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Abstract

A classic result of Nisan [SICOMP ’91] states that the deterministic decision tree depth complexity
of every total Boolean function is at most the cube of its randomized decision tree depth complexity.
The question whether randomness helps in significantly reducing the size of decision trees appears
not to have been addressed. We show that the logarithm of the deterministic decision tree size
complexity of every total Boolean function on n input variables is at most the fourth power of the
logarithm of its bounded-error randomized decision tree size complexity, ignoring a polylogarithmic
factor in the input size. Our result has the following consequences:

• The deterministic AND-OR query complexity of a total Boolean function is at most the fourth
power of its randomized AND-OR query complexity, ignoring a polylog n factor.

• The deterministic AND (OR) query complexity of a total Boolean function is at most the cube
of its randomized AND (OR) query complexity, ignoring a polylog n factor. This answers a
recent open question posed by Knop, Lovett, McGuire and Yuan [SIGACT News ’21].

• The notion of rank of a Boolean function was defined in a classic work of Ehrenfeucht and
Haussler [Information and Computation’89] in the context of learning theory, and is charac-
terized by the logarithm of decision tree size up to a logarithmic factor in the input size. Our
results confirm a recent conjecture (ignoring a polylog n factor) of Cornelissen, Mande and
Patro [FSTTCS ’22], that asserted the equivalence of randomized and deterministic analogs of
rank, upto polynomial factors, for all total Boolean functions.

• Combined with the above-mentioned work of Ehrenfeucht and Haussler, our result implies that
the class of functions computable by randomized decision trees of polynomial size, is PAC-
learnable in quasi-polynomial time.

To obtain our main result on decision tree size, we introduce the notion of block number of a Boolean
function, which can be thought of as a counting analog of block sensitivity of a Boolean function that
played a central role in Nisan’s result mentioned above.
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1 Introduction

Understanding the power of randomness is of central interest in computer science. There are two main
resources for algorithms: time and space. The role randomness plays in reducing requirements of time
and space is under intensive investigation, but a resolution seems quite out of reach of current techniques.
Decision trees are one of the most basic models of computation that has been studied for a long time.
How much does randomness help algorithms in this model?

The two natural complexity measures of a decision tree are its depth, also called height, and its size.
While depth has most probably been looked at more intensively, size also arises often, especially in the
context of learning theory (see for example [16, 8, 7]). Small depth directly implies small size, i.e., a
depth t decision tree has size at most 2t. But the converse is well known to be false, as witnessed by the
And or Or function that can be computed with size (n+1) but need depth also to be n. A classic work of
Nisan [33], first published in the late eighties, showed that deterministic decision tree depth complexity is
at most a cube of its randomized counterpart, for every total function.1 The question about the extent of
possible savings from the use of randomness in terms of the size of decision trees is natural. It remained
unaddressed, somewhat surprisingly, since Nisan’s work. It can be inferred from long-existing results
that some savings is indeed possible. For instance, consider the function f known as the And-Or tree
of size n. This function is represented by a monotone formula of depth log n, with binary And and Or
gates alternating in the layers. Saks and Wigderson [35] showed that the randomized depth complexity

of f is Θ(n0.753...) which implies that the randomized size complexity of f is 2O(n0.753...). Snir’s [36] early
and elegant work already implies that the deterministic decision tree size of f is 2Θ(n). This was later
rediscovered by Jukna, Razborov, Savický and Wegener [27] via a spectral technique. While this gap
may appear significant, in the log-scale the gap is still polynomial, i.e.,

log(DSizedt(f)) ≥ (log(RSizedt(f))1.32...,

where DSizedt(f) and RSizedt(f) denote deterministic and bounded-error randomized decision tree com-
plexity of f , respectively. In the log-scale, as far as we know, this is the largest known gap between
randomized and deterministic size.2 Analogous to depth complexity, one may ask if the gap remains
polynomial for every total function. Our main result answers this in the affirmative, ignoring polylog(n)
factors.

Theorem 1.1. For every total Boolean function f : {0, 1}n → {0, 1},

logDSizedt(f) = O((log RSizedt(f))4 log3(n)).

1.1 Consequences

Theorem 1.1 complements Nisan’s derandomization of decision tree depth. In this section, we describe
three consequences of our main result, the first two of which are derandomization of depth in stronger
models of decision trees. In such models, internal nodes of a tree are allowed to evaluate any function
of the input bits from a given class of functions. The class of allowed functions defines the model.
One such model is called Parity decision tree (PDT), where the class of allowed functions is just the
set of all possible parities of the n input bits3 PDT’s have gained significant interest, see for example
[38, 23, 18, 12]. Interestingly, it is well known that randomness can provide largest possible savings in
depth (and size) for PDT’s. A simple adversary-based argument shows that deterministic PDTs need
depth n to compute the Or of n bits. However, randomized PDTs compute Or with bounded error in
just O(1) depth.

In a recent interesting survey, Knop, Lovett, McGuire and Yuan [28] advocate looking at other natural
classes of allowed functions, like And and Or, besides Parity. They mainly argue that such models
act as natural and insightful intermediate models between ordinary decision trees and Yao’s 2-party
communication model. The latter is of great independent interest, and can also be naturally thought

1Whether this cubic gap can be narrowed down further, is an area of active research with relatively recent break-
throughs [32, 1].

2We observe in Corollary A.4 that the AND-OR tree does not witness a stronger separation than this.
3Note that this is a generalization of ordinary decision trees as they can be simulated by merely evaluating the parity

of just the relevant bit.
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of as a decision tree, known as a protocol tree, with each node evaluating an arbitrary function that
depends on just Alice’s or Bob’s input bits. In particular, if there exists a PDT or And/Or decision
tree evaluating a function f in small depth, then there exists a protocol tree of at most twice the depth
for computing the same function, irrespective of the partition of the input bits between the players.

The study of these models of decision trees also has well-known connections to combinatorial group
testing. The natural quantum analog of And decision trees has been studied in this context [3] with
surprising applications in proving classical lower bounds [5]. In another direction, PDTs (and more
generally parity decision DAGs) are closely related to proof systems that allow resolution over equations
in F2, known as Res-Lin that is a generalization of ordinary resolution of clauses (see [34]). And (Or)
decision trees are a special case of linear threshold decision trees that are closely connected to the cutting
planes proof system (see [24]). Both these proof systems are poorly understood [25, 17] and it is believed
that a better understanding of PDT’s and threshold decision trees, especially w.r.t. search problems,
should lead to progress here.

1.1.1 (And,Or)-decision trees

The two cardinal functions that are hard for decision tree depth are And and Or, which are two of the
most basic Boolean functions. It is thus natural to look at decision trees where query nodes can evaluate
And’s or Or’s of arbitrary subsets of input bits. Note that the model is equivalent up to a factor of 2
in query cost, to the model where And (Or) alone is allowed, but over literals (i.e., possibly negated
variables) and not just positive variables. Such decision trees have been studied for long, for example in
the early work of Ben-Asher and Newman [4] and more recently in the context of graph problems, see
for example [6, 9].

Observing that (And,Or)-decision tree depth is equivalent to ordinary decision tree size after ignoring
polylogarithmic factors in the input size (see Lemma 4.3 and Lemma 4.4), we conclude from Theorem 1.1
that the randomized and deterministic depth in this model, denoted respectively by R(∧,∨)-dt(·) and
D(∧,∨)-dt(·), are polynomially related as stated below formally.

Theorem 1.2. For every Boolean function f : {0, 1}n → {0, 1},

D(∧,∨)-dt(f) = O(R(∧,∨)-dt(f)4 log7(n)).

1.1.2 And-decision trees

A recent technique that has generated a lot of insight and solved several longstanding problems in two-
party communication complexity is that of lifting decision tree depth complexity of a function/problem
f to communication complexity of a composed problem. In this setting, each input bit of f is distributed
among Alice and Bob via a gadget g : {0, 1}b×{0, 1}b → {0, 1}. When the gadget g has nice (obfuscating)
property and its size b is appropriately large, lifting theorems assert that the randomized (deterministic)
communication complexity of the composed problem is asymptotically Rdt(f) ·Rcc(g) (Ddt(f) ·Dcc(g)).
Observe that this corresponds roughly to the communication cost of the naive protocol that simulates
the optimal decision tree algorithm for f , solving the i-th instance of g when the decision tree algo-
rithm stipulates querying its ith input bit. These theorems are attractive as they reduce the task of
understanding communication complexity to that of decision tree depth complexity, the latter usually
being a lot simpler. Several such theorems have been developed, see for example [20, 13, 21, 11, 23, 28],
exploiting convenient properties of the gadget g. A well-known challenge in this area is to reduce the
size of the gadget to a constant (see for example [31]), independent of the input length of f , and still
prove such lifting theorems. There are essentially two one-bit gadgets, Xor and And (Or).

It is not difficult to see that when Xor is the gadget, then a communication protocol can simulate
a PDT for f , a more powerful model than ordinary decision trees. This explains why the Eq function,
a composition of And and Xor, has small randomized communication complexity: And has an O(1)-
depth randomized PDT. For the Xor gadget, a deterministic lifting theorem4 was relatively recently
developed by Hatami, Hosseini and Lovett [23]. No randomized lifting theorem is known for the Xor
gadget.

4Ideally, lifting theorems should work even when f is not only a total function but just a partial function or a relation.
Many applications, particularly in circuit and proof complexity, require this generality of a lifting theorem. There are no
such general lifting theorems known with a constant-size gadget.
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For the And gadget, similarly, a communication protocol can simulate an And-decision tree (ADT).
Very recently, Knop, Lovett, McGuire and Yuan [29] lifted deterministic ADT depth complexity of
f to deterministic communication complexity of f ◦ And. They left open the problem of proving a
randomized lifting theorem. In a follow-up survey [28] it was argued that this inability is linked to our
lack of understanding of basic questions about randomized ADT complexity. They conjectured, however,
that the randomized and deterministic ADT depth complexity of total functions are polynomially related.
Using a key inequality we establish in the proof of our main result, Theorem 1.1, we are able to confirm
this conjecture as stated below.

