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Abstract

The proof system resolution over parities (Res(⊕)) operates with disjunctions of linear equations
(linear clauses) over F2; it extends the resolution proof system by incorporating linear algebra over F2.
Over the years, several exponential lower bounds on the size of tree-like Res(⊕) refutations have been
established. However, proving a superpolynomial lower bound on the size of dag-like Res(⊕) refutations
remains a highly challenging open question.

We prove an exponential lower bound for regular Res(⊕). Regular Res(⊕) is a subsystem of dag-like
Res(⊕) that naturally extends regular resolution. This is the first known superpolynomial lower bound
for a fragment of dag-like Res(⊕) which is exponentially stronger than tree-like Res(⊕). In the regular
regime, resolving linear clauses C1 and C2 on a linear form f is permitted only if, for both i ∈ {1, 2},
the linear form f does not lie within the linear span of all linear forms that were used in resolution rules
during the derivation of Ci.

Namely, we show that the size of any regular Res(⊕) refutation of the binary pigeonhole principle

BPHPn+1
n is at least 2Ω( 3√n/ logn). A corollary of our result is an exponential lower bound on the size of

a strongly read-once linear branching program solving a search problem. This resolves an open question
raised by Gryaznov, Pudlak, and Talebanfard [24].

As a byproduct of our technique, we prove that the size of any tree-like Res(⊕) refutation of the weak
binary pigeonhole principle BPHPm

n is at least 2Ω(n) using Prover-Delayer games. We also give a direct
proof of a width lower bound: we show that any dag-like Res(⊕) refutation of BPHPm

n contains a linear
clause C with Ω(n) linearly independent equations.
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1 Introduction

Propositional proof complexity studies proof systems for the language of unsatisfiable CNF formulas
(UNSAT). Complexity classes NP and coNP are different if and only if no proof system has polynomial
size proofs for all formulas from UNSAT [14]. The main direction in proof complexity is to prove super-
polynomial lower bounds on proof sizes for particular proof systems; this direction is also known as Cook’s
program for separating NP and coNP.

Resolution is one of the most studied and simplest propositional proof systems. A resolution refutation
of a CNF formula φ is a sequence of clauses C1, C2, . . . , Cs such that (1) Cs is the empty clause (i.e.
identically false); (2) for every i, Ci is either a clause of φ or is obtained by the resolution rule from Cj

and Ck, where j, k < i. The resolution rule allows us to derive the clause C ∨ D from clauses C ∨ x and
D ∨ ¬x, where x is a variable. Resolution is highly connected with contemporary SAT-solvers. The first
practical SAT solvers were based on splitting (so-called DPLL algorithms due to Davis, Putnam, Loveland,
and Logeman [16, 15]). Protocols of DPLL algorithms running on unsatisfiable formulas can be viewed
as tree-like Resolution refutations. Current fastest SAT-solvers are based on the CDCL (Conflict-Driven
Clause Learning) approach; the execution of such algorithms on unsatisfiable formulas actually contains a
Resolution refutation [9]. Thus, formulas that require very large resolution proofs are also hard instances
for DPLL and CDCL solvers.
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Nowadays we know many formulas that require exponential size resolution refutations, however, for Frege
systems (which include the standard propositional proof systems from logic textbooks) we don’t know any
superpolynomial lower bounds, and there is even a lack of good candidates for hard formulas. A derivation
in a Frege system is a sequence of Boolean formulas (and a sequence of Boolean circuits in Extended Frege).
The question of proving lower bounds for Frege systems is usually compared to proving lower bounds on
the size of Boolean formulas or circuits for explicit Boolean functions. In general, both questions seem to
be intractable by currently known techniques. However, some progress has been made on restricted versions
of both questions. An exponential lower bound on the size of constant depth circuits computing parity was
proved in the 1980s [18, 1]. Later, using a similar technique combined with a forcing argument, Ajtai proved
a superpolynomial lower bound for bounded depth Frege systems [2]. Razborov and Smolenski in 1987
proved a lower bound for constant depth circuits built up from ¬,∨,∧ and MODp gates [40, 39]. However,
the analogous question of proving a lower bound for bounded depth Frege operating with formulas using
¬,∨,∧ and MODp gates (denoted AC0[p]-Frege) is open for all values of p > 1.

In this paper, we study a subsystem of AC0[2]-Frege called resolution over parities, or Res(⊕) [30, 29].
The proof lines in this proof system are disjunctions of linear equations over F2, called linear clauses. Every
linear clause

∨
i∈I(fi = ai) is the negation of the linear system

∧
i∈I(fi = ai + 1). An ordinary clause (a

disjunction of literals) is a special case of a linear clause since the literal ¬x is equivalent to x = 0 and the
literal x is equivalent to x = 1. A Res(⊕) refutation of an unsatisfiable CNF formula φ is a sequence of linear
clauses C1, C2, . . . , Cs such that (1) Cs is the empty clause (i.e. identically false); (2) for every i, Ci is either
a clause of φ or is obtained from Cj and Ck with j, k < i by the resolution rule, or is obtained from Cj with
j < i by the weakening rule. The resolution rule allows to derive the clause C ∨D from clauses C ∨ (f = 0)
and D ∨ (f = 1), where f is a linear form. The weakening rule allows to derive D from C if C semantically
implies D, i.e., any assignment satisfying C also satisfies D. For resolution refutations, the weakening rule
is not necessary and can be eliminated without increasing the size of the refutation. However, in Res(⊕) the
weakening rule is important since this is the only way to get equations depending on more than one variable.

Roughly speaking, Res(⊕) is a combination of resolution and linear algebra over F2. Unsatisfiable linear
systems over F2 encoded as a CNF are easy for tree-like Res(⊕) [30], however, it is known that unsatisfiable
linear systems over F2 based on expander graphs are hard for resolution [42].

Proving superpolynomial lower bounds on the size of Res(⊕) refutations is a frontier open problem on
the way to obtaining lower bounds for AC0[2]-Frege. This question seems to be very challenging. There have
been a few attempts to attack lower bounds for Res(⊕), below we summarize the main results achieved so
far in this direction.

1.1 Review of previous results

1.1.1 Tree-like lower bounds

A Res(⊕) refutation is said to be tree-like if every linear clause appearing in the refutation is used at most
once as a premise of a rule. There are many techniques for proving lower bounds for tree-like Res(⊕). We
give a brief overview of the most important ones.

Prover-Delayer games. Initially, Prover-Delayer games were defined by Impagliazzo and Pudlak [37] for
proving lower bounds for tree-like Resolution. Istykson and Sokolov [30] extended this game to tree-like
Res(⊕). For a given unsatisfiable CNF formula φ, two players, Prover and Delayer, play the following game:
the game starts with an empty board; in each step, Prover chooses a linear form f and Delayer either chooses
α ∈ {0, 1} or allows Prover to choose α herself. In the latter case, Delayer earns a coin. They write the
equation f = α on the board. The game stops when the linear system on the board contradicts a clause of
φ. It is known that if Delayer can earn at least t coins with any behavior of Prover, then the size of any
tree-like Res(⊕) refutation of φ is at least 2t [30].

Using Prover-Delayer games, one can prove exponential lower bounds on the size of tree-like Res(⊕)
refutations of the (unary) pigeonhole principle [29, 30] and various ordering principles [23]. These games
were also used for proving exponential lower bounds on the running time of drunken DPLL(⊕) algorithms
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on satisfiable formulas [26]. Lower bound proofs using Prover-Delayer games are very explicit. However,
such proofs are not known to work for CNFs consisting of clauses of small (e.g. constant) width.

Randomized communication complexity. Every unsatisfiable CNF formula φ defines a search problem
Search(φ): given an assignment of variables, find a clause of φ falsified by this assignment.

Itsykson and Sokolov [29, 30] noticed that any size-S tree-like Res(⊕) refutation of a formula φ can
be transformed into a randomized communication protocol for Search(φ) of cost O(logS), where variables
of φ are distributed between two communicating parties. Examples of formulas φ with large randomized
communication complexity of Search(φ) can be found in [10, 25, 22]; all of them have a lifted structure:
an essential formula (expressing some standard combinatorial principle) is lifted (i.e. composed) with some
gadget. Itsykson and Ryazanov used slightly different communication complexity arguments to prove an
exponential lower bound on the size of tree-like Res(⊕) refutations of the perfect matching principle for
graphs with an even number of vertices (while for graphs with an odd number of vertices perfect matching
has short tree-like Res(⊕) refutations [30]). Itsykson and Riazanov [30] also proved a lower bound on
the randomized communication complexity of Search(BPHPn+1

n ), where BPHPn+1
n is the binary pigeonhole

principle with n+ 1 pigeons and n holes; Göös and Jain [21], using another approach, proved a lower bound
on the randomized communication complexity for the search problem based on the slightly weak binary
pigeonhole principle Search(BPHP2n

n ).

Reduction from polynomial calculus degree. Garlik and Ko lodziejczyk [19] noted that any tree-like
Res(⊕) refutation of a k-CNF formula φ of size S can be converted to a dag-like Res(⊕) refutation of φ of
width logS + k + O(1), where the width of a refutation is the maximum number of linear equations that
appear in a linear clause in the refutation. It is easy to see that a Res(⊕) refutation of width w may be
converted to a polynomial calculus (over F2) refutation of degree w + O(1). This gives another method of
proving lower bounds for tree-like Res(⊕) via polynomial calculus degree lower bounds. For example, degree
lower bounds for random 3-CNFs [6] and the functional graph pigeonhole principle [35] imply exponential
lower bounds on the size of tree-like Res(⊕) proofs of these formulas.

Lifting from resolution depth. Recently Chattopadhyay, Mande, Sanyal, and Sherif [12] developed a
lifting technique from resolution depth to tree-like Res(⊕) refutation size using stifling gadgets. Namely, if
φ requires resolution depth d and g is a k-stifling gadget, then φ ◦ g requires a tree-like Res(⊕) refutation of
size at least 2kd.

1.1.2 What is known for dag-like Res(⊕)?

Itsykson and Sokolov [30] considered systems Res(⊕;⩽k) which are subsystems of Res(⊕) operating with
linear clauses that contain at most k equalities depending on more than one variable. Exponential lower
bounds for Res(⊕;⩽nδ) (where δ < 1 is a constant and n is the number of variables) can be obtained by
monotone interpolation. Exponential lower bounds for Res(⊕;⩽ϵn) (where ϵ < 1 is a constant) can be
obtained by a simulation in Polynomial Calculus Resolution with a moderately exponential blowup [30].

Lauria [33] considered a system Res(⊕k), which is a subsystem of Res(⊕) in which each equation in each
linear clause uses at most k variables. This system is weaker than Res(k), hence lower bounds follow from
lower bounds for Res(k).

Kraj́ıček [32] presented a randomized feasible interpolation that is based on randomized communication
complexity of evaluating a proofline. Kraj́ıček reduced the question of a lower bound on Res(⊕) to lower
bounds for monotone CLO circuits (circuits with local oracles) that separate two disjoint NP sets. However,
lower bounds for monotone CLO circuits are still unknown.

Khaniki [31] proved a superlinear lower bound for the dag-like version of Res(⊕) (however, the proof
system considered uses a different set of rules, and it is not clear whether the lower bound would remain
non-trivial for the rules we use).

4



Several works have investigated proof systems Res(linR) operating with disjunctions of linear equations
over a ring R for various rings. Raz and Tzameret studied the proof system Res(linZ) over integers [38]. Part
and Tzameret considered many other fields and rings [36]. The field F2 differs from other rings in that over
F2 the negation of an equality can also be represented as an equality; nevertheless Res(linZ) polynomially
simulates Res(⊕) [30]. Part and Tzameret proved that the binary value principle 1+x1+2x2+· · ·+2n−1xn = 0
requires exponential size refutations in dag-like Res(linQ). Alekseev [7] proved that the binary value principle
is hard even for a stronger proof system called extended polynomial calculus over Q. However, the binary
value principle is not a CNF formula.

