeneous polynomial of degree deg u −
deg v + 1, and [u : v] is zero or is homogeneous linear in z. If w ̸≤ u, then [u : w] = 0. For a circuit
C we write [u : v]C := [u : v](z← C), where←means that all leaves labelled z are replaced by the
output of the circuit C.

We define a set of gates that is called the m-frontier Fm via

Fm := {u | u = u1 × u2 × u3 with deg u1, deg u2, deg u3 ≤ m and deg(u) > m}.

7.17 Lemma. Fix a pair (u, m) with deg u > m. Let F := Fm. Then

u ≡ ∑
w∈F

[u : w]⟨w⟩.

Proof. For the proof we fix m and do induction on the depth of u, i.e., the position of u in any fixed
topological ordering of the gates. Since for every gate u with deg(u) > m there exists some gate
u′ ∈ F ∩ ⟨u⟩, the induction start is the case u ∈ F . In this case, since F is an antichain, it follows
that ∑w∈F [u : w] = 0 + [u : u] = z, and hence ∑w∈F [u : w]⟨w⟩ = [u : u]⟨u⟩ = z⟨u⟩ = u. This proves
that case u ∈ F . Now, let u /∈ F . If u is an addition gate:

u = u1 + u2
I.H.≡ ∑

w∈F
[u1 : w]⟨w⟩ + ∑

w∈F
[u2 : w]⟨w⟩

≡ ∑
w∈F

(
[u1 : w]⟨w⟩ + [u2 : w]⟨w⟩

)
= ∑

w∈F

(
[u1 : w] + [u2 : w]

)
⟨w⟩

Def.
= ∑

w∈F
[u : w]⟨w⟩

If u is a multiplication gate, note that u /∈ F , so one of the children has degree > m (w.l.o.g. that
child is called u1):

u = u1 × u2 × u3

I.H.≡
(

∑
w∈F

[u1 : w]⟨w⟩

)
× u2 × u3

≡ ∑
w∈F

(
[u1 : w]⟨w⟩ × u2 × u3

)
= ∑

w∈F

(
[u1 : w]× u2 × u3

)
⟨w⟩

Def.
= ∑

w∈F
[u : w]⟨w⟩

7.18 Lemma. Fix a pair (u, m, v) with deg u > m ≥ deg v. Let F := Fm.

[u : v] ≡ ∑
w∈F

[u : w][w:v].
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Proof. For the proof we fix m and v and do induction on the depth of u, i.e., the position of u in any
fixed topological ordering of the gates. Since for every gate u with deg(u) > m there exists some
gate u′ ∈ F ∩ ⟨u⟩, the induction start is the case u ∈ F . In this case, since F is an antichain, it
follows that ∑w∈F [u : w][w:v] ≡ z[u:v] = [u : v]. This proves that case u ∈ F . Now, let u /∈ F . Since
deg u > m and m ≥ deg v we have u ̸= v. If u is an addition gate:

[u : v]
Def. (u ̸= v)

= [u1 : v] + [u2 : v]
I.H.≡ ∑

w∈F
[u1 : w][w:v] + ∑

w∈F
[u2 : w][w:v]

≡ ∑
w∈F

(
[u1 : w][w:v] + [u2 : w][w:v]

)
= ∑

w∈F

(
[u1 : w] + [u2 : w]

)
[w:v]

Def.
= ∑

w∈F
[u : w][w:v]

If u is a multiplication gate, note that u /∈ F , so one of the children has degree > m (w.l.o.g. that
child is called u1):

[u : v]
Def. (u ̸= v)

= [u1 : v]× u2 × u3

I.H.≡
(

∑
w∈F

[u1 : w][w:v]

)
× u2 × u3

≡ ∑
w∈F

(
[u1 : w][w:v] × u2 × u3

)
= ∑

w∈F

(
[u1 : w]× u2 × u3

)
[w:v]

Def.
= ∑

w∈F
[u : w][w:v]

We now construct the shallow circuit so that the degree of each child in a multiplication gate
decreases from δ to ⌈ 2

3 δ⌉, so the multiplication depth (i.e., the number of multiplications on a path
from leaf to root) is at most O(log d). Here we allow arity 5 multiplication gates. These can be
simulated by two arity 3 multiplication gates. We construct the circuit by induction on the degree,
and we construct it in a way that each u and each [u : w]⟨v⟩ are computed at some gate, so the
size of the resulting circuit is at most O(s3). The addition gates between the multiplications can be
balanced, so that we have at most O(log s) depth in each addition tree. This gives a total depth of
log d · log s.

The construction for u

u
Lem. 7.17≡ ∑

w∈F
[u : w]⟨w⟩ = ∑

w∈F
[u : w]⟨w1⟩ × w2 × w3 = ∑

w∈F
deg(u)≥deg(w)

[u : w]⟨w1⟩ × w2 × w3

≡ ∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × w2 × w1
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This explicit rearrangement of w1 and w3 is necessary and goes beyond [VSBR83]. Choose m =
⌈ 2

3 deg u⌉. Recall deg wi ≤ m, so we already have two of the three cases: deg w1 ≤ ⌈ 2
3 deg u⌉ and

w2 ≤ ⌈ 2
3 deg u⌉. But we also know deg(u) ≥ deg(w) = deg(w1) + deg(w2) + deg(w3), hence

w.l.o.g. deg(w3) ≤ ⌊ 1
3 deg(u)⌋. Therefore deg u− deg w + deg w3 ≤ ⌊ 4

3⌋deg u− deg w︸ ︷︷ ︸
>m

< 2
3 deg u.

The construction for [u:v] We use fractions and “·” multiplication signs when we do not have a
circuit implementation in the intermediate equalities on polynomials. We write w = w1×w2×w3
for w ∈ F .

[u : v]
Lem. 7.18≡ ∑

w∈F
[u : w][w:v] = ∑

w∈F
deg(u)≥deg(w)

[u : w]

z
· [w : v] =

1
z ∑

w∈F
deg(u)≥deg(w)

[u : w] · [w1 : v] · w2 · w3

≡ ∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × [w1 : v]× w2

Lem. 7.17≡ ∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × [w1 : v]×

 ∑
y∈F′

deg(w2)≥deg(y)

[w2 : y]⟨y3⟩ × y2 × y1


≡ ∑

w∈F
deg(u)≥deg(w)

∑
y∈F′

deg(w2)≥deg(y)

[u : w]⟨w3⟩ × [w1 : v]×
(
[w2 : y]⟨y3⟩ × y2 × y1

)

We set m = ⌈ 2
3 (deg u + deg v)⌉ and m′ = ⌈ 2

3 deg w2⌉. We calculate the degrees of the five factors:

• deg u−deg w+deg w3 ≤ (deg u−deg w) + ⌊ 1
3 deg u⌋ ≤ ⌊ 4

3 deg u⌋−m ≤ ⌈ 2
3 (deg u−deg v)⌉

• deg w1 − deg v + 1 ≤ deg w1 ≤ m ≤ ⌈ 2
3 (deg u− deg v)⌉

• deg w2 − deg y + deg y3 ≤ ⌊ 4
3 deg w2⌋ − ⌈ 2

3 deg w2⌉ ≤ ⌈ 2
3 deg w2⌉ ≤ ⌈ 2

3 (deg u− deg v)⌉

• deg y2 ≤ ⌈ 2
3 deg w2⌉ ≤ ⌈ 2

3 (deg u− deg v)⌉, and analogously for deg y1.

The rescaling constants on the edges can be set in the straightforward way.

8 De-bordering border Waring rank

8.a Orbit closure and essential variables

Recall from Theorem 5.2 that the number of essential variables of a polynomial f ∈ SdCn is the
rank of its first catalecticant map. We prove a structural result for orbit-closures of polynomials
with non-maximal number of essential variables.

8.1 Proposition. Let V = ⟨x1, . . . , xn⟩ and W = ⟨x1, . . . , xr⟩ ⊆ V. Let f ∈ SdW ⊆ SdV be a
homogeneous polynomial. Then

GL(V) · f = GL(V)(GL(W) · f ).

Proof. Clearly
GL(V) · f ⊆ GL(V)(GL(W) · f ) ⊆ GL(V) · f .
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Therefore, it suffices to show that GL(V)(GL(W) · f ) is closed. Write XW = GL(W) · f . Moreover,
for every E ⊆ V with dim E = r, let XE = g · XW , where g ∈ GL(V) is any element such that
g ·W = E. Notice that XE does not depend on the choice of g.

