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Abstract

The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem
in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a
satisfiable 2CSP instance from one which is only (1− ε)-satisfiable (where the parameter is the
number of variables) for some constant 0 < ε < 1.

We consider a minimization version of CSPs (Min-CSP), where one may assign r values to
each variable, and the goal is to ensure that every constraint is satisfied by some choice among
the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable).
We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1,
it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer
to this statement as “Baby PIH”, following the recently proved Baby PCP Theorem (Barto
and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP
theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore,
our reduction runs in time polynomially bounded in both the number of variables and the
alphabet size, and thus implies the Baby PCP theorem as well.

1 Introduction

Approximation algorithms and fixed parameter-tractabililty (FPT) are two ways to cope with
NP-hard problems. Recently, there have been many works that unite the two by obtaining approx-
imation algorithms for NP-Hard problems that run in FPT time. Examples include Vertex Col-
oring [DHK05,Mar08], k-Path Deletion [Lee19], Vertex Cycle Packing [LPRS17], Flow
Time Scheduling [Wie18], Max k-Vertex Cover in d-uniform hypergraphs [SF17, Man19],
k-Means and k-Median [LS16, BPR+17,KMN+04,ANSW20,CGTS02,CGK+19]. On the other
hand, there are also various developments in FPT hardness of approximation, for example, for k-
Biclique [Lin18], k-Clique [CCK+17,Lin21,LRSW22,KK22,LRSW23b,CFLL23], k-SetCover
[CCK+17,CL19,KLM19,Lin19,KN21,LRSW23a] and so on. We refer to the survey by Feldmann,
Karthik, Lee, and Manurangsi [FKLM20] for a more comprehensive list of both FPT approximation
algorithms and FPT hardness of approximation results.

However, it is worth pointing out that the techniques used in proving FPT hardness of ap-
proximation results have been rather problem-specific, and there remain other basic problems for
which even constant inapproximability is unknown. This situation is due to the lack of a PCP-like
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theorem in the FPT world. In classical polynomial time hardness of approximation, the PCP the-
orem is a fundamental result that leads to a plethora of other results via reductions. The analog
of the PCP theorem in the FPT regime was explicitly proposed by Lokshtanov et al [LRSZ20] and
named Parameterized Inapproximability Hypothesis (PIH). The PIH states that there is an absolute
constant ε > 0 such that for a 2CSP on k variables with alphabet size n, there is no algorithm
running in time f(k)·nO(1) that can distinguish a satisfiable instance from one where at most (1−ε)
fraction of constraints can be simultaneously satisfied.

Analogous to the PCP theorem, PIH not only implies many FPT time inapproximability
results including k-Clique, k-SetCover, k-ExactCover, k-SetPacking etc. but also unifies
the inapproximability landscape by serving as a versatile problem-agnostic starting point. So
far, however, PIH has only been established under very strong assumptions such as Gap-ETH
[DM18,CFM17]. Even ETH, a stronger assumption than W[1] ̸= FPT [CHKX06], is not known to
imply PIH. Establishing PIH underW[1] ̸= FPT is one of the major open problems in parameterized
complexity.

In this work, we prove a list version of the PIH, which we call Baby PIH, under W[1] ̸= FPT.
In Baby PIH, we study r-list assignments to the underlying 2CSP instance. An r-list assignment
has a list L(u) of at most r values to each variable u, and a constraint between variables u, v is said
to be satisfied by the r-list assignments if there is at least one pair of values x ∈ L(u), y ∈ L(v)
such that (x, y) satisfies the constraint between the variables u, v.

Definition 1 (Baby PIH). For all constants r, C ≥ 1 and every computable function f , there is
no algorithm running in time f(k) ·nC that can distinguish between the following cases, on input a
2CSP instance on k variables with alphabet size n.

• (Completeness) There is an assignment satisfying all the constraints.

• (Soundness) No r-list assignment satisfies all the constraints.

The Baby PIH can be compared with the “Baby PCP theorem,” which was established via a
purely combinatorial gap theorem in a remarkable recent work of Barto and Kozik [BK22] (who also
coined the term Baby PCP). The Baby PCP theorem asserts the NP-completeness of distinguishing
satisfiable instances of a 2CSP from those which lack a satisfying r-list assignment, for all constants
r > 1. Baby PCP differs from Baby PIH in the sense that it concerns 2CSP on n variables with
constant alphabet size. The concept of Baby PCP is itself not new and was studied in the early PCP
days under the guise of a certain minimization version of Label Cover [ABSS97] (see also [DS04]).1

The term “Baby” stems from the fact that after reducing the soundness parameter to an
arbitrarily small positive constant via parallel repetition, one can deduce the Baby PCP theorem
from the PCP theorem. This strategy also works in the PIH setting. Namely, we can use the
canonical “clause-variable” construction to build a 2CSP instance with projection property, then
apply parallel repetition [Rao11] to amplify the soundness to below 1

r2
. Suppose a 2CSP instance is

r-list satisfiable, then by randomly picking a value from each variable’s list, we can conclude there
is a single assignment that satisfies at least 1

r2
fraction of constraints. Therefore, being unable to

approximate 2CSP within a 1
r2

factor implies that it is hard to distinguish whether a instance is
satisfiable or not r-list satisfiable. In other words, PIH implies Baby PIH. Thus establishing the

1Label Cover is stronger than Baby PCP as stated above, as it imposes that the 2CSP relations are functions
(usually referred to as projection property in PCP parlance). However, Barto and Kozik’s version also has this
projection property.
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Baby PIH is a necessary step towards proving the PIH itself, and we also believe that it is a valuable
intermediate step.

