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Abstract

While the existence of randomness extractors, both seeded and seedless, has been thoroughly studied

for many sources of randomness, currently, very little is known regarding the existence of seedless

condensers in many settings. Here, we prove several new results for seedless condensers in the context

of three related classes of sources: Non-Oblivious Symbol Fixing (NOSF) sources, SHELA sources as

defined by Aggarwal, Obremski, Ribeiro, Siniscalchi, and Visconti [AORSV, EUROCRYPT’20], and

almost Chor-Goldreich (CG) sources as defined by Doron, Moshkovitz, Oh, and Zuckerman [DMOZ,

STOC’23]. Here, we will think of these sources as a sequence of random variables X = X1, . . . ,Xℓ

on ℓ symbols where at least g out of these ℓ symbols are “good” (i.e., uniformly random), denoted as a

(g, ℓ)-source, and the remaining “bad” ℓ− g symbols may adversarially depend on these g good blocks.

The difference between each of these sources is realized by restrictions on the power of the adversary,

with the adversary in NOSF sources having no restrictions.

Prior to our work, the only known seedless condenser upper or lower bound in these settings is

due to [DMOZ, STOC’23] which explicitly constructs a seedless condenser for a restricted subset of

(g, ℓ)-almost CG sources.

The following are our main results concerning seedless condensers for each of these three sources.

1. When g ≤ ℓ/2, we prove for all three classes of sources that condensing with error 0.99 above rate
1

⌊ℓ/g⌋ is impossible.

2. Next, we investigate the setting of g > ℓ/2, and in particular focus on g = 2 and ℓ = 3. We show

that condensing with constant error above rate 2

3
is impossible for uniform NOSF sources.

3. Quite surprisingly, we show the existence of excellent condensers for uniform (2, 3)-SHELA and

uniform almost CG sources, thus proving a separation from NOSF sources. Further, we explicitly

construct a condenser that outputs m = n
16

bits and condenses any uniform (2, 3)-SHELA source

to entropy m − O(log(m/ε)) (with error ε). Our construction is based on a new type of seeded

extractor that we call output-light, which could be of independent interest.

In contrast, we show that it is impossible to extract from uniform (2, 3)-SHELA sources.

These results extend seedless extractor lower bounds on NOSF sources (Bourgain, Kahn, Kalai, Katznel-

son, and Linial [BKKKL, Israel J. Math’92]) and make progress on several open question from [DMOZ,

STOC’23], [AORSV, EUROCRYPT’20], and Kopparty and N [KN, RANDOM’23].
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1 Introduction

One of the most fruitful lines of research in computer science has been that of randomness. From the

traditionally more applied areas of algorithm design (e.g., Monte Carlo simulations), error-correcting codes

and cryptography to the more theoretical areas of property testing, combinatorics, and circuit lower bounds,

randomness has played a key role in seminal discoveries. In many of these works, the use of high-quality

random bits, or alternatively, a way to convert low-quality randomness into high-quality randomness, is

essential. In cryptography, the authors of [DOPS04] showed that high-quality randomness is essential for

tasks such as bit commitment schemes and secure two-party computation. On the other hand, being able

to extract uniform bits from low-quality randomness allows us to simulate randomized algorithms [Vad12,

Zuc90, Zuc92].

In most use-cases, randomness takes the form of uniformly random bits. These motivated the construc-

tion of randomness extractors, functions that take low-quality randomness (which we often like to think of

as natural processes) and convert it into uniformly random bits. There is a long line of works [DKSS13,

DW11, LRVW03] that construct seeded extractors, functions that take in low-quality randomness along

with a small amount of uniform bits, with close to optimal parameters. However, a number of works [CG88,

RVW04, SV86, Zuc90] have shown that deterministic extraction is impossible for many classes of random-

ness sources.

Naturally, the question that arises for sources for which deterministic extraction is impossible is whether

any improvement on their randomness can be made. That is, while it may not be possible to convert a source

into uniform bits, maybe it is possible to condense a source into bits with a higher density of randomness

than the source they came from. We now informally define these notions of randomness, extractors, and

condensers.

The notion of randomness that is standard in this line of work is that of min-entropy. For a

source X on n bits, which is just a discrete distribution, we define its min-entropy as H∞(X) =
minx∈{0,1}n{− log(Pr[X = x])}. Generally, we call a source X over n bits with min-entropy at least

k an (n, k)-source. From the definition of min-entropy, we see that this requires that for any x ∈ {0, 1}n
we have Pr[X = x] ≤ 2−k. Given any two distributions X and Y on {0, 1}n, we define their statistical

distance or total-variation (TV) distance as |X−Y| = maxZ⊆{0,1}n |Prx∼X[x ∈ Z]− Pry∼Y[y ∈ Z]|.
These two definitions allow us to define the notion of smooth min-entropy which we will use extensively

throughout this work. Conceptually, smooth min-entropy asks that the source we are looking at be close

in TV-distance to some other source with the desired amount of min-entropy. We say that the smooth min-

entropy of a source X on {0, 1}n with smoothness parameter ε is Hε
∞(X) = maxY:|X−Y|≤εH∞(Y).

We are now in a position to define randomness extraction and condensing.

Definition 1.1. Let X be a family of distributions over {0, 1}n. A function Ext : {0, 1}n → {0, 1}t is an

extractor for X with error ε > 0 if |Ext(X)−Ut| ≤ ε. When X is the class of (n, k)-sources, we say that

Ext is a (k, ε)-extractor.

This definition formalizes the notion that the result of an extractor is close to uniform. This is generally

too much to desire as, even for general (n, k)-sources, it is impossible to extract just one bit [Vad12].

Consequently, we turn to the looser requirements in condensing.

Definition 1.2. For a family of distributionsX over {0, 1}n, we say that a function Cond : {0, 1}n → {0, 1}t
is a condenser with error ε ≥ 0 if for all X ∈ X we have that H∞(X)/n ≤ Hε

∞(Cond(X))/t. We say that

Cond has entropy gap ∆ if Hε
∞(Cond(X)) ≥ t−∆. When X is the class of (n, k)-sources and k′ = t−∆,

we say that Cond is a (k, k′, ε)-condenser.
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In other words, the output of Cond is ε-close in statistical distance to some distribution with min-entropy

rate higher than that of X, as compared to extracting which requires that our output is close to uniform. One

may wonder whether such output is still meaningfully useful, and we answer such doubts in the following

section.

1.1 The utility of condensing

As insinuated before, one of the main distinguishing features of condensers from extractors is that there are

random sources for which deterministic condensing is possible while deterministic extraction is not. Thus,

they allow us to obtain randomness that is more useful than what we began with in cases where extracting

uniform bits is impossible. One significant example is that of Santha-Vazirani (SV) sources [SV86] and

their generalization, Chor-Goldreich (CG) sources [CG88].

Informally, an SV source is a string of random bits such that the conditional distribution of each bit on

the bits that come before it still has some minimum amount of min-entropy, and a CG source generalizes

this to allow each bit to instead be a symbol in {0, 1}n. For SV sources, Santha and Vazirani showed that

no deterministic extractor is better than simply outputting the first bit [RVW04, SV86]. Similarly, for CG

sources, Chor and Goldreich showed the strictly stronger result that deterministic extraction is impossible

[CG88]. The recent result of [DMOZ23] with regards to condensing then stands in contrast to these impos-

sibility results for extraction from CG sources since, not only do they show that it is possible to condense

from CG sources, they construct condensers with constant entropy gap. In fact, their condensers still work

under some relaxations to a class of sources they termed almost CG sources, which we shall elaborate more

on later. Other examples of sources for which deterministic extraction is not possible while deterministic

condensing is are the somewhat dependent sources of [BGM22] and the block sources of [BCDT19].

Another important property of condensers is that they can attain parameters that are unachievable for

extractors and still be useful in simulating randomized algorithms with low overhead [DMOZ23]. In ad-

dition, while condensers are important in their own right, it is worth mentioning that they are useful in the

construction of extractors, such as in [AORSV20, BDT17, GUV09, RSW06, TUZ07, Zuc07].

1.2 NOSF, SHELA, and Almost-CG Sources

The three randomness sources that we focus on in this work are all composed of blocks of bits, known as

symbols, which vary in how they are permitted to relate to other symbols in the source. Nevertheless, one

unifying characteristic of NOSF, SHELA, and almost-CG sources is that deterministic extraction is impos-

sible for all of them. Indeed, [BKKKL92, KKL88], [AORSV20], and [CG88] showed that no deterministic

function can extract from NOSF, SHELA, and almost-CG sources, respectively. To illustrate why it is not

immediately obvious that deterministic extraction should not be possible from all of these sources, we briefly

introduce each source and the properties of their adversaries.

In these definitions, we will consider sources X = X1, . . . ,Xℓ of length ℓ where each Xi ∈ {0, 1}n is

called a block. Generally, we will term blocks that have some minimum amount of randomness “good” and

blocks that are chosen by an adversary as “bad”. Such NOSF sources generalize the setting of non-oblivious

bit-fixing (NOBF) sources [CGHFRS85], where each Xi is a bit (i.e., n = 1).

At a high level, Non-Oblivious Symbol Fixing (NOSF) sources are those in which the good blocks are

independently sampled min-entropy sources and the bad blocks may depend arbitrarily on the good blocks.

Definition 1.3 (NOSF sources). A (g, ℓ, k)-NOSF source X = X1, . . . ,Xℓ on ({0, 1}n)ℓ is such that g out

of the ℓ blocks are good, i.e., are independently sampled (n, k)-sources while the other ℓ−g bad blocks may

depend arbitrarily on the good blocks.
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When k = n, we simply call X a uniform (g, ℓ)-NOSF source, and when n = 1, the term non-oblivious

bit fixing (NOBF) source is often used. At first glance, the adversary in NOSF sources clearly has a signifi-

cant amount of power. Every single good block is sampled before the adversary gets to decide what to place

in the bad blocks. If we were to think of the blocks with smaller indices as coming first in time, then this

essentially means that the adversary gets to look into the future to see what will be placed in the good blocks

to decide what to place in the bad blocks. In contrast, SHELA sources limit the adversary by forcing it to

only depend on blocks in the past. Instead of defining general SHELA sources here, we defer the formal

definition to Definition 4.10 and define fixed-index Somewhere Honest Entropic Look Ahead (fiSHELA)

sources.

Definition 1.4 (SHELA sources, [AORSV20]). A (g, ℓ, k)-fiSHELA source X = X1, . . . ,Xℓ on ({0, 1}n)ℓ
is such that g out of the ℓ blocks are good, i.e., are independently sampled (n, k)-sources. The remaining

ℓ− g bad blocks may only depend on the blocks with a smaller index than it.

Similarly as for NOSF sources, if k = n we call X a uniform (g, ℓ)-fiSHELA source. Our final class

of sources that we look at, almost Chor-Goldreich sources, share the motivation from SHELA sources that

the adversary cannot see into the future. Rather than forcing the adversary to have its blocks only depend

on blocks in the past (those with smaller indices), almost CG sources require that good blocks have some

entropy conditioned on all blocks that came before them (i.e., bad blocks cannot expose all of the entropy

of future good blocks).

Definition 1.5 (Almost CG sources, [CG88, DMOZ23]). We define a (g, ℓ, k)-almost CG source X =
X1, . . . ,Xℓ to be a distribution on ({0, 1}n)ℓ such that there exists a set of good indices G ⊆ [ℓ] of size at

least g for which H∞(Xi | X1 = x1, . . . ,Xi−1 = xi−1) ≥ k for all i ∈ G and all prefixes x1, . . . , xi−1.

As before, if k = n then we say that X is a uniform (g, ℓ)-almost CG source. A convenient fact

that we later show and will rely on is that uniform (g, ℓ)-almost CG sources and uniform (g, ℓ)-fiSHELA

sources are the same set of sources. The impossibility of extraction from these sources naturally raises

the question of whether, with regards to randomness condensing, there is a distinction between them. The

authors of [DMOZ23] constructed explicit condensers with a constant entropy gap for a subclass of almost

CG sources, termed suffix-friendly CG sources, but in general achieved no non-trivial condensing.

1.3 Our Results

Here, we answer open questions for each of these classes of randomness sources and provide four main

results. First, we show that condensing above a certain rate from uniform NOSF, SHELA, and almost CG

sources when g ≤ ℓ/2 is impossible.

Theorem 1 (Theorem 5.2, restated). For any function f : ({0, 1}n)ℓ → {0, 1}t and for all ε > 0 there

exists a constant δ > 0 and uniform (g, ℓ)-NOSF/SHELA/almost CG source X with g ≤ ℓ/2 such that

Hε
∞(f(X)) ≤ 1

⌊ℓ/g⌋ t+ δ.

If we restrict ourselves to the cases where g divides ℓ, then this theorem exactly reduces to:

Corollary 1. For any function f : ({0, 1}n)ℓ → {0, 1}t and for all ε > 0 there exists a constant δ > 0 and

uniform (g, ℓ)-NOSF/SHELA/almost CG source X (where g divides ℓ) such that Hε
∞(f(X)) ≤ g

ℓ t+ δ.

