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Abstract

We study parallel repetition of k-player games where the constraints satisfy the projection
property. We prove exponential decay in the value of a parallel repetition of projection games
with value less than 1.

1 Introduction

We study k-player one-round games and the effect on the value of the game when we repeat the
game in parallel.

In a k-player game G, a verifier chooses k questions (x1, x2, . . . , xk) from a distribution µ on
the set of questions X1 ×X2 × . . .×Xk and sends xi to player i. Player i responds to the verifier’s
question by sending an answer ai ∈ Ai without communicating with the other players. The verifier
accepts the answers based on a fixed predicate V ((x1, x2, . . . , xk), (a1, a2, . . . , ak)). The value of the
game, denoted by val(G), is the maximum, over the players’ strategies, accepting probability of
the verifier.

The n-fold parallel repetition of G, denoted by G⊗n, is defined as follows. The verifier sends
questions x⃗i = (xi1, x

i
2, . . . , x

i
n) to the k players where for each j ∈ [n], (x1j , x

2
j , . . . , x

k
j ) is sampled

from the original distribution µ independently. The ith player responds with answers a⃗i ∈ An
i . The

verifier accepts the answers iff V ((x1j , x
2
j , . . . , x

k
j ), (a

1
j , a

2
j , . . . , a

k
j )) = 1 for each j ∈ [n].

If val(G) = 1, then it is easy to observe that val(G⊗n) is also 1. Also, val(G⊗n) ⩾ val(G)n

as the players can achieve value val(G)n in the game G⊗n by simply repeating an optimal strategy
for the game G independently in all the n coordinates. The question of interest is how does the
quantity val(G⊗n) decay with n if the value of the game G is less than 1?

Verbitsky [Ver96] showed that for any k-player game G, if val(G) < 1, then val(G⊗n) ⩽
1

α(n) where α(n) is an inverse Ackermann function. This result uses the Density Hales-Jewett
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Theorem [FK89, Pol12] as a black box. For 2-player games, Raz [Raz98] showed that if val(G) < 1,
then val(G⊗n) ⩽ 2−ΩG(n), where we use ΩG(·) to clarify that the constant depends on the game
G. There have been many improvements that improve the constants in the bounds, and even get
better bounds based on the value val(G) of the initial game [Hol09, Rao11, DS14, BG14]. These
results on parallel repetition of 2-player games have found many applications in probabilistically
checkable proofs and hardness of approximation [BGS98, Fei98, H̊as01].

Mittal and Raz [MR21] showed that a strong parallel repetition theorem (i.e., the value of G⊗n

decays exponentially in n in a certain strong sense) for a particular class of more than 2-player
games implies super-linear lower bounds for Turing machines in the non-uniform model. For any
k ⩾ 2, Dinur, Harsha, Venkat, and Yuen [DHVY17] showed that for a large class of k-player games,
called the connected games, the exponential decay indeed holds. The class of connected games is
defined as follows: define the graph HG, whose vertices are the ordered k-tuples of questions to the
k-players, and there is an edge between questions q and q′ if they differ in the question to exactly
one of the k players, and are the same for the remaining k − 1 players. The game is said to be
connected if the graph HG is connected.

A special 3-player (non-connected) game, called the GHZ Game [DHVY17], has received much
attention. The GHZ game, first introduced by Greenberger, Horne, and Zeilinger [GHZ89], is a
central game in the study of quantum entanglement. Holmgren and Raz [HR20] gave the first
polynomial decay in the parallel repetition of the GHZ game. Girish, Holmgren, Mittal, Raz, and
Zhan [GHM+21] later gave a simpler proof of the polynomial decay. Very recently, Braverman,
Khot, and Minzer [BKM22], using a much simpler proof, improved these previous results and
showed an exponential decay in the GHZ game.

Girish, Holmgren, Mittal, Raz, and Zhan [GHM+22] considered the problem of parallel repeti-
tion for 3-player games with binary questions and answers and showed polynomial decay for these
games. This was later improved by a subset of the authors [GMRZ22] to all 3-player games over
binary questions and arbitrary answer lengths. They also study [GHM+22] player-wise connected
games G that are defined as follows. For each player i, define the graph Hi(G), whose vertices are
the possible questions for player i, and two questions x and x′ are connected by an edge if there
exists a vector y of questions for all other players, such that both (x, y) and (x′, y) are asked by the
verifier with non-zero probability. The game G is player-wise connected if, for every i, the graph
Hi(G) is connected. Girish et al. [GHM+22] showed polynomial decay in the value of n-fold parallel
repetition of all player-wise connected games. Observe that the notion of player-wise connectedness
is more general than the notion of connected games defined above.

In this paper, we will study a special type of k-player games, that we refer to as projection
games. The formal definition is as follows.

Definition 1.1. For any k ⩾ 2, a k-player game G is called a projection game if for every k-tuple
of question q = (x1, x2, . . . , xk), there is Dq ⩾ 1 and projections σi

q : Ai → [Dq] for i ∈ [k], such

that V ((x1, x2, . . . , xk), (a1, a2, . . . , ak)) is true iff σi
q(a

i) = σi′
q (a

i′) for any i ̸= i′.

For every question q = (x1, x2, . . . , xk), consider a k-partite hypergraph Hq on the vertex set
(A1,A2, . . . ,Ak) where (a

1, a2, . . . , ak) is an hyperedge if and only if V ((x1, x2, . . . , xk), (a1, a2, . . . , ak))
is true. Then, the projection property means that for every k-tuple of questions q in the support
of µ, each connected component in Hq is a complete k-partite hypergraph. Note that this def-
inition of projection games is slightly more general than the usual notion of projection 2-player
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games [Raz98, Rao11] where one of the maps σi
q (either σ1

q or σ2
q ) is an injective map.

