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Abstract

We study the Range Avoidance Problem (Avoid), in which the input is an expanding circuit
C : {0, 1}n → {0, 1}n+1 , and the goal is to find a y ∈ {0, 1}n+1 that is not in the image
of C . We are interested in the randomized complexity of this problem, i.e., in the question of
whether there exist efficient randomized algorithms that output a valid solution to Avoid with
probability significantly greater than 1/2. (Notice that achieving probability 1/2 is trivial by
random guessing.)

Our first main result shows that cryptographic one-way functions exist unless Avoid can be
solved efficiently with probability 1 − 1/nC (on efficiently sampleable input distributions). In
other words, even a relatively weak notion of hardness of Avoid already implies the existence of
all cryptographic primitives in Minicrypt.

In fact, we show something a bit stronger than this. In particular, we introduce two new
natural problems, which we call CollisionAvoid and AffineAvoid . Like Avoid , these are total
search problems in the polynomial hierarchy. They are provably at least as hard as Avoid , and
seem to be notably harder. We show that one-way functions exist if either of these problems is
weakly hard on average.

Our second main result shows that in certain settings Avoid can be solved with proba-
bility 1 in expected polynomial time, given access to either an oracle that approximates the
Kolmogorov-Levin complexity of a bit string, or an oracle that approximates conditional time-
bounded Kolmogorov complexity. This shows an interesting connection between Avoid and
meta-complexity.

Finally, we discuss the possibility of proving hardness of Avoid . We show barriers preventing
simple reductions from hard problems in FNP to Avoid .
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1 Introduction

We study the Range Avoidance Problem (Avoid). This is the computational search problem in
which the input is a circuit C : {0, 1}n → {0, 1}n+s for some stretch s > 0, and the goal is to find
y ∈ {0, 1}n+s that is not in the image of C (i.e., for all x ∈ {0, 1}n , C(x) ̸= y ). Avoid can be
thought of as the computational problem corresponding to the “dual pigeonhole principle,” which
states that an expanding function cannot be surjective. In this introduction, we will primarily be
interested in the case when the stretch s = 1.

Avoid was recently introduced by Kleinberg, Korten, Mitropolsky, and Papadim-
itriou [KKMP21] as an example of a total search problem that is unlikely to be in FNP but does lie in
the polynomial hierarchy, i.e. Avoid ∈ TFΣ2 . There has since been much follow-up work on the com-
plexity of Avoid because of surprising connections to derandomization [Kor22, GLW22, GGNS23],
circuit complexity [RSW22, CHLR23, CHR23, Li23], and other areas of complexity theory [ILW23].

In this work, we study the randomized complexity of Avoid , i.e., the hardness (or easiness?)
of solving Avoid using randomized algorithms. Here, one must be rather precise about what one
means. In particular, notice that the very simple (and efficient!) algorithm that simply outputs a
random string in {0, 1}n+s already solves Avoid with probability at least 1 − 2−s ≥ 1/2. To see
this, simply notice that the set of all images of C has size at most 2n , while the range {0, 1}n+s has
size 2n+s , so that at most a 2−s fraction of the bitstrings of length n+s are in the image of C . This
property makes Avoid stand out quite a bit among search problems that are thought to be “hard”
(e.g., hard for deterministic algorithms).1 This peculiarity was already observed in [KKMP21], and
it is the starting point of our work.

Indeed, we are interested in the question of how high the success probability of an efficient
randomized algorithm can be. As far as the authors know, it is open to find even a 2(1−ε)n -time
algorithm that solves Avoid with probability even at least, say, 1/2+1/n when the stretch s = 1.2

1.1 Our results

1.1.1 Hardness of Avoid implies cryptography

Our first main contribution is a proof that if Avoid is “even slightly hard” for randomized algo-
rithms, then cryptographic one-way functions exist.

Theorem 1.1. If there is some efficiently sampleable family of distributions of expanding circuits Dn

and a constant C > 0 such that no (randomized) polynomial-time algorithm solves Avoid with
probability larger than 1− 1/nC on input distribution Dn , then one-way functions exist.

Recall that, as far as we know, no efficient algorithm solves Avoid with probability even slightly
larger than 1/2. So, this assumption is relatively weak. Of course, if one-way functions exist,

1Much of the prior work on Avoid was interested in the complexity of Avoid relative to an NP oracle. However,
the same idea shows that there is a trivial FZPPNP algorithm for Avoid (just sample a random string y and use the
NP oracle to check the coNP statement of whether y is outside the image of the circuit). In fact, subject to some
caveats, there is even a pseudodeterministic algorithm for Avoid relative to an NP oracle [CHR23, Li23]. So, in our
context of the randomized complexity of Avoid , we do not allow ourselves an NP oracle.

2Of course, it is trivial to solve Avoid in roughly 2n time by simply enumerating the entire image of the input
circuit C . And, in less than 2n time, one can do very slightly better than 1−2−s . In particular, for any T ≤ 2n , one
can solve Avoid with probability at least 1− 2−s +T/2n+s in time roughly T simply by returning a random element
y ∈ {0, 1}n+s \ S where S := {C(xi)}Ti=1 is the set of images of any choice of distinct inputs x1, . . . , xT ∈ {0, 1}n .
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then it is well known that many other cryptographic primitives of interest exist as well, such as
pseudorandom generators, pseudorandom functions, secret-key encryption, digital signatures, etc.

1.1.2 Two harder variants of Avoid (whose hardness also implies cryptography)

AffineAvoid CollisionAvoid

Avoid

Empty

FNP

TFNP

TFΣ2

FZPPNP

Figure 1: Relationships between different computational problems and complexity classes. Solid ar-
rows represent reductions or containment. (Here, we are abusing notation quite a bit and conflating
complexity classes with individual computational problems.) Dashed arrows represent reductions
or containments that only work in rather restricted parameter regimes. See Section 3. The prob-
lems marked in purple are problems whose hardness implies cryptography.

Our second main contribution is the introduction of two new total search problems that are closely
related to Avoid , which we call AffineAvoid and CollisionAvoid . In fact, both are at least as hard
as Avoid . (See Section 3 for some basic results about these two problems.)

In AffineAvoid , the input is again an expanding circuit C : {0, 1}n → {0, 1}n+s for s > 0.
However, now instead of asking for a single point y ∈ {0, 1}n+s that is not in the image of C , we
ask for an entire d-dimensional affine subspace S ⊆ {0, 1}n+s such that all points in S are not in
the image of C . (Here, we define an affine subspace of {0, 1}n+s via the natural identification of
{0, 1}n+s with the vector space Fn+s

2 . The affine subspace can of course be represented succinctly
as the affine span of d + 1 vectors in Fn+s

2 . In the introduction, we sometimes implicitly assume
that s = 1.) This problem is trivially at least as hard as Avoid , and for suitably chosen d we
show (using Gowers norms) that the problem is total. Indeed, for the parameters that interest
us most, we show that a random affine subspace of dimension d = log log n is a valid solution to
AffineAvoid with probability at least 1/(2n), which in particular implies that the problem is in
FZPPNP ⊆ TFΣ2 for these parameters, like Avoid .

(One of the reasons that AffineAvoid interests us is the following. One can easily reduce the
problem of finding a (d + ℓ)-dimensional affine subspace outside of the image of a circuit C :
{0, 1}n → {0, 1}n+s+ℓ to the problem of finding a d-dimensional affine subspace outside of the
image of a circuit C ′ : {0, 1}n → {0, 1}n+s . This reduction is a bit more satisfying than the trivial
reduction from Avoid with stretch s+ℓ to Avoid with stretch s . In particular, the reduction between
AffineAvoid with different parameters essentially preserves the probability that a random subspace
of the appropriate dimension is a valid output, while the reduction between Avoid instances does not

2



preserve the probability that a random string is a valid output. This suggests that the complexity
of AffineAvoid might not be too dependent on the stretch s .3 See Section 1.3.)

In CollisionAvoid , the input is a length-preserving circuit C : {0, 1}n → {0, 1}n . The goal is now
either to output an element y ∈ {0, 1}n that is not in the image of C or to output x ∈ {0, 1}n such
that the image C(x) is unique (and to state whether the output is a non-image or an element with
a unique image). Notice that CollisionAvoid is still a total problem, since either C is a bijection
(in which case every x ∈ {0, 1}n has a unique image), or it is not (in which case there is an element
not in the image). Furthermore, we show that it is at least as hard as Avoid and that it is contained
in FZPPNP ⊆ TFΣ2 . Indeed, we observe that, like for Avoid and AffineAvoid , there is a simple
input-independent distribution of outputs that yields a solution to CollisionAvoid on any circuit C
with probability at least 1/3. (The relationship between CollisionAvoid and Avoid seems at least
superficially similar to the relationship between Papadimitriou’s celebrated Pigeon and WeakPigeon
problems [Pap94].)