In this work, we prove Baby PIH under the minimal complexity assumption W[1] ̸= FPT.

Theorem 2. Assuming W[1] ̸= FPT, Baby PIH is true.

Our proof of Theorem 2 is combinatorial and follows the framework of Barto and Kozik’s proof
of the Baby PCP theorem. Specifically, given a 2CSP instance with variable set X and a list size r,
we choose large enough integers a, b depending on r, and construct a bipartite direct product 2CSP
instance, whose variable set is

(
X
a

)
∪
(
X
b

)
. Given that the product instance is r-list satisfiable, we

can repeatedly choose smaller integers a′ ≤ a, b′ ≤ b and extract assignments for the instance with
variable set

(
X
a′

)
∪
(
X
b′

)
. The new assignments still list satisfy the smaller instance, but the size of

each list on one side is decreased by 1, which helps us to do induction.

We highlight that although this proof strategy looks simple, there are basic obstacles to employ
it in the Baby PIH setting (compared to the Baby PCP setting). In the PCP world, the alphabet
size |Σ| is at most some constant. Thus, to extract assignments for the smaller instance, it is
affordable to pick a, b large enough depending on |Σ|. The running time of there reduction is
therefore |X|Or,|Σ|(1). However in the PIH case, |Σ| can be as large as the input size, and the
running time of the reduction can only be f(|X|) · |Σ|Or(1) for some computable function f . To
overcome this barrier, we non-trivially use the underlying structure of r-list satisfying assignments.
We further note that our reduction runs in time |X|Or(1), which is polynomial also in |X|. Therefore,
our methods give a unified proof of both the Baby PCP theorem and Baby PIH. 2

As we mentioned earlier, PIH implies Baby PIH, and thus our result can be viewed as a first
step towards proving the former. An intermediate problem between them is the following average
version of Baby PIH: let an r-average list assignment be a labeling L(u) for each variable u such
that the average cardinality of L(u) over all the variables u is at most r.

Conjecture 3 (Average Baby PIH). For any constants r > 1, C and any computable function f ,
no algorithm can given as input a 2CSP instance on k variables with size n, distinguish between
the following two cases in f(k) · nC time:

• (Completeness) There is an assignment satisfying all the constraints.

• (Soundness) No r-average list assignment satisfies all the constraints.

Note that the difference between the Baby and Average Baby versions is to use the ℓ∞ vs.
ℓ1 norms of the number of values given to the variables. Once again, Average Baby PIH has a
counterpart in the PCP world, namely the minimization version of Label Cover with ℓ1 total cost,
which fueled early inapproximability results for SetCover and basic problems that concern linear
codes and lattices [ABSS97], as surveyed in [AL96].

Average Baby PIH is an intriguing open problem and could help in making further progress
towards PIH. Furthermore, the Average Baby PIH is strong enough to imply some non-trivial in-
approximability results. Notably, with an additional property called rectangular constraints (which
we will define later), it implies constant inapproximability of k-ExactCover, which we previously
only knew under PIH or Gap-ETH [Man20].

2Barto and Kozik [BK22] derive Baby PCP with the stronger projection property. Using our techniques, we can
get Baby PCP or Baby PIH with rectangular constraints, which is a slightly weaker property but still enough for
many downstream reductions.
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Towards a better understanding of Average Baby PIH, we give a counterexample showing that
the direct product construction we use to prove Baby PIH as is cannot establish the average version.
This suggests in order to get Average Baby PIH or full PIH, one may need other techniques or
constructions. As a candidate, we pose a question that whether the W[1]-hardness of approximating
k-Clique can help us bypass this counterexample. Please refer to Section 4.2 for details.

Organization. In Section 2, we introduce some preliminaries, including the problems considered
in this paper and related complexity hypotheses. In Section 3, we prove Baby PIH via the direct
product construction. We then discuss Average Baby PIH and pose a future direction towards it
in Section 4.

2 Preliminaries

We first start by formally defining 2-CSP.

Definition 4 (2CSP). An instance of arity-2 constraint satisfaction problem (2CSP) is a tuple
Π = (X,Σ,Φ), where:

• X = {x1, . . . , xk} is the set of variables;

• Σ = {Σx1 , . . . ,Σxk
} is the set of their respective domains of values. We use |Σ| to denote the

maximum size of any domain, and call it the alphabet size of Π.

• Φ = {ϕ1, . . . , ϕm} is the set of constraints. Each constraint ϕi is ordered tuple ⟨wi, Ri⟩, where
wi = (wi,1, wi,2) ∈ X2 is a pair of variables, and Ri is a 2-ary relation on Σwi,1 and Σwi,2.