Our main theorem shows that if the value of a projection game G is less than 1, then the value
of n-fold parallel repetition of G decays exponentially in n.

Theorem 1.2. For any k ⩾ 2, a projection k-player game G and ε > 0, if val(G) = 1 − ε, then
val(G⊗n) ⩽ exp(−Ωε,G(n)).

Projection games are a natural subclass of general games. They played a key role in the
development [ALM+98, AS98, FGL+96] of Probabilistically Checkable Proofs (PCPs). In fact,
parallel repetition from 2-player projection games had been useful in proving many [GHS02, Kho02a,
Kho02b, DGKR05, DRS02] tight hardness of approximation results, starting with the work of Arora,
Babai, Stern, and Sweedyk [ABSS97], Bellare, Goldreich, and Sudan [BGS98], and H̊astad [H̊as01].

Feige [Fei98] used a k-player projection game, and parallel repetition of the game, to show
almost tight hardness of approximating the Set-Cover problem. The decay in the value of a parallel-
repeated game, in that case, follows easily from the parallel-repetition theorem for the 2-player
game, as the subgame restricted to any two players has a value less than 1.

There are k-player projection games where the decay in the value of a parallel-repeated game
does not trivially follow from the parallel-repetition theorem for the 2-player game. To give a
concrete example, consider a simultaneous Max-3-SAT instance problem defined in [BKS15]: the
instance consists of n variables X = {x1, x2, . . . , xn} and k instances, ϕ1, ϕ2, . . . , ϕk, of Max-3-SAT
defined over the same set of variables X. The verifier chooses a variable x ∈ X at random and
selects clauses Ci ∈ ϕi independently such that x ∈ Ci for all i ∈ [k]. The verifier sends clause Ci

to player i and expects a satisfying assignment from {0, 1}3 to Ci from player i. The verifier checks
if the assignments returned by the players agree on x. Consider the scenario when it is possible
to satisfy any (k − 1) out of k instances of Max-3-SAT simultaneously, but there is no assignment
to X that will satisfy all the k instances. In this case, the value of the game is less than 1. For
any k′-player subgame, where k′ < k, the value of the subgame is 1. Therefore, we cannot use
the parallel repetition of 2-player games to conclude that the value of n-fold parallel repetition of
projection games decays with n.

1.1 Proof outline

As mentioned in the introduction, Dinur, Harsha, Venkat, and Yuen [DHVY17] showed that for any
connected k-player games H with val(H) < 1, the exponential decay holds for the value of H⊗n.
We start with a k-player game G which is not connected to begin with. At a high level, we transform
the game G to another game H where H is connected. While doing such a transformation, we want
to make sure we have the following two properties.

1. If val(G) < 1, then val(H) < 1.

2. There is a way to relate val(G⊗n) with val(H⊗n), possibly with a small loss in the constants
in the exponent.

As H is connected, we have val(H⊗n) = exp(−ΩH(n)) and this will complete the proof.

There is a trivial transformation that makes any game connected – add all possible k-tuple of
questions, play the game G on the original questions, and accept all the newly added questions by
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default. It is easy to see that if val(G) < 1, then the value of the transformed game is less than
1. However, in this case, there does not seem to be an easy way to relate val(G⊗n) to the value of
n-fold parallel repetition of the transformed game.

In order to overcome the issue, we make the game G connected gradually. More concretely,
we start with a game G0 = G and iteratively, we convert the game Gℓ to Gℓ+1 for ℓ = 0, 1, . . . with
the following three properties.

1. For every ℓ ⩾ 0, the game Gℓ is a k-player game with the questions from the set X1 × X2 ×
. . .×Xk.

2. The game Gℓ+1 is richer than the game Gℓ. In our case, we would be interested in increasing
the support of distribution on questions, i.e., supp(µ(Gℓ+1)) ⊋ supp(µ(Gℓ)) (unless, of course,
supp(µ(Gℓ) is full).

3. We can relate the value of the game G⊗n
ℓ to the value of the game G⊗n

ℓ+1 up to a fixed
polynomial factor. Furthermore, val(Gℓ+1) < 1 if val(Gℓ) < 1.

Let us see that this is enough to prove our main theorem. Using properties 1 and 2, for some
t ⩾ 1, which only depends on the size of the game G, we can conclude that the game Gt has full
support and hence is connected. Using property 3, we have val(G⊗n) ≈ val(G⊗n

t )Ct , where Ct > 0
is a constant that only depends on t, and furthermore val(Gt) < 1 if val(G) < 1 to begin with.
Finally, using the result by Dinur, Harsha, Venkat, and Yuen [DHVY17] on connected games, we
have, val(G⊗n

t ) = exp(−Ωε,Gt(n)), and hence val(G⊗n) = exp(−Ωε,t,G(n)) if val(G) < 1.

The transformation Gℓ to Gℓ+1. We illustrate the idea of such a transformation in a 3-player
game Gℓ. We start with the game Gℓ and let µ(Gℓ) be the distributions on the questions in Gℓ. For
every pair of question-triples q = (x, y, z) and q′ = (x′, y′, z′) from supp(µ(Gℓ)) such that x = x′,
we add a question triple Π3((q, q′)) := (x, y, z′) to the game Gℓ+1. Note that in this case, we took
two question-triples (q, q′) that share player 1’s question and generate a question-triple in the new
game with the first two players’ questions from q and player 3’s question from q′. We now state the
set of accepting assignments for Π3((q, q′)) as follows. If q ̸= q′, then accept the question Π3((q, q′))
by default, otherwise accept Π3((q, q′)) according to the verifier from the original game Gℓ on the
question q(= q′).1 We call such a transformation T 1

3 – the superscript stands for the common
player’s question from (q, q′) and the subscript 3 stands for taking player 3’s question from q′ and
rest of the questions from q in generating the question-triple in the new game. Succinctly, we write
Gℓ+1 as the game T 1

3 (Gℓ). Likewise, we can define transformations T i
p for any 1 ⩽ i, p ⩽ 3.