1.1.3 Read-once linear branching programs

It is known that every tree-like resolution refutation of a formula φ can be viewed as a decision tree for
the problem Search(φ) and vice versa. The same equivalence exists between tree-like Res(⊕) refutations of
φ and parity decision trees solving Search(φ) [30]. In the dag-like case, it is known that regular resolution
refutations of φ are equivalent to read-once branching programs computing Search(φ). Recall that regular
resolution is a subsystem of resolution. For every clause C we additionally have the list of variables VC that
were resolved in the resolution rules in the derivation of C. In the regular regime, it is allowed to resolve
clauses C and D on a variable x only if x /∈ VC ∪ VD.

Linear branching programs extend branching programs by allowing them to query F2-linear forms instead
of just variables. Gryaznov, Pudlak, and Talebanfard [24] introduced two versions of the read-once property
for linear branching programs: weak and strong. Gryaznov, Pudlak, and Talebanfard [24] gave an explicit
construction of a Boolean function that requires strongly read-once linear branching programs of exponential
size in the average case; recently Eshan Chattopadhyay and Liao [13] and Li and Jong [34] have improved
the lower bound.

As in the classical case, a weakly (and thus strongly) read-once linear branching program for Search(φ)
can be converted to a Res(⊕) refutation of φ of the same size [24]. Gryaznov, Pudlak, and Talebanfard
[24] raised the question of proving a lower bound for weakly and strongly read-once branching programs
computing Search(φ). In this paper, we resolve the question for strongly read-once linear branching programs
by giving an exponential size lower bound.

1.2 Our contributions

The main objective of this paper is to take a significant stride towards moving the frontier of currently
known lower bounds for the tree-like Res(⊕) much closer to the dag-like Res(⊕). To achieve this, we
consider a natural barrier, a specific fragment within dag-like Res(⊕) that possesses additional structural
properties. This specific fragment naturally extends regular resolution, which is an important subsystem
of resolution. Despite regular resolution being known as weaker than the resolution itself [20, 5], for major
combinatorial principles it is either known (e.g. the pigeonhole principle or ordering principle) or widely
believed (e.g. Tseitin formulas) that their shortest regular proofs are at most polynomially longer than
their shortest resolution proofs. Despite the extensive study of resolution, several key questions remain
open within the general resolution and find solutions only within the regular regime. For instance, Strong
Exponential Time Hypothesis (SETH) for proof size [11], optimal average-case lower bound nΩ(k) on proof
size of formulas encoding that a random Erdős–Rényi graph does not contain a k-clique [8], and the exact
derivation complexity of Tseitin formulas in terms of the treewidth of the underlying graph [27, 17] are
known only for regular resolution.

We introduce the notion of regular Res(⊕) refutation. Analogously to ordinary resolution, with each
linear clause C forming a proof line of a Res(⊕) derivation we remember the set FC of all linear forms that
were used in the resolution rules in the derivation of the clause C. In regular Res(⊕) refutations, it is allowed
to resolve linear clauses C and D on a linear form f only if f /∈ ⟨FC⟩ ∪ ⟨FD⟩, where ⟨. . .⟩ denotes span.

It is easy to see that regular resolution is a subsystem of regular Res(⊕). It is known that tree-like Res(⊕)
and regular resolution do not polynomially simulate each other and, moreover, they can be exponentially
separated from each other (see Sections 3.2 and 3.5 of [30]). Regular Res(⊕) simulates tree-like Res(⊕)
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(see Lemma 2.5). Thus regular Res(⊕) is exponentially stronger than both regular resolution and tree-like
Res(⊕).

We prove an exponential lower bound on the size of regular Res(⊕) refutations. As a hard formula we
use the binary pigeonhole principle BPHPm

2ℓ which encodes in CNF that there are m pairwise distinct strings
from {0, 1}ℓ. We usually say that there are 2ℓ holes and m pigeons and the ith string is the binary number
of the hole where the ith pigeon sits. This formula is unsatisfiable if and only if m > 2ℓ.

Our main result is the following theorem:

Theorem (Theorem 8.1). Any regular Res(⊕) refutation of BPHP2ℓ+1
2ℓ

has size at least 2
Ω
(

3√n
log n

)
, where

n = 2ℓ.

Corollary (Corollary 8.2). The size of any strongly read-once linear branching program solving

Search(BPHP2ℓ+1
2ℓ

) is at least 2
Ω
(

3√n
log n

)
, where n = 2ℓ.

This corollary answers the question raised by Gryaznov, Pudlak and Talebanfard [24].
We develop tools to prove the theorem and use them to obtain additional results. Theorem 5.5 shows

that any Res(⊕) refutation of BPHPm
n contains a linear clause such that rk(¬C) ≥ n/4. The attractive

feature of this result is that it is proven very directly: we demonstrate a procedure for finding such a wide
clause in every refutation. All previously known lower bounds on width/rank were based on polynomial
calculus degree lower bounds, hence they were very indirect. Further, we show that the size of any tree-like
Res(⊕) refutation of BPHPm

n is at least 2n/4 (see Theorem 5.8). This proof is mostly interesting because
of its explicitness. It is done by means of a Prover-Delayer game for tree-like Res(⊕), and this is the first
example of such a game for formulas that have only narrow clauses.

1.3 Technique

In this section, we give a high-level overview of our technique and proof strategy for the lower bounds.
Proof lines in a Res(⊕) refutation are linear clauses, so we can view them as negations of systems of

linear equations. Let X = {xi,j | i ∈ [m], j ∈ [ℓ]} denote the set of variables of BPHPm
n , where n = 2ℓ. The

meaning of the variables is that the string xi,1, . . . , xi,ℓ encodes in binary the hole in which the ith pigeon
sits. We study satisfiable systems of linear equations over F2 in variables from X.

1.3.1 Safe and dangerous sets of linear forms

We say that a set of linear forms f1, f2, . . . , fk with variables from X is dangerous if it is linearly independent
and mentions less than k pigeons. The set of linear forms F is safe if its span ⟨F ⟩ does not contain any
dangerous sets. In Section 3 we prove the following equivalence.

Theorem (Theorem 3.1). A set of linearly independent forms f1, f2, . . . , fk is safe if and only if their
coefficient matrix contains k linearly independent columns corresponding to k distinct pigeons.

The proof of this theorem uses an extension of Hall’s matching theorem for matroids [43].
It follows from the theorem that to solve a linear system that has a safe set of linear forms f1, f2, . . . , fk

as left-hand sides, we can assign values to all variables except the chosen k (which correspond to distinct
pigeons) arbitrarily, and the values of the remaining k variables will be uniquely determined. Thus any linear
system based on a safe set of forms actually restricts at most one bit for each pigeon.

1.3.2 Closure

For every set of linear forms F we define the notion of its closure as an inclusion minimal set of pigeons such
that if we set all variables mentioning these pigeons to zero, then the set F becomes safe. In Section 4 we
study this notion and prove the following properties of the closure:

• (Uniqueness) For every F its closure is unique. We denote it by Cl(F );
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• (Monotonicity) If F ⊆ F ′, then Cl(F ) ⊆ Cl(F ′);

• (Span invariance) Cl(F ) = Cl(⟨F ⟩);

• (Size bound) |Cl(F )| ≤ dim⟨F ⟩.

The definition of the closure is similar in spirit to the concept of the closure operator for expanders that
was originally defined in [6, 3] under different names and further called closure i.e. in [4, 28, 41]; however,
we don’t know any formal connections between these two notions. Informally speaking, the closure of a set
of linear forms is a set of pigeons that may be highly restricted by a system of linear equations having this
set of forms.

1.3.3 Locally consistent linear systems

We say that a linear system is locally consistent if it has a solution that sends the pigeons from the closure
of the set of linear forms of the system to holes injectively. We notice that the empty system is locally
consistent and that the negation of the clauses of BPHPm

n are not locally consistent. In order to analyze a
Res(⊕) refutation of BPHPm

n we only focus on those its clauses whose negations are locally consistent. To
demonstrate that this notion is indeed useful we first present a rank lower bound and then a tree-like lower
bound.

Rank lower bound. We are going to show that any Res(⊕) refutation of BPHPm
n contains a linear clause

C such that the rank of the linear system ¬C is at least n
4 . In Section 5 we give some properties of local

consistency, here we sketch two of them that we need for the rank lower bound.

• If a linear clause C is a weakening of a linear clause D and ¬C is locally consistent, then ¬D is also
locally consistent.

Proof. If C is a weakening of D, then by contraposition ¬C semantically implies ¬D, hence L(D) ⊆
⟨L(C)⟩, where L(A) denotes the set of linears form in a linear clause A. Thus, by the closure properties,
Cl(L(D)) ⊆ Cl(⟨L(C)⟩) = Cl(L(C)). Any solution of ¬C is also a solution of ¬D and if there exists a
solution of ¬C that is injective on Cl(L(C)), then it also is injective on Cl(L(D)).

• Let a linear clause C be obtained by the resolution rule applied to linear clauses D and E. Assume
that ¬C is locally consistent and rk(¬C) < n

4 . Then at least one of ¬D and ¬E is locally consistent.

Proof sketch. Using the previous property it is sufficient to show that for every linear form f for some
α ∈ {0, 1}, ¬C ∧ (f = α) is locally consistent. In other words, it is sufficient to show that ¬C has a
solution that is injective on Cl(L(C) ∪ {f}). If Cl(L(C) ∪ {f}) = Cl(L(C)), then we have nothing to
do since the solution we need exists by the local consistency of ¬C. If Cl(L(C) ∪ {f}) ̸= Cl(L(C)),
then we take the system ¬C and fix the values of all variables mentioning the pigeons from Cl(L(C))
according to an assignment guaranteed by the local consistency of ¬C. The resulting system has its set
of forms safe, hence we may substitute almost arbitrarily values to variables (we do not control at most
one variable of each pigeon). Since rk(¬C) < n

4 , it follows that |Cl(L(C) ∪ f)| ≤ rk(¬C) + 1 ≤ n/4,
so we have enough freedom to construct a solution such that all pigeons in Cl(L(C) ∪ {f}) will be in
different holes.

These properties give a simple way to find in a Res(⊕) refutation of BPHPm
n a linear clause C such that

¬C has a large rank. We start a path in the empty clause and make steps from a linear clause to one of its
premises, maintaining the property that the negation of the current linear clause is locally consistent. This
path cannot reach a clause of the initial formula since its negation is not locally consistent. Thus, our path
can only end in a linear clause such that rk(¬C) ≥ n

4 .
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Tree-like lower bound. The lower bound on the size of tree-like Res(⊕) refutations of BPHPm
n is proved

by constructing a strategy for Delayer in Prover-Delayer games. The strategy is as follows: Delayer tries
to keep the current linear system locally consistent. As we have already seen, if Φ is locally consistent and
rk(Φ) < n/4, then for every linear form f there is α ∈ {0, 1} such that Φ∧ (f = α) is also locally consistent.
Consider the following strategy of Delayer: if Φ is the linear system on the board and f is a query such that
for some α ∈ {0, 1}, Φ ∧ (f = α) is not locally consistent, then Delayer answers α + 1; otherwise Delayer
allows Prover to choose a value (i.e. Delayer earns a coin). In Section 5.2 we show that such a strategy
guarantees that before the system on the board becomes not locally consistent, Delayer earns at least n/4
coins. Thus the size of any Res(⊕) tree-like refutation of BPHPm

n is at least 2n/4.

