
Launching Identity Testing into (Bounded) Space

Pranav Bisht ∗ Nikhil Gupta † Prajakta Nimbhorkar ‡ Ilya Volkovich §

Abstract

In this work, we initiate the study of the space complexity of the Polynomial Identity Testing
problem (PIT). First, we observe that the majority of the existing (time-)efficient “blackbox”
PIT algorithms already give rise to space-efficient “whitebox” algorithms for the respective
classes of arithmetic formulas via a space-efficient arithmetic formula evaluation procedure.
Among other things, we observe that the results of Minahan-Volkovich (ACM Transactions
on Computation Theory, 2018), Gurjar et. al. (Theory of Computing, 2017) and Agrawal
et. al. (SIAM Journal of Computing, 2016) imply logspace PIT algorithms for read-once
formulas, constant-width read-once oblivious branching programs, and bounded-transcendence
degree depth-3 circuits, respectively.

However, since the best known blackbox PIT algorithms for the class of multilinear read-k
formulas1 are quasi-polynomial time, as shown in Anderson et. al. (Computational Complexity,
2015), our previous observation only yields a O(log2 n)-space whitebox PIT algorithm. Our
main result, thus, is the first O(log n)-space PIT algorithm for multilinear read-twice formulas2.
We also extend this result to test if a given read-twice formula is equal to a given read-once
formula.

Our technical contributions include the development of a space-efficient measure µℓ which
is “distilled” from the result of Anderson et. al. (Computational Complexity, 2015) and can
be used to reduce PIT for a read-k formula to PIT for a sum of two read-(k − 1) formulas,
in logarithmic space. In addition, we show how to combine a space-efficient blackbox PIT
algorithm for read-(k − 1) formulas together with a space-efficient whitebox PIT algorithm for
read-k formulas to test if a given read-k formula is equal to a given read-(k − 1) formula.

1 Introduction

The algorithmic problem of deciding whether a “given” multivariate polynomial over a field is
identically zero holds an important place in theoretical computer science. This problem is popularly
known as Polynomial Identity Testing (PIT). There are two ways to give input to a PIT algorithm -
either as an arithmetic circuit or as a blackbox (i.e. via oracle access). An arithmetic circuit F over
a field F is a directed acyclic graph whose leaf nodes are labelled by variables and F-constants, other
nodes are labelled by + and × operations, and the computation in F happens as follows: A leaf

∗Department of Computer Science and Engineering, IIT(ISM) Dhanbad, India. Email: pranav@iitism.ac.in.
The work was partially done when this author was at Boston College.

†Computer Science Department, Boston College, Chestnut Hill, MA. Email: nikhil.gupta.3@bc.edu
‡Chennai Mathematical Institute, India. Email: prajakta@cmi.ac.in
§Computer Science Department, Boston College, Chestnut Hill, MA. Email: ilya.volkovich@bc.edu
1A read-k formula is a formula in which every variable labels at most k leaves.
2In fact, our algorithm works for non-multilinear read-twice formulas as well.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 41 (2024)

node computes its label and every other node applies the operation in its label to the polynomials
computed by its children nodes. For the PIT problem, the input arithmetic circuit is provided either
as a blackbox or a whitebox. In the blackbox PIT, we are only allowed to evaluate the n-variate
input polynomial f on any assignment (a1, . . . , an) ∈ Fn of our choice, to get the corresponding
evaluation f(a1, . . . , an). One cannot see the exact arithmetic circuit in the blackbox setting. In
contrast, in a whitebox PIT algorithm, one is given the whole arithmetic circuit as input and is
therefore allowed to ‘look inside’ the given circuit. A blackbox PIT algorithm makes its decision
by querying the given blackbox on a ‘small set’ of assignments in Fn and therefore, designing an
efficient blackbox PIT algorithm for a class of polynomials can be harder than designing an efficient
whitebox PIT algorithm for the same class. PIT is an important problem in complexity theory.
This problem has numerous interesting applications in theoretical computer science like efficient
primality testing algorithms [AB03, AKS04], algorithms for finding a perfect matching in graphs
[Lov79, KUW86, MVV87, ST17], a proof of IP = PSPACE [Sha90] etc.

A polynomial-time randomized algorithm having one-sided error is known for the PIT problem
due to the Schwartz-Zippel-Demillo-Lipton lemma [DL78, Zip79, Sch80]. This places the PIT prob-
lem in the class BPP and, in fact, co-RP. Derandomizing PIT to obtain a deterministic polynomial-
time algorithm is a long-standing open problem. Apart from being a natural and interesting prob-
lem in its own right, derandomization of PIT also has deep connections with proving circuit lower
bounds in complexity theory. The works of [KI04, HS80, Agr05] showed that a polynomial-time
deterministic PIT algorithm implies super-polynomial lower bounds either for Boolean circuits or
for arithmetic circuits. In the converse direction, [KI04] showed that a super-polynomial arithmetic
circuit lower bound implies a sub-exponential time deterministic PIT algorithm. Derandomization
of PIT is well-studied in the literature. We direct the interested reader to [SY10, Sax09] for getting
a detailed exposition on PIT.

Although the mystery of derandomization of PIT for general arithmetic circuits remains unre-
solved, researchers have developed efficient deterministic whitebox and blackbox PIT algorithms
in the time-complexity world for several natural and important sub-classes of arithmetic circuits.
In particular, polynomial-time blackbox PIT algorithms are known for depth-2 circuits [BOT88,
KS01, LV03], for depth-3 circuits with constant top fan-in [DS07, KS08, KS09, SS11, SS12, SS13],
for multilinear depth-4 circuits [ASSS16, SV18, BSV23], for arithmetic read-once formulas (ROFs)
[SV15, MV18], for depth-3 circuits with bounded transcendence degree [ASSS16], for constant-occur
constant-depth arithmetic formulas [ASSS16], etc. Polynomial-time whitebox PIT algorithms are
known for the class of multilinear bounded-read arithmetic formulas [AvMV15], and for read-once
oblivious arithmetic branching programs (ROABPs) [RS05].

Since the class of logspace computable functions, L, is contained in P, it is natural to ask whether
a class of arithmetic circuits having either a deterministic whitebox or blackbox polynomial-time
PIT algorithm also admits a deterministic logspace PIT. In this work, we initiate the study of space-
efficient PIT. We only talk about space-efficient PIT in the whitebox setting, as it is not clear if
space-efficient PIT in the blackbox setting even makes sense, as simply evaluating an arithmetic
circuit or even a formula via blackbox access may not be doable in logarithmic space. In contrast,
evaluating any circuit in the blackbox setting is always time-efficient, by convention.

1.1 Background on logspace computation

There is a rich and fine hierarchy of classes inside P. A lot of work in the literature has focused
on determining the exact complexity of computational problems in this hierarchy. Logspace, also

2

denoted by L, is an important subclass of P. Several fundamental problems like reachability in
undirected graphs [Rei08], isomorphism of trees [Lin92], and planar graphs [DLN+22] are shown
to be complete for L. In the arithmetic world, several interesting problems are in L, for exam-
ple, evaluation of arithmetic formulas [BCGR92], division, iterated multiplication, and powering
[HAM02, BCH86] of integers etc. In fact, evaluation of arithmetic formulas lies in #NC1, and
division, iterated multiplication, and powering lie in TC0, both of which are subclasses of L. Healy
and Viola show iterated multiplication and exponentiation over finite fields of characteristic two is
in TC0 and hence in L [HV06].

Formulas vs. circuits: We would like to highlight the fact that performing several operations
on formulas is complexity theoretically simpler than performing the same operations on arbitrary
circuits. For instance, counting the number of descendants of a node in an arbitrary circuit is
complete for NL [Imm88, Sze87], whereas the same problem is in L for formulas (e.g. [Lin92]).
Evaluation of Boolean or arithmetic formulas is in logspace [BCGR92] whereas evaluation of arbi-
trary Boolean or arithmetic circuits is P-complete [Lad75, GHKL18]. In fact, even deciding whether
a given arithmetic circuit evaluates to the zero element on a given assignment is already P-complete
[GHKL18].

1.1.1 Facts

Following are some well-known definitions and facts about the class L:

1. We say that a function f is computable in logspace if, for each input x of length n, f(x) is
computable in space O(log n). Here, by space, we mean the space on the work-tape of the
Turing machine that computes f(x).

2. If a Turing machine uses space at most s(n) on inputs of length n, and halts on all inputs,
then it runs in time at most 2s(n) and hence the length of its output is also bounded by 2s(n).

3. If f and g are computable in logspace, then their composition (i.e. f ◦ g) is also computable
in logspace. In general, a composition of any c functions f1, f2, . . . , fc, that are computable
in O(log n) space, is computable in O(c log n) space.

Fact 1.1. A composition of a constant number of logspace computable functions is itself logspace
computable.

1.1.2 Left-heavy Formulas and Generic Traversal

A formula (or a tree) is left-heavy, if for each node, the subtree rooted at its left child must be at
least as large as the subtree rooted at its right child. We measure the size of a subtree in terms
of the number of leaves in it. The results of [Lin92, BCGR92, DLN+22] and others show how to
transform any formula into a left-heavy form in logspace. Furthermore, we extend these ideas to
a framework that allows us to compute a generic top-down recursive function in a space-efficient
way.

Let Ψ be a function described via a triple of “update” functions Ψ
∆
= (Ψleaf,Ψ+,Ψ×) and let F

be an arithmetic formula of size s. We can think of F as a straight-line program where each of the
s instructions is of form:

ga ← gb op gc where b < a ≤ s or gb ∈ x ∪ F (and similarly gc)

3

The computation of Ψ on F is defined recursively: if g is a leaf of F , then Ψ(g)
∆
= Ψleaf(g). If g is a

gate (i.e. operation) in F , then Ψ(g) is defined by applying Ψ+ or Ψ× in the case of the + and ×
gate, respectively (we assume that Ψ values have already been computed for both of g’s children).
Formally, suppose we have ga ← gb op gc for b, c < a. Then

Ψ(ga)
∆
=

{
Ψ+ (Ψ(gb),Ψ(gc)) , if op = +

Ψ× (Ψ(gb),Ψ(gc)) , if op = ×.

The procedure will perform a post-order traversal: left-right-center, remembering only the
current and the previous positions3. After the left child has been processed, the procedure will
push the intermediate value of Ψ (of the left child) into a stack and then pop it after processing the
right child. While the näıve bound on the space complexity of this procedure is O(t · depth(F)),
where t denotes the maximum bit-complexity of Ψ, one could show a better bound of O(t · log s)
due to the fact that F is left-heavy, where s is the size of Ψ. We instantiate this framework in
Sections 3 and 4 to obtain logspace procedures to compute partial derivatives, partial assignments,
and our main technical contribution, the measure µℓ.

As another example of an instance of the generic traversal, one can obtain a simpler, but less
efficient evaluation procedure for arithmetic formulas using O(log q · log s) space, where s and q
stand for the sizes of the formula and the underlying finite field, respectively. For more details see
Section 3.

1.2 Preliminary Results, Motivations and Related Works

In this section, we list some preliminary results which, for most part are based on simple observa-
tions. Our main results can be seen as strengthening these observations.

Recall that the Schwartz-Zippel-Demillo-Lipton lemma [DL78, Zip79, Sch80] states that, with
high probability, a non-zero polynomial f ∈ F[x1, x2, . . . , xn] evaluates to a non-zero value on a point
chosen uniformly at random. Hence, in order to obtain a randomized PIT algorithm it is sufficient
to evaluate a given circuit/formula on a random input. As this can be carried out in polynomial
time, we obtain a randomized polynomial-time PIT algorithm for all arithmetic circuits.

Given the aforementioned space-efficient formula evaluation procedure, one might attempt exe-
cuting the same strategy on arithmetic formulas with the hope to (potentially) obtain a randomized
logspace PIT algorithm. Alas, a näıve implementation could be problematic since in the standard
randomized bounded space setting, the access to randomness is “read-once”. That is, each random
bit (or field element) is only given once and must be stored in the working space, if referenced
again in the future. One way to address this problem would be to restrict the input formula
itself to the class of read-once formulas (ROFs). The class of ROFs is extremely well-studied
in the literature in both Boolean [AHK93, KLN+93, BHH95b, BHH95c] and arithmetic settings
[HH91, BHH95a, BC98, BB98, SV14, SV15, Vol16, MS21, ST21, GST23]. Unfortunately, the afore-
mentioned space-efficient formula evaluation may reference to the same bits (i.e. field elements)
more than once even for the case of ROFs! However, one can observe that the traversal-based
evaluation procedure (mentioned in the previous section) operates in a ‘read-once fashion’ when
evaluating a read-once formula. That is, the procedure will require a single access to every bit
(and hence field element) when evaluating a read-once formula. This will result in a randomized

3Note that remembering the entire traversal history would require linear memory thus rendering the procedure
space-inefficient.

4

O(log q · log s)-space algorithm, where s and q stand for the sizes of the formula and the underlying
field, respectively. Since typically q = poly(n), we obtain that PIT for ROFs is in the class BPL2

i.e. in randomized O(log2 n) space.

Besides arithmetic circuits and formulas, we also have the algebraic class of arithmetic branch-
ing programs (ABPs) and their sub-class ROABPs (read-once oblivious arithmetic branching pro-
grams). See Appendix D for the formal definitions of these models. One can observe that evaluating
a width-w ROABP of degree d over a field F of size q can be carried out using O(w · log q + log d)-
space, furthermore, as in the case with read-once formulas, this evaluation can be carried out in a
‘read-once’ fashion. Hence we obtain that PIT for constant-width ROABPs is in BPL.

In [Nis93], Nisan introduced the class BP · L which is an analog of BPL in which the random
bits can be read multiple times without having to store them in the working space. By extending
the previous observations and using the space-efficient formula evaluation, we obtain that PIT for
(all) arithmetic formulas and general (i.e. polynomial-depth) constant-width ABPs is in BP · L.

Observation 1 (Summary of initial observations on the space complexity of PIT).

• PIT for the following classes is in BPL: constant-width ROABPs.

• PIT for the following classes is in BPL2: ROFs.

• PIT for the following classes is in BP · L: arithmetic formulas, constant-width ABPs.

To complement the last bullet of the observation, we remark that if we insist that the random
bits can only be accessed once (as in BPL) then the best known PIT algorithm even for formulas will
be in BPSPACE(n log s) 4 5. In addition, we remark that the computational powers of arithmetic
formulas and constant-width ABPs are equivalent (see e.g. [BC92, BIZ18]). In fact, the proof of
Lemma 2.10 actually goes through by converting an arithmetic formula into a width-3 ABP of
polynomial depth. Finally, unlike BPL, the class BP · L is not known to be contained in P (see
[Nis93] for more details). The only known relation is the following syntactic inclusion:

BPL ⊆ BP · L ⊆ BPP

and that L = P =⇒ BP · L = BPP. And while BPP is conjectured to be equal to P, a result of
[KI04] shows that any such proof will imply circuit lower bounds. Interestingly, PIT plays a pivotal
role of a “BPP-complete” problem in the argument of [KI04]. Formally:

Lemma 1.2 ([KI04]). Suppose PIT ∈ P. Then either NEXP ̸⊆ P/poly or the Permanent requires
super-polynomial arithmetic circuits.

As was observed in [KI04], this result can be extended and refined to the class of arithmetic formulas.

4Let s : N → N. The class BPSPACE(s(n)) is similar to BPL except that a probabilistic Turning machine in case
of BPSPACE(s(n)) uses O(s(n)) space.

5In order to invoke the algorithm based on the Schwartz-Zippel lemma, we will need a multiple access to n field
elements, which will we need to store in the working memory. In fact, we can carry this out in DSPACE(n log s).
However, to the best of our knowledge, there is not PIT algorithm for formulas in DSPACE(o(n log s)) or even
BPSPACE(o(n log s)).

5

Observation 1.3 ([KI04]). Suppose PIT for arithmetic formulas is in NP ∩ coNP. Then either
NEXP ̸⊆ P/poly or the Permanent requires super-polynomial arithmetic formulas.

Combined with Observation 1, we can extend the result of [KI04] to BP · L: any proof that BP · L ⊆
NP will imply formula lower bounds.

Corollary 1.4. Suppose BP · L ⊆ NP. Then either NEXP ̸⊆ P/poly or the Permanent requires
super-polynomial arithmetic formulas.

On the other hand, while PIT for arithmetic formulas is in BP · L, we observe that PIT for
arithmetic circuits is P-hard, i.e., every problem in P reduces in logspace to PIT for circuits. More
generally, we make the following observation on the relationships between BPP,BP · L and PIT.
These relationships are proved in Observations A.1, A.3, A.2, and A.4 of Section A of the appendix.

Observation 2 (Relationships between BPP,BP · L and PIT).

• PIT for arithmetic circuits is P-hard.

• BP · L with oracle access to PIT for circuits is the same as BPP.

• BP · L with oracle access to PIT for formulas is the same as BP · L.

• P ⊆ BP · L if and only if BPP = BP · L.

BPP and BP · L correspond to two important classes of probabilistic algorithms. As noted
before, it follows from the definition of BP · L that BP · L ⊆ BPP. In Observation 2, we note
some more relationships between these two classes, and the PIT for arithmetic circuits plays an
important role in this. It is also not known if P ⊆ BP · L. We observe that it happens if and only
if BPP = BP · L. Thus, decoding the exact relationship between one of the BPP,BP · L or BP · L,P
will also shed light on the other.

Our next preliminary result shows how to convert certain (time-)efficient “blackbox” PIT algo-
rithms into space-efficient “whitebox” algorithms for the respective classes of arithmetic formulas
via the space-efficient arithmetic formula evaluation procedure. The vast majority of the existing
blackbox identity testing algorithms were given via a construction of the so-called “hitting-set gen-
erators”. A (hitting-set) generator G for a circuit class C is a polynomial map G = (G1,G2, . . . ,Gn) :
Ft → Fn such that for every non-zero f ∈ C, f(G) ̸≡ 0. Indeed, a generator acts as a variable re-
duction map that reduces the number of variables from n to t while preserving non-zeroness. Given
such a generator, the actual identity testing is performed by evaluating f(G) on a “small” set of
points i.e. of size (dδ)t where d and δ are the respective degrees of f and G.

Incidentally, one can observe that in the wild, many of the constructed generators are actu-
ally logspace-explicit. That is, computable in logarithmic space (see Definition 2.11 for a formal
treatment). Our first observation is that a logspace-explicit generator gives rise to a logspace PIT
algorithm for the respective class of arithmetic formulas.

