
Linear-Size Boolean Circuits for Multiselection
Justin Holmgren∗ Ron D. Rothblum†

Abstract
We study the circuit complexity of the multiselection problem: given an input string 𝑥 ∈ {0, 1}𝑛 along

with indices 𝑖1, . . . , 𝑖𝑞 ∈ [𝑛], output (𝑥𝑖1 , . . . , 𝑥𝑖𝑞). A trivial lower bound for the circuit size is the input
length 𝑛 + 𝑞 · log(𝑛), but the straightforward construction has size Θ(𝑞 · 𝑛).

Our main result is an 𝑂(𝑛 + 𝑞 · log3(𝑛))-size and 𝑂(log(𝑛 + 𝑞))-depth circuit for multiselection. In
particular, for any 𝑞 ≤ 𝑛/ log3(𝑛) the circuit has linear size and logarithmic depth. Prior to our work no
linear-size circuit for multiselection was known for any 𝑞 = 𝜔(1) and regardless of depth.

1 Introduction
In the selection problem, also commonly called multiplexing, one is given a long string 𝑥 ∈ {0, 1}𝑛 and an
index 𝑖 ∈ [𝑛], and the goal is to output 𝑥𝑖. Selection is one of the basic operations in the word RAM model
(and indeed costs unit time in that model). Implementing it by a Boolean circuit however is more involved
and requires a circuit of size Θ(𝑛).1

In this work we investigate a natural generalization of selection, which we call multiselection; now rather
than a single index, one is given indices 𝑖1, . . . , 𝑖𝑞 ∈ [𝑛], and the goal is to compute (𝑥𝑖1 , . . . , 𝑥𝑖𝑞

). We denote
this function by Sel𝑛→𝑞. Multiselection is trivial in the word RAM model of computation (it costs Θ(𝑞)
operations with any standard instruction set). We focus on implementing multiselection by small Boolean
circuits, where here and throughout this work all circuits have bounded fan-in. In this setting, we do not
have matching upper and lower bounds. The best circuit size lower bound for multiselection is the input
length 𝑛+𝑞 · log 𝑛. On the other hand, the straightforward construction (which selects each index separately)
is much larger, with size Θ(𝑛 · 𝑞). A slightly more sophisticated approach reduces to sorting, and results in
a circuit of size Θ(𝑛 log2 𝑛) for any 𝑞 = 𝑂(𝑛). Somewhat surprisingly, it appears that multiselection has not
been systematically studied and in particular we are not aware of essentially any other upper bounds (see
further discussion in Section 1.1).

Our main result is an 𝑂(𝑛)-size, and 𝑂(log 𝑛)-depth, Boolean circuit for multiselection for any 𝑞 ≤
𝑂(𝑛/ log3(𝑛)). More generally:

Theorem 1 (Main Theorem). For all 𝑛, 𝑞 ∈ Z+ there is a Boolean circuit computing Sel𝑛→𝑞 of size 𝑂(𝑛 +
𝑞 · log3(𝑛)) and depth 𝑂(log(𝑛 + 𝑞)).

To the best of our knowledge, no linear-size circuit for multiselection was previously known for any
𝑞 = 𝜔(1), even without any restriction on the depth.

The main technical tools used in our construction are self-routing superconcentrators [Pip96] and low-
depth quasi-linear size sorting networks [AKS83]. We also discuss applications of our linear-size multiselection
circuit to problems in cryptography in Appendix A.

∗NTT Research. Email: justin.holmgren@ntt-research.com.
†Technion. Email: rothblum@cs.technion.ac.il.
1The Ω(𝑛) lower bound simply comes from the input size (which is a circuit size lower bound for any function in which each

input has non-zero influence). The upper bound follows from a simple divide and conquer approach (cf. [Sav98, Lemma 2.5.5]
or Proposition 3.1).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 113 (2023)

Remark 1.1 (Uniformity). The circuits that we construct to prove Theorem 1 are log-space uniform, mean-
ing that they can be generated in logarithmic space (and polynomial-time) by a uniform algorithm, given 1𝑛

as input. Motivated by some of our applications, in Appendix B we also show an extension of the result with
a linear-time uniform generation algorithm (on a word RAM machine), but only for 𝑞 < 𝑛𝜀, where 𝜀 > 0 is
a universal constant.

1.1 Related Work
Tight Compaction Several recent works [ALS22, LS21, AKL+20b, AKL+20a] study the related and
central problem of tight compaction, in which the task is to retrieve all “marked” symbols of a string x
(in any order). Although this has a similar flavor to multiselection, there are several important differences.
First, compaction circuits assume that each symbol 𝑥𝑖 of x is marked with a bit 𝑏𝑖 indicating whether or not
𝑥𝑖 is to be selected. In multiselection, we are instead given a list of indices 𝑖1, . . . , 𝑖𝑞 that should be selected.
Given such a list, we know how to compute (𝑏1, . . . , 𝑏𝑛) with circuits only of size Ω(𝑛 log2 𝑛). Second, the
ordering of a compaction circuit’s output is unconstrained, while the ordering of a multiselection circuit’s
output is determined by the ordering of its input indices 𝑖1, . . . , 𝑖𝑞.

We address similar issues in our approach to constructing multiselection circuits. Interestingly, our
construction implicitly utilizes a variant of compaction that can be instantiated in linear size using the
[ALS22] construction. We discuss this point further in our technical overview.

Uniselection Lower Bounds. As noted above, it is easy to construct an 𝑂(𝑛)-size circuit for the unis-
election problem (i.e., the case of 𝑞 = 1). Interestingly though, the uniselection problem has been a source
for some of the best known circuit and formula lower bounds that are known (for any explicit function).

In particular, Paul [Pau77] gave a 2𝑛− 𝑜(𝑛) lower bound on the circuit complexity of uniselection (over
any 2-bit gate basis). Blum [Blu84] gave a 3𝑛 − 𝑜(𝑛) lower bound for computing a closely related function
(as a matter of fact this function involves computing a multiselection with 𝑞 = 3 and applying a simple
gadget function to the result). Nechiporuk [Nec66] proved a quadratic lower bound on the formula size for a
modified selection function and Andreev [And87] proved an 𝑛2.5−𝑜(1) lower bound on the de Morgan formula
size of roughly the same function.

2 Technical Overview
In this section we give an overview of the proof techniques underlying the proof of Theorem 1. In this
overview we focus on achieving a linear-size multiselection circuit and defer the additional complications
needed to simultaneously achieve logarithmic-depth to the technical sections.

The main technical tool that we use in our construction is a superconcentrator. Recall that a supercon-
centrator [Val75] is a constant-degree directed acyclic graph with 𝑂(𝑛) vertices, 𝑛 of which are sources and
𝑛 of which are sinks, with the property that for any 𝑞 ≤ 𝑛, any set 𝑆 of sources, and any set 𝑇 of sinks with
|𝑆| = |𝑇 | = 𝑞, there exist 𝑞 vertex-disjoint paths from 𝑆 to 𝑇 .

Weak multiselection from superconcentrators. We first use superconcentrators to construct linear-
size circuits for a weak form of multiselection (to be described shortly) and then show how to upgrade this
construction to a circuit for full-fledged multiselection.

By replacing each vertex of a superconcentrator with a constant-sized routing gadget, we obtain for every
𝑞 ≤ 𝑛 a circuit 𝐶 of size 𝑂(𝑛) that implements the following weak form of multiselection: For any list of
distinct indices i = (𝑖1, . . . , 𝑖𝑞) ∈ [𝑛]𝑞, there exists an “advice string” î ∈ {0, 1}Θ(𝑛) and a reordering 𝑗1, . . . , 𝑗𝑞

of 𝑖1, . . . , 𝑖𝑞 such that 𝐶(x, î) = (𝑥𝑗1 , . . . , 𝑥𝑗𝑞
), for all x ∈ {0, 1}𝑛. The string î describes the 𝑞 vertex-disjoint

paths from the source vertices 𝑖1, 𝑖2, . . . , 𝑖𝑞, to the sinks 1, 2, . . . , 𝑞, by specifying how each vertex’s routing
gadget should be configured.

This weak form of multiselection suffers from three drawbacks, which we will repair one by one:

2

1. The cost of computing î might be large, and in particular super-linear in the length of x,

2. The output of 𝐶 is misordered — it is (𝑥𝑗1 , . . . , 𝑥𝑗𝑞
) instead of (𝑥𝑖1 , . . . , 𝑥𝑖𝑞

), and

3. The input i is required to consist of distinct indices in [𝑛].

Amortizing the computation of the advice string. We address issue 1 by (temporarily) switching to
a larger alphabet, which allows to amortize the cost of computing the advice string î. We refer to the latter
as a “block multiselector”. Later we will show how to use a block multiselector to construct our desired
(binary alphabet) multiselector.

In more detail, consider a generalization of multiselection, over an alphabet Σ = {0, 1}𝑠. The input is
now a string x ∈ Σ𝑛 and indices 𝑖1, . . . , 𝑖𝑞 ∈ [𝑛] and the goal, as before, is to output (𝑥𝑖1 , . . . , 𝑥𝑖𝑞

) ∈ Σ𝑞.
Jumping ahead, it will suffice for us to set the block size 𝑠 to be poly-logarithmic in 𝑛.

To construct the block multiselector, denoted 𝐶𝑠, we simply take 𝑠 copies of 𝐶 so that the 𝑗𝑡ℎ copy gets
as input the 𝑗𝑡ℎ bit of each input block and produces the 𝑗𝑡ℎ bit of each output block; all copies of 𝐶 share
the same advice string input. This circuit 𝐶𝑠 has the property that for all i ∈ [𝑛]𝑞 (consisting of distinct
elements), there exists î ∈ {0, 1}Θ(𝑛) and a reordering j = (𝑗1, . . . , 𝑗𝑞) of i such that for all 𝑥 ∈

(︀
{0, 1}𝑠

)︀𝑛, it
holds that 𝐶𝑠(𝑥, î) = (𝑥𝑗1 , . . . , 𝑥𝑗𝑞

).
The size of 𝐶𝑠 is 𝑂(𝑛 · 𝑠), but the computation of î from 𝑖1, . . . , 𝑖𝑞 is entirely independent of 𝑠. Thus,

by choosing 𝑠 to be sufficiently large, we can hope to amortize the computation of î relative to our input
length, which is Ω(𝑛 · 𝑠). There is an 𝑂(𝑛 log2(𝑛)) circuit for computing î for Pippenger’s self-routing
superconcentrators [Pip96], so by using these in the prior step it suffices now to set 𝑠 = log2(𝑛).

