
Towards Simpler Sorting Networks

and Monotone Circuits for Majority

Natalia Dobrokhotova-Maikova1 Alexander Kozachinskiy2

Vladimir Podolskii3

1Yandex
2IMFD & CENIA, Chile

3Tufts University

Abstract

In this paper, we study the problem of computing the majority
function by low-depth monotone circuits and a related problem of con-
structing low-depth sorting networks. We consider both the classi-
cal setting with elementary operations of arity 2 and the generalized
setting with operations of arity k, where k is a parameter. For both
problems and both settings, there are various constructions known, the
minimal known depth being logarithmic. However, there is currently
no known construction that simultaneously achieves sub-log-squared
depth, e�ective constructability, simplicity, and has a potential to be
used in practice. In this paper we make progress towards resolution of
this problem.

For computing majority by standard monotone circuits (gates of

arity 2) we provide an explicit monotone circuit of depth O(log
5/3
2 n).

The construction is a combination of several known and not too com-
plicated ideas.

For arbitrary arity of gates k we provide a new sorting network
architecture inspired by representation of inputs as a high-dimensional
cube. As a result we provide a simple construction that improves pre-
vious upper bound of 4 log2k n to 2 log2k n. We prove the similar bound
for the depth of the circuit computing majority of n bits consisting
of gates computing majority of k bits. Note, that for both problems
there is an explicit construction of depth O(logk n) known, but the
construction is complicated and the constant hidden in O-notation is
huge.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 153 (2023)

1 Introduction

A sorting network receives an array of numbers and outputs the same num-
bers in the non-decreasing order. It consists of comparators, each of which
is given some �xed pair of array entries as an input and it swaps them if
they are not in the non-decreasing order. The main parameters of a sorting
network are the size, that is, the number of comparators, and the depth, that
is, the number of layers in the network, where each layer consists of several
comparators applied to disjoint pairs of variables. Sorting networks are a
classical model in theoretical computer science with vast literature devoted
to them, see, for example [4, 1, 22, 26, 24, 17, 28, 7], see also the Knuth's
book [18] and the Baddar's and Batcher's book [3]. Despite considerable
e�orts, still there are many open problems related to sorting networks. In
this paper, our main interest is the depth of sorting networks.

There is a related setting of computing majority function by monotone
Boolean circuits. Majority function receives as input a sequence of n bits
and outputs 1 if and only if more than a half of the inputs are 1's. Monotone
Boolean circuits consist of AND and OR gates of fan-in 2. Constructing a
monotone Boolean circuit for the majority function can only be easier than
constructing a sorting network. This is because a sorting network can be
transformed into a monotone Boolean circuit which computes majority and
has the same depth. Indeed, if we restrict inputs to {0, 1}n, then each com-
parator can be simulated by a pair of AND and OR gates (AND computes
the minimum of two Boolean inputs and OR computes the maximum). And
the majority is just the median bit of the sorted array.

For the depth of sorting networks, there are several simple and practical
constructions of depth Θ(log2 n) [18, 4, 24]. A construction with O(log n)
depth was given by Ajtai, Koml�os and Szemer�edy [1] and is usually referred
to as the AKS sorting network. Although their bound on the depth is asymp-
totically optimal, the construction is very complicated and impractical due
to a large constant hidden in the O-notation. There are some simpli�cations
and improvements of this construction [26, 28], but the construction is still
elaborate and is not practical. As for the lower bounds, there is a folklore
(2− o(1)) log2 n depth lower bound for networks sorting n numbers. It was
improved by Yao [34] and later by Kahale et al. [17] with the current record
about 3.27 log2 n.

As we discussed above, any construction for a sorting network translates
to a monotone circuit for majority of the same depth. In particular, we
get an O(log n)-depth monotone circuit for majority from the AKS sorting
network. Yet again, the resulting circuit has the same disadvantages as

2

the AKS construction. But in contrast to sorting networks, there is an
alternative construction of a monotone depth-O(log n) Boolean circuit for
majority due to Valiant [32]. His construction is simple and has a reasonable
constant hidden in the O-notation, but it is randomized. It was partially
derandomized and made closer to practice by Hoory, Magen and Pitassi [14].
But still all known fully deterministic constructions that are simple and
practical are of depth Θ(log2 n). Thus, there is an open problem for both
sorting networks and monotone circuits for majority to come up with simple
and deterministic construction of sub-log-squared depth.

One potential approach to this is to consider sorting networks with
comparators that have k > 2 inputs. We will call them k-sorting net-
works. They appear in the literature since 70s, the setting is mentioned
already in the Knuth's book [18, Problem 5.3.4.54], followed by numerous
works [30, 25, 5, 23, 10, 21, 29, 13, 35]. They are usually studied to bet-
ter understand the structure of ordinary sorting networks (for example, a
version of AKS sorting network with improved constant relies on k-sorting
network in intermediate constructions [8]). In particular, k-sorting networks
are closely related to recursive constructions of sorting networks. Having a
good construction of a k-sorting network, one can apply it to its own com-
parators, getting a construction with smaller k, until eventually k becomes
2, and we get an ordinary sorting network.

Parker and Parbery [25] constructed a simple and potentially practical
k-sorting network of depth ⩽ 4 log2k n (in case when n is an integral power
of k). At the same time, as Chv�atal shows in his lecture notes [8], the AKS
sorting network also generalizes to this setting, giving a construction of depth
O(logk n). However, as with the AKS sorting network itself, this construc-
tion is complicated and impractical. So the search for simple constructions
continues. As for the lower bounds, any k-sorting network with n inputs
must have depth at least logk n because otherwise outputs cannot be con-
nected to all n inputs. Dobokhotova-Maikova et al. [11] improved this bound
to roughly 2 logk n. They also found optimal values of k for small values of
depth d. More speci�cally, for sorting networks of depth d = 1, 2 they show
that k cannot be smaller than n, for d = 3 the optimal value is k =

⌈
n
2

⌉
and for d = 4 the optimal value is k = Θ(n2/3). These results indicate
that small depth k-sorting networks are not enough for iterative approach to
sub-log-squared sorting network and we need either good k-sorting network
constructions of depth greater than 4, or additional ideas.

Just as with sorting networks, we can consider circuits for majority func-
tion that are constructed from threshold gates of fan-it at most k. A thresh-

3

old gate is a Boolean function that �rst sorts its input bits in the non-
decreasing order, and then outputs the ith one from the beginning, for some
�xed 1 ≤ i ≤ k. For k = 2, AND and OR are the only two threshold
functions. In general, there are k threshold functions of fan-in k. By tak-
ing one copy of each, we get a comparator of arity k. Thus, as in the case
k = 2, a k-sorting network can be transformed into a circuit of the same
depth which computes majority and consists of threshold gates of fan-in k.
In other words, constructing a k-sorting network can only be harder than
constructing a circuit for majority with threshold gates of fan-in k.