Both of these new problems seem to be harder than Avoid . However, our next main contribution
shows that even (weak, average-case) hardness of CollisionAvoid or AffineAvoid implies the existence
of one-way functions. (Theorem 1.1 can be viewed as a corollary of either of the below theorems. In
fact, we do not bother to prove Theorem 1.1 directly, but instead prove the two stronger theorems
below. However, in the introduction we include Theorem 1.1 as well for clarity.)

Theorem 1.2. If there is some efficiently sampleable family of distributions of expanding circuits Dn

and a constant C > 0 such that no (randomized) polynomial-time algorithm solves AffineAvoid with
probability larger than 1−1/nC on input distribution Dn with d = log log n, then one-way functions
exist.

Theorem 1.3. If there is some efficiently sampleable family of distributions of length-preserving
circuits Dn and a constant C > 0 such that no (randomized) polynomial-time algorithm solves
CollisionAvoid with probability larger than 1− 1/nC on input distribution Dn , then one-way func-
tions exist.

1.1.3 Avoid reduces to problems in meta-complexity

Our next contribution is a reduction from Avoid to GapMKtP , i.e., the problem of approximating
the Kolmogorov-Levin complexity of a given bit string (see Section 2.3 for the formal definitions).
GapMKtP is one of the central computational problems in meta-complexity.

Theorem 1.4 (Informal; see Theorem 6.2). There is an expected polynomial-time randomized al-
gorithm with access to an GapMKtP oracle that solves Avoid with probability one. (I.e., Avoid ∈
FZPPGapMKtP .)

We note that the complexity of GapMKtP is quite uncertain. It is not even clear whether it is
in FNP . Indeed, the problem of computing the Kolmogorov-Levin complexity of a string exactly is
actually complete for EXP under P/Poly reductions [ABK+06]. But, it is not clear how hard the
approximate version of this problem is [OS18, MMW19, OPS21, CHO+22].

We also note that the existence of one-way functions is known to imply the hardness of
GapMKtP . So, Theorem 1.1 already implies a (randomized) reduction from average-case Avoid

3Avoid with stretch s is known to be equivalent to Avoid with stretch s′ for any 1 ≤ s, s′ ≤ poly(n) under FPNP

reductions. But, it is unclear whether the same is true under reductions that are not given access to an NP oracle.
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to GapMKtP . (In fact, a recent exciting line of work shows that average-case hardness of cer-
tain variants of MKtP is very closely related to the existence of one-way functions [LP20, LP21]!)
However, the reduction implied by Theorem 1.1 only works for average-case Avoid , and it does
not succeed with probability 1, while the reduction in Theorem 1.4 works in the worst case and
succeeds with probability one.

We also show essentially the same result for a certain (relatively easy) gap version of the
time-bounded Kolgomorov complexity problem (see Definition 2.11 for the exact definition of
GapMcKt,∞P).

Theorem 1.5 (Informal; see Theorem 6.1). There is an expected polynomial-time randomized al-
gorithm with access to an GapMcKt,∞P oracle that solves Avoid with probability one. (I.e.,
Avoid ∈ FZPPGapMcKt,∞P .)

Again, the complexity of GapMcKt,∞P is rather complex. Just like with MKtP , it is relatively
easy to see that if one-way functions exist, then GapMcKt,∞P is hard. Furthermore, in some
parameter regimes, the problem is actually known to be NP-hard [Hir22, HIR23]. However, the
specific problem that we consider is not known to be NP-hard. In particular, we work in the
parameter regime in which (1) the time bound t is large relative to the input size; (2) the gap
between the YES and NO cases is quite large (for large stretch s); and (3) the NO case considers
only time-unbounded conditional Kolmogorov complexity K∞(y|x). (See Definition 2.11.) In such
a regime, the problem is not know to be NP-hard.

1.1.4 It might be hard to prove that Avoid is hard

Our final contribution is the observation that reductions from hard problems in FNP to Avoid must
make many oracle calls. The idea is that any reduction from a hard problem in FNP to Avoid can
be converted into an algorithm that simply runs the reduction and simulates responses to the oracle
queries with random strings. Since a random string is a valid solution to Avoid with probability
1 − 2−s , such an algorithm will be successful unless the number of oracle queries is large relative
to 2s . This yields a barrier against reducing hard problems in FNP to Avoid . (See Section 1.3.)

Theorem 1.6. If A ∈ FNP has a polynomial-time reduction to Avoid with stretch at least s making
at most q ≤ O(2s log n) oracle calls, then A ∈ FZPP.

We obtain the two following theorems as corollaries by taking A to be FNP-hard and choosing
specific parameters for s and q .

Theorem 1.7. If Avoid is FNP-hard under Karp reductions (even for stretch s = 1), then
FZPP = FNP and NP = RP.

Theorem 1.8. If Avoid is FNP-hard under randomized polynomial-time reductions for stretch
ω(log(n)), then FZPP = FNP and NP = RP.

1.2 Related work

In the few years since Kleinberg, Korten, Mitropolsky, and Papadimitriou introduced Avoid
in [KKMP21], the community has proven a flurry of exciting results about the problem. We
list some of the relevant works below.

4



First, Korten showed that an efficient deterministic algorithm for Avoid would imply efficient de-
terministic constructions of many important objects whose existence follows from the probabilistic
method [Kor22]. These include truth tables with nearly maximal circuit complexity, pseudorandom
strings, nearly optimal two-source extractors and Ramsey graphs, rigid matrices, strings with large
Kolmogorov complexity, hard communication problems, and hard data structure problems.

Then, Ren, Santhanam, and Wang showed more connections between algorithms for Avoid
(perhaps with oracles) and circuit lower bounds, and brought new attention to the problem of
solving Avoid for very restricted classes of circuits (even in FPNP ) [RSW22]. Chen, Huang, Li, and
Ren then showed how to use these ideas to essentially match the best known circuit lower bounds
using (oracle) algorithms for Avoid on restricted classes of circuits [CHLR23]. Chen, Hirahara, and
Ren then showed how to construct a pseudodeterministic algorithm for Avoid with access to an
NP oracle, and showed that this algorithm implies novel circuit lower bounds [CHR23]. Li then
improved on this work to show a pseudodeterministic algorithm for Avoid with access to an NP
oracle strong enough to prove essentially optimal circuit lower bounds for symmetric exponential
time [Li23].

In a different line of work, Guruswami, Lyu, and Wang showed new (oracle) algorithms for
range avoidance on restricted classes of circuits and showed that many objects of interest can
be constructed if one can solve Avoid on even slightly less restricted classes of circuits [GLW22].
Gajulapalli, Golovnev, Nagargoje, and Saraogi continued this line of work by showing further
algorithms and reductions of this flavor [GGNS23].

Finally, Ilango, Li, and Williams showed that if subexponentially secure indistinguishabil-
ity obfuscation (a very strong cryptographic primitive) exists, then Avoid /∈ FP unless NP =
coNP [ILW23]. To our knowledge, this is the only known example of a proof that an algorithm for
Avoid would imply something that is thought not to be true. (Many of the above results show that
an algorithm for Avoid would imply something that we do not currently know how to prove, but
which we expect to be true.)

1.3 Future directions

Our results suggest a number of interesting directions to explore further. We list some of them
below.

Connections between Avoid and pseudorandomness. We show that if Avoid is suitably hard
on the average for randomized algorithms, then one-way functions exist. By well-known results
in cryptography, this in turn implies the existence of cryptographic pseudorandom generators
(PRGs) [HILL99]. So, if Avoid is hard on average, then cryptographic PRGs exist.

On the other hand, Korten [Kor22] showed that if Avoid is in FP , then there exists a different
kind of PRG. (Cryptographic PRGs have polynomial stretch but satisfy a very strong notion of
pseudorandomness, while Korten shows PRGs with exponential stretch that satisfy a much weaker
notion of pseudorandomness.)

This might suggest a deeper connection between the complexity of Avoid and pseudorandom-
ness. One might even hope (perhaps foolishly?) for a win-win result showing that, whether Avoid
is easy or hard, one still obtains some kind of PRG. Our current results do not quite achieve
this because (1) our construction of cryptographic PRGs from Avoid requires average-case hard-
ness against randomized algorithms, while Korten’s construction requires worst-case deterministic
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algorithms; and (2) the two results use different notions of PRGs. However, perhaps one can
prove something in the spirit of such a result, or otherwise explore this apparently deep connection
between Avoid and pseudorandomness.

One possible direction towards better understanding this relationship would be to study possible
worst-case to average-case reductions for Avoid . In particular, such a reduction would be a step
towards removing the first issue described above.