An assignment of the 2CSP instance is a function from all variables in X to their respective
domains. A constraint ϕi is said to be satisfied by an assignment σ if (σ(wi,1), σ(wi,2)) ∈ Ri. We
say an assignment σ satisfies the 2CSP instance if all constraints are satisfied by σ.

For each constraint ϕi, we can without loss of generality assume wi,1 ̸= wi,2, since unary
constraints can be removed by restricting the domain of that variable.

We define r-list satisfiability, which generalizes the above satisfiability.

Definition 5 (r-List Satisfiability). Given a 2CSP instance Π = (X,Σ,Φ), a multi-assignment is a
function mapping each variable to a subset of its domain. We define the size of a multi-assignment
σ as maxx∈X |σ(x)|.

We say a multi-assignment σ r-list satisfies Π if σ is of size at most r, and for every constraint
ϕi, there exists a pair of values u ∈ σ(wi,1) and v ∈ σ(wi,2), such that (u, v) ∈ Ri.

Normal satisfiability can be viewed as 1-list satisfiability. Note that as r increases, it becomes
easier to r-list satisfy a 2CSP instance.

The relations in the 2CSPs that we construct using the direct product (see Definition 7) satisfy
a useful structural property, namely, rectangular relations.

Definition 6 (Rectangular Relation). A relation R ⊆ A × B is said to be rectangular if there is
a set C and functions π : A → C and σ : B → C such that (a, b) ∈ R if and only if π(a) = σ(b).
Equivalently, R is rectangular if for all a, a′ ∈ A and b, b′ ∈ B such that (a, b) ∈ R, (a, b′) ∈ R, and
(a′, b) ∈ R, we have (a′, b′) ∈ R.
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Rectangular relations can be informally viewed as consistency checks, and they are often
satisfied by 2CSPs in product constructions. Projection relation, a stronger version of rectangular
relation, is ubiquitous in PCP-based hardness reductions.

We now formally define the direct product construction that we use in our proof.

Definition 7 (Direct Product Construction). Given a 2CSP instance Π = (X,Σ,Φ), its t-wise
direct product, denoted as Π⊙t, is the following 2CSP instance (X ′,Σ′,Φ′):

• X ′ =
(
X
t

)
, where each variable is a t-sized subset of variables in Π.

• The domain of each variable S ∈ X ′ is the set of all partial satisfying assignments for S in
Π, i.e., all function σ that maps each x ∈ S to its domain in Π, such that all constraints in
Π induced by S are satisfied.

• Φ′ has of a consistency constraint for each pair of distinct variables in X ′. For S, T ∈ X ′,
the assignments σS , σT satisfy the constraint if and only if they are consistent on the values
for variables in S ∩ T .

Our results are based on the hypothesis W[1] ̸= FPT, which is closely related to k-Clique, a
fundamental problem in parameterized complexity theory.

Definition 8 (k-Clique). An instance of (multicolored) k-Clique problem is an undirected graph
G = (V = V1∪̇ . . . ∪̇Vk, E), where each Vi is an independent set. The goal is to decide whether we
can find v1 ∈ V1, . . . , vk ∈ Vk which form a clique. For r > 1, the r-gap version of k-Clique asks
to distinguish between the following two cases:

• (Yes) There exists v1 ∈ V1, . . . , vk ∈ Vk which form a clique.

• (No) The maximum clique in G has size at most k/r.

The W[1] ̸= FPT hypothesis states that for any computable function f , no algorithm can
solve a k-Clique instance with size n in f(k) · nO(1) time. For a k-Clique instance G = (V =
V1∪̇ . . . ∪̇Vk, E), we can build k variables x1, . . . , xk, letting Vi be the domain of variable xi and
making the edge set between Vi and Vj the constraint relation for xi and xj . Thus, G corresponds
to a 2CSP instance with k variables and alphabet size at most n. It is easy to see that there is
a clique of size k in G if and only if the 2CSP instance is satisfiable. Thus, we can restate the
W[1] ̸= FPT hypothesis as follows.

Hypothesis 9 (W[1] ̸= FPT). For any computable function f , no algorithm can decide whether a
given 2CSP instance Π = (X,Σ,Φ) is satisfiable in f(|X|) · |Σ|O(1) time.

The approximation version (with respect to the fraction of constraints that can be satisfiable)
of W[1] ̸= FPT is called Parameterized Inapproximability Hypothesis (PIH).

Hypothesis 10 (Parameterized Inapproximability Hypothesis (PIH) [LRSZ20]). 3 For any com-
putable function f and some constant ε > 0, no algorithm can given as input a 2CSP instance
Π = (X,Σ,Φ), distinguish between the following two cases in f(|X|) · |Σ|O(1) time:

• (Completeness) Π is satisfiable.

3Note that the original PIH in [LRSZ20] states that constant approximating 2CSP parameterized by |X| is W[1]-
hard. Here we use a relaxed form.

4



• (Soundness) Any assignment of Π violates at least ε fraction of constraints.

We formally define k-SetCover, the parameterized version of the classical SetCover prob-
lem, and the exact version of it.