There is a line of work, initiated by Kulikov and Podolskii [20], which
addresses the following question: given d and n, what is the minimal k
for which there exists a circuit with threshold gates of fan-in k, which has
depth d and computes majority on n bits? The paper [20] shows that, up
to a polylogarithmic factor, k ≥ n14/(7d+6). In subsequent works, special
attention was given to the case d = 2. In this case, the lower bound of [20] is
k ≥ n14/20. It was improved to k ≥ n4/5 by Engels et al. [12]. Then a linear
lower bound k ≥ n/2 − o(n) was obtained by Hrubes et al. [15]. An upper
bound k ≤ 2n/3 + O(1) was given in [27]. Let us also mention an upper
bound k ≤ n− 2 for circuits that only use majority gates [19, 2].

Now, for d ≥ 3 the situation is less clear. For d = 3, the paper [20] gave
an upper bound k = O(n2/3). In turn, their lower bound in this case is of
order n14/27. We are not aware of any non-trivial upper bound for d ≥ 4.

Our results. In this paper we make progress towards better constructions
of monotone circuits for majority and sorting networks.

First, we give an explicit and reasonably simple construction of a mono-
tone circuit for majority of depth O(log5/3 n).

Theorem 1. There is a polynomial time constructable monotone circuit for

majority of polynomial size and depth O(log5/3 n).

Our proof combines several relatively simple steps. We start with partial
derandomization of Valiant's construction using some ideas from the paper
by Cohen et al. [9]. Next we apply to the resulting randomized circuit two
operations several times. The �rst of them is a brute-force derandomization,
that searches through all possible random bits of the randomized circuit. The
second one is a composition with a k-sorting network of depth O(log2k n). For
such a network we can use either the construction of Parker and Parbery [25],
or, for the better constant, our next result.

In our second result we come up with the new architecture for k-sorting
networks. As an application of this architecture we construct a k-sorting

4

network of depth 2 log2k n, improving the constant compared to the result
of [25]. More precisely, we prove the following theorem.

Theorem 2. For any n and for any k such that log k = ω(log log n) (or,

to put it di�erently, k is growing faster than any polylog(n)), there exists a

k-sorting network of depth at most (2 + o(1)) log2k n.

The key idea behind this construction is to represent the input array as a
hypercube of high dimension and sort various sections of this cube. We note
that the idea of representing an array as a multidimensional structure is not
new, for example, Leighton [22] in his ColumnSort represented the array as a
two dimensional table. However, in our construction it is important that we
use the dimension greater than 2, since we use the fact that the sections of the
cube have non-trivial intersection. On the conceptual level, the main novelty
in our construction is the notion of s-sorting. We call the array s-sorted if
the whole array is sorted correctly apart from some interval of length at most
s. Most (if not all) log-squared-depth sorting network constructions adopt
the divide and conquer strategy. The O(log2k n)-depth construction in [25] is
not an exception, to sort an array of size n, they split it into subarrays of size
n/k, sort them recursively and merge them afterward. However, merging k
subarrays using k-sorting network is relatively expensive. To improve over
previous construction, we work with s-sorted subarrays instead. We show
how to merge them e�ectively (using the hypercube idea) and then show
how we can build a recursive construction based on them.

To additionally illustrate applications of our construction, we consider
constant depth sorting networks and circuits for majority. We show that
there is a MAJk-circuit for MAJn for k = O(n3/5). For a second application
we address the question of k-sorting networks for k = O(n1/2). In [18] Knuth
posed a problem of constructing a minimal depth k-sorting network for the
input of size k2. Parker and Parbery [25] gave a construction of depth 9. We
improve this to depth 8 at the cost of using comparators of size O(k) for k2

input size.
The rest of the paper is organized as follows. In Section 2 we provide

necessary preliminary information. In Section 3 we construct a monotone
circuit for majority of depth O(log5/3 n). In Section 4 we provide a new
construction of k-sorting networks and deduce the corollaries. In Section 5
we discuss some open problems.

5

2 Preliminaries

We use the standard notation [n] = {1, . . . , n}. We sometimes omit the base
of the logarithms, by default we assume that the base is 2.

2.1 Sorting Networks

A depth-d k-sorting network with n inputs consists of d + 1 arrays
A1, . . . , Ad+1, each of length n. Between any two arrays Ai and Ai+1 there
is a layer of comparators (the �rst layer is between A1 and A2, the second
layer is between A2 and A3, and so on). A layer of comparators is a partition
of the set {1, 2, . . . , n} into subsets of size at most k called comparators.

The input is given in an array A1 and all other arrays are computed by
the network one by one in the following way. If S ⊆ [n] is a comparator
from the ith layer, then it is applied to the entries {Ai[j] | j ∈ S}. It sorts
their values in the non-decreasing order and puts the results into the entries
{Ai+1[j] ∈ Ai+1 | i ∈ S}. We say that a network is sorting if for any input
A1 the array Ad+1 is sorted.

We reserve the name sorting network for 2-sorting networks.
It is well known that to check that the sorting network sorts all possible

inputs, it is enough to check that it sorts just 0/1-inputs.

Lemma 3 (Zero-one principle [18]). A network with n inputs sorts all integer

sequences in the non-decreasing order if and only if it sorts all sequences from

{0, 1}n in the non-decreasing order.

By this principle, when constructing sorting networks, we can assume
that each input cell receives either 0 or 1.

The following simple observation will be useful to us.

Lemma 4. If t largest or t smallest entries in the array are positioned cor-

rectly (i.e., in the last t cells and in the �rst t cells, respectively), then after

the application of several comparators they are still positioned correctly.

Proof. We can show by induction on i that the smallest and the largest
entries do not move if they are already positioned correctly. The key obser-
vation is that if some of these entries are inputted into one of the comparators
S, they will not be moved.

2.2 From Sorting Networks to Majority Circuits

We use the standard notion of Boolean circuits (see, e.g. [16]). As inputs,
we allow Boolean variables and Boolean constants 0 and 1. The size of the

6

circuit is the number of gates in it.
Given a k-sorting network we can get a circuit computing majority from

it. More speci�cally, restrict the inputs to the network to {0, 1}n and consider
one k-comparator S. Note that its kth output is equal to 1 if and only if
there is at least one 1 in the input. In other words, the kth output is equal
to OR of input bits. Its (k − 1)th output is equal to 1 if and only if there
are at least two 1s in the input. More generally, it is easy to see that the
(k − i)th output of the k-comparator outputs a threshold function

THRi
k(x) =

{
1 if |x| > i,

0 otherwise,

where |x| denotes the weight of the vector x ∈ {0, 1}k, that is, the number

of 1s in it. We reserve the notation MAJk(x) for the function THR
k/2
k (x).