Overall, we obtain a linear-size block multiselector 𝐶𝑠 (i.e., of size 𝑂(𝑛 · 𝑠)), for block size 𝑠 = log2(𝑛)
and number of queries 𝑞 ≤ 𝑛, with the following property: for all distinct 𝑖1, . . . , 𝑖𝑞 ∈ [𝑛]𝑞, there exists
a reordering 𝑗1, . . . , 𝑗𝑞 of 𝑖1, . . . , 𝑖𝑞 such that 𝐶𝑠(x, 𝑖1, . . . , 𝑖𝑞) = (𝑥𝑗1 , . . . , 𝑥𝑗𝑞), for all x ∈

(︀
{0, 1}𝑠

)︀𝑛. We
note that such a circuit could also be constructed using linear-size circuits for tight compaction [ALS22], in
conjunction with Lemma 5.10.

Reordering the outputs and handling non-unique inputs. We next simultaneously resolve issues
2 (misordered output) and 3 (the restriction of unique indices). The high level idea is to append to each
of the blocks its (original) block index. This means that after applying the block-multiselector from the
previous step, we still keep track of the original location of this block, which we can combine with 𝑖1, . . . , 𝑖𝑞

to rearrange the output blocks in the desired order (and handle multiplicities appropriately).
In more detail, on input x ∈

(︀
{0, 1}𝑠

)︀𝑛 and i ∈ [𝑛]𝑞, we construct the string x′ :=
(︀
(1, 𝑥1), . . . , (𝑛, 𝑥𝑛)

)︀
∈

({0, 1}log(𝑛)+𝑠)𝑛 as well as an index string i′ ∈ [𝑛]𝑞 that consists of a sequence of distinct elements that
contains all elements of i (the string i′ can be constructed by sorting 𝑖1, . . . , 𝑖𝑞, removing duplicates, and
adding suitable padding). We then invoke 𝐶𝑠+log 𝑛 on input (x′, i′) to obtain the set{︀

(𝑖′
1, 𝑥𝑖′

1
), . . . , (𝑖′

𝑞, 𝑥𝑖′
𝑞
)
}︀

, (1)

represented as a list of elements (in some order).
We next combine (1) with {︀

(1, 𝑖1), . . . , (𝑞, 𝑖𝑞)
}︀

(2)

to obtain {︀
(1, 𝑖1, 𝑥𝑖1), . . . , (𝑞, 𝑖𝑞, 𝑥𝑖𝑞

)
}︀

(3)

using the same representations of sets. This step, which can be viewed as an inner join (cf the database
literature), combines the two lists based on the common keys 𝑖1, . . . , 𝑖𝑞. It can be implemented in quasilinear
size using sorting circuits. Once we have constructed the set in Eq. (3) in some arbitrary order, we can sort
its elements by their first coordinate to obtain the ordered list

(︀
(1, 𝑖1, 𝑥𝑖1), . . . , (𝑞, 𝑖𝑞, 𝑥𝑖𝑞

)
)︀
, from which we

can read off (𝑥𝑖1 , . . . , 𝑥𝑖𝑞
).

3

The dominant costs in this construction arise from the usage of sorting circuits. In each instance, standard
sorting circuits are applicable, with size �̃�(𝑞) · (𝑠 + log 𝑛). If we use the sorting circuits of [AKS83], then the
�̃�(𝑞) factor is in fact 𝑂(𝑞 log 𝑞), so (with 𝑠 = log2(𝑛)) it suffices to set 𝑞 ≤ 𝑛/ log3(𝑛).

To summarize, we have now built a linear-size block-multiselection circuit for querying 𝑞 = 𝑛/ log3(𝑛)
blocks of size 𝑠 = log2(𝑛).

From block-multiselection back to bit-multiselection. Finally, we return to our original goal of
multiselection over {0, 1}. We do so as follows: given queries 𝑖1, . . . , 𝑖𝑞 to bits of a string 𝑥, we group the bits
of 𝑥 into 𝑠-bit blocks 𝐵1, . . . , 𝐵𝑛/𝑠. We view each index 𝑖𝑗 as consisting of a prefix 𝑝𝑗 ∈ [𝑛/𝑠] (specifying the
block index) and a suffix 𝑟𝑗 ∈ [𝑠] (specifying the internal index within the block). We apply the multiselection
circuit of the previous step to obtain blocks 𝐵𝑝1 , . . . , 𝐵𝑝𝑞 indexed by the log(𝑛/𝑠)-bit prefixes 𝑝1, . . . , 𝑝𝑞 of
𝑖1, . . . , 𝑖𝑞. We then use 𝑞 copies of a (uni-)selection circuit to obtain and output the 𝑟𝑡ℎ

𝑗 bit from each block
𝐵𝑝𝑗

. The circuit implements the desired multiselection functionality and has size 𝑂((𝑛/𝑠) · 𝑠 + 𝑞 · 𝑠) = 𝑂(𝑛).

Achieving low-depth. A straightforward implementiation of our construction has depth polylog(𝑛). Im-
proving this to 𝑂(log 𝑛) requires significant care. For example, while we can use a logarithmic depth sorting
network [AKS83], that network uses abstract comparator gates. When working over a large alphabet, the
implementation of each comparator gate has super-constant depth (when implemented as a Boolean cir-
cuit), and so the resulting overall depth is ostensibly super-logarithmic. Nevertheless, we are able to provide
suitable implementations of all of the gadgets so that the overall construction achieves logarithmic depth.

3 Preliminaries
We assume that the reader is familiar with the notion of a Boolean circuit and the associated function that
it computes. We emphasize that, unless otherwise stated, throughout this work by “circuit” we refer to
constant fan-in circuits over the standard De Morgan base.

Uniformity. We say that a family 𝒞 = {𝐶𝑛}𝑛∈Z+ of Boolean circuits is log-space uniform if there exists
a Turing machine that on input 1𝑛 uses 𝑂(log 𝑛) space and prints the description of the circuit 𝐶𝑛, on a
write-only output tape. The description is a listing of the gates in an (arbitrary) topological ordering along
with a specification of the gate operation and pointers to each of its inputs. In Appendix B we also discuss
an extension of our main result for linear-time uniformity.

3.1 Boolean Circuits for Uniselection
The following standard proposition gives a linear-size circuit, that given a string x ∈ Σ𝑛, over an alphabet
Σ, and an index 𝑖 ∈ [𝑛], outputs the symbol 𝑥𝑖 (in other words, a multiplexer).

Proposition 3.1. Let 𝑠 = 𝑠(𝑛) ∈ Z+ and let Σ = {0, 1}𝑠. There exists a log-space uniform Boolean circuit
for Sel𝑛→1

Σ with size 𝑂(𝑛 · 𝑠) and depth 𝑂(log 𝑛)

Proof. Without loss of generality assume that 𝑠 = 1 (for 𝑠 > 1 we can use 𝑠 parallel copies of the circuit
for 𝑠 = 1). The circuit follows a divide and conquer strategy. Assume for simplicity that 𝑛 is a power of 2.
Let x ∈ {0, 1}𝑛 and 𝑖 ∈ [𝑛] be the inputs. Let 𝑖1 denote the most significant bit of 𝑖 and let 𝑖′ denote the
remaining bits (i.e., 𝑖′ ∈ [𝑛/2]). To select the 𝑖𝑡ℎ bit of x, the circuit recursively selects the (𝑖′)𝑡ℎ bit of both
the lower and upper halves of x. Then, based on 𝑖1, it decides which of the two bits to output. Overall the
circuit size satisfies the recursion: 𝑆(𝑛) = 2𝑆(𝑛/2) + 𝑂(1) and the depth satisfies 𝐷(𝑛) = 𝐷(𝑛/2) + 𝑂(1).
The proposition follows.

4

3.2 Small-Size Sorting Circuits
Our circuits for multiselection heavily rely on circuits for sorting integers.

Lemma 3.2. For every 𝑘 = 𝑘(𝑛) and 𝑚 = 𝑚(𝑛), there is a log-space uniform Boolean circuit of size
𝑂(𝑛 ·𝑚 · log 𝑛) for sorting 𝑛 integers of 𝑚 bits.

This lemma follows immediately from the sorting networks of Ajtai, Komlós, and Szemerédi [AKS83].
In order to make our multiselection circuit have logarithmic depth, we need a refined version of Lemma 3.2,
which we present in Section 4.

4 Low-Depth Sorting of Logarithmic-Length Keys
We first recall what it means to sort with respect to a partial ordering.

Definition 4.1. Let Σ be a finite set. We say that x, y ∈ Σ𝑛 are reorderings of each other if for some
permutation 𝜋 : [𝑛]→ [𝑛], it holds that 𝑥𝑖 = 𝑦𝜋(𝑖), for all 𝑖 ∈ [𝑛].

Definition 4.2. Let Σ be a finite set with a strict partial ordering ≺. A Boolean circuit is said to sort
Σ𝑛 with respect to ≺ if on any input x ∈ Σ𝑛, it outputs a reordering y of x such that for any 𝑖, 𝑗 ∈ [𝑛],
𝑦𝑖 ≺ 𝑦𝑗 =⇒ 𝑖 < 𝑗.

In particular, we will focus on a partial ordering that compares integers by their 𝑘 most significant bits.
That is, for any 𝑚 ∈ Z+ and any x, y ∈ {0, 1}𝑚, we write x ≺𝑘 y to denote that (𝑥1, . . . , 𝑥𝑘) lexicographically
precedes (𝑦1, . . . , 𝑦𝑘).

Lemma 4.3. For every 𝑚 = 𝑚(𝑛) and 𝑘 ∈ [𝑚], there is a log-space uniform Boolean circuit of size
𝑂(𝑛 ·𝑚 · log 𝑛) and depth 𝑂(𝑘 + log 𝑛) for sorting

(︀
{0, 1}𝑚

)︀𝑛 with respect to ≺𝑘.

We are mainly interested in the setting 𝑘 = Θ(log 𝑛), in which case the constructed Boolean circuit has
size 𝑂(𝑛 ·𝑚 · log 𝑛) and depth 𝑂(log 𝑛).

To the best of our knowledge Lemma 4.3 was not previously known. The straight-forward circuit based on
AKS networks yields circuits with matching size 𝑂(𝑛 ·𝑚 · log 𝑛) but depth 𝑂(log 𝑛 · log 𝑘). Kospanov [Kos94]
obtained circuits with better depth 𝑂(log 𝑛 + log 𝑘) but much larger size 𝑂(𝑛2 · 𝑘). A recent work of [KK21]
obtains size 𝑂(𝑛 · 𝑘2) and depth 𝑂(log 𝑛 + 𝑘 log 𝑘), which is better for some values of 𝑘 = 𝑜(log 𝑛), but worse
in our regime of 𝑘 = Θ(log 𝑛). The work of Lin and Shi [LS21, Theorem 1.1] similarly constructs circuits
with size 𝑂(𝑛 ·𝑚 · log 𝑛) and depth 𝑂(log 𝑛) when 𝑛 > 24𝑘+7, but not for all values of 𝑘 = Θ(log 𝑛).

