
BPL ⊆ L-AC1

Kuan Cheng∗ Yichuan Wang†

2024-03-04

Abstract

Whether BPL = L (which is conjectured to be equal), or even whether BPL ⊆ NL,
is a big open problem in theoretical computer science. It is well known that L-NC1 ⊆
L ⊆ NL ⊆ L-AC1. In this work we will show that BPL ⊆ L-AC1, which was not known
before. Our proof is based on modifying the Richardson Iteration method for boosting
precision in approximating matrix powering, which was developed in a line of works
[AKM+20][PV21][CDR+21][CDST22][PP22][CHL+23]. We also improve the algorithm
for approximating counting in low-depth L-uniform AC circuit from additive error setting
to multiplicative error setting.

∗Center on Frontiers of Computing Studies, Peking University. ckkcdh@pku.edu.cn
†Institute for Interdisciplinary Information Sciences, Tsinghua University. yichuan-21@mails.tsinghua.edu.cn.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 48 (2024)

1 Introduction
BPL is the class of languages that can be computed by a randomized logspace Turing Machine

with error probability ≤ 1/3, here by randomized we mean the TM has read-once access to a
random tape. We also require that the TM halts on any random tape. Whether BPL ?

= L, or space-
bounded derandomization, is a big open problem in theoretical computer science. Most believe
that L = BPL is true. Different from the time-bounded derandomization, we even do not know
whether L = NL can imply L = BPL. But on the other hand, there is no known barrier for
proving L = BPL. The current optimal upper-bound for BPL against space-bounded computation
is BPL ⊆ SPACE

[
(logn)3/2/

√
log logn

]
[Hoz21].

We also consider consider the relation between L and L-uniform low-depth circuit complexity
classes. It is well known that L-NC1 ⊆ L ⊆ NL ⊆ L-AC1, here L-NC1 and L-AC1 are complexity
classes of logspace-uniform O(logn)-depth NC and AC circuits. We observe that under the conjec-
tured L = BPL, or even weaker, BPL ⊆ NL, we should have BPL ⊆ L-AC1. In this work, we will
unconditionally prove that BPL ⊆ L-AC1, which was unknown before. See Figure 1 for a visualiza-
tion of the known relations between the complexity classes. On the other hand, we mention that
the inclusion BPL ⊆ AC1 for nonuniform AC1 is obvious. By L ⊆ AC1 we know BPL ⊆ BP · AC1,
then apply the nonuniform derandomize for AC in [AB84] we know BPL ⊆ BP · AC1 = AC1.

L-AC1

This work

NL BPL

RL coRL

L

L-NC1

Figure 1: Relation of Complexity Classes. A → B means A ⊆ B.

One may view derandomizing BPL as the problem of approximating powers of substochastic
matrices. For a TM with s bits of memory, one can label all its states by elements in [2s]. We can
define A ∈ R2s×2s to be its transition matrix: let Ai,j be the probability that on state i, goes to
state j in one step. Note that we must arrive at accept or reject state in 2s steps, so we only need
to approximate A2s . [SZ99] use this idea to prove that BPL ⊆ L3/2. More generally, approximating
An for A ∈ Rw×w can be done in space O

(
(logn)3/2 +

√
logn · logw

)
.

[CDST22] and [PP22] independently discovered how to improve [SZ99]’s result to Õ(logn +√
logn · logw). The main idea in [CDST22][PP22] is using Richardson Iteration to boost precision.

Consider the problem of approximating X−1 for invertible matrix X. Assume we already have
a matrix Y, which is an approximation of X−1 such that ‖I − YX‖ < ε. Then we can rewrite
XX−1 = I as

X−1 = (I − YX)X−1 + Y.

1

Start from Y(0) = Y, by taking the iteration

Y(i+1) := (I − YX)Y(i) + Y,

we can reduce
∥∥Y(i) − X−1

∥∥ very quickly. Then in the application of approximating A1, · · · ,An,
we can take

X :=

I

−A I
−A I

. . .
−A I

 , X−1 =

I
A I
A2 A I

An−1 · · · I
An An−1 A I

 .

Needless to say, approximating A,A2, · · · ,An does not necessarily need to go through the framework
of approximating the inversion of a matrix. We developed a more efficient iteration algorithm for
boosting precision in Section 4, which is the main ingredient of our proof of BPL ⊆ L-AC1. Our
new iteration keeps using the idea of boosting precision via numerical analysis techniques, but does
not rely on the framework of approximating inversion of matrix.