We show the following key properties of these transformations.

1. If val(Gℓ) < 1, then val(T i
p (Gℓ)) < 1. Furthermore, T i

p (Gℓ) remains a projection game if Gℓ

is a projection game.

2. For every n ⩾ 1, val(G⊗n
ℓ ) ⩽ val(T i

p (Gℓ)
⊗n)1/2, if Gℓ is a projection game.

1Note that the way the game Gℓ+1 is defined, the set of accepting answers for the same question-triple changes
based on the underlying pair of questions (q, q′), but we ignore this issue in this proof outline.
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The first property is trivial – in the game T i
p (Gℓ), we are still playing the game Gℓ as a

subgame and hence its value is less than 1 if val(Gℓ) < 1. For the furthermore part, we are either
accepting everything by default or using the same predicate as in the original game and hence this
transformation maintains the projection property of the game.

For the second property, we crucially use the projection property of the game Gℓ. We show
that for any strategy (α1, α2, α3), where αi : X n

i → An
i , for the game G⊗n

ℓ with value ε, we show
that the same strategy gives value at least ε2 to the game T i

p (Gℓ). We illustrate this for the game
T 1
3 (Gℓ). Let µ be the distribution of questions from Gℓ and µ|1 be the marginal distribution on

player 1’s questions, we have

ε2 ⩽ E
(x,y,z)∼µ⊗n

[V ((x,y, z), (α1(x), α2(y), α3(z)))]2

=

 E
v∈µ⊗n|1

 E
(x,y,z)∼µ⊗n,

x=v

[V ((x,y, z), (α1(x), α2(y), α3(z)))

2

⩽ E
v∈µ⊗n|1

 E
(x,y,z)∼µ⊗n,

x=v

[V ((x,y, z), (α1(x), α2(y), α3(z)))

2

(Cauchy-Schwarz)

= E
v∈µ⊗n|1

 E
(x,y,z)∼µ⊗n,

(x′,y′,z′)∼µ⊗n,
x=x′=v

[V ((x,y, z), (α1(x), α2(y), α3(z))) · V ((x′,y′, z′), (α1(x′), α2(y′), α3(z′)))


Now, if we look at the triple (x,y, z′) sampled according to the above distribution, then for each j ∈
[n], we have that the triple (xj , yj , z

′
j) is distributed according to the game T 1

3 (Gℓ) independently.

In the game, T 1
3 (Gℓ), for any j ∈ [n] such that (xj , yj , zj) ̸= (x′j , y

′
j , z

′
j) the new verfier is accepting

by default. As for j ∈ [n] such that (xj , yj , zj) = (x′j , y
′
j , z

′
j), the new verifier is accepting according

to the original verifier on the question (xj , yj , zj). In this case, suppose (α1(x)j , α
2(y)j , α

3(z)j) and
(α1(x′)j , α

2(y′)j , α
3(z′)j) are two satisfying assignments to the same question (xj , yj , zj) according

to the original game Gℓ with α1(x)j = α1(x′)j (as x = x′), then because of the projection property
of the game, we have that (α1(x)j , α

2(y)j , α
3(z′)j)) must be a satisfying assignment for (xj , yj , zj).

As in the game T 1
3 (Gℓ)

⊗n, we are precisely checking this for all such j ∈ [n], we get that the same
strategy (α1, α2, α3) gives

val(T 1
3 (Gℓ)

⊗n) ⩾ ε2.

Putting everything together. Using the above two properties of the transformations T i
p , we

conclude that if val(G) < 1, then for any t ≥ 1 and vectors i⃗, p⃗ ∈ [3]t,

val(G⊗n) ⩽ val(T it
pt (. . . (T

i2
p2 (T

i1
p1 (G))))⊗n)1/2

t
, and T it

pt (. . . (T
i2
p2 (T

i1
p1 (G))) < 1.

Finally, we show that there exist t ≥ 1 and vectors i⃗, p⃗ ∈ [3]t, where t depends on the size of the
game G, such that the game T it

pt (. . . (T
i2
p2 (T

i1
p1 (G))) is connected (in fact, has full support). This
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implies that
val(G⊗n) ⩽ val(T it

pt (. . . (T
i2
p2 (T

i1
p1 (G))))⊗n)1/2

t
⩽ exp(−Ωt,G(n)),

where the last inequality follows from the result of a parallel repetition theorem [DHVY17] on
connected games.

2 Preliminaries

We start with a few notations. We use µ(G) to denote the distribution on the questions in the
game G. For i ∈ [k], let µ|i be the marginal distribution on the questions to player i. For a
k-tuple of questions q = (x1, x2, . . . , xk), we denote the question to player i by q|i, i.e., q|1 = x1,
q|2 = x2, and so on. For an assignment α := (α1, α2, . . . , αk) to the game G, where αi : Xi →
Ai, and any question q = (x1, x2, . . . , xk), we use the notation α|q to denote the assignment-
tuple (α1(x1), α2(x2), . . . , αk(xk)). The size of the game G is referred to as the quantity k · M ·∏k

i=1 |Xi||Ai|. Here, the probability of every atom in supp(µ(G)) is a multiple of 1/M , where M is
a finite integer (this we assume for simplicity).

2.1 Parallel repetition of connected games

As mentioned earlier, Dinur, Harsha, Venkat, and Yuen [DHVY17] showed that for a large class of
k-player games, called connected games, the exponential decay indeed holds. Here, we define the
notion of connected games for k-player games formally.