1.3.4 Regular lower bound

The proof of the lower bound on the size of regular refutations of BPHPn+1
n consists of two main steps:

1. We consider the following random walk in a refutation graph of BPHPn+1
n . We choose a random full

assignment σ of BPHPn+1
n . We start a path in the empty clause and make 3

√
n steps, each time we

go from a clause to its premise that is falsified by σ; we may stop earlier than in 3
√
n steps if we come

to a clause of BPHPn+1
n . We claim that with probability at least 1

2 this path will end in a clause C
such that ¬C is locally consistent. The idea is that in 3

√
n steps we come to a linear clause C with

rk(¬C) ≤ 3
√
n, hence Cl(L(C)) ≤ 3

√
n and, thus, by birthday paradox, with high probability a random

assignment assigns different holes for pigeons from Cl(L(C)). See Section 6 for details.

2. We consider any clause C from a regular Res(⊕) refutation of BPHP2ℓ+1
2ℓ

such that ¬C is locally
consistent. Let t be the distance in the refutation graph between C and the empty clause. We claim
that the rank of ¬C is at least Ω( t

ℓ ). The proof is given in Section 5.1. This is the only place in the
whole proof where we use regularity.

So if we take a random walk of length 3
√
n in a regular refutation, with probability at least 1

2 we will

reach a linear clause C such that the rank of ¬C is at least Ω
(

3
√
n

logn

)
. By the construction of our random

walk, the assignment σ refutes C, hence it satisfies ¬C. For a particular clause C such that the rank of ¬C
equals t, a random assignment refutes C with probability exactly 2−t. Hence the refutation contains at least

2
Ω
(

3√n
log n

)
linear clauses.

2 Preliminaries

2.1 Linear algebra

For a set of vectors U from a vector space V we denote by ⟨U⟩ the linear span of U .
In this paper, all scalars are from the field F2. Let X be a set of variables that take values in F2. A

linear form in variables from X is a homogeneous linear polynomial over F2 in variables from X or, in other
words, a polynomial

∑n
i xiai, where xi ∈ X is a variable and ai ∈ F2 for all i ∈ [n]. A linear equation is an

equality f = a, where f is a linear form and a ∈ F2. A linear system is a conjunction of linear equations.
We say that a linear equation f = a is implied by a linear system Φ (or f = a is a corollary of Φ) if any

solution of Φ satisfies f = a.

Lemma 2.1 (folklore). A linear equation f = a is implied by a satisfiable linear system Φ if and only if
f = a can be obtained as a linear combination of equations from Φ.

2.2 Resolution over parities

A linear clause is a disjunction of linear equations:
∨t

i=1(fi = ai). Notice that over F2 a linear clause∨t
i=1(fi = ai) may be represented as the negation of a linear system: ¬

∧t
i=1(fi = ai + 1).
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For a linear clause C we denote by L(C) the set of linear forms that appear in C; i.e. L
(∨t

i=1(fi = ai)
)

=

{f1, f2, . . . , ft}.
Let φ be an unsatisfiable CNF formula. A refutation of φ in the proof system Res(⊕) [30] is a sequence

of linear clauses C1, C2, . . . , Cs such that Cs is the empty clause (i.e., identically false) and for every i ∈ [s]
the clause Ci is either a clause of φ or is obtained from previous clauses by one of the following inference
rules:

• Resolution rule allows to derive from linear clauses C ∨ (f = a) and D ∨ (f = a + 1) the linear clause
C ∨D.

• Weakening rule allows to derive from a linear clause C an arbitrary linear clause D in the variables of
φ that semantically follows from C (i.e., any assignment satisfying C also satisfies D).

A resolution refutation of a formula φ is a special case of a Res(⊕) refutation, where all linear clauses
are ordinary clauses.

Any Res(⊕) refutation Π of a CNF formula φ can be represented as a directed acyclic graph GΠ with
one source. Each node of GΠ is labeled with a linear clause, the source is labeled with the empty clause,
sinks are labeled with clauses of ϕ and every node except sinks has one or two outgoing edges such that (1)
if a node labeled with C1 has two outgoing edges to nodes labeled with C2 and C3, then C1 is the result of
the resolution rule applied to C2 and C3 and (2) if a node labeled with C1 has only one outgoing edge to a
node labeled with C2, then C1 is the result of the weakening rule applied to C2.

Actually, we will use another graph G̃Π that is obtained from GΠ by contractions of all edges corresponding
to weakening rules. For every node u of G̃Π:

• Let u be the result of merging the nodes v1, v2, . . . , vk (k > 1) forming a path in Gπ such that each
of the edges (v1, v2), . . . , (vk−1, vk) of the path corresponds to an application of the weakening rule.
Assume that the nodes v1, v2, . . . , vk are labeled with C1, C2, . . . , Ck, respectively;

• We label u with Ck, the strongest of the clauses.

We call the resulting graph G̃Π the refutation graph. It has the following properties:

• G̃Π is a directed acyclic graph with one source and each of its sinks is labeled with a clause of φ;

• every node of G̃Π except sinks has two outgoing edges, and if a node labeled with C1 has two outgoing
edges to nodes labeled with C2 and C3, then C1 is the result of the resolution rule applied to a weakening
of C2 and a weakening of C3.

By the size of a Res(⊕) refutation Π we mean the number of vertices in its refutation graph G̃Π.

2.3 Res(⊕) refutations as linear branching programs

Let X be a set of variables. A linear branching program is a directed acyclic graph with one source; every
node except sinks has two outgoing edges; for every non-sink node v there is a linear form fv in variables
from X that is called a query at the node v; one edge leaving v is labeled fv = 0 and the other edge is labeled
fv = 1. Each sink of the graph is labeled with an element from a set A (the set of answers). Every linear
branching program computes a function from {0, 1}X → A: a full assignment of variables from X determines
the unique path from the source to a sink such that this assignment satisfies all equations labeling the edges
of this path. The label of the sink is the result of the function.

For every unsatisfiable CNF formula φ we define a relation Search(φ) that consists of all pairs of (σ,C),
where σ is an assignment of the variables of φ and C is a clause of φ falsified by σ. We may think of Search(φ)
as a search problem where, given an assignment σ, we have to find C such that (σ,C) ∈ Search(ϕ).

Consider a Res(⊕) refutation graph GΠ of a CNF formula φ. We now show that the graph GΠ can
be relabeled such that it turns into a linear branching program with the set of answers equal to the set of
clauses of φ. Sinks of GΠ are already labeled with clauses of φ. For every non-sink node v of Gπ, there is a
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linear form fv that is used in the resolution rule at the node v; fv will be a query at the node v of the linear
branching program. Consider an arbitrary node v1 of GΠ with outgoing edges to nodes v2 and v3 and let
us define labels of the edges (v1, v2) and (v1, v3). Let v1, v2 and v3 be labeled with linear clauses C1, C2 and
C3, respectively. Let C1 be the result of the resolution rule applied to D2 ∨ (fv1 = a) and D3 ∨ (fv1 = a+ 1),
where D2 ∨ (fv1 = a) is a weakening of C2 and D3 ∨ (fv1 = a + 1) is a weakening of C3. We label the edge
(v1, v2) with the linear equation fv1 = a + 1 and the edge (v1, v3) with fv1 = a.

Remark 2.2. Assume that a linear clause C1 is the result of the resolution rule applied to a weakening of a
linear clause C2 and a weakening of a linear clause C3. Notice that the resolved linear form is not necessarily
uniquely determined. Consider, for example, C1 = (x+y = 0), C2 = (x = 0), C3 = (y = 0) and consider two
derivations: (1) (x + y = 0 ∨ y = 1) is a weakening of C2, and C1 can be obtained from (x + y = 0 ∨ y = 1)
and C3 by resolving on y; (2) (x + y = 0 ∨ x = 1) is a weakening of C3, and C1 can be obtained from
(x + y = 0 ∨ x = 1) and C2 by resolving on x.

To avoid ambiguity in the construction of a linear branching program associated with a Res(⊕) refutation
graph, we will assume that every Res(⊕) refutation graph also keeps a record of the resolved linear forms at
all its nodes.

Lemma 2.3. Consider a Res(⊕) refutation graph with its edges labeled as in the linear branching program
associated with it. Let u and v be two of its nodes labeled with linear clauses Cu and Cv such that there
is a path p connecting u to v. Let Φp be the conjunction of the equations labeling the edges of p. Then
Φp ∧ ¬Cu implies ¬Cv. In particular, for any path from the source of a Res(⊕) refutation graph to a node
v labeled with Cv, the system of linear equations written on the edges of this path implies ¬Cv.

Proof. We prove the lemma by induction on the length of p. In the base of induction, p has zero length
and u = v; the statement is trivial. Induction step. Let w be the predecessor of v on the path p and let
w be labeled with Cw. Assume that Cw is the result of the resolution rule applied to D1 ∨ (fw = a) and
D2 ∨ (fw = a + 1), where D1 ∨ (fw = a) is the weakening of Cv. Let Ψp be the linear system written
on the part of the path p from u to w. By the construction, the edge (w, v) is labeled with fw = a + 1,
hence Φp = Ψp ∧ (fw = a + 1). By the inductive hypothesis, ¬Cu ∧ Ψp implies ¬Cw = ¬D1 ∧ ¬D2. Then
¬Cu ∧Φp = ¬Cu ∧Ψp ∧ (fw = a+ 1) implies ¬D1 ∧ (fw = a+ 1), and ¬D1 ∧ (fw = a+ 1) implies ¬Cv, since
Cv semantically implies D1 ∨ (fw = a). Thus ¬Cu ∧ Φp implies ¬Cv and the inductive step is proved.

Lemma 2.3 implies that every Res(⊕) refutation graph of a formula φ may be also considered as a linear
branching program solving the search problem Search(φ).

A Res(⊕) refutation is called tree-like if any non-sink node of the refutation graph has at most one
incoming edge. A parity decision tree is a linear branching program such that any non-sink node has at most
one incoming edge. So the last observation implies that a tree-like Res(⊕) refutation of φ can be thought of
as a parity decision tree for Search(φ).

2.4 Regular refutations

For a node v of a linear branching program, we denote by Pre(v) the linear span of all linear forms f such
that f is a query at a node u ̸= v on a path from the source to v. We denote by Post(v) the linear span of
all linear forms f such that f is a query at a node on a path from v to a sink.

A linear branching program is weakly read-once if for all non-sink nodes v, fv /∈ Pre(v), where fv is a query
at a node v [24]. A linear branching program is strongly read-once if for all nodes v, Pre(v) ∩ Post(v) = {0}
[24].

A Res(⊕) refutation is called top-regular if the associated linear branching program is weakly read-once.
We have already shown that any Res(⊕) refutation graph of φ can be considered as a linear branching

program for Search(φ). Gryaznov, Pudlák and Talebanfard [24] showed that any weakly read-once linear
branching program for Search(φ) can be viewed as a top-regular Res(⊕) refutation of φ. We found the proof
of this statement in [24] slightly confusing, so we include a proof here for clarity.
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Lemma 2.4 ([24]). For any weakly read-once linear branching program solving Search(φ), there is a labeling
of its non-sink nodes with linear clauses that makes it a refutation graph of a top-regular Res(⊕) refutation
of φ. Moreover, for every node, its query coincides with the linear form resolved at this node.

Proof. Let P be a weakly read-once linear branching program solving Search(φ). Note that for any path
from the root of P , the conjunction of the linear equations labeling the edges of the path is satisfiable, since
by the weakly read-once property each next equation is linearly independent of the previous ones. We will
construct the required refutation by putting linear clauses in nodes of P starting from the sinks, which are
already labeled with clauses of φ. We maintain the following invariant: for every path from the source to a
node labeled with a linear clause C, the conjunction of the linear equations labeling the edges of the path in
P implies ¬C. The invariant holds for the sinks by the definition of a linear branching program. Consider
a node v with query f and let both of the direct successors of v be already labeled with linear clauses C0

and C1 respectively; assume that the edge labeled with f = α goes from v to a node vα labeled with Cα,
for α ∈ {0, 1}. Consider a path p from the source to v and let Φp be the linear system corresponding to this
path in P .