Better understanding of CollisionAvoid and AffineAvoid . We introduce two new computational
problems CollisionAvoid and AffineAvoid . We show some basic properties of these problems in
Section 3, including reducing Avoid to both of them, and reducing both of them to Empty (for
some parameter regimes in the case of AffineAvoid). See Figure 1.

However, there is much that we still do not know about these problems. So, we ask what more
can be said. For example, we do not know whether they can be reduced back to Avoid (except, in
the case of AffineAvoid , in a rather extreme setting of parameters). Even FPNP reductions would
be interesting.

One of the things that makes AffineAvoid interesting is that the parameters d and s can be
varied together, and this allows for non-trivial reductions between different regimes. In particular,
Theorem 3.6 shows a reduction from (s+ ℓ, d+ ℓ)-AffineAvoid to (s, d)-AffineAvoid , which one can
think of as a strengthening of the trivial result that (s + ℓ)-Avoid reduces to s-Avoid . It would
be particularly exciting to show a reduction in the other direction, e.g., to show a reduction from
(s, d)-AffineAvoid to (s′, d′)-AffineAvoid for s < s′ . Perhaps one can even show that (s+ ℓ, d+ ℓ)-
AffineAvoid and (s, d)-AffineAvoid are equivalent.

More relationships between Avoid and metacomplexity. We show that Avoid reduces to two
important problems in metacomplexity. However, there are many more interesting metacomplexity
problems that we do not know how to similarly relate to Avoid . We do note that most problems in
metacomplexity are known to be hard if one-way functions exist, so just like with GapMKtP and
GapMcKt,∞P , Theorem 1.1 shows that a certain form of average-case hardness of Avoid implies
hardness of most metacomplexity problems. However, like with GapMKtP and GapMcKt,∞P , this
implication is qualitatively weaker than a direct reduction that works in the worst case (and succeeds
with probability 1).

We note that Avoid also has a different relationship with metacomplexity. Specifically, Korten
showed that Avoid is closely related to the problem of outputting a truth table corresponding to a
language with large circuit complexity [Kor22].

Hardness of Avoid . In Theorem 7.1, we show some barriers to reducing seemingly hard problems
in FNP to Avoid . However, these barriers do not rule out such reductions; they simply show that
these reductions must work in the low-stretch regime and make many oracle queries. It would
therefore be very interesting to get around these barriers and actually reduce a plausibly hard
problem to Avoid . (Prior work, such as [Kor22], showed reductions from problems that are either
unlikely to be in FNP or are not truly thought to be hard, often under FPNP reductions.) One
could potentially dream of proving NP-hardness of Avoid for small stretch s = O(log n), but a
reduction from any plausibly hard problem in FNP would be interesting.
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Our results in particular show that suitable hardness of Avoid implies hardness of metacom-
plexity problems and the existence of cryptography (under different notions of hardness). So, a
suitable reduction from a plausibly hard problem A ∈ FNP to Avoid would show that hardness of
A implies the same things.

2 Preliminaries

We denote {0, 1, . . . , N − 1} by [N ] . We denote probabilistic polynomial time algorithms by PPT.

2.1 Computational problems

Below we define some of the computational problems that interest us in this work. The first two
problems, Empty and Avoid were originally defined in [KKMP21] (though what we call s-Avoid was
called 2s -Empty in [KKMP21]). [KKMP21] also observed that Empty is NP-hard and that Empty
is equivalent to the variant of the problem in which the range of the circuit is [N + poly(logN)]
instead of [N + 1].

Definition 2.1. The Empty problem is defined as follows: given as input the description of a circuit
C : [N ]→ [N + 1], find a y ∈ [N + 1] such that ∀x ∈ [N ] : C(x) ̸= y .

Definition 2.2. For any integer s := s(n) > 0, the s-Avoid problem is defined as follows: given as
input the description of a Boolean circuit C : {0, 1}n → {0, 1}n+s , find a y ∈ {0, 1}n+s such that
∀x ∈ {0, 1}n : C(x) ̸= y .

We call s the stretch of an s-Avoid instance, and when the stretch is one we simply write Avoid.

We also introduce the following two problems.

Definition 2.3. For any s := s(n) > 0, d := d(n), the (s, d)-AffineAvoid problem is defined as
follows: given as input the description of a Boolean circuit C : {0, 1}n → {0, 1}n+s , and an
integer d, find an affine subspace of dimension d outside the range of C , where we identify {0, 1}n+s

with Fn+s
2 in the natural way for the purposes of defining an affine subspace.

We call s the stretch of an AffineAvoid instance.

Definition 2.4. The CollisionAvoid problem is defined as follows: given as input the description of
a Boolean circuit C : {0, 1}n → {0, 1}n , output either:

1. (NON-IMAGE, y), where y ∈ {0, 1}n is not in the image of C ;

2. (NON-COLLISION, x), where x ∈ {0, 1}n satisfies that that C(x) ̸= C(x′) for all x′ ̸= x.

2.2 Reductions

Definition 2.5. A deterministic Karp reduction from a search problem A to a search problem B is
a pair of deterministic polynomial-time algorithms R,S such that:

1. Given an instance IA of A, R(IA) outputs an instance of IB .

2. Given any solution sB to IB := R(IA), S(IA, sB) outputs a solution sA for IA .
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We will need to be a little precise in our notion of a Karp reduction from a decision problem to
a search problem. We adapt Papadimitriou’s notion of reduction for our purposes.

Definition 2.6. A Karp reduction from a decision problem A to a search problem B is a pair of
polynomial time algorithms R,S such that:

1. If x ∈ A, it holds that for all y such that ⟨R(x), y⟩ ∈ B , S(x, y) = 1.

2. If x /∈ A, it holds that for all y , S(x, y) = 0.

For convenience, we often describe our Karp reductions simply as algorithms for problem A
that work with an oracle for problem B and make a single oracle call.

2.3 Kolmogorov complexity

Definition 2.7. For a given string x ∈ {0, 1}∗ , the Kolmogorov-Levin complexity is defined as:

Kt(x) = min
M
{d+ log t | U(⟨M⟩, 1t) = x, d = |⟨M⟩|},

where U is the Universal Turing machine that runs Turing machine M (here, ⟨M⟩ denotes the
description of M in bits) for t steps and outputs what M outputs.

Correspondingly, the conditional Kolmogorov-Levin complexity of a string y conditioned on x
is defined as:

Kt(y|x) = min
M
{d+ log t | U(⟨M⟩, x, 1t) = y, d = |⟨M⟩|},

where U is the Universal Turing machine that runs Turing machine M on input x for t steps and
outputs what M outputs.

Definition 2.8 (Time-Bounded Kolmogorv Complexity). For a given string x ∈ {0, 1}∗ and t ∈
N ∪ {∞}, the t-time bounded Kolmogorov-Levin complexity is defined as:

Kt(x) = min
M
{d | U(⟨M⟩, 1t) = x, d = |⟨M⟩|},

where U is the Universal Turing machine that runs Turing machine M (here, ⟨M⟩ denotes the
description of M in bits) for t steps and outputs what M outputs.

Correspondingly, the t-time bounded conditional Kolmogorov complexity of a string y ∈ {0, 1}∗
conditioned on x is defined as:

Kt(y|x) = min
M
{d | U(⟨M⟩, x, 1t) = y, d = |⟨M⟩|},

where U is the Universal Turing machine that runs Turing machine M on input x for t steps and
outputs what M outputs.

Definition 2.9. The MKtP problem is defined as follows: Given as input a string x ∈ {0, 1}∗ and
an integer k decide if Kt(x) ≤ k .

We will also be interested in the approximate version of the problem.
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Definition 2.10. For γ : N → N, the γ -GapMKtP problem is defined as follows: Given as input a
string x ∈ {0, 1}∗ and an integer k ,

1. if Kt(x) ≤ k , output 1; and

2. if Kt(x) ≥ k + γ(k), output 0.

We also consider a non-standard problem that approximates the time-bounded conditional
Kolmogorov complexity. (Notice that the fact that in the NO case we use K∞ only makes the
problem easier.)

Definition 2.11. For 1 ≤ a < b and some time bound t := t(n), (a, b)-GapMcKt,∞P is the promise
problem defined as follows: Given as input strings x, y ∈ {0, 1}∗ ,

1. if Kt(y | x) ≤ a, output 1; and

2. if K∞(y | x) ≥ b, output 0.

The following lemma will be useful for our purposes.

Lemma 2.12 (Chain Rule). For any two strings x, y , we have

Kt(x ◦ y) ≤ Kt(y|x) + Kt(x) +O(log(|x|)) ,

where x ◦ y is the concatenation of x and y .