Definition 2.1 (Connected game). A game G is called connected if for every two question pairs
(x1, x2, . . . , xk) and (x′1, x′2, . . . , x′k) from supp(µ(G)), there is an ordered list of questions from
supp(µ(G)), ((x1ℓ , x

2
ℓ , . . . , x

k
ℓ ))

t
ℓ=1 for some t ⩾ 1, such that the pairs ((x1, x2, . . . , xk), (x11, x

2
1, . . . , x

k
1)),

((x1t , x
2
t , . . . , x

k
t ), (x

′1, x′2, . . . , x′k)), and ((x1ℓ , x
2
ℓ , . . . , x

k
ℓ ), (x

1
ℓ+1, x

2
ℓ+1, . . . , x

k
ℓ+1)) for all 1 ⩽ ℓ ⩽ t−1

differ in only one out of the k questions.

We will relate the value of G⊗n, where G is a projection game, with a value of n-fold parallel
repetition of another game H that is connected. The following theorem shows that for connected
games with a value less than 1, the value of repeated games goes down exponentially in n.

Theorem 2.2 ([DHVY17]). For any k ⩾ 2 and ε > 0, if H is a connected k-player game with
val(H) = 1− ε, then val(H⊗n) ⩽ exp(−Ωε,H(n)).

2.2 Variants of multiplayer games

In this section, we simplify the class of games that we study. Towards this, we define the notion of
loosely-connected games as follows.

Definition 2.3 (Loosely-connected game). A game on the question set X1 × X2 × . . . × Xk is
loosely-connected if it is not possible to partition Xi = X ′

i ∪ X ′′
i for all i ∈ [k], so that all k-tuple of

questions from the support of µ(G) are in X ′
1 ×X ′

2 × . . .×X ′
k or X ′′

1 ×X ′′
2 × . . .×X ′′

k .

The following lemma states that we can assume without loss of generality that the game G is
loosely-connected.
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Lemma 2.4. If the exponential decay in the k-player parallel repetition holds for all projection
loosely-connected games, then it also holds for all projection games.

Proof. We defer the proof of this lemma to the appendix.

We also consider a slight variation in the definition of k-player games, that we call random-
predicate k-player games, where we allow a verifier to use a random predicate instead of a fixed
predicate during verification.

Definition 2.5 (Random-predicate game). A random-predicate game G is defined as follows. There
exists R ⩾ 1 such that the verifier chooses the k-tuple of questions (x1, x2, . . . , xk) according to the
distribution µ(G) on the set of questions and r ∈ [R] uniformly at random, sends xi to player i.
The player i responds with the answer ai. Finally, the verifier accepts the answers based on a fixed
predicate Vr((x

1, x2, . . . , xk), (a1, a2, . . . , ak)). We denote such games by (G,µ, [R]).

The following lemma states that for this variation of connected k-player games G the expo-
nential decay from [DHVY17] still holds.

Lemma 2.6. For any connected random-predicate k-player game H and ε > 0, if val(H) = 1− ε,
then val(H⊗n) ⩽ exp(−Ωε,H(n)).

Proof. We can think of a random-predicate k-player game H as a (k+1)-player game H ′ as follows.
In H ′, the verifier selects the questions (x1, x2, . . . , xk) from the game H and r ∈ [R] uniformly
at random. The verifier sends xi to players i for i ∈ [k], and sends r to player k + 1. The player
i ∈ [k + 1] responds with the answer ai (ak+1 can be anything). The verifier’s predicate in H ′ is
V ((x1, x2, . . . , xk, r), (a1, a2, . . . , ak, ak+1)) := Vr((x

1, x2, . . . , xk), (a1, a2, . . . , ak)).

It is easy to observe that if the game H ′ is connected then the game H is connected. Fur-
thermore, we have val(H⊗n) = val(H ′⊗n) for any n ⩾ 1. Using this, the lemma follows from
Theorem 2.2.

In our proof, we will encounter random-predicate games where the choice of the verifier’s
predicate Vr is not uniform and may depend on the question q. The following claims says that
we can assume that the distribution on verifier’s predicate is uniform form a set of predicates
and independent of the questions. This transformation preserves the support of the question-
distribution.

Claim 2.7. Suppose G is a random-predicate k-player game where on the k-tuple of question
q ∈ X1 ×X2 × . . .×Xk, the distribution on the verifier’s predicate Vr is sampled according to some
distribution νq over [R], then there is another game H with the same distribution on the questions
as in G such that the verifier for H samples a random predicate Ṽm where m ∈ [M ] is distributed
uniformly over [M ], and such that val(G⊗n) = val(H⊗n) for all n ⩾ 1. Furthermore, M only
depends on the size of the game G.

Proof. Let M ∈ Z+ be a number such that for every question q from the game G, each atom from
supp(νq) has probability weight c/M for 1 ⩽ c ⩽ M . In the game G, for a question q if νq(r) = c/M ,
then in game H, we make c copies Ṽi1(q, ·), Ṽi2(q, ·), . . . , Ṽic(q, ·) of the verifier predicate Vr(q, ·) for
the same question q. Thus, for a given question q, the verifier in H samples a random m ∈ [M ]
and decides based on the predicate Ṽm(q, ·).
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3 Proof of Theorem 1.2

Throughout this section, we fix a random-predicate k-player projection game (G,µ, [R]), suc-
cinctly written as G, on the questions from the set X1 × X2 × . . . × Xk and let µ(G) be the
distribution on the questions in G. Using Claim 2.7, we can assume without loss of general-
ity, that along with the k-tuple questions (x1, x2, . . . , xk) ∼ µ, the verifier selects r ∈ [R] uni-
formly at random, and after getting answers (a1, a2, . . . , ak) from the players, applies the predicate
Vr((x

1, x2, . . . , xk)), (a1, a2, . . . , ak)).