Surprisingly, while we initially attempted to show these results for uniform NOSF sources, all of our

lower bound results for condensing from uniform NOSF sources in regime of g ≤ ℓ/2 also hold for uniform

5



SHELA and uniform almost CG sources! We achieve this by constructing, for every such f , a uniform

SHELA/almost CG source where f fails to condense.

Second, we demonstrate a condensing lower bound for uniform NOSF sources in the regime where

g > ℓ/2, specifically for uniform (2, 3)-NOSF sources.

Theorem 2 (Theorem 5.8, restated). For any f : ({0, 1}n)3 → {0, 1}t and 0 < ε < 1
4 , there exists a

constant δ > 0 and uniform (2, 3)-NOSF source X such that Hε
∞(f(X)) < 2

3 t+ δ.

Third, we show a separation between NOSF and SHELA sources by exhibiting the existence of a con-

denser for uniform (2, 3)-SHELA sources.

Theorem 3 (Informal version of Theorem 6.1). There exists a condenser Cond : ({0, 1}n)3 → {0, 1}t for

any uniform (2, 3)-SHELA source X so that Hε
∞(Cond(X)) ≥ t−∆ where t = O(n− log(1/ε)) and the

entropy gap is ∆ = O(log(t/ε)).

We also explicitly construct such a condenser, with asymptotically the same min entropy gap as the

probabilistic construction:

Theorem 4 (Informal version of Theorem 6.10). For any ε > 0, we can explicitly construct a con-

denser Cond : ({0, 1}n)3 → {0, 1}t with t = n
16 such that for any uniform (2, 3)-SHELA source X,

Hε
∞(Cond(X)) ≥ t−O(log(t/ε)).

We briefly mention that a key ingredient in the above condenser is a new type of seeded extractor, that we

call an output-light seeded extractor. Informally, such a seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m
satisfies the additional guarantee that each output z ∈ {0, 1}m can be produced only by a bounded number

of inputs x ∈ {0, 1}n. (See Definition 6.2 for the formal definition of such seeded extractors.) We explicitly

construct such an output-light seeded extractor (Theorem 6.11) to obtain the above condenser result.

Lastly, we show that uniform (2, 3)-SHELA sources form another class of sources for which condensing

is possible but extraction is not.

Theorem 5 (Informal version of Theorem 5.12). For any f : ({0, 1}n)3 → {0, 1} there exists a uniform

(2, 3)-SHELA/almost CG source X such that |f(X)−U1| > 0.08.

We now delve into the results of prior work and how our work builds upon them.

1.4 Comparison to Previous Work

NOSF sources

As aforementioned, many papers have explored whether it is possible to extract from NOSF, SHELA, and

CG sources. We can trace back study of extracting from NOBF sources the furthest, since the seminal work

of Kahn, Kalai, and Linial in [KKL88] demonstrated that it is not possible to extract from uniform (g, ℓ)-
NOBF when the number of bad blocks is b = ℓ− g = Ω(ℓ/ log ℓ). The follow up work of [BKKKL92] then

extended this extraction impossibility result to uniform (g, ℓ)-NOSF sources again with b = Ω(ℓ/ log ℓ).
To attempt to match these lower bounds on extraction, resilient functions, introduced by [BL85], have

yielded the current best results. The resilient function of Ajtai and Linial in [AL93] and its explicit versions

constructed by [CZ19, Mek17] achieve extractors for uniform (g, ℓ)-NOSF sources when b = O(ℓ/ log2 ℓ),
leaving a 1/ log ℓ gap between the lower and upper bounds.
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In the context of our work, these results mean that for every ℓ there exists a g large enough so that

extraction, and consequently condensing, is possible. Nevertheless, this still leaves open whether condensing

is possible for all cases when b = ω(ℓ/ log2 ℓ).
Also along the lines of NOSF sources, the work of [KN23] explores what they call extracting multi-

mergers, which we may consider as extractors for uniform NOSF sources. Their main result shows that

seeded extracting mergers, multimergers in the case of uniform (1, ℓ)-NOSF sources, require log(n) seed

length as is the case for seeded min-entropy extractors. For seedless extracting multimergers, their result

implies extracting from uniform (2, 3)-NOSF sources is impossible.

Our contribution: In this work, we extend the lower bounds of extracting from NOSF sources to

condensing from NOSF sources. Our Theorem 1 shows condensing lower bounds in the case that g ≤ ℓ/2
and Theorem 2 shows that condensing from uniform (2, 3)-NOSF sources is impossible. As NOSF sources

are a special case of NOBF sources, all our lower bounds also apply in that setting.

SHELA sources

In [AORSV20], the authors were able to construct somewhere-extractors, functions that have a uniform

NOSF as output, for SHELA sources and show that for any γ ∈ (0, 1) there exists an ℓ such that extraction

is not possible for (γℓ, ℓ)-SHELA sources. They conjectured that condensing is not possible for any uniform

SHELA source (with parameters not meeting Ajtai-Linial, of course).

Our contribution: Our Theorem 1 proves their conjecture (mostly) true for the regime of g ≤ ℓ/2;

however, we prove their conjecture false for uniform (2, 3)-SHELA sources in Theorem 3, demonstrating

a possible threshold at g = ℓ/2 for condensing from SHELA sources. As mentioned above, we in fact

construct an explicit condenser for uniform (2, 3)-SHELA sources, using a new kind of seeded extractor

that we introduce. We also prove that one cannot hope to extract from (2, 3)-SHELA sources.

Almost CG sources

For almost CG sources, [GP20] showed that errorless condensing is impossible. In contrast, [DMOZ23]

proved several possibility results regarding condensing with error for CG sources. Their results are stated

as assuming size of each block is very small (almost constant) and they have large number of such blocks.

For a lot of cases, this setting is arguably harder to condense from as compared to the setting where you

are given small number of large sized blocks since given a large sized blocks, we can partition them and

get many small sized blocks. The most significant of their results for us is that they constructed an explicit

deterministic condenser with exponentially small error using the constant-degree lossless expanders given

by [CRVW02] for a subclass of almost CG sources they termed suffix-friendly almost CG sources. These

suffix-friendly almost CG sources are like our (g, ℓ, k)-almost CG sources except with the requirement that

the g good blocks be well-distributed among the ℓ total blocks. Their construction obtains a constant entropy

gap with for suffix-friendly almost CG sources when the fraction of bad blocks b = ℓ − g is quite small

b ≤ 10−8ℓ, and otherwise they are not able to condense when b ≥ ℓ/2 or without the suffix-friendliness

requirement.

Our contribution: We answer their open question of whether suffix-friendliness is required with our

condensing lower bounds in Theorem 1 for the case of uniform (g, ℓ)-almost CG with g ≤ ℓ/2. Additionally,

we show that suffix-friendliness is not required for condensing from uniform (2, 3)-almost CG sources in

Theorem 3.
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2 Proof Overview

2.1 Impossibility Results

In this subsection, we will go over the main techniques we used in proving the condensing impossibility

result in the case that g ≤ ℓ/2 (Theorem 2.1), the condensing impossibility result for uniform (2, 3)-NOSF

sources (Theorem 2.2), and the extracting impossibility result for uniform (2, 3)-SHELA sources (Theo-

rem 2.3).

2.1.1 Impossibility of Condensing from Uniform (g, ℓ)-NOSF/SHELA/Almost CG Sources for g ≤
ℓ/2

Conceptually, our first result says that when the number of good blocks g is not more than half of the total

number of blocks ℓ, then condensing beyond rate 1
⌊ℓ/g⌋ is impossible. Formally, we will prove the following

statement.

Theorem 2.1 (Theorem 5.2, restated). For any function f : ({0, 1}n)ℓ → {0, 1}t and any ε > 0 there exists

a δ > 0 and uniform (g, ℓ)-NOSF/SHELA/almost CG source X such that Hε
∞(f(X)) ≤ 1

⌊ℓ/g⌋ t+ δ.

The steps we take to achieve the result of Theorem 2.1 are, broadly, as follows:

1. We show that for a constant 0 < c1 < 1 and a bipartite graph H = (U, V ) with |U | = N left vertices,

|V | = T right vertices, and deg(u) ≥ T δ for all u ∈ U and some δ > 0, then there exists a subset

D ⊆ V of right vertices of size at most c1
1−c1

T 1−δ where |N (D)| ≥ c1N .

2. We use this result to show that if condensing from a uniform (g, ℓ)-SHELA source is impossible,

then condensing from a uniform (g, ℓ + g)-SHELA source is impossible. Applying the base case of

uniform (1, 1)-SHELA sources (which is just Un) gives us that condensing above rate 1
ℓ is impossible

for uniform (1, ℓ)-SHELA sources.

3. By simply chunking blocks together, we extend this result to uniform (g, ℓ) SHELA sources with rate
g
ℓ = 1

c for some c ∈ N.

4. Finally, we generalize our result to all uniform (g, ℓ)-SHELA sources with g ≤ ℓ/2 to achieve Theo-

rem 2.1.

If we consider the g and ℓ of a uniform (g, ℓ)-SHELA source as coordinates on a plane, then the progress

of our results is actually quite visualizable. We delineate our process visually in this way in Figure 1.

Now, let us go through these four steps.

Step 1 Conveniently, a simple greedy algorithm that collects right vertices in V with highest degree first

and adds them to D with the stopping condition that |N (D)| ≥ c1N achieves our goal. Initially, we

attempted to create D that would completely cover the left vertices in U . This strategy fails because after

many steps of this greedy algorithm, the last few right vertices may have very low degree, forcing the

cardinality of D to increase linearly in the number of left vertices we are covering. Our analysis is based

on the observation that the initial vertices we collect must have very high degree. Thus, we can stop this

greedy algorithm early once only a fraction c1N of left vertices are covered without blowing up the size of

D beyond c1
1−c1

T 1−δ.
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(a) We show in Step 1 that condens-

ing above rate 1

ℓ is impossible for
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(b) Next, we show in Step 2 that

condensing above rate g
ℓ is im-

possible for (1, ℓ)-SHELA sources

when ℓ = cg for some c ∈ N.

(c) Finally, we prove in Step 3 the

result of Theorem 2.1

Figure 1: We illustrate the progress of how we ultimately prove our Theorem 2.1. Solid red lines and points

indicate strict condensing impossibility results (i.e., condensing above the initial rate is impossible), and

shaded in regions indicate that condensing above the rate of the bounding line is impossible.

Step 2 This result may be thought of as an inductive step that constructs a uniform (g, ℓ + g)-SHELA

source X = X1, . . . ,Xℓ+g from left to right for which f cannot condense from. We look at the behavior of

f in its first g coordinates. In one case, we observe that if f has large support no matter the values input in

its first g coordinates, then we can let the first g blocks X1, . . . ,Xg of X be the g good blocks and construct

an explicit adversary in the last ℓ blocks. We construct this adversary by considering the bipartite graph

H = (U = ({0, 1}n)g, V = {0, 1}t) where edges (u, v) are included if v is still in the support of f after

fixing the first g coordinates to u. Our dominating set argument then gives us an adversary in Xg+1, . . . ,Xℓ

that restricts the support size of f with constant probability, which bounds condensing.

Otherwise, there must exist some fixed setting x1, . . . , xg of the first g coordinates of f that significantly

limits its support size. Fixing these coordinates of f yields a function h in ℓ coordinates. By assumption,

we can build a uniform (g, ℓ)-SHELA source Y = Y1, . . . ,Yℓ from which h cannot condense. Our final

source is then simply the concatenation X = x1, . . . , xg,Y1, . . . ,Yℓ.

Finally, we consider the base case of uniform (1, 1)-SHELA sources to induct off of and yield Item 2.

Conceptually, what is occurring in this inductive process is that, for a function f , we are creating a uniform

(1, ℓ)-fiSHELA source by placing blocks left to right. We begin by placing adversarial blocks with fixed

values that limit the support of f — the second case we talk about here — and then when the support of f
cannot be significantly limited by a single fixed value, we use our first case to place the uniform good block

and fill the rest of the blocks to the right with an adversary that depends on that good block.

We apply this inductive logic to the base case that condensing is impossible for uniform (1, 1)-SHELA

sources since they are already Un. We depict this construction in Figure 2.

Step 3 In this step, we make show that if we cannot condense from uniform (g, ℓ)-SHELA sources, then

we cannot condense from uniform (cg, cℓ)-SHELA sources as well. We do this by observing that a uniform

(g, ℓ)-SHELA source can be converted to a uniform (cg, cℓ)-SHELA source by splitting up each block into

c sub-blocks. Thus, for a function f : ({0, 1}n)cℓ → {0, 1}t on uniform (cg, cℓ)-SHELA sources, we use

our ability to construct a uniform (g, ℓ)-SHELA source X with block length nc so that f cannot condense

above rate g
ℓ = cg

cℓ from X.
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Figure 2: We show how we create a uni-

form (1, ℓ)-fiSHELA adversary by placing

fixed adversarial blocks via inductive steps

first, then placing the one good block, and

finally placing the remaining adaptive ad-

versarial blocks last. We may also think of

the inductive depth as time, so we clearly

see that the adaptive adversarial blocks

only depend on blocks in the past.