Theorem 1.3. For every Boolean function f : {0, 1}n → {0, 1}, D∧dt(f) = O(R∧dt(f)3 log4(n)).

En route to proving the above, we establish a characterization, up to polynomial gap, of the ran-
domized ADT depth complexity in terms of natural combinatorial quantities associated with a Boolean
function. At an input x ∈ {0, 1}n, a block B ⊆ [n], is called a sensitive 0-block if xi = 0 for every
i ∈ B, and f(x) ̸= f(x ⊕ 1B), where x ⊕ 1B is obtained from x by switching values of the bits in B
to 1. A set of indices H ⊆ [n] is called a 0-hitting set for f at x if it intersects every sensitive 0-block
of x. The 0-hitting set complexity of f , denoted by HSC0(f), is the smallest number r, such that for
every input x ∈ {0, 1}n, there exists a 0-hitting set of size at most r. A natural fractional relaxation
leads to a quantity called the 0-fractional hitting set complexity, denoted by FHSC0(f). We also con-
sider the zero (one) cover number of f , denoted by N0(f) (N1(f)), which is the minimum number of
monochromatic subcubes needed to cover f−1(0) (f−1(1)). The cover number of f , denoted by N(f),

is defined to be N0(f) + N1(f). We show that logN(f) is bounded from above by Õ(R∧dt(f)2),5 and
that FHSC0(f) = O(R∧dt(f)) (see Proof of Theorem 4.5 for proofs of these inequalities). Finally we

also show that D∧dt(f) = Õ(FHSC0(f) logN(f)) (Lemma 4.7). Combining these together, we obtain the
following combinatorial characterization of deterministic and randomized ADT depth complexity.

Theorem 1.4. For every Boolean function f : {0, 1}n → {0, 1},

max
{
Ω(FHSC0(f)), Ω̃(log N(f)1/2)

}
= R∧dt(f) ≤ D∧dt(f) = O(FHSC0(f) · (logN0(f) + logN1(f))).

Theorem 1.4 says that a function is hard for randomized ADTs if and only if its cover number is
large or it has a large 0-fractional hitting set complexity. We note below two simple functions, one of
which has large cover number and small 0-fractional hitting set complexity, and the other has small cover
number but large 0-fractional hitting set complexity.

• f = Orn: log N(f) = O(log n),FHSC0(f) = n,R∧dt(f) = Ω(n).

• f = Andn ◦Or2: log N(f) = Ω(n),FHSC0(f) = 2,R∧dt(f) = Ω̃(n).

On the other hand, the And function has small cover number, as well as small 0-fractional hitting set
complexity. This is not surprising as D∧dt(And) = 1.

1.1.3 Decision tree rank

Another measure of decision trees that has attracted interest recently is that of decision tree rank [15, 14].
This notion was introduced by Ehrenfeucht and Haussler [16] in the context of learning theory. The rank
of a Boolean function f is defined as the minimum rank of a decision tree computing f . One can show
that rank characterizes the logarithm of decision tree size up to a logarithmic factor (see [15, Proposition
2.5], for example). An analogous statement is easily seen to hold true for randomized decision tree size
and the natural randomized variant of rank. Cornelissen, Mande and Patro [14] conjectured that rank
and randomized rank are polynomially related for all total Boolean functions. By the equivalence of rank
with the logarithm of decision tree size mentioned above, Theorem 1.1 resolves this conjecture in the
affirmative up to a polylog n factor. Ehrenfeucht and Haussler showed that the class of functions on n
variables with decision tree size polynomial in n is learnable from random examples in quasi-polynomial
time. An immediate consequence of Theorem 1.1 is that even the class of functions on n variables with
randomized decision tree size polynomial in n is learnable from random examples in quasi-polynomial
time.

5Throughout this paper we use notations Õ(·), Θ̃(·), Ω̃(·) to hide polylogarithmic factors in the input size.
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1.2 Our Techniques

As far as we are aware, the only previous work achieving full derandomization for a model of decision
trees, is that of Nisan’s [33]. The key notion Nisan introduced for his beautiful argument is that of
block sensitivity of a Boolean function f . The block sensitivity of f at an input x is just the maximum
number of disjoint sensitive blocks of f at x. Another key notion required in Nisan’s argument is that
of certificate complexity. The certificate complexity of f at x is the minimum number of bits of x one
needs to reveal to force f to a constant. The certificate complexity of f is the maximum certificate
complexity over all inputs. Nisan’s argument is completed essentially6 by two facts: first, the certificate
complexity of f at any input x is bounded from above by the square of the block sensitivity of f . Using
the older known fact, re-discovered by many authors in different contexts [22, 10, 37], showing that the
square of the certificate complexity is an upper bound for deterministic depth, yields the fourth power
of block sensitivity as an upper bound on the deterministic depth of f . Second, Nisan proved that block
sensitivity is a valid lower bound on the randomized depth complexity of f .7 This is simply because f
embeds at x a promised Or of arity as much as its block sensitivity at x.

Block sensitivity is a very influential notion, but is not helpful for us in proving randomized decision
tree size lower bounds. For example, Or, And have the largest possible block sensitivity, and even
sensitivity, of n and yet have deterministic decision tree size merely O(n). More generally, any measure
certified by specifying the evaluation of f at s points of the Boolean cube can yield at most a lower
bound of s on decision tree size. This is because there always exists a deterministic decision tree of size
s that computes f restricted to those s points, as we describe now. We will construct a tree such that
each leaf corresponds to a unique point amongst the s given points. Start with a single node, and as
long as there exists a leaf ℓ which is reached by two distinct points x = (x1, . . . , xn) and y = (y1, . . . , yn),
query a variable i such that xi ̸= yi at ℓ. This way, ℓ is replaced by two other leaves, and x and y are
separated. Continuing this way, we eventually end up with a tree with exactly s leaves, one for each
point. We may then label the leaves with the function values of the corresponding points.

Consider the Majority function, at the all zero point. It’s block sensitivity there is just 2. However,
there are exponentially many, i.e.,

(
n

n/2

)
, minimally sensitive blocks. These minimal blocks form an anti-

chain with respect to inclusion?. Further, their minimality implies8 that each point in the cube obtained
by flipping the bits of such a block yields a point where every (flipped) bit is sensitive. We first show
(Lemma 3.2) that any large set S of such points, by itself, ensures that the randomized decision tree size

is Ω̃(|S|). This holds more generally. Hence, a randomized decision tree computing a function f that
has a large number of minimally sensitive blocks at some input x will be forced to have a large size.

To formalize this, we define the block number of a function f as the largest integer r for which there
exists a point x where f has r minimally sensitive blocks. Thus, we are left to deal with functions that
have small block number. These are functions f , which at every point x, have few minimally sensitive
blocks. An example of such an f with large randomized size complexity is Parity. In the second part of
the argument (Lemma 3.3), we prove, using a simple boosting argument that for such an f , one would
be able to extract a cover for both the ones and zeroes of f by monochromatic subcubes, using about as
many subcubes as the size of the randomized decision tree. This is sufficient to construct a deterministic
decision tree for f of not too large size, thanks to a classical result of Ehrenfeucht and Haussler [16]
from the late eighties. This result states that there exists a deterministic decision tree of size at most
nlog2 N(f), where N(f) is the minimal size of a cover of f by monochromatic subcubes. In particular,
combining the above two parts yields the following interesting relationship between the cover number
and randomized size complexity, as stated in Theorem 3.1, part (a):

log N(f) = Õ
(
log2 RSizedt(f)

)
. (1)

The derandomization of depth for (And,Or)-decision trees follows directly, once we observe that
such depth complexity of f is equivalent, ignoring a factor of log n, to the logarithm of its ordinary
decision tree size complexity. This equivalence is established using a simple tree-balancing argument
that is possible as we have both And and Or queries available.

6Here, for simplicity, we sketch the ideas achieving a fourth power gap, and not the cubic gap that Nisan proved.
7It was later shown [2] that the square root of block sensitivity is also a lower bound on the quantum analog of

depth complexity (which is better known as quantum query complexity), showing that deterministic depth complexity and
quantum query complexity are also polynomially related for all total Boolean functions.

8This property of minimally sensitive blocks is a well-known fact that Nisan’s argument also exploited.
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It requires more work to deal with decision trees that have just And (Or) queries. The main reason
is that And queries on unnegated variables are not sufficient to equate depth with the logarithm of
ordinary size. This is illustrated by the fact, already mentioned before in Section 1.1.2, that the Or
function has ordinary decision tree size only n and, yet, the ADT depth complexity of Or is full, i.e., n.
However, as observed by Loff and Mukhopadhyay [30], the ADT depth complexity is equivalent, upto
polylog(n) factors, to the zero-depth complexity of ordinary decision trees. The zero-depth complexity
of f is the smallest number r for which there exists a decision tree computing f in which every path
from the root to a leaf encounters no more than r zeroes. Our main contribution here is an adaptation
of Ehrenfeucht and Haussler’s argument to prove a convenient deterministic zero-depth upper bound in
terms of the fractional zero-hitting set complexity of f and its cover number, as stated in Theorem 1.4.
The second important observation is that the fractional zero-hitting set complexity is a lower bound on
the randomized zero-depth complexity of f . Noting the fact that a decision tree of zero-depth d is also
an ordinary decision tree of O(nd) size, we complete the derandomization of ADT depth using Eq. (1).

We remark here that the notion of fractional zero-hitting set complexity was introduced in [29].
However, the approach taken by the authors in that paper was algebraic, in the sense that they focused
on the sparsity of the unique polynomial over the AND basis representing f . In fact, in their later
survey [28], they suggested looking at the sparsity needed by polynomials to approximate f to tackle
randomized ADT depth complexity. Our proof of their conjecture (our Theorem 1.3), however, deviates
from this approach completely and involves purely combinatorial arguments.