We can substitute each comparator in the network by k majority func-
tions. Note that by adding several constants 0 or 1 as inputs to the gate we
can convert any THRi

k function into MAJk′ with k′ ⩽ 2k.
Now, it remains to observe that the median bit in the output array

computes exactly MAJn. Thus, as a result, we get the following lemma.

Lemma 5. Any k-sorting network of depth d and size s can be e�ectively

converted into a circuit of depth d and size ks consisting of MAJ2k gates

and computing majority. In the case k = 2, we get just a monotone circuit

consisting of AND and OR.

2.3 Approximate Majority

By ε-approximate majority function MAJεn we denote the partial function
that outputs MAJn of its input but is de�ned only on the inputs where the
fraction of ones in it is bounded away by ε from 1/2.

We need the following known result.

Theorem 6 ([33]). For any constant ε > 0, one can compute MAJεn explic-

itly by a monotone circuit of size poly(n) and depth O(log n).

2.4 t-Wise Independent Hash Functions

We need the notion of t-wise independent hash functions.

De�nition 7. For integers N and t such that t ⩽ N , a family of function
H = {h : [N] → [N]} is t-wise independent if for all distinct x1, . . . , xt ∈
[N] the random variables h(x1), . . . , h(xt) are independent and uniformly
distributed in [N], when h ∈ H is drawn uniformly.

7

Theorem 8 ([31]). For every integer n and t such that t ⩽ 2n there is

a family of k-wise independent functions H = {h : {0, 1}n → {0, 1}n} such

that choosing a random function from H takes nt random bits and evaluating

a function from H takes time poly(n, t).

Theorem 9 ([6]). Let X be the average of N t-wise independent random

variables X1, . . . , XN ∈ [0, 1] for even t. Then for any ε > 0 we have

Pr [|X − E[X]| ⩾ ε] ⩽ 1.1

(
t

Nε2

)t/2

.

3 Sub-log-squared Circuit for Majority

In this section, we provide a proof of Theorem 1.
Our goal is to compute MAJn by an explicit circuit of polynomial size

and o(log2 n) depth. We assume for convenience that n is odd (for even n we
can consider a circuit for n + 1 and substitute one variable by a constant).
We start with some inferior circuit and perform several operations that allow
us to gradually improve the parameters. However, on our way, we need to
consider randomized circuits as well, and apart from size and depth, we will
also be interested in the number of random bits and the error probability.
More speci�cally, a circuit is an (s, d, r, err)-circuit for majority if its size is
at most 2s, depth is at most d, we can construct a circuit using at most r
random bits and the error probability on each input is at most 2−err. Here
all parameters are functions in the number of inputs n (we write err = ∞
when the circuit is correct with probability 1). All circuits we are going to
consider are e�ectively constructible: there is an algorithm that given the
values of random bits constructs a circuit in polynomial time in the size of
the circuit.

Given a circuit with some parameters, we will use two operations to
obtain new circuits. We are introducing these operations in the next two
lemmas. Their e�ect on the circuit is summarized in the table below.

8

Initial circuit Brute-force derandomization Downward self-reduction

s(n) O(s(n) + r(n)) O(log n) + s(2k)

d(n) d(n) +O(r(n)) O

((
log2 n
log2 k

)2
d(2k)

)
r(n) 0 r(2k)

err(n) ∞ err(2k)−O(log n)

Lemma 10 (Brute-force derandomization). If there is an (s, d, r, 2)-circuit
C, then there is an (O(s+ r), d+O(r), 0,∞)-circuit.

This lemma allows us to get rid of randomness but increases the depth
and the size of the circuit if r is large.

Proof. Consider a randomized circuit Cy(x), where x ∈ {0, 1}n is an input
and y ∈ {0, 1}r is the sequence of random bits. Assume Cy(x) has the
parameters, as in the statement of the lemma. Consider circuits Cy(x) for
all possible values of y and observe that for any x the fraction of circuits
that output MAJn(x) is at least 1 − 1/4 = 3/4. Thus, if we feed Cy(x) for
all y into a circuit from Theorem 6 computing MAJε2r , the output is exactly
MAJn(x).

The size of the resulting circuit is at most 2r · 2s + poly(2r), where the
�rst term corresponds to computing Cy(x) for all y and the second term
corresponds to computing MAJε2r . Thus, the size is 2

O(s+r). Since all Cy(x)
can be computed in parallel, the depth of the circuit is at most d + O(r).
The resulting circuit does not use random bits and is always correct.

Lemma 11 (Downward self-reduction). If there is an

(s(n), d(n), r(n), err(n))-circuit C, then for any k < n there is an

(O(log n) + s(2k), O(log2k n · d(2k)), r(2k), err(2k)−O(log n))-circuit.

This operation increases the depth (if d(n) is sub-log-squared), but allows
to reduce other parameters.

Proof. Consider a k-sorting network of depth O(log2k n), given by [25] or by
our Theorem 2 (the latter allows only for limited values of k, but the values
we will actually use in the construction below are within the limits). By
Lemma 5 this network gives us a monotone circuit with the same parameters
consisting of MAJ2k gates computing MAJn, denote this circuit by C(x),
where x ∈ {0, 1}n.

9

Consider a (s(2k), d(2k), r(2k), err(2k))-circuit Cy on k inputs, where y ∈
{0, 1}r(2k). Fix y and substitute each MAJ2k gate in C by Cy. Denote the
resulting circuit by Dy(x). This is a standard monotone Boolean circuit, its
size is poly(n)·2s(2k), its depth is O(log2k n·d(2k)) and the number of random
bits is r(2k).

It remains to show that the error probability is not too large. For this
�x some input x ∈ {0, 1}n. Consider all MAJ2k gates in C(x) and denote
their inputs when x is fed to C by z1, z2, . . . , zt. Here t is the size of C and
is polynomial in n.

For each zi the probability over random y that Cy(z
i) computes

MAJ2k(z
i) incorrectly is at most 2−err(2k). By union bound, with proba-

bility at least 1 − t2−err(2k) we have Cy(z
i) = MAJk(z

i) for all i and thus
Dy(x) computes MAJn(x) correctly. Thus, the probability of error of the
resulting circuit is at most

t · 2−err(2k) = 2−err(2k)+O(logn)

Now we describe our starting circuit. Interestingly, it is constructed as a
partial derandomization of Valiant's construction.

Lemma 12. There is an explicit circuit for majority with parameters

(O(log n), O(log n), O(log3 n),Ω(log2 n)).

We provide the proof of Lemma 12 in Section 3.1 below, but before that,
we explain how to �nish the construction of the desired circuit for MAJn.