Theorem 3 (Informal). Let G : Ft → Fn be a logspace-explicit generator for a class of arithmetic
formulas C and let F ∈ C of size s. Then there exists an algorithm that given F decides if F ≡ 0,
using O(t log s) space.

6

Indeed, we obtain a logspace PIT algorithm when t = O(1). The formal version of the result is
given in Theorem 2.14. Subsequently, we observe that the results of [MV18, GKS17, ASSS16] imply
logspace PIT algorithms for sums of ROFs, constant-width ROABPs, and bounded-transcendence
degree depth-3 circuits, respectively.

Corollary 1.5 (Informal). PIT for the following classes is in L: sum of constantly-many ROFs,
constant-width ROABPs, bounded-transcendence degree depth-3 circuits.

The technical versions of these result can be found in Theorems 4.9, 6.4, 7.1, respectively.
We note that these results already improve upon the initial observation made in Observation 1
and that similar observations can be made w.r.t to many other blackbox PIT algorithms in the
literature. However, speaking more broadly, the connection observed in Theorem 3 provides another
motivation for the study of the space complexity of the PIT problem: since many of the existing
and the conjectured generators are logspace-explicit, a space-efficient PIT algorithm can be seen as
a prerequisite for a (time-)efficient blackbox PIT algorithm! Hence, designing a space-efficient PIT
algorithm for a formula class C should be considered as an intermediate step between designing
time-efficient whitebox and blackbox PIT algorithms for that same class.

As an example, a result of [RS05] provides a polynomial-time whitebox PIT algorithm for
the model of ROABPs. Yet, the best known blackbox PIT algorithm is quasi-polynomial time
[FS13, AGKS15], even for the case of constant width (unknown variable order). Our main results
follow the same line of thought.

In [AvMV15], the PIT problem for multilinear formulas of bounded-read was studied. The main

results are
(
sk

O(k)
)
-time whitebox and

(
sk

O(k)+k logn
)
-time blackbox PIT algorithms for multilinear

read-k formulas. This results in polynomial-time and quasi-polynomial-time whitebox and blackbox
PIT algorithms for multilinear bounded-read formulas, respectively.

As in a typical case, the actual blackbox algorithm was obtained via an appropriate hitting-set
generator. To state the result more precisely, it was shown that for every n and k, the polynomial
map Gn,kO(k)+k logn is a generator for the class of multilinear read-k formulas (for a formal definition
see Definition 2.15). And while for any t ≤ n the map Gn,t is logpsace-explicit (see Lemma 2.20),
applying Theorem 3 on Gn,kO(k)+k logn will result in O(kO(k) ·log n·log s)-space PIT algorithm which

brings the problem only to L2 even when k = O(1). At the same time, coming up with a (truly)
polynomial-time blackbox PIT algorithm for this class of formulas remains an open problem even
for k = 2 (i.e. read-twice)! Consequently, unlike the case of read-once formulas (see Corollary 1.5),
truly logspace PIT algorithms for multilinear read-k formulas do not seem to follow immediately
from any previous result for k ≥ 2.

1.3 Our Results

Our first main result gives the first (truly) logspace whitebox PIT algorithm for multilinear read-
twice formulas. As per our previous discussion, this result can be seen as an intermediate step
towards a polynomial-time black-box PIT for this class.

Theorem 4 (PIT for read-twice formulas). Let F be a multilinear read-twice formula of size s
over a field F such that the bit-complexity of the constants appearing in F is b. Then, there exists a
deterministic algorithm that, given F as an input, decides whether F ≡ 0, in space upper bounded
by:

7

• O(log(s) + log(q)) for any finite field of size q.

• O(log(s) + log log(p)) for any prime field Fp.

• O(log(s) + log(b)) for Z and Q.

A more technical version of the result is given in Theorem 4.7 and thus Theorem 4 follows from
Theorem 4.7 instantiated with the bound from Lemma 2.10. We present a proof overview of this
theorem in Section 1.4.1, and give a proof in Section 4.

The next logical step following a design of a space-efficient PIT algorithm for mulitlinear read-twice
formulas would be to tackle multilinear read-thrice formulas and (hopefully) multilinear formulas
of a higher read. However, the main obstacle on the way to a read-thrice and, in fact, to any
constant-read PIT stems from a requirement to produce a non-zero assignment of a polynomial in
logarithmic space. Indeed, the approach taken in [AvMV15] and adapted to the logspace setting
in the current paper, goes by first reducing the PIT problem for a read-k formula F into a special
case when F can be written as sum of two read-(k − 1) formulas F = F1 + F2. Subsequently,
the problem is reduced to the case of a single read-(k − 1). While we were able to carry out the
first reduction in logspace (see subsequent sections for details) the only known way to perform the
second reduction is by finding a “common non-zero assignment” as specified by the “Key Lemma”
of [AvMV15] (See Lemma 5.6 for the formal statement).

Computing a non-zero assignment of a given non-zero polynomial is an example of the search-
to-decision reduction. This is done by mirroring the algorithm that finds a satisfying assignment of
a CNF formula, given an oracle to SAT, in particular, by fixing one variable at a time. Therefore,
this task can be carried out easily in polynomial time given a PIT algorithm (the algorithm itself
can be whitebox. For more details see e.g. [SV15]). However, due to a sequential nature of the task,
it is not clear how one could perform it in logarithmic space (given an appropriate PIT algorithm).

Going back to the case of multilinear read-thrice, it is necessary and sufficient to test if two
multilinear read-twice formulas F1 and F2 are equivalent (i.e. F1 ≡ F2) with the additional condition
that the overall read of F1 − F2 is three. That is, while each variable can appear at most twice
in each of the Fi-s, each variable must also appear at most three times in F1 and F2 combined.
While we do not solve this case, we make a progress by solving a special case when F1 is a read-once
and F2 is a multilinear read-twice (or vice-versa).

Theorem 5 (Testing equivalence of a read-once and a read-twice formula). Let F1 be a read-once
formula and F2 be a multilinear read-twice formula both of size (at most) s over a field F such
that the bit-complexity of the constants appearing in both F1 and F2 is b. Then, there exists a
deterministic algorithm that given F1 and F2 as inputs decides whether F1 ≡ F2, in space upper
bounded by:

• O(log(s) + log(q)) for any finite field of size q.

• O(log(s) + log log(p)) for any prime field Fp.

• O(log(s) + log(b)) for Z and Q.

A more technical version of the result is given in Theorem 5.12 and thus Theorem 5 follows
from Theorem 5.12 instantiated with the bound from Lemma 2.10. We present a proof overview of
this theorem in Section 1.4.2, and give a proof in Section 5.

8

1.4 Proof Overview and Techniques

1.4.1 Proof overview of Theorem 4

In this section, we present the high-level picture of the proof of Theorem 4. In fact, we prove a
more general result in Section 4 (see Theorem 4.6). For the sake of conveying the main ideas, we
assume that F = Fq. Let Ck be the class of mulitlinear read-k formulas (see Definition 2.4) over the
underlying field F. Suppose we are given whitebox access to a size-s formula F ∈ C2 over F. We
want to show that we can decide whether F ≡ 0 using O(log s+ log q) work-space.

The first ingredient of our algorithm is a O(log s + log q)-space whitebox PIT algorithm A for

the class
∑[2] C1

∆
= {P + Q : P,Q ∈ C1}, which is given in Theorem 4.9. We now show how to

obtain a O(log s+ log q)-space PIT algorithm for C2 using A.
To accomplish this logspace reduction of C2 to a PIT algorithm for A, we introduce a useful

concept, which we call as the µℓ-measure, where ℓ ∈ N is a parameter. For simplicity of exposition,
we give an ‘intuitive meaning’ of this measure. The formal description is given in Section 4.1. The
measure µℓ maps every formula in the class Cℓ to either 0 or 1 based on the following criterion: If
F is a semantically multilinear read-j formula for some j < ℓ then µℓ(F) = 0 otherwise µℓ(F) = 1
(the converse is not entirely true as pointed in Remark 4.2). A formula P over a field F is said to
be semantically multilinear read-j formula if there exists a Q ∈ Cj such that P and Q compute the
same polynomial over F. For example, 0 is a semantically multilinear read-ℓ polynomial for every
ℓ ∈ N. We emphasise once again that this is just an intuitive explanation of the measure µℓ and
its exact description is given in Definition 4.1.

Now, let us see the utility of the µℓ-measure in determining whether F is zero or not. We have
described the space-efficient computation of the measure µℓ in Lemma 4.5 and here we describe
the gist of its proof. For a node v of F , let Fv be the sub-formula of F rooted at v. Since we have
whitebox access to F , we show how to compute µ2(Fv) for any node v in F . We do the computation
of µ2 of the nodes of F in the bottom-up manner. If v is a leaf node then it is a straightforward
task to determine the value of µ2(Fv). Suppose v is a non-leaf node and suppose u and w are the
children of v. Then, given the values of µ2(Fu) and µ2(Fw), the value of µ2(Fv) can be computed
by using one of the following two tables depending on whether v is labelled with + or ×.

Fv = Fu + Fw µ2(Fw) = 0 µ2(Fw) = 1

µ2(Fu) = 0
µ2(Fv) = 1 iff ∃i ∈ [n] s.t. xi appears two times in Fv, it
also appears in both Fu, Fw, and

∂Fu
∂xi

+ ∂Fw
∂xi
̸≡ 0

µ2(Fv) = 1

µ2(Fu) = 1 µ2(Fv) = 1 µ2(Fv) = 1

Table 1: v is a + node

Fv = Fu × Fw µ2(Fw) = 0 µ2(Fw) = 1

µ2(Fu) = 0 µ2(Fv) = 0 µ2(Fv) = 1 iff Fu ̸≡ 0

µ2(Fu) = 1 µ2(Fv) = 1 iff Fw ̸≡ 0 µ2(Fv) = 1

Table 2: v is a × node

The correctness of these tables is proven in Section 4.1. Now, we argue why we need whitebox
PIT algorithm A for

∑[2] C1, which is evident from the first table. For instance, if F = F1 + F2,

9

µ2(F1) = µ2(F2) = 0, then we check if there exists a variable xi such that xi labels two leaves of F ,
xi also labels some leaves of both F1 and F2, and

∂F1
∂xi

+ ∂F1
∂xi
̸≡ 0. Since F ∈ C2, µ2(F1) = µ2(F2) = 0,

it follows from Definition 4.1 that F1, F2 ∈ C1. Then, as every formula in C1 is multilinear, clearly
∂F1
∂xi

, ∂F2
∂xi
∈ C1. We first compute ∂F1

∂xi
, ∂F2
∂xi

in O(log s) work-space (see Section 3.1 in this regard).

It is at this point where we need A to determine whether ∂F1
∂xi

+ ∂F2
∂xi
≡ 0 or not. At the end, after

computing µ2 recursively for every node, if µ2(F) = 1 then we output 1, otherwise we know that F
is a semantically read-once formula and we test whether F ≡ 0. We conclude by noting that PIT
algorithm A takes O(log q + log s) space, as observed in Theorem 4.9.

1.4.2 Proof overview of Theorem 5

We prove a more general result in Section 5 (see Theorem 5.1): Let k ∈ N be a constant and Ck
be the class of multilinear read-k formulas. Suppose we have an Sk-explicit-generator (Definition
2.11) for the class Ck and a space-O(Sk+1) whitebox PIT for Ck+1. Then, there exists a whitebox
PIT for Ck+Ck+1 having roughly the space complexity O(Sk+Sk+1). In this section, we convey the
main ideas of the proof by confining the discussion to k = 1. As we have a logspace-explicit hitting
set generator for the class of read-once formulas C1 (see Observation 2.19 and Lemma 2.13), and a
logspace whitebox PIT for C2 (see Theorem 4.7), this general result immediately gives a logspace
whitebox PIT algorithm for the class C1 + C2. For simplicity, we assume that F = Fq.

Now, we discuss the key idea of our proof. Suppose we are given whitebox access to a size-s

arithmetic formula F
∆
= R + Q which computes a polynomial in F[x1, x2, . . . , xn], where R ∈ C1

and Q ∈ C2. We want to determine whether F ≡ 0 or not in O(log q + log s) space. We adapt a
crucial result from [AvMV15] to the logspace setting that helps us in doing this PIT. In particular,
we show that we can compute a ‘special assignment’ a ∈ Fn in logspace such that either F ≡ 0 or
there exists a constant w ∈ N such that for every n > w, the monomial x1 · · ·xn does not divide
F (x + a). Once we have this, then using a result of [SV15], it is not difficult to test whether
F ≡ 0 in logspace. As mentioned before, this result was proven in [AvMV15] in the polynomial-
time setting. In fact, their result holds for the class Ck for any constant k ∈ N, and not just for
C1 + C2. See the “Key lemma” of [AvMV15] for more details. The “Key lemma” was the backbone
of two main theorems of [AvMV15], namely a quasi-polynomial-time blackbox PIT for Ck, and a
polynomial-time whitebox PIT for Ck for any constant k ∈ N. Now, let us say something about
this special assignment a for the class Ck, where k ∈ N is an arbitrary constant. It was shown in
[AvMV15] that for any P ∈ Ck, the special assignment a for P is a common non-zero assignment
of some constant-order partial derivatives of P and they showed how to compute a in polynomial
time. If one could compute this assignment in logspace, then from the polynomial-time whitebox
PIT for Ck given in [AvMV15], we get a logspace whitebox PIT algorithm for Ck. But, it is not
clear how to accomplish this. Our main contribution in this theorem is to show how to compute
such a special assignment a ∈ Fn for the class C1 + C2 in logspace. This result could be seen as an
important step towards obtaining a logspace whitebox PIT for the class

∑[2] C2. We have shown

in Theorem 4.6 that a whitebox PIT for
∑[2] C2 would give a logspace PIT for the class C3, which

is not known. So, Theorem 5 could be seen as an attempt towards obtaining a logspace whitebox
PIT for Ck, where k ≥ 3 is a constant.

Now, we show how to get hold of a special assignment for F = R + Q in logspace. We prove
that this special assignment is in the image of the generator Gn,2 described in Definition 2.15. Let
u ∈ N be a constant and E be the set of pairs of the kind (f, I), where f is a sub-formula of either

10

R or Q and I ⊆ [n] such that ∂If ̸≡ 0, and either of the following holds:

• f is a sub-formula of R and |I| ≤ u+ 1.

• f is a sub-formula of Q, |I| ≤ u such that µ2(f) = 0, where the description of µ2 is given in
Definition 4.1.

• f is a sub-formula of Q such that µ2(f) = 1, |I| ≤ u such that for every i ∈ [n], ∂I∪{i}Q ̸≡ 0.

We now prove that if a ∈ Fn satisfies (∂If)(a) ̸= 0 for every (f, I) pair given above then either
F ≡ 0 or x1 · · ·xn divides F (x + a), which allows us to test in logspace whether F ≡ 0. In this
regard, we prove the following result: Suppose for every subset I ⊆ [n], |I| ≤ u + 1 that satisfies
∂IQ ̸≡ 0, we have (∂IQ)(Gn,1) ̸≡ 0. If a ∈ Fn is a non-zero assignment of ∂If for every (f, I) ∈ E
then a is a special assignment for F . See Claims 5.7, 5.8, and 5.11 in this regard. This result is the
heart of our proof. We also show that if for some I ⊆ [n], |I| ≤ u+1, ∂IQ ̸≡ 0 but (∂IQ)(Gn,1) ≡ 0
then F ̸≡ 0. It is at this point where we need a logspace whitebox PIT for the class C2, which is
given in Theorem 4.7. Henceforth, we assume that for every subset I ⊆ [n], |I| ≤ u+1 that satisfies
∂IQ ̸≡ 0, we have (∂IQ)(Gn,1) ̸≡ 0.

Now, we argue how the above mentioned categorization of the elements of the set E gives us
a space-efficient computational handle on the required special assignment a. We show that one
such assignment a is in the image of the generator Gn,2 (Definition 2.15). Let us go over these
three categories of (f, I) given above one by one and talk about the first category. Let f be a
sub-formula of R and I ⊆ [n], |I| ≤ u+ 1. Since C1 consists of only multilinear formulas, it follows
from [MV18] that Gn,1 hits ∂If , i.e., ∂If ≡ 0 if and only if ∂If(Gn,1) ≡ 0, which implies that Gn,2

also hits ∂If . Thus, there exists an a ∈ Im(Gn,2) such that for every (f, I) belonging to the first
category such that ∂If ̸≡ 0, (∂If)(a) ̸= 0. Now, we argue that Gn,2 also hits every non-zero ∂If ,
where (f, I) is in the second category. Let f be a sub-formula of Q such that µ2(f) = 0. Then,
it follows from Definition 4.1 that there exists a P ∈ C1 such that P and f compute the same
polynomial in F[x1, x2, . . . , xn]. Then, for every I ⊆ [n], |I| ≤ u,Gn,1 hits ∂If . Hence, Gn,2 hits
∂If . Now, let us come to the third category. Let f be a sub-formula of Q such that µ2(f) = 1.
Then, from Definition 4.1, there exists a j ∈ [n] such that xj appears twice in f and ∂xjf ̸≡ 0. Let
I ⊆ [n] be such that |I| ≤ u and for every i ∈ [n], ∂I∪{i}Q ̸≡ 0. We want to now show that Gn,2

hits ∂If . Recall that in this case, as ∂IQ ̸≡ 0, we have (∂IQ)(Gn,1) ̸≡ 0. We prove in Claim 5.5
that (∂I∪{i}f)(Gn,1) divides (∂I∪{i}Q)(Gn,1). This along with a standard property of a generator
implies that as (∂I∪{i}Q)(Gn,1) ̸≡ 0, we have (∂I∪{i}f)(Gn,1) ̸≡ 0. Then, it follows from Lemma
2.18 that as ∂If ̸≡ 0, we get (∂If)(Gn,2) ̸≡ 0. Thus, Gn,2 hits the polynomials ∂If , where (f, I)
belong to the third category. This proves that there exists an a ∈ Im(Gn,2) such that either F ≡ 0
or for every n > w, F (x+ a) is not divisible by the monomial x1 · · ·xn. Now, using a result from
[SV15], we are able to test in logspace whether F ≡ 0.

1.5 Organization

The rest of the paper is organized as follows: We present some preliminary definitions and results
in Section 2. In Section 3, we present logspace algorithms for some fundamental problems like
computing partial derivative and computing partial assignment of an arithmetic formula. Section
4 is devoted to a logspace reduction of whitebox PIT for Ck+1 to a whitebox PIT for

∑[2] Ck, using
which we prove Theorem 4. In Section 5, we give a result that generalize Theorem 5. After that,

11

in Sections 6 and 7 we observe that the results of [GKS17] and [ASSS16] yield logspace whitebox
PIT algorithms for the classes of constant-width read-once oblivious arithmetic branching programs
and depth-3 circuits having constant transcendence degree. Finally, we conclude with some open
questions in Section 8.