Step 4 Our final step is a generalization of the previous one.

When g ≤ ℓ/2, we can divide ℓ by g as ℓ = cg + r where

c > 0 and r < g. Then to show that no function f on uniform

(g, ℓ)-SHELA sources can condense above rate 1
c , we use the

fact that an arbitrary uniform (1, c)-SHELA source X cannot

be condensed above rate 1
c = 1

⌊ℓ/g⌋ . If such a condenser f

for uniform (g, ℓ)-SHELA sources did exist, then dividing the

blocks of X as evenly as possible (i.e., splitting up the first

r blocks of X into g + 1 blocks and the last c − r blocks

into g blocks) would yield a uniform (g, ℓ)-SHELA source that

we could pass to f . This gives us a contradiction as f would

condense X above rate 1
c .

2.1.2 Impossibility of Condensing from Uniform (2, 3)-
NOSF sources

A key ingredient in our impossibility result for the regime g ≤
ℓ/2 are the reductions we are able to perform between different parameters. In fact, Theorem 2.1 ultimately

depends on the fact that condensing is not possible from a uniform (1, 1)-SHELA source. On the other hand,

when g > ℓ/2, we find such inductive arguments do not present themselves naturally, and instead we focus

on the case when g = 2 and ℓ = 3. For these parameters, we are able to show that a condenser for uniform

(2, 3)-NOSF sources above rate 2
3 does not exist.

Theorem 2.2 (Theorem 5.8, restated). For any f : ({0, 1}n)3 → {0, 1}t and 0 < ε < 1
4 , there exists a

uniform (2, 3)-NOSF source X and a constant δ > 0 such that Hε
∞(f(X)) ≤ 2

3 t+ δ

It is instructive to compare our construction of a uniform (2, 3)-NOSF source X for a given function f to

our construction of uniform (1, ℓ)-SHELA sources in Item 2. There, to create the appropriate adversary, we

first placed fixed adversarial blocks, then placed our single uniform block, and finally placed our adaptive

adversarial blocks that could depend on the uniform block. We were forced to place fixed and adaptive

adversarial blocks in this order since, as we recall, the bad blocks blocks in a fiSHELA source may only

depend on the blocks that come before it. This is no longer true for NOSF sources, giving us flexibility that

we will use to our advantage.

Once we notice this difference, our construction of the appropriate uniform (2, 3)-NOSF source X =
X1,X2,X3 is not so unexpected. For ease of notation, let T = 2t. We utilize three cases when constructing

X. First, we consider when there exists some value x1 in the first coordinate that, with constant probability

over the two other good blocks placed in the second and third coordinates, will limit the support of f to a

linear fraction of T 2/3. As when constructing our uniform (1, ℓ)-SHELA source before, we place a constant

bad block in the first coordinate, setting X1 = x1 to achieve our goal.

Second, we consider when a large fraction of fixings of X1 and X2 do not decrease the support of

f below O(T 1/3). In this case, we can use a similar bipartite graph covering argument, but this time

generalized to colored bipartite graphs, as before to generate an adversary in the third coordinate for X3 that

limits the support of f to O(T 2/3) with constant probability.

Third, we take an analogous version of or previous case but for the first and third coordinates. In other

words, that a large fraction of fixings of X1 and X3 do not decrease the support of f below O(T 1/3).
We again use the same colored bipartite graph covering argument to create an adversary in the second
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coordinate for X2 that depends on the first and third coordinates. Notice that this is exactly when we break

the requirements of a SHELA source since X2 may depend on the block that comes after it!

Finally, we show that one of these three cases must always occur by showing that if our second and third

cases did not occur, then our first case must have occurred. We again do this by a colored bipartite graph

covering argument.

2.1.3 Impossibility of Extracting from Uniform (2, 3)-SHELA sources

Overall, our method to show that extraction is not possible from uniform (2, 3)-SHELA sources is conceptu-

ally similar to our strategy for proving condensing impossibility results when g ≤ ℓ/2. The main difference

here is that we manage to fix the output of a function on a uniform (2, 3)-SHELA source to a single value,

not a small subset of values with constant probability. This strategy enables us to prove that no function can

extract even one uniform bit.

Theorem 2.3 (Theorem 5.12, restated). For any f : ({0, 1}n)3 → {0, 1} there exists a uniform (2, 3)-
SHELA source X such that |f(X)−U1| ≥ 0.08.

To prove this theorem, we consider a handful of cases as before that allow us to place our bad block in the

first, second, or third coordinate. Our first two cases consider when there are a constant fraction of settings

of X1 and X2 that allow f to be either 0 or 1. In these cases, we simply choose a value x3 = a(X1,X2)
adversarially to force f to take on 0 or 1 with constant probability.

Otherwise, we find ourselves in a case where there are many pairs of (x1, x2) that force f to take on 0

or 1 regardless of the value of X3, so we place our adversary in the first or second coordinate. To decide

in which coordinate to place our adversary, we consider a bipartite graph on the [N ] possible values of X1

and the [N ] possible values of X2 with edges labeled by 0 or 1 if a pair (x1, x2) fixes the output of f to that

value regardless of X3. We restrict ourselves to looking at left vertices of high degree and notice that either

one of these left vertices has edges only labeled by 0’s or 1’s, in which case we can place our bad block in

the first coordinate and fix it to this value, or all left vertices have at least one edge labeled by 0 and one edge

labeled by a 1. In this latter case we can place our adversary in the second coordinate to force f to output 0

for all of these high degree vertices.

In all cases, we manage to restrict f to a single output value with constant probability, preventing ex-

traction beyond constant error.

2.2 Possibility Results

In this subsection, we will present our probabilistic as well as explicit constructions of condensers for uni-

form (2, 3)-SHELA sources.

2.2.1 Probabilistic construction

Before we dive into the actual proof, it is instructive to see why does a random function fail to be a condenser

for uniform (2, 3)-SHELA sources. For a random function f : {0, 1}3n → {0, 1}t, with high probability

over x1, x2 ∈ {0, 1}n, we have |f(x1, x2, ·)| = 2t. Hence, if the adversary is in position 3, then it can

depend on x1 and x2 to ensure the output of f always lies in a small set. To overcome this, one can consider

restricting the number of choices adversary has when it is in position 3. This intuition indeed works out and

we give further details:

11



Theorem 2.4 (Theorem 6.1, restated). There exists a condenser Cond : ({0, 1}n)3 → {0, 1}t where t =
n + log(n) − log(1/ε) and for any uniform (2, 3)-SHELA source X, Hε

∞(Cond(X)) ≥ t − log(t) −
4 log(1/ε)−O(1).

We generate Cond by a random process. In this process, we sample sets Si,j ⊂ {0, 1}t for i, j ∈ [N ]
where each z ∈ {0, 1}t is included in Si,j with very small probability p. To simplify matters, we set t = n.

Based on these sets, define Cond as follows: on input (x1, x2, x3), use x3 to index and output an element

from Sx1,x2 . We claim that with high probability such a Cond will be a condenser for uniform (2, 3)-SHELA

sources. Let X = (X1,X2,X3) be such an arbitrary source in this family. If the adversary controls position

3 in X, then Cond fails to condense if and only if the adversary can find a small set of elements D ⊂ {0, 1}t
such that at least ε fraction of the sets Si,j have an element that lies in D. This implies there exists an element

z ∈ {0, 1}t that appears in at least εN2

|D| such sets Si,j . By the random process, for each z ∈ {0, 1}t and set

Si,j , we include z ∈ Si,j independently with probability p. So, the expected number of sets that contain z is

pN2. We set p to be small enough so that pN2 is much smaller than εN2

|D| . A Chernoff bound based argument

combined with a union bound lets us argue that with high probability, no z can appear in so many sets and

hence, Cond will be a condenser for sources where adversary controls position 3. Consider sources X where

the adversary controls position 1 or position 2. Then, the adversary restricts Cond to some N sets out of the

N2 sets and the distribution Cond(X) becomes equivalent to the process of randomly picking a set out of

these fixed N sets and outputting a random element from it. In fact, as these N sets were initially randomly

sampled, we are able to show that Cond(X) will be close to the uniform distribution. Thus, Cond(X) will

indeed be a condenser for uniform (2, 3)-SHELA sources.

Careful examination of the above argument reveals that we are only using a very small prefix of x3.

This is because sets Si,j are small sets of size about pT = pN ≤ o(N) while we have access to n bits of

x3. It turns out, the above probabilistic construction actually yields a seeded extractor1
sExt : {0, 1}2n ×

{0, 1}O(logn/ε) → {0, 1}t. This extractor works for very small min entropy but for our purposes, it suffices

for it to handle min entropy n (out of 2n). Moreover, it is “output-light”, meaning for every z ∈ {0, 1}t,
∣

∣{x ∈ {0, 1}2n : ∃y ∈ {0, 1}O(logn/ε)(sExt(x, y) = z)}
∣

∣ is small (see Definition 6.2 for formal definition).

Given such an extractor, one can easily construct the required condenser and this is indeed the proof strategy

we use in Section 6.

2.2.2 An Explicit Condenser for Uniform (2,3)-SHELA Sources

We will prove that we can get explicit condensers for Uniform (2, 3) SHELA sources.

Theorem 2.5 (Informal version of Theorem 6.10). For any ε > 0, we can explicitly construct a con-

denser Cond : ({0, 1}n)3 → {0, 1}t with t = n
16 such that for any uniform (2, 3)-SHELA source X,

Hε
∞(Cond(X)) ≥ t−O(log(t/ε)).

As discussed above, we observe that for condensing from uniform (2, 3)-SHELA sources, it suffices to

construct an output-light seeded extractor (Definition 6.2) for somewhere-random sources, i.e., sources of

the type X = (X1,X2) where both X1,X2 are over n bits and at least one of X1 or X2 is guaranteed to be

uniform. We explicitly construct such a seeded extractor and get our explicit condenser.

1see Definition 4.6 for a definition of seeded extractors
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2.2.3 An Explicit Output-Light Seeded Extractor for Somewhere-Random Sources

We here describe an output-light seeded extractor sExt for somewhere random sources with seed length

d = O(log(n/ε)) and output length m = O(n). Moreover it will be very “output-light”, i.e., for every

z ∈ {0, 1}m,
∣

∣{x ∈ {0, 1}2n : ∃y ∈ {0, 1}O(log n/ε)(sExt(x, y) = z)}
∣

∣ ≤ 22n−m+d. This suffices to get the

desired explicit condenser.

We transform the input distribution X = (X1,X2) into a block source Y = (Y1,Y2). This means we

want that for all fixings of Y1 = Y1, Y2 will have high min-entropy. For some choice of n1, we let Y1 be

the source obtained by concatenating the first n1 bits of X1 and the first n1 bits of X2. Then, as at least one

of X1 or X2 is uniform, H∞(Y1) ≥ n1. We set n2 = n− n1 and let Y2 be the source obtained by picking

bits at indices n1+1, . . . , n from both X1 and X2 and concatenating them. Then by min entropy chain rule,

with high probability, Y2 will have high min entropy conditioned on fixing of Y1.

We then take a good seeded extractor sExt and use our input seed S to get a large number of random bits

from Y2, i.e., R2 = sExt(Y2, S). We then compute the inner product of R2 and Y1 over a large field. We

are allowed to use R2 as a source of randomness for Y1 because Y is a block source. Moreover, as inner

product is a good two source extractor (Theorem 4.8), the resultant output will be uniform. Call this m bit

output (for say m = n1/4) distribution R1.

In this inner product, we bypass the case of R2 = 0 (0 of the field) by artificially changing last bit of R2

to be 1. For a fixed seed S, a fixing R1 of R1, and a fixing Y2 of Y2, the number of fixings of Y1 that map

to R1 are about 2n1−m. This is because given n1−m bits in addition to R1, and having access to Y2, we can

invert this inner product operation. Thus, for fixed seed S and output R1, the number of inputs that map to

it are 22n−m and consequently, for fixed output R1, the number of inputs that map to it are 22n−m+d where

d is the seed length we require. The seed length we require is O(log(n/ε)) and, hence, we get a sufficiently

output-light seeded extractor as desired.

3 Open Questions

Our research simultaneously breaks ground in several new directions while raising a host of open questions.

Now that we have obtained both lower and upper bounds for condensing from uniform NOSF, SHELA, and

almost CG sources for various settings of the g and ℓ, exploring the terrain for new settings of parameters is

natural. A few immediate open questions brought up by our work are:

1. Is our result of Theorem 5.2 tight? That is, when we write ℓ = cg+ r for c, r ∈ N and we have r > 0,

then is it possible to condense up to rate 1
c or just to g

ℓ ?

2. Can we generalize our impossibility result of Theorem 5.8? In particular, is condensing from uniform

(g, ℓ)-NOSF sources generally impossible when g > ℓ/2? It would be exciting to see whether this

result can extend all the way to that of [BKKKL92].