Starting with the circuit provided by Lemma 12, we �rst apply downward
self-reduction with the parameter k satisfying log k = C

√
log n for some

big enough constant C > 0, then we apply brute-force derandomization,
and then we apply downward self-reduction again with k satisfying log k =
log2/3 n. We summarize the changes in the parameters after each step in the
table below.

10

Initial
circuit

Step 1 Step 2 Step 3

Self-reduction
with
log k =

√
log n

Brute-force
derandomization

Self-reduction
with
log k = log2/3 n

s(n) O(log n) O(log n) O(log3/2 n) O(log n)

d(n) O(log n) O(log3/2 n) O(log3/2 n) O(log5/3 n)

r(n) O(log3 n) O(log3/2 n) 0 0

err(n) Ω(log2 n) Ω(log n) ∞ ∞

Remark 13. Note that with the two operations in hand, there are not that

many options to apply them to a given initial construction. It is not hard to

check that applying downward self-reduction two times in a row is not better

than applying it once with the appropriate value of k. Clearly, there is no

need to apply the derandomization step twice. From this, it is not hard to

see that our sequence of operations is actually optimal. Once the optimal

sequence of operations is established, it is not hard to check that our choice

of parameters in downward self-reductions is optimal as well.

3.1 Proof of Lemma 12

In this subsection, we are going to prove Lemma 12. The high-level idea is
to partially derandomize Valiant's construction. To make the presentation
self-contained we �rst recall the idea behind this construction.

Suppose we have independent random bits x, y, z that are equal to 1 with
probability p and considerMAJ3(x, y, z). It is not hard to see that it outputs
1 with probability f(p) = p3+3p2(1−p). Consider p = 1

2 + ε for some ε > 0
and denote ε′ = f(p)− 1

2 . Then

ε′ = f(p)− 1

2
= f(p)− f(

1

2
) = f ′(α)(p− 1

2
) = f ′(α)ε

for some α ∈ [12 , p]. Note that f
′(p) = 6p− 6p2 = 6p(1− p). It is easy to see

that for α ∈ [12 ,
2
3] we have f ′(α) ⩾ 4

3 . Thus, for ε ∈ [12 ,
2
3] we have ε′ ⩾ 4

3ε.
Now, we can use this in the following way. Consider MAJn for odd n

and consider its arbitrary input x. Without loss of generality, assume that

11

MAJn(x) = 1. If we draw one variable from x uniformly at random, it is
equal to 1 with probability at least 1

2 +
1
n . Consider a MAJ3 gate and feed to

it three independently and uniformly drawn input variables. By the analysis
above the output of such a MAJ3 gate is equal to 1 with probability at least
1
2 + 4

3 · 1
n . Now we can repeat this: consider three such MAJ3 gates and

feed their outputs to another MAJ3 gates. The result is equal to 1 with
probability 1

2 +
(
4
3

)2 1
n . After O(log n) many iterations, we get a O(log n)-

depth randomized circuit consisting of MAJ3 gates that output the correct
value with probability at least 2

3 . Valiant's argument further improves this
probability, but we will not need this part of the argument.

The randomized circuit above uses too many random bits. Now we are
going to modify the construction in a way, that uses randomness more e�-
ciently. We will use some ideas from [9].

Construct the following circuit consisting of MAJ3 gates. The circuit
contains Θ(log n) layers, each containing N = n3 gates. The bottom layer
consists of input variables, each repeated N

n = n2 times (it is redundant to
copy variables several times, we do this exclusively for the sake of uniformity
of the construction). In other layers, each gate computes the MAJ3 function
of some gates from the previous layer. To assign the inputs to each gate,
for each layer j we draw three fresh (and independent of each other) t-wise
independent hash functions fj , gj , hj : [N] → [N] for t = Θ(log n). For a gate
with number i in layer j we set its inputs to be gates with numbers fj(i),
gj(i) and hj(i) in layer (j − 1).

Before we �nish the construction of the circuit, let us analyze the current
part. Consider some input x ∈ {0, 1}n, assume without loss of generality
that MAJn(x) = 1. Denote by 1

2 + εi the fraction of gates on level i that
output 1. For i = 1 we have ε1 ⩾ 1

n .
Each gate on level i receives three independent inputs from the previous

level. Thus, the probability that it outputs 1 is at least 1
2 + 4

3εi−1 (we have
shown this above only for εi−1 ⩽ 2

3 , but these values of εi−1 are enough for
our construction as well). Thus, the expected fraction of ones in level i is
also at least 1

2 + 4
3εi−1.

Now we would like to use concentration inequality to show that with high
probability the fraction of correct values is not much smaller than its expec-
tation. Note that the outputs of the gates on level i are t-wise independent.

Let ε = 1
6n and denote by Xi the output of i-th gate. Then by Theorem 9

we have

Pr

[∣∣∣∣∣∑
i

Xi/N − (
1

2
+ (4/3)εj−1)

∣∣∣∣∣ ⩾ ε

]
⩽ 1.1

(
t

Nε2

)t/2

= 2−Θ(log2 n).

12

By union bound the probability that on each level εj ⩾ 4
3εj−1 − ε is at

least
1−O(log n) · 2−Θ(log2 n) = 1− 2−Θ(log2 n).

Thus, we can show by induction on j that with probability at least 1 −
2Θ(log2 n) we have

εj ⩾
4

3
εj−1 − ε ⩾

7

6
εj−1 +

1

6
εj−1 −

1

6n
⩾

7

6
εj−1,

where in the last inequality we use that by induction hypothesis we have

εj−1 ⩾
(
7
6

)j−1 · ε1 ⩾ 1
n .

Thus, just like in Valiant's argument, after O(log n) iterations, with

porbability 1 − 2−Θ(log2 n), we have εj ⩾ 2
3 . At this point, it remains to

apply to the last layer a circuit from Theorem 6.
It is easy to see that the size of the resulting circuit is poly(n), the depth

is O(log n), error probability is 2−Θ(log2 n). As for the random bits, note that
in the construction we need O(log n) t-wise independent hash functions from
[N] to [N]. By Theorem 8 there are families of such functions de�ned using
O(t logN) random bits. In total we need

O(log n) ·O(t logN) = O(log3 n)

random bits.
This �nishes the proof of Lemma 12.

Remark 14. Instead of applying a circuit for Approximate Majority to the

last layer, we could do the following: sample m = O(log2 n) gates from the

last layer uniformly at random and then compute the majority on these m
gates using some simple circuit of depth O(log2m). By Cherno�'s inequality,

this adds at most 2−Ω(m) = 2−Θ(log2 n) to the error probability, and we need

O(log3 n) random bits. In turn, the increase in depth and size is negligible.