According to the invariant, Φp ∧ (f = α) implies ¬Cα. Let ¬Cα =
∧

i∈I(α)(gi = ai). For every i ∈ I(α),
either Φp implies gi = ai or Φp ∧ (f = α) implies gi = ai but Φp does not imply gi = ai. In the second case,
by Lemma 2.1, gi = ai is a linear combination of the equations Φp ∧ (f = a), but gi = ai is not a linear
combination of the equations Φp, hence gi + f = ai + α is a linear combination of the equations Φp, and

therefore Φp implies gi + f = ai + α. Let I
(α)
1 = {i ∈ I(α) | gi = ai is implied by Φp} and I

(α)
2 = I(α) \ I(α)1 .

Note that the partition I
(α)
1 and I

(α)
2 does not depend on p. Indeed, assume that for two different paths p1

and p2 from the source to v for some i ∈ I(α), Φp1
implies gi = ai and Φp2

implies gi + f = ai + α. Then
f ∈ ⟨F1 ∪ F2⟩, where F1 and F2 are the sets of the linear forms from left-hand sides of Φp1

and Φp2
. The

latter implies f ∈ Pre(v), which contradicts the weakly read-once property.
Consider the clause C ′

α = ¬(
∧

i∈I
(α)
1

(gi = ai) ∧
∧

i∈I
(α)
2

(gi + f = ai + α) ∧ (f = α)). It is easy to see

that C ′
α can be obtained from Cα by the weakening rule. We have seen that for every i ∈ I

(α)
2 , Φp implies

gi + f = ai + α. Consider the clause C = ¬
(∧

i∈I
(0)
1 ∪I

(1)
1

(gi = ai) ∧
∧

α∈{0,1}

(∧
i∈I

(α)
2

(gi + f = ai + α)
))

.

Note that C is obtained from C ′
0 and C ′

1 by the resolution rule. By the construction Φp implies ¬C. By the
remark above the same holds for every path p from the source to v. So we may put C to the node v.

A Res(⊕) refutation is called bottom-regular, or just regular, if for every edge (v, w) in the associated
linear branching program fv /∈ Post(w), where fv is the query at v.

Lemma 2.5 ([24]). Given a tree-like Res(⊕) refutation of φ, one can construct a tree-like Res(⊕) refutation
of φ of no larger size that is top-regular and bottom-regular.

Proof sketch. Consider the parity decision tree associated with a given tree-like refutation. First, we will
ensure that fv ̸∈ Pre(v) for all non-sink v. Since the underlying graph of the refutation is a tree, for every
node v there is a unique path from the source to v. Note that if for some v, fv ∈ Pre(v), then the value of
fv is determined by the path from the source to v. Therefore, the desired property is achieved by applying
the following while loop to the parity decision tree. While there is some node v with fv ∈ Pre(v), delete the
query in v and merge v with the child corresponding to the correct value of fv.

In the rest of the proof, we will repeatedly use the following transformation of the parity decision tree:
consider two nodes a and b such that there is a path from a to b and change the query at b to fa + fb (it
is easy to recompute the labels of edges leaving b since the value of fa is already known). Note that such
transformations cannot violate the property fv ̸∈ Pre(v), which we have already achieved.

Apply the following while loop to the parity decision tree obtained so far. While there is a non-sink
node v and an edge (v, w) such that fv ∈ Post(w), take such a v with the minimum possible distance from
the source (the root of the tree). Extend the set {fv} to some basis of the set of all linear forms over the
variables of φ. For all vertices u ̸= v reachable from v, if fu has the fv-coordinate in the basis equal to 1,
change the query at u to fv + fu.
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Note that one loop iteration does not change Post(v) and hence it does not affect the predecessors of v,
but at the end of the iteration fv /∈ Post(w) for both immediate successors w of v.

Finally, we translate the resulting parity decision tree back to tree-like Res(⊕) refutation by Lemma 2.4.

Lemma 2.6. Suppose that ϕ is an unsatisfiable CNF formula in n variables, and Π is a regular Res(⊕)
refutation of ϕ. Let GΠ be the refutation graph associated with Π. Then for every node v in GΠ such that
there is a path from the source to v of length d, the dimension of Post(v) is at most n− d.

Proof. Consider a path from the source to v of length d: u0, u1, . . . , ud = v. It is clear that Post(ud) ⊆
Post(ud−1) ⊆ Post(ud−2) ⊆ . . .Post(u0). The regularity implies that n ≥ dim Post(u0) ≥ 1+dim Post(u1) ≥
· · · ≥ d + dim Post(v).

Lemma 2.6 gives the only consequence of regularity that we need for our proof of the lower bound on the
size of regular Res(⊕) refutations.

2.5 Binary pigeonhole principle

The binary pigeonhole principle BPHPm
2ℓ states that m pigeons can be placed in 2ℓ holes such that every

pigeon sits in a hole and no two pigeons sit in the same hole. The address of each hole can be represented
as an ℓ-bit binary string, and so this principle can be expressed as the statement that there are m pairwise
different ℓ-bit binary strings s1, s2, . . . , sm, where si is the binary number of the hole in which the ith pigeon
sits. BPHPm

2ℓ has mℓ variables corresponding to the bits of si for i ∈ [m]; namely, for every i ∈ [m] and
j ∈ [ℓ], the variable xi,j denotes the jth bit of si. Then BPHPm

2ℓ is
∧

i ̸=k∈[m] si ̸= sk, where the predicate

si ̸= sk is encoded as a 2ℓ-CNF formula with 2ℓ many clauses as follows:
∧

α∈{0,1}ℓ(si ̸= α ∨ sk ̸= α), where
si ̸= α ∨ sk ̸= α is the following clause with with 2ℓ literals:

(xi,1 = α1 +1)∨ (xi,2 = α2 +1)∨· · ·∨ (xi,ℓ = αℓ +1)∨ (xk,1 = α1 +1)∨ (xk,2 = α2 +1)∨· · ·∨ (xk,ℓ = αℓ +1),

where x = 1 denotes x, x = 0 denotes ¬x, and α1, α2, . . . , αl are the bits of α.
We usually denote the number of holes by n = 2ℓ. If m > n, then the formula BPHPm

n is unsatisfiable.
Let X be the set of variables of the formula BPHPm

2ℓ . Every Boolean assignment σ with domain X

naturally corresponds to a mapping σ̃ : [m]→ [n] as follows: σ̃(i) = 1 +
∑ℓ

j=1 2j−1σ(xi,j).

3 Safe and dangerous sets of linear forms

We consider the set of propositional variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}. The variables from X are divided
into m blocks by the value of the first index. The variables xi,1, xi,2, . . . , xi,ℓ form the ith block, for i ∈ [m].
Since X is the set of variables of the binary pigeonhole principle BPHPm

2ℓ , when we start working with this
principle later, we will use that blocks correspond to pigeons and the variables of a block encode a hole.

The point of departure for our lower bound results is to consider a system of linear equations in the
variables X and to formalize the notion of many independent linear consequences of this system talking
about variables from a small number of blocks. It turns out that this notion is already determined by the
set of linear forms forming the left-hand side of the system.

Consider sets of linear forms using variables from X over the field F2. The support of a linear form
f = xi1,j1 +xi2,j2 + · · ·+xik,jk is the set {i1, i2, . . . , ik} of blocks of variables that appear in f with non-zero
coefficients. We denote the support by supp(f). The support of a set of linear forms F is the union of the
supports of all linear forms in this set. We denote it by supp(F ). We say that a linearly independent set of
linear forms F is dangerous if |F | > |supp(F )|. We say that a set of linear forms F is safe if ⟨F ⟩ does not
contain a dangerous set.

Every linear form corresponds to a vector of its coefficients indexed by the variables from the set X.
Given a list of linear forms f1, f2, . . . , fk one may consider their coefficient matrix of size k × |X| in which
the i-th row coincides with the coefficient vector of fi.
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Theorem 3.1. Let f1, f2, . . . , fk be linearly independent linear forms and let M be their coefficient matrix.
Then the following conditions are equivalent.

(1) The set of linear forms f1, f2, . . . , fk is safe.

(2) For every set T ⊆ [m], the dimension of the span of the set of columns of M corresponding to the
variables with support in T is at least |T | − (m− k).

(3) One can choose k blocks and one variable from each of these blocks such that the columns of M
corresponding to the k chosen variables are linearly independent.

The main ingredient of the proof of this theorem is treated in the next subsection.

3.1 Extended Hall’s Theorem

The following extension of the well-known Hall’s matching theorem was proved by Welsh in 1971.

Theorem 3.2 ([43]). Let L be some vector space and V1, V2, . . . , Vn be sets of vectors from L such that for
every A ⊆ [n] the dimension of ⟨∪i∈AVi⟩ is at least |A|. Then for every i ∈ [n] there exists vi ∈ Vi such that
v1, v2, . . . , vn are linearly independent.

We need a slightly more general statement but it has virtually the same proof.

Theorem 3.3. Suppose that L is a vector space, V1, V2, . . . , Vn are sets of vectors from L and k ∈ [n] is
such that for every A ⊆ [n] the dimension of ⟨∪i∈AVi⟩ is at least |A| − k. Then there exist distinct indices
i1, i2, . . . , in−k ∈ [n] and for every j ∈ [n − k] there exists vj ∈ Vij such that v1, v2, . . . , vn−k are linearly
independent.

Proof. We argue by contradiction. Suppose that the theorem is false. Consider a counterexample with the
minimum value of

∑n
i=1 |Vi|.

First, suppose that |Vi| ≤ 1 for every i. Since dim⟨∪i∈[n]Vi⟩ ≥ n−k, there exist n−k linearly independent
vectors v1, v2, . . . , vn−k in ∪i∈[n]Vi; no two of them are from the same Vi since the size of each Vi is at most
one. So the conclusion of the theorem is satisfied, and the counterexample cannot have |Vi| ≤ 1 for all i.

Thus there exists j ∈ [n] such that |Vj | ≥ 2. Let us choose two different elements from Vj and denote
them by a and b. Since we have chosen the counterexample with the minimum total number of elements,
the sets V1, V2, . . . , Vj \ a, . . . , Vn and V1, V2, . . . , Vj \ b, . . . , Vn do not satisfy the hypothesis of the theorem.

Thus, there exist J1 ⊆ [n] \ {j} and J2 ⊆ [n] \ {j} such that dim⟨∪i∈J1
Vi ∪ (Vj \ {a})⟩ ≤ |J1| − k and

dim⟨∪i∈J2Vi ∪ (Vj \ {b})⟩ ≤ |J2| − k.
From these two inequalities we get

|J1|+ |J2| ≥ dim⟨∪i∈J1Vi ∪ (Vj \ {a})⟩+ dim⟨∪i∈J2Vi ∪ (Vj \ {b})⟩+ 2k ≥
dim⟨∪i∈J1∩J2Vi⟩+ dim⟨∪i∈J1∪J2Vi ∪ Vj⟩+ 2k ≥ |J1 ∩ J2|+ |J1 ∪ J2|+ 1 = |J1|+ |J2|+ 1,

a contradiction. In the second inequality, we use that for every two subspaces X and Y of the same linear
space,

dim(X) + dim(Y ) = dim⟨X ∪ Y ⟩+ dim(X ∩ Y ).