Let Gr(r, V) be the Grassmannian of r-planes in V and consider the incidence correspondence

I = {([h], E) : h ∈ XE}
π2

**

π1

vv

⊆ PSdV ×Gr(r, V)

PSdV Gr(r, E)

where π1, π2 are the two projections. Then I is a fiber bundle over Gr(r, V)where the fiber over E
is XE. In particular I is closed in PSdV ×Gr(r, V). The image of a projective morphism is closed,
so π1(I) ⊆ PSdV is closed. This image is, by construction GL(V) · XW and this concludes the
proof.

8.b Fixed-parameter de-bordering

Our proof is based on generalized additive decompositions of polynomial, in the sense of [Iar95,
BBM14]. These decompositions were studied in the context of algebraic geometry, usually in
connection to 0-dimensional schemes and cactus rank. We defer the discussion of connections
to algebraic geometry in the next section. Here we provide elementary proofs of some statements
on generalized additive decompositions based on partial derivatives techniques, without using
the language of algebraic geometry. We bring from geometry a key insight: a border rank
decomposition can be separated into local parts if the degree of the polynomial is large enough.

To define formallywhat itmeans for a border rank decomposition to be local, note that a rational
family of linear forms ℓ ∈ C(ε)[x]1 always has a limit when viewed projectively. Specifically, if
ℓ(ε) = ∑∞

i=q εiℓi as Laurent series, then limε→0[ℓ(ε)] = limε→0[∑∞
i=0 εiℓq+i] = [ℓq]. A border Waring

rank decomposition is called local if for all summands in the decomposition this limit is the same.
More precisely, we give the following definition.

8.2 Definition. Let f ∈ C[x]d be a homogeneous polynomial. A border Waring rank decomposition

f = lim
ε→0

r

∑
k=1

ℓd
k

with ℓk ∈ C(ε)[x]1 is called a local border decomposition if there exists a linear form ℓ ∈ C[x]1 such that
limε→0[ℓk(ε)] = [ℓ] for all k ∈ {1, . . . , r}. We call the point [ℓ] ∈ PC[x]1 the base of the decomposition.
A local decomposition is called standard if ℓ1 = εqγℓ for some q ∈ Z and γ ∈ C.

8.3 Lemma. If f has a local border decomposition, then it has a standard local border decomposition with
the same base and the same number of summands.

Proof. After applying a linear change of variables, we can assume that the base of the local
decomposition for f is [x1]. This means

f = lim
ε→0

r

∑
k=1

ℓd
k

with ℓk = εqk · γkx1 + ∑∞
j=qk+1 εjℓk,j.
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Write ℓ1 = εq1 (∑n
i=1 αixi) where αi ∈ C(ε). Let x̂1 = γ1

α1
x1 − ∑n

i=2
αn
α1

xi. Note that α1 ≃ γ1 and
αi ≃ 0 for i > 1, hence x̂1 ≃ x1 and

f ≃ f (x̂1, . . . , xn) ≃ ℓ1(x̂1, x2, . . . , xn)
d +

r

∑
k=2

ℓk(x̂1, x2, . . . , xn)
d = (εq1 γ1x1)

d +
r

∑
k=2

ℓ̂d
k .

where ℓ̂k(x1, . . . , xn) = ℓk(x̂1, x2, . . . , xn). This defines a new border rank decomposition of
f . Moreover, notice limε→0[ℓ̂k] = [x1] for every k, so the new decomposition is again local
with base [x1]. Since the first summand is ϵq1 γ1x1, this is the desired standard local border
decomposition.

8.4 Lemma. Suppose f ∈ SdV has a local border decomposition with r summands based at [ℓ]. If d ≥ r− 1,
then f = ℓd−r+1g for some homogeneous polynomial g of degree r− 1.

Proof. After applying a linear change of variables we can assume ℓ = x1. We prove the statement
by induction on the difference d− (r− 1).

The case d = r− 1 is trivial. If d > r− 1, then by the previous Lemma there exists a standard
local border decomposition

f = lim
ε→0

r

∑
k=1

lk(ε)
d.

where lk = ∑n
i=1 αkixi for some αki ∈ C(ε). Since the decomposition is standard, α1i = 0 for i > 1.

For the derivatives of f we have the following border decompositions.

∂ f
∂x1

= lim
ε→0

r

∑
k=1

d · αk1(ε)lk(ε)
d−1.

and
∂ f
∂xi

= lim
ε→0

r

∑
k=2

d · αki(ε)lk(ε)
d−1.

for i > 1. These decompositions involve the same linear forms ℓk with multiplicative coefficients,
they are still local with the same base [x1]. By inductive hypothesis ∂ f

∂x1
= xd−r

1 g1 and ∂ f
∂xi

= xd−r+1
1 gi

for some homogeneous polynomials g1, . . . , gn of appropriate degrees. To get an analogous
expression for f , combine these expressions using Euler’s formula for homogeneous polynomials
as follows

f =
1
d

n

∑
i=0

xi
∂ f
∂xi

=
1
d

(
x1 · xd−r

1 g1 +
n

∑
i=2

xixd−r+1
1 gi

)
=

1
d

xd−r+1
1

(
g1 +

n

∑
i=2

xigi

)

Wewill now extend this result to non-local borderWaring rank decompositions. As long as the
degree of the approximated polynomial is high enough, every border rank decomposition can be
divided into local parts and transformed into a sum of terms of the form ℓd−r+1g.
8.5 Definition. A generalized additive decomposition of f is a decomposition of the form

f =
m

∑
k=1

ℓd−rk+1
k gk

where ℓk are linear forms such that ℓi is not proportional to ℓj when i ̸= j, and gk are homogeneous
polynomials of degrees deg gk = rk − 1.
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To show that there is no cancellations between different local parts, we need the following
lemma, which in the case of 2 variables goes back to Jordan [IK99, Lem. 1.35].
8.6 Lemma. Let ℓ1, . . . , ℓm ∈ C[x]1 be linear forms such that ℓi is not proportional to ℓj when i ̸= j. Let
g1, . . . , gm be homogeneous polynomials of degrees r1 − 1, . . . , rm − 1 respectively. If

m

∑
k=1

ℓd−rk+1
k gk = 0

and d ≥ ∑m
k=1 ri − 1, then all gk are zero.

Proof. Wefirst prove the statement for polynomials in 2 variables y1, y2 by induction on the number
of summands m; this proof follows [GY10, Appx.III].

The case m = 1with one summand is clear. Consider the case m > 2. We can assume ℓ1 = y1 by
applying a linear change of variables if required. Note two simple facts about partial derivatives.
First, for a homogeneous polynomial f ∈ C[y1, y2]d we have ∂r

2 f = 0 if and only if f = yd−r+1
1 g

(here ∂2 := ∂
∂y2

). Second, differentiating r times a homogeneous polynomial of the form ℓd−s+1g,
we obtain a polynomial of the form ℓd−r−s+1h.

Suppose
yd−r1+1

1 g1 +
m

∑
k=2

ℓd−rk+1
k gk = 0.

Differentiating r1 times with respect to y2, we obtain
m

∑
k=2

ℓd−r1−rk+1
k hk = 0,

where ℓd−r1−rk+1
k hk = ∂r1

2 (ℓ
d−rk+1
k gk). The degree condition d − r1 ≥ ∑m

k=2 rk − 1 holds for this
new expression. Therefore, by induction hypothesis we have hk = 0 and thus ∂r1

2 (ℓ
d−rk+1
k gk) = 0. It

follows that ℓd−rk+1
k gk = yd−r1+1

1 ĝk for some homogeneous polynomial ĝk. This implies that yd−r1+1
1

divides gk, which is impossible since d− r1 + 1 ≥ ∑m
k=2 rk ≥ rk > deg gk.

Consider now the general case where the number of variables n ≥ 2 (the case n = 1 is trivial).
Suppose ∑m

k=1 ℓ
d−rk+1
k gk = 0. The set of linear maps A : (y1, y2) 7→ (x1, . . . , xn) such that ℓi ◦ A

and ℓj ◦ A are not proportional to each other is a nonempty Zariski open set given by the condition
rank(ℓi ◦ A, ℓj ◦ A) > 1. Hence for a nonempty Zariski open (and therefore dense) set of linear
maps A the linear forms ℓk ◦ A are pairwise non-proportional. From the binary case abovewe have
gk ◦ A = 0 if A lies in this open set. By continuity this implies gk ◦ A = 0 for all A. Since every
point lies in the image of some linear map A we have gk = 0.
8.7 Lemma. Let f ∈ SdV be be such that WR( f ) = r. If d ≥ r − 1, then there exists a partition r =
r1 + · · ·+ rm such that f has a generalized additive decomposition

f =
m

∑
k=1

ℓd−rk+1
k gk,

and moreoverWR(ℓd−rk+1
k gk) ≤ rk.