2 Preliminaries

This section formally introduces the required notation, different query models and various complexity
measures used in our proofs.

All logarithms in this paper are taken base 2. We use notations Õ(·), Θ̃(·), Ω̃(·) to hide polylogarithmic
factors in the input size (and not just polylogarithmic factors in the argument). For a bit b ∈ {0, 1}, b̄
denotes the bit 1− b. For a Boolean function f : {0, 1}n → {0, 1}, let f̄ : {0, 1}n → {0, 1} be the Boolean
function defined as f̄(x) = 1 − f(x) for all x ∈ {0, 1}n. For a positive integer n, let [n] denote the set
{1, 2, . . . , n}. For x, y ∈ {0, 1}n we say x ≤ y if xi ≤ yi for all i ∈ [n]. A Boolean function f is monotone
if x ≤ y implies f(x) ≤ f(y). A maxterm of a monotone Boolean function, f : {0, 1}n → {0, 1}, is a
minimal set of variables S ⊆ [n] such that setting the variables in S to 0 forces f to 0. A minterm of f
is a minimal set of variables which, when set to 1 forces f to 1.

2.1 Combinatorial measures of Boolean functions

Definition 2.1 (Subcube). A subcube of dimension d (equivalently, codimension n − d) is a subset of
{0, 1}n obtained by fixing n−d of the variables. In other words, a subcube is a set of all inputs consistent
with a partial assignment of n bits. For b ∈ {0, 1}, a subcube A is said to be b-monochromatic with
respect to f if f(x) = b for all x in A. The codimension of a subcube A is denoted by co-dim(A).

Definition 2.2 (Cover number). For a function f : {0, 1}n → {0, 1} and b ∈ {0, 1}, we define its b-cover
number, denoted by Nb(f), as

min {k : ∃b-monochromatic subcubes wrt f , S1, . . . Sk, such that }
⋃
i∈[k]

Si = f−1(b).

The cover number of f , denoted by N(f), is defined to be N0(f) + N1(f).

For x ∈ {0, 1}n and B ⊆ [n], let 1B denote the n-bit string that is 1 on bits in B and 0 otherwise.

Definition 2.3 (Sensitive block, block sensitivity). Let f : {0, 1}n → {0, 1}. A set B ⊆ [n] is a sensitive
block of f at input x if f(x⊕ 1B) ̸= f(x); a sensitive block at x is minimal if no proper subset of it is a
sensitive block at x. The block sensitivity of f at x, denoted by bs(f, x), is the maximum r for which there
exist disjoint blocks, B1, B2, . . . , Br, each of which is a sensitive block of f at x. The block sensitivity of
f , denoted by bs(f), is defined as

bs(f) = max
x∈{0,1}n

bs(f, x).
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An index i ∈ [n] is sensitive for x with respect to f if {i} is a sensitive block of f at x. For a function
f : {0, 1}n → {0, 1} and x ∈ {0, 1}n, let W(f, x) denote the set of all minimal sensitive blocks of f . A
set B ⊆ S is a sensitive 0-block of f at x if f(x ⊕ 1B) ̸= f(x) and xi = 0 for each i ∈ B. Let W0(f, x)
denote the set of all minimal sensitive 0-blocks of f at x.

Next we define hitting set complexity and a new measure which we call block number. For sets
S, F ⊆ [n], we say that S hits F if S ∩ F ̸= ∅.

Definition 2.4 (Block number, hitting set complexity). For a function f : {0, 1}n → {0, 1} and x ∈
{0, 1}n, we define the block number of f at x, denoted by #bs(f, x), to be the number of elements in
W(f, x); the block number of f is

#bs(f) = max
x∈{0,1}n

#bs(f, x).

The hitting set complexity of f at x, denoted by HSC(f, x), is the minimum size of a set S ⊆ [n] that
hits each F ∈ W(f, x). The hitting set complexity of f , denoted by HSC(f), is defined as

HSC(f) = max
x∈{0,1}n

HSC(f, x).

Next we define 0-hitting set complexity.

Definition 2.5 (0-hitting set complexity). For f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, the 0-hitting
set complexity of f at x, denoted HSC0(f, x), is the minimum size of a set S ⊆ [n] that hits each
F ∈ W0(f, x). The 0-hitting set complexity of f , denoted by HSC0(f), is defined as

HSC0(f) = max
x∈{0,1}n

HSC0(f, x).

To study And decision trees (see Section 2.2), Knop, Lovett, McGuire and Yuan [29] considered a
fractional version of hitting set complexity, which we define below.

Definition 2.6 (0-fractional hitting set complexity). For f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, the
0-fractional hitting set complexity of f at x, denoted FHSC0(f, x), is 1/p, where p > 0 is the smallest
number for which there exists a distribution D on indices i ∈ [n] with the property that Pri∼D[i ∈ F ] ≥ p
for each F ∈ W0(f, x). Define FHSC0(f) = maxx∈{0,1}n FHSC0(f, x).

We remark here that while we use different notation, Definition 2.5 and Definition 2.6 are the same
as in [29, Definition 2.10] and [29, Definition 2.14], respectively.

2.2 Decision trees for Boolean functions

A deterministic decision tree (DT) on n variables is a binary tree whose internal nodes are labeled
by variables and leaves are labeled {0, 1}. Every internal node has a left child and a right child; the
edge leading to the left child is labeled 0 and the edge leading to the right child is labeled 1. On an
input x ∈ {0, 1}n, the tree’s computation proceeds from the root down to a leaf as follows. When
the computation reaches a certain node, the variable associated with that node is queried : if the value
obtained is 0, the computation moves to the left child, otherwise it moves to the right child. The output
of a decision tree T on input x, denoted by T (x), is the label of leaf node reached by this computation.
We say that a decision tree T computes the function f : {0, 1}n → {0, 1} (or T is a decision tree for f),
if T (x) = f(x) for all x ∈ {0, 1}n. The deterministic decision tree depth complexity of f , is

Ddt(f) := min
T :T computes f

Depth(T ).

Analogously the deterministic decision tree size complexity of f is

DSizedt(f) := min
T :T computes f

Size(T ),

where Size(T ) is the number of leaves in T .
A randomized query algorithm/decision tree A is a distribution DA over deterministic decision trees.

The computation of A on input x proceeds by sampling a deterministic decision tree T according to DA,
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and outputs the label of the leaf reached by T on x. A computes f with error at most ε if for every
input x, the probability that A(x) = f(x) is at least 1 − ε. The cost of the randomized algorithm is
measured by the number of worst-case queries made by A on any input x, i.e., the maximum depth over
all decision trees in the support of the distribution. The ε-error randomized decision tree complexity of
f , denoted Rdt

ε (f), is the minimum cost of such a randomized decision tree. The randomized decision
tree size of f , denoted by RSizedtε (f), is defined similarly. That is,

RSizedtε (f) = min
A computing f
with error ≤ε

max
T :DA(T )>0

Size(T ).

Each internal node of a standard decision tree corresponds to a variable being queried. Generalizing
the class of permitted queries gives rise to many variants of decision trees that have been considered in
different contexts. In each variant, the relevant deterministic and randomized decision tree complexities
are defined just as above.

In our work, we are interested in three such classes.

• When the permitted queries are And of (non-negated) variables, we refer to such trees as And-
decision trees (ADT). We let D∧dt(·) and R∧dt

ε (·) denote the deterministic and ε-error randomized
decision tree complexities, respectively, in this model.

• When the permitted queries are And of a subset of variables (And query) or an Or of a sub-
set of variables (Or query), we refer to such trees as (And,Or)-decision trees ((And,Or)-DT).

We let D(∧,∨)-dt(·) and R
(∧,∨)-dt
ε (·) denote the deterministic and ε-error randomized decision tree

complexities, respectively, in this model.

• When the permitted queries are just variables, but the depth of a path is measured by the number
of queries answered as 0 on the path, we refer to deterministic and ε-error randomized decision
tree complexities as D0-dt(·) and R0-dt

ε (·), respectively. We use the term ‘0-depth’ of a decision tree
to refer to the longest root-to-leaf path where only 0-labelled edges contribute to the length.

Throughout this paper, when we drop ε from the subscript of a randomized decision tree (possibly with
generalized queries as above) measure, we assume ε = 1/3.

Definition 2.7 (Query tree, query set, transcript). A deterministic query tree on n variables is a rooted
binary tree where every node is labelled by a variable. Unlike a decision tree, a query tree does not return
the value of any function at the leaves. (It represents a strategy for querying variables with the goal of
finding a certificate.) By dropping its leaves, we regard a decision tree for a function as a query tree.
A randomized query tree is modelled as a distribution over deterministic query trees. For a query tree
T and an input x ∈ {0, 1}n, let QT (x) be the set of indices of variables queried by T on input x; the
transcript of T on input x is the sequence σT (x) = (⟨it, x[it]⟩ : t = 1, 2, . . .), where it is the index of the
input bit of x probed by T in the t-th step. For a randomized query tree T , let T⊗ℓ be the randomized
query tree corresponding to performing ℓ independent computations of the query tree T . We use Size(T )
to denote the number of distinct transcripts of T over all inputs x ∈ {0, 1}n.

2.3 Required results

This section contains some required results that give bounds on some combinatorial measures and on
certain decision tree measures of Boolean functions defined in the earlier two subsections.

Cover number gives a lower bound on deterministic decision tree size. Each leaf of a decision tree
corresponds to a monochromatic subcube generated by the partial assignments defined by the root to
leaf path. Thus a deterministic decision tree computing a function f induces a monochromatic subcube
partition of f , giving the following.

Proposition 2.8. For every Boolean function f : {0, 1}n → {0, 1}, DSizedt(f) ≥ N(f).