2 Preliminaries

The set of natural numbers is represented by N. We use the
∆
= symbol for defining. For an

n ∈ N, [n] ∆
= {1, . . . , n}. We denote the sets of variables by x,y, z; vectors over F by a,b,α; and

circuit classes by upper case calligraphic letters like C. A polynomial f ∈ F[x1, x2, . . . , xn] is called
multilinear if its individual degree is at most one. For a polynomial f ∈ F[x1, x2, . . . , xn] and a

vector a = (a1, . . . , an) ∈ Fn, the shifted polynomial is f(x+ a)
∆
= f(x1 + a1, . . . , xn + an). We say

that f ∈ F[x1, x2, . . . , xn] depends on xi if there exist a tuple a = (a1, . . . , an) ∈ Fn and b ∈ F such
that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) ̸= f(a1, . . . , ai−1, b, ai+1, . . . , an).

Further, var(f)
∆
= {i ∈ [n] : f depends on xi} It is not difficult to see that i ∈ var(f) if and only if

∂f
∂xi
̸≡ 0. Let F be an arithmetic formula over a field F and v be a node of F . Then, the sub-formula

of F rooted at v is denoted by Fv or simply v, when it is clear from the context. The following
fundamental result will be useful in our proofs.

Lemma 2.1 ([Alo99]). Let f ∈ F[x1, x2, . . . , xn] be a polynomial. Suppose that for every i ∈ [n]
the individual degree of xi is bounded by di, and let Si ⊆ F be such that |Si| > di. We denote
S = S1 × S2 × · · · × Sn. Then, f ≡ 0 iff f |S ≡ 0.

2.1 Partial Derivatives

We have taken the following definition of discrete partial derivatives from [SV15]. It is not difficult
to observe that for multilinear polynomials, this definition is same as the analytic definition of
partial derivatives.

Definition 2.2 (Discrete Partial Derivative). Let f ∈ F[x1, x2, . . . , xn] and x ∈ {x1, . . . , xn}. Then,
the discrete partial derivative of f with respect to x is defined as:

∂f

∂x

∆
= f |x=1 − f |x=0.

Further, let I = {i1, . . . , ir} ⊆ [n] be a non-empty set of size. Then, the iterated partial
derivative of f with respect to I is defined as

∂rf

∂xi1 · · · ∂xir
∆
=

∂

∂xi1

(
∂

∂xi2
· · ·

(
∂f

∂xir

)
· · ·

)
.

We use the following shorthand notation for partial derivatives: Let f ∈ F[x1, x2, . . . , xn]. For

x ∈ {x1, . . . , xn}, ∂xf
∆
= ∂f

∂x and for an I ⊆ [n], I = {i1, . . . , ir}, ∂If
∆
= ∂rf

∂xi1
··· ∂xir

.

Fact 2.3 (Chain rule of partial derivatives). Let F be a field, f ∈ F[x1, . . . , xn, y], h ∈ F[x1, x2, . . . , xn],
and g

∆
= f |y=h. Let x ∈ {x1, . . . , xn} be arbitrary. Then,

∂xg = (∂xf)|y=h + (∂yf)|y=h · ∂xh.

12

2.2 Multilinear bounded-read arithmetic formulas

Let F be a field. An arithmetic formula F over F is a binary tree where every leaf node is labelled
by either a variable or a constant from F, every other node is labelled either by + or × operation.
A leaf node of F computes its label and if v is a non-leaf of F labelled by ◦ ∈ {+,×} and has
children v1, v2 then v computes Fv1 ◦ Fv2 , where Fvi is the polynomial computed by the node
vi for every i ∈ [2]. The output of the root of F is said to be the polynomial computed by F.
The size of F is defined as the number of nodes in F . We say that an arithmetic formula F is
(syntactically) multilinear if every node of F computes a multilinear formula. Several restricted
versions of arithmetic formulas are well-studied in the literature. One such restriction is given in
the following definition.

Definition 2.4 (Multilinear bounded-read formulas). Let F be a field and F be a multilinear
arithmetic formula over F that computes a polynomial in F[x1, x2, . . . , xn]. Let k ∈ N. We say that
F is a multilinear read-k formula if every variable in {x1, . . . , xn} labels at most k leaf nodes of F .
We denote the class of mulitlinear read-k arithmetic formulas over F by Ck,F and we drop F from
the subscript the whenever the field F is clear from the context.

One of the reasons for studying multilinear bounded-read arithmetic formulas is that developing
deep understanding of such formulae might give us good insights about the class of multilinear
formulas, which is an important class of arithmetic circuits. A deterministic quasi-polynomial-time
blackbox PIT algorithm and a polynomial-time whitebox PIT for Ck were given in [AvMV15] for
every constant k ∈ N. The following observation shows that the class Ck is closed with respect to
partial derivatives (Definition 2.2).

Observation 2.5. Let F be a field, k ∈ N, and F ∈ Ck such that F computes a polynomial in
F[x1, x2, . . . , xn]. Then, for every i ∈ [n], ∂F

∂xi
∈ Ck.

2.3 Generators

The problem of blackbox PIT asks for a hitting set, which is defined as:

Definition 2.6 (Hitting set). Let F be a field and C be a class of arithmetic circuits over F. Then,
H ⊆ Fn is a hitting set for C, if for every non-zero polynomial f ∈ C, there exists a point a ∈ H
such that f(a) ̸= 0.

A blackbox PIT algorithm for a class of arithmetic circuits C is efficient when H contains
poly(s, d) many points and can also be constructed in poly(s, d) time, where s is the size and d is
the degree of the circuit given as input to the PIT algorithm. A common convention for polynomials
over finite fields is that the size of the field is polynomially-large in the size and the degree of the
given circuit or we assume that we have blackbox access to a large enough extension field. Another
important notion for blackbox PIT is that of hitting set generators (or simply generators). For any
class of arithmetic circuits, the power of generators and hitting sets are equivalent (in polynomial-
time), and it is ‘often’ easier to work with generators. We refer the interested reader to a beautiful
survey of [SY10] for a detailed exposition of PIT.

Definition 2.7 (Generator). Let F be a field and C be a class of n-variate polynomials over F.
Consider the polynomial map G = (G1,G2, . . . ,Gn) : Ft → Fn, where for each i ∈ [n], Gi ∈
F[y1, y2, . . . , yt]. For a polynomial f ∈ F[x1, x2, . . . , xn], we define action of G on polynomial f

13

by f(G) = f(G1, . . . ,Gn) ∈ F[y1, . . . , yk]. We call G a t-seeded generator for class C if for every

non-zero f ∈ C, f(G) ̸≡ 0. Degree of generator G is defined as deg(G) ∆
= max{deg(Gi)}ni=1. Image

of generator G is defined as Im(G) ∆
= G(Ft).

A generator G for class C acts as a variable reduction map that reduces the number of variables
from n to t while preserving the non-zeroness. It immediately follows from the above definition
that a generator contains a hitting set for C in its image.

Fact 2.8 (Generator =⇒ hitting-set, [SV15]). Let F be a field and G = (G1, . . . ,Gn) : Ft → Fn be

a generator for a circuit class C such that deg(G) ∆
= δ. Let W ⊆ F be any set of size ndδ. Then,

H ∆
= G(W t) is a hitting set, of size |H| ≤ (ndδ)t, for polynomials f ∈ C of individual degrees less

than d.

In other words, when the seed-length t and the degree δ of the generator is constant, we get
a polynomial-time blackbox PIT algorithm. In the following section we will discuss hitting-set
generators through the lens of space complexity.

2.4 From Log-space-Explicit Generator to Log-space PIT

We call an arithmetic formula F over a field F as size-s, bit-complexity-b formula if the size of F is
s and the bit complexity of the field constants appearing in F is (at most) b. Consider the following
definition.

Definition 2.9 (The space complexity of formula evaluation). Let F be a field. Then, eF(s, b) is
defined to be the space complexity of computing F (a), where F is an arbitrary size-s, bit-complexity-b
arithmetic formula over F and a ∈ Fn is an arbitrary tuple.

The following upper bounds on eF(s, b) follow from [BCGR92] and [BC92]. Also see [CDL01,
HAM02, MW07].

Lemma 2.10. The quantity eF(s, b) is upper bounded by

• O(log(s) + log(q)) for any finite field of size q.

• O(log(s) + log log(p)) for any prime field Fp.

• O(log(s) + log(b)) for Z and Q

The second and the third cases of Lemma 2.10 use the Chinese Remainder Theorem, hence it
is unclear how to extend the result to arbitrary fields (e.g. arbitrary infinite fields or finite fields of
size pℓ for ℓ ≥ 2).

In order to formalize the notions of logspace-explicit generators and relate them to some of the
existing constructions, we require the following slightly more general definitions which are inspired
from the definition of a log-space computable function given in [AB09]. Recall that a (hitting-set)
generator (Definition 2.7) is a polynomial map.

Definition 2.11 (Space-explicit polynomial maps). Let F be a field, S : N→ N, t : N→ N, n ∈ N,
and P : Ft(n) → Fn be a polynomial map. We say that P is S(n)-space-explicit if there exists a
Turing machine that given an α ∈ Ft(n) writes P (α) on the output tape using O(S(n)) amount of
work-space.

14

Definition 2.12 (Space-uniformity of a polynomial map). Let F be a field, S : N→ N, t : N→ N,
n ∈ N, and P : Ft(n) → Fn be a polynomial map. Then, P has an S(n)-space-uniform formula if
there exists a Turing machine that given the parameters n, t(n) outputs an arithmetic formula over
F that computes P , using the work-space O(S(n)).

The above definitions naturally give rise to the notions of an S(n)-space-explicit generator and
an S(n)-space-uniform generator, respectively. The following claim relates the two definitions.

Lemma 2.13. Let F be a field, S : N→ N, t : N→ N, n ∈ N, and P : Ft(n) → Fn be a polynomial
map. If P has an S(n)-space-uniform formula of size s and bit-complexity b over F then P is
(S(n) + log s+ eF(s, b))-space-explicit.

Proof. We want to show that there exists a Turing machine that takes as input α ∈ Ft(n) and
computes P (α) using O(S(n) + log s + eF(s, b)) work-space. As P has a O(S(n))-space-uniform
formula, we know from Definition 2.12 that there exists a Turing machine T1 that takes input
n, t(n), and outputs a size-s, bit complexity-b arithmetic formula F over the field F using O(S(n))
work-space such that F computes P . We know from Lemma 2.10 that there exists a Turing
machine T2 that takes input F and a α ∈ Fn and outputs F (α) in work-space O(log s+ eF(s, b)).
Let T1 ◦ T2 denote the a Turing machine computing the composition of functions computed by T1

and T2. Then, T1 ◦ T2 takes input P and a α ∈ Ft(n) and outputs P (α) using the work-space
O(S(n) + log s+ eF(s, b)).

In the last theorem of this section we show how to connect all the dots obtaining a space-efficient
whitebox PIT algorithm from a space-explicit generator.

Theorem 2.14. Let S : N→ N and let F be an arithmetic formula of size s and bit-complexity b
computing a non-zero polynomial over F[x1, x2, . . . , xn]. Let H : Ft → Fn be an S(n)-space-explicit
polynomial map of degree at most δ such that F (H) ̸≡ 0. Then there exists an algorithm, that given
F as input, outputs an assignment a ∈ Fn such that F (a) ̸= 0, using O(t · (log(δ)+ log(s))+S(n)+
eF(s, b)) space.

Proof. Since F has a formula of size s, F (H) is a non-zero polynomial of degree less than δs.
Let V ⊆ F be a set of size |V | = δs. We can pick V such that bit-complexity of each element
is O(log |V |) = O(log δ + log s). By Lemma 2.1, there exists α ∈ V t such that F (H(α)) ̸= 0.
Therefore, to output an a such that F (a) ̸= 0, it suffices to go over each α ∈ V t, and check if
F (H(α)) ̸= 0, where the bit-complexity of each element α is O(t(log δ + log s)).

Since H is O(S(n))-space-explicit, by Definition 2.11, there is a Turing machine that, given
α ∈ Ft, outputs H(α) using O(S(n)) work-space. By Lemma 2.10, F (H(α)) can be computed
using eF(s, b) work-space given H(α). By iterating over all α ∈ V t and combining the above steps,
a non-zero assignment a ∈ Fn such that F (a) ̸= 0 can be computed in space O(t(log δ + log s) +
S(n) + eF(s, b)).

2.5 The Generator Gn,k of [SV15]

The generator Gn,k was defined in [SV15] for the class of arithmetic read-once formulas. It has been
a crucial ingredient in PIT algorithms of various other interesting classes also [KMSV13, FSS14,
AvMV15, MV18, BGV23]. We will also be using this generator in our results. We borrow the
definition and properties of this generator as presented in [AvMV15, Vol15].

15

Definition 2.15. Let α1, . . . , αn ∈ F be n distinct elements and for i ∈ [n], let Li(x)
∆
=

∏
j∈[n]\{i}

x−αj

αi−αj

denote the corresponding Lagrange interpolant. For every k ∈ [n], let Gn,k : F2k → Fn be defined as

Gn,k(y1, . . . , yk, z1, . . . , zk)
∆
=

 k∑
j=1

L1(yj)zj ,
k∑

j=1

L2(yj)zj , . . . ,
k∑

j=1

Ln(yj)zj

Let (Gn,k)i denote the ith component of Gn,k and we call αi as the Lagrange constant associated
with this ith component. We can also define Gk to be the class of generators {Gn,k}n∈N for all
output lengths.

For two generators G1,G2 with the same output length, we define their sum G1 + G2 as their
component-wise addition, where the seed variables of both generators are implicitly relabelled so as
to be disjoint. With this terminology, we can note various useful properties of the generator Gn,k

from its definition.

Fact 2.16 ([SV15, KMSV13, Vol15]). Let k, k′ be positive integers.

1. Gn,k(y,0) ≡ 0.

2. Gn,k(y1, . . . , yk, z1, . . . , zk)|yk=αi = Gn,k−1(y1, . . . , yk−1, z1, . . . , zk−1) + zk · ei, where e is the

0-1 vector with a single 1 in coordinate i and αi the ith Lagrange constant and Gn,0
∆
= 0.

3. Gn,k(y1, . . . , yk, z1, . . . , zk) +Gn,k′(yk+1, . . . , yk+k′ , zk+1, . . . , zk+k′)
= Gn,k+k′(y1, . . . , yk+k′ , z1, . . . , zk+k′).

4. For every b ∈ Fn with at most k non-zero components, b ∈ Im(Gn,k).

The observation below immediately follows from Definition 2.15.

Observation 2.17. Let C be a class of arithmetic circuits over a field F and H = (Hi)i∈N be a
hitting-set generator for C. Then, for every k ∈ N, H +Gk is also a generator for C.

Lemma 2.18 (Implicit in [SV15], Lemma 2.14 of [AvMV15]). Let P ∈ F[x1, x2, . . . , xn] and Hn be
such that there exists a variable xj such that (∂xjP)(Hn) ̸≡ 0. Then P (Hn +Gn,1) ̸≡ 0.

2.5.1 Log-space Explicitness

Now, let us talk about the space-explicitness and space-uniformity of Gn,k. Observe that over a
finite field Fq it is clear that for every k ≤ n, the map is (log n + log q)-space-explicit. However,
it is not immediately clear if this is also the case over Q or any other field of characteristic zero.
The n-fold multiplication in the definition of Gn,k (Definition 2.15) may give the impression that
the map is not log-space-explicit. We, nonetheless, show that Gn,k is log-space explicit by first
observing that it has a log-space-uniform formula with the right set parameters. The claim then
follows immediately from Lemma 2.13.

Observation 2.19. Let n, k ∈ N be such that k ≤ n and F be a field of size |F| > n. Then, Gn,k

over F has a O(log n)-space-uniform formula of size s = O(n3) and bit-complexity b = O(log n)6.

6Note that definition 2.15 only requires the elements ai to be distinct. Hence, we can choose the first n
lexicographically-smallest elements.

16

The claim below follows from Observation 2.19 and Lemma 2.13.

Claim 2.20. Let n, k ∈ N be such that k ≤ n and F be a field of size |F| > n. Then, Gn,k over F
is O(log n+ eF(n

3, log n))-space-explicit.

3 Generic traversal of a formula

In this section, let F be an arithmetic formula over a field F. We can think of F a straight-line
program where each instruction is of form:

ga ← gb op gc where b < a or gb ∈ x ∪ F (and similarly gc)

Since F is a formula, every gate gi can be used at most once in a later instruction.

We give a meta-procedure in Algorithm 1, whose main objective is to compute a given function

Ψ
∆
= (Ψleaf,Ψ+,Ψ×) in a space-efficient way. In particular, the computation of Ψ on F will be

defined recursively: if g is a leaf of F , then Ψ(g)
∆
= Ψleaf(g). If g is a gate (i.e. operation) in

F , then Ψ(g) is defined by applying Ψ+ or Ψ× in the case of the + and × gate, respectively (we
assume that Ψ values have already been computed for both g’s children). Formally, suppose we
have ga ← gb op gc for b, c < a. Then

Ψ(ga)
∆
=

{
Ψ+ (Ψ(gb),Ψ(gc)) , if op = +

Ψ× (Ψ(gb),Ψ(gc)) , if op = ×.

Our procedure will perform a post-order traversal, remembering only the current and the pre-
vious positions7. In addition to computing a returned value (denoted by γ), Ψ may also output a
modified formula F ′ on the output tape. This will be denoted by OUT. It is to be noted that the
main difference between the returned value and the output content, written on the tape, is that
the returned value is placed on the work tape of the machine and thus can be used in subsequent
computations, whereas, the content of the output tape is, by definition, write-only and thus can-
not be read again. At the same time, this content is not “charged” to the space complexity of the
Turing machine.

If s is the size of the formula F , then each node in the formula can be indexed using O(log s)
bits. Furthermore, observe that given a node, the standard operations of determining its parent,
left child or right child can all be carried out in O(log s) space. To simplify the algorithm and its
analysis, we first preprocess the formula by transforming it into a left-heavy form (see Section C
of Appendix). As this transformation can be carried out in O(log s) space, we can assume for our
analysis that any given formula is already left-heavy.