Proof. Consider a border Waring rank decomposition

f = lim
ε→0

r

∑
k=1

ℓd
k
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Divide the summands between several local decompositions as follows. Define an equivalence
relation ∼ on the set of indices {1, 2, . . . , r} as i ∼ j ⇔ limε→0[ℓi] = limε→0[ℓj] and let I1, . . . , Im be
the equivalence classes with respect to this relation. Further, let rk = ♯Ik and let [Lk] = limε→0[ℓi]
for i ∈ Ik.

Consider the sum of all summands with indices in Ik. Let qk be the power of ε in the lowest
order term, that is,

∑
i∈Ik

ℓd
i = εqk fk +

∞

∑
j=qk+1

εj fk,j

with fk ∈ C[x]d nonzero. This expression can be transformed into a local border decomposition

fk = lim
ε→0

∑
i∈Ik

(
ℓi(ε

d)

εqk

)d

.

based at [Lk]. By Lemma 8.4 we have fk = Ld−rk+1
k gk for some homogeneous polynomial gk of

degree rk − 1. The decomposition also givesWR( fk) ≤ rk.
Note that qk ≤ 0 since otherwise the summands ℓi with i ∈ Ik can be removed from the original

border rank decomposition of f without changing the limit. Let q = min{q1, . . . , qm}. Note that if
q < 0, then, comparing the terms before εq in the left and right hand sides of the equality

f + O(ε) =
m

∑
k=1

∑
i∈Ik

ℓd
i

we get
0 = ∑

k : ak=a
fk = ∑

k : ak=a
Ld−rk+1

k gk.

From Lemma 8.6 we obtain gk = 0 and fk = 0, in contradiction with the definition of fk.
We conclude that q = 0 and

f =
m

∑
k=1

fk =
m

∑
k=1

Ld−rk+1
k gk,

obtaining the required generalized additive decomposition.

We will now take a brief detour to define a function M(r) which we use to upper bound the
Waring rank of generalized additive decomposition.
8.8 Definition. We denote the maximum Waring rank of a degree d homogeneous polynomial in n
variables by maxR(n, d) = max f∈C[x1,...,xn]d WR( f ). Define the partition-maxrank function as

M(r) = max
r1+···+rm=r

m

∑
k=1

maxR(rk, rk − 1).

8.9 Proposition. maxR(n, d1) ≤ maxR(n, d2) when d1 ≤ d2.

Proof. Every form f of degree d1 can be represented as a partial derivative of some form g of degree
d2. By differentiating a Waring rank decomposition of g we obtain a Waring rank decomposition
of f , thusWR( f ) ≤ WR(g) ≤ maxR(n, d2). Since f is arbitrary, maxR(n, d1) ≤ maxR(n, d2).

We are now ready to prove a de-bordering theorem for Waring rank.
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8.10 Theorem. Let f ∈ SdV be such that WR( f ) = r. Then

WR( f ) ≤ M(r) · d.

Proof. We consider two cases depending on relation of degree d and border Waring rank r.
Case d < r− 1. SinceWR( f ) = r, the number of essential variables of f is at most r. Taking the

maximumWaring rank as an upper bound, we obtain

WR( f ) ≤ maxR(d, r) ≤ maxR(r− 1, r) ≤ M(r) ≤ M(r) · d.

Case r ≤ d + 1. By Lemma 8.7 f has a generalized additive decomposition

f =
m

∑
k=1

ℓd−rk+1
k gk

with r1 + · · ·+ rm = r, deg gk = rk − 1 and WR(ℓd−rk+1
k gk) ≤ rk. Since WR(ℓd−rk+1

k gk) ≤ rk, the
number of essential variables Ness(gk) ≤ rk. If rk = 1, then

WR(ℓd−rk+1
k gk) = WR(ℓd

k) = 1 ≤ d.

If rk ≥ 2, then we upper bound WR(gk) by maxR(Ness(gk), deg gk) = maxR(rk, rk − 1). Taking
a Waring rank decomposition gk = ∑

WR(gk)
i=1 Lrk−1

i and multiplying it by ℓd−rk+1
k , we obtain a

decomposition

ℓd−rk+1
k gk =

WR(gk)

∑
i=1

ℓd−rk+1
k · Lrk−1

i .

From the classical work of Sylvester (see also [BBT13]) it follows that12

WR(ℓd−rk+1
k Lrk−1

i ) = WR(yd−rk+1
1 yrk−1

2 ) = max{d− rk + 2, rk} ≤ d.

Hence we haveWR(ℓd−rk+1
k gk) ≤ d ·WR(gk) ≤ d ·maxR(rk − 1, rk).

Combining all parts of the decomposition together, we get

WR( f ) ≤ d
m

∑
k=1

maxR(r− k− 1, rk) ≤ M(r) · d.

A more explicit upper bound is provided by the following immediate corollary.
8.11 Theorem. Let f ∈ SdCn and letWR( f ) = r. Then

WR( f ) ≤ d
(

2r− 2
r− 1

)
.

Proof. The space of homogeneous polynomials of degree r− 1 in r variables has dimension (2r−2
r−1 )

and is spanned by powers of linear forms. Therefore,maxR(r− 1, r) ≤ (2r−2
r−1 ). Note that if r = p+ q

with p, q ̸= 0, then the space C[x1, . . . , xr]r−1 contains a direct sum of xq
1 · C[x1, . . . , xp]p−1 and

xp+1
1 ·C[xp+1, . . . , xr]q−1. Taking the dimensions of these spaces, we obtain (2r−2

r−1 ) ≥ (2p−2
p−1 )+ (2q−2

q−1 ).
It follows that M(r) ≤ (2r−2

r−1 ).
12it is easy to see that for a ≥ b the monomial ya

1yb
2 is proportional to ∑a

k=0 ζk(ζky1 + y2)
a+b where ζ is a primitive root

of unity of degree a + 1.
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Using Blekherman-Teitler bound on the maximum rank [BT15], we can get a slightly better
bound, but the techniques used we no longer consider elementary. The proof is essentially the
same as for the previous theorem.

8.12 Corollary. Let f ∈ SdCn and letWR( f ) = r. Then

WR( f ) ≤ 2d⌈1
r

(
2r− 2
r− 1

)
⌉.

8.c Behind the scenes: generalized additive decompositions and schemes

Wewill now discuss how the results of the previous section can be obtained from apolarity theory
and the study of 0-dimensional schemes in projective space. The connection between variations
of Waring rank, apolar schemes and generalized additive decompositions is explored in detail
in [BBM14]. In particular, there exists a much stronger version of Lemma 8.7, which tightly relates
generalized additive decompositions of a homogeneous polynomial f to its cactus rank CR( f ), a
variation of Waring rank arising in apolarity theory defined in terms of 0-dimensional schemes in
place of sets of linear forms. We will formally define cactus rank below, for now let us state the
result.

8.13 Definition. The partial derivative space of a polynomial f ∈ C[x1, . . . , xn] (not necessarily
homogeneous) is the vector space ∂∗ f spanned by f and all its partial derivatives of all orders.

8.14 Definition. We define the size of a generalized additive decomposition

f =
m

∑
k=1

ℓd−rk+1
k gk

as ∑m
k=1 dim ∂∗gk where gk = gk mod ⟨ℓk − 1⟩ (note that gk lies in C[x]/ ⟨ℓk − 1⟩, which is isomorphic

to a polynomial ring in n− 1 variables).

8.15 Theorem ([BBM14]). The cactus rank of a homogeneous polynomial f is equal to the minimal possible
size of a generalized additive decomposition for f .

To connect cactus rank to border rank we need and intermediate notion of smoothable rank
SR( f ). Smoothable rank is an upper bound on cactus rank, and it coincides with border rank
for polynomials of high enough degree.

8.16 Theorem ([BB15]). If deg f ≥ WR( f )− 1, thenWR( f ) = SR( f ).

The goal of this section is to review the basic notions of apolarity theory, define cactus rank and
smoothable rank and explain the ideas behind the proofs of the theorem stated above.

Some notation. Let us fix the notation. Let S = C[x1, . . . , xn] be the algebra of polynomials and
T = C[∂1, . . . , ∂n] be the algebra of polynomial differential operators with constant coefficients
(referred to as diffoperators in what follows), which acts on S in the standard way.