Proof. To see this, note that to output x ◦ y , it suffices for us to use two machines Mx (which
outputs string x), and My (which outputs string y while using x as input). The algorithm is then
defined as follows:

1. Run Mx to output x .

2. Copy x to the input tape of My .

3. Run My(x) to append y to the output.

Now, letting tx be the time it takes Mx to output string x , and ty be the time it takes My to
output string y (when given input x), the total time it takes to output x◦y is at most tx+ ty+ |x| .
Furthermore, the description length is at most ⟨Mx⟩+ ⟨My⟩+O(log(|x|)).

Thus,

Kt(x ◦ y) ≤ ⟨Mx⟩+ ⟨My⟩+O(log(|x|)) + log(tx + ty + |x|)
≤ ⟨Mx⟩+ ⟨My⟩+O(log(|x|)) + log(tx) + log(ty)

= Kt(x) +Kt(y|x) +O(log(|x|)) .

Lemma 2.13 (Incompressibility of random strings). For any positive integer n and 0 ≤ t ≤ n,

Pr
x∼{0,1}n

[Kt(x) ≤ t] ≤ 2−(n−t−1) .

9



Proof. Let x be a randomly chosen string of length n . There are at most 2t+1 strings that can be
output by some Turing machine whose description length is at most t . Thus, the probability that
a randomly chosen string of length n has Kolmogorov-Levin complexity Kt(x) ≤ t is at most:

2t+1

2n
= 2−(n−t−1) .

Lemma 2.14 (Weak Monotonicity). Let x ∈ {0, 1}ℓx and y ∈ {0, 1}ℓy . Then:

Kt(x) ≤ Kt(x ◦ y) +O(log(ℓx + ℓy)) ,

Kt(y) ≤ Kt(x ◦ y) +O(log(ℓx + ℓy)) .

Proof. To see this, note that it suffices to design an algorithm that first computes x ◦ y and then
outputs the first ℓx of x ◦ y to outputs x or the last ℓy bits to output y .

Lemma 2.15 ([HIR23], Fact 2.13). For any string y ∈ {0, 1}∗ , time bound t (including t = ∞),
and positive integer α , we have

Pr
x∼{0,1}n

[Kt(x|y) ≤ n− α] ≤ 1

2α−1
.

2.4 Average-case hardness and one-way circuits

We will need a notion of (weak) average-case hardness of a computational problem. Our notion of
hardness corresponds to hardness on efficiently sampleable distributions. As in the cryptography
literature, we call the sampling algorithm Gen .

Definition 2.16. A computational problem B is weakly hard on average with generator Gen if Gen
is a PPT algorithm that takes as input 1κ and outputs an instance x of B with size n(κ) ≤ poly(κ),
and for every PPT algorithm A there exists a κ0 such that for all κ ≥ κ0 ,

Pr
x←Gen(1κ)

[A(1κ, x) is a solution to instance x of B ] ≤ 1− 1/κ .

Note the close relationship between the above definition and the following definition of an
efficiently sampleable (weak) one-way function. For convenience, we actually use a slightly non-
standard circuit-based definition (which is equivalent to the standard definition).

Definition 2.17. We say that a PPT algorithm Gen samples a weak one-way circuit if:

1. On input 1κ , Gen outputs a circuit C : {0, 1}n(κ) → {0, 1}m(κ) where n(κ) and m(κ) are
some (fixed) polynomially bounded functions.

2. For any PPT algorithm A, there exists a κ0 such that for all κ ≥ κ0 ,

Pr
C←Gen(1κ),x∼{0,1}n(κ)

[x′ ← A(1κ, C, C(x)), C(x′) = C(x)] ≤ 1− 1/κ .

Theorem 2.18 (Theorem 5.2.1 of [Zim04], Restated). If there exists a PPT algorithm that samples
a weak one-way circuit, then one-way functions exist.
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We will also need the following simple lemma.

Lemma 2.19. Suppose that Gen is an algorithm that takes as input 1κ and outputs a circuit C :
{0, 1}n(κ) → {0, 1}m(κ) for some functions n(κ) and m(κ), and suppose that A is an algorithm
with the property that

Pr
C←Gen(1κ),x∼{0,1}n(κ)

[x′ ← A(1κ, C, C(x)), C(x′) = C(x)] > 1− 1/κ .

Then, for every 0 < α < κ,
Pr

C←Gen(1κ)
[C ∈ Sα] > 1− α/κ ,

where Sα is the set of all circuits C such that

Pr
x∼{0,1}n(κ)

[x′ ← A(1κ, C, C(x)), C(x′) = C(x)] > 1− 1/α .

Proof. Notice that

1− 1/κ < Pr
C←Gen(1κ),x∼{0,1}n(κ)

[x′ ← A(1κ, C, C(x)), C(x′) = C(x)]

= Pr[C ∈ Sα] · Pr
[
C(x′) = C(x) | C ∈ Sα

]
+ Pr[C /∈ SA] · Pr

[
C(x′) = C(x) | C /∈ Sα

]
≤ Pr[C ∈ Sα] + (1− 1/α) · Pr[C /∈ Sα]

= Pr[C ∈ Sα]/α+ 1− 1/α .

Rearranging this, we see that Pr[C ∈ Sα] > 1− α/κ , as needed.

Finally, we will need the following technical lemma, which bounds the probability of an algorithm
encountering a certain bad event in terms of its failure probability in the one-way function game
on a fixed circuit. The bad event is that a random element in the co-domain of the fixed circuit
lands in the image of the circuit but the algorithm still fails to find an inverse.

Lemma 2.20. For any circuit C : {0, 1}n → {0, 1}m and any algorithm B , we have

Pr
y∼{0,1}m,B

[C(B(y)) ̸= y ∧ y ∈ Im(C)] ≤ 2n−m · Pr
x∼{0,1}n

[x′ ← B(C(x)), C(x′) ̸= C(x)] .

Proof. Notice that for any y ∈ Im(C), we must have Prx∼{0,1}n [C(x) = y] ≥ 1/2n , since the
domain of C has size 2n . Therefore, we have

Pr
y,B

[C(B(y)) ̸= y ∧ y ∈ Im(C)] =
∑

y∈Im(C)

1

2m
Pr
B
[C(B(y)) ̸= y]

≤ 2n−m ·
∑

y∈Im(C)

Pr
x
[C(x) = y] Pr

B
[C(B(y)) ̸= y]

= 2n−m · Pr
x,B

[C(B(y)) ̸= y | C(x) = y] .
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2.5 Gowers norms

We review a useful definition in the literature of additive combinatorics: the Gowers norms.

Definition 2.21. Let f : Fn
2 → R be a function. For every non-negative integer d, we define the

Gowers d-norm (Ud norm) of f to be:

∥f∥Ud
=

Ñ
E

s,v1,...,vd∼Fn
2

 ∏
S∈[d]

f(s+
∑
j∈S

vj)

é 1

2d

.

We remark that the Gowers 0-norm is simply the expectation of the function f , ∥f∥U0 =
Ex[f(x)]. We will use the Cauchy-Schwarz-Gowers inequality (see, e.g., [VW08, Lemma 2.4]) that
shows that the Gowers norms are monotonically non-decreasing.

Theorem 2.22. For every integer n, k ≥ 1 and every f : Fn
2 → R,

∥f∥Uk−1
≤ ∥f∥Uk

.

We will now use the Gowers norms to prove that every large subset of Fn
2 contains an affine

subspace of non-trivial dimension.

Lemma 2.23. Let n ≥ 2, d ≥ 1 be integers, and S ⊆ Fn
2 be a set of size |S| ≥ λ2n for λ ∈ (0, 1]. Let

s, v1, v2, . . . , vd be d+1 vectors chosen uniformly and independently from Fn
2 . Then with probability

at least λ2d−2d−n , s+span(v1, . . . , vd) forms an affine subspace of dimension d which is contained
in S .

Proof. Let f : Fn
2 → {0, 1} be the indicator function of S : f(x) = 1 if and only if x ∈ S . Consider

the Gowers d-norm of f , raised to the power of 2d :

∥f∥2dUd
=

Ñ
E

s,v1,...,vd∼Fn
2

 ∏
T∈[d]

f(s+
∑
j∈T

vj)

é .

Notice that term
∏

T∈[d] f(s +
∑

j∈T vj) = 1 if and only if s + span(v1, . . . , vd) is fully contained
in S . Hence, for uniform and independent s, v1, v2, . . . , vd , we have that s + span(v1, . . . , vd) is
contained in S with probability

∥f∥2dUd
≥ ∥f∥2dU0

≥ (λ)2
d
,

where the first inequality follows by Theorem 2.22, and the second inequality uses ∥f∥U0 =
Ex[f(x)] ≥ λ .

Next, we consider the probability that v1, . . . , vd span a subspace of dimension d . The proba-
bility that d uniform and independent vectors are linearly independent is bounded from below by

d−1∏
i=0

(1− 2i−n) ≥ 1−
d−1∑
i=0

2i−n ≥ 1− 2d−n .