Lemma 3.1. Let F be an arithmetic formula of size s over a field F. Let SΨ denote the maximum
space-complexity of the procedures Ψleaf,Ψ+,Ψ× and let t ≥ 1 denote the maximum bit-complexity
of the output values of these functions. Then given F as an input, Algorithm 1 returns the value
of Ψ(F) (and might also write on the output tape), using O(SΨ + t · log s) work space.

The proof follows along the same lines as previous works [BCGR92, Lin92, DLN+22] but we
give it in a more general form as we will be using it to perform different functionalities using the
same framework. For completeness, we give the proof of Lemma 3.1 in Section B of the Appendix.

7Note that remembering the entire traversal history would require linear memory thus rendering the procedure
space-inefficient.

17

Algorithm 1: Generic traversal for a formula

Input: An arithmetic formula F , functions Ψleaf, Ψ+, Ψ× and stack Γ.
Output: Ψ(F).

1 Preprocessing: Transform F into a left-heavy form.

2 Initialize curr
∆
= root(F), prev

∆
= ⊥, α = β = ⊥, Γ = Ø.

/* curr and prev track the current and previous nodes, while α will store

the popped Ψ value from stack and β will store the last Ψ value returned.

*/

3 while curr ̸= ⊥ do
/* if curr is leaf, compute β and go up */

4 if curr is a leaf then
5 β ← Ψleaf(curr), prev← curr, curr← parent(curr)
6 continue. /* Skip to next iteration of loop */

7 end
/* curr is not a leaf in the below cases */

/* If coming from up, go left */

8 if prev = parent(curr) then prev← curr, curr← curr.left, continue.
/* If coming from left, push last value to stack and go right */

9 if prev = curr.left then
10 Γ.push(β), prev← curr, curr← curr.right, continue.
11 end

/* If coming from right, β has Ψ value of right child and top of stack

has Ψ value of left child */

12 if prev = curr.right then
13 α← Γ.pop().
14 if curr.op = ‘+’ then β ← Ψ+(α, β) else β ← Ψ×(α, β).

/* Go up */

15 prev← curr, curr← parent(curr).

16 end

17 end
18 return β. /* returning root’s Ψ value */

18

3.1 Partial derivative in logspace

Let F be a syntactically multilinear formula that computes a polynomial in F[x1, x2, . . . , xn]. We
will describe a logspace algorithm that outputs the partial derivative of F w.r.t to a variable xi
when i ∈ [n]. Towards that end, we use the generic traversal algorithm (Algorithm 1) for comput-
ing ∂xiF by defining an appropriate Ψ function, Ψi = (Ψi

leaf,Ψ
i
+,Ψ

i
×). In fact, we will compute a

somewhat more general function which will be required for the recursive argument.

For each gate g, the function Ψi will simultaneously compute a value γ(g) and write on the
output tape (denoted by OUT below), based on an appropriate modification of the input formula F .

We first define Ψi
leaf as follows:

Ψi
leaf(g)

∆
=

{
⟨γ(g) = 1,OUT : 1⟩, if g = xi,

⟨γ(g) = 0,OUT : g⟩, otherwise.
(1)

We give the following table description (Table 3) for the definition of Ψi
+ for an addition gate which

is of the form ga ← gb + gc.

ga ← gb + gc γ(gc) = 0 γ(gc) = 1

γ(gb) = 0 ⟨γ(ga) = 0, OUT : ga ← gb + gc⟩ ⟨γ(ga) = 1, OUT : ga ← 0 + gc⟩

γ(gb) = 1 ⟨γ(ga) = 1, OUT : ga ← gb + 0⟩ ⟨γ(ga) = 1, OUT : ga ← gb + gc⟩

Table 3: Definition of Ψi
+ to compute ∂g

∂xi

We give the following table description (Table 4) for definition of Ψi
× for a multiplication gate which

is of the form ga ← gb × gc.

ga ← gb × gc γ(gc) = 0 γ(gc) = 1

γ(gb) = 0 ⟨γ(ga) = 0, OUT : ga ← gb × gc⟩ ⟨γ(ga) = 1, OUT : ga ← gb × gc⟩

γ(gb) = 1 ⟨γ(ga) = 1, OUT : ga ← gb × gc⟩ Impossible

Table 4: Definition of Ψi
× to compute ∂g

∂xi

Remark 3.2. We want to emphasize that in Tables 3 and 4, gb and gc are not the gates of the
original formula on the input tape, rather the gates written on the output tape after Ψ function has
been applied to them. See the proof of Lemma 3.3 for more clarity.

Lemma 3.3. Given a multilinear formula F over F[x1, x2, . . . , xn] and i ∈ [n], Ψi(F) writes the
formula for ∂F

∂xi
on the output tape, if xi appears as a leaf in F , otherwise it outputs F itself.

19

Proof. For each gate g, by the recursive definition of Ψi, the following invariant holds by induction
on the structure of g:

Ψi(g)
∆
=

{
⟨γ = 1,OUT : ∂g

∂xi
⟩, if xi appears in the subformula g,

⟨γ = 0,OUT : g⟩, otherwise.
(2)

• If g is a leaf, then the invariant follows directly from Equation (1).

• Suppose g is of the form ga = gb + gc. By the sum rule: ∂ga
∂xi

= ∂gb
∂xi

+ ∂gc
∂xi

. If xi does not
appear in either of the subformulas gb or gc, i.e. γ(gb) = γ(gc) = 0, then xi does not appear
in the subformula ga either. Therefore, γ(ga) should be 0, which is indeed the case in Table 3.
Moreover, by the induction hypothesis, since γ value for both gb and gc is 0, the corresponding
gates gb and gc on the output tape will compute their original subformulas. Thus, when we
write the instruction ga ← gb + gc on the output tape, as done in Table 3, we maintain the
invariant for the current gate g. Now, without loss of generality, suppose xi appears only
in the subformula gb but not gc, i.e. γ(gb) = 1 and γ(gc) = 0. Then, xi appears in ga
and γ(ga) = 1. Moreover, we know that ∂ga

∂xi
= ∂gb

∂xi
+ 0. Since γ(gb) = 1, by the induction

hypothesis, the corresponding gate gb on the output tape computes the correct subformula for
∂gb
∂xi

. Therefore, we write the instruction ga ← gb+0 for the current gate g on the output tape.
Finally, when xi appears in both gb and gc, i.e. γ(gb) = γ(gc) = 1, xi appears syntactically
in ga also, thus γ(ga) = 1. Since ∂ga

∂xi
= ∂gb

∂xi
+ ∂gc

∂xi
, and by the induction hypothesis, the

corresponding gates gb, gc on the output tape compute the correct subformulas for ∂gb
∂xi

, ∂gc∂xi

respectively, we write the instruction ga ← gb + gc on the output tape. Thus in all the cases
of Ψi

+ in Table 3, we maintain the invariant.

• Suppose g is of the form ga = gb×gc. Note that since F is a multilinear formula gb and gc are
variable disjoint, hence xi cannot appear in both these subformulas. If xi does not appear in
both gb, gc, then γ(ga) = γ(gb) = γ(gc) = 0. By the induction hypothesis, the corresponding
gates gb, gc on the output tape compute their original subformulas, therefore when we write
the instruction ga ← gb×gc on the output tape, we maintain the invariant for the current gate
g. For the case when variable xi appears in exactly one of gb or gc, without loss of generality,
say gb, we have γ(gb) = 1 and γ(gc) = 0. Thus γ(ga) = 1. Moreover, ∂ga

∂xi
= gc · ∂gb∂xi

since xi
appears in gb but not in gc. By the induction hypothesis, the corresponding gate gb on the
output tape computes the subformula for ∂gb

∂xi
while the corresponding gate gc on the output

tape computes its original subformula gc. Therefore, when we write ga ← gb×gc, we maintain
the invariant for the current gate g. Thus in all the cases of Ψi

× in Table 4, we maintain the
invariant.

Thus, the invariant holds for every gate g in F and in particular, it holds for the root node.
Hence, the lemma holds true.

Remark 3.4. In the case when xi does not appear in g, we output g itself instead of 0 on the output
tape. This is because, when computing a partial derivative of some multiplication gate ga = gb× gc,
where xi appears in only one of the children gates (say gb), we know that ∂ga

∂xi
= ∂gb

∂xi
× gc. Had we

chosen to output 0 previously for gc, we would lose access to gc for this computation.

20

Remark 3.5. It could be the case that the variable xi appears in the formula F but F does not
depend on xi. In that case, the modified formula written on the output tape will actually compute
an identically zero polynomial.

We conclude this section with the desired logspace algorithm to compute partial derivative of
a multilinear formula.

Lemma 3.6 (Algorithm A-PARTIAL). There exists an algorithm that given a multilinear formula
F of size s over F[x1, x2, . . . , xn] and i ∈ [n], computes ∂F

∂xi
, using O(log s) work-space. Moreover,

if F is a read-ℓ formula then so is the output of the algorithm.

Proof. We first compute Ψi(F) by plugging the definition of Ψ = (Ψi
leaf,Ψ

i
+,Ψ

i
×) from (1), Table

3 and Table 4 in Algorithm 1. By Lemma 3.3, note that if Ψi(F) = 1, then we have ∂F
∂xi

written

in the output tape. However, when Ψi(F) = 0, we have F written in the output tape. Therefore,
after computing Ψi(F), we post-process it with a simple O(log s) space procedure as follows: If the
(γ) value of Ψi(F) is 1, then we copy the entire formula to the output tape, else we write 0 on the
output tape.

Correctness: follows from Lemma 3.3 and correctness of Algorithm 1.

Space-complexity: Observe that the space required to execute Ψi procedure is Si
Ψ = O(log s), which

follows from the description of Ψi
leaf,Ψ

i
+,Ψ

i
× in (1) and Tables 3, 4. Note that the returned value

γ is just a single bit and hence t = 1. Therefore by Lemma 3.1, we use O(log s)-space to compute
Ψi(F) using Algorithm 1. The additional post-processing step can also be done in O(log s) space
trivially and hence, the total work space used is O(log s).

3.2 Partial assignment in logspace

We say that a variable xi appears ℓ times in F , if xi labels exactly ℓ leaf nodes of F . In this section,
we introduce a logspace procedure A-SUBSTITUTE that given a formula F and ℓ ∈ N, as input,
will replace every variable that appears at least ℓ times in F , with the field element 0. The outcome
of this procedure results in a formula obtained by setting xi = 0 for each variable xi that appears
at least ℓ times in F .

For this procedure, we will invoke a subroutine A-COUNT, which given a formula F and variable
xi, counts the number of appearances of xi in F . This can be done in logspace by invoking Algorithm
5 with a slight modification: In Line 4, we increment size only if curr is labelled by xi.

Given the above, for each leaf, A-SUBSTITUTE will invoke A-COUNT. If the returned value
of A-COUNT is at least ℓ, then we will replace this particular leaf with 0, otherwise we keep it
as is. We invoke this subroutine for every leaf node that is a variable and reuse the space to run
this subroutine for different leaf nodes. We describe the whole procedure formally by defining
Ψℓ = (Ψℓ

leaf,Ψ
ℓ
+,Ψ

ℓ
×) below and plugging it into Algorithm 1.

Ψℓ
leaf(g)

∆
=

{
⟨OUT : 0⟩, 8 if g is a variable that appears at least ℓ times in F ,

⟨OUT : g⟩, otherwise.

8For the sake of simplicity, we do not mention the returned value γ in the definition of Ψ as we do not care about
it but we can always return any dummy bit, say 0.

21

For the internal computation nodes, we just copy the instructions as it is. We define

Ψℓ
+(g) = Ψℓ

×(g)
∆
= ⟨OUT : g⟩.

Lemma 3.7. Given a formula F , the function Ψℓ(F) outputs a modified formula F ′ that results
from F by substituting 0 into every variable that appears at least ℓ times.

Proof. By definition of Ψℓ = (Ψℓ
leaf,Ψ

ℓ
+,Ψ

ℓ
×), we copy every gate unless it is a leaf node corre-

sponding to some variable which appears ℓ or more times in F . In the first case of Ψℓ
leaf, we check

whether a variable leaf node appears at least ℓ times, by invoking the subroutine A-COUNT (mod-
ified Algorithm 5), to count the number of occurrences of the variable leaf node g. If it does, we
relabel it with 0 on the output tape, as stated in Ψℓ

leaf. This is equivalent to substituting a 0 into
every variable that appears at least ℓ times in F .

We now conclude the section with the desired logspace algorithm to compute partial assignment.

Lemma 3.8 (Algorithm A-SUBSTITUTE). There exist an algorithm that given a formula F of
size s, outputs a modified formula F ′ that results from F by substituting 0 into every variable that
appears at least ℓ times, using O(log s) work-space.

Proof. We plug Ψ = (Ψℓ
leaf,Ψ

ℓ
+,Ψ

ℓ
×) in Algorithm 1.

Correctness: Follows from Lemma 3.7 and correctness of Algorithm 1.

Space-complexity: Since Ψℓ
+,Ψ

ℓ
× merely copy the gate, we only need to analyze space-complexity of

Ψℓ
leaf. Observe that it invokes Algorithm A-COUNT (modified Algorithm 5) as a subroutine, which

takes only O(log s) space, which we keep reusing for different leaf nodes. Therefore SΨ = O(log s).
Moreover, return value is a single dummy bit, thus t = 1. Then by Lemma 3.1, the whole algorithm
takes O(log s) space.

4 Logspace reduction of PIT for Ck+1 to PIT for
∑[2] Ck

Let k ∈ N and F be a field. Recall that Ck, be the class of multilinear read-k arithmetic formulas

(Definition 2.4) over F. For a class of arithmetic formulas C, we define the associated class
∑[2] C ∆

=
{F1 + F2 : F1, F2 ∈ C}.

In Section 4.1, we present a tool that will be used in the desired logspace reduction given in
Section 4.4. This tool is distilled from the work of [AvMV15], where it was used implicitly and
implemented in polynomial time. Indeed, we extract the core concept and show how to implement
it in logarithmic space. Subsequently, in Section 4.5 we use the reduction from Section 4.4 to give
a logspace whitebox PIT algorithm for arithmetic read-twice formulas.

4.1 The measure µℓ

Recall that for a multilinear polynomial f ∈ F[x1, x2, . . . , xn], f depends on a variable xi if and
only if ∂f

∂xi
̸≡ 0. Below, let F be an arithmetic formula over a field F.

22

Definition 4.1 (The measure µℓ). Let ℓ ∈ N. We define the measure µℓ as µℓ : Cℓ → {0, 1}, where
for any formula F ∈ Cℓ :

µℓ(F) =

{
1, if there exists an xi ∈ var(F) such that xi appears ℓ times in F

0, otherwise.

Equivalently, µℓ(F) = 0 if and only if either every variable appears in F at most ℓ− 1 times or
for all xi that appear in F exactly ℓ times, xi ̸∈ var(F).

Remark 4.2. Note that if µℓ(F) = 0 for a read-ℓ formula F , then F is, in fact, a semantically
read-(ℓ − 1) formula. That is, F computes a read-(ℓ − 1) polynomial 9. Note, however, that the
converse is not necessarily true. For example, the formula F = x1+x1 is a read-twice formula and
F computes the semantically read-once polynomial 2x1. Yet, µ2(F) = 1.

4.2 Computation of µℓ for ℓ ≥ 2

Given a multilinear formula F ∈ Cℓ, we shall compute µℓ(F), for some ℓ ≥ 2 using the generic
framework of Section 3, by defining an appropriate update function Ψ. Formally, we define
Ψℓ = (Ψℓ

leaf,Ψ
ℓ
+,Ψ

ℓ
×) as follows:

Ψℓ
leaf(g)

∆
= ⟨γ = 0⟩. 10

We define Ψℓ
+ for a gate g of the form ga ← gb + gc, as follows:

ga ← gb + gc γ(gc) = 0 γ(gc) = 1

γ(gb) = 0
⟨γ(ga) = 1⟩ iff ∃i ∈ [n] s.t. xi appears ℓ times in ga, it also
appears in both gb, gc, and

∂gb
∂xi

+ ∂gc
∂xi
̸≡ 0.

⟨γ(ga) = 1⟩

γ(gb) = 1 ⟨γ(ga) = 1⟩ ⟨γ(ga) = 1⟩

Table 5: Definition of Ψℓ
+ to compute µℓ(g)

We define Ψℓ
× for a gate g of the form ga ← gb × gc, as follows:

ga ← gb × gc γ(gc) = 0 γ(gc) = 1

γ(gb) = 0 γ(ga) = 0 γ(ga) = 1 iff gb ̸≡ 0

γ(gb) = 1 γ(ga) = 1 iff gc ̸≡ 0 γ(ga) = 1

Table 6: Definition of Ψℓ
× to compute µℓ(g)

9In other words, there is a read-(ℓ− 1) formula that also computes the same polynomial. In Section 3.2, we show
how to efficiently convert such a formula into an equivalent read-(ℓ− 1) formula. This fact will be useful in our PIT
reduction.

10For the sake of simplicity, we do not mention the OUT value in the definition of Ψ since this function returns a
mere bit, and therefore is not required to use the output tape.

23

Now, we prove that with the above update functions, we actually compute µℓ, i.e. the (γ) value
Ψℓ(F) is the same as µℓ(F).

Lemma 4.3. Given a multilinear formula F ∈ Cℓ, Ψℓ(F) = µℓ(F).

Proof. Observe that any subformula g of F is also in the class Cℓ, therefore we can also define µℓ(g).
We show by that the invariant Ψℓ(g) = µℓ(g) holds by induction on the structure of g.

1. If g is a leaf, then Ψℓ(g) = 0 = µℓ(g) by the definitions of Ψℓ(g) and µℓ, since a variable
appears only once in a leaf, whereas ℓ ≥ 2.

2. Suppose g is of the form ga = gb+ gc. Assume µℓ(gb) = 1. Then by the induction hypothesis,
γ(gb) = 1. Also, it follows from Definition 4.1 that there exists an i ∈ var(gb) such that xi
appears ℓ times in gb. As F (and hence ga) is a read-ℓ formula, xi does not appear in gc.
Thus, irrespective of whether µℓ(gc) = 0 or 1, ga depends on xi and xi appears ℓ times in
ga. Hence, µℓ(ga) = 1 which is exactly γ(ga) from Table 5. Similarly, if µℓ(gc) = 1, we get
µℓ(ga) = 1 = γ(ga) as desired.