The key idea is to use the path-trick from [BKM23] to relate the value of the game G (and
G⊗n) to another game H (and H⊗n) which is connected.

3.1 The path-trick and the i-links

In this section, we define the notion of a link which is analogous to the notion of the path-
trick [BKM23] that was used in connection to studying dictatorship tests towards showing hardness
of approximation of constraint satisfaction problems.

Fix a player i ∈ [k]. An i-link from a game G is an ordered pair of original k-tuple of questions
from G with possible repetition. We will induce the following distribution on i-links from G.

• Pick a question v to player i according to the distribution of µ|i and sample two k-tuple of
questions q = (x1, x2, . . . , xk) and q′ = (y1, y2, . . . , yk), independently from µ but conditioned
on xi = yi = v and output (q, q′).

We denote the above distribution on the i-links with Li(G).

To see the utility of i-links, the following claim shows that the distribution Li(G
⊗n) on the

i-links in G⊗n is the same as the product distribution on the i-links from G.

Claim 3.1. For every game G, i ∈ [k], and n ⩾ 1, the following two distributions are identical.

1. The distribution Li(G
⊗n).

2. The distribution Di on the i-links from G⊗n defined as follows:

• For each j ∈ [n], independently sample (qj , q
′
j) from the distribution Li(G) where qj =

(x1j , x
2
j , . . . , x

k
j ) and q′j = (y1j , y

2
j , . . . , y

k
j ).

• Let q⃗ = (q1, q2, . . . , qn) and q⃗′ = (q′1, q
′
2, . . . , q

′
n). Output (q⃗, q⃗′).

Proof. Note that q⃗ and q⃗′, sampled from Di, are the following k-tuple of questions

(x11, x
1
2, . . . , x

1
n) (y11, y

1
2, . . . , y

1
n)

(x21, x
2
2, . . . , x

2
n) (y21, y

2
2, . . . , y

2
n)

...
...

(xk1, x
k
2, . . . , x

k
n)︸ ︷︷ ︸

q⃗

(yk1 , y
k
2 , . . . , y

k
n)︸ ︷︷ ︸

q⃗′

8



For each j ∈ [n], the pair of k-tuple of questions (x1j , x
2
j , . . . , x

k
j ) and (y1j , y

2
j , . . . , y

k
j ) share a

common pivot question pj = xij = yij . This means that the question-pair (q⃗, q⃗′) share a common

n-tuple question p⃗ from player i, where we think of q⃗, q⃗′ as questions from the game G⊗n. This
precisely corresponds to the distribution Li(G

⊗n).

Consider the game G the assignments αi : Xi → Ai for i ∈ [k]. We say that the link (q, q′)
from the game G is r-consistent with respect to the global assignments (α1, α2, . . . , αk) if q as well
as q′ are satisfied by the predicate Vr on the assignments (α1, α2, . . . , αk).

Claim 3.2. Let n ⩾ 1, (α1, α2, . . . , αk) be a strategy for (G,µ, [R]) with val(G) ⩾ ε. Then with
probability at least ε2, the link (q, q′) is r-consistent with the assignments (α1, α2, . . . , αk), where
the probability is over (q, q′) sampled according to Li(G) and r ∈ [R] uniformly at random.

Proof. Fix the provers’ strategies αi : Xi → Ai for i ∈ [k] with value at least ε. We have,

E
(x1,x2,...,xk)∼µ,

r∈[R]

[Vr((x
1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))] ⩾ ε.

Using the Cauchy-Schwarz inequality, we have,

ε2 ⩽ E
(x1,x2,...,xk)∼µ,

r∈[R]

[Vr((x
1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))]2

=

 E
v∈µ|i
r∈[R]

 E
(x1,x2,...,xk)∼µ

xi=v

[Vr((x
1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))




2

⩽ E
v∈µ|i
r∈[R]

 E
(x1,x2,...,xk)∼µ

xi=v

[Vr((x
1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))]


2

(Cauchy-Schwarz)

= E
v∈µ|i
r∈[R]

 E
(x1,x2,...,xk)∼µ,

(y1,y2,...,yk)∼µ,
xi=yi=v

[
Vr((x

1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))·
Vr((y

1, y2, . . . , yk), (α1(y1), α2(y2), . . . , αk(yk)))

] .

The expression inside the expectation above is precisely the probability that the i-link ((x1, x2, . . . , xk),
(y1, y2, . . . , yk)) sampled from the distribution Li(G) is r-consistent with respect to the assignments
(α1, α2, . . . , αk). This shows that

Pr
(q,q′)∼Li(G)

r∈[R]

[
(q, q′) is r-consistent with respect to the assignments (α1, α2, . . . , αk)

]
⩾ ε2,

and this completes the proof.
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3.2 The transformations T i
p

We are now ready to define the transformation on the game G that was alluded to at the beginning
of this section. We denote the transformed games by T i

p (G) for 1 ⩽ i, p ⩽ k.

The distribution on the k-tuple of questions in the game T i
p (G) is over X1 × X2 × . . . × Xk

which is defined as follows.

1. The verifier samples a link (q, q′) ∼ Li(G) where q = (x1, x2, . . . , xk) and q′ = (y1, y2, . . . , yk)

2. The verifier constructs a k-tuple of question by taking xp from q and (y1, . . . , yp−1, yp+1, . . . , yk)
from q′. Succinctly, we denote this operation as (y1, . . . , yp−1, xp, yp+1, . . . , yk) := Πp((q, q′))
(the p stands for taking player p’s question from the first question and the remaining players’
questions from the second question).