4.1 Sorting Networks
Our sorting circuits rely on sorting networks, which are generic constructions of 𝑛-input sorting circuits from
2-input sorting circuits.

Definition 4.4 (Sorting Networks). An 𝑛-input sorting network is a circuit 𝐶 with 𝑛 inputs and 𝑛 outputs,
and with all gates having fan-in and fan-out two, such that for any set Σ with strict partial ordering ≺, if
each gate of 𝐶 is replaced by a circuit that sorts Σ2 with respect to ≺, then the resulting circuit sorts Σ𝑛

with respect to ≺.

For the best asymptotic size and depth, we use the celebrated sorting network of Ajtai, Komlós, and
Szemerédi [AKS83].

Lemma 4.5 ([AKS83]). There is a (log-space uniform) 𝑛-input sorting network with size 𝑂(𝑛 log 𝑛) and
depth 𝑂(log 𝑛).

5

4.2 From Sorting Networks to Boolean Circuits
We prove Lemma 4.3 by combining the following lemma with Lemma 4.5.

Lemma 4.6. Suppose that there is a log-space uniform sorting network on 𝑛 elements with size 𝑆 = 𝑆(𝑛)
and depth 𝐷 = 𝐷(𝑛). Then, for all 𝑚 = 𝑚(𝑛) and 𝑘 ∈ [𝑚], there is a log-space uniform Boolean circuit with
size 𝑂(𝑆 ·𝑚) and depth 𝑂(𝐷 + 𝑘) for sorting

(︀
{0, 1}𝑚

)︀𝑛 with respect to ≺𝑘.

Proof. Starting with an 𝑛-input sorting network 𝒜 with size 𝑆 and depth 𝐷, we obtain a Boolean circuit
𝒞 from 𝒜 by replacing each gate with a Boolean circuit Sort(2)

𝑘,𝑚 that sorts
(︀
{0, 1}𝑚

)︀2 with respect to ≺𝑘.
With this approach it is easy to make 𝒞 have size 𝑂(𝑆 ·𝑚) — since Sort(2)

𝑘,𝑚 merely needs to have size 𝑂(𝑚).
Depth seems to pose more of a difficulty. Locality considerations imply that Sort(2)

𝑘,𝑚 must have depth at
least Ω(log 𝑘) (e.g. the least significant bit of either output of Sort(2)

𝑘,𝑚(x, y) depends on all of the 𝑘 most
significant bits of x and y). Thus, it might seem that this approach dooms 𝒞 to have depth Ω(𝐷 · log 𝑘).

We circumvent this difficulty by noting that although input-to-output paths in 𝒞 are concatenations of
𝐷 input-to-output paths in Sort(2)

𝑘,𝑚, these 𝐷 paths cannot all be worst-case. In particular, the 𝑖𝑡ℎ output bit
of one copy of Sort(2)

𝑘,𝑚 is only connected to the 𝑗𝑡ℎ input bit of another copy if 𝑖 ≡ 𝑗 (mod 𝑚) (see Fig. 1).

Figure 1: The four different ways that we can connect one copy of Sort(2)
𝑘,𝑛 to another. In this depiction, a

copy of Sort(2)
𝑘,𝑛 is depicted by a rectangle, with inputs incident to the bottom edge and output incident to

the top. The left half corresponds to the first input/output, and the right half to the second.

We leverage this with the following lemma, whose proof we defer momentarily.

Lemma 4.7. For any 𝑚 = 𝑚(𝑛) and 𝑘 ∈ [𝑚], there is a log-space uniform Boolean circuit Sort(2)
𝑘,𝑚 with size

𝑂(𝑚) that sorts
(︀
{0, 1}𝑚

)︀2 with respect to ≺𝑘 and has the following additional property:
For all �̂�, �̂� ∈ [𝑚] and 𝑖, 𝑗 ∈ [2𝑚] with 𝑖 ≡ �̂� (mod 𝑚) and 𝑗 ≡ �̂� (mod 𝑚), every path in Sort(2)

𝑘,𝑚 from the
𝑖𝑡ℎ input vertex to the 𝑗𝑡ℎ output vertex has length 𝑂

(︀
min(𝑗, 𝑘) − min(𝑖, 𝑘) + 1

)︀
. In particular there is no

such path if 𝑘 > 𝑖 > 𝑗.

Assuming Lemma 4.7, consider any input-to-output path p in 𝒞. We write p as a composition of paths
p1 ∘ · · · ∘ p𝐷, where each pℓ is an input-to-output path of some copy of Sort(2)

𝑘,𝑚. Define 𝑖ℓ, 𝑗ℓ ∈ [2𝑚] so that
pℓ starts at the 𝑖𝑡ℎ

ℓ input and ends at the 𝑗𝑡ℎ
ℓ output of that copy, and define �̂�ℓ, �̂�ℓ ∈ [𝑚] such that 𝑖ℓ ≡ �̂�ℓ

(mod 𝑚) and 𝑗ℓ ≡ �̂�ℓ (mod 𝑚). By the observation above, we have �̂�ℓ = �̂�ℓ+1 for all ℓ ∈ [𝐷 − 1], and by
Lemma 4.7, we have for some constant 𝐿 that |pℓ| ≤ 𝐿 ·

(︀
min(�̂�ℓ, 𝑘)−min(̂𝑖ℓ, 𝑘) + 1

)︀
.

6

Putting this together, we bound

|p| =
𝐷∑︁

ℓ=1
|pℓ|

≤
𝐷∑︁

ℓ=1
𝐿 ·

(︀
min(�̂�ℓ, 𝑘)−min(̂𝑖ℓ, 𝑘) + 1

)︀
= 𝐿 ·

(︀
min(�̂�𝐷, 𝑘)−min(̂𝑖1, 𝑘) + 𝐷

)︀
(telescoping sum because �̂�ℓ = �̂�ℓ+1 for ℓ ∈ [𝐷 − 1])

≤ 𝐿 · (𝑘 + 𝐷)
= 𝑂(𝑘 + 𝐷).

It remains to prove Lemma 4.7.

Proof of Lemma 4.7. We use the straightforward construction that compares the elements bit-by-bit starting
with their most significant bits. In more detail, we will construct a circuit ̃︂Sort

(2)
𝑘,𝑚 : {≺, ?,≻} × {0, 1}𝑚 ×

{0, 1}𝑚 that has the functionality

̃︂Sort
(2)
𝑘,𝑚(?, x, y) =

{︃
(x, y) if x ≺ y
(y, x) otherwise.

̃︂Sort
(2)
𝑘,𝑚(≺, x, y) = (x, y)̃︂Sort
(2)
𝑘,𝑚(≻, x, y) = (y, x)

and we define Sort(2)
𝑘,𝑚 = ̃︂Sort

(2)
𝑘,𝑚(?, ·, ·). This clearly gives the desired functionality. The first input symbol

aids in recursively constructing the circuit for ̃︂Sort
(2)
𝑘,𝑚, and is meant to indicate whether the global decision

on the comparison between 𝑥 and 𝑦 is (1) still undecided (?), (2) decided toward 𝑥 or (3) decided toward 𝑦.
Our construction of ̃︂Sort

(2)
𝑘,𝑚 is recursive. If 𝑘 = 0, then we define ̃︂Sort

(2)
𝑘,𝑚 to be the identity function. For

𝑘 > 0, ̃︂Sort
(2)
𝑘,𝑚 takes input (𝑐, x, y), it first computes

(𝑐′, 𝑎1, 𝑏1) =

⎧⎪⎨⎪⎩
(≺, 𝑥1, 𝑦1) if 𝑐 = ≺ or (𝑐 = ? and 𝑥1 < 𝑦1)
(?, 𝑥1, 𝑦1) if 𝑐 = ? and 𝑥1 = 𝑦1

(≻, 𝑦1, 𝑥1) if 𝑐 = ≻ or (𝑐 = ? and 𝑥1 > 𝑦1).

Then, with x′ and y′ denoting (𝑥2, . . . , 𝑥𝑚) and (𝑦2, . . . , 𝑦𝑚), it computes (a′, b′) = ̃︂Sort
(2)
𝑘−1,𝑚−1(𝑐′, x′, y′).

Finally it outputs
(︀
𝑎1 ∘ a′, 𝑏1 ∘ b′), where ∘ denotes string concatenation.

It is easy to check the correctness of this construction.

Circuit Size Let 𝑆(𝑘, 𝑚) denote the size of ̃︂Sort
(2)
𝑘,𝑚. For 𝑘 = 0 we clearly have 𝑆(𝑘, 𝑚) = 𝑂(𝑚). For

larger 𝑘, the recursive construction gives 𝑆(𝑘, 𝑚) = 𝑆(𝑘− 1, 𝑚− 1) + 𝑂(1), so by induction 𝑆(𝑘, 𝑚) = 𝑂(𝑚)
for all 𝑘 ≤ 𝑚.

Input-to-Output Path Lengths We now bound the length of different input-to-output paths in ̃︂Sort
(2)
𝑘,𝑚.

As in the construction above, denote the input to ̃︂Sort
(2)
𝑘,𝑚 by (𝑐, x, y) and denote the output by (a, b).

Claim 4.8. There exists a constant 𝐿 such that any path in ̃︂Sort
(2)
𝑘,𝑚 from an input {𝑥𝑖, 𝑦𝑖} to an output

{𝑎𝑗 , 𝑏𝑗} has length at most 𝐿 · (𝑗 − 𝑖 + 1), and any path from the input 𝑐 to an output {𝑎𝑗 , 𝑏𝑗} has length at
most 𝐿 · 𝑗.

In particular any path to an output {𝑎𝑗 , 𝑏𝑗} has length at most 𝐿 · 𝑗.

7

Proof. Let (x′, y′) denote the input to the recursive call to ̃︂Sort
(2)
𝑘−1,𝑚−1 and let (a′, b′) denote the output of

this call.
We consider several cases separately:

• Paths to {𝑎1, 𝑏1} have length bounded by an absolute constant because 𝑎1 and 𝑏1 are just a (constant-
sized) function of the inputs (𝑐, 𝑥1, 𝑦1). If 𝐿 is sufficiently large then this constant is at most 𝐿.