Now, suppose that µℓ(gb) = µℓ(gc) = 0. By the induction hypothesis γ(gb) = γ(gc) = 0. We
first assume that µℓ(ga) = 1. Then, it follows from Definition 4.1 that there exists a variable
xi such that xi appears ℓ times in ga and ∂ga

∂xi
̸≡ 0. We claim that xi should appear in both

gb and gc. Suppose not and without loss of generality assume that xi does not appear in gc.
This means xi appears in gb exactly ℓ times. Since µℓ(gb) = 0, it follows from Definition 4.1
that ∂gb

∂xi
≡ 0. Since ga = gb + gc, the linearity of partial derivatives implies that

∂ga
∂xi

=
∂gb
∂xi

+
∂gc
∂xi

.

Thus, we get ∂ga
∂xi
≡ 0, which is a contradiction. Hence, xi appears in both gb and gc. We get

from this discussion that µℓ(ga) = 1 implies there exists an i ∈ [n], which appears in both
gb, gc, appears ℓ times in F , and ∂ga

∂xi
̸≡ 0.

For the converse, suppose there exists an i ∈ [n], which appears in both gb, gc, and, in
addition, appears ℓ times in ga, and

∂ga
∂xi
̸≡ 0. Then, Definition 4.1 implies that µℓ(ga) ̸≡ 0.

Thus γ(ga) = µℓ(ga) holds true in this case also.

3. Suppose ga = gb × gc. Since ga is a syntactic multilinear formula, the sub-formulas gb and
gc compute variable-disjoint polynomials. First, assume µℓ(gb) = µℓ(gc) = 0. Then by
Definition 4.1, µℓ(ga) = 0. Note that by the induction hypothesis, we had γ(gb) = γ(gc) = 0.
Therefore by Table 6, γ(ga) = 0, which is the same as µℓ(ga) in this case. Now, assume
µℓ(gb) = µℓ(gc) = 1. Then, it follows from Definition 4.1 that gb ̸≡ 0, gc ̸≡ 0, and there
exists an i ∈ [n] such that xi appears ℓ times in gb and ∂gb

∂xi
̸≡ 0. As gb and gc compute

variable-disjoint polynomials, and ga = gb × gc,

∂ga
∂xi

=
∂gb
∂xi
× gc. (3)

Since gc ̸≡ 0 and ∂gb
∂xi
̸≡ 0, we get that ∂ga

∂xi
̸≡ 0. This implies that xi ∈ var(ga) and it appears

ℓ times in ga. Hence, from Definition 4.1, µℓ(ga) = 1. By the induction hypothesis, we had
γ(gb) = γ(gc) = 1. From Table 6, we get that γ(ga) = 1, which is thus the same as µℓ(ga) in

24

this case also. Finally, suppose µℓ(gb) = 1 and µℓ(gc) = 0. Then, there exists an i ∈ [n] such
that xi appears ℓ times in gb, which implies that xi appears in ga also exactly ℓ times. Since
gb ̸≡ 0, it follows from Equation (3) that ∂ga

∂xi
≡ 0 if and only if gc ≡ 0. Thus, µℓ(ga) = 1 if

and only if gc ̸≡ 0. Also by Table 6, γ(ga) = 1 if and only if gc ̸≡ 0. Hence, µℓ(ga) = γ(ga)
here also. The case when µℓ(gb) = 0 and µℓ(gc) = 1 follows similarly.

This completes the proof of Lemma 4.3.

Recall Algorithm A-SUBSTITUTE from the proof of Lemma 3.8. In Remark 4.2, we noted that
a read-ℓ formula F with µℓ(F) = 0 is actually a semantically read-(ℓ − 1) formula. We now show
that Algorithm A-SUBSTITUTE realizes an equivalent read-(ℓ − 1) formula for F . We use this
cleaning step multiple times in the next section.

Claim 4.4. Let ℓ ∈ N and let F be a read-ℓ formula such that µℓ(F) = 0. Then, given ℓ and F ,
Algorithm A-SUBSTITUTE outputs a read-(ℓ− 1) formula F̃ such that F̃ ≡ F .

Proof. Let I = {i | xi appears ℓ-times in F}. Observe that since µℓ(F) = 0, then by definition, the
polynomial f computed by the formula F does not depend on any variable in the set I. Therefore,
f |xI=0 = f . But f |xI=0 is exactly the polynomial computed by F̃ . Note that F̃ is a read-(ℓ − 1)
formula since after running Algorithm A-SUBSTITUTE, no variable appears ℓ or more times in
F̃ .

4.3 Implementation of µℓ

Let ℓ ∈ N and F ∈ Cℓ. Then, for every node v in F , µℓ(v)
∆
= µℓ(Fv), where Fv is the sub-formula

of F rooted at v. We will use all the algorithms we have designed in previous sections and a PIT
algorithm in implementation of µℓ. We summarize their descriptions below:

• Given a formula F and a variable xi, the procedure A-COUNT counts the appearances of xi
in F (modified Algorithm 5).

• Given a formula F and ℓ ∈ N, the procedure A-SUBSTITUTE substitutes 0 into all the
variables appearing at least ℓ-times in F (Lemma 3.8).

• Given a multilinear formula F and a variable xi, the procedure A-PARTIAL computes ∂F
∂xi

(Lemma 3.6).

• Given ℓ ∈ N, we use A-PIT-SUM to denote the PIT algorithm for sum of two multilinear
read-(ℓ− 1) formulas.

Note that except Algorithm A-PIT-SUM, we already know that every algorithm above uses at most
O(log s) work-space.

4.3.1 Implementation of Ψℓ
+

Observe that in Table 5, we need to invoke various subroutines to determine value of γ(ga) when
γ(gb) = γ(gc) = 0. Note that both the subformulas gb, gc ∈ Cℓ as F ∈ Cℓ.

25

• We iterate over i ∈ [n] till we find a variable xi which appears ℓ times in ga and also appears
in both gb and gc. We check this by invoking the subroutine A-COUNT multiple times ap-
propriately and reusing the space for different runs. If we don’t find such a variable, we set
γ(ga) = 0, otherwise we have a variable xi which appears ℓ times in ga but at most (ℓ − 1)
times in either of the subformulas.

• In the latter case, we clean the subformulas gb, gc by invoking algorithm A-SUBSTITUTE to
get g′b, g

′
c respectively. Then by Claim 4.4, both g′b, g

′
c are syntactically read-(ℓ− 1) formulas

that compute the same polynomials, respectively. Note that they are read-(ℓ − 1) in every
variable, not just xi, and it was okay to substitute 0 in any variable appearing ℓ times in these
subformulas, because their µℓ values were 0 and hence they did not depend on such variables
in the first place.

• We now invoke Algorithm A-PARTIAL to compute ∂g′a
∂xi

, where g′a = g′b + g′c. By the sum rule,
∂g′a
∂xi

=
∂g′b
∂xi

+ ∂g′c
∂xi

.

• Finally, we invoke the PIT algorithm A-PIT-SUM for ∂g′a
∂xi

, which as observed above, belongs

to the required class
∑[2] Cℓ−1. We set γ(ga) = 0 if and only if the PIT algorithm returns 0.

4.3.2 Implementation of Ψℓ
×

Observe that in Table 6, we need to check whether the polynomial gc ̸≡ 0 in the case when γ(gb) = 1
and γ(gc) = 0. Similarly in the opposite case when γ(gc) = 1 and γ(gb) = 0, we need to check
whether gb ̸≡ 0. We discuss the former case here. The other follows similarly.

• Note that the subformula gc ∈ Cℓ. We first clean gc by invoking the subroutine A-SUBSTITUTE
to get g′c. Since γ(gc) = 0 in this case, Claim 4.4 implies that g′c is a read-(ℓ− 1) formula that
computes the same polynomial as gc.

• Although, we only need PIT for a single read-(ℓ−1) formula now but we shall nevertheless use
PIT for the more general class of sum of two read-(ℓ− 1) formulas, as the implementation of
Ψℓ

+ already requires it. Thus, we invoke Algorithm A-PIT-SUM for g′c to test whether gc ≡ 0.
We set γ(ga) = 0 if and only if the PIT algorithm returns 0.

4.3.3 Algorithm for µℓ

Putting the implementation of Ψℓ
+,Ψ

ℓ
× together, we get the implementation for Ψℓ = (Ψℓ

leaf,Ψ
ℓ
+,Ψ

ℓ
×).

The algorithm to compute µℓ is then, simply plugging Ψℓ into Algorithm 1.

Lemma 4.5 (Algorithm A-COMPUTE-MU). Let ℓ ∈ N. Let A-PIT-SUM be the whitebox PIT

algorithm for the class
∑[2] Cℓ−1 and let S(ℓ−1) denote its space-complexity. Then, given a formula

F ∈ Cℓ of size s, there exists an algorithm to compute µℓ(F) which uses at most O (log s+ S(ℓ− 1))
work-space.

Proof. To compute µℓ(F), we plug in Ψ = (Ψℓ
leaf,Ψ

ℓ
+,Ψ

ℓ
×) in Algorithm 1.

Correctness: Follows from Lemma 4.3, Claim 4.4 and the discussion in Section 4.3.1, Section 4.3.2.

26

Space-Complexity: For the implementation of Ψℓ
+ (Section 4.3.1), in the worst case, we compose

Algorithms A-COUNT, A-SUBSTITUTE,A-PARTIAL,A-PIT-SUM for each i ∈ [n], to check the
condition in the first entry of Table 5. Note that we can reuse space when iterating over i ∈ [n]; we
only need extra O(log n) space needed to keep track of the current variable. Algorithm A-COUNT
uses only O(log s) space (see for e.g. Algorithm 5). Algorithm A-SUBSTITUTE also uses O(log s)
space by Lemma 3.8 Algorithm A-PARTIAL uses O(log s) space by Lemma 3.6. Finally, Algorithm
A-PIT-SUM uses S(ℓ− 1) space by hypothesis. For implementation of Ψℓ

× (Section 4.3.2), we only
need to compose Algorithms A-SUBSTITUTE and A-PIT-SUM to compute the return value in the
non-diagonal entries of Table 6.

We can compose these constantly-many logspace procedures and therefore by Fact 1.1, SΨ =
O(log s + S(ℓ − 1) + log n) = O(log s + S(ℓ − 1)). Since the return value γ is a single bit, t = 1.
Therefore by Lemma 3.1, we can compute µℓ(F) using Algorithm 1 in O (log s+ S(ℓ− 1)) work-
space.

4.4 The logspace reduction

Having developed all the machinery in this work, we are now ready to present the logspace reduction
of whitebox PIT for Ck+1 to whitebox PIT for

∑[2] Ck, for some integer k ≥ 0. Given k as input,

we use the whitebox PIT algorithm A-PIT-SUM for the class
∑[2] Ck as a sub-routine, whose space

complexity is denoted by S(k). The following theorem is a corollary of Lemma 4.5.

Theorem 4.6 (Whitebox PIT for Ck+1 ≤L Whitebox PIT for
∑[2] Ck). Let k be a constant, F be a

size-s read-(k + 1) arithmetic formula. Let A-PIT-SUM be a deterministic whitebox PIT algorithm

for the class
∑[2] Ck and S(k) denote its space-complexity. Then, there exists a deterministic

whitebox algorithm that takes input the formula F and decides whether F is identically zero in
space O (log s+ S(k)). Algorithm 2 provides the outline.

Proof. Correctness: If µk+1(F) = 1, then by definition of µk+1, F depends on a variable and hence
is non-zero. If, however µk+1(F) = 0, we know that F which is a syntactically read-(k+1) computes
a semantically read-k polynomial. Then Claim 4.4 allows us to clean F into a syntactically read-k
formula by using Algorithm A-SUBSTITUTE with ℓ = k + 1. Therefore, we can invoke PIT algo-
rithm for the class Ck. Note that since we are already using Algorithm A-PIT-SUM in computation
of µk+1, we can invoke it for PIT of this syntactic read-k formula, as Ck ⊆

∑[2] Ck.

Space-complexity: Computing µk+1 using Algorithm A-COMPUTE-MU with ℓ = k + 1 in Line
1 takes O(log s + S(k)) space by Lemma 4.5. Invoking subroutine A-SUBSTITUTE in Line 5 for
ℓ = k + 1 takes O(log s) space by Lemma 3.8. Running the PIT algorithm A-PIT-SUM in Line 6
takes S(k) space by the hypothesis. Thus, overall the algorithm takes O(log s+ S(k)) space.

27

Algorithm 2: Whitebox PIT for Ck+1 ≤L Whitebox PIT for
∑[2] Ck

Input: A multilinear read-(k + 1) arithmetic formula F and a whitebox PIT algorithm

A-PIT-SUM for the class
∑[2] Ck

Output: If F ̸≡ 0 then 1, otherwise 0.

1 Invoke Algorithm A-COMPUTE-MU in Lemma 4.5 with ℓ = k + 1 to compute µk+1(F).
2 if (µk+1(F)) = 1 then
3 output 1.
4 else
5 Invoke Algorithm A-SUBSTITUTE on F with ℓ = k + 1 to get a read-k formula F ′.
6 Invoke Algorithm A-PIT-SUM on F ′. If F ′ ≡ 0 then output 0 else output 1.

7 end

4.5 Application: logspace PIT for Read-twice Formulas (Proof of Theorem 4)

In this section we prove Theorem 4. To this end, we give a more formal and technical version of
the theorem.

Theorem 4.7 (PIT for read-twice). Let n ∈ N, F be a field such that |F| > n, and F be a multilinear
read-twice formula of size s over F such that the bit-complexity of the constants appearing in F is
b. Then, there exists a deterministic algorithm that given formula F , decides whether F computes
an identically zero polynomial, in space O(log s+ eF(n

3 + s, b+ log n)) (see Definition 2.9).

Remark 4.8. A more careful description of µ2 also leads to a logspace whitebox PIT algorithm for
non-multilinear read-2 arithmetic formulas. As this paper only deals with multilinear formulas, we
omit the details of this PIT algorithm.

Theorem 4.6 reduces PIT for C2, the class of multilinear read-twice formulas to PIT for the
class

∑[2] C1. We use the whitebox logspace algorithm of Theorem 4.9 below for the class
∑[2] C1

(m = 2) as Algorithm A-PIT-SUM in Theorem 4.6. We note that the results of [SV15] and [MV18]

together show that the generator Gn,3m hits the class
∑[m] C1 (sum of m-many ROFs). Then by

Theorem 2.14 and Claim 2.20, we get the following result. We advise the reader to recall Definition
2.9 and Lemma 2.10 for the following theorem.

Theorem 4.9 (Logspace PIT for sum of read-once). Let n ∈ N, F be a field such that |F| > n, F

be a multilinear
∑[m] C1 formula of size s ≥ n over F where the bit-complexity of the field constants

appearing in F is b. Then there exists a deterministic algorithm that given whitebox access to F ,
decides whether F computes an identically zero polynomial, in space O(m·log s+eF(n

3+s, b+log n)).

As a consequence of the logspace PIT reduction in Theorem 4.6 and the logspace PIT for sum
of two read-once formulas, we get logspace whitebox PIT algorithm for the class of read-twice
formulas.
Proof of Theorem 4.7. Invoke Algorithm 2 with k = 1 and the algorithm of Theorem 4.9 with
m = 2 as Algorithm A-PIT-SUM. The correctness and space-complexity follow from Theorem 4.6,
as S(1) = O(log s + eF(n

3 + s, b + log n)) where S(1) is the space-complexity of PIT for the class∑[2] C1.

28

4.6 µ1 and whitebox PIT for read-once formulas (without the need of generator)

In Section 4.2, we showed how to compute µℓ where ℓ ≥ 2. Here, we show how to compute µ1(F)
for a multilinear read-once formula F . It is along the same lines as computation of µℓ except few
minor changes which we highlight below.

The main change is in the definition of Ψleaf. Here we define it as

Ψ1
leaf(g)

∆
=

{
⟨γ = 1⟩, if g is a variable

⟨γ = 0⟩, otherwise.

The definition of Ψ1
+ and Ψ1

× is the same as Ψℓ
+ and Ψℓ

× respectively, when ℓ = 1. We note
here that the first entry of Ψ1

+ is always ⟨γ = 0⟩ as the iff condition in Table 5 will be vacuously
false, since every + gate in a read-once formula computes sum of two variable-disjoint subformulas.
Formally, for a gate g of the form ga ← gb + gc, if γ(gb) = γ(gc) = 0 then γ(ga) = 0. Thus Table 5
in the case of Ψ1

+ does not require invoking any algorithm in its implementation.
Table 6 is exactly the same for Ψ1

×. In its implementation, when γ(gb) = 0 and γ(gc) = 1, we
require testing whether gb ≡ 0. Since γ(gb) = 0, we can first clean the subformula gb by invoking the
subroutine A-SUBSTITUTE, with ℓ = 1. By Claim 4.4, we get a read-zero subformula g′b computing
the same polynomial. Thus we can simply compute the output of g′b using the logspace evaluation
procedure in Lemma 2.10 and test whether it computes 0 or not.

Putting things together, we can compute Ψ1(F) in O(eF(s, b) + log s) space. For PIT of input

read-once formula F , we then invoke Algorithm 2 with k = 0 to reduce it to PIT for the class
∑[2] C0,

where C0 is simply the class of read-zero formulas (a formula with field constants in all the leaves).

We use A-PIT-SUM with ℓ = 1 for PIT of the class
∑[2] C0. Thus we get an O(eF(s, b) + log s)-

space deterministic algorithm whitebox PIT algorithm from Theorem 4.6, by observing that S(0) =
O(log s+ eF(s, b)). This is a direct whitebox logspace algorithm for read-once formulas in contrast
to the logspace PIT algorithm in Theorem 4.9 with m = 1 that uses blackbox PIT: the logspace-
explicit blackbox generator G1. We summarize this formally below.

Theorem 4.10 (Read-once PIT without use of generator). Let F be a multilinear read-once formula
of size s over any field F where the bit-complexity of the field constants appearing in F is b. Then
there exists a deterministic algorithm that given whitebox access to F , decides whether F computes
the identically zero polynomial, in space O(eF(s, b) + log s), without requiring the use of generator
Gn,1.