Before we define the set of satisfying assignments in the transformed game, we first define the
set of r-consistent assignments, where r ∈ [R], to an i-link. An assignment to a link (q, q′) is an
assignment to both q and q′ (note that each k-tuple of question receives a separate assignment from
A1 ×A2 × . . .×Ak). For an i-link (q, q′), we define the set of r-consistent assignments to (q, q′) as
follows. An r-consistent assignment to an i-link (q, q′) is an assignment σ to the link such that

• the verifier accepts σ|q on q and σ|q′ on q′ according to the predicate Vr, and

• σ|q|i = σ|q′|i , i.e., σ gives the same value to the common question v to the player i from q and
q′.

Note that an i-link (q, q′) may share more than one common question to the players, but the
r-consistency only cares about the question to player i.

We now define the set of accepting assignments for a k-tuple of questions in the random-
predicate transformed game. The verifier chooses r ∈ [R] uniformly at random. Suppose a k-tuple
of questions q̃ = (z1, z2, . . . , zk) is coming from an i-link (q, q′), i.e., q̃ = Πp((q, q′)), then

• Case 1: If q ̸= q′, then accept by default.

• Case 2: If q = q′, then q̃ = q. In this case, accept according to the verifier’s predicate Vr from
the game G on question q̃.

Note that the game T i
p (G) is a random-predicate k-player game (the accepting answers for a

question q̃ depends on the underlying sampled link as well as the sampled r ∈ [R]), and as described,
the distribution on the underlying predicate is not uniform among the set of predicates. However,
using Claim 2.7, without loss of generality, we can assume that the underlying distribution on the
predicate that the verifier applies in T i

p (G) is uniform from a set of predicates (and independent
of the questions). We need this as we will be applying a series of these transformations on the
original game, and the transformation above is only defined on games where the verifier’s predicate
is uniform and independent of the question q.

In the transformed game, the verifier either accepts all the answers or accepts answers based
on the predicates from the original game G. We have the following simple, but important, fact.

Fact 3.3. If G is a random-predicate k-player projection game, then for every i, p ∈ [k], the game
T i
p (G) is also a random-predicate projection game.
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3.2.1 Properties of the transformations T i
p

We start with the first claim that shows that the value of the transformed games is less than 1 if
the value of G is less than 1.

Claim 3.4. Fix any k-player game (G,µ, [R]). For every ε ∈ (0, 1) and i, p ∈ [k], if val(G) = 1−ε,
then val(T i

p (G)) = 1− ε′ where ε′ > 0 that depends on ε and the size of the game G.

Proof. First, observe that for every question-tuple q = (x1, x2, . . . , xk) from the game G, the i-link
(q, q) is present in the support of Li(G). Therefore, for every question-tuple q = (x1, x2, . . . , xk)
from the game T i

p (G) that is given by the i-link (q, q), the verifier of the transformed game selects
r ∈ [R] uniformly at random and uses the predicate Vr. Therefore, the transformed game T i

p (G)
is a convex combination of the original game G and another game G′. Let µ̃ be the distribution
on question-tuples in T i

p (G), then it can be written as µ̃ = δµ+ (1− δ)µ′, where µ′ corresponds to
the distribution of questions from game G′ and δ ∈ (0, 1] that depends on the size of the game G.
Thus,

val(T i
p (G)) ⩽ δ · val(G) + (1− δ) = δ(1− ε) + (1− δ) = 1− εδ < 1.

The following claim relates the value of the original game with the value of the transformed
games. This claim crucially uses the fact that the original game G is a projection game.

Claim 3.5. For any k-player projection game (G,µ, [R]), n ⩾ 1, and i, p ∈ [k], val(T i
p (G)⊗n) ⩾

val(G⊗n)2.

Proof. As the statement of the claim is symmetric with respect to p ∈ [k], we prove the claim when
p = 1. For other p, the proof is similar.

Using Claim 3.1, the game T i
1 (G)⊗n can be described as follows: Sample an i-link (q⃗, q⃗′) from

the distribution Li(G
⊗n), sample r⃗ ∈ [R]n uniformly at random, and for every j ∈ [n] such that

qj = q′j , apply the predicate Vrj for the question Π1((qj , qj)).

Let’s fix the players’ strategy α := (α1, α2, . . . , αk) for the game G⊗n that gives the value
val(G⊗n). For an i-link (q⃗, q⃗′) from G⊗n, consider the assignments α|q⃗ and α|q⃗′ to the link (q⃗, q⃗′).
Using Claim 3.2, for a random r⃗ ∈ [R]n and a randomly selected i-link (q⃗, q⃗′), (q⃗, q⃗′) is r⃗-consistent
with respect to the global assignment α with probability at least val(G⊗n)2. When this happens, we
show that the assignment α satisfies the constraint on Π1((q⃗, q⃗′)) from the game T i

1 (G)⊗n. Indeed,
pick any j ∈ [n] such that the jth coordinate of the link (q⃗, q⃗′) is (qj , qj) (i.e, the same question-
tuple). Here, the verifier is using the predicate Vrj on the question qj in the game T i

1 (G)⊗n. If the
link (q⃗, q⃗′), is r⃗-consistent with respect to the global assignment α, then we have the following

Vrj ((qj |1, qj |2, . . . , qj |k), (α1(q⃗|1)j , α2(q⃗|2)j , . . . , αk(q⃗|k)j)) = 1,

Vrj ((qj |1, qj |2, . . . , qj |k), (α1(q⃗′|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j)) = 1.

In game T i
1 (G)⊗n, the verifier is checking the following condition in the coordinate j.