• For 𝑗 > 1, paths from {𝑐, 𝑥1, 𝑦1} to 𝑎𝑗 (= 𝑎′
𝑗−1) consist of a path through a constant-sized circuit (the

computation of 𝑐′) concatenated with a path to 𝑎′
𝑗−1 in ̃︂Sort

(2)
𝑘−1,𝑚−1. By induction the latter path has

length at most 𝐿 · (𝑗 − 1), so if 𝐿 is sufficiently large then the total path length is at most 𝐿 · 𝑗.

• For 𝑖 > 1 and 𝑗 > 1, paths from {𝑥𝑖, 𝑦𝑖} to {𝑎𝑗 , 𝑏𝑗} are just paths from {𝑥′
𝑖−1, 𝑦′

𝑖−1} to {𝑎′
𝑗−1, 𝑏′

𝑗−1}
and thus by induction they have length at most 𝐿 · (𝑗 − 𝑖 + 1).

Returning to Sort(2)
𝑘,𝑚 = ̃︂Sort

(2)
𝑘,𝑚(?, ·, ·) (without the tilde), we can see that any input-to-output path in

Sort(2)
𝑘,𝑚 directly corresponds to an input-to-output path in ̃︂Sort

(2)
𝑘,𝑚 whose length is appropriately bounded

by Claim 4.8. That concludes the proof of Lemma 4.7.

5 Unordered Multiselection Over Large Alphabets
In this section we construct a circuit that implements a relaxation of multiselection. Informally, this relax-
ation allows the output elements to appear in any order (and possibly with repetitions), rather than the
same order in which they were queried. Additionally, rather than selecting individual bits (which is our
eventual goal) - we consider a generalization to a larger alphabet size.

Definition 5.1. Unordered multiselection (with 𝑞 queries, over alphabet Σ) is the search problem defined by
the relation

̃︁Sel
𝑛→𝑞

Σ
def=

{︁(︀
(x, i), y

)︀
∈

(︀
Σ𝑛 × [𝑛]𝑞)× (Σ ∪ {⊥})𝑞 :

{︀
𝑦𝑘 : 𝑦𝑘 ̸= ⊥

}︀
𝑘∈[𝑞] =

{︀
𝑥𝑖𝑘

}︀
𝑘∈[𝑞]

}︁
.

5.1 Superconcentrators and Routing
We recall the notion of a superconcentrator, which is the main technical tool involved in our construction of
Boolean circuits for unordered multiselection.

Definition 5.2 (Networks). A network 𝒩 is a tuple 𝒩 = (𝑉, 𝐸, 𝐴, 𝐵), where 𝐺 = (𝑉, 𝐸) is a directed
acyclic graph and 𝐴, 𝐵 ⊆ 𝑉 are respectively sets of sources and sinks in 𝐺.

If |𝐴| = |𝐵| = 𝑛, then 𝒩 is said to be an 𝑛-network. The size of 𝒩 , denoted by |𝒩 |, is defined to be |𝐸|;
the degree of 𝒩 is the degree of 𝐺; and the depth of 𝒩 is the longest path length in 𝐺.

A family of 𝑛-networks {𝒩𝑛}𝑛∈Z+ is said to be log-space uniform if there an algorithm that on input 1𝑛

runs in 𝑂(log 𝑛) space and outputs 𝐺 (say with an adjacency list representation) and 𝐴, 𝐵 (say represented
by indicator strings).

Definition 5.3 (Superconcentrators). An 𝑛-superconcentrator is an 𝑛-network 𝒩 = (𝑉, 𝐸, 𝐴, 𝐵) such that
for any 𝑞 ∈ [𝑛] and any subsets 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 with |𝑋| = |𝑌 | = 𝑞, there exist 𝑞 vertex-disjoint paths
from 𝑋 to 𝑌 .

Definition 5.4. Let 𝒮 = (𝑉, 𝐸, 𝐴, 𝐵) be an 𝑛-superconcentrator. The routing problem for 𝒮 is a search
problem Route𝒮 whose input is a pair of (indicator strings for) sets 𝑋 ⊆ 𝐴, 𝑌 ⊆ 𝐵 with |𝑋| = |𝑌 |. A
valid corresponding output is any (indicator string for a) set 𝑅 ⊆ 𝐸 of edges such that 𝑅 is a union of 𝑞
vertex-disjoint paths from 𝑋 to 𝑌 , where 𝑞 = |𝑋| = |𝑌 |.

8

Note that whenever 𝒮 is an 𝑛-superconcentrator, the search problem Route𝒮 is total. Naturally, it is
desirable for a superconcentrator 𝒮 to admit efficient algorithms for Route𝒮 . The state of the art in this
respect is Pippenger’s construction of a “self-routing” superconcentrator.

Informally, a delay-𝑑 self-routing protocol for a superconcentrator (𝑉, 𝐸, 𝐴, 𝐵) associates each vertex
𝑣 ∈ 𝑉 with a finite automaton that can communicate synchronously with the automata on neighboring
vertices (where 𝑢 is said to neighbor 𝑣 if (𝑢, 𝑣) or (𝑣, 𝑢) is in 𝐸). For any sets 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 with
|𝑋| = |𝑌 | = 𝑞, if the automata in 𝑋 and 𝑌 are initialized with state 1, and all other automata are initialized
with state 0, then in 𝑑 steps the automata jointly compute 𝑞 vertex-disjoint paths from 𝑋 to 𝑌 by on the
𝑑𝑡ℎ step transmitting 1 on all edges in those paths and 0 on other edges.

Definition 5.5. A self-routing protocol with delay 𝑑 for an 𝑛-superconcentrator 𝒮 = (𝑉, 𝐸, 𝐴, 𝐵) is a tuple
(Σ, 𝛿), where:

• Σ is a finite “alphabet” set that contains {0, 1}; and

• 𝛿 : Σ𝑉 ∪𝐸 → Σ𝑉 ∪𝐸 is a function such that:

– for every vertex 𝑣 ∈ 𝑉 with incident edges 𝐸𝑣, 𝛿(q)𝑣 depends as a function of q only on
(︀
𝑞𝑒)𝑒∈𝐸𝑣.

– for every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝛿(q)𝑒 depends as a function of q only on 𝑞𝑢 and 𝑞𝑣.

• For any sets 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 with |𝑋| = |𝑌 |, if we define q(0) ∈ Σ𝑉 ∪𝐸 by

𝑞(0)
𝑣

def=
{︃

1 if 𝑣 ∈ 𝑋 ∪ 𝑌

0 if 𝑣 ∈ 𝑉 ∖ (𝑋 ∪ 𝑌)

and 𝑞
(0)
𝑒

def= 0 for all 𝑒 ∈ 𝐸, then the set

𝑅
def=

{︀
𝑒 ∈ 𝐸 : 𝛿𝑑(q(0))𝑒 = 1

}︀
satisfies

(︀
(1𝑋 , 1𝑌), 1𝑅

)︀
∈ Route𝒮 .

Such a self-routing protocol for an 𝑛-superconcentrator is said to be log-space uniform if there is a log-space
Turing machine that on input 1𝑛 outputs:

• a description of Σ;

• for each 𝑣 ∈ 𝑉 with incident edges 𝐸𝑣, the truth table for 𝛿(q)𝑣 as a function of (𝑞𝑒)𝑒∈𝐸𝑣 .

• for each 𝑒 = (𝑢, 𝑣) ∈ 𝐸, the truth table for 𝛿(q)𝑒 as a function of (𝑞𝑢, 𝑞𝑣).

Definition 5.6. A self-routing superconcentrator is a superconcentrator 𝒮 with an associated self-routing
protocol (Σ, 𝛿) for 𝒮. A self-routing superconcentrator is said to be log-space uniform if both the supercon-
centrator and the associated self-routing protocol are log-space uniform.

Theorem 5.7 ([Pip96]). There exists a log-space uniform self-routing 𝑛-superconcentrator 𝒮 with size 𝑂(𝑛),
degree 𝑂(1), and depth 𝑂(log 𝑛), where the self-routing protocol has alphabet size 𝑂(1) and delay 𝑂(log 𝑛).

Corollary 5.8. There exists a log-space uniform 𝑛-superconcentrator 𝒮 with size 𝑂(𝑛), degree 𝑂(1), and
depth 𝑂(log 𝑛), such that Route𝒮 is solvable by a log-space uniform Boolean circuit of size 𝑂(𝑛 log 𝑛) and
depth 𝑂(log 𝑛).

Proof. Let 𝒮 = (𝑉, 𝐸, 𝐴, 𝐵) be the log-space uniform self-routing superconcentrator given by Theorem 5.7,
let the self-routing protocol be given by (Σ, 𝛿), and let 𝑑 = 𝑂(log 𝑛) denote the delay of this self-routing
protocol. To prove the corollary, we need to construct a log-space uniform Boolean circuit for solving Route𝒮 ,
with size 𝑂(𝑛 log 𝑛) and depth 𝑂(log 𝑛).

9

We are given 1𝑋 and 1𝑌 . The circuit starts by computing q(0) ∈ Σ𝑉 ∪𝐸 as defined in Definition 5.5.
By construction this can be done with a circuitry of size 𝑂(𝑛) and depth 𝑂(1). The circuit next computes
𝛿𝑑(q(0)). Recall that each output symbol of 𝛿(q) depends on at most deg(𝒮) = 𝑂(1) symbols of q. Since
the alphabet Σ is also constant-sized, this means that 𝛿 is implementable by a (log-space uniform) circuit of
size 𝑂(|𝑉 ∪ 𝐸|) = 𝑂(𝑛) and depth 𝑂(1). Iterating this circuit 𝑑 times, we compute 𝛿𝑑(q(0)) with log-space
uniform circuitry of size 𝑂(𝑑 · 𝑛) and depth 𝑂(𝑑). Finally, we extract from 𝛿𝑑(q(0)) the indicator string 1𝑅

for the set
𝑅

def=
{︀

𝑒 ∈ 𝐸 : 𝛿𝑑(q(0))𝑒 = 1
}︀

.

This takes (log-space uniform) circuitry of size 𝑂(|𝐸|) = 𝑂(𝑛) and depth 𝑂(1).
In total, this circuit for computing 1𝑅 is log-space uniform and has size 𝑂(𝑛 · 𝑑) = 𝑂(𝑛 log 𝑛) and depth

𝑂(𝑑) = 𝑂(log 𝑛). By the definition of a self-routing protocol, 𝑅 satisfies
(︀
(1𝑋 , 1𝑌), 1𝑅

)︀
∈ Route𝒮 , i.e. the

circuit solves Route𝒮 .