Definition 11 (k-SetCover, k-ExactCover). An instance of k-SetCover problem is a tuple
Π = (S, U), where S is a collection of subsets {S1, . . . , Sn} over the universe U , and the goal
is to decide whether there are k sets in S, whose union is U . For r > 1, the r-gap version of
k-SetCover asks to distinguish between the following two cases:

• (Yes) There are k sets whose union is U .

• (No) The union of any r · k sets is not U .

Furthermore, if in the yes case, the k sets are non-intersecting, i.e., they form a partition of U ,
then we also denote this gap problem as k-ExactCover.

Finally, we define the hypercube partition system, an important gadget used in reductions to
k-SetCover (resp., k-ExactCover) problem.

Definition 12 (Hypercube Partition System). The (κ, ρ)-hypercube partition system consists of
the universe M and a collection of subsets {Px,y}x∈[ρ],y∈[κ], where M = [κ]ρ and Px,y = {z ∈ M :
zx = y}.

The universe M consists of all functions from [ρ] to [κ], and is of size κρ. Each subset
Px,y(x ∈ [ρ], y ∈ [κ]) consists of all functions mapping x to y. It can be observed that one can cover
the universe by picking all κ subsets from some row x ∈ [ρ], and this is the only way to cover the
universe. In other words, even if we include κ−1 subsets from every row, it is not possible to cover
the universe.

3 Baby PIH

In this section, we analyze the direct product construction to prove Baby PIH under W[1] ̸=
FPT.

Theorem 13 (Main). For any integer r > 1, there is an integer t > 0 such that for any 2CSP
instance Π = (X,Σ,Φ) and its t-wise direct product instance Π⊙t = (X ′,Σ′,Φ′):

• (Completeness) If Π is satisfiable, then Π⊙t is satisfiable as well.

• (Soundness) If Π is not satisfiable, then Π⊙t is not r-list satisfiable.

Since t is a constant depending solely on r, the number of variables in the new instance
|X ′| =

(|X|
t

)
depends only on |X| rather than |Σ|, and the alphabet size of the new instance

|Σ′| ≤ |Σ|t is polynomial in |Σ|. Thus for any computable function f , f(|X ′|) · |Σ′|O(1) time would
also be g(|X|) · |Σ|O(1) time for some function g. Therefore, we have the following corollary from
Theorem 13:

Corollary 14. Assuming W[1] ̸= FPT, Baby PIH is true.
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Note that the completeness in Theorem 13 follows trivially by assigning the restriction of the
satisfying assignment on X to each subset of variables. The main challenge is to show that when
Π⊙t has a r-list satisfying assignment, Π is satisfiable. To prove this, we will first work on a bipartite
version of the direct product of 2CSP.

Definition 15 (Bipartite Direct Product Construction). Given a 2CSP instance Π = (X,Σ,Φ)
and positive integers a, b, the (a, b)-bipartite direct product 2CSP instance Π⊙(a,b) = (X ′,Σ′,Φ′) is
constructed as follows.

• The variable set X ′ consists of all a-sized subsets of X on the left side, and all b-sized subsets
of X on the right side. With a little abuse of notation, we have X ′ =

(
X
a

)
∪
(
X
b

)
.

• The domain of each variable S ∈ X ′ is the set of all partial satisfying assignments for S in
Π.

• For every S ∈
(
X
a

)
and T ∈

(
X
b

)
, we have a constraint in Φ′ that checks whether σS and σT

are consistent on the values for variables in S ∩ T .

If for a 2CSP instance Π, Π⊙t is r-list satisfiable for t = max(a, b), by taking restrictions of its
assignments on the smaller sets, it is easy to see Π⊙(a,b) is r-list satisfiable as well. Thus, our goal
is to show that if the bipartite instance Π⊙(a,b) is r-list satisfiable, then the original instance Π is
satisfiable.

Our proof idea is borrowed from the Baby PCP theorem recently proved by Barto and Kozik
[BK22]. However, their theorem crucially relies on the fact that the alphabet |Σ| is as small as a
constant, which helps them to extract satisfying assignments for the smaller instance. The running
time of their reduction is, therefore, |X|O|Σ|(1), which is not affordable here since |Σ| is as large as
the input size. We resolve this issue by making use of the structural properties of the assignments
in the direct product construction arising from the fact that they satisfy r-list consistency. If we
fix some set S on one side and consider its r assignments, each set on the other side that intersects
S must have one of the r, which is a constant, assignments for their intersection part. We use this
simple yet very useful observation when extracting the assignments in the inductive proof.

In the following, we first prove Lemma 16, which is crucial to extract list satisfying assignments
for the smaller subsets. Then in Lemma 17, we analyze a special case of the bipartite direct
product construction when each variable on the right (bigger) side has only one assignment, and
the consistency requirement is a slightly weaker one. In Lemma 18, we finish the analysis of the
bipartite direct product construction, from which we get Theorem 13 as a corollary.