4 k-Sorting Network Construction

4.1 Proof Strategy

Before we proceed to the proof we would like to illustrate the idea considering
some speci�c value of k. For convenience, we assume that n is a cube of a
natural number.

Lemma 15. Assume that n = t3 for natural t. Then there is a depth-4

k-sorting network with k = 2t2 = 2n2/3.

13

y

x

z

(a) Input array

y

x

z

(b) Step 1: cut the cube
into vertical slices

y

x

z

(c) Step 2: cut the cube
into vertical slices in the
other direction

y

x

z

(d) Step 3: cut the cube into horizon-
tal slices of width 2

y

x

z

(e) Step 4: horizontal slices with a
shift

Figure 1: Sorting network for k = 2n2/3 (here n = 125, k = 50 and t = 5)

We present the proof using a geometric interpretation of an input array
as a three-dimensional cube. However, note that a similar result is implicit
in [22] and it is essentially the same construction, just in di�erent terms. We
also note that it is known that this is the optimal (up to a constant factor)
value of k for depth-4 sorting networks [11].

Proof. We represent entries of an input array as a 3-dimensional cube with
the side t (see Figure 1a). We place the �rst t2 entries of an array in the
bottom layer of the cube, the next t2 entries in the second layer of the cube
and so on. In each layer the entries are positioned row by row.

To be more precise, assume that the array A is enumerated as [a1, . . . , an].

14

We reenumerate the same array as

[a111, a112, . . . , a11t, a121, . . . , a12t, . . . , attt].

That is, entries of an array are enumerated by sequences (x, y, z) ∈
{1, . . . , t}3 in the lexicographic order. In Figure 1 axyz corresponds to a
subcube with coordinates (x, y, z).

In the �rst layer of the sorting network we split the cube into vertical
slices of width 1 and feed each slice to a t2-comparator (see Figure 1b). To
be more precise, for each i = 1, . . . , t we feed entries axyi for all x, y into
one comparator. On the second layer of the network we split the cube into
vertical slices of width 1 in another direction and feed each slice to a t2-
comparator (see Figure 1c). In other works, for each i = 1, . . . , t we feed
entries axiz for all x, z into one comparator. On the third layer we split the
cube into horizontal slices of width 2 (for odd t the last slice is of width
1) and feed the slices to comparators of arity at most 2t2 (see Figure 1d).
Finally, on the fourth layer of the network we split the cube into horizontal
slices of width 2 again, but now the �rst slice is of width 1 (for even t the
last slice is of width 1 as well). Thus, the slices on this layer are shifted
compared to the previous one (see Figure 1e).

It remains to prove that this sorting network sorts correctly. Consider
any input x ∈ {0, 1}n. Note that the cube consists of t2 vertical columns
with t entries in each column: each column Ayz is obtained by �xing y and z
in axyz and considering all possible x. We are interested in the weight wyz of
each column, that is the number of 1s in it. For the input A the weights of
the columns can be any numbers from 0 to t. Now consider the array after
the �rst layer of the network. Note that now each vertical slice of the �rst
layer of the network is sorted. This means that in each of these slices in the
�rst several rows (from bottom to top) there are only 0s, then there might be
a row containing both 0s and 1s, and then all remaining rows contain 1s. In
particular, the weights of two columns in the same slice di�er by at most 1.

Now consider the second layer of the network and consider two di�erent
slices Si = {ax,i,z | x, z ∈ [t]} and Sj = {ax,j,z | x, z ∈ [t]}. Note that each of
them contains exactly one column from each slice of the �rst layer. We know
that the weights of the columns in the same slice of the �rst layer di�er by
at most 1. Thus, in total, the number of 1s in two slices of the second layer
di�er by at most t. In other words, for each z the �rst slice contains the
column Aiz and the second slice contains the column Ajz. We know that on
the input of the second layer of the network |wiz − wjz| ⩽ 1. Thus,

|
∑
z

wiz −
∑
z

wjz| ⩽ t.

15

Denote by ri the number of rows in slice Si that consists of only 1s after the
second layer of the network. We just showed that the slice Si can have one
more extra row of 1s, one less row of 1s or something in between. Overall,
for the number rj of rows consisting of 1s in Sj we have |ri − rj | ⩽ 1. As
a result, the weights of columns in slices Si and Sj can di�er by at most 2.
Since this is true for any i and j, we have that the weights of all columns in
the cube after the second layer of the sorting network di�er by at most 2.

To put it another way, there is a horizontal slice of width 2, such that
below this slice we have only 0s and above this slice we have only 1s. Thus it
remains to sort entries of this slice. Note that on layers 3 and 4 of the network
there is a comparator that sorts exactly this slice. Note that by Lemma 4
all other comparators of layers 3 and 4 do not harm the sorting.

This argument can be extended to the cubes of arbitrary dimension d.
More speci�cally, for n = td and for k = (d− 1)td−1 we can represent entries
of an input array as a d-dimensional cube with side d, sort `vertical' slices
(we need to �x one of the coordinates in d-dimensional space as vertical) in
all d− 1 directions and then sort horizontal slices. This results into (d− 1)
layers of the sorting network and for horizontal slices we need recursive calls
for the arrays of size approximately 2dtd−1. Actually, it is expensive to make
two recursive calls for horizontal layers, instead we use an additional trick
to make just one recursive call.

Although our k-sorting network construction can be expressed in terms
of high dimensional hypercubes, we prefer to give a more general exposition,
using a concept of s-sorted arrays.

4.2 Merging s-Sorted Arrays

The following de�nition plays a key role in our sorting network construction.

De�nition 16. A 0/1-array A of length n is s-sorted if there is an integer
interval I = {i, . . . , i+s−1} ⊆ [n], such that A[j] = 0 for j < i and A[j] = 1
for j ⩾ i+ s. We call I unsorted interval.

As an immediate corollary of Lemma 4, we get the following.

Corollary 17. Suppose a sorting network gets an s-sorted array with un-

sorted interval I. Then the output is also s-sorted with I as an unsorted

interval.

We give a construction of a depth-1 sorting network that �merges� p
arrays of length n that are already s-sorted into one array which is (sp +
O(np2/k))-sorted, where k is the arity of the sorting network.

16

Lemma 18. Assume that k ⩾ tp for some integers t and p. Suppose we

have p s-sorted arrays of size n each. Assume additionally that n is divisible

by t. Then there is a depth-1 k-sorting network that merges these arrays into

one array of size np that is (sp+2np
t)-sorted. If additionally we assume that

s is divisible by n/t, then the resulting array is (sp+ np
t)-sorted.