3.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Let us prove the equivalence of the first two conditions. Consider an arbitrary set of
blocks T ⊆ [m]. Consider a submatrix MT of M that contains only the columns indexed by variables with
support in T . Consider the vector space VT ⊆ {0, 1}k consisting of all vectors that have zero inner product

13



with every column of MT . The dimension of VT equals k − rk(MT ). Consider the space HT = ⟨
∑

αifi |
α ∈ VT ⟩. Notice that HT = {g ∈ ⟨f1, f2, . . . , fk⟩ | supp(g) ⊆ [m] \ T}. Since f1, f2, . . . , fk are linearly
independent, dimHT = dimVT = k − rk(MT ).

The set f1, f2, . . . , fk is safe if and only if for every T ⊆ [m], dimHT ≤ m − |T | which is equivalent to
rk(MT ) ≥ k − (m− |T |). Thus, items (1) and (2) are equivalent.

Now assume (2) and let us prove (3). Consider vector spaces V1, V2, . . . , Vm, where Vi consists of columns
of M corresponding to the variables with support {i}. By Theorem 3.3 applied to V1, V2, . . . , Vm and (m−k),
there exist distinct numbers i1, i2, . . . , ik and vectors vj ∈ Vij for j ∈ [k] such that v1, v2, . . . , vk are linearly
independent. Note that v1, v2, . . . , vk are columns of M corresponding to different blocks. Thus the third
condition holds.

Finally, assume that the third condition holds and there are k chosen columns of M corresponding to
different blocks. Let T ⊆ [m]. At most m − |T | of the chosen columns have their corresponding block in
[m] \ T , hence there are at least k − m + |T | of the chosen columns with their corresponding block in T .
Therefore, the dimension of the span of the set of columns of M corresponding to variables with support in
T is at least |T | − (m− k). I.e., the second condition holds.

4 Closure of a set of linear forms

Let S ⊆ [m] be a set of blocks; for a linear form f we denote by f [\S] a linear form obtained from f by
substituting 0 for all variables with support in S. In other words, f [\S] is the projection of f to the linear
space of all forms with support in [m] \ S. Being a projection, [\S] is a linear operator for every S ⊆ [m].

For a set of linear forms F we will use the notation F [\S] = {f [\S] | f ∈ F}.
A set of linear forms F is minimally dangerous if it is dangerous and ⟨F ⟩ does not contain a dangerous

set with strictly smaller support than the support of F .
Assume that a set of linear forms F is not safe. We would like to remove some blocks of variables from

F to obtain a safe set. Consider the following algorithm:

Algorithm 4.1. Input: a set of linear forms F .

1. S ← ∅;

2. While ⟨F [\S]⟩ contains dangerous sets:

• Find a minimally dangerous set in ⟨F [\S]⟩. Let T be its support.

• S ← S ∪ T .

3. Return S.

We will show in Corollary 4.6 that the output of Algorithm 4.1 does not depend on the choice of minimally
dangerous sets in step 2 and we will call the output of the algorithm the closure of F . We start with a formal
definition of the closure and a bit later we prove that Algorithm 4.1 indeed computes it.

A closure of a set of linear forms F is any inclusion-wise minimal set S ⊆ [m] such that F [\S] is safe.
Note that F [\[m]] = {0} if F ̸= ∅, hence F [\[m]] is safe, and therefore a closure of F exists. Our goal in

this section is to prove the main properties of the closure.

1. (Uniqueness) For any F its closure is unique and we will denote it by Cl(F ).

• This property is proved in Subsection 4.1 (see Lemma 4.4).

2. (Monotonicity) If F1 ⊆ F2, then Cl(F1) ⊆ Cl(F2).

Proof. F1[\Cl(F2)] ⊆ F2[\Cl(F2)], hence F1[\Cl(F2)] is safe. Consider an inclusion minimal set S ⊆
Cl(F2) such that F1[\S] is safe. Then S is a closure of F1 and, by the uniqueness, Cl(F1) = S ⊆
Cl(F2).
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3. (Span invariance) Cl(F ) = Cl(⟨F ⟩).

Proof. Since [\S] is a linear operator, ⟨F ⟩[\S] = ⟨F [\S]⟩. Hence for every S, the set F [\S] is safe iff
⟨F ⟩[\S] is safe, and so Cl(F ) = Cl(⟨F ⟩).

4. (Size bound) |Cl(F )|+ dim⟨F [\Cl(F )]⟩ ≤ dim⟨F ⟩ and hence |Cl(F )| ≤ dim⟨F ⟩.

• This property is proved in Subsection 4.2 (see Lemma 4.7).

5. (Increment) Let F be a set of linear forms and f be a linear form such that Cl(F ∪ {f}) ̸= Cl(F ).
Then

dim⟨F [\Cl(F )]⟩ − dim⟨(F ∪ {f})[\Cl(F ∪ {f})]⟩ = |Cl(F ∪ {f})| − |Cl(F )|.

• This property is proved in Subsection 4.3 (see Lemma 4.9).

4.1 Uniqueness of closure

Lemma 4.2. Let F be a set of linear forms and T be a subset of [m]. Then

dim⟨F ⟩ = dim⟨F [\T ]⟩+ dim{f ∈ ⟨F ⟩ | supp(F ) ⊆ T}.

Proof. Let f1, f2, . . . , fk be basis of {f ∈ ⟨F ⟩ | supp(F ) ⊆ T} and let us extend it to a basis of ⟨F ⟩:
f1, f2, . . . , fk, g1, g2, . . . , gℓ. We will prove that g1[\T ], g2[\T ], . . . , gℓ[\T ] is a basis of ⟨F [\T ]⟩, from which the
lemma follows.

Consider an arbitrary element of ⟨F [\T ]⟩; it has the form h[\T ] for some h ∈ ⟨F ⟩ by the linearity of

[\T ]. Let us write h as a linear combination of the basis elements: h =
∑k

i=1 αifi +
∑m

i=1 βigi. Then
h[\T ] =

∑m
i=1 βigi[\T ]. Thus, g1[\T ], g2[\T ], . . . , gℓ[\T ] generate ⟨F [\T ]⟩ and it remains to show they are

linearly independent. Suppose that
∑ℓ

i=1 γigi[\T ] = 0 for some scalars γi. Then supp(
∑ℓ

i=1 γigi) ⊆ T and

hence
∑ℓ

i=1 γigi ∈ ⟨f1, f2, . . . , fk⟩, because f1, f2, . . . , fk is a basis of {f ∈ ⟨F ⟩ | supp(F ) ⊆ T}. Since
f1, f2, . . . , fk, g1, g2, . . . , gℓ are linearly independent, all γi’s have to be zero.

Lemma 4.3. Let H be a minimally dangerous set and S be a strict subset of supp(H). Then H[\S] is not
safe.

Proof. Because H is dangerous, dim⟨H⟩ = |H| > |supp(H)|. Since H is minimally dangerous, |S| ≥
dim{h ∈ ⟨H⟩ | supp(H) ⊆ S}. By Lemma 4.2, dim⟨H[\S]⟩ = dim⟨H⟩ − dim{h ∈ ⟨H⟩ | supp(H) ⊆ S} >
|supp(H)| − |S|. Hence a basis of H[\S] is dangerous.

Lemma 4.4 (Uniqueness). For any F its closure is unique.

Proof. Let S1 and S2 be two different closures of F . Then S1 ∩ S2 is not a closure. Hence ⟨F [\(S1 ∩ S2)]⟩
contains a dangerous set and hence it contains a minimally dangerous set H. Since supp(H) ⊆ [m]\(S1∩S2),
either S1 or S2 does not contain supp(H). W.l.o.g. assume that S1 does not contain supp(H). Then
by Lemma 4.3, the set H[\S1] = H[\(S1 ∩ supp(H))] is not safe. Since H ⊆ ⟨F [\(S1 ∩ S2)]⟩, we have
H[\S1] ⊆ ⟨F [\S1]⟩. This is a contradiction since S1 is a closure of F and so ⟨F [\S1]⟩ (and hence all its
subsets) has to be safe.

4.2 Closure size bound

Lemma 4.5. Let S ⊆ Cl(F ) and let ⟨F [\S]⟩ contain a minimally dangerous set H. Then supp(H) ⊆ Cl(F ).

Proof. Assume that supp(H) ̸⊆ Cl(F ), then (Cl(F ) ∩ supp(H)) ⊊ supp(H). By Lemma 4.3, H[\(Cl(F ) ∩
supp(H))] = H[\Cl(F )] is not safe. Since H ⊆ ⟨F [\S]⟩, we have H[\Cl(F )] ⊆ ⟨F [\Cl(F )]⟩ and this is a
contradiction, since ⟨F [\Cl(F )]⟩ and all its subsets have to be safe by the definition of the closure.
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Corollary 4.6. Algorithm 4.1 computes Cl(F ).

Proof. Each iteration of the loop increases S. Since S ⊆ [m], the algorithm stops in a finite number of steps.
Let S′ ⊆ [m] be the output of the algorithm.

Let us prove by induction that S ⊆ Cl(F ) at every moment during the execution of Algorithm 4.1.
Initially, S := ∅, so the assertion holds. The induction step follows by Lemma 4.5.

It follows that S′ ⊆ Cl(F ). We also know that F [\S′] is safe. Thus, S′ = Cl(F ).

Lemma 4.7 (Size bound). |Cl(F )|+ dim⟨F [\Cl(F )]⟩ ≤ dim⟨F ⟩, and hence |Cl(F )| ≤ dim⟨F ⟩.

Proof. We prove by induction that during the execution of Algorithm 4.1 the following inequality holds:
|S|+ dim⟨F [\S]⟩ ≤ dim⟨F ⟩. Since the algorithm outputs S = Cl(F ), we get the required inequality.

At the start of the algorithm, the inequality holds. Let us show that it holds after each step. Suppose
the algorithm has found in ⟨F [\S]⟩ a minimally dangerous set H with support T . As H ⊆ {f ∈ ⟨F [\S]⟩ |
supp(f) ⊆ T}, we have dim{f ∈ ⟨F [\S]⟩ | supp(f) ⊆ T} ≥ dim⟨H⟩ > |T |.

By Lemma 4.2, dim{f ∈ ⟨F [\S]⟩ | supp(f) ⊆ T} = dim⟨F [\S]⟩ − dim⟨F [\(S ∪ T )]⟩. Therefore,
dim⟨F [\(S ∪ T )]⟩ < dim⟨F [\S]⟩ − |T |.

Finally, |S ∪T |+ dim⟨F [\(S ∪T )]⟩ < |S|+ |T |+ dim⟨F [\S]⟩− |T | = |S|+ dim⟨F [\S]]⟩ ≤ dim ⟨F ⟩. In the
last inequality, we use the inductive hypothesis.

4.3 Closure increment

Note that it is possible for F to be safe and for F [\T ] not to be safe. For example, if F = {x1,1 +x3,1, x1,2 +
x2,3} and T = {2, 3}, then F [\T ] = {x1,1, x1,2} is dangerous.

Lemma 4.8. Let F be safe and f1, f2, . . . , fk be linearly independent elements of ⟨F ⟩ such that
supp(f1, f2, . . . , fk) = T and |T | = k. Then the set F [\T ] is safe.

Proof. We argue by contradiction. Let g1, g2, . . . , gs be a linearly independent set from ⟨F [\T ]⟩ with support
S and |S| ≤ s− 1. Let g′1, g

′
2, . . . , g

′
s be elements of ⟨F ⟩ such that g′i[\T ] = gi.

Then supp({f1, f2, . . . , fk, g′1, . . . , g′s}) ⊆ S ∪ T and the size of S ∪ T is at most s + k − 1. To get a

contradiction we verify that all these forms are linearly independent. Indeed, assume that
∑k

i=1 αifi +∑s
j=1 βig

′
i = 0. By applying [\T ] operator to this equation we get

∑k
j=1 βigi = 0, hence βi = 0 for i ∈ [s].