In the other direction, Ehrenfeucht and Haussler [16, Lemma 1, Lemma 6] gave the following upper
bound on the logarithm of the decision tree size of a function f . The version we state below can be
found in [26, Theorem 14.32], for example.
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Theorem 2.9 ([26, Theorem 14.32]). For every Boolean function f : {0, 1}n → {0, 1},

logDSizedt(f) = O(log2 N(f) · log n).

Lemma 2.10. Suppose f : {0, 1}n → {0, 1} and y ∈ {0, 1}n. Suppose T is an ε-error randomized
decision tree for f , B ∈ W(f, y) is a sensitive block of f at y, and W ⊆ W(f, y) is a set of sensitive
blocks of f at y. Then,

(a) Pr[QT (y) ∩B = ∅] ≤ 2ε.

(b) Pr[QT⊗ℓ(y) ∩B = ∅] ≤ (2ε)ℓ.

(c) Pr[QT⊗ℓ(y) is a hitting set for W ] ≥ 1− (2ε)ℓ|W |.

Proof. For part (a), we have

1 = Pr[f(y) ̸= f(y ⊕ 1B)]

≤ Pr[f(y) ̸= T (y)] + Pr[T (y) ̸= T (y ⊕ 1B)] + Pr[T (y ⊕ 1B) ̸= f(y ⊕ 1B)]

≤ 2ε+ Pr[T (y) ̸= T (y ⊕ 1B)].

Thus, Pr[T (y) ̸= T (y ⊕ 1B)] ≥ 1− 2ε. Then,

Pr[QT (y) ∩B = ∅] ≤ Pr[T (y) = T (y ⊕ 1B)] = 1− Pr[T (y) ̸= T (y ⊕ 1B)] ≤ 2ε.

Part (b) follows from part (a) because T⊗ℓ corresponds to ℓ independent computations performed on
T ; in particular, QT⊗ℓ(y) = Q1 ∪ Q2 ∪ · · · ∪ Qℓ, where the Qi are independent and each has the same
distribution as QT (y). By a union bound over all B ∈ W , we have

Pr[∃B ∈ W : QT⊗ℓ(y) ∩B = ∅] ≤ (2ε)ℓ|W |.

Part (c) immediately follows.

Proposition 2.11. Q contains a certificate for f at x iff Q intersects every block in W(f, x).

Proof. Suppose Q contains a certificate for f at x. If Q does not intersect a block B in W(f, x), then
y = x ⊕ 1B and x agree on all the positions in Q but f(x) ̸= f(y)—a contradiction; thus Q intersects
every block in W(f, x). Next suppose Q intersects every block in W(f, x). Suppose for some y, we have
f(x) ̸= f(y); we will show that x and y differ in some position in Q. Now, x⊕y is a characteristic vector
of a sensitive block of f at x, and must include in it a block in W(f, x); Q intersects this block, so x and
y differ in a position in Q.

And query complexity is tightly related to 0-depth query complexity, which was introduced by Loff
and Mukhopadhyay [30].

Claim 2.12 ([30], [29, Claim 4.4]). For every Boolean function f , we have D0-dt(f) ≤ D∧dt(f) ≤
D0-dt(f) log n and R0-dt(f) ≤ R∧dt(f) ≤ R0-dt(f) log n.

While Loff and Mukhopadhyay [30], and Knop, Lovett, McGuire and Yuan [29] only deal with deter-
ministic trees, the analogous result for randomized trees can easily be seen to hold true by applying the
relevant deterministic result to all trees in the support of the relevant randomized tree.

3 Randomized versus deterministic size complexity

In this section, we present our main result; we establish an upper bound for N(f) and DSizedt(f) in
terms of RSizedt(f). In the next section, the first upper bound will provide a crucial ingredient in our
proof of a similar result for decision trees with (And,Or) queries and And queries.

Theorem 3.1 (Main result). For every Boolean function f : {0, 1}n → {0, 1}, we have the following.

(a) log N(f) = O((log RSizedt(f))2 log(n)).
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(b) logDSizedt(f) = O((log RSizedt(f))4 log3(n)).

As we stated in the introduction, the notion of block number of a Boolean function plays a central
role in our argument. In the following two lemmas the block number appears in two different roles, first
as a lower bound and then as an upper bound.

Lemma 3.2. Let f : {0, 1}n → {0, 1}. Then, for all x ∈ {0, 1}n, we have

RSizedt1/3(f)
2 logn ≥

(
1

2

)
#bs(f, x).

Lemma 3.3. Let f : {0, 1}n → {0, 1}. Then,

N(f) ≤ n · RSizedt1/3(f)2 log#bs(f).

We first verify that our main result follows from these lemmas; we then justify these lemmas formally.

Proof of Theorem 3.1. We assume RSizedt1/3(f) ≥ 2. This is because if RSizedt1/3(f) = 1, then f must be
a constant function, and the theorem follows trivially. From Lemma 3.3 and Lemma 3.2 we obtain

logN(f) ≤ log n+ logRSizedt1/3(f) · 2 log#bs(f);

≤ log n+ 2 logRSizedt1/3(f)(log RSize
dt
1/3(f) · 2 log n+ 1)

= O((log RSizedt1/3(f))
2 · log n).

Part (b) then follows from Theorem 2.9.

We now prove the lemmas.

Proof of Lemma 3.2. Let T be an (1/3)-error randomized decision tree for f . Fix x ∈ {0, 1}n. For
B ∈ W(f, x), let yB = x ⊕ 1B . Since B is minimal, we have f(yB) ̸= f(yB ⊕ 1{i}) for all i ∈ B; that
is, {i} ∈ W(f, yB). With ℓ = ⌊2 log n⌋ (assume n is large) and W = {{i} : i ∈ B}, we conclude from
Lemma 2.10 (c) that

Pr[QT⊗ℓ(yB) ⊇ B] ≥ 1−
(
2

3

)ℓ

|B| ≥ 1−
(

1

2n

)
|B| ≥ 1

2
.

Thus, using linearity of expectation, we may fix a deterministic tree T ∗ in the support of T⊗ℓ such that
for at least half of the #bs(f, x) choices for B, we have QT∗(yB) ⊇ B; let W ′ be the set of these B. For
each B ∈ W ′, let σB = σT∗(yB) be the transcript of T ∗ on input yB . We make two remarks.

(a) Since the blocks in W(f, y) are minimal, for distinct B,B′ ∈ W(f, x), there is an i ∈ B \ B′; for
this i, yB [i] = x[i] + 1 ̸= xi = yB′ [i] (mod 2). (There is a similar i′ ∈ B′ \ B, but we won’t need
it.) Thus, for distinct B,B′ ∈ W ′, we have σB ̸= σ′

B .

(b) Since T ∗ is obtained by picking ℓ trees in the support of T and running them one after the other,
the total number of possibilities for σB is at most Size(T )ℓ.

Since T was an arbitrary ( 13 )-error decision tree for f , we conclude from the above remarks that

RSizedt1/3(f)
2 logn ≥ |W ′| ≥ 1

2#bs(f, x).

Proof of Lemma 3.3. Let T be a ( 13 )-error randomized decision tree for f . Fix x ∈ {0, 1}n, and let
W = W(f, x). Recall from Proposition 2.11 that a set Q contains a certificate for f at x iff Q intersects
every set in W(f, x). Now, set ℓ = 2 log#bs(f) and conclude from Lemma 2.10 (c) that

Pr[QT⊗ℓ(x) contains a certificate for f at x] = Pr[QT⊗ℓ(x) is a hitting set for W(f, x)]

≥ 1−
(
2

3

)ℓ

#bs(f) >
1

2
.

Let T1, T2, . . . , Tn be n trees each picked with the same distribution as T⊗ℓ(x). Then, using a union
bound over all x ∈ {0, 1}n, we conclude that with non-zero probability, for all x ∈ {0, 1}n, there is an i
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such that QTi
(x) contains a certificate of x. Fix a choice T ∗

1 , T
∗
2 , . . . , T

∗
n of deterministic query trees in

the support of T⊗ℓ(x) such that for all x, there is an i such that QT∗
i
(x) includes a certificate of f at x.

Let σi(x) = σT∗
i
(x) be the transcript of T ∗

i on input x; let Ci,x = {y : σi(x) = σi(y)}. Note that each
Ci,x is a subcube; furthermore, if QT∗

i
(x) contains a certificate for x, then Ci,x is monochromatic. For

every i, the number of possibilities for σi(x) and hence Ci,x is at most Size(T )ℓ. Then,

{Ci,x : i ∈ [n], x ∈ {0, 1}n and QT∗
i
(x) contains a certificate for x}

is a cover for f with at most n · Size(T )ℓ subcubes. Since T was an arbitrary
(
1
3

)
-error protocol, the

lemma follows.

3.1 A better bound for monotone functions

In this section, we observe that for monotone functions we can obtain better bounds than those provided
by Theorem 3.1.

Theorem 3.4 (Improvement for monotone functions). Suppose f : {0, 1}n → {0, 1} is monotone. Then,
we have the following.

(a) log N(f) = O(log RSizedt(f) log(n));

(b) logDSizedt(f) = O((log RSizedt(f))2 log3(n)).

Proof. Note that part (b) follows from part (a) and Theorem 2.9. Part (a) clearly holds if f is a constant
function, so we restrict attention to functions f that are not constant. Note that #bs(f, 0n) = N1(f),
for we have a distinct minimal sensitive block from each minterm; similarly, #bs(f, 1n) = N0(f), for we
have one minimal sensitive block from each maxterm. It follows that N(f) ≤ 2 ·#bs(f). Then,

logN(f) ≤ log(#bs(f)) + 1 = O(log RSizedt(f) log n),

where the last inequality follows from Lemma 3.2.