By the union bound, with probability at least λ2d−2d−n , s+span(v1, . . . , vd) is a d-dimensional
affine subspace contained in S .
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3 Basic results

In this section, we present a few simple reductions and observations about Avoid , CollisionAvoid ,
and AffineAvoid .

3.1 CollisionAvoid

We start by observing that Avoid is no harder than CollisionAvoid via a simple Karp reduction.

Theorem 3.1. There is a deterministic Karp reduction from Avoid to CollisionAvoid.

Proof. Given a circuit C : {0, 1}n → {0, 1}n+1 for Avoid , the reduction constructs a CollisionAvoid
instance C ′ : {0, 1}n → {0, 1}n as follows: C ′(x) = C(x)[n] . I.e., C ′(x) outputs the first n bits of
C(x).

The reduction then calls its CollisionAvoid oracle on input C ′ , receiving as output either
(NON-IMAGE, y) or (NON-COLLISION, x). If the oracle’s output is (NON-IMAGE, y) for y ∈
{0, 1}n , then the reduction outputs y ◦ 0. If the oracle’s output is (NON-COLLISION, x) for
x ∈ {0, 1}n , the reduction computes y∗ := C(x) and outputs y , which is y∗ with its last bit
flipped.

Clearly the reduction is deterministic, runs in polynomial time, and makes a single oracle call.

To see that the reduction is correct, notice that if oracle’s output is (NON-IMAGE, y), then by
definition there is no x′ ∈ {0, 1}n such that C ′(x′) = y . By the definition of C ′ this means that
there is no x′ ∈ {0, 1}n such that C(x) = y ◦ 0, i.e., y ◦ 0 is not in the image of C , as needed. On
the other hand, if the oracle’s output is (NON-COLLISION, x), then by definition the only input
x′ ∈ {0, 1}n such that C ′(x′) = C ′(x) is x itself. In particular, y∗ is the unique string in the image
of C whose first n bits are y∗[n] . Therefore, y is not in the image of C .

Next, we show that CollisionAvoid is no harder than Empty .

Theorem 3.2. There is a deterministic Karp reduction from CollisionAvoid to Empty .

Proof. Given a circuit C : {0, 1}n → {0, 1}n for CollisionAvoid , the reduction constructs an Empty
instance C ′ : {0, 1}n → [2n + 1] to be

C ′(x) =

®
2n if x = 0n ,

C(x) otherwise .

(In other words, C ′ maps 0n to an element that is not in the range of C .)

The reduction then calls its Empty oracle on input C ′ , receiving as output y . If the oracle’s
output satisfies that y = C(0n), the reduction outputs (NON-COLLISION, 0n). Otherwise, the
reduction outputs (NON-IMAGE, y).

Clearly the reduction is deterministic, runs in polynomial time and makes a single oracle call.

To see that the reduction is correct, consider a solution y for Empty with input C ′ , clearly we
have y ∈ [2n] , or equivalently when written in binary y ∈ {0, 1}n . We consider two cases.

If y = C(0n), then, because y is a valid solution to Empty on input C , we know that C(x) ̸=
C(0n) for any x ̸= 0n (since for x ̸= 0n , C(x) = C ′(x)). Hence, (NON-COLLISION, 0n) is a valid
solution to the CollisionAvoid instance in this case.
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Otherwise, y ̸= C(0n) and since y is not in the image of C ′ , it follows that y is not in the image
of C . Hence, (NON-IMAGE, y) is a valid solution to the CollisionAvoid instance, as needed.

Similar to Avoid , CollisionAvoid also admits an input-independent randomized algorithm that
succeeds with constant probability. In particular, this implies that CollisionAvoid ∈ FZPPNP by
using the NP oracle for verification of the guessed solutions.

Theorem 3.3. There is an input-independent BPP algorithm for CollisionAvoid that succeeds with
probability at least 1/3.

Proof. Regardless of any input circuit C : {0, 1}n → {0, 1}n for CollisionAvoid , the algorithm
samples a uniform string y ∈ {0, 1}n . Then it outputs (NON-IMAGE, y) with probability 2/3 and
(NON-COLLISION, y) with probability 1/3.

To see that the algorithm succeeds with probability at least 1/3, let δ := 1− | Im(C)|
2n . We then

have:
Pr
y
[y /∈ Im(C)] = δ ,

Pr
y
[∀x ̸= y, C(x) ̸= C(y)] ≥ 1− 2δ .

The first inequality follows from the definition of δ . To see the second inequality, notice that
there are at most 2δ fraction of inputs involved in collisions.

Therefore, the success probability is at least

2

3
· δ + 1

3
· (1− 2δ) ≥ 1

3
.

3.2 AffineAvoid

We start by presenting some choices of parameters where AffineAvoid admits an FZPPNP algorithm.

Theorem 3.4. Let c > 0 be a constant, and s := s(n) ≥ 1 and d := d(n) ≥ 1 satisfy

(1− 2−s)2
d − 2d−n−s >

1

nc

for all large enough n. Then (s, d)-AffineAvoid ∈ FZPPNP . In particular, (1, log logn)-
AffineAvoid ∈ FZPPNP .

Proof. Consider any circuit C : {0, 1}n → {0, 1}n+s as input of (s, d)-AffineAvoid , and define S to
be the set of all non-images of C . We have

|S| ≥ 2n+s − 2n = (1− 2−s)2n+s .

The algorithm proceeds as follows. Sample u, v1 . . . , vd ∈ Fn+s
2 uniformly at random. Then

verify that u+ span(v1, . . . , vd) has dimension d and use the NP oracle to verify that ∀x ∈ Fn+s
2 ,

C(x) /∈ u + span(v1, . . . , vd). If all tests pass, output the affine subspace u + span(v1, . . . , vd).
Otherwise, repeat the procedure.

It is easy to see that any affine subspace output by the algorithm is a correct solution. It
remains to show that the algorithm terminates in expected poly(n) time.
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By Lemma 2.23, with probability (1− 2−s)2
d − 2d−n−s > 1

nc , u+ span(v1, . . . , vd) sampled by
the algorithm is a d-dimensional affine subspace contained in S . Hence the expected running time
is bounded from above by nc .

Next, we present choices of parameters where AffineAvoid falls in TFΣ2P .

Theorem 3.5. Let s := s(n) ≥ 1 and d := d(n) ≥ 1 satisfy

(1− 2−s)2
d − 2d−n−s > 0

for all large enough n. Then (s, d)-AffineAvoid ∈ TFΣ2P. In particular, (1, log n−1)-AffineAvoid ∈
TFΣ2P.

Proof. Let C : {0, 1}n → {0, 1}n+s be an input of (s, d)-AffineAvoid , and S be the set of all
non-images of C :

|S| ≥ 2n+s − 2n = (1− 2−s)2n+s .

By Lemma 2.23, with probability (1− 2−s)2
d − 2d−n−s > 0, we can sample a d-dimensional affine

subspace contained in S . In other words, a solution to (s, d)-AffineAvoid is guaranteed to exist.

Hence, one could write down the TFΣ2P statement as follows:

∃u, v1, . . . vd ∈ Fn+s
2 , ∀x ∈ Fn

2 , C(x) /∈ u+ span(v1, . . . , vd) ,

and the result follows.

We conclude with a simple reduction between AffineAvoid with different parameters.

Theorem 3.6. Let ℓ := ℓ(n) ≥ 1 be an efficiently computable function. Then for every d := d(n) ≥ 1
there is a deterministic Karp reduction from (s+ ℓ, d+ ℓ)-AffineAvoid to (s, d)-AffineAvoid.

In particular, by setting d = 0, we have that (s+ ℓ, ℓ)-AffineAvoid reduces to s-Avoid.

Proof. Given a circuit C : {0, 1}n → {0, 1}n+s+ℓ for (s+ℓ, d+ℓ)-AffineAvoid , the reduction defines
an (s, d)-AffineAvoid instance C ′ : {0, 1}n → {0, 1}n+s to be C ′(x) = C(x)[n+s] . I.e., C

′(x) outputs
the first n+ s bits of C(x).

The reduction then calls its (s, d)-AffineAvoid oracle on input C ′ , receives as output
u, v1, . . . , vd ∈ Fn+s

2 where u+span(v1, . . . , vd) is an affine subspace that contains no images of C ′ .
Finally, the reduction outputs u ◦ 0ℓ, v1 ◦ 0ℓ, . . . , vd ◦ 0ℓ, en+s+1, . . . , en+s+ℓ where ei ∈ Fn+s+ℓ

2 is
the ith standard basis vector.