Lemma 16. Let k, r, q, a, b, b′ be integers satisfying r, q > 0, a ≥ k, b ≥ r ·b′+a. Consider the (a, b)-
bipartite direct product 2CSP instance based on Π = (X,Σ,Φ). Let u be an r-sized multi-assignment
for

(
X
a

)
and v be a q-sized multi-assignment for

(
X
b

)
. Suppose for every S ∈

(
X
a

)
, T ∈

(
X
b

)
with

T ⊇ S, v(T )|S ∩ u(S) ̸= ∅. Then for every A ∈
(
X
k

)
, there is an assignment fA for A such that for

every T ′ ∈
(
X
b′

)
, there is some T ∈

(
X
b

)
satisfying T ⊇ T ′ ∪A and v(T )|A ∋ fA.

Proof. Suppose for the sake of contradiction that there is no such fA for some set A ∈
(
X
k

)
. In

other words, for any assignment f on A, there exists a set T ′
f ∈

(
X
b′

)
, such that for every T ∈

(
X
b

)
satisfying T ⊇ T ′

f ∪A, v(T )|A ̸∋ f .

Pick an arbitrary S ∈
(
X
a

)
with S ⊇ A. This can be done since a ≥ k. Consider any set

T ∈
(
X
b

)
which contains ∪f∈u(S)|A(T

′
f ∪ S). Such a T exists since b ≥ r · b′ + a. By the assumption
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about A, v(T )|A does not contain any value in u(S)|A. This contradicts the consistency guarantee

in the hypothesis of the lemma, namely that for any T ∈
(
X
b

)
with T ⊇ S, v(T )|S must contain

some value in u(S).

See Figure 1 for an illustration of Lemma 16.
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Figure 1: An illustration of Lemma 16.

Lemma 17. For any integer r > 0, let a = r and b = (2r)r. Consider the (a, b)-bipartite direct
product 2CSP instance based on Π = (X,Σ,Φ). Let u be an r-sized multi-assignment for

(
X
a

)
and v be a 1-sized assignment for

(
X
b

)
. Suppose for every S ∈

(
X
a

)
and T ∈

(
X
b

)
with S ⊆ T ,

v(T )|S ∈ u(S). Then there is a global satisfying assignment σ to the 2CSP instance Π.

Proof. We apply induction on r. When r = 1, we have a = 1, b = 2, and both u, v are 1-sized
assignments. We claim that u is the desired global satisfying assignment of Π. For each constraint
on (x, y) ∈ X2, v({x, y}) = (x 7→ u(x), y 7→ u(y)) by our consistency guarantee. By the construction
of bipartite direct product 2CSP instance, the domain for each T ∈

(
X
b

)
consists only of partial

satisfying assignments. Thus the fact that (x 7→ u(x), y 7→ u(y)) lies in the domain of T = {x, y}
implies u satisfies the constraint on (x, y).

When r > 1, the idea is to extract consistent assignments for the (a′, b′)-bipartite direct product
2CSP instance and to decrease r, for some a′ ≤ a, b′ ≤ b. At a high level, if for some x ∈ X, every
set in

(
X
a

)
has at least two different values for it under u, we can keep only one of them and peel the

other off to decrease r by 1; otherwise we can prove the unique assignments are already satisfying.

In the following, define k = 1, and a′ = a− 1, b′ = (2(r− 1))r−1, i.e., a′, b′ are parameters with
respect to r − 1. It’s easy to see k ≤ a and r · b′ + a ≤ r · (2r)r−1 + r ≤ (2r)r = b. According to
Lemma 16, for every A = {xi} ∈

(
X
k

)
, there is an assignment fA for A such that for every T ′ ∈

(
X
b′

)
,

there is some T ∈
(
X
b

)
satisfying T ⊇ T ′ ∪ A and v(T )|A ∋ fA. Now v(T ) is of size-1, so we can

simply write v(T )|A = fA.
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Consider the following two cases:

1. For some A = {xi}, Lemma 16 holds for different assignments p, q. In other words, for every
T ′ ∈

(
X
b′

)
, there are T1, T2 ∈

(
X
b

)
satisfying T1, T2 ⊇ T ′∪{xi} and v(T1)|{xi} = p, v(T2)|{xi} = q.

Since for r ≥ 2 we have a = r ≤ (2(r − 1))r−1 = b′, for each S ∈
(
X
a

)
containing xi, we can

pick an arbitrary T ′ ⊇ S and consider the corresponding sets T1, T2 above. By the consistency
assumption between (S, T1) and between (S, T2) in Lemma 17, we can infer u(S)|{xi} ∋ p, q.

We construct new assignments u′, v′ for the (a′, b′)-bipartite direct product 2CSP instance of
Π, such that they still meet the consistency requirements in Lemma 17, and the size of u′

is at most r − 1. For each S′ ∈
(
X
a′

)
, u′(S′) will be inherited from u(S) for some S ∈

(
X
a

)
satisfying S ⊇ S′ ∪ {xi}. Similarly for each T ′ ∈

(
X
b′

)
, v′(T ′) will be inherited from v(T ) for

some T ∈
(
X
b

)
satisfying T ⊇ T ′ ∪ {xi}.

Suppose there is a arbitrary fixed order of all variables in X. We construct S from S′ as
follows, and output u′(S′) = {σ ∈ u(S)|σ(xi) = p}|S′ :

• If xi ̸∈ S′, let S = S′ ∪ {xi}.
• If xi ∈ S′, S is obtained by adding the lexicographical smallest element not in S′ to S′.