3. Can we generalize our condenser in Theorem 6.1? In general, we are unsure what condensing looks

like for SHELA sources when g > ℓ/2.

4. Can we improve and generalize our construction of the output-light seeded extractor of Theorem 6.10?

13



4 Preliminaries

We will generally denote distributions or sources in a bold font, such as X, and reserve Ut to be the uniform

distribution on t bits. When these sources are actually a sequence of sources, we use subscripts to denote

blocks of that source as X = X1, . . . ,Xℓ. In addition, since we often consider binary strings of length n
and t, we let N = 2n and T = 2t. Often it is convenient to consider strings as labels, in which case we use

the notation [N ] = {1, 2, . . . , N}.

4.1 Basic probability lemmas

Here, we first state a few basic probability facts that will be useful to us throughout. Our first one is a direct

reverse Markov style inquality.

Claim 4.1 (Reverse Markov). Let X be a random variable taking values in [0, 1]. Then, for 0 ≤ d < E[X],
it holds that

Pr[X > d] ≥ E[X]− d

1− d

Proof. Let Y = 1−X. Then, by Markov’s inequality,

Pr[Y ≥ 1− d] ≤ E[Y]

1− d
=

1− E[X]

1− d

So,

Pr[X > d] = Pr[Y < 1− d] = 1− 1− E[X]

1− d
=

E[X]− d

1− d

We will also use a few versions of the classic Chernoff bound.

Claim 4.2 (Chernoff Bound). Let X1, . . . ,Xn be independent random variables taking values in {0, 1}.
Let X =

∑

iXi. Let µ = E[X]. Then, for all δ ≥ 0, the following holds:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

We will sometimes use the following two weaker versions of this:

1.

Pr[X ≥ (1 + δ)µ] ≤
(

e

(1 + δ)

)(1+δ)µ

= exp(−µ(1 + δ) log((1 + δ)/e)

2.

Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/(2 + δ))

We also utilize the following version of the Chernoff bound for 0 < δ < 1:

Pr[|X− µ| ≥ δµ] ≤ exp(−δ2µ/3)

Several of our impossibility results rely on a simple TV distance bound.
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Claim 4.3 (TV distance lower bound). Let X ∼ {0, 1}t and S ⊂ {0, 1}t be such that Prx∼X[x ∈ S] ≥ p.

Then, for 0 < ε < p, it holds that Hε
∞(X) ≤ log

(

|S|
p−ε

)

.

Proof. Let k = log
(

|S|
p−ε

)

. Let Y ∼ {0, 1}t be an arbitrary distribution with H∞(Y) ≥ k. By the min

entropy condition, for all s ∈ S, it holds that Pr[Y = s] ≤ 2−k. Hence,

|X−Y| ≥ Pr
x∈X

[x ∈ S]− Pr
y∈Y

[y ∈ S] = p− 2−k · |S| = ε

We will utilize the very useful min entropy chain rule in our constructions.

Lemma 4.4 (Min-entropy chain rule). For any random variables X ∼ X and Y ∼ Y and ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |support(Y)| − log(1/ε)] ≥ 1− ε.

Lastly, we will later utilize a consequence of upper bounds on smooth min-entropy.

Claim 4.5 (Lemma 8.8 from [Zuc07]). Let X ∼ {0, 1}t be such that Hε
∞(X) < k. Then, there exists

D ⊂ support(X) such that |D| < 2k and Pr[X ∈ D] ≥ ε.

4.2 Extractors

Let A ≈ε B mean that A and B are ε close in statistical distance. We recall the definition of a seeded

extractor.

Definition 4.6. A (k, ε)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m satisfies the following: for

every (n, k)-source X, and every Y = Ud,

Ext(X,Y) ≈ε Um.

We call d the seed length of Ext. Ext is called strong if

Ext(X,Y),Y ≈ε Um,Y.

We will use the following construction of seeded extractors:

Theorem 4.7 (Theorem 1.5 in [GUV09]). For all constant α > 0 and all n, k, ε, there exists an explicit

(k, ε)-seeded extractor sExt : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log(n/ε) and m ≥ (1− α)k.

We use fact that inner product function over finite fields is a good two source extractor:

Theorem 4.8. [Cha16, CG88, ILL89, Vaz85] Let X,Y ∼ {0, 1}n with H∞(X) = k1, H∞(Y) = k2. Let

m = n
r for some r ∈ N. Let IP(x, y) : {0, 1}2n → {0, 1}m be the function that interprets x, y as elements

of Fr
2m and outputs the m bit string corresponding to x · y. Then, |IP(X,Y)−Um| ≤ 2(n+m−k1−k2)/2.
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4.3 Randomness sources relevant to our work

We now formally introduce the randomness sources we will be working with. We begin with NOSF sources,

which have no restrictions on the adversary producing the bad blocks.

Definition 4.9 (NOSF source). A (g, ℓ, n, k)-non-oblivious symbol fixing source (NOSF) X with symbols

in Σ = {0, 1}n and length ℓ is over Σℓ, written as X = X1, . . . ,Xℓ, and has the following property:

There exists a set of good blocks G ⊆ [ℓ] such that |G| ≥ g and the random variables in {Xi}i∈G are each

independently sampled (n, k)-sources.

We say that a block Xi is good if i ∈ G and bad otherwise.

Note that we have no restrictions on how bad blocks may depend on the good blocks. If k = n, we say

that X is a uniform (g, ℓ, n)-NOSF source. When n is implicit or not relevant, we simply call X a uniform

(g, ℓ)-NOSF source.

Next, we introduce SHELA sources in their full generality.

Definition 4.10 (SHELA source [AORSV20]). A distribution X over ({0, 1}n)ℓ is a (g, ℓ, n, k)-Somewhere

Honest Entropic Look Ahead (SHELA) source if there exists a (possibly randomized) adversaryA such that

X is produced by sampling g out of ℓ indices to place independently sampled (n, k)-sources and then placing

adversarial blocks in the other ℓ− g indices that may depend arbitrarily on any block that comes before it.

Concretely, there must exist random variables 1 ≤ I1 < I2 < · · · < Ig ≤ ℓ with arbitrary joint

distribution, denoting the indices of the independent (n, k)-sources, and g independent (n, k)-sources

Z1,Z2, . . . ,Zg such that X is generated in the following manner:

1. Sample (i1, i2, . . . , ig) ∼ (I1, I2, . . . , Ig).

2. For all j ∈ [g] set Bij = Zj .

3. For all i ∈ [ℓ] \ {i1, i2, . . . , ig], the adversary sets Bi = A(B1, . . . ,Bi−1, i1, . . . , ig}.

4. Finally, let X = (B1, . . . ,Bℓ).

We will generally call the blocks Z1, . . . ,Zg the “good” blocks and the remaining blocks “bad” blocks.

Similar to NOSF sources, when k = n we will simply say X is a (g, ℓ, n)-uniform SHELA source, and

when n is implicit we will simplify further to a uniform (g, ℓ)-SHELA source.

In our construction of lower and upper bounds for SHELA sources, we will often think of fixed-index

SHELA sources instead since they are easier to reason about. We define them now.

Definition 4.11 (Fixed-index SHELA source). A distribution X over ({0, 1}n)ℓ is a (g, ℓ, n, k)-fixed-index

SHELA (fiSHELA) source if there exists a (possibly randomized) adversary A such that X is produced by

the adversary choosing g out of ℓ indices to place independently sampled (n, k)-sources and then placing

adversarial blocks in the other ℓ− g indices that may depend arbitrarily on any block that comes before it.

Concretely, the adversary A chooses 1 ≤ i1 < i2 < · · · < ig ≤ ℓ, denoting the indices of the

independent (n, k)-sources, and g independent (n, k)-sources Z1,Z2, . . . ,Zg such that X is generated in

the following manner:

1. For all j ∈ [g] set Bij = Zj .

2. For all i ∈ [ℓ] \ {i1, i2, . . . , ig], the adversary sets Bi = A(B1, . . . ,Bi−1, i1, . . . , ig}.
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3. Finally, let X = (B1, . . . ,Bℓ).

While working over fixed-index SHELA sources is easier than working over general SHELA sources,

all of our results still apply to general SHELA sources since SHELA sources are convex combinations of

fixed-index SHELA sources.

Proposition 4.12. Every (g, ℓ, n, k)-SHELA source X is a convex combination of (g, ℓ, n, k)-fixed-index

SHELA sources.

Proof. Let I = I1, I2, . . . , Ig be the distribution of indices used in the construction of X. For a sample

I ∼ I, let XI the (g, ℓ, n, k)-fixed-index SHELA source in the construction of which the adversary chose

the good blocks to be at indices I and the functions describing the bad blocks to be identical to those of X

when the sample of indices from I is I. That is, when I is sampled in the construction of X we have for all

j ∈ [ℓ] \ I that Xj = (XI)j as functions.

With this setup, we directly have that X = EI∼I[XI ], so X is a convex combination of XI’s.

Lastly, we define almost Chor-Goldreich (CG) sources, which have an adversary like that of fiSHELA

sources that can depend arbitrarily on past blocks, but the adversary of almost CG sources can have some

effect on future blocks, unlike that of fiSHELA sources. Almost CG sources are more easily defined in two

steps, the first of which tells us what “good” means in this context.

Definition 4.13 (Good CG block [DMOZ23]). Let 0 ≤ γ ≤ 1, 0 ≤ k ≤ n, and X = X1, . . . ,Xℓ be a

source with each Xi over {0, 1}n. We say that i ∈ [ℓ] is (γ, k)-good for X if for all prefixes (a1, . . . , ai−1) ∈
({0, 1}n)i−1 we have that

Hγ
∞(Xi | X1, . . . ,Xi−1 = a1, . . . , ai−1) ≥ k.

In the trivial case that i = 1 we have Hγ
∞(X1) ≥ k. When γ, k, and X are clear from context, we will

simply call a block i “good”, otherwise we will call it “bad”.

We can now succinctly state the definition of an almost CG source.

Definition 4.14 (Almost-CG source [DMOZ23]). A (g, ℓ, n, k, γ)-almost CG source X is a sequence of

random variables X = X1, . . . ,Xℓ with Xi taking values in {0, 1}n. We require that at least g of the blocks

of X are (γ, k)-good.

As before, if k = n and γ = 0, then we simply call X a uniform (g, ℓ, n)-almost CG source, and we

omit n when it is implicit.

We have introduced all of these definitions since our results resolve open questions for each. The rela-

tionship between all these definitions is necessary to clearly see how our lower and upper bounds apply, so

we provide two propositions to help elucidate the relationship between them.

Proposition 4.15. Uniform fixed-index SHELA sources are also uniform NOSF sources.

Proof. A uniform (g, ℓ, n)-fixed-index SHELA source X is also a uniform (g, ℓ, n)-NOSF source since the

ℓ− g bad blocks in X are strictly more restricted than the bad blocks of a uniform NOSF source.

Next, we show an equivalence between uniform fiSHELA and uniform almost CG sources

Proposition 4.16. A source X is a uniform fixed-index SHELA source if and only if it is a uniform almost

CG source.
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Proof. Say X is a uniform (g, ℓ, n)-fixed-index SHELA source. Then, because bad blocks may only depend

on the good blocks that have a lower index than them and all the good blocks are sampled independently,

the good blocks satisfy the prefix condition in Definition 4.13 to give us that X is a uniform (g, ℓ, n)-almost

CG source.

On the other hand, say that X is a uniform (g, ℓ, n)-almost CG source. Then the fact that for a good block

Xi we have for all (a1, . . . , ai−1) ∈ ({0, 1}n)i−1 that H∞(Xi | X1, . . . ,Xi−1 = a1, . . . , ai−1) = n, so Xi

is uniform given any prefix, means that Xi is independent of all blocks that come before it. In particular,

this means that bad blocks may only depend on the good blocks that come before them. In addition, the

good blocks being uniform clearly means that they are independent from each other. Hence, X is a uniform

(g, ℓ, n)-fixed-index SHELA source as well.

Putting both of these propositions together yields Figure 3 which depicts how our definitions interact.

Therefore, when we prove a lower bound by constructing a uniform fiSHELA source, that same lower bound

Figure 3: Here we illustrate the containments between our sources along with the equivalence between

uniform fiSHELA (U-fiSHELA) and uniform almost CG (U-almost CG) sources.

applies to uniform NOSF and uniform almost CG sources as well.

5 Impossibility Results

In this section, we will first prove condensing impossibility results for uniform (g, ℓ)-SHELA sources when

g ≤ ℓ/2 and for uniform (2, 3)-NOSF sources. Then we will show an extraction impossibility result for

uniform (2, 3)-SHELA sources.

Remark 5.1. Except for the impossibility result in Section 5.2, the rest of our results are accomplished by

constructing a uniform fiSHELA adversary. Because uniform fiSHELA sources are contained in all of the

other sources we use in this work (Figure 3), these results also apply to uniform NOSF and uniform almost

CG sources as well. Thus, to be succinct, we will only state our results in terms of uniform SHELA sources.
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5.1 Impossibility of Condensing When g ≤ ℓ/2

We begin by proving that for g ≤ ℓ/2, it is impossible to condense from a (g, ℓ)-SHELA source X to rate

more than 1
⌊ℓ/g⌋ .