5.2 From Superconcentrators To Unordered Multiselection
Proposition 5.9. Let 𝑛 ∈ Z+, let 𝑠 = 𝑠(𝑛) satisfy 𝑠 = Ω(log2 𝑛), and let Σ = {0, 1}𝑠. For any 𝑞 = 𝑞(𝑛) ∈ [𝑛]
there exists a log-space uniform Boolean circuit for ̃︁Sel

𝑛→𝑞

Σ with size 𝑂(𝑛 · 𝑠) and depth 𝑂(log 𝑛).

Proof. Let 𝒮 = (𝑉, 𝐸, 𝐴, 𝐵) be a log-space uniform 𝑛-superconcentrator with size 𝑂(𝑛), depth 𝑂(log 𝑛),
degree 𝑂(1) such that Route𝒮 is solvable by a log-space uniform Boolean circuit of size 𝑂(𝑛 log 𝑛) and depth
𝑂(log 𝑛). (Such an 𝒮 is guaranteed to exist by Corollary 5.8). Order the elements of 𝐴 and 𝐵 arbitrarily so
that 𝐴 = {𝑎1, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, . . . , 𝑏𝑛}.

The Circuit Our circuit, taking as input x ∈ Σ𝑛 and (𝑖1, . . . , 𝑖𝑞) ∈ [𝑛]𝑞, is constructed in two parts.
The first part of our circuit computes indicator strings 1𝑋 ∈ {0, 1}𝐴, 1𝑌 ∈ {0, 1}𝐵 , and 1𝑅 ∈ {0, 1}𝐸 for

sets 𝑋 ⊆ 𝐴, 𝑌 ⊆ 𝐵, and 𝑅 ⊆ 𝐸 defined as follows. The set 𝑋 is defined as {𝑎𝑖1 , . . . , 𝑎𝑖𝑞
}, 𝑌 is defined as

{𝑏1, . . . , 𝑏𝑞′}, where 𝑞′ is the cardinality of 𝑋 (which may be smaller than 𝑞 due to repetitions), and 𝑅 is the
edges of 𝑞′ vertex-disjoint paths from 𝑋 to 𝑌 .

The second part of our circuit consists of a gadget 𝑔𝑣 for each vertex 𝑣 ∈ 𝑉 . For a vertex 𝑣 ∈ 𝐴, say
𝑣 = 𝑎𝑗 , the gadget 𝑔𝑣 simply outputs 𝑥𝑗 if 𝑣 ∈ 𝑋 and ⊥ otherwise. For other 𝑣, i.e. with positive in-degree
𝑑, the gadget 𝑔𝑣 is a circuit for Sel𝑑→1

Σ∪{⊥} (e.g. the circuit from Proposition 3.1). To construct the inputs for
𝑔𝑣, first order the in-neighbors of 𝑣 arbitrarily as 𝑢1, . . . , 𝑢𝑑. The data input for 𝑔𝑣 is then constructed by
taking the 𝑖𝑡ℎ symbol, for any 𝑖 ∈ [𝑑], to be the output of 𝑔𝑢𝑖

. The selector input for 𝑔𝑣 is constructed to be
(the unique) 𝑖⋆ ∈ [𝑑] such that (𝑢𝑖⋆ , 𝑣) ∈ 𝑅 if such an 𝑖⋆ exists, and arbitrary otherwise.

Finally, the outputs of our circuit are the outputs of 𝑔𝑏1 , . . . , 𝑔𝑏𝑞 .

Size and Depth In the first part of our circuit, the computation of 1𝑋 uses log-space uniform circuitry
of size 𝑂(𝑛 log2 𝑛) = 𝑂(𝑛 · 𝑠) and depth 𝑂(log 𝑛) by Lemma 5.10 below. Next, 1𝑌 is obtained by sorting
1𝑋 with log-space uniform circuitry of size 𝑂(𝑛 log 𝑛) and depth 𝑂(log 𝑛) (this is possible by Lemma 4.5).
Finally, the computation of 1𝑅 uses log-space uniform circuitry of size 𝑂(𝑛 log 𝑛) and depth 𝑂(log 𝑛) because
of our choice of superconcentrator 𝒮. In total the circuitry of this part has size 𝑂(𝑛 · 𝑠) and depth 𝑂(log 𝑛).

In the second part of our circuit, there are 𝑂(𝑛) gadgets (because 𝒮 has size 𝑂(𝑛)), and each gadget has
size 𝑂(𝑠) (because 𝒮 has constant degree). Additionally for each non-source gadget there is constant-sized
circuitry to compute the selector input as a function of 1𝑅 (again because 𝒮 has constant degree). In total
the circuitry size is 𝑂(𝑛 · 𝑠). As for depth, each gadget has constant depth. Since the output of gadget 𝑢
is an input to gadget 𝑣 iff (𝑢, 𝑣) is an element of 𝐸, and 𝒮 has depth 𝑂(log 𝑛), the circuitry here also has
depth 𝑂(log 𝑛).

Correctness The main claim that we use to establish correctness is that for every 𝑎𝑖 ∈ 𝑋 and every vertex
𝑣 ∈ 𝑉 , if 𝑣 lies on a path in 𝑅 from 𝑎𝑖 to 𝐵, then the output of 𝑔𝑣 is 𝑥𝑖, and otherwise the output of 𝑔𝑣 is ⊥.
Here 𝑎𝑖 is well-defined as a partial function of 𝑣 because 𝑅 consists only of vertex-disjoint paths. This claim

10

suffices for correctness because there are paths in 𝑅 from each 𝑎𝑖𝑘
to 𝐵, but not from any 𝑎 ∈ 𝐴∖{𝑖1, . . . , 𝑖𝑞},

so the set of non-⊥ outputs is exactly {𝑥𝑖1 , . . . , 𝑥𝑖𝑞}.
We prove the claim by induction on the depth of 𝑣 (i.e. the maximum length of a path ending in 𝑣). The

base case is when 𝑣 has depth 0, i.e. 𝑣 is a source vertex 𝑎𝑖 in (𝑉, 𝐸). In this case we defined 𝑔𝑣 to output
𝑥𝑖.

For the inductive step, consider a vertex 𝑣 with positive depth, and suppose that the claim holds for
all 𝑢 of lesser depth, and in particular for the in-neighbors 𝑢1, . . . , 𝑢𝑑 of 𝑣. Now if 𝑣 lies on a path 𝑝 from
some 𝑎𝑖 to 𝑌 , this path must go through 𝑢𝑗 for some 𝑗 ∈ [𝑑], and then the inductive hypothesis implies that
the output of 𝑔𝑢𝑗

is 𝑥𝑖. The construction of the selector input for 𝑔𝑣 ensures that 𝑔𝑣 also outputs 𝑥𝑖, which
completes the proof of the claim.

5.3 Computing Set Indicator Strings
Lemma 5.10. For 𝑞 = 𝑞(𝑛) ∈ Z+, there is a log-space uniform Boolean circuit with size 𝑂

(︀
(𝑛+𝑞)·log2(𝑛+𝑞)

)︀
and depth 𝑂

(︀
log(𝑛 + 𝑞)

)︀
that maps (𝑖1, . . . , 𝑖𝑞) ∈ [𝑛]𝑞 to the indicator string 1{𝑖1,...,𝑖𝑞} ∈ {0, 1}𝑛.

Proof. On input (𝑖1, . . . , 𝑖𝑞), the circuit performs the following steps:

1. Construct the list (1, . . . , 𝑛, 𝑖1, . . . , 𝑖𝑞) ∈ [𝑛]𝑛+𝑞, and sort it to obtain a non-decreasing list (𝑗𝑖)𝑖∈[𝑛+𝑞]
with the property that 𝑗𝑖 appears more than once in the list iff 𝑗𝑖 ∈ {𝑖1, . . . , 𝑖𝑞}. This can be done with
circuitry of size 𝑂

(︀
(𝑛 + 𝑞) · log2(𝑛 + 𝑞)

)︀
and depth 𝑂

(︀
log(𝑛 + 𝑞)

)︀
by Lemma 4.3.

2. Label 𝑗𝑖 with 0 if the value 𝑗𝑖 appears once in the list. If 𝑗𝑖 appears more than once, we label the first
occurrence with 1 and all other occurrences with ⊥. This labels 𝑗𝑖 with 1 only if 𝑗𝑖 is in {𝑖1, . . . , 𝑖𝑞},
and labels 𝑗𝑖 with 0 only if it isn’t.
More explicitly, we compute labels

𝑏𝑖 =

⎧⎪⎨⎪⎩
⊥ if 𝑖 > 1 and 𝑗𝑖−1 = 𝑗𝑖

1 otherwise, if 𝑖 < 𝑛 + 𝑞 and 𝑗𝑖 = 𝑗𝑖+1

0 otherwise

for 𝑖 ∈ [𝑛 + 𝑞]. This can be done with circuitry of size 𝑂
(︀
(𝑛 + 𝑞) log 𝑛

)︀
and depth 𝑂(log log 𝑛): first

compute in parallel for each 𝑖 ∈ [𝑛 + 𝑞 − 1] whether or not 𝑗𝑖 = 𝑗𝑖+1 (this circuit has size 𝑂(log 𝑛) and
depth 𝑂(log log 𝑛)), and then compute each 𝑏𝑖 with a constant-sized circuit.

3. Sort the list
(︀
(𝑗𝑖, 𝑏𝑖)

)︀
𝑖∈[𝑛+𝑞] in order of increasing 𝑗𝑖, except that if 𝑏𝑖 = ⊥ we treat 𝑗𝑖 as +∞. That

is, we prepend each 𝑗𝑖 with 1 if 𝑏𝑖 = ⊥ and with 0 otherwise. We then take the first 𝑛 elements of the
result to obtain a list

(︀
(𝑖, 𝑏′

𝑖)
)︀

𝑖∈[𝑛] such that 𝑏′
𝑖 ∈ {0, 1} satisfies

𝑏′
𝑖 =

{︃
1 if 𝑖 ∈ {𝑖1, . . . , 𝑖𝑞}
0 otherwise.

In other words, (𝑏′
1, . . . , 𝑏′

𝑛) is 1{𝑖1,...,𝑖𝑞}, which is our desired output. This step can be done with
circuitry of size 𝑂

(︀
(𝑛 + 𝑞) · log2(𝑛 + 𝑞)

)︀
and depth 𝑂

(︀
log(𝑛 + 𝑞)

)︀
by Lemma 4.3.

6 From Unordered to Ordered Multiselection
In this section we construct a circuit for ordered multiselection over a large alphabet from a circuit for
unordered multiselection over a slightly larger alphabet.