4 (And,Or) query complexity and And query complexity

In the previous section, we established that for every total function, there is a deterministic decision tree
whose size is bounded by a quasi-polynomial of the size of its smallest randomized decision tree (ignoring
some polynomial factors involving log n in the exponent). Though this result referred to decision tree
size, we now use it to derive consequences for the randomized and deterministic depth in the (And,Or)
decision tree model, and in the And (Or) decision tree model.

4.1 Randomized versus deterministic (And,Or) query complexity

The following is our main theorem in this subsection, that shows that randomness does not offer much
advantage in the (And,Or) decision tree model.

Theorem 4.1. For every Boolean function f : {0, 1}n → {0, 1},

D(∧,∨)-dt(f) = O(R(∧,∨)-dt(f)4 log7(n)).

The translation is achieved by showing that for all functions, the logarithm of the size of the best
ordinary decision tree and the depth of an (And,Or) decision tree are closely related.

Lemma 4.2. For every Boolean function f : {0, 1}n → {0, 1}, we have

logDSizedt(f)/(2 log n) ≤ D(∧,∨)-dt(f) ≤ 4 logDSizedt(f), (2)

log RSizedt(f)/(2 log n) ≤ R(∧,∨)-dt(f) ≤ 4 logRSizedt(f). (3)
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Proof of Theorem 4.1. We use the second inequality of Eq. (2) and the first inequality of Eq. (3). We
then have

D(∧,∨)-dt(f) ≤ 2 logDSizedt(f) (by the second inequality in Eq. (2))

= O((log RSizedt(f))4(log n)3) (by Theorem 3.1 (b))

= O(R(∧,∨)-dt(f)4 log7(n)) (by the first inequality in Eq. (3)).

It remains to establish Lemma 4.2. We need two observations, which we state in the following lemmas.
We first observe that if (And,Or) queries are allowed, then an arbitrary decision tree can be balanced
so that the depth of the resulting (And,Or) decision tree is logarithmic in the size of the original tree.

Lemma 4.3. Suppose T is an ordinary decision tree for a function f . Then, there is an (And,Or)
decision tree C for f such that.

Depth(∧,∨)-dt(C) ≤ 4 logDSizedt(T ).

This lemma follows using a tree-balancing argument that has been used in various settings (Boolean
formulas, communication protocols, etc.) previously. A formal justification appears in Appendix B. Note
that Lemma 4.3 immediately implies the second inequality in Eq. (2) and also Eq. (3). To justify the
first inequality, we show that (And,Or) decision trees can be converted to ordinary decision trees whose
size is bounded by an exponential in the depth of the original tree. Our justification of Lemma 4.2 will
be complete once we show the following.

Lemma 4.4. For every (And,Or) decision tree C of depth d computing f , there is an ordinary decision
tree T computing f such that

log Size(T ) ≤ d log
(ne
d

)
.

Again we provide a formal justification in Appendix B. An informal argument goes as follows. Replace
each And query in the tree by a skewed ordinary decision tree for computing And. Label the edges
corresponding to the value 0 as Red and the other edges as Blue. Similarly, replace each Or query by
a skewed ordinary decision tree, but this time label the edge with label 1 as Red and the edges with
label 0 as Blue. In the resulting tree, we may eliminate nodes where a variable queried earlier is queried
again. Thus we obtain an ordinary decision tree with depth at most n and at most d Red edges on any
root-to-leaf path. The number of paths to a leaf in this tree can be bounded by the number of sequences
in {Red, Blue}n with at most d Red edges; any such sequence can be completed to a sequence with

exactly n+ d elements, with exactly d Reds; thus, the number of leaves is at most
(
n+d
d

)
≤

(
2en
d

)d
.

4.2 Randomized versus deterministic And query complexity

In the previous subsection, we saw an application of our main result to (And,Or) decision tree depth.
That application crucially depended on our ability to balance decision trees by using (And,Or) queries.
With just And queries, we cannot use the same argument. Nevertheless, in this section, we show that
randomness does not offer much advantage even in the And decision tree model.

Theorem 4.5. For every Boolean function f : {0, 1}n → {0, 1}, D∧dt(f) = O(R∧dt(f)3 log4(n)).

Recall from Claim 2.12 that And decision tree depth complexity is bounded from below and above
(up to an O(log n) factor) by 0-depth complexity, both in the deterministic and randomized settings.
In this section, we will work mainly with 0-depth complexity and use this connection to derive our
conclusion on And decision tree depth complexity.

Once again, our proof relies on two observations. First, a randomized decision tree of small 0-depth
provides us a way of efficiently hitting the 0-blocks of f at any input. We formalize this using the notion
of 0-fractional hitting set complexity.

Lemma 4.6. FHSC0(f) = O(R0-dt(f)).

11



Our next observation allows us to build 0-depth decision trees from 0-fractional hitting sets. This
argument, which can be regarded as the analog of the result of Ehrenfeucht and Haussler [16] (see
Theorem 2.9), is the main technical argument of this section.

Lemma 4.7. D0-dt(f) = O(FHSC0(f)(logN0(f) + logN1(f))).

Before we formally justify these observations, let us see how they imply Theorem 4.5.

Proof of Theorem 4.5. We have

D∧dt(f) ≤ D0-dt(f) log n (by Claim 2.12)

= O(FHSC0(f) · (logN0(f) + logN1(f))) log n (by Lemma 4.7)

= O(R0-dt(f) · (logN0(f) + logN1(f)) log n) (by Lemma 4.6)

= O(R0-dt(f) · log N(f) · log n)
= O(R0-dt(f) · (log RSizedt(f))2 · log2 n) (by Theorem 3.1 (a))

(∗)
= O(R0-dt(f)3 · log4 n) (by Eq. (4), see below)

= O(R∧dt(f)3 · log4 n). (Claim 2.12)

The inequality marked (*) holds because a decision tree T on n variables (that queries no variable twice
on the same path) with 0-depth d has at most

(
n+d
d

)
leaves (see Lemma 4.4); thus

log RSizedt(f) = O(R0-dt(f) log n). (4)

Proof of Lemma 4.7. We first present an informal overview. Suppose FHSC0(f) = 1/p. In particular,
for every input z and a (multi-)set W of sensitive 0-blocks of f at z, there is a variable, by an averaging
argument, that hits at least a fraction p of the blocks in W . Our strategy for building the decision tree for
f is as follows. After having queried some variables, we restrict attention to the unset variables, and the
function induced on these variables. If the restricted function is a constant function, then we announce
the value. Otherwise, we present a specific reference input (consistent with the answers received to the
queries so far) and consider a (multi-)set W of sensitive 0-blocks of this input. The property above
ensures that there is a variable that lies in a fraction p of these blocks. We query this variable; the
choice of the variable will ensure that if this bit is 0 (in the actual input, not in the reference input),
then after querying this bit, the size of either the 0-cover or the 1-cover for the restricted function will
be at most a factor (1 − p) of what it was before the current step. Thus, on any input, by the time
t∗ = ⌈(1/p) ln(N0(f) ·N1(f))⌉ bits read turn out to be zero, either the 0-cover number or the 1-cover
number for the restricted function will have become zero, thereby making the restricted function constant.

To implement this strategy, we need to specify how the following are determined at each step. Suppose
we wish to compute f(x).

Reference input: Our reference input z will initially be (0, 0, . . . , 0). Suppose the input bit x[i] is
queried in a certain step; we obtain the next reference input by changing that bit of the current reference
input from 0 to x[i]. Thus, at every stage, the reference input is consistent with the part of x discovered
by previous queries; the variables not yet queried continue to be 0.

The set of 0-blocks: Let S ⊆ [n] be the indices of variables queried so far and ρ : S → {0, 1} be
their evaluations. Restrict attention to the variables with indices not in S. Assume that this restricted
function is not constant, that is, the optimal size of 0-cover and 1-cover are at least 1. Note that the
reference input z assigns zeros to all the unset variables. We have two cases.

• Suppose f(z) = 0: For each subcube C in the 1-cover consistent with the queried variables(for
i ∈ S, x[i] is unset or set to ρ(i) in C), identify it with a conjunction of the form∧

j∈BC

x[j] ∧
∧

j∈B′
C

x[j], (5)
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where BC = {i : i ̸∈ S and x[i] is set to 1 in C} and B′
C = {i : i ̸∈ S and x[i] is set to 0 in C}.

Since f(z) = 0, each BC must be non-empty; furthermore, each BC is a sensitive 0-block for f at z.
We letW be the multiset {BC : C is a subcube in the 1-cover consistent with the queried variables}.

• Suppose f(z) = 1: We consider subcubes in the optimal 0-cover consistent with the queried vari-
ables, and identify each of them with a conjunction of the form (5). We obtain a multi-set W of
sensitive 0-blocks for the reference input z as before.

The bit to be queried next: By construction, each block in W is a sensitive 0-block for the reference
input z. So by the property stated at the outset, there is a variable x[i] that belongs to at least a fraction
p of the blocks in W (counted with multiplicity). Note that if this variable is queried and the input bit
x[i] is revealed to be zero, then the subcubes C in the cover corresponding to blocks in W where i ∈ BC

do not contribute to the cover for the new restricted function.

At each step, if the value of f has not yet been determined, we determine the next variable to be queried
as described above. This completes the description of our strategy. It remains to bound the 0-depth
of the decision tree corresponding to this strategy. Let Nt

0 and Nt
1 denote the number of subcubes

surviving(consistent with the queried variables) after t queries. Note that surviving subcubes form a
cover for the restricted function, although it need not be optimal. Consider the quantity Mt = Nt

0 · Nt
1.

Initially, M0 = N0(f) · N1(f); and in general Mt ≤ M0(1 − p)t. Set t∗ = ⌈(1/p) ln(N0(f) ·N1(f))⌉.
Suppose we read at least t∗ + 1 zeros; then Mt∗ < 1, that is, Mt∗ = 0 (one of the covers has become
empty); but then we would have stopped when we read t∗ zeros—a contradiction. It follows that the
0-depth of the decision tree underlying this strategy is O((1/p) log(N0(f) ·N1(f)).