Since f1, f2, . . . , fk are linearly independent, we get that αi = 0 for i ∈ [k].

Lemma 4.9 (Increment). Let F be a set of linear forms and f be a linear form such that Cl(F∪{f}) ̸= Cl(F ).
Then

dim⟨F [\Cl(F )]⟩ − dim⟨(F ∪ {f})[\Cl(F ∪ {f})]⟩ = |Cl(F ∪ {f})| − |Cl(F )|.

Proof. Since Cl(F ∪ {f}) is strictly greater than Cl(F ), the set (F ∪ f)[\Cl(F )] is not safe. Consider an
arbitrary minimally dangerous set of linear forms h1, h2, . . . , hk in ⟨(F ∪f)[\Cl(F )]⟩. For every i ∈ [k], either
hi ∈ ⟨F [\Cl(F )]⟩ or hi ∈ f [\Cl(F )] + ⟨F [\Cl(F )]⟩. We can assume that h1, h2, . . . , hk have been chosen
such that I := {i ∈ [k] | hi ∈ f [\Cl(F )] + ⟨F [\Cl(F )]⟩} has the minimum cardinality. We know |I| ≥ 1,
otherwise Cl(F ) is not the correct closure. Moreover, it is easy to see that |I| = 1. Indeed, if i1 ̸= i2 ∈ I,
then we can replace the form hi1 in h1, h2, . . . , hk with hi1 + hi2 ; this alters neither the linear independence
nor the support, but hi1 + hi2 ∈ ⟨F [\Cl(F )]⟩, a contradiction with the minimality of |I|. W.l.o.g assume
that hi ∈ ⟨F [\Cl(F )]⟩ for i ∈ [k − 1] and hk ∈ f [\Cl(F )] + ⟨F [\Cl(F )]⟩.

Let T = supp(h1, h2, . . . , hk), then T ⊆ [m]\Cl(F ). Note that T has size exactly k−1, since if the support
of the set h1, h2, . . . , hk were smaller, then the set h1, h2, . . . , hk−1 would be dangerous and in ⟨F [\Cl(F )]⟩.

Claim 4.10. f [\(Cl(F ) ∪ T )] ∈ ⟨F [\(Cl(F ) ∪ T )]⟩.

Proof. Let us apply the linear operator [\T ] to the statement f [\Cl(F )]+hk ∈ ⟨F [\Cl(F )]⟩. Since hk[\T ] =
0, we get f [\(Cl(F ) ∪ T )] ∈ ⟨F [\(Cl(F ) ∪ T )]⟩.
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Claim 4.11. T = Cl(F ∪ {f}) \ Cl(F ).

Proof. By monotonicity, Cl(F ) ⊆ Cl(F ∪ {f}). Since h1, h2, . . . , hk is minimally dangerous, it follows by
Lemma 4.5 that T ⊆ Cl(F ∪ {f}). The set h1, h2, . . . , hk−1 is safe, hence |supp({h1, h2, . . . , hk−1})| = k− 1,
and so supp({h1, h2, . . . , hk−1}) = T . Consequently, Lemma 4.8 applied to F [\Cl(F )] and h1, h2, . . . , hk−1

shows that F [\(Cl(F ) ∪ T )] is safe. By Claim 4.10, ⟨F [\(Cl(F ) ∪ T )]⟩ = ⟨(F ∪ {f})[\(Cl(F ) ∪ T )]⟩, hence
(F ∪ {f})[\(Cl(F ) ∪ T )] is also safe. Thus, Cl(F ∪ {f}) = Cl(F ) ∪ T . As T ⊆ [m] \ Cl(F ), the claim
follows.

Consider the space {g ∈ ⟨F [\Cl(F )]⟩ | supp(g) ⊆ T}; by the definition of closure its dimension is at most
|T |, but as it contains all h1, h2, . . . , hk−1, the dimension is exactly |T |.

By Lemma 4.2, dim⟨F [\Cl(F )]⟩ − dim⟨F [\(Cl(F ) ∪ T )]⟩ = dim{g ∈ ⟨F [\Cl(F )]⟩ | supp(g) ⊆ T} = |T |.
By Claim 4.10, ⟨F [\(Cl(F ) ∪ T )]⟩ = ⟨(F ∪ {f})[\(Cl(F ) ∪ T )]⟩ = ⟨(F ∪ {f})[\Cl(F ∪ {f})]⟩. Thus,

dim⟨F [\Cl(F )]⟩ − dim⟨(F ∪ {f}) [\Cl(F ∪ {f})]⟩ = |T | = |Cl(F ∪ {f})| − |Cl(F )|.

5 Locally consistent linear systems

In this section we take advantage of the fact that X is not just a set of variables indexed by two parameters,
but that X is the set of variables of the formula BPHPm

n , where n = 2ℓ. We will exploit the semantics of
these variables, described in Section 2.5.

Let Φ be a linear system with variables from X and F be a set of linear forms from the left-hand sides
of these equations. An assignment σ : X → {0, 1} is called a locally injective solution of Φ if σ satisfies Φ
and σ̃ is injective on Cl(F ), where σ̃ is defined in Section 2.5. We say that Φ is locally consistent if it has a
locally injective solution.

Consider some examples of locally consistent linear systems:

1. An empty linear system (i.e. the negation of the empty clause) is locally consistent.

2. The negation of any clause of BPHPm
n is not locally consistent. Indeed, the sys-

tem looks like
∧ℓ

j=1(xi1,j = aj) ∧
∧ℓ

j=1(xi2,j = aj). It is easy to see that
Cl(xi1,1, xi1,2, . . . , xi1,ℓ, xi2,1, xi2,2, . . . , xi2,ℓ) = {i1, i2}. So there is no locally injective solution.

Proposition 5.1. Let Φ and Ψ be linear systems and suppose that every equation in Φ is implied by Ψ. If
Ψ is locally consistent, then Φ is also locally consistent.

Proof. Let F and G be the sets of linear forms of systems Φ and Ψ respectively. Then by Lemma 2.1,
F ⊆ ⟨G⟩, hence by the properties of closure Cl(F ) ⊆ Cl(G). Thus a locally injective solution of Ψ is also a
locally injective solution of Φ.

Corollary 5.2. If a linear clause C is a weakening of a linear clause D and ¬C is locally consistent, then
¬D is also locally consistent.

The next two lemmas tell us how to keep local consistency when a new equation is added to a system.

Lemma 5.3. Let Φ be a locally consistent linear system with the set of linear forms F and let f be a linear
form. Suppose that Cl(F ∪ {f}) = Cl(F ) and f [\Cl(F )] /∈ ⟨F [\Cl(F )]⟩. Then for every a ∈ {0, 1} the
system Φ ∧ (f = a) is locally consistent.

Proof. Let us fix a ∈ {0, 1}. Let ρ be the restriction of a locally injective solution of Φ to the variables with
support Cl(F ). The system Φ|ρ is satisfiable and since f [\Cl(F )] /∈ ⟨F [\Cl(F )]⟩, the system (Φ∧ (f = a))|ρ
is also satisfiable. Therefore there is a solution of Φ ∧ (f = a) that coincides with ρ on the variables with
support in Cl(F ). Thus, Φ ∧ (f = a) is locally consistent.
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Lemma 5.4. Let Φ be a locally consistent linear system with a set of forms F , and let f be a linear form.
Suppose that Cl(F ∪ {f}) ̸= Cl(F ) and |Cl(F ∪ {f})| ≤ 2ℓ−2. Then there exists a ∈ {0, 1} such that the
system Φ ∧ (f = a) is locally consistent.

Proof. It is sufficient to show that there exists a solution τ of Φ such that τ̃ is injective on Cl(F ∪ {f}).
Then, setting a to the value of f at τ , the lemma follows.

Let σ be a solution of Φ such that σ̃ is injective on Cl(F ). Let ρ be the restriction of σ to the variables
with support in Cl(F ). It follows that the system Φ|ρ is satisfiable. To satisfy Φ|ρ it is sufficient to satisfy
a maximal linearly independent set of its equations. Note that the set of linear forms of Φ|ρ is exactly
F [\Cl(F )], hence it is safe. Let M be the matrix of the right-hand side of some maximal linearly independent
part of Φ|ρ and let s be the number of rows of M . By Theorem 3.1 the matrix M contains s linearly
independent columns such that the set Z of variables corresponding to these columns does not contain two
variables mentioning the same pigeon. So in order to satisfy Φ|ρ we can arbitrarily fix all variables except
those in Z, and then the values of the variables in Z are uniquely determined.

Our goal is to show that there exists a solution γ of Φ extending ρ such that γ̃ is injective on Cl(F ∪{f}).
We will construct an assignment τ of the variables X such that τ extends ρ and for every assignment τ ′ that
differs from τ only on a subset of the variables from Z, τ̃ ′ is injective on Cl(F ∪ {f}). By the above remark,
there exists a solution γ of Φ that differs from τ only on a subset of the variables from Z; this γ satisfies all
the requirements.

We define τ such that it coincides with ρ on the variables with support in Cl(F ). We define τ arbitrarily
on the variables with support in [m] \Cl(F ∪ {f}). Let Cl(F ∪ {f}) \Cl(F ) = {s1, s2, . . . , sk}. By induction
on i we define τ on the variables with support in {s1, s2, . . . , si} such that for every assignment τ ′ that

differs from τ only on a subset of the variables from Z, τ̃ ′ is injective on Cl(F )∪{s1, s2, . . . , si}. The base of
induction is i = 0 and there is nothing to prove. For the induction step from i− 1 to i, we identify the holes
for si that can lead to a collision with Cl(F ) ∪ {s1, s2, . . . , si−1} under a change of values to Z-variables:

• There are |Cl(F )| holes occupied by ρ. A hole for the pigeon si should be different from these holes even
if the values of some variables from Z are flipped. Since there is at most one Z-variable corresponding
to si, ρ forbids at most 2|Cl(F )| holes to pigeon si;

• There are i−1 holes occupied by pigeons s1, . . . , si−1. A hole for the pigeon si should be different from
these holes even if the values of some variables from Z are flipped. Since there is at most one variable
from Z for each pigeon in {s1, . . . , si−1}∪ {si}, the pigeons s1, . . . , si−1 prohibit at most 4(i− 1) holes
to pigeon si.

So there are at most 2|Cl(F )|+ 4(i− 1) ≤ 2|Cl(F )|+ 4(k − 1) ≤ 4(Cl(F ∪ {f})− 1) < 2ℓ forbidden holes,
hence there is at least one non-forbidden hole that we can use for pigeon si.

5.1 Rank lower bound

Theorem 5.5. Any Res(⊕) refutation of BPHPm
2ℓ contains a clause C such that the rank of ¬C is at least

2ℓ−2.

Proof. Given a Res(⊕) refutation of BPHPm
2ℓ , we will construct a path in the refutation graph of BPHPm

2ℓ .
We start the path at the source and we continue the path as long as it is possible to satisfy the following
invariant: for every clause C on our path, ¬C is locally consistent. The empty clause at the source satisfies
the invariant.

Consider a linear clause C in the refutation graph of BPHPm
2ℓ . Let linear clauses D and E be direct

successors of C. We will show that if ¬C is locally consistent and rk(¬C) < 2ℓ−2, then ¬E or ¬D is also
locally consistent. Since the negations of the clauses of BPHPm

2ℓ are not locally consistent, the constructed
path can finish only in a clause C such that |rk(¬C)| ≥ 2ℓ−2.

By the definition of the refutation graph, there are linear clauses D′ and E′ and a linear equation f = a
such that D′∨ (f = a) is a weakening of D and E′∨ (f = 1−a) is a weakening of E and C = D′∨E′. Hence,
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the clause C ∨ (f = a) is a weakening of D′ ∨ (f = a) and C ∨ (f = 1− a) is a weakening of E′ ∨ (f = 1− a).
So by Corollary 5.2 it is sufficient to prove that at least one of the two systems ¬C∧(f = 1) and ¬C∧(f = 0)
is locally consistent.