Clearly the reduction is a deterministic Karp reduction with a single oracle call. Let A :=
u+ span(v1, . . . , vd) ⊆ Fn+s

2 . Since no element in A is in the image of C ′ , it follows that no point
in Fn+s+ℓ

2 , whose first (n+ s) coordinates lie in A , is in the image of C . In other words, the affine
subspace A′ := u ◦ 0ℓ+span(v1 ◦ 0ℓ, . . . , vd ◦ 0ℓ, en+s+1, . . . , en+s+ℓ) contains no images of C , which
finishes the proof.
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4 CollisionAvoid to Minicrypt

In this section we show that hardness of CollisionAvoid implies the existence of weak one-way
function families.

Theorem 4.1. Suppose CollisionAvoid is weakly hard on average with generator Gen, then there
exists a generator Gen′ that samples weak one-way circuits.

Combining the above with Theorem 2.18 immediately implies the following, which is the formal
version of Theorem 1.3.

Corollary 4.2. If CollisionAvoid is weakly hard on average with some generator, then (standard)
one-way functions exist.

Proof of Theorem 4.1. For any κ > 0, we define Gen′(1κ) := Gen(1γ) for some γ = γ(κ) :=
⌊κ1/4/100⌋ . Since Gen(1γ) outputs a circuit C : {0, 1}n(γ) → {0, 1}n(γ) , which is an instance
of CollisionAvoid , Gen′(1κ) outputs a circuit C : {0, 1}n′(κ) → {0, 1}n′(κ) , where n′(κ) :=
n(⌊κ1/4/100⌋).

We claim that Gen′ samples a weak one-way circuit. Assume towards contradiction that this is
not true. Then, there exists a PPT algorithm B such that for infinitely many κ ,

Pr
C←Gen′(1κ),x∼{0,1}n

[x′ ← B(1κ, C, C(x)), C(x′) = C(x)] > 1− 1/κ . (1)

Notice that we may assume without loss of generality that this holds for infinitely many values of κ
of the form κ = (100γ)4 for integer γ .

We present in Algorithm 1 an algorithm that we claim solves average-case CollisionAvoid on the
distribution produced by Gen(1γ) with probability larger than 1− 1/γ for arbitrarily large γ .

Algorithm 1: CollisionAvoid(C, 1γ)

Set κ := (100γ)4 ;
Do ∆ = 10γ + 1 times

Sample y ∼ {0, 1}n ;
Set x′ ← B(1κ, C, y);
if C(x′) ̸= y then

Output (NON-IMAGE, y);
end

end
Sample x ∼ {0, 1}n and output (NON-COLLISION, x);

We call this algorithm A . Clearly the algorithm runs in polynomial time. To see that the
algorithm is correct, let κ := (100γ)4 , let α := 1000γ3 , and let ∆ := 10γ + 1. We may assume
that κ is such that Equation (1) holds. Let S be the set of circuits C that satisfy

Pr
x∼{0,1}n

[x′ ← B(1κ, C, C(x)), C(x′) = C(x)] > 1− 1/α .

16



By Lemma 2.19, we have

Pr
C∼Gen(1γ)

[A solves CollisionAvoid ] ≥ (1− α/κ) · Pr[A solves CollisionAvoid | C ∈ S] .

It therefore suffices to show that for each C ∈ S , A solves CollisionAvoid on C with probability
at least (1 − 1/γ)/(1 − α/κ), and to do that, it suffices to show that A solves CollisionAvoid on
such C with probability at least 1− 1/(2γ) > (1− 1/γ)/(1− α/κ).

To that end, fix the input C ∈ S to A . Let

ε := | Im(C)|/2n = Pr
y∼{0,1}n

[y ∈ Im(C)] ,

and define the event E to be the event that A outputs (NON-IMAGE, y) for some y .

Notice that E occurs if any sample y inside the loop of Algorithm 1 is not inverted. Therefore,

1− Pr[E] = Pr
y∼{0,1}n

[x′ ← B(1κ, C, y) : C(x′) = y]∆ = (ε− p)∆ ,

where
p := Pr

y∼{0,1}n
[x′ ← B(1κ, C, y) : C(x′) ̸= y and y ∈ Im(C)]

is the probability that y lands in the image of C but B still fails to find a preimage of y . Of
course, p ≥ 0, and Lemma 2.20 tells us that p < 1/α . Therefore,

1− ε∆ ≤ Pr[E] < 1− (ε− 1/α)∆ .

(Here, we are using our choice of ∆ as an odd integer to conclude that the inequality holds even if
1/α > ε .) It follows that

Pr[A fails] = Pr[A fails and E] + Pr[A fails and not E]

< (1− (ε− 1/α)∆) · Pr[A fails | E] + ε∆ · Pr[A fails | not E]

≤ (1− (ε− 1/α)∆) · Pr[A fails | E] + 2(1− ε) · ε∆ , (2)

where the last line uses the fact that4

Pr[A fails | not E] ≤ 2(1− ε) .

It remains to bound the probability that A fails conditioned on E , i.e., conditioned on out-
putting inside the loop. We have

Pr[A succeeds | E] = Pr
y∼{0,1}n

[y /∈ Im(C) | C(B(1κ, C, y)) ̸= y]

=
1− ε

Pry∼{0,1}n [C(B(1κ, C, y)) ̸= y]

=
1− ε

1− ε+ p

>
1− ε

1− ε+ 1/α
,

4To see this, note that Pr[A fails | not E] = Prx∼{0,1}n [∃x′ : x′ ̸= x,C(x) = C(x′)] , and let δ denote this quantity.
For δ fraction of the inputs, they each have to collide with at least one other input, whereas the remaining 1−δ fraction
of the inputs have unique images. Thus, the image size | Im(C)| = 2nε is at most 2n

(
δ
2
+ (1− δ)

)
. Rearranging

then yields the fact that δ ≤ 2(1− ε) .
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where the last line again uses Lemma 2.20. So,

Pr[A fails | E] < 1− 1− ε

1− ε+ 1/α
=

1

1 + (1− ε)α
.

Plugging back in to Equation (2), we see that

Pr[A fails] <
1− (ε− 1/α)∆

1 + (1− ε)α
+ 2(1− ε) · ε∆ .

The result then follows by noting that each of the terms on the right-hand side above is bounded
by 1/(4γ). In particular, for ε ≥ 1− 1/(8γ∆) ≥ 1− 1/(4γ∆) + 1/α , the first term is bounded by

1− (ε− 1/α)∆

1 + (1− ε)α
≤ 1−

Å
1− 1

4γ∆

ã∆
≤ 1

4γ
,

while for ε < 1− 1/(8γ∆), we have

1− (ε− 1/α)∆

1 + (1− ε)α
≤ 1 + 1/α∆

1 + α/(8γ∆)
<

2

1 + 1000γ3/(8γ · (10γ + 1))
<

1

4γ
,

as needed. On the other hand, the second term is maximized when ε = ∆/(∆ + 1), in which case
it is equal to

2

Å
1− ∆

∆+ 1

ãÅ
∆

∆+ 1

ã∆
≤ 2

∆ + 1
≤ 1

4γ
,

as needed.

5 AffineAvoid to Minicrypt

In this section we show that the hardness of AffineAvoid implies the existence of weak one-way
functions.

Theorem 5.1. Suppose (1, log log n)-AffineAvoid is weakly hard on average with generator Gen, then
there exists a generator Gen′ that samples weak one-way circuits.

Combining the above with Theorems 2.18 and 3.6 immediately implies the following, which is
the formal version of Theorem 1.2.

Corollary 5.2. For any efficiently computable ℓ := ℓ(n) ≥ 1, if (ℓ(n), ℓ(n) + log log n)-AffineAvoid
is weakly hard on average with some generator, then (standard) one-way functions exist.

Proof of Theorem 5.1. Let Gen(1γ) output circuits C : {0, 1}n(γ) → {0, 1}n(γ)+1 . Since Gen is
efficiently computable, n(γ) ≤ γc for some constant integer c ≥ 1 and all large enough γ . For
any κ > 0, we define Gen′(1κ) := Gen(1γ) for γ := γ(κ) = ⌊κ1/(c+3)⌋ . Notice that this choice of γ
satisfies

1000n(γ) log(n(γ))γ2 log(4γ) ≤ κ

for all sufficiently large κ .
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Since Gen outputs a circuit C : {0, 1}n(γ) → {0, 1}n(γ)+1 which is an instance of (1, log log n(γ))-
AffineAvoid , Gen′ outputs a circuit C : {0, 1}n′(κ) → {0, 1}n′(κ)+1 where n′(κ) := n(γ(k)).

We claim that Gen′ samples a weak one-way circuit. If not, there is a PPT algorithm B such
that for infinitely many κ ,

Pr
C←Gen′(1κ),x∼{0,1}n

[x′ ← B(1κ, C, C(x)), C(x′) = C(x)] > 1− 1/κ .

We claim that Algorithm 2 solves average-case (1, log log n(γ))-AffineAvoid on the distribution
produced by Gen(1γ) with probability at least 1− 1/γ .