Vrj ((qj |1, qj |2, . . . , qj |k), (α1(q⃗|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j)) = 1.
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Because G and the predicates Vr satisfy the projection property, and q⃗|i = q⃗′|i because (q⃗, q⃗′) is an
i-link, we see that if (α1(q⃗|1)j , α2(q⃗|2)j , . . . , αk(q⃗|k)j) and (α1(q⃗′|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j) are the
accepting answers for a question according to the predicate Vrj , then (α1(q⃗|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j)
is also an accepting answer for the same question according to the same predicate Vrj . This shows
that the assignment α passes the verifier’s check on all j ∈ [n] such that the jth coordinate of the
link (q⃗, q⃗′) is (qj , qj). For the other coordinates, the game T i

1 (G) always accepts.

Hence the same players’ strategy α gives val(T i
1 (G)⊗n) ⩾ val(G⊗n)2.

Finally, we compose these transformations to get a connected game, starting with a loosely-
connected game. Towards this, for any string β ∈ ([k] × [k])m, where βj = (β1

j , β
2
j ) ∈ [k] × [k],

define the transformation T β(G) as the following transformation

T β1
m

β2
m
(. . . (T β1

2

β2
2
(T β1

1

β2
1
(G)))).

For a string β of length m, define a string βT as a T repeated copy of β. We have the following
claim.

Claim 3.6. Let β be any permutation of the set [k] × [k]. For large enough T ⩾ 1, the game

T βT
(G) is connected (in fact, has full support) if G is loosely-connected to begin with. Furthermore,

T ⩽
∏k

i=1 |Xi| which only depends on the size of the game G.

Proof. First, any transformation T i
p does not shrink the support of the questions of the previous

game. By looking closely at the transformation T i
p , we conclude the following: if (x1, x2, . . . , xk)

and (y1, y2, . . . , yk) are both in the support of µ(G) with xi = yi, then the following question
(y1, . . . , yp−1, xp, yp+1, . . . , yk) will be in the support of µ(T i

p (G)). Using this, we also observe that

if we start with any game H with the property that the series of transformations T β(H) does not
change the support of the questions, then no future transformations will change the support on the
questions (as β contains every possible transformation T i

p ).

From the above discussion, we conclude that after some finite (only depends on the size of

the game G) series of such transformations T βT
(.), the support of the questions does not increase

after another series of transformations T β. We denote the saturated game by Gfinal := T βT
(G)

and the underlying distribution on the questions by µfinal. We show that µfinal has full support on
X1 ×X2 × . . .×Xk.

Suppose towards a contradiction, the support of µfinal is not full. For any tuple q of length k
and S ⊆ [k], define the tuple q|S by taking the S entries from q. Take the smallest i ∈ [k] such
that there is an i-tuple (z1, z2, . . . , zi) where (z1, z2, . . . , zi) ̸= q|[i] for any q ∈ supp(µfinal). Let
z⋆ := (z1, z2, . . . , zi−1). For each i ⩽ ℓ ⩽ k, define the following sets.

Sℓ = {x ∈ Xℓ | ∃q ∈ supp(µfinal) s.t. (z
⋆, x) = q|[i−1]∪{ℓ}}.

In other words, Sℓ is a set of all x ∈ Xℓ that (z
⋆, x) can be extended to a valid question tuple from

the game Gfinal. Note that by the definition of z⋆, Si ⊊ Xi and furthermore Si′ ̸= ∅ for any i′ ⩾ i,
as by the minimality of i, there is a valid question q in Gfinal such that q|[i−1] = z⋆, and hence
q|i′ ∈ Si′ for all i

′ ⩾ i.
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Claim 3.7. There is no q ∈ supp(µfinal) such that q|i ∈ Si and for some i′ > i, q|i′ ∈ Si′.

Proof. Suppose there is such a question q ∈ supp(µfinal) such that q|i ∈ Si and for some i′ > i,
q|i′ ∈ Si′ . Consider a question q′ = (z1, z2, . . . , zi−1, ∗, ∗, . . .) where q′|i′ = q|i′ . Note that such
a q′ is in the supp(µfinal) from the definition of the set Si′ . Furthermore, (q, q′) is an i′-link in
the game Gfinal. Therefore, the question Πi((q, q′)) will be present in the game T i′

i (Gfinal). Recall
that Πi((q, q′)) = (z1, z2, . . . , zi−1, q|i, ∗, . . .). However, the question (z1, z2, . . . , zi−1, q|i, ∗, . . .) is
not in supp(µfinal) as q|i ∈ Si. This means that the game Gfinal is not saturated, which is a
contradiction.

This claim implies that Si′ ⊊ Xi′ for all i′ > i . Indeed, if Si′ = Xi′ for some i′ > i, then the
above claim shows that every question q ∈ supp(µfinal), q|i ∈ Si. Hence, Gfinal (and hence G) is not
a loosely-connected game.

This claim also implies that for every question q ∈ supp(µfinal) such that q|i ∈ Si, we have
q|i′ ∈ Si′ for every i′ > i. Consider the partition of the players’ question sets Xℓ = X ′

ℓ ∪ X ′′
ℓ such

that

• For all ℓ ⩽ i− 1, X ′
ℓ = {zℓ}, and X ′′

ℓ = Xℓ \ X ′
ℓ ,

• for all t ⩾ ℓ, X ′
ℓ = Sℓ, and X ′′

ℓ = Xℓ \ X ′
ℓ .

Because G (and hence Gfinal) is loosely connected, there must be a question q ∈ supp(µfinal)
such that q|i′ ∈ Si′ for every i′ ⩾ i and q|t = zt for some 1 ⩽ t ⩽ i − 1. Consider a ques-
tion q′ = (z1, z2, . . . , zi−1, ∗, ∗, . . .) such that q′ is in the supp(µfinal). Now, the pair of ques-
tions (q′, q) is an t-link in the game Gfinal, furthermore, for a questions q′′ := Πi((q, q′)), we have
q′′ = (z1, z2, z3, . . . , zi−1, q|i, . . .) where q|i ∈ Si. As Gfinal is saturated, q′′′ ∈ supp(µfinal) but this
contradicts the definition of Si.