Proof. Represent each array as a table with n
t columns and t rows. We

assume the following ordering on the entries of this table: to compare two
entries, we �rst compare the indices of their rows, and then the indices of
their columns. Position the tables one under another in a uni�ed table with
tp rows. Note that tp ⩽ k and apply k-comparator to each column in parallel.
We claim that the resulting array in the large table is (sp+ 2np

t)-sorted.
To see that observe, that in each small table, an unsorted interval of

length at most s occupies at most
⌈
st
n

⌉
+1 rows (any other row either consists

entirely of 0s or entirely of 1s). In the large table, this gives us at most
p
(⌈

st
n

⌉
+ 1

)
non-constant rows. After sorting each column individually, 0-

rows will move to the top, 1-rows will move to the bottom and all other
p
(⌈

st
n

⌉
+ 1

)
rows will be in between on them. They constitute an unsorted

interval and the size of it is at most

n

t
· p

(⌈
st

n

⌉
+ 1

)
.

For general s we can upper bound this as follows

n

t
· p

(⌈
st

n

⌉
+ 1

)
⩽

n

t
· p

(
st

n
+ 2

)
= sp+ 2

np

t
.

If s is divisible by n/t, note that we can just drop the rounding operation
and the size of an unsorted interval is at most

n

t
· p

(⌈
st

n

⌉
+ 1

)
=

n

t
· p

(
st

n
+ 1

)
= sp+

np

t
.

Applying previous lemma several times we get the following.

Lemma 19. Consider arbitrary n and k and denote t = ⌊
√
k⌋. Then there

is a k-sorting network of depth ⌈logt n⌉ − 1 that on any input outputs an

s-sorted array for s ⩽ 2⌈logt n⌉n
t .

17

Proof. Denote d = ⌈logt n⌉ and observe that n ⩽ td. Introduce the following
notation:

ni =

{
ti+1 for i = 1, . . . , d− 2,

td−1p for i = d− 1,

where p is such that td−1(p− 1) < n ⩽ td−1p. In particular, since p ⩾ 2, we
have p− 1 ⩾ p/2 and

n > td−1(p− 1) ⩾ td−1p/2.

For the convenience of presentation, we add td−1p− n dummy inputs equal
to 1 to the end of the array to make the size of the input to be equal to
td−1p. By Lemma 4 these inputs will never change their position and can be
removed from the sorting network.

We start with an unsorted array as an input and repeatedly apply
Lemma 18 to get the array consisting of blocks that are s-sorted for some
s. More speci�cally, after level i of the network we get the blocks of size ni

that are si sorted for

si =

{
(i− 1)ti for i = 1, . . . , d− 2,

(d− 2)td−2p for i = d− 1.

On the �rst step we split the input into blocks of size t2 and apply compara-
tors to them, the resulting blocks are 0-sorted.

On the i-th step for i = 2, . . . , d − 1 we already have blocks of size
ni−1 = ti from the previous step that are si−1-sorted for si−1 = (i− 2)ti−1.
Note that ni−1 = ti is divisible by t and si−1 is divisible by ni/t = ti−1.
We apply Lemma 18 and for i < d − 1 get blocks of size ni−1t = ni that
are s-sorted for s = si−1t + ni−1 = (i − 1)ti. For i = d − 1 we have just p
subarrays to merge and after the step we get the whole array of size td−1p

that is s-sorted for s = (d− 3)td−2p+ td−1p
t = (d− 2)td−2p.

Finally, observe that

s ⩽ (d− 2)td−2p ⩽ d
2n

t

as desired.

4.3 Computing Majority

Before constructing a sorting network we solve a simpler task of computing
majority function.

18

Theorem 20. For any n and for any k such that log k = ω(log log n) (or,
to put it di�erently, k is growing faster than any polylog(n)), there exists a

MAJk-circuit for MAJn of depth at most (2 + o(1)) log2k n.

The rest of the section is devoted to the proof of Theorem 20.
First observe that to compute MAJn correctly by a monotone circuit

it is enough to compute it correctly on minterm and maxterm inputs: the
computation on other inputs follows by monotonicity. Thus, we can assume
in our construction that the input contains almost the same number of 0s and
1s. We will construct a sorting network that sorts all such inputs correctly.
From the sorting network we get the circuit of the same depth.

Suppose we need to sort an array of size n with approximately the same
number of 0s and 1s. We apply Lemma 19 to the array. This results in a
Y -sorted array for Y = 2⌈logt n⌉n

t for t = ⌊
√
k⌋. Since the number of 0s and 1s

in the array is approximately equal, the smallest n
2 −Y and the largest n

2 −Y
elements are sorted correctly (otherwise, the length of unsorted interval is
larger than Y). Thus, it remains to sort speci�c interval of length 2Y and
we can do it recursively.

Overall, we get the following recursive relation.

T (n) ⩽ ⌈logt n⌉ − 1 + T (2Y) ⩽ logt n+ T

(
4⌈logt n⌉n

t

)
.

To solve this recursive relation we use the following lemma.

Lemma 21. Assume that log k = ω(log log n). Suppose that T (n) = const

for n up to some constant and

T (n) ⩽ 2 logk n+ C + T

(⌈
D(logk n)n√

k

⌉)
for some constants C and D > 0. Then T (n) ⩽ (2 + o(1)) log2k n.

Proof. To simplify the presentation, we ignore rounding of the argument of

T �rst, and address it later. Denote α =
√
k

D logk n .

19

We have

T (n) ⩽ 2 logk n+ C + T
(n
α

)
⩽ 2 logk n+ C + 2 logk

n

α
+ C + T

(n

α2

)
⩽ 2

logα n∑
i=0

(
logk

n

αi
+ C

)
= 2 (logk n+ (logk n− logk α) + (logk n− 2 logk α) + . . .+ 0) + 2C logα n

≤ 2
logk n

logk α

logk n

2
+ 2C logα n = log2k n logα k + 2C logα n.

It is easy to see that the term 2C logα n is negligible, since α ≫ k1/3.
We analyze logα k factor separately:

logα k = log √
k

D logk n

k =
log2 k

log2

√
k

D logk n

⩽
log2 k

1
2 log2 k −D − log2 logk n

=
log2 k

1
2 log2 k −D − log2 log2 n+ log2 log2 k

.

For log k = ω(log log n) this term is 2 + o(1) and we have

T (n) ⩽ (2 + o(1)) log2k n.

To address the rounding operation, note that
⌈
n
α

⌉
⩽ n

α + 1 ⩽ 2n
α for

n
α ⩾ 1. Thus, in the presence of rounding we will have

∑
i logk

2n
α in the

calculation above instead of
∑

i logk
n
α . This amounts to substituting D by

2D and does not change the result of the calculation since D is an arbitrary
constant.