There are two cases. In the first case, Cl(L(C) ∪ {f}) = Cl(L(C)). (Recall that L(C) denotes the set of
linear forms that appear in C.) Let σ be a locally injective solution of ¬C. Then σ is necessarily a locally
injective solution of either ¬C ∧ (f = 0) or ¬C ∧ (f = 1).

In the second case, Cl(L(C)) ⊊ Cl(L(C) ∪ {f}). Note that rk(¬C ∧ (f = 0)) is at most 2ℓ−2, hence, by
Lemma 4.7, |Cl(L(C)∪{f})| ≤ 2ℓ−2. By Lemma 5.4, ¬C ∧ (f = 1) or ¬C ∧ (f = 0) is locally consistent.

5.2 Tree-like lower bound

We consider a Prover-Delayer game with an unsatisfiable CNF φ. There are two players: Prover and Delayer.
They have a board on which they write linear equations in the variables of φ. The game starts with an
empty board.

The game consists of a sequence of moves, each of which has the following form. Prover writes a linear
form f on the board. Delayer responds in one of two ways. Either Delayer chooses α ∈ {0, 1}, completing
Prover’s form f on the board to the equation f = α, and the move is complete; or Delayer asks Prover to
choose α herself, for which Delayer earns a coin, Prover chooses α and completes the form f on the board to
the equation f = α, and the move is complete. The game ends when the system of equations on the board
contradicts a clause of φ. Delayer’s goal in this game is to earn as many coins as possible. The following is
not difficult to prove.

Lemma 5.6 ([30]). If for an unsatisfiable formula φ there is a strategy for Delayer that guarantees him to
earn at least t coins, then the size of any tree-like Res(⊕) refutation of φ is at least 2t.

In our strategy for BPHPm
2ℓ , Delayer will try to keep the linear system on the board locally consistent.

The following lemma shows that as long as this is the case, the game cannot end.

Lemma 5.7. Let ℓ > 1. If Φ is locally consistent, then for any clause C of BPHPm
2ℓ , Φ does not contradict

C (i.e. there is a solution of Φ that satisfies C).

Proof. Consider some clause C of the formula BPHPm
2ℓ ; it says that either pigeon i is not in hole a, or pigeon

j is not in hole a.
Let F be the set of linear forms of Φ. If both i and j are in Cl(F ), then a locally injective solution of Φ

satisfies C, hence Φ does not contradict C.
Now assume that i /∈ Cl(F ) or j /∈ Cl(F ). W.l.o.g. assume that i /∈ Cl(F ). Suppose that Φ contradicts C;

in particular, this means that the system Φ semantically implies the equations xi,1 = a1, xi,2 = a2, . . . , xi,ℓ =
aℓ. By Lemma 2.1, these equations are linear combinations of the equations from Φ, hence xi,1, xi,2, . . . , xi,l ∈
⟨F ⟩. Since i /∈ Cl(F ), xi,1, xi,2, . . . , xi,ℓ ∈ ⟨F [\Cl(F )]⟩. But the set {xi,1, . . . , xi,ℓ} is dangerous whenever
ℓ > 1. So we get a contradiction with the definition of the closure.

Theorem 5.8. The size of any tree-like Res(⊕) refutation of BPHPm
2ℓ is at least 22

ℓ−2

.

Proof. If ℓ = 1, the statement is trivial; so we assume that ℓ > 1. Let us describe a strategy for Delayer.
Let F be a dynamic variable that equals the set of linear forms written on the board. Delayer will keep a
locally consistent system on the board as long as possible. Note that the board is empty at the start and
the empty system is locally consistent. By Lemma 5.7, the game cannot be over while the system on the
board is locally consistent.

The strategy of Delayer is the following:

• If Cl(F ) = Cl(F ∪ {f}) and f [\Cl(F )] is in ⟨F [\Cl(F )]⟩, then Delayer chooses a value α ∈ {0, 1} such
that f = α is satisfied by some locally injective solution of the system on the board. Trivially, the
resulting system is locally consistent.
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• If Cl(F ) = Cl(F ∪ {f}) and f [\Cl(F )] is not in ⟨F [\Cl(F )]⟩, then Delayer earns a coin by letting
Prover choose α. By Lemma 5.3 the invariant will hold for the new system on the board.

• In the last case, Cl(F ∪ {f}) \ Cl(F ) = T for some T ̸= ∅. If |Cl(F ∪ {f})| ≤ 2ℓ−2, then by
Lemma 5.4 there exists a ∈ {0, 1} such the answer a leads to a locally consistent system on the board,
and Delayer uses this answer. The only case where Delayer can’t maintain local consistency is when
|Cl(F ∪ {f})| > 2ℓ−2. In this case, he answers arbitrarily and then “gives up”.

We claim that at any time before Delayer gives up, the quantity |Cl(F )| + dim⟨F [\Cl(F )]⟩ records the
number of coins he has earned so far. We prove this by induction on the number of moves made. The base
corresponds to the start of the game and the statement is trivial.

If Cl(F ) = Cl(F ∪ {f}) and f [\Cl(F )] is in ⟨F [\Cl(F )]⟩, then Delayer does not earn a coin,
dim⟨F [\Cl(F )]⟩ and Cl(F ) are not changed.

If Cl(F ) = Cl(F ∪ {f}) and f [\Cl(F )] is not in ⟨F [\Cl(F )]⟩, then Delayer earns a coin, dim⟨F [\Cl(F )]⟩
increases by one, and Cl(F ) does not change.

If T = Cl(F ∪ {f}) \ Cl(F ) ̸= ∅, then Delayer does not earn a coin, Cl(F ) increases by |T | and, by
Lemma 4.9, dim⟨F [\Cl(F )]⟩ decreases by |T |. This finishes the inductive step.

Thus, at the time Delayer gives up, he has earned at least 2ℓ−2 coins. Lemma 5.6 completes the proof of
the theorem.

6 Random path in a refutation graph

We consider a random process on a linear branching program associated with a refutation graph of the
formula BPHPm

2ℓ . We take a uniformly random full assignment σ to the variables X and take t steps
starting from the source. At each step, we go along the edge labeled with an equation satisfied by σ; if we
come to a sink earlier than in t steps, we just remain there. Our nearest goal is to prove that with significant
probability in t steps we reach a vertex labeled with a clause C such that ¬C is locally consistent. Moreover,
we will show that with significant probability σ is a locally injective solution of ¬C.

We will prove the following lemma in Subsection 6.1.

Lemma 6.1. Suppose that Φ is a system of linear equations in the variables X and denote by F the
set of linear forms from the left-hand side of Φ. Let f be a linear form, a ∈ {0, 1}, and assume that
|Cl(F ∪ {f})| ≤ t. Consider a random full assignment σ. Then

Pr [σ̃ is injective on Cl(F ) but not injective on Cl(F ∪ {f}) | σ satisfies Φ ∧ (f = a)] ≤ 6t2

n
.

Lemma 6.2. Let σ be a uniformly random full assignment of variables of BPHPm
2ℓ . Consider the refutation

graph of a Res(⊕) refutation of BPHPm
2ℓ and the linear branching program associated with it. Consider a

path of length t in the linear branching program corresponding to σ; if the path reaches a sink, it stops
there. Assume that the path ends in a node labeled with a clause C. Then, the probability that σ̃ is not

injective on Cl(L(C)) is at most 6t3

n .

Proof. Let Φi denote the conjunction of the linear equations labeling the edges of the path of length i in
the linear branching program corresponding to σ (if the path reaches a sink earlier than in i steps, it stops
there). Denote by F i the set of linear forms of Φi.
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Pr[σ is not injective on Cl(F t)]

= Pr[∃j ∈ [0; t− 1] such that σ is not injective on Cl(F j+1) but injective on Cl(F j)]

≤
t−1∑
j=0

Pr[σ is not injective on Cl(F j+1) but injective on Cl(F j)]

≤ t · max
0≤j≤t−1

Pr[σ is not injective on Cl(F j+1) but injective on Cl(F j)].

Let Pi denote the set of paths from the source of the linear branching program of length i (or shorter
if they end in a sink earlier). For a path π from the source, we denote by Φ(π) the system of equations
corresponding to π (i.e. the conjunction of the equations labeling the edges of π).

Pr[σ is not injective on Cl(F j+1) but injective on Cl(F j)]

=
∑

π∈Pj+1

Pr[σ is not injective on Cl(F j+1) but injective on Cl(F j) | σ satisfies Φ(π)]

· Pr[σ satisfies Φ(π)]
(Lemma 6.1)

≤ 6t2

n

∑
π∈Pj+1

Pr[σ satisfies Φπ] =
6t2

n
.

In the inequality we used Lemma 6.1 on F j ; the hypothesis of the lemma is satisfied thanks to Lemma 4.7:
Cl(F j+1) ≤ dim⟨F j+1⟩ ≤ j + 1 ≤ t.

Note that σ satisfies Φt, hence by Lemmas 2.3 and 2.1, L(C) ⊆ ⟨F t⟩, and therefore Cl(L(C)) ⊆ Cl(F t).
Thus

Pr[σ is not injective on Cl(L(C))] ≤ Pr[σ is not injective on Cl(F t)] ≤
6t3

n
.

6.1 Proof of Lemma 6.1

Proof of Lemma 6.1. If 6t ≥ n, then the statement of the lemma is trivial; so we assume that 6t < n.
If Cl(F ∪ {f}) = Cl(F ), then the probability we have to estimate is zero. We therefore assume that

Cl(F ∪ {f}) \ Cl(F ) = T ̸= ∅.
Consider a partial assignment ρ such that ρ̃ injectively maps its domain Cl(F ) to [2ℓ] and ρ can be

extended to a solution of Φ ∧ (f = a). We are going to estimate the probability conditioned on ρ:

Pr[σ̃ is not injective on Cl(F ∪ {f}) | σ satisifies Φ ∧ (f = a) and σ extends ρ]

= 1− Pr[σ̃ is injective on Cl(F ∪ {f}) | σ satisfies Φ ∧ (f = a) and σ extends ρ].

Notice that

Pr[σ̃ is injective on Cl(F ∪ {f}) | σ satisifes Φ ∧ (f = a) and σ extends ρ]

= Pr[σ̃ is injective on T and σ̃(T ) ∩ ρ̃(Cl(F )) = ∅ | σ satisfies (Φ ∧ (f = a)) |ρ].

The system Φ|ρ is satisfiable, so to solve Φ|ρ it is sufficient to consider a maximal linearly independent
set of its equations. The set of linear forms from the left-hand side of the equations of Φ|ρ is F [\Cl(F )],
hence it is safe. Let M be the matrix of some maximal linearly independent part of Φ|ρ and let M contain
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k rows. By Theorem 3.1 the matrix M contains k linearly independent columns corresponding to a set of
variables Z such that Z does not contain two variables mentioning the same pigeon. However, we have the
system (Φ ∧ (f = a))|ρ and to satisfy it we have to satisfy both Φ|ρ and (f = a)|ρ.

Let us define a matrix M ′ corresponding to a maximal linear independent part of the system (Φ∧(f = a))|ρ
as follows. Note that f [\Cl(F )] /∈ ⟨F [\Cl(F )]⟩, otherwise ⟨(F ∪ {f})[\Cl(F )]⟩ = ⟨F [\Cl(F )]⟩ is safe and
therefore Cl(F ) = Cl(F ∪ {f}). Hence (f = a)|ρ does not follow from Φ|ρ. Let M ′ be obtained from M
by adding to M one row corresponding to the equality (f = a)|ρ. The rank of M ′ equals k + 1, so in M ′

we can take the k linearly independent columns corresponding to the variables in Z and add to this set a
(k+1)th column from M ′ such that all these columns are linearly independent. Let Z ′ be the set of variables
corresponding to these k + 1 columns. While no two different variables in Z mention the same pigeon, the
variable corresponding to the (k + 1)th column may mention the same pigeon as some variable in Z. To
satisfy (Φ ∧ (f = a))|ρ we can assign values to all variables outside Z ′ arbitrarily and then the values of the
variables from Z ′ are uniquely determined.