5 Logspace PIT for C1 + C2
So far, we have seen that there are two logspace whitebox PIT algorithms for C1, the class of
arithmetic read-once formulas: One using a logspace-explicit generator (Definition 2.11) for C1 (see
Theorem 4.9), and other using Theorem 4.6, which gives a logspace reduction from whitebox PIT

for Ck+1 to whitebox PIT for
∑[2] Ck (see Theorem 4.10). Since we have a logspace whitebox

PIT algorithm for
∑[2] C1 (see Theorem 4.9), following the second route, we also give a logspace

whitebox PIT algorithm for C2 (see Theorem 4.7). In this section, we take a step forward and give
a whitebox logspace PIT for the class C1 + C2, which consists of formulas of the kind R+Q, where
R ∈ C1 and Q ∈ C2. One might ask what is the need to take such ‘baby steps’ and why do not
we directly attack the problem of obtaining a logspace whitebox PIT algorithm for the class Ck for

29

every constant k ≥ 3. A polynomial-time whitebox PIT for Ck was given in [AvMV15], whenever
k ∈ N is a constant. One important reason for our inability to give logspace whitebox PIT for Ck
is the hitting-set generator for Ck given in [AvMV15] has seed-length O(log n) and Theorem 2.14
implies that we get roughly a O(log2 n)-space whitebox PIT algorithm for Ck. In this scenario,
the only ray of hope emerges from the second route that goes via the logspace reduction given in
Theorem 4.6. To exploit the potential of this route, and to obtain a logspace whitebox PIT for
Ck for constant k ≥ 3, we at least require logspace whitebox PIT for the class C2 + C2. Our result
given in this section is a step forward in this direction. We first prove a more general result in
Theorem 5.1, and then instantiate this result to prove Theorem 5.12.

Theorem 5.1 (PIT for Ck + Ck+1). Let n ∈ N, F be a field such that |F| > n, k ∈ N be a

constant, R ∈ Ck, Q ∈ Ck+1, and F
∆
= R + Q be a size s formula that computes a polynomial

in F[x1, x2, . . . , xn] such that the bit-complexity of the field constants appearing in R and S is b.
Suppose we have an O(Sk)-space-explicit generator H = (Hi)i∈N for Ck, where Hn : Ftn → Fn such
that the individual degree of Hn is bounded by dn, and we also have an O(Sk+1)-space whitebox
PIT algorithm PIT- Ck+1 for the class Ck+1. Then, given whitebox access to F, we can determine
whether F ≡ 0 in space O(tn(log s + log dn) + Sk + Sk+1 + eF(s, b)), where eF(s, b) is described in
Definition 2.9.

The proof of Theorem 5.1 essentially follows the proof overview of Theorem 5 given in Section 1.4.2.

5.1 The algorithm

Algorithm 3: Whitebox PIT for Ck + Ck+1

Input: Whitebox access to F = R+Q ∈ F[x1, x2, . . . , xn], where R ∈ Ck, Q ∈ Ck+1,

u
∆
= O(k7), w

∆
= O(k10k), and Algorithm PIT- Ck+1

Output: If F ̸≡ 0 then 1, otherwise 0.

1 if n ≤ w then
2 Test whether F ≡ 0 or not. If yes, output 0, else output 1.
3 end
4 for I ⊆ [n], |I| ≤ u+ 1 do
5 Compute ∂IQ using Algorithm A-PARTIAL iteratively |I| times.
6 Using Algorithm PIT- Ck+1, check if ∂IQ ≡ 0 or not.
7 if ∂IQ ̸≡ 0 then
8 if (∂IQ)(Hn) ≡ 0 then
9 Output 1.

10 end

11 end

12 end
13 if F (Hn +Gn,w+1) ̸≡ 0 then
14 Output 1

15 else
16 Output 0.
17 end

30

Space Complexity. If n ≤ w then Step 2 can be trivially carried out in O(eF(s, b) + log s) space, as
w is a constant. As we have whitebox access to F and u is a constant, it follows from Lemma 3.6
that for every I ⊆ [n], |I| ≤ u+ 1, we can compute the |I|-th order partial derivative of Q in space
O(log s). After that, Step 6 can be carried out in space O(Sk+1). As H is a O(Sk)-space-explicit
generator, we do Step 8 in space O(Sk). Finally, it follows from Observation 2.19, Lemma 2.13, and
Theorem 2.14 that we can decide whether F (Hn +Gn,w+1) ̸≡ 0 in O(tn(log s+ log dn) + eF(s, b)).
Hence, the space complexity of the above algorithm is O(tn(log s+ log dn) + Sk + Sk+1 + eF(s, b)).

5.2 Some useful results

We first list some important results that would be required to argue the correctness of Algorithm 3.
In this section, let F be an arbitrary field. Recall the definition of the measure µℓ (Definition 4.1).
We start with the following observation. This says that the hitting-set generator for Ck also hits
all the sub-formulas f of Q satisfying µk+1(f) = 0.

Observation 5.2. Let k ∈ N be a constant, Q ∈ Ck+1 be such that it computes a polynomial
in F[x1, x2, . . . , xn], and f be a sub-formula of Q such that µk+1(f) = 0. Let H = (Hi)i∈N be a
hitting-set generator for Ck. Then, f ≡ 0 if and only if f(Hn) ≡ 0.

Proof. Since µk+1(f) ≡ 0, we know from Definition 4.1 that either every variable in {x1, . . . , xn}
appears at most k times in f or for every i ∈ [n] such that xi appears k + 1 times in f , ∂xif ≡ 0.
Then, it follows from Remark 4.2 that there exists an R ∈ Ck such that f and R compute the same
polynomial. Hence, H hits f , i.e., f ≡ 0 if and only if f(Hn) ≡ 0.

The following claim plays an important role in the algorithm.

Claim 5.3. Let k ∈ N be a constant, R ∈ Ck, Q ∈ Ck+1 be such that F
∆
= Q + R computes a

polynomial in F[x1, x2, . . . , xn], and H = (Hi)i∈N be a hitting-set generator for Ck. If there exists
an I ⊆ [n] such that ∂IQ ̸≡ 0 but (∂IQ)(Hn) ≡ 0, then F ̸≡ 0.

Proof. Suppose for the sake of contradiction that F ≡ 0. Let I ⊆ [n] be such that ∂IQ ̸≡ 0 but
∂IQ(Hn) ≡ 0. As F = Q+R, we get that

∂IR = −∂IQ,

which implies that
(∂IR)(Hn) = −(∂IQ)(Hn).

As ∂IQ ̸≡ 0, the first equation implies that ∂IR ̸≡ 0. Since R is a multilinear read-k formula over
F, we get from Observation 2.5 that ∂IR ∈ Ck. As H is a generator for Ck, (∂IR)(Hn) ̸≡ 0. Thus,
(∂IR)(Hn) ̸= −(∂IQ)(Hn) as (∂IQ)(Hn) ≡ 0, which is a contradiction.

In the following two claims, we show that if f is a sub-formula of Q satisfying µk+1(f) = 1
then for certain specific sets J ⊆ [n], ∂Jf divides ∂JQ. Thus, we get that whenever ∂JQ ̸≡ 0 and
(∂JQ)(Hn) ̸≡ 0, Hn also hits ∂Jf .

Claim 5.4. Let k ∈ N be a constant, Q ∈ Ck+1 be such that it computes a polynomial in
F[x1, x2, . . . , xn], and f be a sub-formula of Q such that µk+1(f) = 1. Then, there exists an i ∈ [n]
such that ∂xif divides ∂xiQ.

31

Proof. As Q is a multilinear read-(k + 1) formula over F and f is a sub-formula of Q, it is not
difficult to see that Q can be written as

Q = A(x1, . . . , xn, y)|y=f ,

where A ∈ F[x1, . . . , xn, y] is multilinear in y. As µk+1(f) = 1, it follows from Definition 4.1 that
there exists an i ∈ [n] such that xi appears k + 1 times in f and ∂xif ̸≡ 0. Then, the chain rule of
partial derivatives (see Fact 2.3) implies that

∂xiQ = (∂xiA(x1, . . . , xn, y))|y=f + ∂yA · ∂xif.

As Q is a multilinear read-(k + 1) formula and as xi appears k + 1 times in f , it follows that
xi does not appear in A(x1, . . . , xn, y), which implies that ∂xiA ≡ 0. Then, the above equation
becomes

∂xiQ = ∂yA · ∂xif.

This implies that ∂xif divides ∂xiQ.

Claim 5.5. Let k ∈ N be a constant, Q ∈ Ck+1 be such that it computes a polynomial in
F[x1, x2, . . . , xn], f be a sub-formula of Q such that µk+1(f) = 1, and I ⊆ [n] be such that ∂If ̸≡ 0.

Then, there exists an i ∈ [n] such that if J
∆
= I ∪ {i} then ∂Jf divides ∂JQ.

Proof. As argued in the proof of Claim 5.4, there exists an A ∈ F[x1, . . . , xn, y] such that

Q = A(x1, . . . , xn, y)|y=f .

As µk+1(f) = 1, it follows from Definition 4.1 that there exists an i ∈ [n] such that xi appears k+1
times in f and ∂xif ̸≡ 0. Let us fix one such an xi arbitrarily. Let I ⊆ [n] be such that ∂If ̸≡ 0

and J
∆
= (I \ {i}) ∪ {i}. Then,

∂JQ = ∂I\{i}(∂xiQ) = ∂I\{i}

(
(∂xiA(x1, . . . , xn, y))|y=f + ∂yA · ∂xif

)
.

As argued in the proof of Claim 5.4, (∂xiA(x1, . . . , xn, y))|y=f ≡ 0. Then,

∂JQ = ∂I\{i}(∂xiQ) = ∂I\{i}(∂yA · ∂xif).

Since Q computes a multilinear polynomial, so is ∂xiQ is also multilinear, which implies that ∂yA
and ∂xif are variable disjoint polynomials. As ∂I\{i}f ̸≡ 0, for every j ∈ I \ {i}, we get that
j ̸∈ var(∂yA). This along with the chain rule of partial derivatives implies that

∂JQ = ∂yA · ∂I\{i}∂xif = ∂yA · ∂Jf.

Thus, ∂Jf divides ∂JQ.

The following fact is an instance of an important result of [AvMV15]. This result, which was
called as the key lemma in [AvMV15], played a crucial role in obtaining the first quasi-polynomial
time blackbox PIT algorithm for the class Ck, where k is a constant.

32

Lemma 5.6 (‘Key Lemma’ of [AvMV15] 11). Let F be a field, k be a constant, R ∈ Ck, Q ∈ Ck+1,

and F
∆
= R+Q be such that it computes a non-zero polynomial in F[x1, x2, . . . , xn]. Let u

∆
= O(k7)

and w
∆
= O(k10k). Suppose (a1, . . . , an) ∈ Fn is a common non-zero assignment of the non-zero

formulas of the kind ∂If , where f is a sub-formula of either R or Q, and I ⊆ [n], |I| ≤ u. Then,
for every n > w, the monomial x1 · · ·xn does not divide F (x1 + a1, . . . , xn + an).

12

The following claim subsumes Lemma 5.6.

Claim 5.7. Let F be a field, k be a constant, R ∈ Ck, Q ∈ Ck+1, and F
∆
= R+Q be such that it com-

putes a non-zero polynomial in F[x1, x2, . . . , xn]. Let u
∆
= O(k7), w

∆
= O(k10k), and (a1, . . . , an) ∈ Fn

be a common non-zero of all the non-zero formulas of the kind ∂If , where the set I ⊆ [n] and the
sub-formula f of F belong to one of the following categories.

1. f is a sub-formula of R and |I| ≤ u+ 1.

2. f is a sub-formula of Q such that µk+1(f) = 0 and |I| ≤ u.

3. f is a sub-formula of Q such that µk+1(f) = 1 and |I| ≤ u such that for every i ∈
[n], ∂I∪{i}Q ̸≡ 0.

4. f is a sub-formula of Q such that µk+1(f) = 1 and |I| ≤ u such that there exists an i ∈ [n],
which satisfies ∂I∪{i}Q ≡ 0.

Then, for every n > w, the monomial x1 · · ·xn does not divide F (x1 + a1, . . . , xn + an).

Proof. Let E = {(f, I) | f and I satisfy Points 1 to 4 and ∂If ̸≡ 0}. Then, observe that for any
I ⊆ [n], |I| ≤ u and a sub-formula f of Q or R such that ∂If ̸≡ 0, we have that (f, I) ∈ E. Let
n > w. Then, as (a1, . . . , an) is a common non-zero assignment of ∂If for every (f, I) ∈ E, it
follows from Lemma 5.6 that x1 · · ·xn does not divide F (x1 + a1, . . . , xn + an).

This claim forms the base of the proof of Theorem 5.1. Before coming to the algorithm, we
show that it is sufficient to consider a common non-zero assignment of non-zero formulas of the
kind ∂If in Claim 5.7, where sub-formula f and set I belong to the categories given in Points 1 to
3 of the claim.

Claim 5.8. Let F be a field, k be a constant, R ∈ Ck, Q ∈ Ck+1, and F
∆
= R+Q be such that it com-

putes a non-zero polynomial in F[x1, x2, . . . , xn]. Let u
∆
= O(k7), w

∆
= O(k10k), and (a1, . . . , an) ∈ Fn

be a common non-zero assignment of the non-zero formulas of the kind ∂If , where f and I belong
to one of the categories mentioned in Points 1 to 3 of Claim 5.7. Then, for every n > w, the
monomial x1 · · ·xn does not divide F (x1 + a1, . . . , xn + an).

Proof. Let n > w. We are given that a
∆
= (a1, . . . , an) ∈ Fn is a common non-zero assignment of

the non-zero formulas of the kind ∂If , where f and I belong to one of the categories mentioned in
Points 1 to 3 of Claim 5.7. Now, there are two cases: Either a is also a non-zero of all non-zero
formulas ∂If , where f and I belong to the category given in Point 4 of Claim 5.7 or there exists a

11The lemma quoted here is taken from the conference version [AvMV11] of the work [AvMV15].
12This approach was called as ‘hardness of representation’ in [SV15] and has been instrumental in obtaining efficient

deterministic PIT algorithms for some interesting classes of arithmetic formulas. See [SV15, AvMV15] in this regard.

33

sub-formula f ′ of Q such that µk+1(f
′) = 1, there exist an I ′ ⊆ [n], |I ′| ≤ u and an i′ ∈ [n] such that

∂I′f
′ ̸≡ 0, ∂I′∪{i′}Q ≡ 0 but (∂I′f

′)(a) = 0. There is nothing to prove in the first case because of
Claim 5.7. Let us consider the second case and arbitrarily pick one (f ′, I ′, i′) mentioned above. We
assume for the contradiction that the claim does not hold in this case. Then, as F is multilinear,
there exists a non-zero α ∈ F such that

F (x+ a) = Q(x+ a) +R(x+ a) = α · x1 · · ·xn.

This implies

∂I′∪{i′}Q(x+ a) + ∂I′∪{i′}R(x+ a) = α
∏

i∈[n]\(I′∪{i′})

xi.

As ∂I′∪{i′}Q ≡ 0 by assumption, the above equation can be rewritten as

∂I′∪{i′}R(x+ a) = α
∏

i∈[n]\(I′∪{i′})

xi.

As α ̸= 0, we get that ∂I′∪{i′}R(x + a) ̸≡ 0, which implies that ∂I′∪{i′}R(x) ̸≡ 0. As (R, I ′ ∪ {i′})
belongs to the category mentioned in Point 1 of Claim 5.7; and as a is a common non-zero of
∂If , where (f, I) belong to the categories mentioned in Points 1 to 3 of Claim 5.7 we get that
∂I′∪{i′}R(a1, . . . , an) ̸= 0. On the other hand, as n > w > u, on substituting xi = 0 in the above
equation for every i ∈ [n], we get that ∂I′∪{i′}R(a1, . . . , an) = 0. This is a contradiction. Hence,
the claim holds in second case as well.

Consider the following useful result from [SV15].

Fact 5.9 ([SV15]). Let w, n ∈ N, n > w, F ∈ F[x1, x2, . . . , xn] be a non-zero polynomial, and a ∈
Im(Gn,w) (see Definition 2.15) such that F (x+a) is not divisible by x1 · · ·xn. Then, F (Gn,w) ̸≡ 0.

5.3 Correctness of Algorithm 3

The following lemma establishes the correctness of Algorithm 3.

Lemma 5.10. Algorithm 3 correctly decides whether F ≡ 0 or not.

Proof. If n ≤ w then F becomes a constant-variate polynomial, in which case we can trivially check
whether F ≡ 0 or not in space O(eF(s, b) + log s). Now, we assume that n > w. Suppose F ≡ 0.
Then, F (Hn +Gn,w+1) is also the zero polynomial. In this case, Claim 5.3 ensures that Step 13 is
never executed. Hence, the algorithm always outputs 0. Now, suppose F ̸≡ 0. If the Algorithm
halts in Step 9 then there exists an I ⊆ [n], |I| ≤ u + 1 such that ∂IQ ̸≡ 0 but (∂IQ)(Hn) ≡ 0.
Then, it follows from Claim 5.3 that F ̸≡ 0 and hence the algorithm’s output is correct. Thus, it is
ensured that if the algorithm does not halt in Step 9, then for every I ⊆ [n], |I| ≤ u+ 1 satisfying
∂IQ ̸≡ 0, we have (∂IQ)(Hn) ̸≡ 0. Now, we argue that F (Hn +Gn,w+1) ̸≡ 0. In this direction, we
prove the following result.

Claim 5.11. Suppose F ̸≡ 0 and for every I ⊆ [n], |I| ≤ u + 1 that satisfies ∂IQ ̸≡ 0, we have
(∂IQ)(H) ̸≡ 0. Then, there exists an a ∈ Im(Hn + Gn,1) such that F (x + a) is not divisible by
x1 · · ·xn.

34

Proof. Let E be the set of pairs of the kind (f, I), where f varies over sub-formulas of R and Q,
I ⊆ [n], |I| ≤ u + 1, and ∂If ̸≡ 0 such that f and I belong to the categories mentioned in Points
1, 2, and 3 of Claim 5.7. We claim that there exists an a = (a1, . . . , an) ∈ Im(Hn + Gn,1) such
that a is a common non-zero assignment of the polynomials ∂If for every (f, I) ∈ E. It is given
to us that H is a generator for Ck. Since R ∈ Ck is a multilinear formula, every sub-formula of
R is also multilinear, and it follows from Observation 2.17 that for every sub-formula f of R and
I ⊆ [n], |I| ≤ u + 1 such that (∂If)(Hn) ̸≡ 0. It follows from Observations 5.2 and 2.17 that for
every sub-formula f of Q satisfying µk+1(f) = 0 and for every I ⊆ [n], |I| ≤ u such that ∂If ̸≡ 0,
we get that (∂If)(H) ̸≡ 0. Now, suppose f is a sub-formula of Q such that µk+1(f) = 1 and let
I ⊆ [n], |I| ≤ u such that ∂If ̸≡ 0 and for every i ∈ [n], ∂I∪{i}Q ̸≡ 0. We know from Claim 5.5 that
(∂I∪{i}f)(Hn) divides (∂I∪{i}Q)(Hn). As (∂I∪{i}Q)(Hn) ̸≡ 0 and as F[x1, x2, . . . , xn] is an integral
domain, it follows that (∂I∪{i}f)(Hn) ̸≡ 0. Now, Lemma 2.18 implies that (∂If)(Hn + Gn,1) ̸≡ 0.
This shows the existence of the desired tuple a ∈ Im(Hn + Gn,1). Now, Claim 5.8 implies that
F (x+ a) is not divisible by the monomial x1 · · ·xn.