4.4 Constructing Sorting Network

In this section, we �nish the proof of Theorem 2.
We adopt the same strategy as for the computation of majority. More

speci�cally, we apply Lemma 19 recursively to get s-sorted array for smaller
and smaller s. However, now our task is more tricky. In the proof of Theo-
rem 20 when we get to an s-sorted array we know exactly where the unsorted
interval is located (in the middle of the array). However, now we need to
sort arbitrary input arrays and an unsorted interval can be anywhere.

We construct the network recursively. We assume that at the beginning
of each step, we have an s-sorted array (at the beginning of the process

20

s = n). Denote the unsorted interval by A, |A| ⩽ s. Split the array into
consecutive blocks B1, . . . , Bp of size s (the last block Bp) might be smaller.

The recursive step consists of two stages. In the �rst stage, we split the
array into blocks B1∪B2, B3,∪B4, and so on, each block of size 2s (one last
block might be smaller). In the second stage, we split the array into blocks
B1, B2 ∪B3, B4 ∪B5, and so on (again the last block might be smaller than
2s). Before describing each of the stages, observe that either in the �rst stage
or in the second stage (or in both) the interval A falls completely into one
of the blocks. Indeed, A can intersect with at most two consecutive blocks
Bi, Bi+1 and in one of the stages, they form a single block.

In the �rst stage, we apply Lemma 19 to each of the blocks B1 ∪
B2, B3,∪B4, . . . separately. As a result, each block is s′-sorted for s′ ≤
4
⌈
log⌊

√
k⌋ n

⌉
s

⌊
√
k⌋ . Moreover, if the block consisted of only 0s and 1s, then it does

not change.
If A is contained in one of the blocks of the �rst stage, we are already

done: there is only one initially unsorted block that by Lemma 19 after
the step is s′-sorted. By Corollary 17 this property remains true after the
additional comparators we apply for the other case.

If A is split between two blocks of the �rst stage, then after the stage
we have two consecutive unsorted blocks, each of them is s′-sorted. Denote
unsorted parts by C1, C2. Note that by Corollary 17 C1, C2 ⊆ A and thus,
C1 and C2 fall into one block of the second stage. It is tempting to apply
Lemma 19 to the blocks of the second stage as well. However, this application
is too expensive and will not result in the desired bound.

Instead we do the following. We represent each block of the second stage
(of size at most 2s) as a table with p = ⌈2s/k⌉ columns and k rows, �lled
in row by row from top to bottom. For convenience, if the last row is not
complete, add dummy variables equal to 1 to complete the row.

Each of the intervals C1, C2 occupy at most ⌈s′/p⌉+1 rows. There might
be another row that contain a switch between blocks Bi and Bi+1. Each
other row consist either entirely of 0s, or entirely of 1s. Denote the number
of all 0 rows by a and the number of all 1 rows by b.

We apply a comparator to each column separately. As a result, each
column will contain a zeros in the beginning, b ones in the end and some part
in between. The number of rows in the middle part is at most 2 ⌈s′/p⌉+ 3.
The number of entries in these rows is at most

s′′ = p(2
⌈
s′/p

⌉
+ 3) ⩽ 2s′ + 5p ⩽ 3s′

for large enough input size. Thus, after the second stage we get s′′-sorted

21

array and we are done with the recursion step.
Thus, we get that s′′ ⩽ 12 ⌈logt n⌉s

t and we get the following recursive
relation

T (n) ⩽ logt n+ T

(
12⌈logt n⌉n

t

)
.

We apply Lemma 21 again to get T (n) ⩽ (2 + o(1)) log2k n.
This �nishes the proof of Theorem 2.

4.5 Other Applications

In this section we give two more examples of results that follow from our
construction.

Lemma 22. There is a MAJk-circuit of depth 4 computing MAJn for k =
O(n3/5).

Proof. Denote r = ⌈n1/5⌉. For simplicity we pad the input with constants
0 and 1 to make the size of the array r5 without changing the output of
majority. We will use k-sorters for k = 4r3.

As in the proof of Theorem 20 it is enough to computeMAJn on minterms
and maxterms, thus we can assume that there are approximately equal num-
ber of 0s and 1s in the input.

We will build a k-sorting network and the existence of the circuit follows.
On the �rst layer of the network we split the input into blocks of size r3 and
sort them. On the second layer we use Lemma 18 with p = r and t = r2.
As a result we get blocks of size r4 that are r2-sorted. On the third level we
apply Lemma 18 again with the same values of p and t. As a result we have
that the whole input is now 2r3-sorted. On the last layer of the network just
as in the proof of Theorem 20 we apply 4r3-comparator to the middle of the
array.

In [18] Knuth posed a problem of constructing a minimal depth k-sorting
network for the input of size k2. Parker and Parbery [25] gave a construction
of depth 9. Here we slightly improve on this at the cost of using comparators
of size O(k).

Lemma 23. There is a k-sorting network of depth 8 that sorts an array of

size n with k = O(n1/2).

Proof. As usual pad an array with constants to make n = r4 for some integer
r. Thus k = O(r2).

22

We follow the same strategy as in Section 4.4. First we apply Lemma 19
that uses three layers of network and results in a s-sorted array for s = O(r3).
Then, we apply Lemma 19 again to the blocks of size O(r3) to get a network
of depth 2 that results in each block being O(r2)-sorted. Then we apply
one more layer to merge unsorted intervals in di�erent blocks to get the
array that is O(r2)-sorted. Finally, we again split the array into blocks, this
time of size O(r2) to complete the sorting using two layers. In total we use
3 + 2 + 1 + 2 = 8 layers.

5 Conclusion

The obvious open problems are to come up with explicit constructions of
sorting networks and monotone circuits for majority of smaller depth. One
speci�c problem, is to extend our O(log5/3 n) construction to sorting net-
works. The obstacle that we encountered is that there is no randomized
construction of low depth sorting network that we can use as a start. An-
other interesting question is to extend our O(log5/3 n) construction to get a

MAJk-circuit for MAJn of depth O(log
5/3
k n). Such a construction can be

used instead of O(log2k n)-depth circuit in downward self-reduction to further
improve the upper bound. Again the obvious obstacle is that it is not clear
how to get a starting construction.

References

[1] Mikl�os Ajtai, J�anos Koml�os, and Endre Szemer�edi. Sorting in c log n
parallel steps. Comb., 3(1):1�19, 1983.

[2] Kazuyuki Amano and Masafumi Yoshida. Depth two (n− 2)-majority
circuits for n-majority. Preprint, 2017.

[3] S.W.A.H. Baddar and K.E. Batcher. Designing Sorting Networks: A

New Paradigm. SpringerLink : B�ucher. Springer New York, 2012.