11

Lemma 6.1. Let 𝑞 = 𝑞(𝑛) ∈ [𝑛] and 𝑠 = 𝑠(𝑛) = Ω(log 𝑛) be integer functions of 𝑛, let Σ = {0, 1}𝑠, let̃︀Σ = [𝑛]× Σ, and suppose there is a (log-space uniform) Boolean circuit for ̃︁Sel
𝑛/𝑠→𝑞

Σ̃ with size 𝑆 and depth
𝐷.

Then there is a (log-space uniform) Boolean circuit for Sel𝑛→𝑞
Σ with size 𝑆 + 𝑂(𝑞 · 𝑠 · log 𝑞) and depth

𝐷 + 𝑂(log 𝑛).

Combining Lemma 6.1 with Proposition 5.9 gives the following corollary.

Corollary 6.2. Let 𝑠 = 𝑠(𝑛) satisfy 𝑠 = Ω(log2 𝑛), let Σ = {0, 1}𝑠, and let 𝑞 = 𝑞(𝑛) ∈ [𝑛]. Then there is a
log-space uniform Boolean circuit for Sel𝑛→𝑞

Σ with size 𝑂(𝑛 · 𝑠 + 𝑞 · 𝑠 · log 𝑛) and depth 𝑂(log 𝑛).

6.1 Boolean Circuits for Inner Joins
The main tool that we use in the proof of Lemma 6.1 is Boolean circuitry for computing an inner join of
two relations (cf. relational databases [Cod70]).

Definition 6.3. If ℛ ⊆ 𝒲 ×𝒳 and 𝒮 ⊆ 𝒳 × 𝒴 are relations, the inner join of ℛ and 𝒮 (which we denote
by ℛ ◁▷ 𝒮) is

ℛ ◁▷ 𝒮 def=
{︀

(𝑤, 𝑥, 𝑦) : (𝑤, 𝑥) ∈ ℛ ∧ (𝑥, 𝑦) ∈ 𝒮
}︀

.

To our knowledge, prior work on the computational complexity of computing joins has focused on algo-
rithms in the RAM or PRAM models of computation, as opposed to Boolean circuits.

We focus for simplicity on a special case. First, we require that the relation 𝒮 is a partial function. That
is, for every 𝑥 ∈ 𝒳 there is at most one 𝑦 ∈ 𝒴 such that (𝑥, 𝑦) ∈ 𝒮. The partial function requirement
prevents |ℛ ◁▷ 𝒮| from being larger than |ℛ|. We also require that for every (𝑤, 𝑥) ∈ ℛ there exists some
(𝑥, 𝑦) ∈ 𝒮.

The following proposition says that inner joins in this special case are computable by (uniform) Boolean
circuits of logarithmic depth and nearly linear size.

Proposition 6.4. Let 𝑛, 𝑚 be positive integers, let 𝒲 and 𝒴 be sets whose elements are represented by 𝑠-bit
strings, and let 𝒳 be a finite set whose elements are represented by 𝑘-bit strings.

There exists a log-space uniform Boolean circuit of size 𝑂(𝑞 · (𝑘 + 𝑠) · log 𝑞) and depth 𝑂(𝑘 + log 𝑞) that
takes as input a relation ℛ ⊆ 𝒲 × 𝒳 and a partial function 𝑓 ⊆ 𝒳 × 𝒴 with |ℛ| ≤ 𝑞, |𝑓 | ≤ 𝑞, and
{𝑥 : ∃𝑤, (𝑤, 𝑥) ∈ ℛ} ⊆ {𝑥 : ∃𝑦, (𝑥, 𝑦) ∈ 𝑓}, and outputs ℛ ◁▷ 𝑓 .

Here sets are represented by an arbitrarily ordered listing of their elements, padded with ⊥ elements as
needed to have length 𝑞.

Proof. Denote the elements of {𝑥 : ∃𝑦, (𝑥, 𝑦) ∈ 𝑓} by 𝑥1, . . . , 𝑥𝑘, where 𝑥1 < · · · < 𝑥𝑘. For 𝑖 ∈ [𝑘], let 𝑊𝑖

denote the set
{︀

𝑤 : (𝑤, 𝑥𝑖) ∈ ℛ
}︀

, and let 𝑛𝑖 denote |𝑊𝑖|. With this notation, our desired output is a list of
length 𝑞 whose non-⊥ elements in some order are precisely

(︀
𝑤, 𝑥𝑖, 𝑓(𝑥𝑖)

)︀
𝑖∈[𝑘],𝑤∈𝑊𝑖

.
We first construct a list with at most 2𝑞 elements in (𝒲∪{⋆})×𝒳×(𝒴∪{⋆}), namely

{︀
(𝑥𝑖, 𝑤, ⋆)

}︀
𝑖∈[𝑘],𝑤∈𝑊𝑖

and
{︁(︀

𝑥𝑖, ⋆, 𝑓(𝑥𝑖)
)︀}︁

𝑖∈[𝑘]
. Such a list is readily obtained by concatenating the listings of ℛ and 𝑓 (with the

natural embeddings of 𝒲 ×𝒳 and 𝒳 × 𝒴 in (𝒲 ∪ ⋆)×𝒳 × (𝒴 ∪ ⋆)).
We sort this list with respect to the partial ordering that defines (𝑤, 𝑥, 𝑦) ≺ (𝑤′, 𝑥′, 𝑦′) iff 𝑥 < 𝑥′ or 𝑥 = 𝑥′

and 𝑤 = ⋆ and 𝑤′ ̸= ⋆. By Lemma 4.3 this can be done with circuitry of size 𝑂(𝑞 · (𝑘 + 𝑠) · log 𝑞) and depth
𝑂(log 𝑞). This yields a list ℒ composed of 𝑘 blocks, the 𝑖𝑡ℎ of which has length 𝑛𝑖 + 1 and is(︁(︀

⋆, 𝑥𝑖, 𝑓(𝑥𝑖)
)︀
, (𝑤𝑖,1, 𝑥𝑖, ⋆), . . . , (𝑤𝑖,𝑛𝑖 , 𝑥𝑖, ⋆)

)︁
,

where {𝑤𝑖1 , . . . , 𝑤𝑖,𝑛𝑖
} = 𝑊𝑖.

12

With local processing, we obtain two lists ℒ𝑓 and ℒ𝒮 where the 𝑖𝑡ℎ block of ℒ𝑓 is(︀
𝑓(𝑥𝑖),⊥, . . . ,⊥⏟ ⏞

𝑛𝑖 times

)︀
(4)

and the 𝑖𝑡ℎ block of ℒ𝒮 is (︀
⊥, (𝑤𝑖,1, 𝑥𝑖), . . . , (𝑤𝑖,𝑛𝑖 , 𝑥𝑖)

)︀
. (5)

Using Lemma 6.5 below, we map ℒ𝑓 to a list whose 𝑖𝑡ℎ block is(︀
𝑓(𝑥𝑖), . . . , 𝑓(𝑥𝑖)⏟ ⏞

𝑛𝑖 + 1 times

)︀
. (6)

We then locally combine (6) with (5) to obtain a list whose 𝑖𝑡ℎ block is(︁
⊥,

(︀
(𝑤𝑖,1, 𝑥𝑖, 𝑓(𝑥𝑖)

)︀
, . . . , (𝑤𝑖,𝑛𝑖 , 𝑥𝑖, 𝑓(𝑥𝑖)

)︀)︁
. (7)

A final sorting step sends the ⊥ elements to the back of the list, which allows us to conclude by truncating
the list to length 𝑛. This step can also be done with circuitry of size 𝑂(𝑞 · (𝑘 + 𝑠) · log 𝑞) and depth 𝑂(log 𝑞)
by Lemma 4.3.

Lemma 6.5. For 𝑛, 𝑠 ∈ Z+, there is a (logspace-uniform) constant fan-in Boolean circuit of size 𝑂(𝑛 · 𝑠)
and depth 𝑂(log 𝑛) that takes as input x ∈ ({0, 1}𝑠 ∪ {⊥})𝑛 with 𝑥1 ̸= ⊥, and outputs y ∈

(︀
{0, 1}𝑠

)︀𝑛 such
that

𝑦𝑖 =
{︃

𝑥𝑖 if 𝑥𝑖 ̸= ⊥
𝑦𝑖−1 otherwise.

Equivalently, 𝑦𝑖 = 𝑥𝑗𝑖
, where 𝑗𝑖 = max{𝑗 : 1 ≤ 𝑗 ≤ 𝑖 ∧ 𝑥𝑗 ̸= ⊥} (this maximum is guaranteed to be over a

non-empty set because 𝑥1 ̸= ⊥).

Proof. Without loss of generality we can assume that 𝑠 = 1 because for 𝑠 > 1 we can use 𝑠 copies of the
circuit for the 𝑠 = 1 case.

Consider the binary operation ⋆ : {0, 1,⊥} × {0, 1,⊥} → {0, 1,⊥} defined by

𝜏 ⋆ 𝜐 =
{︃

𝜏 if 𝜐 = ⊥
𝜐 if 𝜐 ̸= ⊥.

It is clear that our desired y has 𝑦1 = 𝑥1 and 𝑦𝑖 = 𝑦𝑖−1 ⋆ 𝑥𝑖 for 𝑖 > 1.
We now observe that ⋆ is an associative operation. To see this, consider any 𝜎, 𝜏, 𝜐 ∈ {0, 1,⊥} and

consider separately the cases 𝜐 = ⊥ and 𝜐 ̸= ⊥. If 𝜐 = ⊥ then (𝜎 ⋆ 𝜏) ⋆ 𝜐 = 𝜎 ⋆ 𝜏 = 𝜎 ⋆ (𝜏 ⋆ 𝜐). If 𝜐 ̸= ⊥ then
(𝜎 ⋆ 𝜏) ⋆ 𝜐 = 𝜐 = 𝜎 ⋆ 𝜐 = 𝜎 ⋆ (𝜏 ⋆ 𝜐).

Now we use a classic result of Ladner and Fischer [LF80] that for any associative operation ⋆ : Σ×Σ→ Σ
and 𝑛 ∈ Z+, there exists a (log-space uniform) circuit of size 𝑂(𝑛) and depth 𝑂(log 𝑛) (with only ⋆-gates)
that computes all ⋆-prefix products. That is, the circuit takes as input x ∈ Σ𝑛 and outputs y such that
𝑦𝑖 = 𝑥1 ⋆ · · · ⋆ 𝑥𝑖.

In our case, ⋆ is computable by a Boolean circuit of constant size, so replacing ⋆-gates by such a circuit
finishes the proof.

6.2 A Circuit for Ordered Multiselection
We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1. Let 𝐶 be a circuit for ̃︁Sel
𝑛→𝑞̃︀Σ .