Denote byV the space of linear forms S1. We identify T1 with the dual spaceV∗. More generally,
the action of T on S gives rise to a nondegenerate pairing between the homogeneous parts Sd and
Td for every d. We use orthogonality with respect to this pairing, that is, for a subset F ⊂ Sd
we denote F⊥ = {α ∈ Td | α · f = 0 for all f ∈ F}, and vice versa, for a subset D ⊂ Td we let
D⊥ = { f ∈ Sd | α · f = 0 for all α ∈ D}
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Projective geometry. The algebra T is isomorphic to C[V], the algebra of polynomials in the
coefficients of linear forms. The isomorphism maps a homogeneous element α ∈ Td to α ∈ C[V]d
defined as α(ℓ) = α · ℓd

d! .
Recall that a homogeneous ideals in T ∼= C[V] are in correspondence with subsets of the

projective space PV. More specifically, projective varieties are subsets of PV defined by vanishing
of some set of polynomials. The set of all polynomials vanishing on a projective variety Z is a
homogeneous ideal I, which is saturated (αT1 ⊂ I ⇒ α ∈ I) and radical (αn ∈ I ⇒ α ∈ I). If
we consider ideals I which are saturated but not radical, we can define a projective scheme, which
coincides with the variety defined by I as a topological space, but has additional structure which
distinguishes it from this variety.

If I ⊂ T is a homogeneous ideal, then the function hI(p) = dim(Tp/Ip) is called the
Hilbert function of I. The Hilbert function of a homogeneous ideal I always coincides with some
polynomial HI(p) for p large enough. This polynomial is called the Hilbert polynomial of I.

Many topological and geometric properties of a projective variety or a scheme can be deduced
from its Hilbert polynomial, in particular, its dimension and degree [Har77, §I.7]. We are
specifically interested in ideals with constant Hilbert polynomials. These ideals corresponds to
schemes of dimension 0. This means that a variety with Hilbert polynomial r is a set of r distinct
points in PV. In algebra, ideals with constant Hilbert polynomial are referred to as ideals of Krull
dimension 1 (the mismatch with the dimension of a scheme is because in algebra dimension is
counted in affine space).

Apolarity theory. The connection between Waring rank and algebraic geometry is provided by
the apolarity theory, which has its source in the works of Sylvester and Macaulay.

8.17 Definition. The apolar ideal of a polynomial f ∈ S is an ideal in T defined as Ann( f ) = {α ∈ T |
α · f = 0}. The apolar algebra of f is A( f ) = T/ Ann( f ). An ideal I ⊂ T is said to be apolar to f if it
lies in Ann( f ). A scheme Z ⊂ PV is apolar to f if its defining ideal is.

Note that as a vector space, A( f ) is isomorphic to the space of partial derivatives ∂∗ f = T · f
via (α + Ann( f )) 7→ α · f .

To relate apolarity to Waring rank, we also define an ideal associated with a set of linear forms.
Given r linear forms ℓ1, . . . , ℓr, consider the sequences of subspaces Ep = Span({ℓp

1 , . . . , ℓp
r }) ⊂ Sp

and Ip = E⊥p ⊂ Tp. An important fact is that I =
⊕∞

p=0 Ip is a homogeneous ideal in T. From the
geometric point of view it can be described as the vanishing ideal of the set Z = {[ℓ1], . . . , [ℓr]}
in the projective space PV. Algebraically, the fact that I is a homogeneous ideal follows from the
following useful proposition.

8.18 Proposition. A sequence of subspaces Ep ⊂ Sp satisfies the property T1 · Ep+1 ⊂ Ep if and only if
I =

⊕∞
p=0 E⊥p is a homogeneous ideal. If this is the case, then hI(p) = dim Ep.

Proof. Let Ip = E⊥p . The fact that I is a homogeneous ideal can be written as Ip+1 ⊃ T1 · Ip, which
is equivalent to T1 · Ep+1 ⊂ Ep, as both of these statements reduce to

(α∂) · f = α · (∂ f ) = 0 for all α ∈ Ip, ∂ ∈ T1, f ∈ Ep+1.

For the Hilbert function expression, note dim(Tp/Ip) = dim Tp − dim Ip = dim I⊥p = dim Ep.

8.19 Theorem (Apolarity lemma). f ∈ Sd is a linear combination of powers of linear forms ℓ1, . . . , ℓr if
an only if f is apolar to Z = {[ℓ1], . . . , [ℓr]} ⊂ PV.
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Proof. Let I be the defining ideal of Z let Ep = I⊥p = Span({ℓp
1 , . . . , ℓp

r }) as above.
If I is apolar to f , then Id ⊂ Ann( f )d and therefore Ed ⊃ (Ann( f )d)

⊥ = f⊥⊥ ∋ f .
For the other direction, let f ∈ Ed. Note that Ann( f )p = Tp for p > d, so we only need to check

Ip ⊂ Ann( f ) for p ≤ d.
Note that if for α ∈ Tp with p < d we have α · f ∈ Sd−p nonzero, then there exists ∂ ∈ T1 such

that ∂α · f = ∂ · (α · f ) ̸= 0. This can be restated as T1α ∈ Ann( f ) ⇒ α ∈ Ann( f ) for all α ∈ Tp
with p < d

For p ≤ d we have α ∈ Ip ⇒ Td−p
1 α ⊂ Id = E⊥d ⇒ Td−p

1 α · f = 0⇒ α ∈ Ann( f ), which proves
Ip ⊂ Ann( f ).

8.20 Corollary. WR( f ) ≤ r if and only if f is apolar to the vanishing ideal of r points in PV.

Families of subspaces and ideals and their limits. Before considering border Waring rank, we
need to define limits of families of subspaces and families of ideals.

Let W be a vector space. We consider two types of families of subspaces in W. First is a family
of subspaces of the form E(ε) = Span({w1(ε), . . . , wr(ε)}) where wk(ε) are families of vectors in
W with coordinates given by rational functions of ε. We write wk ∈ W(ε) in this case. The second
type is a family E(ε) = {w | y1(ε; w) = · · · = yq(ε; w) = 0} of vector spaces defined by linear forms
y1, . . . , yq ∈W∗(ε) which again depend rationally on the parameter ε.

In both cases we define the limit Ê = limε→0 E(ε) as the subspace containing the limits of all
families w ∈W(ε) such that w(ε) ∈ E(ε) for ε ̸= 0 (whenever E(ε) and w(ε) are defined).

For E(ε) = Span({w1(ε), . . . , wr(ε)}) from semicontinuity of rank we have that the maximal
possible value of dim E(ε) is attained on an open set of values of ε. The situation is opposite for
the family of the second type E(ε) = Span({y1(ε), . . . , yq(ε)})⊥. In both cases the dimension of Ê
cannot be higher then the generic dimension. Indeed, if Ê contains linearly indeoendent vectors
v1, . . . , vm, then there are families v1(ε), . . . , vm(ε) which have them as limits, and these families
will be linearly independent for an open subset of values of ε. Considering two families E(ε) ⊂W
and E(ε)⊥ ⊂ W∗ together, we see that dim Ê is actually equal to the generic dimension of E(ε)
(maximal dimension for the families of the first type, andminimal— for the families of the second
type).

Alternatively, we may associate with a family of subspaces a family of points in the
Grassmannian – the space of all k-dimensional subspaces in W. The Grassmannian can be defined
as the projective variety in PΛkW consisting of all points of the form [w1 ∧ · · · ∧ wk], which
represent k-dimensional subspaces spanned by w1, . . . , wk respectively. If E(ε) is a family with
generic dimension k and v1(ε), . . . , vk(ε) ∈ E(ε) are linearly independent for generic values of ε,
then we can define a rational map ε 7→ [v1(ε) ∧ · · · ∧ vk(ε)] and take the limit of this map in the
Grassmannian.

Suppose I(ε) is a family of homogeneous ideals in T, that is, I(ε) =
⊕∞

p=0 Ip(ε) for the families
of subspaces Ip(ε) ⊂ Tp such that Ip+1(ε) ⊃ Ip(ε) · T1. By continuity of multiplication for the limit
subspaces Îp = limε→0 Ip(ε)we still have Îp+1 ⊃ Îp · T1. Hence Î is again a homogeneous ideal in T.
This notion of limit of ideals corresponds to taking limits in themultigraded Hilbert scheme, which is
a space of ideals with given Hilbert function, see [HS04]. We refer to this limit as the multigraded
limit of a family of ideals. The problem is that the limit in the multigraded Hilbert scheme can be
non-saturated and thus not correspond to a geometric object in projective space.

For example, consider three families of points (1 : 0 : 1), (−1 : 0 : 1), (0 : ε : 1) in P2. The
family of vanishing ideals is 〈x1x2, x2(x2 − εx3), ε(x2

1 − x2
3) + x2x3, x3

1 − x1x2
3
〉. Taking ε → 0 we

obtain the ideal 〈x1x2, x2
2, x2x3, x3

1 − x1x2
3
〉, which is not saturated, since it contains x1x2, x2

2, x2x3
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but not x2. Taking the saturation, we obtain 〈x2, x3
1 − x1x2

3
〉 which corresponds to three points

(1 : 0 : 1), (−1 : 0 : 1), (0 : 0 : 1) as expected.
We can take saturation after obtaining the limit ideal. This notion of limit corresponds to limits

in theHilbert scheme, which is the space of ideals with the fixed Hilbert polynomial. It was defined
by Grothendieck [Gro61], see also [IK99, Appx.C].