Theorem 5.2. For any f : ({0, 1}n)ℓ → {0, 1}t and for all ε ≥ 0, there exists a δ > 0 and a uniform

(g, ℓ)-SHELA source X with g ≤ ℓ/2 such that Hε
∞(f(X)) ≤ 1

⌊ℓ/g⌋ · t+ δ.

An immediate corollary of this theorem is for the special case where g divides ℓ.

Corollary 5.3. For any ε > 0 and any g and ℓ such that g | ℓ and f : ({0, 1}n)ℓ → {0, 1}t, there exists a

uniform (g, ℓ)-SHELA source X a δ > 0 such that Hε
∞(f(X)) < g

ℓ · t+ δ.

The proof of Theorem 5.2 involves two ingredients. First, we must show that condensing above rate 1
ℓ

is impossible for uniform (1, ℓ)-SHELA sources.

Lemma 5.4. For any f : ({0, 1}n)ℓ → {0, 1}t and ε ≥ 0 there exists a uniform (1, ℓ)-SHELA source X

and δ > 0 such that Hε
∞(f(X)) < 1

ℓ · t+ δ.

Second, we show that these results extend to any uniform (g, ℓ)-SHELA source with g ≤ ℓ/2. That

is, if it is impossible to condense from the class of uniform (1, ℓ′) SHELA sources, then it is impossible to

condense above rate 1
ℓ′ from the class of (g, ℓ) SHELA sources for any g and ℓ when ℓ ≥ ℓ′ and g

ℓ ≤ 1
ℓ′ .

Lemma 5.5. Let ℓ ≥ ℓ′ and
g
ℓ ≤ 1

ℓ′ . If for any function f : ({0, 1}n)ℓ′ → {0, 1}t and fixed ε > 0 there

exists a uniform (1, ℓ′, n)-fiSHELA source Y and constant δ > 0 such that Hε
∞(f(Y)) < g′

ℓ′ · t + δ, then

for any integer m such that ⌈ℓ/ℓ′⌉m < n and any function h : ({0, 1}m)ℓ → {0, 1}t, there exists a uniform

(g, ℓ,m)-fiSHELA source X such that Hε
∞(h(X)) ≤ 1

ℓ′ · t+ δ.

With these lemmas, our main theorem follows naturally.

Proof of Theorem 5.2. Let us divide ℓ by g as ℓ = c · g + r for some c, r ∈ N with r < g so c > 0 and

r < g. Notice that ⌊ℓ/g⌋ = c. We can derive our desired impossibility result by applying Lemma 5.5 to the

result of Lemma 5.4 for uniform (1, c)-fiSHELA sources.

Now we will prove both of these lemmas. We begin with the self-contained Lemma 5.5.

Proof of Lemma 5.5. For the sake of contradiction, assume there exists a non-trivial condenser h :
({0, 1}m)ℓ → {0, 1}t that condenses above rate 1

ℓ′ , meaning that there exists some ε > 0 so that for any

uniform (g, ℓ,m)-fiSHELA source X we have Hε
∞(h(X)) ≥ 1

ℓ′ · t+ω(1). We will now use h to construct a

condenser f : ({0, 1}n)ℓ′ → {0, 1}t for any uniform (1, ℓ′, n)-fiSHELA source Y to derive a contradiction

to our assumption in the theorem statement.

Let us divide ℓ by ℓ′ with remainder to get ℓ = cℓ′ + r for some integers c and r where r < ℓ′. Note

that c > 0 since ℓ ≥ ℓ′. Our construction of f is quite simple: on input Y = Y1, . . . ,Yℓ′ , we define

f(Y1, . . . ,Yℓ′) = h(X1, . . . ,Xℓ=cℓ′+r) where the Xi are constructed by splitting up the Yj as evenly as

possible. Concretely, from each Y1, . . . ,Yr we will take c + 1 blocks of size m to form r(c + 1) of the

Xi’s (this is where our requirement that n > m(c+ 1) comes from), and from each of the ℓ′ − r remaining

Yr+1, . . . ,Y
′
ℓ we will take c blocks of size m to form (ℓ′−r)c of the Xi’s. In total, this gives us the desired

r(c+ 1) + (ℓ′ − r)c = rc+ r + cℓ′ − rc = cℓ′ + r = ℓ blocks of X.
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Finally, to see that indeed g of these blocks in X are good so that we may apply h, recall that Y is a

(1, ℓ′)-fiSHELA source, so there exists some index j ∈ [ℓ] such that Yj is good. If j ≤ r we will get c+ 1
good blocks in X and otherwise we will get c good blocks in X. Thus, we must show that c ≥ g. By using

the fact that 1
ℓ′ ≥

g
ℓ and that ℓ = cℓ′ + r we can compute cℓ + r = ℓ ≥ gℓ′, meaning that g − c ≤ r

ℓ′ . But

since r < ℓ′ and both g and c are integers, so their difference is an integer, it must be that g − c ≤ 0, so

c ≥ g.

As promised, our constructed X meets the requirements for h to condense from it, yielding

Hε
∞(f(Y)) ≥ g′

ℓ′ · t+ ω(1), a contradiction to our assumption in the statement of the lemma.

Next, we prove Lemma 5.4, which we obtain as a corollary to the fact that if we cannot condense from

uniform (g, ℓ)-SHELA sources, then we cannot condense from uniform (g, ℓ+ g)-SHELA sources.

Lemma 5.6. Assume that for every s ∈ N and function f : {0, 1}ℓn → {0, 1}s, there exists a uniform

(g, ℓ)-SHELA source X such that Hε
∞(f(X)) ≤ g

ℓ · s + δ. Let c0, c1 ∈ R be such that 0 < c0 < 1 and

ε < c1 < 1. Then, for every function h : {0, 1}ℓ+g → {0, 1}t, there exists a uniform (g, ℓ + g)-SHELA

source Y such that Hε
∞(h(Y)) ≤ g

ℓ+g · t+ δ′ where δ′ = max
(

log
(

c1
(1−c1)c0(c1−ε)

)

, δ + log(c0)g
ℓ

)

.

We remark that Lemma 5.6 is exactly an inductive argument which we instantiate to get Lemma 5.4.

Proof of Lemma 5.4. All we must do is provide a base case for Theorem Lemma 5.6 to work off of and give

us the result we desire. Notice that a uniform (g = 1, ℓ = 1)-SHELA source W is just the uniform source

on n bits. Thus, for any f : {0, 1}n → {0, 1}t it must be that for all ε ≥ 0 we have Hε
∞(f(W)) ≤ t.

We apply Lemma 5.6 by setting c0 = 1, c1 =
1+ε
2 , δ = log

(

2(1+ε)
(1−ε)2

)

to infer the claim!

Before proving Lemma 5.6, we require a dominating set argument on bipartite graphs which we will use

to construct the adversary in our SHELA sources.

Lemma 5.7 (Greedy Covering Argument). Let c0 > 0 and 0 < c1 < 1. For a bipartite graph H = (U, V,E)
where |U | = N , |V | = T , and deg(u) ≥ c0T

δ for all u ∈ U and some δ ∈ (0, 1), there exists a subset

D ⊆ V of size at most c1
(1−c1)c0

T 1−δ such that |N (D)| ≥ c1N .

Proof. We will construct D via the greedy algorithm in Algorithm 1. This algorithm greedily chooses right

vertices in V with highest degree first, adds them to D, and stops once the neighborhood of D, denoted

N (D), is large enough. To analyze this algorithm, we can use loose bounds on the number of edges and

vertices at any one step. Notice that since the algorithm stops once we have removed at least c1N vertices

from U , we have for all i that |Ui| ≥ (1 − c1)N . In addition, because left vertices are only removed when

one of their neighbors in V is added to D, we see that remaining vertices in U still have their original degree

since otherwise they would have been removed. In other words, at each time step i we have for all u ∈ Ui

that deg(u) ≥ c0T
δ. Putting these two facts together gives us that at each time step the number of edges is

|Ei| ≥ |Ui| d ≥ (1− c1)Nc0T
δ.

Therefore, because we are never adding vertices to V so |Vi| ≤ V = |V | = T for all i, we see that there

must exist a vertex in Vi of degree at least

|Ei|
|Vi|
≥ (1− c1)Nc0T

δ

T
=

(1− c1)c0N

T 1−δ
.
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Algorithm 1: Greedy covering algorithm

i← 0
D ← ∅

H0 = (U0, V0, E0)← H = (U, V,E)
while |N (D)| < c1N do

Let vi ∈ Vi be the vertex of maximum degree in Hi

D ← D ∪ {vi}
Vi+1 ← Vi \ {vi}
Ui+1 ← Ui \ N (vi)
Ei+1 ← Ei \ {(u, v) ∈ E | v = vi or u ∈ N (vi)}
Hi+1 ← (Ui+1, Vi+1, Ei+1)

end

Finally, since we stop exactly once we get at least c1N vertices in D, we will stop in at most

c1N
(1−c1)c0N

T 1−δ

=
c1

(1− c1)c0
T 1−δ

steps. But since each step adds exactly one vertex to D, we have that this is a bound on the size of D as

well.

With this greedy covering argument for bipartite graphs in hand, we are ready to show Lemma 5.6.

Proof of Lemma 5.6. Fix a function h : {0, 1}ℓ+g → {0, 1}t. We will construct a (g, ℓ+g) uniform SHELA

source Y such that Hε
∞(f(Y )) < g

ℓ+g · t+ δ′. Let N = 2n, T = 2t. We consider two cases:

Case 1. For all x1, . . . , xg ∈ ({0, 1}n)g it holds that |support(h(x1, . . . , xg,Uℓ))| ≥ c0T
ℓ/(ℓ+g).

Consider an undirected bipartite graph G = (U, V ) where U = ({0, 1}n)g and V = {0, 1}t with edge from

u = (x1, . . . , xg) ∈ U to v ∈ V if there exist xg+1, . . . , xℓ+g such that h(x1, . . . , xℓ+g) = v. We apply

Lemma 5.7 to G and infer that there exists D ⊂ {0, 1}t such that |D| ≤ c1
(1−c1)c0

T g/(ℓ+g) and for c1N
g many

tuples (x1, . . . , xg) ∈ ({0, 1}n)g, there exist y1, . . . , yℓ ∈ ({0, 1}n)ℓ such that h(x1, . . . , xg, y1, . . . , yℓ) ∈
D. Let a : ({0, 1}n)g → ({0, 1}n)ℓ be defined as:

a(x1, . . . , xg) =

{

(y1, . . . , yℓ) if there exist y1, . . . , yℓ such that h(x1, . . . , xg, y1, . . . , yℓ) ∈ D

(0n)ℓ otherwise

Consider the uniform (g, ℓ + g)-SHELA source X = (X1, . . . ,Xℓ+g) such that X1, . . . ,Xg are uni-

form independent distributions and Xg+1, . . . ,Xg+ℓ = a(X1, . . . ,Xg). Then, we infer that with proba-

bility c1, h(X) ∈ D. Applying Claim 4.3, we infer that Hε
∞(X) ≤ log

(

c1T g/(ℓ+g)

(1−c1)c0(c1−ε)

)

= g
ℓ+g · t +

log
(

c1
(1−c1)c0(c1−ε)

)

≤ g
ℓ+g · t+ δ′.

Case 2. There exist x1, . . . , xg ∈ ({0, 1}n)g such that |support(h(x1, . . . , xg,Uℓ))| ≤ c0T
ℓ/(ℓ+g).

Let S = |support(h(x1, . . . , xg,Uℓ))|. Let b1 : {0, 1}s → support(h(x1, . . . , xg,Uℓ)) be an arbi-

trary bijection with inverse function b2. Let f : {0, 1}ℓ → {0, 1}s be defined by f(y1, . . . , yℓ) =
b2(h(x1, . . . , xg, y1, . . . , yℓ)). Then, by assumption, there exists some uniform (g, ℓ)-SHELA source Y
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such that f(Y) is not ε close to min entropy g
ℓ · s + δ. Consider uniform (g, ℓ + g)-SHELA source

X = (X1, . . . ,Xℓ+g) where distributions X1, . . . ,Xg always output x1, . . . , xg and Xg+1, . . . ,Xℓ+g are

distributed as Y. Then, we infer that with Hε
∞(f(X)) ≤ g

ℓ+g · t+ δ + log(c0)g
ℓ .

5.2 Impossibility of Condensing from Uniform (2, 3)-NOSF Sources

Here, we will show that it is impossible to condense from uniform (2, 3)-NOSF sources.

Theorem 5.8. For any f : ({0, 1}n)3 → {0, 1}t and 0 < ε < 1
4 , there exists a uniform (2, 3)-NOSF source

X and a constant δ > 0 such that Hε
∞(f(X)) ≤ 2

3 · t+ δ.