[4] Kenneth E. Batcher. Sorting networks and their applications. In Ameri-

can Federation of Information Processing Societies: AFIPS Conference

Proceedings: 1968 Spring Joint Computer Conference, Atlantic City,

NJ, USA, 30 April - 2 May 1968, volume 32 of AFIPS Conference Pro-

ceedings, pages 307�314. Thomson Book Company, Washington D.C.,
1968.

23

[5] Richard Beigel and John Gill. Sorting n objects with a k-sorter. IEEE
Trans. Computers, 39(5):714�716, 1990.

[6] Mihir Bellare and John Rompel. Randomness-e�cient oblivious sam-
pling. In 35th Annual Symposium on Foundations of Computer Science,

Santa Fe, New Mexico, USA, 20-22 November 1994, pages 276�287.
IEEE Computer Society, 1994.

[7] Daniel Bundala and Jakub Zavodny. Optimal sorting networks. In
Adrian-Horia Dediu, Carlos Mart��n-Vide, Jos�e Luis Sierra-Rodr��guez,
and Bianca Truthe, editors, Language and Automata Theory and Ap-

plications - 8th International Conference, LATA 2014, Madrid, Spain,

March 10-14, 2014. Proceedings, volume 8370 of Lecture Notes in Com-

puter Science, pages 236�247. Springer, 2014.

[8] V. Chv�atal. Lecture notes on the new aks sorting network. Technical
report, 1992.

[9] Gil Cohen, Ivan Bjerre Damg�ard, Yuval Ishai, Jonas K�olker, Peter Bro
Miltersen, Ran Raz, and Ron D. Rothblum. E�cient multiparty pro-
tocols via log-depth threshold formulae - (extended abstract). In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO

2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes
in Computer Science, pages 185�202. Springer, 2013.

[10] Robert Cypher and Jorge L. C. Sanz. Cubesort: A parallel algorithm
for sorting N data items with s-sorters. J. Algorithms, 13(2):211�234,
1992.

[11] Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and
Vladimir V. Podolskii. Constant-depth sorting networks. In Yael Tau-
man Kalai, editor, 14th Innovations in Theoretical Computer Science

Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge,

Massachusetts, USA, volume 251 of LIPIcs, pages 43:1�43:19. Schloss
Dagstuhl - Leibniz-Zentrum f�ur Informatik, 2023.

[12] Christian Engels, Mohit Garg, Kazuhisa Makino, and Anup Rao. On
expressing majority as a majority of majorities. SIAM J. Discret. Math.,
34(1):730�741, 2020.

[13] Qingshi Gao and Zhiyong Liu. Sloping-and-shaking. Science in China

Series E: Technological Sciences, 40(3):225�234, 1997.

24

[14] Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone cir-
cuits for the majority function. In Proceedings of the 9th international

conference on Approximation Algorithms for Combinatorial Optimiza-

tion Problems, and 10th international conference on Randomization and

Computation, pages 410�425, 2006.

[15] Pavel Hrubes, Sivaramakrishnan Natarajan Ramamoorthy, Anup Rao,
and Amir Yehudayo�. Lower bounds on balancing sets and depth-2
threshold circuits. In Christel Baier, Ioannis Chatzigiannakis, Paola
Flocchini, and Stefano Leonardi, editors, 46th International Colloquium

on Automata, Languages, and Programming, ICALP 2019, July 9-12,

2019, Patras, Greece, volume 132 of LIPIcs, pages 72:1�72:14. Schloss
Dagstuhl - Leibniz-Zentrum f�ur Informatik, 2019.

[16] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers,
volume 27 of Algorithms and combinatorics. Springer, 2012.

[17] Nabil Kahal�e, Frank Thomson Leighton, Yuan Ma, C. Greg Plaxton,
Torsten Suel, and Endre Szemer�edi. Lower bounds for sorting networks.
In Frank Thomson Leighton and Allan Borodin, editors, Proceedings of
the Twenty-Seventh Annual ACM Symposium on Theory of Computing,

29 May-1 June 1995, Las Vegas, Nevada, USA, pages 437�446. ACM,
1995.

[18] Donald Ervin Knuth. The art of computer programming, , Volume III,

2nd Edition. Addison-Wesley, 1998.

[19] Yu. A. Kombarov. On depth two circuits for the majority function. In
Proceedings of Problems in theoretical cybernetics, pages 129�132. Max
Press, 2017.

[20] Alexander S. Kulikov and Vladimir V. Podolskii. Computing major-
ity by constant depth majority circuits with low fan-in gates. Theory

Comput. Syst., 63(5):956�986, 2019.

[21] De-Lei Lee and Kenneth E. Batcher. A multiway merge sorting network.
IEEE Trans. Parallel Distributed Syst., 6(2):211�215, 1995.

[22] Frank Thomson Leighton. Tight bounds on the complexity of parallel
sorting. IEEE Trans. Computers, 34(4):344�354, 1985.

[23] Toshio Nakatani, Shing-Tsaan Huang, Bruce W. Arden, and Satish K.
Tripathi. K-way bitonic sort. IEEE Trans. Computers, 38(2):283�288,
1989.

25

[24] Ian Parberry. The pairwise sorting network. Parallel Process. Lett.,
2:205�211, 1992.

[25] Bruce Parker and Ian Parberry. Constructing sorting networks from
k-sorters. Inf. Process. Lett., 33(3):157�162, 1989.

[26] Michael S Paterson. Improved sorting networks with o (logn) depth.
Algorithmica, 5(1):75�92, 1990.

[27] Gleb Posobin. Computing majority with low-fan-in majority queries.
CoRR, abs/1711.10176, 2017.

[28] Joel Seiferas. Sorting networks of logarithmic depth, further simpli�ed.
Algorithmica, 53(3):374�384, 2009.

[29] Feng Shi, Zhiyuan Yan, and Meghanad D. Wagh. An enhanced multiway
sorting network based on n-sorters. In 2014 IEEE Global Conference

on Signal and Information Processing, GlobalSIP 2014, Atlanta, GA,

USA, December 3-5, 2014, pages 60�64. IEEE, 2014.

[30] S. S. Tseng and Richard C. T. Lee. A parallel sorting scheme whose
basic operation sortsN elements. Int. J. Parallel Program., 14(6):455�
467, 1985.

[31] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput.

Sci., 7(1-3):1�336, 2012.

[32] Leslie G. Valiant. Short monotone formulae for the majority function.
J. Algorithms, 5(3):363�366, 1984.

[33] Emanuele Viola. On approximate majority and probabilistic time. Com-

putational Complexity, 18:337�375, 2009.

[34] Andrew Chi-Chih Yao. Bounds on selection networks. SIAM J. Com-

put., 9(3):566�582, 1980.

[35] Lijun Zhao, Zhiyong Liu, and Qingshi Gao. An e�cient multiway
merging algorithm. Science in China Series E: Technological Sciences,
41(5):543�551, 1998.

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