Algorithm 2: AffineAvoid(C, κ)

Set d := log log n ;
Do ∆ := 2n log(4γ) times

Sample s, v1, . . . , vd ∼ {0, 1}n+1 ;
Set Q = s+ span(v1, . . . , vd);
if dim(Q) = d and ∀y ∈ Q,C(B(1κ, C, y)) ̸= y then

Output s, v1, . . . , vd ;
end

end

We call this algorithm A . Clearly, the algorithm runs in polynomial time. Now, we provide a
proof of correctness. Let n := n(γ), κ := 1000n log(n)γ2 log(4γ), α := 10n log(n)γ log(4γ) and let
∆ := 2n log(4γ). Further, let S be the set of circuits C that satisfy

Pr
x∼{0,1}n

[x′ ← B(1κ, C, C(x)), C(x′) = C(x)] > 1− 1/α . (3)

By Lemma 2.19,

Pr
C∼Gen(1γ)

[A solves AffineAvoid on C] ≥ (1− α/κ) · Pr[A solves AffineAvoid on C | C ∈ S] .

It remains to show that for each C ∈ S , A solves (1, log logn)-AffineAvoid on C with proba-
bility at least (1− 1/γ)/(1− α/κ). Due to the choice of α/κ = 1/(100γ), it suffices to show that
A is successful on C with probability at least 1− 1/(2γ) ≥ (1− 1/γ)/(1− α/κ).

Let d = log log n , and C ∈ S be a fixed circuit. For 1 ≤ i ≤ ∆, let Ei be the event where A
outputs an affine subspace in the ith iteration of the loop. Then by the union bound,

Pr[A fails] ≤
∆∑
i=1

Pr[A fails and Ei] + Pr[A fails and ¬E1, . . . ,¬E∆]

≤ ∆Pr[A fails and E1] + Pr[¬E1, . . . ,¬E∆] . (4)

An affine subspace Q is a solution to AffineAvoid if dim(Q) = d and Q ∩ Im(C) = ∅ . From
Lemma 2.23, we know that for a random choice of s, v1, . . . , vd , the affine subspace Q = s +
span(v1, . . . , vd) is a solution with probability at least 1/(2n). Moreover, if Q is a solution, then
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A outputs it. Therefore, from Lemma 2.23, the probability of not sampling such a Q in ∆ trials
is at most

Pr[¬E1, . . . ,¬E∆] ≤ (1− 1/(2n))∆ . (5)

It remains to bound the probability Pr[A fails and E1] . This is the probability that A samples
an affine subspace Q such that dim(Q) = d , Q ∩ Im(C) ̸= ∅ , and the one-way function inverter B
fails to invert on each point from Q ∩ Im(C).

Pr[A fails and E1] ≤ Pr
Q,A,B

[Q ∩ Im(C) ̸= ∅ and ∀y ∈ Q ∩ Im(C) : C(B(1κ, C, y)) ̸= y]

≤
∑

y∈Im(C)

Pr
Q
[y ∈ Q] · Pr

B
[C(B(1κ, C, y)) ̸= y]

≤ 2d

2n+1
·

∑
y∈Im(C)

Pr
B
[C(B(1κ, C, y)) ̸= y]

= 2d · Pr
y,B

[C(B(1κ, C, y)) ̸= y and y ∈ Im(C)]

≤ 2d−1 · Pr
x
[x′ ← B(1κ, C, C(x)), C(x′) ̸= C(x)]

≤ log n/(2α) , (6)

where the penultimate inequality follows from Lemma 2.20, and the last inequality uses d = log log n
and that C satisfies Equation (3).

Using Equations (4) to (6), we can now bound the failure probability of A as follows,

Pr[A fails] ≤ ∆ log n/(2α) + (1− 1/(2n))∆

≤ ∆ log n/(2α) + e−∆/2n

≤ 1/(10γ) + 1/(4γ)

< 1/(2γ) ,

where the penultimate inequality follows from ∆ = 2n log(4γ) and α = 10n log(n)γ log(4γ). This
finishes the proof of the theorem.

6 Avoid and Kolmogorov Complexity

In this section, we prove Theorems 6.1 and 6.2 which are the formal versions of Theorems 1.4
and 1.5, respectively. Specifically, in Section 6.1, we provide an FZPP algorithm that solves Avoid
using an (a, b)-GapMcKt,∞P oracle for appropriate a , b , and t . Similarly, in Section 6.2, we
provide an FZPP algorithm that solves Avoid using a γ -GapMKtP oracle. (See Section 2.3 for the
definitions of (a, b)-GapMcKt,∞P and γ -GapMKtP .)

6.1 Avoid to GapMcKt,∞P

Theorem 6.1. For any s := s(n) ≥ 1 and g(n) > n + s(n), there is an FZPP reduction from
s-Avoid on circuits of size g(n) to (a, b)-GapMcKt,∞P for a ≤ n + O(1), b ≥ n + s(n) − 2, and
t ≤ poly(g(n)).
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Proof. Let O be an oracle for (a, b)-GapMcKt,∞P . Notice that O(x, y) outputs 0 only if Kt(y|x) >
a .

Algorithm 3: Avoid(C)

Sample y ∼ {0, 1}n+s ;
if O(C, y) = 0 then

Output y ;
end
else

Repeat the procedure;
end

We present the reduction in Algorithm 3. First, we prove the correctness of the reduction. For
this, we show that for every z ∈ Im(C), Kt(z|C) ≤ n+O(1). This is achieved by hard coding the
n-bit input x and evaluating C(x) = z in poly(|C|) = poly(g(n)) steps. Hence, any string y that
is output by the reduction is not in the image of C .

It remains to prove that the reduction runs in expected polynomial time. For this, we show
that the algorithm retries a constant number of times in expectation. Since y is chosen uniformly
at random, Lemma 2.15 states that K∞(y|C) ≥ n+ s− 2 with probability at least 1/2. Thus, the
reduction uses at most 2 attempts in expectation before finding a desired y .

6.2 Avoid to GapMKtP

Theorem 6.2. Let s, g : Z>0 → Z>0 be functions and γ : Z>0 → Z>0 be a non-decreasing function
such that s(n) = ω(log g(n)) and

γ(2g(n)2) < s(n)/4 .

Then s(n)-Avoid on circuits of size g(n) is in FZPPγ-GapMKtP .

Note that we chose to present a relatively simple form of Theorem 6.2, instead of attempting to
present the strongest version of this theorem that we know how to prove. (E.g., a careful reading
of our proof shows that it suffices to take s ≥ C log g for some constant C > 0 that depends on
the specific universal Turing machine used to define GapMKtP , and that it suffices to take γ such
that γ((s+ n) · g + C log g) < s− C log g .)

One interesting setting of the parameters of Theorem 6.2 is where the approximation guarantee
of the GapMKtP oracle is γ(k) = O(log k). In this case, for circuits of polynomial size g(n) =
poly(n), the stretch in Theorem 6.2 can be taken as low as s = ω(log n). Also, for circuits of
unrestricted size5, the stretch in Theorem 6.2 is only s = ω(n).

Corollary 6.3. Let c > 0 be an arbitrary constant, and γ(k) = c log k . Then

• for any s(n) = ω(log n), s-Avoid on circuits of polynomial size is in FZPPγ-GapMKtP ; and

• for any s(n) = ω(n), s-Avoid ∈ FZPPγ-GapMKtP .

5Without loss of generality, we can assume that the circuit size g ≤ 2n as otherwise Avoid can be trivially solved
in time linear in the input size.
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Proof of Theorem 6.2. If the number of gates g is smaller than the number of outputs n+ s , then
some pair of the outputs computes the same function, and it is therefore trivial to solve Avoid on
such circuits. Thus, in the following we assume that g ≥ n + s , and, in particular, that g(n) is
unbounded.

Let O be an oracle for γ-GapMKtP . For a string z of length ℓ , we will use O to com-
pute apxKt(z) such that Kt(z) ≤ apxKt(z) < Kt(z) + γ(ℓ). To do this using O(ℓ) calls to O , we
simply output the highest value i ∈ [ℓ+O(log ℓ)] for which O(z, i) outputs 1. (Note that Kt of a
string of length ℓ is bounded from above by ℓ+O(log ℓ).)

We describe our reduction’s behavior on input a circuit C : {0, 1}n → {0, 1}n+s of size g
in Algorithm 4 below.