13

The Circuit. Our circuit for Sel𝑛→𝑞
Σ takes as input (x, i) ∈ Σ𝑛 × [𝑛]𝑞 and consists of the following stages:

1. Compute x̃ ∈ ̃︀Σ𝑛, defined so that �̃�𝑖 = (𝑖, 𝑥𝑖) for 𝑖 ∈ [𝑛], and compute a list representation of

ℐ =
{︀

(1, 𝑖1), . . . , (𝑞, 𝑖𝑞)
}︀

.

2. Compute ỹ← 𝐶(x̃, i) to obtain ỹ ∈
(︀
Σ̃ ∪ {⊥}

)︀𝑞 such that

{𝑦𝑘 : 𝑦𝑘 ̸= ⊥}𝑘∈[𝑞] = {�̃�𝑖𝑘
}𝑘∈[𝑞] =

{︀
(𝑖𝑘, 𝑥𝑖𝑘

)
}︀

𝑘∈[𝑞].

In particular, each 𝑦𝑘 that is not equal to ⊥ has the form (𝑖, 𝑥𝑖) for some 𝑖 ∈ [𝑛].

3. Deduplicate ỹ to obtain a list representation of the partial function

𝒴 =
{︀

(𝑖𝑘, 𝑥𝑖𝑘
)
}︀

𝑘∈[𝑞].

This involves sorting the non-⊥ symbols
{︀

(𝑖𝑘, 𝑥𝑖𝑘
)
}︀

of ỹ in order of increasing 𝑖𝑘 (this can be done
with circuitry of size 𝑂(𝑛 · 𝑠 · log 𝑛) and depth 𝑂(log 𝑛) by Lemma 4.3).

4. Apply the circuit given by Proposition 6.4 to ℐ and 𝒴 to compute a list representation of

ℐ ◁▷ 𝒴 =
{︀

(𝑘, 𝑖𝑘, 𝑥𝑖𝑘
)
}︀

𝑘∈[𝑞].

5. Sort the list representation of ℐ ◁▷ 𝒴 in order of increasing 𝑘, and read off the desired output
(𝑥𝑖1 , . . . , 𝑥𝑖𝑘

).

Size and Depth The “computation” of x̃ from x and of ℐ from i is just adding constant values, so it can
certainly be done by a (log-space uniform) Boolean circuit of size 𝑂

(︀
𝑛 · (𝑠 + log 𝑛)

)︀
and depth 𝑂(1).

By assumption, 𝐶 is a circuit of size 𝑆 and depth 𝐷.
Via sorting (Lemma 4.3), one can deduplicate ỹ with circuitry of size 𝑂(𝑞 ·(𝑠+log 𝑛)·log 𝑞) = 𝑂(𝑞 ·𝑠·log 𝑞)

and depth 𝑂(log 𝑛).
By Proposition 6.4, the computation of ℐ ◁▷ 𝒴 can also be done with circuitry of size 𝑂(𝑞 · (𝑠 + log 𝑛) ·

log 𝑞) = 𝑂(𝑞 · 𝑠 · log 𝑛) and depth 𝑂(log 𝑛).
Sorting the elements of ℐ ◁▷ 𝒴 again takes log-space uniform circuitry of size 𝑂(𝑞 · 𝑠 · log 𝑞) and depth

𝑂(log 𝑛) by Lemma 4.3.
In total our constructed circuit has size 𝑆 + 𝑂(𝑞 · 𝑠 · log 𝑞) and depth 𝐷 + 𝑂(log 𝑛).

7 Binary Multiselection and Proof of Main Theorem
Next, we use the multiselection circuit over large alphabets to obtain a binary multiselection circuit.

Lemma 7.1. Let 𝑞 = 𝑞(𝑛) and 𝑠 = 𝑠(𝑛) be integer functions of 𝑛, let Σ = {0, 1}𝑠, and let 𝐶𝑛 be a (log-space
uniform) Boolean circuit for Sel𝑛/𝑠→𝑞

Σ with size 𝑆 and depth 𝐷.
Then there is a (log-space uniform) Boolean circuit 𝐶 ′

𝑛 for Sel𝑛→𝑞
{0,1} with size 𝑆 + 𝑂(𝑞 · 𝑠) and depth

𝐷 + 𝑂(log 𝑠).

Proof. On data input x ∈ {0, 1}𝑛 and selector input (𝑖1, . . . , 𝑖𝑞) ∈ [𝑛]𝑞, 𝐶 ′
𝑛 performs the following steps:

1. View x ∈ {0, 1}𝑛 as X ∈ Σ𝑛/𝑠 by setting 𝑋𝑖 =
(︀
𝑥(𝑖−1)·𝑠+1, . . . , 𝑥𝑖·𝑠

)︀
. View each 𝑖𝑗 as a log 𝑛-bit string

with prefix 𝑝𝑗 ∈ {0, 1}log 𝑛−log 𝑠 and a suffix 𝑠𝑗 ∈ {0, 1}log 𝑠. This is just relabeling wires, so it requires
no circuitry.

2. Compute (𝑋𝑝1 , . . . , 𝑋𝑝𝑞
)← 𝐶𝑛

(︀
X, (𝑝1, . . . , 𝑝𝑞)

)︀
. This requires circuitry of size 𝑆 and depth 𝐷.

14

3. For each 𝑗 ∈ [𝑞] in parallel, compute 𝑥𝑖𝑗 = Sel𝑠→1
{0,1}

(︀
𝑋𝑝𝑗 , (𝑠𝑗)

)︀
. By Proposition 3.1, for each 𝑗 ∈ [𝑞]

this requires circuitry of size 𝑂(𝑠) and depth 𝑂(log 𝑠), for a total circuitry size of 𝑂(𝑞 · 𝑠) and depth
𝑂(log 𝑠).

4. Output (𝑥𝑖1 , . . . , 𝑥𝑖𝑞
).

We can now prove our main theorem, which we recall here for convenience.

Theorem 1 (Main Theorem). For all 𝑛, 𝑞 ∈ Z+ there is a Boolean circuit computing Sel𝑛→𝑞 of size 𝑂(𝑛 +
𝑞 · log3(𝑛)) and depth 𝑂(log(𝑛 + 𝑞)).

Proof. Set 𝑠(𝑛) = log2 𝑛 and let Σ = {0, 1}𝑠. By Corollary 6.2, there exists a log-space uniform circuit for
Sel𝑛/𝑠→𝑞

Σ with size 𝑂(𝑠 · 𝑛/𝑠 + 𝑞 · 𝑠 · log 𝑛) = 𝑂(𝑛 + 𝑞 log3 𝑛) and depth 𝑂
(︀

log(𝑛/𝑠)
)︀

= 𝑂(log 𝑛). Applying
Lemma 7.1 to this circuit yields a log-space uniform circuit for Sel𝑛→𝑞

{0,1} with size 𝑂
(︀
𝑛 + 𝑞 · (log3 𝑛 + 𝑠)

)︀
=

𝑂(𝑛 + 𝑞 · log3 𝑛) and depth 𝑂(log 𝑛 + log 𝑠) = 𝑂(log 𝑛).

Acknowledgments
We thank Yuval Ishai for useful discussions and his encouragement and an anonymous reviewer for useful
comments.

Ron Rothblum is funded by the European Union (ERC, FASTPROOF, 101041208). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

References
[AKL+20a] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine

Shi, Optorama: Optimal oblivious RAM, Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II (Anne Canteaut and Yuval Ishai, eds.),
Lecture Notes in Computer Science, vol. 12106, Springer, 2020, pp. 403–432.

[AKL+20b] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi, Oblivious par-
allel tight compaction, ITC, LIPIcs, vol. 163, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, pp. 11:1–11:23.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi, An 0(n log n) sorting network, Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC
’83, Association for Computing Machinery, 1983, p. 1–9.

[ALS22] Gilad Asharov, Wei-Kai Lin, and Elaine Shi, Sorting short keys in circuits of size ${o(n \log
n)}$, SIAM J. Comput. 51 (2022), no. 3, 424–466.

[And87] Alexander Andreev, On a method for obtaining more than quadratic effective lower bounds for
the complexity of 𝜋-scheme, Moscow University Mathematics Bulletin 42 (1987), no. 1, 63–66.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta, Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles, TCC (2), Lecture Notes in
Computer Science, vol. 11892, Springer, 2019, pp. 407–437.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin, Reducing the servers computation in private infor-
mation retrieval: PIR with preprocessing, CRYPTO, Lecture Notes in Computer Science, vol.
1880, Springer, 2000, pp. 55–73.

15

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters, Can we access a database both
locally and privately?, TCC (2), Lecture Notes in Computer Science, vol. 10678, Springer, 2017,
pp. 662–693.

[Blu84] Norbert Blum, A boolean function requiring 3n network size, Theor. Comput. Sci. 28 (1984),
337–345.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson, Towards doubly efficient private information
retrieval, TCC (2), Lecture Notes in Computer Science, vol. 10678, Springer, 2017, pp. 694–726.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan, Private information re-
trieval, J. ACM 45 (1998), no. 6, 965–981.

[Cod70] Edgar F Codd, A relational model of data for large shared data banks, Communications of the
ACM 13 (1970), no. 6, 377–387.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart, Fully homomorphic encryption with polylog
overhead, EUROCRYPT, Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 465–
482.

[HR22] Justin Holmgren and Ron D. Rothblum, Faster sounder succinct arguments and IOPs, CRYPTO
(1), Lecture Notes in Computer Science, vol. 13507, Springer, 2022, pp. 474–503.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai, Batch codes and their appli-
cations, STOC, ACM, 2004, pp. 262–271.

[Kil92] Joe Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), STOC,
ACM, 1992, pp. 723–732.

[KK21] Michal Koucký and Karel Král, Sorting short integers, ICALP, LIPIcs, vol. 198, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, pp. 88:1–88:17.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky, Replication is NOT needed: SINGLE database,
computationally-private information retrieval, 38th Annual Symposium on Foundations of Com-
puter Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, IEEE Computer
Society, 1997, pp. 364–373.

[Kos94] É Sh Kospanov, Scheme realization of the sorting problem, Diskretnyi Analiz i Issledovanie
Operatsii 1 (1994), no. 1, 13–19.

[LF80] Richard E. Ladner and Michael J. Fischer, Parallel prefix computation, J. ACM 27 (1980), no. 4,
831–838.

[LMW22] Wei-Kai Lin, Ethan Mook, and Daniel Wichs, Doubly efficient private information retrieval and
fully homomorphic ram computation from ring lwe, Cryptology ePrint Archive, Paper 2022/1703,
2022, https://eprint.iacr.org/2022/1703.