3.3 Finishing the proof

Let us see why these claims above are enough to prove Theorem 1.2.

Proof of Theorem 1.2. We start with a projection game G with val(G) = 1− ε for some ε > 0.
First, using Lemma 2.4, we can assume without loss of generality that G is loosely-connected. Let
(⃗i, p⃗) ∈ ([k]× [k])Tk2 with (⃗i, p⃗) = βT , i.e., (it, pt) is the tth entry from the string βT , where β and
T are from Claim 3.6. Let T ′ = T · k2.
Using Claim 3.5 on the projection game G with i1, p1 ∈ [k], we have

val(G⊗n) ⩽ val(T i1
p1 (G)⊗n)1/2.

Fact 3.3 shows that T i1
p1 (G) is a projection game, and hence applying Claim 3.5 on the projection

game T i1
p1 (G) with i2, p2 ∈ [k], we get

val(T i1
p1 (G)⊗n) ⩽ val(T i2

p2 (T
i1
p1 (G))⊗n)1/2.
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Repeating this process T ′ times, we get

val(G⊗n) ⩽ val(T iT ′
pT ′ (. . . (T i2

p2 (T
i1
p1 (G))))⊗n)1/2

T ′
.

Using Claim 3.4 repeatedly, we have

val(T iT ′
pT ′ (. . . (T i2

p1 (T
i1
p1 (G))))) ⩽ 1− ε′,

where ε′ > 0, that only depends on ε, T ′, and the size of the game G. Finally, using Claim 3.6, we
have that the game T iT ′

pT ′ (. . . (T i2
p2 (T

i1
p1 (G)))) is connected and hence by Lemma 2.6,

val(T iT ′
pT ′ (. . . (T i2

p2 (T
i1
p1 (G))))⊗n) ⩽ exp(−Ωε,T,G(n)).

Overall, we get val(G⊗n) ⩽ exp(−Ωε,T,G(n)) and the proof is completed as T only depends on the
size of the original game G.

Acknowledgement. We thank Kunal Mittal for helpful discussions at the early stage of this
work.
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A Proof of Lemma 2.4

Let G be any projection game that is not loosely-connected with val(G) = 1 − ε for some ε > 0.
Without loss of generality, we can assume that there are partitions Xi = X ′

i ∪X ′′
i for all i ∈ [k] such

that all the questions from the support of µ(G) are from X ′
1×X ′

2× . . .×X ′
k or X ′′

1 ×X ′′
2 × . . .×X ′′

k ,
and furthermore, the game restricted to X ′

1×X ′
2× . . .×X ′

k (call it G′) and X ′′
1 ×X ′′

2 × . . .×X ′′
k (call

it G′′) are loosely-connected individually. The verifier’s distribution µ(G) on the question-tuples
can be thought of as µ = (1 − δ)µ′ + δµ′′ where the support of µ′ is from X ′

1 × X ′
2 × . . . × X ′

k and
the support of µ′′ is from X ′′

1 ×X ′′
2 × . . .×X ′′

k .
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Now, since the value of the game G is at most 1− ε, we have min{val(G′),val(G′′)} ⩽ 1− ε.
Without loss of generality, suppose we have val(G′) ⩽ 1 − ε. Let the value of G⊗n be η. We will
show that the value of the game G′⊗n′

is also at least η − 2−Ωδ(n) for some n′ = Ωδ(n). This will
finish the proof of the lemma as we have val(G′⊗n′

) ⩽ exp(−Ωε(n
′)) using the fact that G′ is a

loosely-connected projection game.

Fix a strategy (α1, α2, . . . , αk) for G⊗n with value η. The k-tuple questions from G can be
alternatively sampled as follows. First sample a set T ⊆ [n] by adding i ∈ T independently
with probability (1 − δ). Then for each i ∈ T , sample a k-tuple question from the distribution
µ′ independently. Similarly, for each i /∈ T , sample a k-tuple question from the distribution µ′′

independently. We have,

E
T⊆1−δ[n]

(x⃗1|T ,x⃗2|T ,...,x⃗k|T )∼µ′′⊗|T |

E
(x⃗1|T ,x⃗2|T ,...,x⃗k|T )∼µ′⊗|T |

[
V ((x⃗1, x⃗2, . . . , x⃗k), (α1(x⃗1), α2(x⃗2), . . . , αk(x⃗k)))

]
= η.

From this, by the Chernoff Bound and an averaging argument, it follows that there exists
T ⊆ [n] such that |T | ⩾ (1− δ)n/2 and (y⃗1, y⃗2, . . . , y⃗k) ∼ µ′′⊗|T | such that

E
(x⃗1,x⃗2,...,x⃗k)∼µ′⊗|T |

[
V (((y⃗1, x⃗1), (y⃗2, x⃗2), . . . , (y⃗k, x⃗k)), (α1((y⃗1, x⃗1)), α2((y⃗2, x⃗2)), αk((y⃗k, x⃗k))))

]
⩾ η − 2−Ωδ(n).

Here, the string (y⃗, x⃗) is formed by plugging y⃗ in the coordinates T and x⃗ in the coordinates T . The
distribution on the questions in the expectation above precisely corresponds to the game G′⊗|T |.
Thus, the strategy α′i(x⃗) := αi(y⃗, x⃗) for all i ∈ [k] gives the value at least η− 2−Ωδ(n) for the game
G′⊗|T |.
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