Algorithm 4: Avoid(C)

Sample y1, y2, . . . , yg ∼ {0, 1}n+s ;
k0 ← apxKt(C);
for i ∈ {1, . . . , g} do

ki ← apxKt(C ◦ y1 ◦ · · · ◦ yi);
end
if ∃i ∈ [g] s.t. ki+1 − ki ≥ n+ s/2 then

Output yi+1 ;
end
else

Repeat the procedure;
end

We first prove a basic fact about the ki . To that end, note that for every i ∈ [g + 1],

|C ◦ y1 ◦ · · · ◦ yi| ≤ g + i · (n+ s) ≤ g + g · (n+ s) ≤ 3g2/2 ,

where we have used that n + s ≤ g and g ≤ g2/2 for large enough n . Thus, using the fact that
γ(2g(n)2) < s(n)/4 and that γ is non-decreasing, we have that

γ(Kt(C ◦ y1 ◦ · · · ◦ yi)) ≤ γ (|C ◦ y1 ◦ · · · ◦ yi|+O(log(|C ◦ y1 ◦ · · · ◦ yi|)))
≤ γ(3g2/2 +O(log

(
3g2/2

)
))

≤ γ(2g2)

< s/4 .

Therefore, for every i ∈ [g] ,

ki+1 − ki ≤ Kt(C ◦ y1 ◦ · · · ◦ yi+1) + γ(Kt(C ◦ y1 ◦ · · · ◦ yi+1))− Kt(C ◦ y1 ◦ · · · ◦ yi)
< Kt(C ◦ y1 ◦ · · · ◦ yi+1)− Kt(C ◦ y1 ◦ · · · ◦ yi) + s/4 . (7)

Next, we prove the correctness of the algorithm. Notice that given the description of C , every
string yi+1 from the image of C can be described using n bits (namely, a preimage of yi+1 ), and

computed in time ‹O(g). Thus, for every yi+1 ∈ Im(C),

Kt(yi+1|C) ≤ n+O(log g) . (8)
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In particular, if yi+1 ∈ Im(C), then

ki+1 − ki < Kt(C ◦ y1 ◦ · · · ◦ yi+1)− Kt(C ◦ y1 ◦ · · · ◦ yi) + s/4

≤ Kt(yi+1|C ◦ y1 ◦ · · · ◦ yi) + Kt(C ◦ y1 ◦ · · · ◦ yi)− Kt(C ◦ y1 ◦ · · · ◦ yi) + s/4 +O(log g)

= Kt(yi+1|C ◦ y1 ◦ · · · ◦ yi) + s/4 +O(log g)

≤ Kt(yi+1|C) + s/4 +O(log g)

< n+ s/4 +O(log g)

< n+ s/2 ,

where the first inequality is by Equation (7), the second inequality uses Lemma 2.12, the penulti-
mate inequality is by Equation (8), and the last inequality is due to s = ω(log g). Therefore, any
string yi+1 that is output by the algorithm is not in the image of C .

It remains to prove that the algorithm runs in expected polynomial time. For this, we show
that the algorithm retries a constant number of times in expectation.

Since y1, . . . , yg are chosen randomly, Lemma 2.13 states that Kt(y1 ◦ · · · ◦ yg) ≥ g · (n + s) −
O(log g) with probability at least 1 − 1/poly(n) ≥ 1/2. It follows by Lemma 2.14 that with
probability at least 1/2,

Kt(C ◦ y1 ◦ · · · ◦ yg) ≥ Kt(y1 ◦ · · · ◦ yg)−O(log g) ≥ g · (n+ s)−O(log g) . (9)

When Equation (9) holds, we have

g−1∑
i=0

(Kt(C ◦ y1 ◦ · · · ◦ yi+1)− Kt(C ◦ y1 ◦ · · · ◦ yi)) = Kt(C ◦ y1 ◦ · · · ◦ yg)− Kt(C)

≥ g · (n+ s)−O(log g)− Kt(C) .

It follows that when Equation (9) holds, there must exist some i ∈ [g] such that

Kt(C ◦ y1 ◦ · · · ◦ yi+1)− Kt(C ◦ y1 ◦ · · · ◦ yi) ≥
Kt(C ◦ y1 ◦ · · · ◦ yg)− Kt(C)

g

≥ (n+ s)− O(log g)

g
− Kt(C)

g

≥ n+ s−O(log g)

≥ n+ 3s/4 ,

where the penultimate inequality holds due to the fact that Kt(C) ≤ O(g log g) (as a circuit with g
gates can be described using O(g log g) bits), and the last inequality uses the fact that s = ω(log g).

We conclude that with probability at least 1/2, there exists an i such that

ki+1 − ki ≥ Kt(C ◦ y1 ◦ · · · ◦ yi+1)− Kt(C ◦ y1 ◦ · · · ◦ yi)− γ(2g2) ≥ n+ 3s/4− s/4 ≥ n+ s/2 .

Thus, the algorithm uses at most 2 attempts in expectation before finding a desired yi+1 .
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7 Hardness of hardness

Lastly, we show barriers to proving hardness of Avoid . Specifically, we show that if there is a
randomized reduction from any problem A ∈ FNP to Avoid , then A ∈ FZPP . (Here, we say
A ∈ FZPP for a search problem A if there is a randomized algorithm B for A such that, whenever
there exists a solution to an instance IA , B will output a valid solution in expected polynomial
time. We impose no restrictions on B when IA has no solutions—e.g., it might not terminate.)

Theorem 7.1. For any constant c > 0, any s := s(ℓ) ≥ 1, and any q := q(ℓ) ≥ 1 satisfying
(1 − 2−s)q ≥ 1/ℓc for all large enough ℓ, if there exists a (possibly randomized) polynomial-time
reduction from a search problem A ∈ FNP to Avoid that on input an instance of A with size ℓ
makes at most q(ℓ) calls to an Avoid oracle on circuits with stretch at least s(ℓ), then A ∈ FZPP.

Proof. Let A ∈ FNP , and let BAvoid be the randomized polynomial-time reduction that makes at
most q queries to its Avoid oracle. Let p := p(ℓ) ≥ 1/ poly(ℓ) be a lower bound on the success
probability of BAvoid on inputs with length ℓ .

We now give an algorithm D that solves any instance IA of A for which there exists a solution
in expected polynomial time. The algorithm D on input IA with size ℓ behaves as follows:

1. Simulate BAvoid(IA).

2. Whenever BAvoid(IA) makes a query to its Avoid oracle Avoid for a circuit C : {0, 1}n →
{0, 1}n+s′ for s′ ≥ s , D simulates the oracle’s response with a uniformly random string of
length n+ s′ .

3. When BAvoid(IA) terminates and outputs a string wA , D checks whether wA is indeed a
valid solution of IA (which can be done efficiently because A ∈ FNP).

4. If it is, D outputs wA . Otherwise, it restarts.

It is clear that the algorithm D only ever outputs correct solutions wA . Thus, it suffices to
show that algorithm D runs in expected polynomial time on inputs IA that have a valid solution.
We do this by first bounding the probability that D succeeds in finding a valid witness string wA

in a single run of the loop above.

By definition, our simulation of BAvoid(IA) must succeed with probability at least p if we solve
all of the Avoid instances correctly. The probability that a random (n + s′)-bit string is in the
range of any fixed circuit C : {0, 1}n → {0, 1}n+s′ is at most 2−s

′ ≤ 2−s . Thus, the probability
that we succeed on all q instances is at least (1 − 2−s)q ≥ 1/ℓc . And, the success probability of
any given instance is therefore at least p/ℓc .

Thus, we run at most ℓc/p simulations in expectation. Since each simulation runs in polynomial
time, D runs in expected polynomial time as claimed.

There are two interesting choices of s and q that yield the following corollaries. By setting
q = 1, then letting s ≥ 1:

Corollary 7.2. If there exists a (randomized) Karp reduction from FSAT to Avoid (even with
stretch 1), then FZPP = FNP.
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Furthermore, by letting q = poly(ℓ), we can then allow s = ω(log(ℓ)) = ω(log(n)).

Corollary 7.3. If there exists a (randomized) polynomial-time reduction from FSAT to s-Avoid of
stretch s(n) = ω(log(n)), then FZPP = FNP.

In both cases, we remark that FZPP = FNP would also imply that NP = RP .

Theorem 7.4. If FZPP = FNP, then NP = RP.

Proof. Assume that FSAT has an algorithm B such that on satisfiable instances ϕ : {0, 1}n →
{0, 1} , A(ϕ) takes expected p(n) time to output a satisfying assignment y for some polyno-
mial p(n).

We now give a randomized polynomial time algorithm D that has one-sided error for SAT .
On input ϕ , we simulate B(ϕ) for 2p(n) steps, and if B(ϕ) outputs an assignment y , we output
ϕ(y), otherwise we output 0. Note that this means our algorithm only outputs 1 if y is a satisfying
assignment.

Assuming that ϕ is not satisfiable, we will never output 1. So, it suffices to lower bound the
probability we output 1 assuming that ϕ is satisfiable. Note that by Markov, the probability that
B(ϕ) uses more than 2p(n) is at most 1/2. Thus the probability that we output 1 on satisfiable
instances ϕ is at least 1/2.
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