As shown in the claim above, that assuming F ̸≡ 0 and n > w, F (x + a) is not divisible by
x1 · · ·xn, where a ∈ Im(Hn + Gn,1). Then, it follows from Fact 5.9 that F (Gn,w) ̸≡ 0. We are
assuming for every I ⊆ [n], |I| ≤ u + 1 that satisfy ∂IQ ̸≡ 0, we have (∂IQ)(Hn) ̸≡ 0. Since
a ∈ Im(Hn +Gn,1), it is not difficult to prove that F ≡ 0 if and only if F (Hn +Gn,1 +Gn,w) ≡ 0
(see [SV15] in this regard). It follows from Fact 2.16 that Gn,1 + Gn,w = Gn,w+1, which implies
that F ≡ 0 if and only if F (Hn +Gn,w+1) ≡ 0. This completes the proof of Lemma 5.10.

5.4 Proof of Theorem 5

We note a more formal version of Theorem 5 below.

Theorem 5.12 (PIT for C1 + C2). Let n ∈ N, F be a field such that |F| > n, R ∈ C1, Q ∈ C2, and
F

∆
= R + Q be formula of size s that computes a polynomial in F[x1, x2, . . . , xn] such that the bit

complexity of the constants appearing in R and Q is b. Then, given formula F , we can determine
in O(log s+ eF(n

3 + s, b+ log n))-space whether F computes the zero polynomial or not.

Let us instantiate Theorem 4.6 to obtain the proof of the above theorem. It was shown in [MV18]
that Gn,1 hits C1 and we know from Claim 2.20 that Gn,1 is O(log n, eF(n

3, log n))-space-explicit.
We showed in Theorem 4.7 that C2 admits a O(log s+ eF(n

3+ s, b+ log n))-space-explicit whitebox
PIT algorithm. On setting k = 1, Hn = Gn,1, tn = 2, dn = n, S1 = log n + eF(n

3, log n), and
S2 = log s+eF(n

3+s, b+log n), and using the fact that s ≥ n, we get a O(log s+eF(n
3+s, b+log n))-

space whitebox PIT algorithm for the class C1 + C2.

6 Logspace PIT for constant-width ROABPs

In this section, we give a logspace whitebox PIT algorithm for constant-width read-once oblivious
arithmetic branching programs (ROABPs) by observing that the hitting set generator of [GKS17]
for this class is computable in logspace. See Appendix D for formal definition of ROABPs.

Gurjar et al. show that for a non-zero bivariate polynomial f(x1, x2) computable by a width-w
ROABP, f(x1, x2) ≡ 0 ⇔ f(tw, tw + tw−1) ≡ 0 [GKS17, Lemma 3.2]. They use this to give a
‘recursive’ generator construction for a general n-variate ROABP, such that you halve the number

35

of variables in each round and still maintain the ROABP structure. After applying this map log n
times, one gets a univariate polynomial which is non-zero if and only if the input polynomial was
non-zero. This generator works for a known variable order ROABP. For the sake of completeness,
we state their result below. Without loss of generality, they assume that the number of variables
n is a perfect power of 2.

Lemma 6.1 (Lemma 3.5 in [GKS17]). Suppose char(F) = 0, or char(F) ≥ ndwlogn. Let f ∈ F[x]
be a non-zero polynomial of individual degree d and computed by a width-w ROABP in vari-
able order (x0, x1, . . . , xn−1). Let p0(t) = tw and p1(t) = tw + tw−1 be two polynomials and
ϕ : {x0, x1, . . . , xn−1} → F[t] be a map such that for any index 0 ≤ i ≤ n− 1,

ϕ(xi) = pi1(pi2 · · · (pilogn
(t))),

where ilognilogn−1 · · · i1 is the binary representation of i.
Then f(ϕ(x)) is a non-zero univariate polynomial of degree ndwlogn.

The above lemma yields a hitting set of size O(ndwlogn) which is poly(n, d) when the width w
is constant. Since, there are log n applications of either p0(t) or p1(t) in Lemma 6.1, the map ϕ
is logspace computable. For the sake of our exposition, we reformulate the above lemma in terms
of evaluation below. Since f(ϕ(x)) ∈ F[t] is a univariate polynomial, we substitute field elements
from a set of size > ndwlogn in the t-variable of the final polynomial f(ϕ(x)). Equivalently, given
a field element α ∈ F , we can compute the exact substitution to be made into each variable xi,
using the logspace procedure shown below.

Observation 6.2. Let F be any field. Let w, n ∈ N where n = 2k, for some integer k ≥ 1. Then

given a variable xi, for some 0 ≤ i ≤ n − 1, and a field constant α ∈ F, let α0
∆
= α and for

1 ≤ j ≤ k,
αj = αw

j−1 + bjα
w−1
j−1 ,

where i = b1b2 · · · bk is the binary representation of i. Then, αk is the substitution into the variable
xi, based on Lemma 6.1, that is computable in O(eF(w, b)+log n) space, where b is the bit-complexity
of the field constant α.

Proof. Note that k = log n and αk = ϕ(xi)|t=α from Lemma 6.1. Further, observe that given αj−1,
there is a size-w formula to compute αj and thus we only need O(eF(w, b)) space to compute αj

(Recall Definition 2.9 and Lemma 2.10). Since there are k = log n iterations only and we can reuse
the space for each iteration, we can compute the final αk in O(eF(w, b) + log n) space.

We now discuss the second component of our logspace whitebox PIT algorithm for a constant-
width ROABP. Note that since, we are in the whitebox setting we know the variable order. Suppose,
without loss of generality, that the variable order is (x1, . . . , xn). We note below that we can evaluate
a constant-width ROABP in logarithmic space.

Observation 6.3. Let f(x1, . . . , xn) be a polynomial computed by a width-w ROABP of individual
degree d over a field F such that the bit-complexity of the field constants appearing in ROABP of f
is b. Then, given an assignment (β1, . . . , βn) ∈ Fn, we can compute f(β1, . . . , βn) in O(w ·eF(d, b)+
log n)-space.

36

Proof. We have n layers in the ROABP. For each layer, we compute the partial evaluations (till that
layer) for every node of the layer. Since the computation is sequential, we only need to remember
partial computations of the previous layer to compute the values for the current layer and thus,
we can reuse this space for different layers. There are at most w nodes in each layer and we need
to store the values of 2w-many registers/nodes (previous and current layer). Since, at each node
we need to evaluate a univariate polynomial of degree d, we thus need O(w · eF(d, b)) space, as any
univariate polynomial of degree d has a formula of size O(d). We need an additional O(log n) space
to keep track of the current layer.

Putting Observation 6.2 and Observation 6.3 together, we get a logspace whitebox PIT al-
gorithm for constant-width ROABPs. We compute the correct hitting set of size ndwlogn using
Lemma 6.1 and Observation 6.2 in logspace. Then, we compose it with the logspace evaluation
procedure of Observation 6.3 by iterating over each assignment in the hitting set, till we find a non-
zero evaluation. If all the evaluations are 0, we say that the input polynomial is zero and declare
it non-zero, otherwise. Since both the procedures are logspace, then so is the PIT algorithm, by
Fact 1.1.

Theorem 6.4. Let F be an n-variate, w-width ROABP of individual degree d over a field F of
characteristic 0 or char(F) ≥ ndwlogn. Further, let b be the bit-complexity of the field constants
appearing in F . Then, there is a deterministic algorithm that, given whitebox access to F , decides
whether F computes an identically zero polynomial, in space O(w · eF(d, b) + log n).

7 Logspace PIT for log-depth circuits having constant transcen-
dence degree

Let f
∆
= {f1, . . . , fm} ⊆ F[x1, x2, . . . , xn]. We say that f is algebraically independent over F if there

does not exist a non-zero polynomial P (y1, . . . , ym) ∈ F[y1, . . . , ym] such that P (f1, . . . , fm) ≡ 0.
Otherwise, f is called algebraic dependent over F. A maximal algebraic independent subset of f
is known as a transcendence basis of f and the size of such a transcendence basis is called as the
transcendental degree of f , denoted trdegFf . Now, we state the main theorem.

Theorem 7.1. Let d, r, n,m, r ∈ N and F be a field satisfying either char(F) > dr or char(F) = 0
and |F| ≥ drn(r+1)2. Let T1, . . . , Tm ∈ F[x1, x2, . . . , xn] be products of linear polynomials such that
deg(Ti) ≤ d for every i ∈ [n] and trdegF{T1, . . . , Tm} ≤ r. Let C be an m-variate, size-s, O(log n)-
depth, and poly-degree circuit over F and let b be the bit-complexity of constants appearing in
C(T1, . . . , Tm) 13. Then, given the circuit C(T1, . . . , Tm), we can decide whether C(T1, . . . , Tm) ≡ 0
in space O(r · (eF(s, b) + log d)), where eF(s, b) is described in Definition 2.9.

Remark 7.2. The model given in the above theorem was studied in [ASSS16]. They gave a
polynomial-time deterministic algorithm for the circuits of the kind C(T1, . . . , Tm), where C is
an m-variate, polynomial degree circuit of arbitrary depth, and T1, . . . , Tm are products of linear
polynomials such that trdegF{T1, . . . , Tm} is bounded. The main reason for considering O(log n)-
depth restriction on the circuit C is that at some point our algorithm evaluates the given circuit on
some points in Fn and we do not know if the problem of evaluating an arbitrary arithmetic circuit
is in L (see Section 1.1 in this regard). It is a well-known fact that a O(log n)-depth arithmetic

13The circuit C(T1, . . . , Tm) is obtained by replacing yi with Ti for every i ∈ [m].

37

circuit can be converted to an arithmetic formula with only a polynomial blow-up in the size, and
thus we can evaluate C(T1, . . . , Tm) in logspace.

Remark 7.3. Let C be the class of circuits of the kind C(T1, . . . , Tk), where C computes a linear
form in F[y1, . . . , ym], and T1, . . . , Tm are products of linear polynomials in F[x1, x2, . . . , xn] such
that trdegF{T1, . . . , Tm} is constant. Let

∑[k]∏∑
be a class of bounded-top fan-in depth 3 arith-

metic circuits over F. Then, trivially, for every constant k ∈ N,
∑[k]∏∑

⊆ C. Thus, a result
of [ASSS16] gives a polynomial-time blackbox PIT algorithm for depth 3 circuits with bounded top
fan-in whenever satisfying some constraints on the characteristic of F and over such fields, Theorem
7.1 gives a whitebox logspace PIT algorithm for depth 3 circuits with bounded top fan-in.

The logspace algorithm in the above theorem follows from the polynomial-time blackbox algo-
rithm given in [ASSS16] and an O(eF(s, b))-space arithmetic formula evaluation algorithm over F.
Hence, we omit the details of the proof.

8 Discussion and Future Work

In this section, we discuss some future directions. We gave a logspace reduction from whitebox
PIT for Ck+1 to whitebox PIT

∑[2] Ck. As we have a logspace whitebox PIT for
∑[2] C1 (see

Theorem 4.9), this result allowed us to obtain a logspace whitebox PIT algorithm for C2, the class
of multilinear read-twice formulas. We extended this result further to obtain a whitebox logspace
PIT algorithm for the class C1 + C2. As we have a polynomial-time whitebox PIT algorithm for
Ck whenever k ∈ N is a constant, we wonder if there is also a logspace whitebox PIT for the same
class. We note this as an open question below.

• Design a logspace whitebox PIT algorithm for the class of multilinear constant-
read formulas: The first step in this direction would be to obtain a logspace whitebox PIT
for the class of multilinear read-thrice formulas, C3. It follows from Theorem 4.6 that for
achieving this, it suffices to obtain a logspace PIT algorithm for

∑[2] C2.

• Search-to-decision in Logspace: Let C a class of formulas that has a whitebox logspace
PIT algorithm. Can one design (another) logspace algorithm that given a formula F ∈ C
outputs a non-zero assignment of F (if one exists, of course)? Clearly, having a logspace
PIT algorithm is a perquisite for such a task. Is it also sufficient? While this question is
interesting in its own right, obtaining such an algorithm would in particular imply logspace
PIT algorithms for all multilinear read-k formulas with bounded k. In [SV09] the equivalence
between these two tasks was shown in the polynomial-time setting for any circuit class.

• The one-way space complexity of PIT: A näıve PIT algorithm in this setting can be
carried out in DSPACE(n log s). Can one show better space bounds? DSPACE(o(n log s)) or
even BPSPACE(o(n log s))?

9 Acknowledgement

The authors would like to thank Howard Straubing for being a part of the discussion for under-
standing that arithmetic formula evaluation problem can be carried out in logarithmic space.

38

References

[AB03] M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering.
JACM, 50(4):429–443, 2003. 2

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009. 14

[AGKS15] M. Agrawal, R. Gurjar, A. Korwar, and N. Saxena. Hitting-sets for ROABP and sum
of set-multilinear circuits. SIAM J. Comput., 44(3):669–697, 2015. 7

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of
the 25th FSTTCS, volume 3821 of LNCS, pages 92–105, 2005. 2

[AHK93] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries.
J. ACM, 40(1):185–210, jan 1993. 4

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics,
160(2):781–793, 2004. 2

[All98] 1998. Lecture notes on Complexity of Computation by Eric Allender, Link - https:
//people.cs.rutgers.edu/~allender/538/murata3.pdf. 44

[Alo99] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing,
8:7–29, 1999. 12

[ASSS16] M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting
sets, lower bounds for depth-d occur-k formulas and depth-3 transcendence degree-k
circuits. SIAM J. Comput., 45(4):1533–1562, 2016. 2, 7, 12, 37, 38

[AvMV11] M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial identity
testing for multilinear constant-read formulae. In Proceedings of the 26th Annual IEEE
Conference on Computational Complexity, (CCC), pages 273–282, 2011. Full version
at https://eccc.weizmann.ac.il/report/2010/188. 33

[AvMV15] M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial identity
testing for multilinear constant-read formulae. Computational Complexity, 24(4):695–
776, 2015. 2, 7, 8, 10, 13, 15, 16, 22, 30, 32, 33

[BB98] D. Bshouty and N. H. Bshouty. On interpolating arithmetic read-once formulas with
exponentiation. JCSS, 56(1):112–124, 1998. 4

[BC92] M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of
registers. SIAM J. Comput., 21(1):54–58, 1992. 5, 14

[BC98] N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel.
SIAM J. on Computing, 27(2):401–413, 1998. 4

[BCGR92] Samuel R. Buss, Stephen A. Cook, A. Gupta, and V. Ramachandran. An optimal
parallel algorithm for formula evaluation. SIAM J. Comput., 21(4):755–780, 1992. 3,
14, 17, 47

39

https://people.cs.rutgers.edu/~allender/538/murata3.pdf
https://people.cs.rutgers.edu/~allender/538/murata3.pdf

[BCH86] P. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related
problems. SIAM J. Comput., 15(4):994–1003, 1986. 3

[BGV23] Pranav Bisht, Nikhil Gupta, and Ilya Volkovich. Towards Identity Testing for Sums
of Products of Read-Once and Multilinear Bounded-Read Formulae. In 43rd IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2023), volume 284 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 9:1–9:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. 15

[BHH95a] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once
formulas. SIAM J. on Computing, 24(4):706–735, 1995. 4

[BHH95b] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning boolean read-once formulas
with arbitrary symmetric and constant fan-in gates. JCSS, 50:521–542, 1995. 4

[BHH95c] N.H. Bshouty, T.R. Hancock, and L. Hellerstein. Learning boolean read-once formulas
over generalized bases. J. Comput. Syst. Sci., 50(3):521–542, jun 1995. 4

[BIZ18] K. Bringmann, C. Ikenmeyer, and J. Zuiddam. On algebraic branching programs of
small width. J. ACM, 65(5):32:1–32:29, 2018. 5

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynom-
inal interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 301–309, 1988. 2

[BSV23] V. Bhargava, S. Saraf, and I. Volkovich. Linear independence, alternants and applica-
tions. In STOC ’23: 55th Annual ACM SIGACT Symposium on Theory of Computing,
Orlando, Florida, June 20-23, 2023. ACM, 2023. 2

[CDL01] A. Chiu, G. I. Davida, and B. E. Litow. Division in logspace-uniform nc1. RAIRO
Theor. Informatics Appl., 35:259–275, 2001. 14

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978. 2, 4

[DLN+22] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner. Planar graph iso-
morphism is in log-space. ACM Trans. Comput. Theory, 14(2):8:1–8:33, 2022. 3, 17,
47

[DS07] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434, 2007. 2

[FS13] M. A. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-commutative
and read-once oblivious algebraic branching programs. In Proceedings of the 54th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 243–252, 2013.
Full version at https://eccc.weizmann.ac.il/report/2012/115. 7

[FSS14] M. A. Forbes, R. Saptharishi, and A. Shpilka. Pseudorandomness for multilinear read-
once algebraic branching programs, in any order. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing (STOC), pages 867–875, 2014. Full version
at https://eccc.weizmann.ac.il/report/2013/132. 15

40

[GHKL18] M. Ganardi, D. Hucke, D. König, and M. Lohrey. Circuits and expressions over finite
semirings. ACM Trans. Comput. Theory, 10(4), aug 2018. 3, 44

[GKS17] R. Gurjar, A. Korwar, and N. Saxena. Identity testing for constant-width, and any-
order, read-once oblivious arithmetic branching programs. Theory of Computing,
13(2):1–21, 2017. 7, 12, 35, 36

[GST23] N. Gupta, C. Saha, and B. Thankey. Equivalence test for read-once arithmetic formulas.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25,
2023, pages 4205–4272. SIAM, 2023. 4

[HAM02] W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth thresh-
old circuits for division and iterated multiplication. Journal of Computer and System
Sciences, 65(4):695–716, 2002. Special Issue on Complexity 2001. 3, 14

[HH91] T. R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended
bases. In Proceedings of the 4th Annual Workshop on Computational Learning Theory
(COLT), pages 326–336, 1991. 4

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing
(STOC), pages 262–272, 1980. 2