Note that we only keep the assignments in u(S) whose restriction on {xi} is p, and discard
those whose restriction on {xi} is q. Thus u′ is of size at most r − 1 as desired.

For each T ′ ∈
(
X
b′

)
, we first construct T ′′ ∈

(
X
b′

)
as follows:

• If xi /∈ T ′, simply let T ′′ = T ′.

• If xi ∈ T ′, T ′′ is obtained by adding the lexicographical smallest element not in T ′ to
T ′, and delete xi.

After that, we find a T ∈
(
X
b

)
satisfying T ⊇ T ′′ ∪ {xi} and v(T )|{xi} = p, and output

v′(T ′) = v(T )|T ′ .

By our construction, S′ ⊆ T ′ implies S ⊆ T , so the new instance still meets the required
consistency requirements, and the induction proceeds.

2. Suppose for A being each {xi}, Lemma 16 holds for a unique assignment zi.

We claim that (xi 7→ zi)xi∈X is a global satisfying assignment. Indeed, consider an arbitrary
constraint ψ between variables (xi, xj) ∈ X2. Applying Lemma 16 to the choice A = {xi, xj},
we know there is an assignment fA such that for every T ′ ∈

(
X
b′

)
, there is some T ∈

(
X
b

)
satisfying T ⊇ T ′ ∪ A and v(T )|A = fA. Since v(T ) satisfies all constraints within T , this
means that fA must satisfy the constraint ψ. By the uniqueness assumption of this case, we
must have fA(xi) = zi and fA(xj) = zj , which means that the assignment (zi, zj) satisfies the
constraint ψ between (xi, xj).

We will now finish the analysis of the bipartite direct product construction.

Lemma 18. For integers r, q > 0, let a = (2r)r+2q, b = (2r)r+2q+2. Consider the (a, b)-bipartite
direct product 2CSP instance based on Π = (X,Σ,Φ). Let u be an r-sized multi-assignment for

(
X
a

)
and v be a q-sized multi-assignment for

(
X
b

)
. If u, v list-satisfy all bipartite constraints, then there

is a global satisfying assignment σ to the 2CSP instance Π.
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Proof. We apply induction on q, the size of the right multi-assignment. When q = 1, we have
a = (2r)r+2 ≥ r and b = (2r)r+4 ≥ (2r)r. We can extract consistent satisfying assignments for the
(r, (2r)r)-bipartite direct product 2CSP instance, and invoke Lemma 17 to prove there is a global
satisfying assignment.

When q > 1, we categorize discussions based on whether the left multi-assignment u satisfies a
certain property. Either we can still extract consistent assignments for the smaller (a′, b′)-bipartite
direct product 2CSP instance while decreasing q and leaving r unchanged, or we can build multi-
assignments that satisfy requirements in Lemma 17, and therefore directly invoke that lemma and
stop the induction.

Define k = (2r)r. The parameters a′, b′ with respect to q − 1 would be a′ = (2r)r+2q−2 and
b′ = (2r)r+2q. In our case-analysis we will use the following inequalities, which we first prove here.

• b ≥ r · b′ + a. Indeed
r · b′ + a = r · (2r)r+2q + (2r)r+2q

≤ 2 · (2r)r+2q+1

≤ (2r)r+2q+2 = b.

• a ≥ (r + 1) · (a′ + k). Indeed

(r + 1) · (a′ + k) = (r + 1) · ((2r)r+2q−2 + (2r)r)

≤ (2r) · (2 · (2r)r+2q−2)

≤ (2r)r+2q = a.

Now we consider the following two cases based on u. The criterion is whether u satisfies a
property which is reminiscent of the result of Lemma 16, except in Lemma 16 the property is for
v while here we check it for u.

1. Suppose there exists A ∈
(
X
k

)
such that for every assignment fA on A and every S′ ∈

(
X
a′

)
,

there exists S ∈
(
X
a

)
satisfying S ⊇ S′ ∪A and u(S)|A ̸∋ fA.

Given a ≥ k and b ≥ r ·b′+a, we can apply Lemma 16 to know that there is an assignment fA
on A, such that for every T ′ ∈

(
X
b′

)
, there is T ∈

(
X
b

)
satisfying T ⊇ T ′ ∪A and v(T )|A ∋ fA.

We therefore build multi-assignments u′, v′ for the smaller (a′, b′)-bipartite 2CSP instance as
follows.

For every S′ ∈
(
X
a′

)
, we pick the set S guaranteed by the assumption of this case, and define

u′(S′) = u(S)|S′ . Note that u′ still has size at most r.

For every T ′ ∈
(
X
b′

)
, we pick the set T guaranteed by Lemma 16, and define v′(T ′) = {σ ∈

v(T )|σ|A ̸= fA}|T ′ . By the assumption, there exists S ∈
(
X
a

)
satisfying S ⊇ A and u(S)|A ̸∋

fA. Thus to be consistent with u(S)|A, we can conclude for every T ∈
(
X
b

)
containing A,

v(T )|A should also contain some value other than fA. Therefore, our constructed v′ is non-
empty and has size at most q − 1.