We can extend Theorem 5.8 using techniques from Section 5.1 to show that condensing from uniform

(g, ℓ)-NOSF sources is impossible whenever g
ℓ = 2

c for some c ∈ N.

Corollary 5.9. If
g
ℓ = 2

c for some c ∈ N then there exists a 0 ≤ ε < 1
4 and δ > 0 such that for any

f : ({0, 1}n)ℓ → {0, 1}t there exists a uniform (g, ℓ)-NOSF source X for which Hε
∞(f(X)) ≤ g

ℓ · t+ δ.

The only new method we need here to prove Corollary 5.9 is that condensing impossibility results scale

up. In other words, let g0, ℓ0 be such that it is not possible to condense from uniform (g0, ℓ0)-SHELA

sources. Then for all c ∈ N, it holds that it is not possible to condense from uniform (c · g0, c · ℓ0)-SHELA

sources.

Lemma 5.10. Assume there exist 0 < ε < 1, 0 < k ≤ n such that for any f : ({0, 1}n)ℓ0 → {0, 1}t, there

exists a uniform (g0, ℓ0)-SHELA source X such that Hε
∞(f(X)) < k. Then, for any f : ({0, 1}n/c)c·ℓ0 →

{0, 1}t, there exists a uniform (c · g0, c · ℓ0)-SHELA source X such that Hε
∞(f(X)) < k.

Proof of Lemma 5.10. Proceed by contradiction and assume such f existed. Consider h : ({0, 1}n)ℓ0 →
{0, 1}t where on input (x1, . . . , xℓ), h partitions each xi into c blocks of length ℓ/c each and calls f on the

resultant input. Observe that if X is a uniform (g0, ℓ0)-SHELA source, then this partitioning operation turns

it into a uniform (c · g0, c · ℓ0)-SHELA source. As f is a (k, ε)-condenser for such sources, h will also be a

(k, ε)-condenser for uniform (g0, ℓ0)-SHELA sources, which is a contradiction.

Corollary 5.9 now follows directly.

Proof of Corollary 5.9. We first show that it is not possible to condense from uniform (2, ℓ)-NOSF sources

when ℓ is odd. Using Theorem 5.8 as the base case for Lemma 5.6 with c0 = 1, c1 = 1+ε
2 and δ =

log
(

2(1+ε)
(1−ε)2

)

, we get that there exists a 0 ≤ ε < 1
4 and δ > 0 such that for any f : ({0, 1}n)ℓ → {0, 1}t

there exists a uniform (2, ℓ)-NOSF source X such that Hε
∞(f(X)) ≤ 2

ℓ · t+ δ.

Next, we extend this to any g and ℓ such that g
ℓ = 2

c for odd c by using Lemma 5.10.

To get our final claim, we notice that if g
ℓ = 2

c for some even c ∈ N, then g
ℓ = 1

c′ for some c′ ∈ N,

so Theorem 5.2 shows that for all ε ≥ 0 there exists a δ > 0 and uniform (g, ℓ)-NOSF source X such that

for any f : ({0, 1}n)ℓ → {0, 1}t there exists a uniform (g, ℓ)-NOSF source X such that Hε
∞(f(X)) ≤

1
c′ · t+ δ = g

ℓ · t+ δ. In particular, this holds for 0 ≤ ε < 1
4 .

We can now move on to proving Theorem 5.8. As before, we will build our adversary via a covering

set argument on bipartite graphs. The difference this time is that we will consider complete bipartite graphs

with colored edges where we want our dominating set to be a set of colors that are used on many edges.

22



Lemma 5.11 (Greedy Covering Argument Again). Let 0 < c0, 0 < c1 < 1, 0 < c2 < 1 be such that

1−c0c2−c1 > 0. Consider a complete bipartite graph H = (U, V,E) whose edges are colored in T colors

with |U | = N , |V | = N . Moreover, assume that for every vertex x ∈ H , the number of distinct colors edges

incident on x is≤ c0T
δ for some δ ∈ (0, 1) and some constant c0 > 0. Then, there exists D ⊆ [T ] such that

|D| ≤ c0c1
(1−c0c2−c1)(c2)

T 2δ and c1N
2 edges in H are colored in one of the colors from D.

We can now use this to prove Theorem 5.8.

Proof of Theorem 5.8. Fix a function h : {0, 1}3n → {0, 1}t. We will construct a uniform (2, 3)-NOSF

source Y such that Hε
∞(f(Y )) < 2

3 · t + δ. Let N = 2n, T = 2t. Let α = 1
4 − ε. Set c0 = 1

4 −
α
2 , c2 = 1

4 + α
8 , c4 = 1 − α

4 , c5 =
1
4
−α

2
1
4
+α2

16
−α

4

. Set c3 = c6 = 1 − c5. Set c1 = c3c5
(1−c3c6−c5)(c6)

. Then

c0, c1, c2, c3, c4, c5, c5, c6 > 0 and they satisfy the following inequalities:

1. ε < c0 ≤ 1.

2. ε < c2c4.

3. c4 < 1.

4. c2 <
1
2 .

5. c0 ≤ c5(1− 2c2)
2.

6. c3c6 + c5 < 1.

We consider various cases:

Case 1. There exists x1 ∈ {0, 1}n, P23 ⊂ ({0, 1}n)2, and D ⊂ {0, 1}t such that |P23| ≥ c0N
2, |D| ≤

c1T
2/3 and for all (x2, x3) ∈ P23, it holds that h(x1, x2, x3) ∈ D. In this case, consider the uniform

(2, 3)-NOSF source X = (X1,X2,X3) where X1 always outputs x1 and X2,X3 are independent uniform

distributions over {0, 1}n. Then with probability c0, h(X) ∈ D. Applying Claim 4.3, we infer that

Hε
∞(X) ≤ log

(

c1T
2/3

c0 − ε

)

=
2

3
· t+ log(c1)− log(c0 − ε).

Case 2. There exists P12 ⊂ ({0, 1}n)2 such that |P12| ≥ c2N
2 and for all (x1, x2) ∈ P12, it holds that

|{h(x1, x2, y3) : y3 ∈ {0, 1}n}| ≥ c3T
1/3.

In this case, consider the bipartite graph H = (U, V,E) where U = P12, V = {0, 1}t and edge e = (u, v) =
((x1, x2), t) ∈ E if and only if there exists y3 ∈ {0, 1}n such that h(x1, x2, y3) = t. Then by assumption,

for all u ∈ U , it holds that deg(u) ≥ c3T
1/3.

We apply Lemma 5.7, to H and infer that there exists D ⊂ {0, 1}t such that |D| ≤ c4
(1−c4)c3

T 2/3 and

Nbr(D) ≥ c4N
2. Let a : {0, 1}2n → {0, 1}t be defined as:

a(x1, . . . , x2) =

{

y3 if there exists y3 such that h(x1, x2, y3) ∈ D

0n otherwise
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Consider the uniform (2, 3)-NOSF source X = (X1,X2,X3) such that X1,X2 are uniform independent

distributions over {0, 1}n and X3 = a(X1,X2). Then, we infer that with probability c2, (X1,X2) ∈ P12

and hence, with probability c2c4, h(X1,X2,X3) ∈ D. Applying Claim 4.3, we infer that

Hε
∞(h(X)) ≤ log

(

c4T
2/3

(1− c4)c3(c2c4 − ε)

)

=
2

3
· t+ log

(

c4
(1− c4)c3(c2c4 − ε)

)

.

Case 3. There exists P13 ⊂ ({0, 1}n)2 such that |P13| ≥ c2N
2 and for all (x1, x3) ∈ P13, it holds that

|{h(x1, y2, x3) | y2 ∈ {0, 1}n}| ≥ c3T
1/3.

By the exact same argument as in Case 2, we infer that there exist a uniform (2, 3)-NOSF source X such

that:

Hε
∞(h(X)) ≤ log

(

c4T
2/3

(1− c4)c3(c2c4 − ε)

)

=
2

3
· t+ log

(

c4
(1− c4)c3(c2c4 − ε)

)

.

Case 4. None of the other cases happen. We prove that this case cannot occur and hence, we must be in one

of the three cases above. We do this by showing that if Case 2 and Case 3 did not occur, then Case 1 must

have occurred. As Case 2 did not occur, there exists Q12 ⊂ ({0, 1}n)2 such that |Q12| ≥ (1 − c2)N
2 and

for all (x1, x2) ∈ Q12, it holds that

|{h(x1, x2, y3) | y3 ∈ {0, 1}n}| < c3T
1/3.

As Case 3 did not occur, there exists Q13 ⊂ ({0, 1}n)2 such that |Q13| ≥ (1− c2)N
2 and for all (x1, x3) ∈

Q13, it holds that

|{h(x1, y2, x3) | y2 ∈ {0, 1}n}| < c3T
1/3.

This implies there exists z1 ∈ {0, 1}n, P2 ⊂ {0, 1}n, P3 ⊂ {0, 1}n such that |P2| ≥ (1 − 2c2)N, |P3| ≥
(1− 2c2)N and for all x2 ∈ P2, x3 ∈ P3, it holds that

|{h(z1, y2, x3) | y2 ∈ P2}| < c3T
1/3

and

|{h(z1, x2, y3) | y3 ∈ P3}| < c3T
1/3.

Consider the complete bipartite graph H = (U, V,E) whose edges are colored in T colors with U =
P2, V = P3 and edge e = (u, v) is colored with color t iff h(z1, u, v) = t. We apply Lemma 5.11 to H
and infer that there exists D ⊂ T such that |D| ≤ c3c5

(1−c3c6−c5)(c6)
T 2t/3 and c5(1− 2c2)

2N2 edges in H are

colored in one of the colors from D. As c5(1 − 2c2)
2 ≥ c0 and c3c5

(1−c3c6−c5)(c6)
≤ c1, we indeed satisfy the

conditions to be in Case 1 with x1 = z1.

The proof of Lemma 5.11 is similar to that of Algorithm 1 where instead of picking vertices with highest

degree first, our algorithm picks colors that are assigned to the most edges first.
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Proof of Lemma 5.11. For any e ∈ E, let χ(e) denote the color of e in H . For any vertex x ∈ H , we define

NbrH(x) = {y ∈ H : (x, y) ∈ E}.

Similarly, for any vertex x ∈ H , and color c ∈ [T ], we define

NbrH(x, c) = {y ∈ H : (x, y) ∈ E ∧ χ((x, y)) = c}.

For a color c ∈ [T ] and a graph H , we define

countH(c) = |{e ∈ H : χ(e) = c}| .

For C ⊂ [T ], we can similarly define

countH(C) =
∑

c∈C

countH(c).

We will construct D via the greedy algorithm in Algorithm 2. Notice that the number of steps that

Algorithm 2: Greedy covering algorithm

i← 0
D ← ∅

H0 = (U0, V0, E0)← H = (U, V,E)
while countH(D) ≤ c1N

2 do
Let di ∈ [T ] be the color that maximizes countHi(di).
D ← D ∪ {di}
Ei+1 ← Ei \ {e ∈ E | χ(e) = di}
Hi+1 ← (U, V,Ei+1)

end

the loop in the algorithm runs for equals |D|. We will carefully delete some edges from H and call the

resultant graph H ′. We will bound the runtime of the algorithm when ran over the input graph H ′. For

notational convenience, let the graph considered and the color chosen at each step i of the algorithm be

H ′
i, and d′i respectively. Let D′ be the resultant set of colors chosen. We observe that at each step i,

countH(di) ≥ countH′(d′i). Hence, |D| ≤ |D′| and so it suffices to upper bound |D′|.
Let

E′ = {e = (u, v) ∈ E | NbrH(v, χ(e)) ≥ c2N/T δ}
Let H ′ = (U, V,E′). Fix arbitrary v ∈ V . By assumption, we know that |{c ∈ [T ] : |NbrH(v, c)| > 0}| ≤
c0T

δ and that |NbrH(v) = N |. In H ′, we remove all edges incident to v with color c such that

|NbrH(v, c)| ≤ c2N/T δ. Hence, we can remove at most c0c2N such edges. Hence, we infer that:

|NbrH′(u| ≥ (1− c0c2)N

And so, |E′| ≥ (1− c0c2)N
2

Consider the last step j before the loop terminated. At that point,

∣

∣

∣
E′

j

∣

∣

∣
≥ (1 − c0c2 − c1)N

2. Let

dj ∈ [T ] be the color chosen at that step. Let u ∈ U be such that

∣

∣

∣NbrH′

j
(u)
∣

∣

∣ is maximized. As there are
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(1− c0c2− c1)N
2 edges in H ′

j , we can find such a u with

∣

∣

∣
NbrH′

j
(u)
∣

∣

∣
≥ (1− c0c2− c1)N . As these edges

are colored in at most c0T
δ colors, there must exist a color c such that

∣

∣

∣
NbrH′

j
(u)(u, c)

∣

∣

∣
≥ (1−c0c2−c1)N

c0T δ .