Proof of Lemma 4.6. Let T be an ε-error randomized decision tree for f with 0-depth d. We will show
that for each x ∈ {0, 1}n, we have

FHSC0(f, x) ≤
d

1− 2ε
. (6)

Our claim will follow from this, because T was fixed arbitrarily. By Lemma 2.10, for each block B ∈
W0(f, x), we have Pr[QT (x)∩B ̸= ∅] ≥ 1−2ε. LetQ0

T (x) = {i ∈ QT (x) : x[i] = 0}; note that |Q0
T (x)| ≤ d.

Since B is a zero block of f at x, we have that x[i] = 0 for each i ∈ B; thus, Pr[Q0
T (x)∩B ̸= ∅] ≥ 1− 2ε.

Let the index I be chosen uniformly from Q0
T (x). Then, for each B ∈ W0(f, x), we have Pr[I ∈ B] ≥

(1− 2ε)/d. This establishes Eq. (6): we take the distribution of I as the distribution D required in the
definition of FHSC0(f, x) (see Definition 2.6).

5 Conclusions

Nisan’s result from the late eighties [33] can be viewed as the analog of derandomizing time for decision
trees. The complexity measure of logarithm of decision tree size may naturally be thought of as the
analog of space for decision trees. In this light, we would like to view our main theorem as providing a
derandomization of space in the decision tree model. Nisan’s result upper bounds the deterministic depth
complexity of a function f by the cube of its randomized depth. It remains an outstanding problem to
determine if this gap is achieved by some total function. Relatively recently, a new total function was
defined by Göös, Pitassi and Watson [20] to separate deterministic partition number and communication
complexity by a quadratic factor, solving a longstanding problem. A modification of this function, which
we refer to henceforth as the modified GPW function, was shown in [1] to achieve a quadratic gap between
the bounded-error randomized and deterministic decision tree depth. In particular, the modified GPW
function has deterministic depth Ω(n) but randomized depth Θ(

√
n). No better separation is known for

depth for any function.
It becomes natural to wonder if our Theorem 1.1 obtains the optimal relationship between the loga-

rithms of randomized and deterministic decision tree size. Interestingly, even though the modified GPW
function provided a breakthrough in increasing the known gap between randomized and deterministic

depth, it turns out that both its deterministic and randomized size is 2Θ̃(
√
n). On the other hand, the

And-Or tree function, which achieved a smaller gap for depth than the modified GPW function, yields
the largest known gap for log size as we stated in Section 1 and further elaborate upon in Appendix A.
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This suggests that depth and size behave rather differently and efforts to better understand the gap
between deterministic and randomized size could be challenging and rewarding.

For ADT’s, again it can be shown that the modified GPW function fails to generate any advantage
for randomized algorithms w.r.t. depth. The best known gap is again provided by the And-Or tree
function. It would be interesting to find either functions yielding larger gaps or to narrow down the gap
from cubic given by our Theorem 1.3.
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A Lower bounds for randomized decision tree size

In this section we first observe that randomized communication complexity gives a lower bound on
randomized decision tree size. As a consequence, using a communication lower bound due to Göös and
Jayram [19], we conclude a lower bound on the randomized decision tree size of the And-Or tree on n
variables, nearly matching the upper bound implied by the following result.

Theorem A.1 ([35]). Let f : {0, 1}n → {0, 1} be the And-Or tree on n variables. Then,

Rdt
1/3(f) = Θ(n0.753...).

This immediately implies

RSizedt1/3(f) = 2O(n0.753...). (7)

After this, we give a general template to prove randomized decision tree size lower bounds and demon-
strate its use by showing lower bounds for specific classes of Boolean functions.

A.1 Communication complexity

The model of interest to us is the two-party classical bounded-error model of communication introduced
by Yao [39]. In this model, two parties, Alice and Bob, receive inputs x ∈ {0, 1}n, y ∈ {0, 1}n, re-
spectively. They wish to jointly compute a function F : {0, 1}n × {0, 1}n → {0, 1} on the input (x, y)
using a communication protocol Π. They have unbounded computational power individually and wish
to minimize the number of bits communicated. Alice and Bob have access to an arbitrarily long string
of public random bits. At any point in the protocol, the party that sends the next message is decided
by the previous messages communicated. The message communicated must be a function of the party’s
input, the previous messages communicated and the random string. We say that a protocol Π computes
F to error ε if Pr[Π(x, y) = F (x, y)] ≥ 1 − ε for each x ∈ {0, 1}n, y ∈ {0, 1}n. The cost of the protocol
is the largest number of bits communicated in the worst case over all possible inputs and outcomes of
the random coin tosses. The ε-error randomized communication complexity of F , denoted Rcc

ε (F ), is the
minimum cost of a protocol that computes F to error ε.

We require the following theorem due to Göös and Jayram [19, Theorem 2.3].
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Theorem A.2. Let F : {0, 1}n × {0, 1}n → {0, 1} be the And-Or tree on 2n inputs, where Alice gets
the first bit of every bottom gate and Bob gets the rest. Then,

Rcc
ε (F ) = Ω̃(n0.753...).

A.2 Lower bounds via communication complexity

We observe the following.

Lemma A.3. Let f : {0, 1}n → {0, 1} be a Boolean function such that Rcc
ε (f) ≥ c under some partition

of the inputs. Then,
RSizedtε (f) = 2Ω(c).

Proof. Consider an arbitrary partition of inputs between Alice and Bob. Consider a randomized decision
tree of size s computing f to error ε. One obtains a communication protocol for f in the following way:
Alice and Bob sample a tree from the underlying distribution of the randomized decision tree using
public randomness. They then evaluate this tree from the root down using a communication protocol; if
a node has the label of a variable held by Alice (Bob), she (he) sends its value to Bob (Alice) and they
continue in the relevant subtree. When they reach a leaf they output the value at that leaf. Note that
the randomized protocol thus obtained has exactly the same structure as the randomized decision tree.
It is well known that communication protocols can be balanced (using the same ideas as in the proof of
Lemma 4.3). We thus obtain a randomized protocol of cost O(log s) that computes f to error ε. This
proves the lemma.

Along with Theorem A.2, this implies the following, yielding near-tightness of the bound in Eq. (7).

Corollary A.4. Let f : {0, 1}n → {0, 1} be the And-Or tree on n inputs. Then,

RSizedt1/3(f) = 2Ω̃(n0.753...).

In view of the above, one might ask if it is necessary for the randomized communication complexity
of a function to be large under some partition of inputs in order for its randomized decision tree size to
be large. Specifically, can one show that the randomized decision tree size of the well-studied Equality
function is large, even though its randomized communication complexity is a constant? In Section A.3
we show that the randomized decision tree size of Equality is indeed large, as an application of a more
general template that we introduce to prove lower bounds against randomized decision tree size.

A.3 A template for proving randomized decision tree size lower bounds

In this section, we give a set of sufficient conditions which imply randomized decision tree size lower
bounds. In particular, we can use these to recover Theorem 3.1 for the particular case of monotone
functions and we can also use these in other cases to prove better randomized size lower bounds. We
start by giving some definitions. For a subcube A, its 0-codimension is the number of variables fixed
to 0 by A and its 1-codimension is the number of variables fixed to 1 by A. We define a notion of
spreadness for a distribution on {0, 1}n. For a set S ⊆ {0, 1}n and a distribution µ on {0, 1}n, let
µ(S) = Prx∼µ[x ∈ S].

Definition A.5 (Spreadness). A probability distribution µ on {0, 1}n is

• (ℓ, κ)-spread if for any subcube S of codimension ℓ, µ(S) ≤ κ.

• (ℓ, κ, 1)-spread if for any subcube S of 1-codimension ℓ, µ(S) ≤ κ.

• (ℓ, κ, 0)-spread if for any subcube S of 0-codimension ℓ, µ(S) ≤ κ.

Next, we define a notion of sensitivity of a distribution. For b ∈ {0, 1}, a set B ⊆ [n] is a sensitive
b-block of f at input x if f(x⊕ 1B) ̸= f(x) and xi = b for each i ∈ B. The b-block sensitivity of f at x,
denoted by bsb(f, x), is the maximum integer r for which there exist r disjoint sensitive b-blocks of f at
x.
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Definition A.6 (Sensitivity of a distribution). For a Boolean function f : {0, 1}n → {0, 1} and b ∈
{0, 1}, a distribution µ on {0, 1}n is

• (ℓ, b)-sensitive w.r.t. f if for each input x in the support of µ, we have f(x) = b and bs(f, x) ≥ ℓ.

• (ℓ, b, 0)-sensitive w.r.t. f if for each input x in the support of µ, we have f(x) = b and bs0(f, x) ≥ ℓ.

• (ℓ, b, 1)-sensitive w.r.t. f if for each input x in the support of µ, we have f(x) = b and bs1(f, x) ≥ ℓ.

We now show that the existence of a distribution that is spread and sensitive w.r.t. f implies large
randomized decision tree size complexity.

Theorem A.7. For a Boolean function f : {0, 1}n → {0, 1}, let b ∈ {0, 1} and let µb be a distribution
on {0, 1}n which satisfies any of the following properties:

1. µb is (ℓ, b)-sensitive w.r.t. f and (⌈ℓ/2⌉, κ)-spread.

2. There exists c ∈ {0, 1} such µ0 is (ℓ, b, c)-sensitive w.r.t. f and (⌈ℓ/2⌉, κ, c)-spread.

Then RSizedt1/10(f) = Ω(1/κ).