It’s also easy to see u′, v′ still satisfy list consistency, since in v′ we only discard the assignments
whose restriction on A equals to fA, which are not consistent with any u′.

2. Suppose for every A ∈
(
X
k

)
, there is an assignment fA for A and a set S′ ∈

(
X
a′

)
, such that for

every S ∈
(
X
a

)
satisfying S ⊇ S′ ∪A, we have u(S)|A ∋ fA.

9



In this case we can construct r-sized multi-assignment u′ and 1-sized assignment v′ for left
and right part of the (r, k = (2r)r)-bipartite direct product 2CSP of Π respectively, that
meets the requirements of Lemma 17. Furthermore, u′, v′ are built purely based on u.

For every B ∈
(
X
r

)
, we define

u′(B) =
⋃

A∈(Xk ),A⊇B

(fA)|B

For every A ∈
(
X
k

)
, we define v′(A) = fA.

We first claim the size of u′ is at most r. Suppose it is not, there are r+1 sets A1, . . . , Ar+1 ∈(
X
k

)
with fAi all different. Let S′

1, . . . , S
′
r+1 ∈

(
X
a′

)
be the corresponding sets guaranteed in

the assumption of this case. Consider a S ∈
(
X
a

)
which contains ∪r+1

i=1 (S
′
i ∪Ai). Such S exists

since a ≥ (r + 1) · (a′ + k). Thus, u(S)|A contains (r + 1) different values, contradicting the
fact that u is of size r.

It’s easy to see u′, v′ meets the requirement of Lemma 17 by the definition of u′. Thus using
Lemma 17, there is a satisfying assignment to the original instance Π.

Our main result, Theorem 13, now follows immediately from Lemma 18.

Proof of Theorem 13. Given an integer r, we pick t = (2r)r+2r+2, and prove that if a 2CSP instance
Π = (X,Σ,Φ) is satisfiable, then so is Π⊙t; if Π is not satisfiable, then Π⊙t is not r-list satisfiable.

The completeness case is easy: let σ be a satisfying assignment for Π, then we can assign each
set S ∈

(
X
t

)
the function that maps any x ∈ S to σ(x).

For soundness case, suppose Π⊙t is r-list satisfiable by an assignment σ, we take a = (2r)r+2q, b =
(2r)r+2q+2 and build multi-assignments u, v for the left and right part of the (a, b)-bipartite direct
product 2CSP instance Π⊙(a,b). For each set S′ ∈

(
X
a

)
, we pick an arbitrary S ∈

(
X
t

)
with S ⊇ S′,

and define u(S′) = σ(S)|S′ . Similarly for each T ′ ∈
(
X
b

)
, we pick an arbitrary T ∈

(
X
t

)
with T ⊇ T ′,

and define v(T ′) = σ(T )|T ′ . It’s easy to see u and v are r-list consistent. Thus by Lemma 18, Π is
satisfiable.

4 Average Baby PIH

Let us recall the average Baby PIH conjecture.

Hypothesis 19 (Average Baby PIH). Given a 2CSP instance Π = (X,Σ,Φ), we say a multi-
assignment σ r-average-list satisfies Π if

∑
x∈X |σ(x)| ≤ r · |X|, and for every constraint ϕi, there

exists u ∈ σ(wi,1) and v ∈ σ(wi,2), such that (u, v) ∈ Ri.

Average Baby PIH states that for some constant r > 1 and any computable function f , no
algorithm can given as input a 2CSP instance Π = (X,Σ,Φ), distinguish between the following two
cases in f(|X|) · |Σ|O(1) time:

• (Completeness) Π is satisfiable.

• (Soundness) Π is not r-average-list satisfiable.
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4.1 A Counter Example for Direct Product Construction

We use the following counter example to show that the Direct Product construction does not
give us Average Baby PIH. Specifically, for any t > 0 and ε > 0, there exists an 2CSP instance
which is not satisfiable but its t-wise direct product is (1 + ε)-average-list satisfiable.

Example 20. The 2CSP instance Π = (X,Σ,Φ) is defined as follows.

• X = {x1, . . . , xn}.

• Σx1 = {2, . . . , n}, and for every i ∈ {2, . . . , n}, Σxi = {1}.

• For every i ∈ {2, . . . , n}, there is a constraint ϕi = ⟨wi, Ri⟩ ∈ Φ, where

– wi = (x1, xi).

– Ri = {(j, 1)|j ̸= i}.

Π is not satisfiable since no value for x1 can satisfy all constraints. Specifically, for i ∈
{2, . . . , n}, x1 = i would violate constraint ϕi.

However, for every integer t > 0, Π⊙t can be list satisfied by the following multi-assignment σ.
For every S ∈

(
X
t

)
,

• if x1 /∈ S, define σ(S) to be the single assignment that maps every xi ∈ S to 1;

• if x1 ∈ S, then for every 2 ≤ j ≤ 2t with xj /∈ S, let σ(S) contain an assignment that maps
x1 to j, and maps everything else to 1.

It’s easy to see σ satisfies all constraints induced by S. It remains to show that σ is consistent
on every different S, T ∈

(
X
t

)
.