For every v ∈ NbrH′

j
(u)(u, c), using the degree property of H ′ and the fact that we remove all instances

of only a single color in the algorithm at each step, it must be that

∣

∣

∣NbrH′

j
(v, c)

∣

∣

∣ ≥ c2N/T δ. Hence,

countH′

j
(c) ≥ (1−c0c2−c1)c2N2

c0T 2δ . As dj is chosen so that countHj (dj) maximized, we infer that

countHj (dj) ≥ countHj (c) ≥
(1− c0c2 − c1)c2N

2

c0T 2δ
.

Recall that at each step i we choose the color d such that countHi(di) is maximized and then remove

all edges which have that color. Hence, it must be that at every step i, countHi(di) ≥ countHj (dj) ≥
(1−c0c2−c1)c2N2

c0T δ . As we stop once count(D) ≥ c1N
2 and at each step, this quantity increases by at least

(1−c0c2−c1)c2N2

c0T δ , the loop terminates in at most c0c1
(1−c0c2−c1)(c2)

T 2δ steps.

5.3 Impossibility of Extracting from Uniform (2, 3)-SHELA Sources

Our last impossibility result is that it is impossible to extract even one bit from uniform (2, 3)-SHELA

sources.

Theorem 5.12. For any function f : ({0, 1}n)3 → {0, 1} there exists a uniform (2, 3)-SHELA source X

such that |f(X)−U1| ≥ 0.08.

Proof. To show that extraction is impossible, we will attempt to fix the output of f with constant probability

over its inputs. We begin by classifying the points in the first two coordinates of f as follows.

S0 = {(x1, x2) ∈ [N ]2 | ∀x3 ∈ [N ], f(x1, x2, x3) = 0}
S1 = {(x1, x2) ∈ [N ]2 | ∀x3 ∈ [N ], f(x1, x2, x3) = 1}

S0,1 = {(x1, x2) ∈ [N ]2 | ∃x3, x′3 ∈ [N ], f(x1, x2, x3) = 0 and f(x1, x2, x
′
3) = 1}.

Note that we can write S0,1 = [N ]2 \ (S0 ∪ S1). In order, these are the sets of points in X1 and X2 that fix

the output of f to 0, to 1, and that do not fix the output of f . We now take constants 0.5 ≤ c0, c1 ≤ 1 and

look at two cases that allow us to fix the output of f by putting an adversary in the third coordinate, X3.

Case 1. We have |S0| + |S0,1| ≥ c0N
2. Here, we know that for (x1, x2) ∈ S0 ∪ S0,1 there exists

some x3 such that f(x1, x2, x3) = 0. Define a(x1, x2) be this x3 for (x1, x2) ∈ S0 ∪ S0,1 and 0 oth-

erwise. Consequently, if we let X1 and X2 be random and define our uniform (2, 3)-SHELA source as

X = X1,X2, a(X1,X2), then we have that Pr[f(X) = 0] ≥ c0. It follows that |f(X)−U1| ≥ c0 − 1
2 .

Case 2. We have |S1| + |S0,1| ≥ c0N
2. This case follows similarly since for (x1, x2) ∈ S1 ∪ S0,1 there

exists some x3 such that f(x1, x2, x3) = 1. Therefore, we can define an adversary a(x1, x2) such that when

X = X1,X2, a(X1,X2) with X1 and X2 uniform we have |f(X)−U1| ≥ c0 − 1
2 .

Case 3. We are in neither of the previous two cases. Thus, because |S0| + |S1| + |S0,1| = N2 we have

that (1 − c0)N
2 < |S0| , |S1| < c0N

2 and (2c0 − 1)N2 < |S0,1| < c0N
2. To proceed, we will set up two

sub-cases in which we either make X1 our bad block or X2 our bad block.
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Consider the bipartite graph H = (U, V ) with |U | = N left vertices representing the values of X1 and

|V | = N vertices representing the values of X2. We place an edge (u, v) with label t if (u, v) ∈ St

and do not place an edge otherwise. Consequently, the number of edges E in H is at least E = |S0| +
|S1| ≥ 2(1 − c0)N

2. For any u ∈ U , define its normalized degree (counting edges with either label) as

du = deg(u)/N . We then see that Eu∼U [du] = E/ |U | ≥ 2(1 − c0). To split into our two sub-cases,

we will consider the set of heavy vertices UH = {u ∈ U | du > c1} in U . By Claim 4.1, we get that

Pru∈U [du > c1] ≥ Eu[du]−c1
1−c1

≥ 2(1−c0)−c1
1−c1

=: c2, meaning that |UH | ≥ c2N .

Case i. For all u ∈ UH we have u ∈ S0 ∩ S1 (i.e., u has at least one edge labeled with a 0 and another

with a 1). this means that for any u ∈ UH there exists an x2 ∈ [N ] such that for all x3 ∈ [N ] we have

that f(u, x2, x3) = 0. Let a(x1) be defined as outputting this x2 that fixes f to 0 for x1 ∈ UH and to be

0 otherwise. Defining X = X1, a(X1),X3 with X1 and X3 uniform gives us a uniform (2, 3)-SHELA

source for which Pr[f(X) = 0] ≥ |UH | /N ≥ c2, so |f(X)− U1| ≥ c2 − 1
2 .

Case ii. There exists a u ∈ UH such that u /∈ S0 ∩ S1. Without loss of generality, say u ∈ S0, so

all of the edges of u are labeled 0, meaning that for all x2 ∈ N (u) and any x3 ∈ [N ] we have that

f(u, x2, x3) = 0. Because u ∈ UH , we have that du > c1, so defining X = u,X2,X3 with X2 and X3

uniform gives us that Pr[f(X) = 0] ≥ c1. Therefore, |f(X)− U1| ≥ c1 − 1
2 .

Combining all of our cases and recalling that c2 =
2(1−c0)−c1

1−c1
, we have that we can construct a uniform

(2, 3)-SHELA source X such that |f(X)− U1| ≥ ε where ε = min(c0, c1, c2)− 1
2 . Setting c0 = 0.58 and

c1 = 0.6 gives us ε = 0.58− 0.5 = 0.08.

6 Possibility Results

In this section, we will show that it is possible to condense from uniform (2, 3)-SHELA sources. In Sec-

tion 6.1, we show the existence of excellent condensers for uniform (2, 3)-SHELA sources. In Section 6.2,

we will explicitly construct such condensers.

6.1 Probabilistic construction

Theorem 6.1. There exists a condenser Cond : ({0, 1}n)3 → {0, 1}t where t = n + log(n) − log(1/ε)
such that for any uniform (2, 3)-SHELA source X, Hε

∞(Cond(X)) ≥ t− log(t)− 4 log(1/ε)−O(1).

We show that a carefully chosen random process will generate a seeded extractor2 with some additional

guarantees. We will use this seeded extractor to get our condenser.

Definition 6.2 (Output-light Seeded Extractor). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ǫ)-
seeded extractor. Further suppose that for any z ∈ {0, 1}m, for every z ∈ {0, 1}m, it holds that
∣

∣{x ∈ {0, 1}n : ∃y ∈ {0, 1}d(Ext(x, y) = z)}
∣

∣ < R. We call Ext to be an R-output-light (k, ε)-seeded

extractor.

Lemma 6.3. For all k, ε, there exists an R-output-light (k, ε)-seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with d = log(n) + 3 log(1/ε) + O(1),m = k + log(n) − log(1/ε) and R =

O
(

N
Kε4

+
√

N
Kε4
· (k + log n− log(1/ε))

)

, where N = 2n and K = 2k.

2see Definition 4.6 for a definition
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Before proving this lemma, we first show how to use this to plugin such extractors to get a condenser.

Lemma 6.4. Assume there exists an R-output-light (k, ε)-seeded extractor Ext : {0, 1}2n × {0, 1}d →
{0, 1}t. There exists a condenser Cond : ({0, 1}n)3 → {0, 1}t such that for any uniform (2, 3)-SHELA

source X, Hε
∞(Cond(X)) ≥ 2n− log(R)− log(1/ε)−O(1).

Assuming these lemmas, our proof of main theorem is straightforward:

Proof of Theorem 6.1. We consider the extractor from Lemma 6.3 and use that to get the condenser from

Lemma 6.4. We note that for the setting of Lemma 6.4, R = CN
ε4

for a large constant C.

We now show that we indeed can get a condenser from such an output-light extractor.

Proof of Lemma 6.4. By Proposition 4.12, SHELA sources are convex combination of fixed-index SHELA

sources and so it suffices to show we can condense from the latter. Let k be the output min entropy we will

guarantee. Let N = 2n, T = 2t,K = 2k. We identify {0, 1}n, {0, 1}t with [N ], [T ] respectively and use

them interchangeably in this proof.

Let g : {0, 1}3n → {0, 1}t be a function that on input (x1, x2, x3), takes an appropriate length pre-

fix x3,pre of x3 and outputs Ext(x1 ◦ x2, x3,pre). We claim that g will be a (k, ε)-condenser for uni-

form (2, 3)-SHELA sources. By the property of the extractor, we are guaranteed that for each z ∈ [T ],
∣

∣{(x1, x2) ∈ {0, 1}2n : ∃y ∈ {0, 1}d(g(x1, x2, y) = z)}
∣

∣ < R. We set K = εN2

2R . We take cases on po-

sitions 1, 2, 3 and show show that g will indeed be a condenser for uniform (2, 3)-SHELA sources with

adversary at that position.

Case 1. The adversary is in position 3. We proceed by contradiction and assume there exists X with ad-

versary in position 3 so that Hε
∞(g(X)) < k. By Claim 4.5, there exists D ⊂ support(g(X)) such that

|D| ≤ K and Pr[g(X) ∈ D] ≥ ε. This implies there exists z ∈ [T ] and P ⊂ [N ]2 such that |P | ≥ εN2

K

and for all (x1, x2) ∈ P it holds that there exists y ∈ {0, 1}n such that g(x1, x2, y) = z. As εN2

K > R.

However, this is a contradiction to the fact that Ext is R-output-light.

Case 2. The adversary is in position 1 or 2. We prove the stronger claim that the output will be uniform.

Let X = (X1,X2,X3) be a uniform (2, 3)-SHELA source with adversary in position 1 or 2. Let Y =
(X1,X2). Then, H∞(Y) = n. As, X3 is uniform, the seed passed to f will also be uniform. As f is an

extractor, |f(Y,Ud)− Ut| ≤ ε as desired.

Remark 6.5. We note that in the above proof, the fact that Ext is a seeded extractor is utilized in Case 2.

In particular, we just need that Ext works for sources (X1 ◦X2), where one of them is guaranteed to be

uniform. Such sources are called as somewhere-random sources.

We are now ready to prove that a random process generates the desired extractor:

Proof of Lemma 6.3. Let N = 2n,M = 2m,K = 2k, D = 2d. We also identify {0, 1}n, {0, 1}m, {0, 1}d
with [N ], [M ], [D] respectively and use these interchangeably in this proof. We will set D,M,R as follows:

D =
104 log(N)

ε3
,M = εK log(N), R =

106N

ε4K
+

500
√

N log(εK log(N))

ε2
√
K
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Algorithm 3: Random process to generate f

for 1 ≤ i ≤ N do
Si = ∅
for m ∈ [M ] do

Add m to Si with probability p
end

end

Define f : [N ]× [D]→ [M ] as follows:

On input x1, x2: output element at index (x2 mod |Sx1 |) from Sx1 .

p ≤ R
100N p ≥ log( 2eN

εK )

εM log

(

εM
4eLbig

) p ≥ 6 logN
γ2M

p ≥ 16

Kε2 log

(

εM
4eLbig

)

p ≤ R2

24N log(M) p ≥ 192M
ε3KLbig

p ≥ 96 log( 2eN
εK )

ε2Lbig
γ ≤ ε

5

Table 1: Constraints satisfied by the parameters

We introduce the quantity p = 6000
ε4K

that we will also use in Algorithm 3. We consider the random process

in Algorithm 3 that generates function f as our candidate extractor.

Notice that the function f itself is deterministic as the sets Si are only sampled once to define f . We

claim that 1−o(1) fraction of functions f generated by Algorithm 3 will be such extractors. For the analysis,

we introduce two quantities:

γ =
ε

10
, Lbig =

εM

4e2

We observe that our setting of parameters has ensured the constraints in Table 1 are met.

We first show that that with 1− o(1) probability, the seed length of f will indeed be small:

Claim 6.6. With probability o(1) over the random process above, there exists i ∈ [N ] : ||Si| − pM | ≤
γpM . Hence, with 1− o(1) probability, the sizes of all these sets will be at most (1 + γ)pM ≤ D, and so,

the seed length will be as desired.

Proof. For i ∈ [N ], let Ei be the event that ||Si| − pM | ≥ γpM . We show that for all i ∈ [N ], the

probability that Ei occurs is small. Indeed, applying the Chernoff bound from Claim 4.2 with δ = γ and

µ = pM , we infer that this event happens with probability at most

exp

(

−γ2pM

3

)

≤ exp(−2 log(N)) ≤ 1

N2

where the first inequality follows because p ≥ 6 logN
γ2M

. We finally do a union bound over all (i) ∈ [N ] to

infer the claim.