Border apolarity We will now describe the basic idea of the apolarity theory for border Waring
rank, which was developed by Buczyńska and Buczyński in [BB21].

Let f = limε→0 ∑r
k=1 ℓ

d
k be a border Waring rank decomposition. Consider the families of

subspaces Ep(ε) = Span({ℓ1(ε)
p, . . . , ℓr(ε)p}) ⊂ Sp and the family of homogeneous ideals I(ε) =⊕∞

p=0 Ep(ε)⊥ in T.
As ε→ 0, we obtain a sequence of subspaces Êp = limε→0 Ep(ε) ⊂ Sp and a homogeneous ideal

Î = limε→0 I(ε) (taking the limit in the multigraded Hilbert scheme). Let f = ∑r
k=1 ℓ

d
k ∈ Sd(ε),

so that f = limε→0 f (ε). By the Apolarity Lemma the ideal I(ε) is apolar to f (ε) for ε ̸= 0, which
means that α(ε) · f (ε) = 0 for every α(ε) ∈ I(ε). Since the action of T on S is continuous, we obtain
from this (limε→0 α(ε)) · f = 0, if the limit exists. Thus Î is apolar to f .

On the other hand, suppose that f ∈ Sd is apolar to an ideal Î which is a limit of ideals of r points,
that is, there exists a family I(ε) such that I(ε) is the vanishing ideal of a set of r points in PV.
Define Ed(ε) = I(ε)⊥d ⊂ Sd. For ε ̸= 0 the subspace Ed(ε) is a span of powers of r linear forms, so it
consists of polynomials with Waring rank at most r. Since f is orthogonal to Îd, it lies in the limit
limε→0 Ed(ε) and thus has border Waring rank at most r.

8.21 Theorem (Border apolarity, [BB21]). f ∈ Sd has WR( f ) ≤ r if and only if f is apolar to an ideal
Î which is a limit of ideals of r points.

Various ranks via apolarity. The apolarity lemma provides a template for defining different
notions of rank for homogeneous polynomials by varying the class of ideals apolar to f .

8.22 Definition. Let C be a class of ideals of Krull dimension 1. If f ∈ Sd is a homogeneous polynomial,
we define the C-rank of f as the minimal r such that there exists an ideal I ⊂ C apolar to f with Hilbert
polynomial HI = r.

As we have seen, Waring rank and border Waring rank are special cases of this definition
corresponding to ideals of points and their limits.

We are now ready to define cactus rank and smoothable rank. The cactus rank CR( f ) is
obtained from the template definition above if we consider the class of all saturated ideals with
constant Hilbert polynomial, that is, ideals of 0-dimensional schemes. The smoothable rank SR( f )
corresponds to saturated limits of ideals of points. In addition, the border cactus rank CR( f ) is
defined by considering limits of saturated ideals.

Class of ideals Rank Notation
Ideals of points (radical saturated ideals) Waring rank WR( f )
Limits of ideals of points Border Waring rank WR( f )
Smoothable ideals (saturated limits of ideals of points) Smoothable rank SR( f )
Saturated ideals Cactus rank CR( f )
Saturable ideals (limits of saturated ideals) Border cactus rank CR( f )

The unified definition allows us to determine relations between these different ranks.
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8.23 Theorem ([BBM14]). The following inequalities hold: CR( f ) ≤ CR( f ) ≤ SR( f ) ≤ WR( f ) and
CR( f ) ≤ WR( f ) ≤ SR( f ) ≤ WR( f ).

Proof. The inequality WR( f ) ≤ SR( f ) follows from the fact that if the saturation Isat ⊃ I is
apolar to f , then I is also apolar to f . Other inequalities follow from the containments between
corresponding classes of ideals.

Proof idea of Theorem 8.15. If CR( f ) ≤ r, then there exists a saturated homogeneous ideal I
apolar to f with Hilbert polynomial r. This ideal corresponds to a 0-dimensional scheme Z, which
consists of several points. Each point corresponds to a primary ideal in the primary decomposition
I = I(1) ∩ · · · ∩ I(m). Defining Ed = I⊥d and E(k)

d = (I(k)d )⊥ we have Ed = E(1)
d + · · ·+ E(m)

d . Each
component will contribute one summand to the generalized additive decomposition. It remains
to prove two facts. First, a primary ideal I(k) vanishing on [ℓk] will have polynomials of the form
ℓd−rk+1

k gk in the corresponding E(k). This follows from the fact that
√

I(k) is 〈ℓ⊥k 〉, the vanishing
ideal of [ℓk], and thus 〈ℓ⊥k 〉rk ⊂ I(k) ⊂

〈
ℓ⊥k
〉 for some rk. Second, given ℓk and gk we can construct

a primary ideal such that E(k)
d is isomorphic to ∂∗gk where gk = gk mod ⟨ℓk − 1⟩. This can be

done, for example, by explicitly writing the corresponding subspaces E(k)
p which will contain

homogenizations of all partial derivatives of gk and proving that this sequence defines a primary
ideal.

8.d Classes of the form ΣFΣ

More precisely, let F = {Fm} be a p-family and let ΣFΣ the class of sequences of polynomials
{ fn} such that fn = ∑r(n)

i=1 Fmi(n)(ℓi1, . . . , ℓiNm(n)
) where ℓij are linear forms in the variables of fn and

r(n), mi(n) are all polynomial functions of m; here Nm denotes the number of variables of Fm.
For instance, if F = {xm

0 : m ∈ N}, the class ΣFΣ coincides with the VW. If F = {x1 · · · xm :
m ∈N}, then ΣFΣ is exactly ΣΠΣ. In general, it is clear that { fn} is a p-family.

We say that the p-family F has constant number of variables if the number of variables of Fm is
bounded above by a constant (and in particular independently from m). In this case, we have the
following immediate result.

8.24 Proposition. Let F be a p-family in constant number of variables. Then ΣFΣ = VW.

Proof. Clearly VW ⊆ ΣFΣ because every polynomial restricts to powers of linear forms.
Therefore it suffices to show that if { fn} is a sequence of polynomials in ΣFΣ then WR( fn) is

bounded by a polynomial in n. Let N be an upper bound to the number of variables of Fm, for
every m. By definition of ΣFΣ, we have

fn = Fm1(ℓ11, . . . , ℓ1N) + · · ·+ Fmr(ℓr1, . . . , ℓrN)

where r = r(n) is a function bounded by a polynomial in n.
Since Fm is a polynomial in atmost N variables,WR(Fm) ≤ O(deg(Fm)N), which is a polynomial

function of m. Since r(n) is polynomially bounded, we concludeWR( fn) ≤ O(deg(Fm1)
N) + · · ·+

O(deg(Fmr)
N) ≤ r(n)R(m) for some polynomial function of m; since m1, . . . , mr are polynomial

functions in n, as well as r(n), we conclude.
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9 Remarks on related work

If we look at our definition of Kc above, it just computes a sum of elementary symmetric
polynomials when the inputs are linear forms. Shpilka [Shp02] studied a similar notion of
circuit complexity called ssym. For a polynomial f , ssym( f ) is defined as the smallest m such that
f = ed(ℓ1, ℓ2, . . . , ℓm)where d = deg( f ) and ℓi are affine linear forms. Here ed is the dth elementary
symmetric polynomial. It was proved in [Shp02] that ssym( f ) is always finite, moreover several
upper and lower bounds for ssym( f ) were proven. The complexity Kc differs from ssym( f ), as Kc
can even be infinite. We also study the non-commutative generalisation of the Kc complexity,
where variables are 2 × 2 or 3 × 3 matrices. In the case when the variables are 2 × 2 matrices,
we study the special case of

(
0 ℓ
0 0

)
and

(
0 0
ℓ 0

)
, where ℓ is a linear form. This gives rise to a

product of 2× 2 matrices, hence to a width two algebraic branching program. Similar models are
also studied in [MS21, BIZ18]. In [BIZ18], it is shown that VF is contained in the closure of class
of width two ABPs, in fact in the orbit closure of the so called continuant polynomial. [MS21]
constructed polynomial sized hitting sets for affine orbits of the cyclic continuant polynomial. Out
study of parity-alternating polynomials in Section 7.d can be seen as a homogeneous variant of the
continuant polynomial defined in [BIZ18].