[HV06] A. Healy and E. Viola. Constant-depth circuits for arithmetic in finite fields of char-
acteristic two. In STACS, volume 3884 of Lecture Notes in Computer Science, pages
672–683. Springer, 2006. 3

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput., 17(5):935–938, 1988. 3

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. 2, 5, 6

[KLN+93] M. Karchmer, N. Linial, I. Newman, M. Saks, and A. Wigderson. Combinatorial char-
acterization of read-once formulae. Discrete Math., 114(1–3):275–282, April 1993. 4

[KMSV13] Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity
testing of depth 4 multilinear circuits with bounded top fan-in. SIAM J. on Computing,
42(6):2114–2131, 2013. 15, 16

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001. 2

[KS08] Z. S. Karnin and A. Shpilka. Deterministic black box polynomial identity testing of
depth-3 arithmetic circuits with bounded top fan-in. In Proceedings of the 23rd Annual
IEEE Conference on Computational Complexity (CCC), pages 280–291, 2008. 2

41

[KS09] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3
circuits. In Proceedings of the 50th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 198–207, 2009. Full version at
https://eccc.weizmann.ac.il/report/2009/032. 2

[KUW86] R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random
nc. Combinatorica, 6:35–48, 1 1986. 2

[Lad75] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT News,
7(1):18–20, 1975. 3

[Lin92] S. Lindell. A logspace algorithm for tree canonization (extended abstract). In STOC,
pages 400–404. ACM, 1992. 3, 17, 47

[Lov79] L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computing Theory. Akademia-Verlag, 1979. 2

[LV03] R. J. Lipton and N. K. Vishnoi. Deterministic identity testing for multivariate polynomi-
als. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 756–760, 2003. 2

[MS21] D. Medini and A. Shpilka. Hitting sets and reconstruction for dense orbits in vp {e}
and ΣΠΣ circuits. In Valentine Kabanets, editor, 36th Computational Complexity Con-
ference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 19:1–19:27. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021. 4

[MV18] D. Minahan and I. Volkovich. Complete derandomization of identity testing and re-
construction of read-once formulas. TOCT, 10(3):10:1–10:11, 2018. 2, 7, 11, 15, 28,
35

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987. 2

[MW07] Pierre McKenzie and Klaus W. Wagner. The complexity of membership problems for
circuits over sets of natural numbers. Comput. Complex., 16(3):211–244, 2007. 14

[Nis93] N. Nisan. On read-once vs. multiple access to randomness in logspace. Theor. Comput.
Sci., 107(1):135–144, 1993. 5

[Rei08] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4), sep 2008. 3

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative
models. Computational Complexity, 14(1):1–19, 2005. 2, 7

[Sap16] R. Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Technical
report, https://github.com/dasarpmar/lowerbounds-survey/, 2016. 48

[Sax09] N. Saxena. Progress on polynomial identity testing. Bulletin of EATCS, 99:49–79, 2009.
2

42

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980. 2, 4

[Sha90] A. Shamir. IP=PSPACE. In Proceedings of the Thirty First Annual Symposium on
Foundations of Computer Science, pages 11–15, 1990. 2

[SS11] N. Saxena and C. Seshadhri. Blackbox identity testing for bounded top fanin depth-3
circuits: the field doesn’t matter. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC), pages 431–440, 2011. 2

[SS12] N. Saxena and C. Seshadhri. Blackbox identity testing for bounded top-fanin depth-3
circuits: The field doesn’t matter. SIAM J. Comput., 41(5):1285–1298, 2012. 2

[SS13] N. Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds: Im-
proved blackbox identity test for depth-3 circuits. J. ACM, 60(5):33, 2013. 2

[ST17] O. Svensson and J. Tarnawski. The matching problem in general graphs is in quasi-NC.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 696–707, 2017. 2

[ST21] C. Saha and B. Thankey. Hitting sets for orbits of circuit classes and polynomial fami-
lies. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Con-
ference), volume 207 of LIPIcs, pages 50:1–50:26. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. 4

[SV09] A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-
once formulas. In APPROX-RANDOM, pages 700–713, 2009. Full version at
https://eccc.weizmann.ac.il/report/2010/011. 38

[SV14] A. Shpilka and I. Volkovich. On reconstruction and testing of read-once formulas.
Theory of Computing, 10:465–514, 2014. 4

[SV15] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Computational
Complexity, 24(3):477–532, 2015. 2, 4, 8, 10, 11, 12, 14, 15, 16, 28, 33, 34, 35

[SV18] S. Saraf and I. Volkovich. Blackbox identity testing for depth-4 multilinear circuits.
Combinatorica, 38(5):1205–1238, 2018. 2

[SY10] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010. 2, 13, 48

[Sze87] Róbert Szelepcsényi. The moethod of focing for nondeterministic automata. Bull.
EATCS, 33:96–99, 1987. 3

[Vol15] I. Volkovich. Deterministically factoring sparse polynomials into multilinear factors and
sums of univariate polynomials. In APPROX-RANDOM, pages 943–958, 2015. 15, 16

43

[Vol16] I. Volkovich. Characterizing arithmetic read-once formulae. ACM Transactions on
Computation Theory (ToCT), 8(1):2, 2016. 4

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation, pages 216–226, 1979. 2,
4

A Missing proofs from Section 1

Observation A.1. Let F be a field. Then, PIT for arithmetic circuits over F is P-hard.

Proof. Let C-eval be the following problem: given an arithmetic circuit C over F and an assignment
a ∈ Fn, decide whether C(a) = 0. As noted in Section 1.1, C-eval is P-complete [GHKL18], i.e.,
C-eval ∈ P and every problem in P reduces in logspace to C-eval. To show that PIT for circuits
is P-hard over F, it suffices to prove that C-eval reduces in logspace to PIT circuits. Let C be
an arbitrary arithmetic circuit that computes a polynomial in F[x1, x2, . . . , xn]. Let y be a fresh
variable and Ĉ := Cy be an arithmetic circuit. Let a ∈ Fn be an arbitrary assignment. Then,
C(a) = 0 if and only if y ·C(a) is the identically zero polynomial. This immediately implies that we
can reduce C-eval to PIT for arithmetic circuits over F in logspace.

Observation A.2. Let F be a field and PIT-Formulas be the PIT on arithmetic formulas on F.
Then,

BP · LPIT-Formulas = BP · L.

Proof. Recall that BP · LPIT-Formulas is the class of problems in BP · L with oracle access to PIT-
Formulas. As shown in Observation 1, PIT-Formulas ∈ BP · L. We observe that BP · L is self-low,
i.e., BP · LBP·L = BP · L. Its proof can be shown using a proof that BPP is self-low (see [All98]). As
BP · L is self-low, we get

BP · L ⊆ BP · LPIT-Formulas ⊆ BP · LBP·L ⊆ BP · L.

Hence, BP · LPIT-Formulas = BP · L.

Observation A.3. Let F be a field and PIT-Circuits be the PIT on arithmetic formulas on F.
Then,

BP · LPIT-Circuits = BP · LP = BPP.

Proof. As noted in the proof of Observation A.2, BPP is self-low, i.e., BPPBPP = BPP. We know
due to the Schwartz-Zippel lemma that PIT-circuits∈ BPP. We also know that BP · L ⊆ BPP.
Then, from Observation A.1,

BP · LP ⊆ BP · LPIT-Circuits ⊆ BPPPIT-Circuits ⊆ BPPBPP = BPP.

Now, lets see a proof in the other direction. Recall that a language L ∈ BPP if and only if there
exists a deterministic Turing Machine M such that for every string x, M runs in time poly(|x|) and

∀x ∈ L : Pr
r
[M(x, r) = 1] ≥ 2

3
,

44

∀x ̸∈ L : Pr
r
[M(x, r) = 1] ≤ 1

3
.

Let us fix an input string x arbitrarily. Let Ax := {r : M(x, r) = 1}. It is not difficult to verify that
Ax ∈ P. Then, it can be easily shown that there exists a deterministic Turing machine M ′ that
takes oracle access to P such that for every string x, M ′ has two way access to a random string, it
runs in space O(log(|x|)) and

∀x ∈ L : Pr
r
[M ′(x, r) = 1] ≥ 2

3
,

∀x ̸∈ L : Pr
r
[M ′(x, r) = 1] ≤ 1

3
.

This implies that L ∈ BP · LP. We know from Observation A.1 that every problem in P reduces
in log space to PIT-circuits. This implies L ∈ BP · LPIT-Circuits. So, we have shown that hence
BPP ⊆ BP · LP ⊆ BP · LPIT-Circuits. This proves that

BP · LPIT-Circuits = BP · LP = BPP.

Observation A.4. P ⊆ BP · L if and only if BPP = BP · L.

Proof. Suppose P ⊆ BP · L. We know from Observation A.3 that BPP = BP · LP. Then, the self-low
property of BP · L mentioned in the proof of Observation A.2 implies BPP ⊆ BP · LBP·L = BP · L.
We know that trivially BP · L ⊆ BPP. Thus, BPP = BP · L.

Now, suppose BPP = BP · L. As P ⊆ BPP, we get P ⊆ BP · L.

B Analysis of Generic Traversal

To prove Lemma 3.1, we will require the following definitions.

Definition B.1. Consider the following definitions with respect to a node v in formula F .

• We say that a node v in the formula has been processed by Algorithm 1, if v will not be visited
again. In other words, Ψ(v) has been computed, and pushed to stack if necessary.

• For a node v in F , let πF (v) denote the path from root(F) to the node v. It is well defined
since F is a tree and there is a unique path between any two nodes.

• For nodes curr and prev in Algorithm 1, we define a modification of path πF (curr):

π′
F (curr)

∆
=

{
πF (curr), if prev ∈ πF (curr)

πF (curr) ∪ {prev}, otherwise.

• For a path π in F , we define right turns in π as the sequence of edges in π that go from a
node to its right child.

We prove the following invariant that holds for Algorithm 1.

Claim B.2. Let curr be the current node in Algorithm 1. Then,

45

1. β = Ψ(v), where v is the last processed node in F .

2. Γ corresponds to the reverse sequence of right turns in π′
F (curr). That is, for every right

turn: v → v.right in π′, Γ stores Ψ(v.left). By reverse, we mean that the top Ψ value in Γ
corresponds to the latest right turn and the bottom Ψ value corresponds to the first right turn
in π′

F (curr).

Proof. Initialization: We have curr = root(F). No vertex has been processed and there is no right
turn. In Line 2, indeed β = ⊥ and Γ = Ø, as desired.

Maintenance: We show that the invariant is maintained in each case of the while loop in Algorithm
1.

• If curr is a leaf, then we process it and we update β = Ψ(curr) in Line 5. We also go up in
Line 5. After executing it, we did not change π′

F (curr) due to the second case in definition
of π′ which is consistent with the fact that we did not push or pop from the stack Γ.

• If prev = parent(curr) (coming from up), then we go left. In this case, in Line 8, we neither
processed any node, nor made or removed any right turns, thus invariant is maintained because
we also don’t update β or Γ.

• If prev = curr.left (coming from left), then we push β on top of stack Γ and move right. Note
that at Line 9, by the invariant, β was holding the Ψ value of last processed node, i.e. curr.left.
Since, we did not process any new node in this case, we don’t update β as desired. We made
a right turn in this step, and indeed after executing Line 10, Γ.top← Ψ(curr.left) = β, thus
maintaining the invariant.

• If prev = curr.right (coming from right), then observe that by definition of π′ and the loop
invariant, Γ.top = Ψ(curr.left) at Line 12, corresponding to the last right turn in π′

F (curr).
We also have β = Ψ(curr.right) by the loop invariant. Thus, after executing Lines 14-16, we
process curr and indeed store Ψ value of the last processed node in β. We also removed a
right turn from π′, but to match it, we did pop from Γ also, thus maintaining the invariant.

Termination: At the end of the while loop curr = ⊥ and prev = root(F). The last processed
node is root(F) and π′

F (curr) = {root(F)}. Because we maintained the loop invariant, we then get
β = Ψ(root(F)) and Γ = Ø, as desired.

By the loop invariant in Claim B.2, we now give the proof of Lemma 3.1.

Proof. Correctness: The algorithm follows from the invariant in Claim B.2. Therefore, when the al-
gorithm terminates β holds the correct Ψ-value for root(F), i.e. β = Ψ(F) and the stack Γ is empty.

Space-complexity: To track the two pointers curr, prev we need only 2 · log s space. For differ-
ent nodes v, to execute the procedure Ψ(v), we keep reusing the space, therefore we only need
total O(SΨ) space for the whole formula. However, to compute the value Ψ(v), we use additional
memory from the stack Γ by storing Ψ values corresponding to the right turns in π′

F (v). We claim
that for the deepest leaf v in F (the leaf at maximum depth), the number of right turns in π′

F (v)
is given by the recurrence relation L(s) ≤ L(s/2) + 1. This is because, whenever we make a right
turn we at least halve the size of the formula, as F is left-heavy (after preprocessing in Line 1).

46

Hence, L(s) ≤ O(log s). Each entry in stack Γ stores a Ψ value of bit-complexity t and maximum
length of the stack used is L(s). Therefore, the total work space used by Algorithm 1 is given by
2 log s+O(SΨ) + t · L(s) ≤ O(SΨ + t · log s).

C Log-space algorithm for making a formula left-heavy

For the sake of completeness, we give a log-space algorithm to make a formula left-heavy. This has
been used in several papers (e.g. [BCGR92, Lin92, DLN+22] etc.).

Algorithm 4: Making a formula left-heavy

Input: An arithmetic formula F
Output: Left-heavy form of F

1 Initialize curr
∆
= root(F), prev

∆
= ⊥.

/* curr and prev track the current and previous nodes */

2 while curr ̸= ⊥ do
/* if curr is leaf, go to its parent. */

3 if curr is a leaf then
4 prev← curr, curr← parent(curr). continue
5 end

/* curr is not a leaf in the below cases */

/* If coming from up, go left */

6 if prev = parent(curr) then prev← curr, curr← curr.left
/* If coming from left, go right */

7 if prev = curr.left then
8 prev← curr, curr← curr.right
9 end

/* If coming from right, compare the sizes of left and right subtree,

interchange if necessary */

10 if prev = curr.right then
11 if size(curr.left) < size(curr.right) then
12 tmp← curr.left, curr.left← curr.right, curr.right← tmp
13 end

/* Go up */

14 prev← curr, curr← parent(curr).

15 end

16 end

Now we describe the size function.

47

Algorithm 5: Computing the size of the subtree rooted at a given node

Input: An arithmetic formula F , a node r
Output: Size of the subtree rooted at r

1 Initialize curr
∆
= r, prev

∆
= ⊥, size = 0.

/* curr and prev track the current and previous nodes */

2 while curr ̸= parent(r) do
/* if curr is a leaf, increment size and go to its parent. */

3 if curr is a leaf then
4 size← size+ 1, prev← curr, curr← parent(curr).
5 end

/* curr is not a leaf in the below cases */

/* If coming from up, go left */

6 if prev = parent(curr) then prev← curr, curr← curr.left
/* If coming from left, go right */

7 if prev = curr.left then
8 prev← curr, curr← curr.right
9 end

/* If coming from right, go up */

10 if prev = curr.right then
11 prev← curr, curr← parent(curr).
12 end

13 end
14 Return(size)

D Arithmetic circuits, formulas and ROABPs

In this section, we give the formal definitions of the various algebraic models of computation
discussed in this work. For a detailed exposition, we refer the reader to the excellent surveys of
[SY10] and [Sap16].

An arithmetic circuit is defined as a directed acyclic graph, where the leaves are labelled with
input variables or field constants and the internal nodes are either + (addition) or × (multipli-
cation). An addition node adds all the polynomials on its incoming edges, while a multiplication
node multiplies. We have a single root node as the output node at top. The edges can also be
labeled with field constants which get multiplied to the polynomial computed at the node below.
An unlabelled edge can be thought to be labelled with the constant 1. The computation happens
in a natural bottom-up fashion. The in-degree of a node is called it fan-in and out-degree is called
fan-out. An arithmetic circuit has two resources: size and depth. Size of the circuit is size of the
underlying graph, given by the number of edges and nodes. Depth of the circuit is the length of
the longest path from some leaf node to the output node. The class VP is defined as the class of
poly(n)-sized circuits computing polynomials of poly(n)-degree.

An arithmetic formula or simply formula in short is defined as an arithmetic circuit where every
node has at most one outgoing edge. The underlying graph for a formula has a tree structure.

An algebraic branching program (ABP) is a layered directed graph with a unique source vertex
s and sink vertex t. The ABP of depth-d has d + 1 layers– V0, V1, . . . , Vd, where the first layer

48

V0
∆
= {s}, and the last layer Vd

∆
= {t}. The directed edges go from layer i to i+1, for 0 ≤ i ≤ d− 1

and are labeled with linear polynomials. The weight of a path p is W (p) :=
∏

e∈pW (e), where W (e)
denotes the weight (or label) of an edge. The final polynomial f(x) computed by the ABP is then
simply the weighted sum of all the paths from source to sink: f(x) :=

∑
path p :s⇝tW (p). The length

of the ABP is the number of layers. We say that the ABP has width w, if for 0 ≤ i ≤ d, |Vi| ≤ w.
Size of the ABP is the product of its length and width. VBP is the class of all polynomial-sized
ABPs.

The ABP can also be viewed as a product of matrices with polynomial entries. Let Vi = {vi,j |
j ∈ [w]}. Then, f(x) =

∏d
i=1Di, where D1 ∈ F1×w[x], Di ∈ Fw×w[x] (for 2 ≤ i ≤ d − 1), and

Dd ∈ Fw×1[x] such that the entries are:

D1(j) = W (s, v1,j) , for j ∈ [w]

Di(j, k) = W (vi−1,j , vi,k) , for j, k ∈ [w] and 2 ≤ i ≤ d− 1

Dd(k) = W (vd−1,k, t) , for k ∈ [w] .

If there is no edge (u, v) in the ABP, we set W (u, v)
∆
= 0.

An ABP is called read-once oblivious ABP (ROABP) if each variable appears in only one layer
and instead of linear polynomials, edge weights are univariate polynomials. Thus an ROABP has n-
many layers, one for each variable. The variable order (xπ(1), . . . , xπ(n)) of ROABP is the sequence
in which ROABP reads the variables in each layer. Size of an ROABP is given by three parameters
- width, individual degree and number of variables.

In the matrix product form, ROABPD(x) =
∏n

i=1Di, whereD1 ∈ F1×w[xπ(1)],Di ∈ Fw×w[xπ(i)]
for 2 ≤ i ≤ n− 1, and Dn ∈ Fw×1[xπ(n)].

49

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