We now show the moreover part of the extractor, i.e., there is no popular output element:

Claim 6.7. With at most o(1) probability over the sampling process to generate f , there exists z ∈ [M ] and

P ⊂ [N ] such that |P | ≥ R and for all i ∈ P, z ∈ Si.
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Proof. For z ∈ [M ], let Ez be the event that there exists P ⊂ [N ] such that |P | ≥ R and for all i ∈ P ,

it holds that z ∈ Si. We show that for all z ∈ [M ], the probability that Ez occurs is small. We will then

do a union bound over all z ∈ [M ] to infer the claim. Applying the Chernoff bound from Claim 4.2 with

1 + δ = R and µ = pN , we infer that:

Pr[Et] ≤ exp






−

(

R
pN − 1

)2
pN

3







≤ exp






−

(

R
2pN

)2
pN

3







≤ exp

( −R2

12pN

)

≤ 1

M2

where the first inequality follows because R ≥ 2pN , and the fourth inequality follows because R2 ≥
24pN log(M). Hence, we can indeed do a union bound over all M elements to infer the claim.

We now show that with 1 − o(1) probability, the f generated will indeed be an extractor. To do this,

we introduce the following two bad events and show that if the function is not an extractor, then one of the

following two bad cases must occur. We later show that each of these events occur with small probability.

1. Let E1 be the event that there exist D ⊂ [M ] with |D| = L ≤ Lbig, and P ⊂ [N ] with |P | ≥ εK
2

such that for all i ∈ P : |Si ∩D| ≥ εpM
4 .

2. Let E2 be the event that there exist D ⊂ [M ] with |D| = L ≥ Lbig, and P ⊂ [N ] with |P | ≥ εK
2

such that for all i ∈ P : |Si ∩D| ≥
(

1 + ε
4

)

pL.

We will show that all these bad events happen with very small probability:

Claim 6.8. Pr[E1] ≤ o(1).

Claim 6.9. Pr[E2] ≤ o(1).

Assuming these claims, we show how to prove that a random f will indeed be an extractor. It suffices to

show that with 1− o(1) probability over sampling Si the following holds: For every I ⊂ [N ] with |I| = K,

if we sample a random i from I and output a random element from Si, then the resultant distribution will

be ε close to the uniform distribution over [M ]. Consider arbitrary I ⊂ [N ] with |I| = K and let the

corresponding K sets in I be R1, . . . , RK . We proceed by contradiction and assume there exists D ⊂ [M ]

such that Pr[f(X) ∈ D] ≥ ε+ |D|
M . For 1 ≤ i ≤ K, let Yi =

|D∩Ri|
|Ri|

. Let Y be the random variable which

samples random k ∈ [K] and outputs Yk. Then, by assumption, E[Y] = ε + |D|
M . Applying Claim 4.1, we

infer that Pr
[

Y > |D|
M + ε

2

]

≥ ε
2 . Hence, there exists B ⊂ [N ] with |B| ≥ εK

2 such that for all i ∈ B

,
|Si∩D|
|Si|

≥ ε
2 + |D|

M . We apply Claim 6.6, to infer that with 1 − o(1) probability, it will be that for all

i ∈ B : |Si ∩D| ≥ ε
2(1− γ)pM + (1− γ)p |D|. We consider cases on |D| = L:
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Case 1. L ≤ Lbig. We see that

ε(1− γ)pM

2
+ (1− γ)pL ≥ εpM

4

where the inequality follows because γ ≤ 1
2 . Hence, for all i ∈ B : |Si ∩D| ≥ εpM

4 . Thus, the event E1

must have occurred. As this happens with o(1) probability, we indeed infer the claim.

Case 2. L ≥ Lbig. We see that

ε(1− γ)pM

2
+ (1− γ)pL ≥

(

1 +
ε

2

)

(1− γ)pL ≥
(

1 +
ε

4

)

pL

where the first inequality follows trivially as M ≥ L and second inequality follows because γ ≤ ε
5 . Hence,

for all i ∈ B : |Si ∩D| ≥
(

1 + ε
4

)

pL. Thus, the event E2 must have occurred. As this happens with o(1)
probability, we indeed infer the claim.

We now prove our various claims that the bad events indeed occur with o(1) probability:

Proof of Claim 6.8. For i ∈ [N ] and D ⊂ [M ] with |D| = L ≤ Lbig, let E1,D,i be the event that |Si ∩D| ≥
ε
4pM . For fixed D ⊂ [M ] with |D| = L ≤ Lbig, let E1,D be the event that there exists P ⊂ [N ] with

|P | ≥ εK
2 such that for all i ∈ P : |Si ∩D| ≥ ε

4pM . We first show that for all i,D : Pr[E1,D,i] is small.

Indeed, applying the Chernoff bound from Claim 4.2 with 1 + δ = εT
4L and µ = pL, we infer that:

Pr[E1,D,i] ≤ exp

(

−εpM

4
log

(

εM

4eL

))

≤ exp

(

−εpM

4
log

(

εM

4eLbig

))

where the last inequality follows because L ≤ Lbig. We use this to show that for all D : Pr[E1,D] is

small. Then, we will do a union bound over D ⊂ [M ] with |D| ≤ Lbig to infer that Pr[E1] is small.

Let q = exp
(

− εpM
4 log

(

εM
4eLbig

))

. Applying the Chernoff bound from Claim 4.2 with 1 + δ = εK
2qN and

µ = qN , we infer that:

Pr[E1,D] ≤ exp

(

−εK

2
log

(

εK

2eqN

))

= exp

(

−ε2pKM

8
log

(

εM

4eLbig

)

+
εK

2
log

(

2eN

εK

))

≤ exp

(

−ε2pKM

16
log

(

εM

4eLbig

))

≤ exp (−M)

where the third inequality follows because p ≥ log( 2eN
εK )

εM log

(

εM
4eLbig

) , and the fourth inequality follows because

p ≥ 16

Kε2 log

(

εM
4eLbig

) . We finally do a union bound over all D ⊂ [M ] with |D| ≤ Lbig. As there are at most

2M such sets, the union bound indeed succeeds and Pr[E1] ≤ o(1) as desired.
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Proof of Claim 6.9. For i ∈ [N ] and D ⊂ [M ] with |D| = L ≥ Lbig, let E2,D,i be the event that |Si ∩D| ≥
(

1 + ε
4

)

pL. For fixed D ⊂ [M ] with |D| = L ≥ Lbig, let E2,D be the event that there exists P ⊂ [N ] with

|P | ≥ εK
2 such that for all i ∈ P : |Si ∩D| ≥

(

1 + ε
4

)

pL.

We apply the Chernoff bound from Claim 4.2 with µ = pL, 1 + δ = 1 + ε
4 to infer that

Pr[E2,D,i] ≤ exp

(

−ε2pL

48

)

≤ exp

(

−ε2pLbig

48

)

We use this to show that, for all D, Pr[E2,D] is small. Then, we will do a union bound over D ⊂ [M ]

with |D| ≥ Lbig to infer that Pr[E2] is small. Let q = exp
(

− ε2pLbig

48

)

. Applying the Chernoff bound from

Claim 4.2 with µ = qN and 1 + δ = εK
qN , we infer that:

Pr[E2,D] ≤ exp

(

−εK

2
log

(

εK

2eqN

))

= exp

(

−ε3KpLbig

96
+

εK

2
log

(

2eN

εK

))

≤ exp

(

−ε3KpLbig

192

)

≤ exp (−M)

where the third inequality follows because p ≥ 96
ε2Lbig

log
(

2eN
εK

)

, and the fourth inequality follows because

p ≥ 192M
ε3KLbig

. We finally do a union bound over all D ⊂ [M ] with |D| ≥ Lbig. As there are at most 2M such

sets, the union bound indeed succeeds and Pr[E2] ≤ o(1) as desired.

6.2 An Explicit Condenser for Uniform (2, 3)-SHELA Sources

In this section, we construct a condenser for Uniform (2, 3) SHELA sources. The following is our main

result.

Theorem 6.10. There exists constant 0 < c0 < 1 such that for all ε > 2−c0n, we can explicitly construct a

condenser Cond : ({0, 1}n)3 → {0, 1}t, where t = n
16 such that for any uniform (2, 3)-SHELA source X,

Hε
∞(Cond(X)) ≥ t−O(log(t/ε)).

To prove this, we construct an explicit output-light seeded extractor (see Definition 6.2) that works for

somewhere-random sources. We note that by Remark 6.5, this is sufficient to use Lemma 6.4 to get the

claimed condenser in Theorem 6.10.

Theorem 6.11. There exists constant 0 < c0 < 1 such that for all ε > 2−c0n, there exists a R-output-

light strong linear seeded ε-extractor Ext : {0, 1}2n × {0, 1}d → {0, 1}m for the class of distributions

X = (X1,X2), each Xi being a r.v. on n bits and at least one of X1 or X2 is guaranteed to be uniform,

with d = O(logn/ε),m = n
16 and R = 22n−m

poly(m,1/ε) .

We note that this construction matches the probabilistic bounds (Lemma 6.3) as the t bit output is

condensed to entropy t − O(log(t)) with t = O(n). We also remark that we have not tried to optimize the

constant appearing in the output length of the extractor.
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6.2.1 An Explicit Output-Light Seeded Extractor for Somewhere-Random Sources

We prove Theorem 6.11 in this section and show

Algorithm 4: Ext (Output-light Somewhere-extractor)

Input: source X = (X1, X2) ∈ {0, 1}n × {0, 1}n, seed S ∈ {0, 1}d

Let ExtGUV : {0, 1}7n/4 × {0, 1}d → {0, 1}n/2−log(1/ε0) be the GUV extractor from Theorem 4.7

instantiated for entropy 3n/4 and error ε0 = ε/4.

Let U = X1, V = X2.

Let n1 =
n
4 , n2 =

7n
4 .

Let Y = (Y1, Y2) where Y1 =
(

U[1,n1/2], V[1,n1/2]

)

, Y2 =
(

U[(n1/2)+1,n], V[(n1/2)+1,n]

)

.

Let R2 = ExtGUV (Y2, S).
Let R′

2 be a length n/4 prefix of R2 with last bit set to 1. Let R1 ∈ {0, 1}n/16 = R′
2 · Y1 where the

operation is done over the finite field F
4
2n/16 .

Output R1.

Proof of Theorem 6.11. We claim that Ext computed by Algorithm 4 computes the desired extractor.

Let Y = (Y1,Y2) be the distribution of the variable Y above. Let R1,R2,R
′
2 be the distribution of the

variables R1, R2, R
′
2 above. We will show that Y is ε0 close to being a block source. As either X1 or X2 is

guaranteed to be uniform, H∞(Yi) ≥ ni
2 . By the min-entropy chain rule Lemma 4.4, with probability 1−ε0

over fixings of Y1 = α, it holds that H∞(Y2 ↾Y1=α) ≥ n2
2 − n1 − log(1/ε0) =

3n
4 − log(1/ε0). We will

add ε0 to our total error and assume this property about Y from here on. By property of ExtGUV , it holds

that,
∣

∣R2 −U|R2|

∣

∣ ≤ ε0. We will add ε0 to our total error and assume R2 is uniform from here on. So, R′
2

is a distribution over {0, 1}n/4 with min entropy n
4 − 1. As Y1 ∼ {0, 1}n/4 is such that H∞(Y1) ≥ n

8 , by

Theorem 4.8, it holds that
∣

∣R1 −U|R1|

∣

∣ ≤ 2−n/32+1. As Y is a block source, for each fixing α of Y1, it

holds that:
∣

∣ExtGUV (Y2, S)−U|R2|

∣

∣ ≤ ε0

Hence, it must be that
∣

∣(Y1,ExtGUV (Y2, S))− (Y1,U|R2|)
∣

∣ ≤ ε0

and thus,
∣

∣R1 −U|R1|

∣

∣ ≤ 2ε0 + 2−n/32+1 ≤ 3ε0,

using the fact that ε ≥ 2−c0n, for some small c0 > 0. The total error of the extractor on input X is thus

bounded by 4ε0 = ε, as desired.

We now prove that this extractor is indeed output-light. For every fixing of the output R1 of R1, β of

Y2 and the seed S, we can uniquely recover R′
2. Given 3n

16 bits corresponding to first three out of the 4
intermediate outputs of the inner product, we can use R1 to compute the fourth intermediate outer product

and then use R′
2 to invert each of the products and recover R1. Thus for a fixed seed S and output R1, there

can be at most 23n/16+7n/4 = 231n/16 such x ∈ {0, 1}2n so that Ext(x, s) = z. As there are at most 2d

seeds, for a fixed output R1 ∈ {0, 1}n/16,
∣

∣

{

x ∈ {0, 1}2n : ∃y(Ext(x, y)) = z
}∣

∣ ≤ 22n−n/16−log(n/ε) =
22n−m

poly(n,1/ε) =
22n−m

poly(m,1/ε) .
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