We also study the relation between Kc andWaring rank. Moreover, we study the de-bordering
of various orbit closures, of product plus power, product pus two powers and that of power
symmetric polynomial. The orbit closure of the power symmetric polynomials, essentially
characterises the border Waring rank. In de-bordering the border Waring rank, one wants to
establish that the Waring rank cannot be too large compared to the border Waring rank. [LT10]
characterised the polynomials the polynomials which have border Waring rank at most four. The
characterisation of [LT10] implies that a for homogeneous polynomial f , WR( f ) ≤ 4 implies
WR( f ) ∈ O(deg( f )). Ballico [Bal19] proved that if WR( f ) ≤ 5 then WR( f ) ≤ 4 deg( f ) − 2.
One can hope to prove that if WR( f ) is constant then WR( f ) ∈ O(deg( f )), which we prove in
this paper. A similar upper bound for the Waring rank which depends linearly upon the so called
Curvilinear rank was established in [BB17].

The main references on the Alon-Tarsi conjecture are [AT92, Dri97, Gly10]. [FM19] give a
survey about these main results. The conjecture has been generalized in numerous directions.
[SW12] prove that Drisko’s proof method cannot be used without modifications to prove the
Alon-Tarsi conjecture. The GCT result in [Kum15] is based on the Alon-Tarsi conjecture. The
same is true for results in [BI13, BI17], some of which are based on generalizations or variants of
the conjecture. The Polymath Project number 12 (https://polymathprojects.org) was devoted
to the study of Rota’s basis conjecture, which for even n is implied by the Alon-Tarsi conjecture,
see [HR94]. [Alp17] proves an upper bound on the different between the even and odd Latin
squares. Fundamental invariants connected to theAlon-Tarsi conjecture have recently been studied
in [LZX21, AY22].

A Calculation tables

We list the partitions λ for which the plethysm coefficient a := aλ(δ, d) exceeds the multiplicity
b := multλ(C[GLd+1(x1 · · · xd + xd

d+1)]). We write λa>b. We list λ always with all d + 1 parts, i.e.,
with all trailing zeros. λ always has dδ many boxes. If we list a case (d, δ) and not list (d, δ′) with
δ′ < δ, then this means that (d, δ′) is empty.
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d = 3, δ = 8:

(8, 8, 4, 4)2>1, (10, 6, 4, 4)4>3

d = 4, δ = 6:

(6, 6, 4, 4, 4)1>0, (7, 7, 5, 5, 0)1>0, (7, 7, 7, 3, 0)1>0, (8, 5, 5, 3, 3)1>0

d = 4, δ = 7:

(7, 7, 5, 5, 4)1>0, (7, 7, 6, 5, 3)1>0, (7, 7, 7, 4, 3)1>0, (7, 7, 7, 5, 2)1>0, (7, 7, 7, 7, 0)1>0, (8, 6, 6, 4, 4)4>1,
(8, 7, 5, 4, 4)1>0, (8, 7, 5, 5, 3)2>0, (8, 7, 6, 4, 3)4>2, (8, 7, 6, 5, 2)4>1, (8, 7, 7, 3, 3)3>0, (8, 7, 7, 4, 2)1>0,
(8, 7, 7, 5, 1)3>0, (8, 8, 4, 4, 4)4>2, (8, 8, 5, 4, 3)4>1, (8, 8, 6, 4, 2)9>4, (8, 8, 7, 3, 2)3>1, (8, 8, 7, 4, 1)4>3,
(8, 8, 8, 2, 2)3>2, (9, 6, 5, 4, 4)3>0, (9, 6, 5, 5, 3)1>0, (9, 6, 6, 4, 3)5>3, (9, 6, 6, 5, 2)4>3, (9, 7, 4, 4, 4)2>1,
(9, 7, 5, 4, 3)7>2, (9, 7, 5, 5, 2)5>1, (9, 7, 6, 3, 3)5>3, (9, 7, 6, 4, 2)10>5, (9, 7, 6, 5, 1)6>4, (9, 7, 7, 3, 2)5>1,
(9, 7, 7, 4, 1)5>2, (9, 7, 7, 5, 0)2>1, (9, 8, 4, 4, 3)5>2, (9, 8, 5, 3, 3)4>1, (9, 8, 5, 4, 2)11>5, (9, 8, 5, 5, 1)4>3,
(9, 8, 6, 3, 2)11>6, (9, 8, 6, 4, 1)12>11, (9, 8, 7, 2, 2)5>3, (9, 8, 7, 3, 1)8>6, (9, 9, 4, 3, 3)3>1, (9, 9, 4, 4, 2)2>1,
(9, 9, 5, 3, 2)7>5, (9, 9, 5, 4, 1)6>4, (10, 5, 5, 5, 3)1>0, (10, 6, 4, 4, 4)7>2, (10, 6, 5, 4, 3)6>2, (10, 6, 5, 5, 2)2>0,
(10, 6, 6, 4, 2)13>8, (10, 7, 4, 4, 3)8>4, (10, 7, 5, 3, 3)7>3, (10, 7, 5, 4, 2)14>6, (10, 7, 5, 5, 1)6>2,
(10, 7, 6, 3, 2)14>8, (10, 7, 6, 4, 1)15>13, (10, 7, 7, 2, 2)1>0, (10, 7, 7, 3, 1)10>5, (10, 8, 4, 3, 3)2>1,
(10, 8, 4, 4, 2)17>9, (10, 8, 5, 3, 2)15>8, (10, 8, 5, 4, 1)17>14, (10, 8, 6, 2, 2)17>10, (10, 9, 4, 3, 2)10>7,
(10, 9, 4, 4, 1)10>9, (10, 9, 5, 2, 2)10>6, (10, 10, 4, 2, 2)9>5, (11, 5, 4, 4, 4)2>1, (11, 5, 5, 4, 3)3>0,
(11, 6, 4, 4, 3)8>4, (11, 6, 5, 3, 3)3>2, (11, 6, 5, 4, 2)13>6, (11, 6, 5, 5, 1)3>2, (11, 6, 6, 3, 2)10>9,
(11, 7, 4, 3, 3)6>3, (11, 7, 4, 4, 2)14>9, (11, 7, 5, 3, 2)18>9, (11, 7, 5, 4, 1)18>15, (11, 7, 6, 2, 2)12>7,
(11, 7, 7, 2, 1)8>7, (11, 8, 4, 3, 2)17>10, (11, 8, 5, 2, 2)17>12, (11, 9, 3, 3, 2)5>3, (11, 9, 4, 2, 2)12>9,
(11, 10, 3, 2, 2)6>4, (12, 4, 4, 4, 4)4>3, (12, 5, 4, 4, 3)4>2, (12, 5, 5, 3, 3)3>0, (12, 5, 5, 4, 2)3>1,
(12, 5, 5, 5, 1)1>0, (12, 6, 4, 4, 2)17>11, (12, 6, 5, 3, 2)12>8, (12, 6, 5, 4, 1)13>12, (12, 6, 6, 2, 2)13>10,
(12, 7, 3, 3, 3)1>0, (12, 7, 4, 3, 2)17>11, (12, 7, 5, 2, 2)14>10, (12, 8, 3, 3, 2)4>3, (12, 8, 4, 2, 2)23>18,
(12, 9, 3, 2, 2)9>8, (13, 5, 4, 3, 3)2>0, (13, 5, 4, 4, 2)8>6, (13, 5, 5, 3, 2)4>2, (13, 5, 5, 4, 1)4>3,
(13, 6, 4, 3, 2)13>11, (13, 6, 5, 2, 2)13>11, (13, 7, 3, 3, 2)5>3, (13, 7, 4, 2, 2)16>14, (13, 8, 3, 2, 2)12>11,
(14, 5, 4, 3, 2)7>5, (15, 5, 3, 3, 2)1>0

d = 4, δ = 8:

(7, 7, 7, 7, 4)1>0, (8, 6, 6, 6, 6)2>1, (8, 7, 6, 6, 5)1>0, (8, 7, 7, 5, 5)3>0, (8, 7, 7, 6, 4)1>0, (8, 7, 7, 7, 3)2>0,
(8, 8, 6, 6, 4)7>1, (8, 8, 7, 5, 4)3>0, (8, 8, 7, 6, 3)5>0, (8, 8, 8, 4, 4)8>2, (8, 8, 8, 5, 3)2>1, (8, 8, 8, 6, 2)7>2,
(9, 6, 6, 6, 5)2>1, (9, 7, 6, 5, 5)3>0, (9, 7, 6, 6, 4)5>1, (9, 7, 7, 5, 4)7>0, (9, 7, 7, 6, 3)6>0, (9, 7, 7, 7, 2)3>0,
(9, 8, 5, 5, 5)1>0, (9, 8, 6, 5, 4)14>2, (9, 8, 6, 6, 3)12>3, (9, 8, 7, 4, 4)10>1, (9, 8, 7, 5, 3)18>2, (9, 8, 7, 6, 2)13>2,
(9, 8, 7, 7, 1)3>0, (9, 8, 8, 4, 3)11>2, (9, 8, 8, 5, 2)12>4, (9, 8, 8, 6, 1)7>4, (9, 9, 5, 5, 4)6>0, (9, 9, 6, 4, 4)5>0,
(9, 9, 6, 5, 3)15>3, (9, 9, 6, 6, 2)5>2, (9, 9, 7, 4, 3)14>1, (9, 9, 7, 5, 2)17>3, (9, 9, 7, 6, 1)7>2, (9, 9, 7, 7, 0)2>0,
(9, 9, 8, 3, 3)8>1, (9, 9, 8, 4, 2)8>1, (9, 9, 8, 5, 1)9>3, (9, 9, 9, 3, 2)3>1, (9, 9, 9, 4, 1)3>0, (10, 6, 6, 6, 4)9>3,
(10, 7, 5, 5, 5)3>0, (10, 7, 6, 5, 4)15>1, (10, 7, 6, 6, 3)13>3, (10, 7, 7, 4, 4)5>0, (10, 7, 7, 5, 3)19>1,
(10, 7, 7, 6, 2)8>0, (10, 7, 7, 7, 1)4>0, (10, 8, 5, 5, 4)7>0, (10, 8, 6, 4, 4)31>4, (10, 8, 6, 5, 3)32>5,
(10, 8, 6, 6, 2)29>8, (10, 8, 7, 4, 3)35>5, (10, 8, 7, 5, 2)34>6, (10, 8, 7, 6, 1)18>6, (10, 8, 8, 3, 3)4>1,
(10, 8, 8, 4, 2)33>9, (10, 8, 8, 5, 1)15>9, (10, 9, 5, 4, 4)15>1, (10, 9, 5, 5, 3)16>1, (10, 9, 6, 4, 3)39>6,
(10, 9, 6, 5, 2)38>8, (10, 9, 6, 6, 1)16>9, (10, 9, 7, 3, 3)21>5, (10, 9, 7, 4, 2)43>8, (10, 9, 7, 5, 1)28>9,
(10, 9, 8, 3, 2)24>7, (10, 9, 8, 4, 1)24>10, (10, 9, 9, 2, 2)2>0, (10, 9, 9, 3, 1)8>3, (10, 10, 4, 4, 4)12>2,
(10, 10, 5, 4, 3)18>3, (10, 10, 5, 5, 2)7>0, (10, 10, 6, 3, 3)8>2, (10, 10, 6, 4, 2)42>10, (10, 10, 6, 5, 1)18>7,
(10, 10, 6, 6, 0)11>10, (10, 10, 7, 3, 2)23>6, (10, 10, 7, 4, 1)26>12, (10, 10, 8, 2, 2)17>5, (10, 10, 8, 3, 1)13>9,
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(10, 10, 9, 2, 1)6>4, (11, 6, 6, 5, 4)9>1, (11, 6, 6, 6, 3)10>4, (11, 7, 5, 5, 4)11>0, (11, 7, 6, 4, 4)22>3,
(11, 7, 6, 5, 3)31>4, (11, 7, 6, 6, 2)19>6, (11, 7, 7, 4, 3)25>3, (11, 7, 7, 5, 2)25>2, (11, 7, 7, 6, 1)11>2,
(11, 7, 7, 7, 0)2>0, (11, 8, 5, 4, 4)26>3, (11, 8, 5, 5, 3)23>2, (11, 8, 6, 4, 3)60>11, (11, 8, 6, 5, 2)58>13,
(11, 8, 6, 6, 1)24>13, (11, 8, 7, 3, 3)26>4, (11, 8, 7, 4, 2)64>14, (11, 8, 7, 5, 1)40>15, (11, 8, 8, 3, 2)28>9,
(11, 8, 8, 4, 1)30>17, (11, 9, 4, 4, 4)11>1, (11, 9, 5, 4, 3)45>6, (11, 9, 5, 5, 2)33>5, (11, 9, 6, 3, 3)36>8,
(11, 9, 6, 4, 2)78>19, (11, 9, 6, 5, 1)46>20, (11, 9, 7, 3, 2)57>14, (11, 9, 7, 4, 1)58>24, (11, 9, 8, 2, 2)20>7,
(11, 9, 8, 3, 1)37>21, (11, 9, 9, 2, 1)9>5, (11, 10, 4, 4, 3)21>5, (11, 10, 5, 3, 3)20>4, (11, 10, 5, 4, 2)52>12,
(11, 10, 5, 5, 1)20>7, (11, 10, 6, 3, 2)56>16, (11, 10, 6, 4, 1)56>29, (11, 10, 7, 2, 2)30>9, (11, 10, 7, 3, 1)46>26,
(11, 10, 8, 2, 1)25>20, (11, 11, 4, 3, 3)10>2, (11, 11, 4, 4, 2)10>3, (11, 11, 5, 3, 2)26>7, (11, 11, 5, 4, 1)23>12,
(11, 11, 6, 2, 2)13>5, (11, 11, 6, 3, 1)30>18, (11, 11, 7, 2, 1)19>15, (12, 6, 5, 5, 4)4>0, (12, 6, 6, 4, 4)21>3,
(12, 6, 6, 5, 3)14>3, (12, 6, 6, 6, 2)17>8, (12, 7, 5, 4, 4)19>1, (12, 7, 5, 5, 3)22>1, (12, 7, 6, 4, 3)49>10,
(12, 7, 6, 5, 2)46>9, (12, 7, 6, 6, 1)17>10, (12, 7, 7, 3, 3)23>3, (12, 7, 7, 4, 2)32>5, (12, 7, 7, 5, 1)26>6,
(12, 8, 4, 4, 4)25>5, (12, 8, 5, 4, 3)56>8, (12, 8, 5, 5, 2)32>5, (12, 8, 6, 3, 3)32>7, (12, 8, 6, 4, 2)109>29,
(12, 8, 6, 5, 1)54>27, (12, 8, 7, 3, 2)62>17, (12, 8, 7, 4, 1)65>31, (12, 8, 8, 2, 2)30>13, (12, 8, 8, 3, 1)27>20,
(12, 9, 4, 4, 3)33>6, (12, 9, 5, 3, 3)35>7, (12, 9, 5, 4, 2)80>18, (12, 9, 5, 5, 1)32>11, (12, 9, 6, 3, 2)88>28,
(12, 9, 6, 4, 1)88>45, (12, 9, 7, 2, 2)41>14, (12, 9, 7, 3, 1)71>40, (12, 9, 8, 2, 1)34>28, (12, 10, 4, 3, 3)14>4,
(12, 10, 4, 4, 2)52>16, (12, 10, 5, 3, 2)63>18, (12, 10, 5, 4, 1)62>32, (12, 10, 6, 2, 2)60>23, (12, 10, 6, 3, 1)71>48,
(12, 10, 7, 2, 1)50>41, (12, 11, 3, 3, 3)2>0, (12, 11, 4, 3, 2)32>11, (12, 11, 4, 4, 1)25>16, (12, 11, 5, 2, 2)32>14,
(12, 11, 5, 3, 1)46>31, (12, 11, 6, 2, 1)41>38, (12, 12, 3, 3, 2)3>2, (12, 12, 4, 2, 2)19>10, (12, 12, 4, 3, 1)13>11,
(13, 5, 5, 5, 4)1>0, (13, 6, 5, 4, 4)15>1, (13, 6, 5, 5, 3)9>0, (13, 6, 6, 4, 3)26>7, (13, 6, 6, 5, 2)24>8,
(13, 7, 4, 4, 4)17>4, (13, 7, 5, 4, 3)45>7, (13, 7, 5, 5, 2)28>3, (13, 7, 6, 3, 3)30>8, (13, 7, 6, 4, 2)73>21,
(13, 7, 6, 5, 1)39>18, (13, 7, 7, 3, 2)34>7, (13, 7, 7, 4, 1)36>15, (13, 7, 7, 5, 0)12>11, (13, 8, 4, 4, 3)38>9,
(13, 8, 5, 3, 3)33>6, (13, 8, 5, 4, 2)88>23, (13, 8, 5, 5, 1)32>13, (13, 8, 6, 3, 2)91>31, (13, 8, 6, 4, 1)91>55,
(13, 8, 7, 2, 2)43>17, (13, 8, 7, 3, 1)65>41, (13, 9, 4, 3, 3)25>6, (13, 9, 4, 4, 2)55>18, (13, 9, 5, 3, 2)85>28,
(13, 9, 5, 4, 1)78>41, (13, 9, 6, 2, 2)62>26, (13, 9, 6, 3, 1)94>67, (13, 9, 7, 2, 1)59>50, (13, 10, 3, 3, 3)4>1,
(13, 10, 4, 3, 2)55>21, (13, 10, 4, 4, 1)46>33, (13, 10, 5, 2, 2)57>24, (13, 10, 5, 3, 1)75>54, (13, 10, 6, 2, 1)69>68,
(13, 11, 3, 3, 2)15>6, (13, 11, 4, 2, 2)32>17, (13, 11, 4, 3, 1)44>37, (13, 12, 3, 2, 2)13>8, (13, 13, 2, 2, 2)1>0,
(14, 5, 5, 4, 4)2>0, (14, 5, 5, 5, 3)3>0, (14, 6, 4, 4, 4)18>4, (14, 6, 5, 4, 3)26>4, (14, 6, 5, 5, 2)11>1,
(14, 6, 6, 3, 3)8>4, (14, 6, 6, 4, 2)45>17, (14, 6, 6, 5, 1)17>13, (14, 7, 4, 4, 3)31>9, (14, 7, 5, 3, 3)29>6,
(14, 7, 5, 4, 2)63>17, (14, 7, 5, 5, 1)24>8, (14, 7, 6, 3, 2)63>23, (14, 7, 6, 4, 1)62>40, (14, 7, 7, 2, 2)14>4,
(14, 7, 7, 3, 1)38>21, (14, 8, 4, 3, 3)18>4, (14, 8, 4, 4, 2)66>24, (14, 8, 5, 3, 2)78>27, (14, 8, 5, 4, 1)76>47,
(14, 8, 6, 2, 2)70>33, (14, 8, 6, 3, 1)83>68, (14, 9, 3, 3, 3)5>2, (14, 9, 4, 3, 2)63>26, (14, 9, 4, 4, 1)52>38,
(14, 9, 5, 2, 2)61>29, (14, 9, 5, 3, 1)85>65, (14, 10, 3, 3, 2)15>6, (14, 10, 4, 2, 2)57>30, (14, 10, 4, 3, 1)56>53,
(14, 11, 3, 2, 2)22>14, (14, 12, 2, 2, 2)11>9, (15, 5, 4, 4, 4)6>2, (15, 5, 5, 4, 3)8>0, (15, 5, 5, 5, 2)2>0,
(15, 6, 4, 4, 3)22>7, (15, 6, 5, 3, 3)12>3, (15, 6, 5, 4, 2)38>12, (15, 6, 5, 5, 1)10>4, (15, 6, 6, 3, 2)31>17,
(15, 6, 6, 4, 1)30>26, (15, 7, 4, 3, 3)18>5, (15, 7, 4, 4, 2)45>20, (15, 7, 5, 3, 2)57>21, (15, 7, 5, 4, 1)54>35,
(15, 7, 6, 2, 2)40>20, (15, 7, 6, 3, 1)57>49, (15, 7, 7, 2, 1)25>23, (15, 8, 3, 3, 3)2>0, (15, 8, 4, 3, 2)58>26,
(15, 8, 4, 4, 1)49>42, (15, 8, 5, 2, 2)59>33, (15, 8, 5, 3, 1)74>64, (15, 9, 3, 3, 2)19>9, (15, 9, 4, 2, 2)51>32,
(15, 10, 3, 2, 2)28>19, (16, 4, 4, 4, 4)7>4, (16, 5, 4, 4, 3)10>3, (16, 5, 5, 3, 3)6>0, (16, 5, 5, 4, 2)8>2,
(16, 5, 5, 5, 1)2>0, (16, 6, 4, 3, 3)7>3, (16, 6, 4, 4, 2)36>18, (16, 6, 5, 3, 2)30>14, (16, 6, 5, 4, 1)29>22,
(16, 6, 6, 2, 2)27>18, (16, 7, 3, 3, 3)3>0, (16, 7, 4, 3, 2)42>21, (16, 7, 5, 2, 2)36>22, (16, 7, 5, 3, 1)54>50,
(16, 8, 3, 3, 2)13>7, (16, 8, 4, 2, 2)53>37, (16, 9, 3, 2, 2)26>20, (17, 4, 4, 4, 3)5>4, (17, 5, 4, 3, 3)4>0,
(17, 5, 4, 4, 2)15>9, (17, 5, 5, 3, 2)8>3, (17, 5, 5, 4, 1)8>5, (17, 6, 4, 3, 2)26>17, (17, 6, 5, 2, 2)24>19,
(17, 7, 3, 3, 2)10>5, (17, 7, 4, 2, 2)33>27, (17, 8, 3, 2, 2)24>22, (18, 4, 4, 4, 2)9>8, (18, 5, 4, 3, 2)11>7,
(18, 6, 3, 3, 2)4>3, (19, 5, 3, 3, 2)1>0
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d = 5, δ = 7, λ1 ≤ 8:

(8, 7, 7, 5, 5, 3)1>0, (8, 7, 7, 6, 4, 3)1>0, (8, 7, 7, 6, 5, 2)1>0, (8, 7, 7, 7, 3, 3)1>0, (8, 8, 7, 5, 4, 3)2>1,
(8, 8, 7, 6, 3, 3)1>0, (8, 8, 7, 6, 4, 2)3>2, (8, 8, 7, 6, 5, 1)2>1, (8, 8, 7, 7, 4, 1)1>0

B Characterizing small border Waring rank

The results on generalized additive decompositions from §8.b can be used to describe the
polynomials of border rank 2 and 3, reproving the results of Landsberg and Teitler [LT10, Sec. 10].
B.1 Theorem. A polynomial f withWR( f ) = 2 must have the form ℓd

1 + ℓd
2 or ℓ

d−1
1 ℓ2 where ℓ1 and ℓ2 are

linear forms.
In the first case, every border rank decomposition for f has the form

f = (ℓ1 + εℓ̂1)
d + (ℓ2 + εℓ̂2)

d

for some ℓ̂1, ℓ̂2 ∈ C[[ε]][x]1.
In the second case, every border rank decomposition for f has the form

f =
1

εM

(
aℓ1 + εℓ̂1 + εM(

1
ad−1d

ℓ2 + ℓ3)

)d

− 1
εM

(
aℓ1 + εℓ̂1 + εM(ℓ3 + εℓ̂2)

)d

for some a ∈ C, ℓ3 ∈ C[x]1 and ℓ̂1, ℓ̂2 ∈ C[[ε]][x]1.

Proof. By Lemma 8.7 f has a generalized additive decomposition

f =
m

∑
i=1

ℓd−ri+1
i gi

with ∑m
i=1 ri = WR( f ) = 2, deg gi = ri − 1 There are only two possible partitions ∑ ri = 2. In

the case m = 2, r1 = r2 = 1 the generalized additive decomposition is actually a Waring rank
decomposition f = ℓd

1 + ℓd
2. In the case m = 1, r1 = 2 the polynomial g1 is a linear form, renaming

it we have f = ℓd−1
1 ℓ2.

From the proof of Lemma 8.7 it is clear that in the first case the decomposition must be a sum
of two local decompositions of rank 1, and a local decomposition of rank 1 is just a power of ℓ+ εℓ̂

for some ℓ̂ ∈ C[ε][x]1.
In the second case the decomposition must be local, which means that both summands in the

decomposition have the form ε−M(aℓ1 + εℓ̂). To obtain ℓd−1
1 ℓ2 in the limit, the first M terms in each

summand must cancel, and the terms in εM must differ by 1
ad−1d ℓ2.

B.2 Theorem. A polynomial with WR( f ) = 3 must have one of the three normal forms: ℓd
1 + ℓd

2 + ℓd
3 or

ℓd
1 + ℓd−1

2 ℓd
3 or ℓd−1

1 ℓ2 + ℓd−2
1 ℓ2

3.

Proof. By Lemma 8.7 f has a generalized additive decomposition

f =
m

∑
i=1

ℓd−ri+1
i gi

with ∑m
i=1 ri = WR( f ) = 3, deg gi = ri − 1, and WR(ℓd−ri+1

i gi) ≤ ri.
In the case m = 3, r1 = r2 = r3 = 1 this is a Waring rank decomposition f = ℓd

1 + ℓd
2 + ℓd

3.
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In the case m = 2, we can assume r1 = 1, r2 = 2. The generalized additive decomposition
becomes ℓd

1 + ℓd−1
2 ℓ3, where ℓ3 = g2 is a linear form.

In the case m = 1, r1 = 3 we have f = ℓd−2
1 g1 where g1 is a quadratic form, and ℓd−2

1 g1 has
at most three-dimensional space of essential variables. In this case g1 can always be presented as
ℓ1ℓ2 + ℓ2

3 or aℓ2
1 + ℓ2ℓ3 for some linear forms ℓ2, ℓ3. In the second case the border rank of ℓd−2

1 g1 is
at least 4 if d > 2, so it cannot appear. If d = 2 then both forms have rank 3 and are covered by the
case ℓd

1 + ℓd
2 + ℓd

3.
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