Proof. We prove (1) above, the proof of (2) follows along similar lines. Without loss of generality, assume
b = 0. Thus, µ0 is a distribution over inputs in f−1(0) that is (ℓ, 0)-sensitive. Define µ1, a distribution
over f−1(1), as follows: Sample an input x according to µ0 and let B1, B2, ..., Br be disjoint sensitive
block of f at x where r = bs(f, x). Sample a i from [r] and return x ⊕ 1Bi

. Define the distribution
µ = (µ0 +µ1)/2. We show below that DSizedtµ,1/10(f) = Ω(1/κ), thereby showing RSizedt1/10(f) = Ω(1/κ)
by applying Proposition C.1. Let T be a deterministic decision tree that computes f correctly on at least
a (9/10)-mass of inputs sampled according to µ. Since µ can be viewed as sampling according to µ0 with
probability 1/2 and according to µ1 with probability 1/2, T must be correct on at least a (4/5) mass of
µ0 as well as a (4/5) mass of µ1. Let L0 and L1 be set of all 0-leaves and 1-leaves of T , respectively.
Define

ρ0 =
∑
v∈L0

Pr
x∼µ0

[x reaches v],

ρ1 =
∑
v∈L1

Pr
x∼µ1

[x reaches v].

That is, ρ0 (ρ1) denotes the µ0-mass (µ1-mass) captured by 0-leaves (1-leaves). By the argument above,
both ρ0 and ρ1 must be at least 4/5. We observe following about the 0-paths (paths leading to 0-leaves).

1. (Short Paths). Firstly, we show that the 0-paths of length less than ⌈ℓ/2⌉ must capture less than
2/5 mass of µ0, i.e., ∑

v∈L0

|v|<⌈ℓ/2⌉

Pr
x∼µ0

[x reaches v] ≤ 2/5,

where |v| denotes the length of the path leading to v. Towards a contradiction, assume∑
v∈L0

|v|<⌈ℓ/2⌉

Pr
x∼µ0

[x reaches v] > 2/5.

Let S be a subcube with codimension less than ⌈ℓ/2⌉ corresponding to a 0-leaf. For each x
supported by µ0 which lies in S, our assumption on µ0 implies that bs(f, x) ≥ ℓ. Thus, there must
exist at least bs(f, x)/2 blocks such that none of their variables are read on the path to this leaf.
Flipping any one of these blocks gives an input supported by µ1 and that still reaches this leaf.
Hence µ1(S) ≥ (1/2)µ0(S). Thus,∑

v∈L0

|v|<⌈ℓ/2⌉

Pr
x∼µ1

[x reaches v] ≥ 1

2
·

∑
v∈L0

|v|<⌈ℓ/2⌉

Pr
x∼µ0

[x reaches v] > 1/5.

This contradicts the fact that T is correct on at least a 4/5 mass of µ1.
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2. (Long Paths). Secondly, a 0-path of length at least ⌈ℓ/2⌉ captures at most κ of µ0 mass. This
follows from the spreadness property of µ0.

Since ρ0 must be atleast 4/5, from the first bullet above, we have that 0-paths in T of length at least
⌈ℓ/2⌉ must capture at least 2/5 of µ0 mass. By the second bullet above, there must be at least 2/(5κ)
0-paths in T of length at least ⌈ℓ/2⌉, proving an Ω(1/κ) lower bound on the number of leaves in T .
The analysis for (2) is along similar lines. The only difference will be in using sensitive c-blocks in place
of sensitive blocks and defining short and long paths for the case analysis above based on c-codimension
of the corresponding subcubes.

Below we give some examples to showcase the usage of the above template to prove randomized
decision tree size lower bounds for specific classes of Boolean functions.

A.3.1 Monotone functions

In this section, we use our template to give an alternative proof of Theorem 3.4. We prove part (a) of
Theorem 3.4 as part (b) follows from part (a) and Theorem 2.9.

Proof. (Part (a) Theorem 3.4). We show that f has a sub-function (f under some restriction) g that
has large randomized decision tree size. The statement of theorem trivially holds when N(f) ≤ nc for
any fixed constant c, so we restrict our attention to the case when N(f) ≥ nc for some appropriate c to
be fixed later. Without loss of generality, let N1(f) ≥ N(f)/2, the case when N0(f) ≥ N(f)/2 is similar.
For a monotone function f , the subcubes corresponding to minterms of f form the unique minimum
1-cover for f . For a minterm M , let xM be the input such that xi = 1 for i ∈ M and 0 otherwise.
Let S = {xM |M is a minterm of f}. Note that |S| = N1(f) as each input in S is a 1-input of f and
each minterm forms a minimal sensitive block for 0n. We have that for each x ∈ S,bs1(f, x) = |x|, i.e.,
each 1-bit position of x is sensitive. For i ∈ [n], let Si denote inputs of Hamming weight i in S. By an
averaging argument, there exists j ∈ [n] such that |Sj | ≥ N1(f)/n. We give an iterative procedure to
find our desired sub-function g.

1. Initialise V = [n], g = f , ℓ = j, R = Sj and k = log(N1(f)/n)/(2(⌈log n⌉+1). We use V to denote
the input domain of g. Throughout the process, R will be a set of 1-inputs of g over {0, 1}V each
of Hamming weight and 1-block sensitivity ℓ w.r.t. g.

2. Find a subcube P over {0, 1}V of 1-codimension ⌈ℓ/2⌉ such that it contains more than 2−k fraction
of inputs in R. Let Q ⊆ V be the set of variables fixed by P . If no such subcube exists, stop the
procedure. Else, update V to [n] \ Q, ℓ to ⌊ℓ/2⌋ and g to g|P (g restricted to P ). For V ⊆ T
and x ∈ {0, 1}T , let xV in {0, 1}V denote the projection of x on to V . Update R to {xV |x ∈
R and x lies in P}. Note that after this update, g is a function on {0, 1}V and R ⊆ {0, 1}V . Also,
each x ∈ R is a 1-input of g, has Hamming weight ℓ, and each 1-bit position of x forms a sensitive
1-block for g i.e., bs1(g, x) = ℓ.

3. Repeat the above step.

We claim the above procedure can not run forever and must terminate within the second step’s (⌈log n⌉+
1)’th repetition. The procedure starts with each input in R having Hamming weight ℓ, and with every
repetition of the second step, the updated R contains inputs with Hamming weight halved from the
previous iteration. So if the second step repeats (⌈log n⌉+ 1) times, R can have only one input, namely
0n. On the other hand, the size of R only reduces by a factor of 2−k with each repetition of the second
step because of the way we choose the subcube P , and so by the end of (⌈log n⌉+1) repetitions, the size
of R must be

|R| ≥ |Sj |2−k(⌈logn⌉+1) = (N1(f)/n)2
−k(⌈logn⌉+1) = (N1(f)/n)

1/2 ≥ n
c−1
2 .

So if we choose c > 1, the size of |R| will be strictly larger than 1, contradicting our earlier conclusion,
which says the size of R can be at most 1 after (⌈log n⌉+1) repetitions of the second step. So, the above
procedure does terminate and at the end of the process we get g, a subfunction of f on {0, 1}V , and
R ⊆ {0, 1}V with following properties
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• g(x) = 1 for all x ∈ R.

• (Spreadness). Each x ∈ R has Hamming weight ℓ and no subcube of 1-codimension ⌈ℓ/2⌉ contains
more than 2−k fraction of inputs of R.

• (Sensitivity). Each x ∈ R has bs1(g, x) = ℓ.

Let µ1 be the distribution that randomly samples an input from R. From the properties of R stated above,
we get µ1 is a distribution over 1-inputs of g which is (⌈ℓ/2⌉, 2−k, 1)-spread and (ℓ, 1, 1)-sensitive w.r.t. g.
Applying Theorem A.7, we get log RSizedt1/10(f) ≥ log RSizedt1/10(g) = Ω(k) = Ω(logN1(f)/ log n) =
Ω(logN(f)/ log n).

A.3.2 Symmetric functions

In this section we show randomized decision tree size lower bounds for symmetric functions, as an
application of our template.

Definition A.8 (Symmetric functions). A function f : {0, 1}n → {0, 1} is said to be symmetric if for
all σ ∈ Sn and for all x ∈ {0, 1}n we have f(x) = f(σ(x)).

In other words, a Boolean function is symmetric if its value only depends on the Hamming weight
of its input. For a symmetric Boolean function f on n variables, let f0, f1, ..., fn ∈ {0, 1} denote the
values of the function f on inputs of Hamming weight 0, 1, ..., n respectively. We consider the case when
fk ̸= fk+1 for some 0 ≤ k ≤ n/2. The case when k > n/2 is analogous and symmetric.

Theorem A.9. Let f be a symmetric Boolean function and let 0 ≤ k ≤ n/2 be such that fk ̸= fk+1.
Then, RSizedt(f) = 2Ω(k).

Proof. Without loss of generality, let fk = 0. Define t = k/n. We exhibit a spread and sensitive
distribution with respect to f . Let µ0 be a distribution which samples a uniformly random input string
of Hamming weight exactly k. We claim that µ0 has the necessary spreadness and sensitivity properties.
It is clear that µ0 is (n− k, 0, 0)-sensitive. For spreadness, let S be a subcube of 0-codimension at least
⌈n−k

2 ⌉, we have

Pr
x∼µ0

[x ∈ S] =
|{x|x ∈ S and |x| = k}|(

n
k

) ≤
(n−⌈n−k

2 ⌉
k

)(
n
k

) =

k−1∏
i=0

m− i

n− i
.

where m = n − ⌈n−k
2 ⌉. Since the factors inside the product are decreasing, we get an upper bound

of (m/n)k ≤ ( 2
1+t )

−tn. So we get µ0 is (⌈n−k
2 ⌉, ( 2

1+t )
−tn, 0)-spread. Applying Theorem A.7, we get

RSizedt1/10(f) = Ω(( 2
1+t )

tn) = 2Ω(k).

An immediate corollary of the above result is an exponential randomized decision tree size lower
bound for the Majority function.

Corollary A.10. RSizedt(Majority) = 2Ω(n).