[LS21] Wei-Kai Lin and Elaine Shi, Optimal sorting circuits for short keys, CoRR abs/2102.11489
(2021).

[Nec66] È. I. Nechiporuk, A Boolean function, Sov. Math., Dokl. 7 (1966), 999–1000 (English).

[Pau77] Wolfgang J. Paul, A 2.5 n-lower bound on the combinational complexity of boolean functions,
SIAM J. Comput. 6 (1977), no. 3, 427–443.

[Pip96] Nicholas Pippenger, Self-routing superconcentrators, J. Comput. Syst. Sci. 52 (1996), no. 1,
53–60.

16

https://eprint.iacr.org/2022/1703

[RR22] Noga Ron-Zewi and Ron D. Rothblum, Proving as fast as computing: succinct arguments with
constant prover overhead, STOC, ACM, 2022, pp. 1353–1363.

[Sav98] John E. Savage, Models of computation - exploring the power of computing, Addison-Wesley,
1998.

[Val75] Leslie G. Valiant, On non-linear lower bounds in computational complexity, Proceedings of the
7th Annual ACM Symposium on Theory of Computing, May 5-7, 1975, Albuquerque, New
Mexico, USA (William C. Rounds, Nancy Martin, Jack W. Carlyle, and Michael A. Harrison,
eds.), ACM, 1975, pp. 45–53.

A Applications
While we find the multiselection problem to be basic and natural, we additionally mention two concrete
applications of the linear-sized multiselection circuit of Theorem 1 to problems in cryptography.

Application 1: Simplifying Efficient Arguments. Recently there has been a great deal of interest,
both in theory and in practice, in developing efficient argument-systems (aka computationally sound proofs),
proving for example that a given formula is satisfiable with a proof that is much shorter than the satisfying
assignment (and is also very efficiently verifiable). A key bottleneck in such proof-systems is the efficiency
of proving correctness, relative to the cost of merely computing the function.

Recent works [RR22, HR22] consider the setting of Boolean circuits and construct provers whose size
is linear in the size of the original computation. These works, following Kilian’s pioneering work [Kil92],
use a (generalization of a) PCP which is compiled into a succinct argument by sending a short hash of the
PCP and then decommiting to desired locations that are sampled by the verifier. This naturally requires
multiselection: the prover needs to restrict the PCP proof string to the selected indices. Thus, to get a
linear-size prover, these works need a linear-size multiselection gadget.

Both [RR22] and [HR22] relied on ad-hoc solutions leveraging application-specific structure of the queries
(𝑖1, . . . , 𝑖𝑞) and expended considerable effort to guarantee this structure. For example in the case of [HR22],
a new local testing procedure was presented for tensor codes, with the novel property that the local testing
queries were efficiently “multiselectable”.

Theorem 1 makes this work unnecessary by removing the burden of worrying about a particular query
structure. This significantly simplifies these works (especially [HR22]) and is likely to simplify similar future
works.

Application 2: More Efficient Batch PIR. Private information retrieval (PIR) [CKGS98, KO97] is a
process by which a client with an index 𝑖 ∈ [𝑛] obtains an element 𝑥𝑖 from a server with a database x ∈ Σ𝑛

while (computationally) hiding all information about 𝑖 from the server. Batch PIR has just one modification:
the client has multiple indices 𝑖1, . . . , 𝑖𝑞, and correspondingly obtains 𝑥𝑖1 , . . . , 𝑥𝑖𝑞 . We call 𝑞 the batch size.
Thus the standard notion of PIR, which we also refer to as non-batch PIR, corresponds to the case 𝑞 = 1.
The raison d’être of batch PIR is that the server’s running time can be much less than 𝑞 times the cost of
non-batch PIR.

Indeed, our Theorem 1 implies the following corollary: if the ring learning with errors2 (ring LWE)
assumption holds, then for every batch size 𝑞 ≤ 𝑛/ log3 𝑛 and every constant 𝜖 > 0, there is a batch PIR
protocol in which:

• the server’s running time is 𝑛 · polylog(𝜆), where 𝜆 is a computational security parameter,

• the client-to-server communication is (1 + 𝜖) · 𝑞 · log 𝑛 + poly(𝜆),

• the server-to-client communication is (1 + 𝜖) · 𝑞 + poly(𝜆), and
2If we instead assume only standard LWE, we obtain a similar result but with all polylog(𝜆) factors replaced by poly(𝜆).

17

• the client’s running time is 𝑞 · log 𝑛 · polylog(𝜆) + poly(𝜆).

In a nutshell, the idea is for the client to send an encryption cti of the indices i = (𝑖1, . . . , 𝑖𝑞) under a
fully homomorphic encryption (FHE) scheme with the appropriate efficiency properties. The server, holding
database 𝑥 ∈ {0, 1}𝑛, homomorphically evaluates Sel𝑛→𝑞(𝑥, ·) (represented by the circuit of Theorem 1) on
cti and sends the result to the client, which decrypts to obtain its output.

As for efficiency, homomorphic evaluation should satisfy two properties. First, the cost of homomorphi-
cally evaluating a circuit 𝐶 should be |𝐶| ·polylog(𝜆) (at least when 𝐶 is the circuit for Sel𝑛→𝑞 constructed in
Theorem 1). Second, the ciphertexts resulting from homomorphic evaluation should have rate 1. If the ring
LWE assumption holds, then one way to obtain such an FHE scheme is by combining the work of [GHS12],
which constructs FHE with polylog(𝜆) evaluation overhead3, with the work of [BDGM19], which for any
constant 𝜖 > 0 constructs FHE in which evaluated ciphertexts have rate 1− 𝜖.

A.1 Prior Work
Bath PIR via Batch Codes. One major alternative approach to batch PIR is a reduction to non-batch
PIR using batch codes [IKOS04], which encode a database x ∈ {0, 1}𝑛 as a string X ∈

(︀
{0, 1}𝑁/𝑚

)︀𝑚 such
that to recover any 𝑞 bits of x, it suffices to read one bit from each 𝑁/𝑚-bit block of X. Here 𝑁 , 𝑚, and
𝑞 are parameters of the batch code. By retrieving each of these 𝑚 bits with a non-batch PIR protocol, we
obtain a batch PIR protocol with batch size 𝑞, server running time ≈ 𝑁 , and communication ≈ 𝑚.

To replicate our batch PIR result via this approach, one would need batch codes with 𝑚 ≈ 𝑘 and 𝑁 ≈ 𝑛
for 𝑞 at least 𝜔(1). However, no such codes are known (see the table in Section 1.2 of [IKOS04]).

Doubly Efficient PIR. A recent breakthrough result of Lin, Mook, and Wichs [LMW22] shows how to
achieve doubly efficient PIR (DEPIR) [BIM00, CHR17, BIPW17], i.e. PIR where the server’s running time
is sublinear in the database length (after a one-time deterministic preprocessing step), under the ring LWE
assumption. Among other benefits, this allows the server’s work to increase sublinearly with the number of
queries, similarly to batch PIR. Amazingly, unlike in batch PIR, this is true even if the queries come from
independent clients.

One can generically construct batch PIR protocols from DEPIR protocols, although as we now explain,
our construction of batch PIR is more efficient than what one would obtain from [LMW22]. Their DEPIR
protocol exhibits a tunable trade-off between the server’s online time and preprocessing time. They present
two specific parameter settings:

• (Online-Optimized) The online time is polylog(𝑛) · poly(𝜆), but the preprocessing time is 𝑛1+𝜖 ·
poly(𝜆) for any constant 𝜖 > 0.

• (Preprocessing-Optimized) The preprocessing time is 𝑛 · 2Θ̃(
√

log 𝑛) · poly(𝜆), but the online time
is 2Θ̃(

√
log 𝑛) · poly(𝜆).

In contrast to our batch PIR construction, their doubly efficient PIR server’s total running time with
either parameter setting never depends only linearly on 𝑛, and the server’s per-query running time (including
the amortized cost of pre-processing) is not polylogarithmic in 𝑛 unless the number of queries is larger than
the database.

B Linear-time Uniformity
In this section we briefly discuss an extension of our multiselection circuit that can be generated by a linear-
time algorithm (rather than log-space uniformity as in Theorem 1). The specific notion of uniformity that
we consider here is constructability by an algorithm in the standard word RAM model, that on input 1𝑛,
runs in 𝑂(𝑛) time, using words of size 𝑂(log 𝑛) and a standard instruction set.

3The work of [GHS12] obtains this overhead only for circuits of width at least 𝜆.

18

Theorem B.1 (Linear-time Uniformity). There exists a constant 𝜖 > 0 such that for every 𝑞 = 𝑞(𝑛) ≤ 𝑛𝜖,
there exists a linear-time uniform Boolean circuit computing Sel𝑛→𝑞 of linear-size and logarithmic-depth.

Proof Sketch. As a matter of fact, we show how one can generically take any 𝑛𝑐-time-uniform multiselection
circuit for 𝑐 ≥ 1 (e.g., those of Theorem 1) and transform it into a linear-time uniform multiselection circuit
(for a somewhat smaller number of queries), while preserving the linear-size and logarithmic depth.

The idea is to first generate a multiselection circuit 𝐶 for input strings of length 𝑛′ = 𝑛1/𝑐. By assumption,
this can be done in time 𝑂

(︀
(𝑛′)𝑐

)︀
= 𝑂(𝑛). The multiselection is then constructed as follows: we partition

the input string 𝑥 ∈ {0, 1}𝑛 into 𝑛′ blocks of size 𝑛/𝑛′ = 𝑛1−1/𝑐 bits each. We then run 𝑛1−1/𝑐 copies of 𝐶,
where the 𝑖-th copy is given the 𝑖-th bit of each of the blocks. The output of these circuit copies of 𝐶 can be
interpreted as 𝑞 blocks in which our desired indices lie. We then apply a direct (uni-)selector to each block
to obtain the desired bit. This step can be implemented by 𝑞 circuits, each of size 𝑂(𝑛1−1/𝑐). As long as
𝑞 = 𝑂(𝑛1/𝑐), the constructed circuit has linear-size and logarithmic depth.

To generate the circuit, our algorithm first generates the base multi-selector circuit which as noted
above, takes time 𝑂(𝑛). Once that circuit is generated, creating the 𝑛1−1/𝑐 copies (with suitable input
wiring) can be done in time 𝑂(𝑛1/𝑐 · 𝑛1−1/𝑐) = 𝑂(𝑛). The additional circuitry can also be constructed in
𝑂(𝑞 · 𝑛1−1/𝑐) = 𝑂(𝑛) time.

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