The probability we are interested in is over a random solution of the system (Φ ∧ (f = a))|ρ. Let us
assume that we first randomly assign values to all variables with support in [m] \Cl(F ) (including values of
the variables in Z ′, which are not under our control) and then possibly change the values of the variables in
Z ′ to satisfy (Φ ∧ (f = a))|ρ. We stress that we will change at most one bit for k − 1 pigeons and at most
two bits for one pigeon (or, if no two variables in Z ′ share a pigeon, we will change at most one bit for k + 1
pigeons).

By the assumptions of the lemma, |Cl(F )| ≤ |Cl(F ∪ {f})| ≤ t , hence |T | ≤ t. Let us order the set T
such that the pigeon with two variables from Z ′ (if there is such a pigeon in T ) comes first. Considering the
pigeons from T in this order, for the first pigeon in T we have at most 4t forbidden holes: at most t holes
are occupied by ρ and we might need to flip two bits corresponding to the two variables in Z ′ mentioning
this pigeon. For the second pigeon, we have at most 2(t + 4) forbidden holes: t holes are occupied by ρ and
at most four holes are reserved for the first pigeon; the factor 2 corresponds to one bit of the second pigeon
that may be flipped in case a variable in Z ′ mentions the second pigeon. For the third pigeon we have at
most 2(t + 6) forbidden holes, etc.

Thus, the probability that all pigeons from T in a random solution of (Φ ∧ (f = a))|ρ are in different
holes that are not used by ρ is at least

n− 4t

n

t∏
k=2

n− 2(t + 4 + 2(k − 2))

n
≥

(
n− 6t

n

)t

≥ 1− 6t2

n
.

In the last inequality, we use Bernoulli’s inequality (1 +x)n ≥ 1 +nx, which holds for every integer n ≥ 1
and real number x ≥ −1.

So we have proved an upper bound on the probability conditioned on ρ:

Pr[σ̃ is not injective on Cl(F ∪ {f}) but injective on Cl(F ) | σ satisfies Φ ∧ (f = a) and σ extends ρ]

≤ 6t2

n
.

Since the condition event we need is partitioned according to ρ into the condition events as in the last
inequality (including ρ’s with non-injective ρ̃, for which the estimated probability is 0), the lemma follows.

7 Rank lower bound for regular Res(⊕) refutations

In this section we assume that X is the set of variables of BPHP2ℓ+1
2ℓ

. That is, the number of pigeons exceeds
the number of holes exactly by one.
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Lemma 7.1. Let a linear system Φ in variables from X be locally consistent and contain t linearly inde-
pendent equations, where t < 2ℓ−2. Let K ⊆ [n + 1] and |K| ≥ t + 1. Then there is a solution σ of Φ such
that σ̃ is injective on [n + 1] \K.

Proof. Since Φ is locally consistent, there exists a locally injective assignment, and let ρ be its restriction to
the variables with support in Cl(F ). Note that ρ̃ is injective on its domain and Φ|ρ is satisfiable.

The set of linear forms F [\Cl(F )] is safe by the definition of the closure. Let h = dim⟨F [\Cl(F )]⟩.
Consider h linearly independent forms from F [\Cl(F )]: f1, f2, . . . fh. Note that Φ|ρ contains equations with
linear forms f1, f2, . . . fh and all other equations of Φ|ρ follow from these equations. Let M be the coefficient
matrix of f1, f2, . . . , fh. By the definition of Cl(F ), the set f1, f2, . . . , fh is safe, so by Theorem 3.1, there
are h linear independent columns in M that correspond to h different pigeons. Let us denote by Z the set
of variables corresponding to these h columns. To satisfy the system Φ|ρ, one can arbitrarily choose values
for all variables except those in Z, and then the values of the variables in Z are uniquely determined. We
are going to describe a solution σ of Φ such that σ̃ is injective on [n + 1] \K and σ extends ρ.

Pigeons from Cl(F ) are already in distinct holes, and we assume that their holes are reserved. First, we
will reserve holes for the h pigeons that have a corresponding variable in Z. For each such pigeon, we will
reserve two holes that differ only in the ith bit, where i is the second index of the variable in Z mentioning
the pigeon. We do it inductively. Assume that we have already reserved pairs of holes for the first j pigeons.
Let us treat the (j + 1)th pigeon. Let i ∈ [ℓ] be the second index of the variable in Z mentioning this pigeon.
There are 2ℓ−1 pairs of strings of length ℓ such that the strings in each pair differ exactly in the ith bit.
Some elements of some pairs may have been reserved earlier; we will call such pairs touched. The number
of touched pairs is at most |Cl(F )|+ 2j < |Cl(F )|+ 2h ≤ 2t < 2ℓ−1; in the second inequality we used that
by Lemma 4.7, |Cl(F )|+ h ≤ t. So we may reserve an untouched pair for the (j + 1)th pigeon.

So far we have reserved at most 2h + |Cl(F )| holes for h + |Cl(F )| pigeons, but possibly some of them
are in K. Let k1 denote the number of such pigeons. Then we cancel the reservation for these k1 pigeons, so
now there are at most 2h + |Cl(F )| − k1 reserved holes, hence there are at least n− 2h− |Cl(F )|+ k1 holes
that are not reserved. And there are (n+1)−h−|Cl(F )|− (|K|−k1) = n−2h−|Cl(F )|+k1 +(1+h−|K|)
pigeons that are neither in K nor in Cl(F )∪ supp(Z). Since |K| ≥ t+ 1 ≥ h+ 1, we now send these pigeons
to the unreserved holes injectively. All pigeons in Cl(F ) are sent to holes by ρ̃ (which respects the reserved
holes for all pigeons in Cl(F ) \K). Send each pigeon from supp(Z) \K to any hole from its reserved pair,
and send all pigeons unsent so far to arbitrary holes. Now, adjust the values of the variables Z to obtain a
solution of Φ; it necessarily has the required properties.

Lemma 7.2. Let v be a node of a regular Res(⊕) refutation graph of BPHP2ℓ+1
2ℓ

. Suppose that v is labeled
with a linear clause C and the linear system ¬C is locally consistent. Suppose further that there is a path
from the source to v of length t. Then the rank of ¬C is at least min{2ℓ−2, t

ℓ+1}.

Proof. Consider the linear branching program associated with the Res(⊕) refutation graph. Let U consist of
all sinks u such that there is a path from v to u and the conjunction of linear equations labeling the edges of
this path is consistent with the linear system ¬C (i.e., the conjunction of the linear system on the path and

¬C is satisfiable). Let A be the set of labels of the nodes from U ; A consists of clauses of BPHP2ℓ+1
2ℓ

. It is
easy to see that A semantically implies C. Indeed, consider an assignment σ of the variables X that falsifies
C. We start a path in the linear branching program from v to a sink such that σ satisfies all equalities along
the edges. Let the path end in a sink w labeled with a clause D. By Lemma 2.3, σ falsifies D.

Suppose the clauses from A mention exactly (n + 1) − r pigeons, where n = 2ℓ. Let K be the set of
pigeons that are not mentioned in A. We have |K| = r.

Claim 7.3. If ¬C is locally consistent, then rk(¬C) ≥ min{2ℓ−2, r}.

Proof. Assume that the rank of ¬C is less than 2ℓ−2 and less than r. Then by Lemma 7.1, there exists a
full assignment σ that satisfies ¬C, and all pigeons from [n + 1] \K are in different holes. Hence, σ satisfies
all clauses from A. Since C semantically follows from A, then σ satisfies C. But σ also satisfies ¬C; this is
a contradiction.
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Claim 7.4. Assume that dim(Post(v)) ≤ (n + 1)ℓ− h1. Then rk(¬C) ≥ h− rℓ.

Proof. Recall that L(C) denotes all linear forms mentioned in C. Consider the linear space V = ⟨L(C) ∪
Post(v)⟩. On the one hand, dimV ≤ rk(¬C)+dim(Post(v)) ≤ rk(¬C)+(n+1)ℓ−h. On the other hand, for
every clause D ∈ A there is a path from v to D such that ¬C is consistent with the system of all equations
labeling the edges of the path. By Lemmas 2.3 and 2.1, all variables that appear in D are linear combinations

of L(C) and the linear forms of the equations at the edges of this path from v to D. Every clause of BPHP2ℓ+1
2ℓ

contains ℓ variables for each of the two pigeons mentioned in it. Hence, dimV ≥ (n + 1 − r)ℓ. From the
upper and the lower bound on dimV we conclude that rk(¬C) ≥ h− rℓ.

Now assume that ¬C is locally consistent and that rk(¬C) < 2ℓ−2. By Lemma 2.6, dim(Post(v)) ≤
(n + 1)ℓ − t. Hence, by Claim 7.4, rk(¬C) ≥ t − rℓ. By Claim 7.3, rk(¬C) ≥ r. Then (ℓ + 1)rk(¬C) ≥ t,
hence rk(¬C) ≥ t

ℓ+1 .

8 Regular Res(⊕) size lower bound

Theorem 8.1. Any regular Res(⊕) refutation of BPHP2ℓ+1
2ℓ

has size at least 2
Ω
(

3√n
log n

)
, where n = 2ℓ.

Proof. Let t := ⌊ 3
√
n/3⌋. Consider a regular Res(⊕) refutation graph of BPHP2ℓ+1

2ℓ
and the linear branching

program associated with it. Take a random assignment σ of the variables of BPHP2ℓ+1
2ℓ

and make t steps in
the linear branching program starting from the source and proceeding along the edges labeled with equations
satisfied by σ (if this path reaches a sink earlier than in t steps, we finish the path there). Lemma 6.2 implies

that with probability at least 1− 6t3

n ≥
1
2 we finish in a node with a linear clause C such that ¬C is locally

consistent. Note that C is not at a sink, since the sinks contain clauses of BPHP2ℓ+1
2ℓ

and the corresponding

linear systems are not locally consistent. By Lemma 7.2, the rank of ¬C is at least Ω
(

3
√
n

logn

)
. By Lemma 2.3,

σ satisfies ¬C. But for any linear clause D from the refutation, if the rank of ¬D is s, then the probability

that a random assignment satisfies ¬D is exactly 2−s. Thus the size of the refutation is at least 2
Ω
(

3√n
log n

)
.

Corollary 8.2. Any strongly read-once linear branching program solving Search(BPHPn+1
n ) has size at

least 2
Ω
(

3√n
log n

)
.

Proof. Notice that any strongly read-once branching program has the following property: for any of its
non-sink node v, fv /∈ Pre(v) and for each edge (v, w), fv /∈ Post(w), where fv is the query at v. Indeed,
fv ∈ Post(v) by the definition of Post(v), hence Pre(v) ∩ Post(v) = {0} implies that fv /∈ Pre(v). And if
fv ∈ Post(w), then fv ∈ Pre(w) ∩ Post(w), contradicting the strongly read-once property.

Consider a strongly read-once branching program solving Search(BPHPn+1
n ). By Lemma 2.4, we may

label all its non-sink nodes with linear clauses to get a refutation graph of BPHPn+1
n . According to the

observations above, this refutation is regular, and so by Theorem 8.1 its size is at least 2
Ω
(

3√n
log n

)
. Since the

size of the strongly read-once branching program equals the size of the refutation, the proof of the corollary
is complete.
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