A.3.3 EQUALITY

The Equality function, denoted by Eqn : {0, 1}n×{0, 1}n → {0, 1}, is defined by Eq(x, y) = 1 iff xi = yi
for all i ∈ [n]. Consider the set F = {(x, x)|x ∈ {0, 1}n}; it is easy to observe that one 1-subcube cannot
cover more than one input in F . Thus, we get that N1(Eqn) = 2n. Applying Theorem 3.1, we get

that RSizedt(Eqn) = 2Ω(( n
log n )1/2). In this section, we apply our template to prove a self-contained 2Ω(n)

randomized decision tree size lower bound for Eqn.

Theorem A.11. RSizedt(Eqn) = Ω(2n/2).
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Proof. Let µ1 be a probability distribution which samples a uniformly random string x ∈ {0, 1}n and
outputs (x, x). We show µ1 has the necessary spreadness and sensitivity properties to apply Theorem A.7
to give a randomized decision tree size lower bound for Eqn. It is clear from the definition that µ1 is
(2n, 1)-sensitive w.r.t. Eqn. We show that µ1 is also (n, 2

−n/2)-spread. Let S be a subcube of codimension
ℓ ≥ n. Let P and Q be the set of variables of x and y fixed by S, respectively. Let ρx : {0, 1}P → {0, 1}
and ρy : {0, 1}Q → {0, 1} be the maps according to which the variables in P and Q are fixed by S.
Note that |P |+ |Q| = ℓ. Let U denote the uniform distribution over {0, 1}n. Note that for all inputs in
the support of µ1 we have x = y, and that the marginal distributions of both x and y are the uniform
distribution over {0, 1}n. We have

Pr
(x,y)∼µ1

[(x, y) ∈ S] = Pr
(x,y)∼µ1

∧
i∈P

(xi = ρx(i)) and
∧
j∈Q

(yj = ρy(j))


=

∏
i∈P\Q

Pr
x∼U

[xi = ρx(i)]
∏

j∈Q\P

Pr
y∼U

[yj = ρy(j)]
∏

i∈P∩Q

Pr
(x,y)∼µ1

[xi = yi = ρx(i) = ρy(i)]

= (1/2)|P∪Q| ≤ (1/2)ℓ/2 ≤ (1/2)n/2.

Applying Theorem A.7, we get RSizedt1/10(Eqn) = Ω(2n/2).

B Proofs for (And,Or) decision trees

Proof of Lemma 4.3. Let T be an ordinary decision tree computing f with L leaves. We argue existence
of an (And,Or) DT C computing f of size 2 log3/2 L by induction on L. The base case L = 1 is trivially
true. For the induction step, we obtain a node v in T such that the number of leaves in the subtree rooted
at v, Tv, lies in the range (L/3, 2L/3]. Such a node always exists and can be found by starting at the root
and traversing down to the child node with more leaves until the number of leaves in the subtree rooted
at the current node satisfies the condition. Let S0 and S1 be the set of variables evaluated to 0 and 1
on the path from the root to v, respectively. The (And,Or) DT C starts by querying Q0 = ∨i∈S0xi

and Q1 = ∧i∈S1xi. If Q0 evaluates to 0 and Q1 evaluates to 1, proceed by recursively constructing the
(And,Or) decision tree for Tv. Otherwise, proceed by recursively constructing the (And,Or) decision
tree for T ′ where T ′ is the DT obtained by replacing node v in T with a leaf node with an arbitrary
label. C computes f is clear from the construction. Moreover since both Tv and T ′ have at most 2L/3
many leaves, using induction, we get

Depth(C) ≤ 2 log3/2 L ≤ 4 logL.

Proof of Lemma 4.4. Let C be an (And,Or) decision tree computing f of depth d. We argue by
induction on the number of variables n and depth d of C. Let L(n, d) be the size of an optimal ordinary
decision tree computing a n variable Boolean function for which there exists an (And,Or) decision tree
of depth d. Let Q be the root query in C. Without loss of generality, let Q be an And query; the case
for Or query is similar. Consider an ordinary decision tree T , which starts by querying xi, a variable in
Q. If xi evaluates to 0, proceed by recursively constructing ordinary DT for the left subtree of the root
node in C. If xi evaluates to 1, proceed by recursively constructing an ordinary DT for C ′, where C ′

is a reduced (And,Or) decision tree obtained by setting xi to 1 in each query in C. This gives us the
following recurrence on L(n, d).

L(n, d) ≤ L(n− 1, d− 1) + L(n− 1, d) with L(0, d) = L(n, 0) = 1.

By induction on n and d and using the identity
(
n
k

)
=

(
n−1
k−1

)
+

(
n−1
k

)
, we get

L(n, d) ≤
d∑

i=0

(
n

i

)
,
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which is bounded by

d∑
i=0

(
n

i

)
≤

d∑
i=0

ni

i!
=

d∑
i=0

di

i!

(n
d

)i

≤
(n
d

)d d∑
i=0

di

i!
≤

(ne
d

)d

.

Thus, there exists an ordinary decision tree computing f whose size is bounded from above by (ned )d.

C An alternative proof of Lemma 4.6

In this section we give an alternative, dual-based proof of Lemma 4.6. We first require some definitions
and preliminaries.

For a probability distribution D over {0, 1}n, the (D, ε)-distributional query complexity of f , denoted
Ddt

D,ε(f), is the minimum depth of a deterministic decision tree that gives a correct answer on 1 − ε
fraction of inputs weighted by D. Distributional size complexity is defined similarly. That is, with x ∼ D
denoting that x is sampled according to D,

DSizedtD,ε = min
{
Size(T ) | T is a deterministic decision tree; Pr

x∼D
[T (x)) = f(x)] ≥ 1− ε

}
.

Distributional complexity provides a technique to prove randomized query and size lower bounds via
Yao’s minmax principle [40].

Proposition C.1 ([40]). For every Boolean function f : {0, 1}n → {0, 1} and ε > 0, Rdt
ε (f) =

maxD Ddt
D,ε(f) and RSizedtε (f) = maxD DSizedtD,ε(f)

We remark that the proposition above holds true even when the decision trees are generalized, as in
Section 2.2, for example.

Monotone block sensitivity and fractional monotone block sensitivity are variants of block sensitivity
and fractional block sensitivity where we restrict changing the input by only flipping 0’s to 1’s.

Definition C.2 (Monotone block sensitivity). For f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, let
S = {i : xi = 0}. The monotone block sensitivity of f at x, denoted by MBS(f, x), is the maximum r
for which there exist r disjoint 0-blocks in W0(f, x). The monotone block sensitivity of f , denoted by
MBS(f), is defined as

MBS(f) = max
x∈{0,1}n

MBS(f, x).

Definition C.3 (Fractional monotone block sensitivity). A distribution D over 2[n] is said to be p-
smooth if for any i ∈ [n] it holds that PrB∼D[i ∈ B] ≤ p. For f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n,
the fractional monotone block sensitivity of f at x, denoted FMBS(f, x), is equal to 1/p, where p > 0 is
the smallest number for which there exists a p-smooth distribution D supported on a subset of W0(f, x).
Define

FMBS(f) = max
x∈{0,1}n

FMBS(f, x).

Monotone block sensitivity and 0-hitting set complexity can be phrased as packing and covering
integer programs, respectively. Their fractional versions can be seen as fractional packing and covering
linear programs. By definitions and using linear programming duality, we get the following simple
relationship between them.

Claim C.4 ([29, Claim 2.16]). For every Boolean function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n,

MBS(f, x) ≤ FMBS(f, x) = FHSC0(f, x) ≤ HSC0(f, x).

An alternative proof of Lemma 4.6. First, by Claim C.4, FHSC0(f, x) = FMBS(f, x) for every x ∈
{0, 1}n. Thus it suffices to prove that R0-dt(f) = Ω(FMBS(f)). Let a ∈ {0, 1}n be an input achieving
the fractional monotone block sensitivity, i.e., FMBS(f, a) = FMBS(f). By definition, there exists a
1/FMBS(f)-smooth distribution, say D′, on the sensitive 0-blocks of a. Using D′ we construct a hard
distribution D on inputs in {0, 1}n such that D0-dt(f)D,1/3(f) (which is the distributional zero-depth
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complexity of f w.r.t. D) is at least FMBS(f)/3, thereby showing R0-dt(f) ≥ FMBS(f)/3 by invoking
Proposition C.1. Let S be the set of all sensitive 0-blocks of a. The hard distribution is as follows.

D(x) =

 1/2 if x = a
(1/2)D′(B) if x = a⊕ 1B where B ∈ S
0 otherwise

Let T be any deterministic decision tree that gives the correct answer for f on 2/3 mass of inputs
when sampled from D. We argue that the zero-depth of T must be at least FMBS(f)/3. Consider the
path P traversed on a by T . We argue that path P must have at least FMBS(f)/3 variables whose query
outcomes were 0. Suppose not, and let I be the set of indices of variables whose query outcomes were 0
on path P . By the (1/FMBS(f))-smoothness of D′, we have

Pr
B∼D′

[I ∩B ̸= ∅] ≤
∑
i∈I

Pr
B∼D′

[i ∈ B] union bound

≤ |I| · 1/FMBS(f) D′ is (1/FMBS(f))-smooth

< 1/3. |I| < FMBS(f)/3

Let X = {a ⊕ 1B |B ̸= ∅, B ∩ I = ∅}. Note that each x ∈ X has f(x) ̸= f(a) and is consistent with all
of the answers on the path P (and hence reaches the same leaf as a). Moreover, by the analysis above
Prx∼D[x ∈ X ] ≥ 1/3. Now if f(a) equals the label at the leaf of P , then T errors on inputs in X with
probability mass more than 1/3 and if f(a) does not equal this label, then T errs on a with probability
mass 1/2. Either way, this contradicts the assumption that T answers correctly on 2/3 probability mass
when inputs are sampled according to D.
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