If x1 /∈ S or x1 /∈ T , σ(S) and σ(T ) are trivially consistent since every variable in S ∩ T is
always assigned 1. Now suppose x1 ∈ S ∩ T , we have |S ∪ T | ≤ 2t − 1. By Pigeonhole Principle,
there is a variable xj with j ≤ 2t, which is neither in S nor in T . Thus the assignment that maps
x1 to j and everything else to 1 appears in both σ(S) and σ(T ), proving that σ list-satisfies Π⊙t.
The total size of the lists is

1(|X|
t

) ∑
x∈X

|σ(x)| ≤
(|X|−1

t

)(|X|
t

) · 1 +
(|X|−1

t−1

)(|X|
t

) · 2t

=

(
1− t

|X|

)
· 1 + t

|X|
· 2t

≤ 1 +
2t2

|X|
,

which is smaller than 1 + ε when |X| goes to infinity.

4.2 Towards the Inapproximability of k-ExactCover

In this subsection, we show that a slightly strengthened version of Average Baby PIH, namely,
Average Baby PIH with rectangular relations, implies constant inapproximability of k-ExactCover
problem. The latter, to our best knowledge, is currently not known under W[1] ̸= FPT. Formally,
we have the following theorem:
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Theorem 21. Suppose Average Baby PIH holds even when the 2CSP instance has rectangular
relations (see Definition 6), then for any constant r > 0 and any function f , no algorithm can
approximate k-ExactCover problem within factor r in f(k)·nO(1) time. Specifically, no algorithm
can given a k-SetCover instance Π = (S, U) with size n, distinguish between the following two
cases in f(k) · nO(1) time:

• There exists k sets in S which form a partition of U .

• The union of any r · k sets in S is not U .

Proof. We reduce a 2CSP instance Π = (X,Σ,Φ) with rectangular relations to a k-SetCover
instance Π′ = (S, U) with k = |X| in the following way. For every (x, v) ∈ X × Σ, we build a set
Sx,v. For each constraint ϕi = ⟨(wi,1, wi,2), Ri⟩ in Φ, let Ci be the underlying set in the rectangular
relation Ri and let πi, σi : Σ → Ci be the underlying mappings. We build a (2, |Ci|)-hypercube
partition system

(
M(i), {P (i)

x,y}x∈Ci,y∈[2]

)
and add the subset P

(i)
πi(a),1

to Swi,1,a, P
(i)
σi(b),2

to Swi,2,b for

every (a, b) ∈ Ri. Let the final universe U be the union of every M(i).

In the completeness case, let σ : X → Σ be a satisfying assignment of Π. It’s easy to see the
k sets {Sx,σ(x)}x∈X cover each element of the universe exactly once.

In the soundness case, let S ′ ⊆ S be a collection of sets that cover U , we claim the multi-
assignment σ, which maps x ∈ X to {v ∈ Σ|Sx,v ∈ S ′}, is a satisfying assignment of Π. This is

because by the property of hypercube partition system, the only way to cover M(i) is to pick P
(i)
u,1

and P
(i)
u,2 simultaneously for some u ∈ Ci. Thus, we must have included Swi,1,a and Swi,2,b in S ′ for

some (a, b) ∈ Ri, which means the constraint ϕi is list satisfied. Therefore, if Π is not r-average-list
satisfiable, the minimum number of sets need to cover U is greater than r · k.

Each hypercube partition system has size |Ci|2, and the whole reduction runs in time poly-
nomial in |Σ| while preserving k = |X|. Thus, a f(k) · nO(1) time algorithm for r-approximating
k-ExactCover would give a f(k) · |Σ|O(1) algorithm for 2CSP with rectangular relations, contra-
dicting the strengthened version of Average Baby PIH.

We remark that the direct product construction does have rectangular relations, although it
does not directly give us Average Baby PIH, in view of Example 20.

4.3 Future Direction: Average Baby PIH from Clique Hardness

In [Lin21], the author proved that even constant approximating k-Clique is W[1]-hard. In
[KK22,CFLL23], the inapproximability ratio was improved to ko(1). Using CSP words, their results
can be described as the following theorem:

Theorem 22 ( [KK22, CFLL23]). Assuming W[1] ̸= FPT, no algorithm can, given a 2CSP in-
stance Π = (X,Σ,Φ), distinguish between the following two cases in f(|X|) · |Σ|O(1) time, for any
computable function f :

• Π is satisfiable.

• The constraints induced by any |X|1−o(1) variables are not simultaneously satisfiable.

Thus, it is natural to ask whether we can get Average Baby PIH by applying direct product
construction to a 2CSP instance with the above “clique-like” soundness? More formally, we have
the following open question:
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Open Question 1. Is it true that for any integer r > 1, there is an integer t > 0, such that for any
2CSP instance Π = (X,Σ,Φ), if Π⊙t is r-average-list satisfiable, then there are |X|1−o(1) variables
in Π such all constraints amongst them are simultaneously satisfiable?

Note that the counterexample for average baby PIH using direct product construction (Ex-
ample 20) does not apply here, since there are |X| − 1 variables in Π that are simultaneously
satisfiable.
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