We need to mention another setting which considers the multiplication of many distinct matri-
ces, i.e., iterated matrix multiplication. This corresponds to the read-once branching program model.
Iterated matrix multiplication asks us to approximate A1A2 · · ·An for given A1, · · · ,An ∈ Rw×w.
Actually the methods in [SZ99][CDST22][PP22] can also work for iterated matrix multiplications.
[CDST22] and [PP22] again achieve space complexity Õ(logn+

√
logn · logw) for this setting. In

the rest of our paper we will only consider matrix powering.
Another side of BPL ⊆ L-AC1 is on the power of L-AC circuits. Our main tool is approximating

counting in L-AC circuits, we will show that deciding whether n bits contains ≤ a or ≥ b 1’s can be
done in poly(n)-size O

(
log b

b−a

log logn + 1

)
-depth (see Theorem 3.1). This improves the previous results

in [AB84][Ajt90][Vio07][Vio10][Coo20] from additive error to multiplicative error. The version of
additive error guarantees O

(log n
b−a

log logn + 1
)

-depth, see Lemma 3.4. Intuitively speaking, L-AC circuit
is good at aggregating on many inputs, but not good at high precision, this is why we need a step
of boosting precision.

1.1 Our Result
Theorem 1.1. (Main Theorem) (see also Corollary 5.2) BPL ⊆ L-AC1.

Theorem 1.2. (Multiplicative Approximate Counting in AC) (see also Theorem 3.1) Let

n, a, b ∈ N such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size O

(
log b

b−a

log logn + 1

)
-depth

L-uniform AC circuit family {Cn,a,b} that computes GapMaj[a, b] on n bits.

1.2 Related Works
Derandomizing BPL

We investigate some progress towards BPL = L. For more results not covered, we refer to these
surveys [Hoz22][HH23].

2

[Nis92b] presented a logspace computable pseudorandom generator with seed length O((logn)2),
which can be used to show BPL ⊆ TISP[poly(n), O((logn)2)] [Nis92a]. Later [SZ99] gave an algo-
rithm to balance the “logspace computable” and “seed length O((logn)2)” and show that BPL ⊆
L3/2. [Hoz21] improved this upper-bound to SPACE

[
(logn)3/2/

√
log logn

]
. More generally, [SZ99]

showed that approximating An for A ∈ Rw×w can be done in space O
(
(logn)3/2 +

√
logn · logw

)
.

[CDST22][PP22] improves [SZ99]’s result to Õ
(
logn+

√
logn · logw

)
via Richardson Iteration.

The usage of Richardson Iteration was developed in a line of works [AKM+20][PV21][CDR+21]
[CDST22][PP22][CHL+23].

[Pyn23] showed that BPL ⊆ CSPACE[O(logn), O((logn)2)] in the catalytic space computation
model.

[KvM02] showed that under the assumption that SPACE[O(n)] requires 2Ω(n) circuit size, we
have L = BPL. [CH20] showed that under the assumption that there exists a black-box hitting-set
generator computable in logspace, we have L = BPL. [DT23][PRZ23][DPT23] further improved the
derandomization of BPL under assumptions, for different purposes.

Approximating Counting in AC

Algorithms for approximate counting in AC has been studies in a line of work [AB84][Ajt90]
[Vio07][Vio10][Coo20]. These previous works focused on distinguishing whether n bits contains
≥
(
1
2 + ε

)
n 1’s or ≤

(
1
2 − ε

)
n 1’s, which can be thought as additive error. The L-AC0 algorithm

for distinguishing ≥ 2n/3 1’s and ≤ n/3 1’s was developed in [Ajt90].

1.3 Proof Sketch
We sketch the proof of BPL ⊆ L-AC1 and discuss the organization of our paper.
In Section 3 we will prove that deciding whether n bits contains ≤ a or ≥ b 1’s can be done

in poly(n)-size O

(
log b

b−a

log logn + 1

)
-depth, see Theorem 3.1. This will be a building block for approxi-

mating matrix operations.
In Section 4 we will develop the core iteration step.

Theorem 1.3. (see also Theorem 4.1) Let A ∈ Rn×n be a substochastic matrix and k, t ∈ N∗

such that logn ≥ k ≥ t. Suppose substochastic matrices B0, · · · ,Bk−1 are approximations of
A20 , · · · ,A2k−1 such that

∥∥∥Bi − A2i
∥∥∥
1
≤ εi for i = 1, 2, · · · , k − 1. Define 1

C :=−
t−1∑
i=1

∑
{j1<···<jp}⊎{j′1<···<j′q}
={k−1,k−2,··· ,k−i+1}

Bjp · · ·Bj1B2
k−iBj′1

· · ·Bj′q

+
∑

{j1<···<jp}⊎{j′1<···<j′q}
={k−1,k−2,··· ,k−t+1}

Bjp · · ·Bj1B2
k−tBj′1

· · ·Bj′q .

Then ∥∥∥C − A2k
∥∥∥
1
≤

t−1∑
i=1

2i−1ε2k−i + 2tεk−t.

1Here
∑

{j1<···<jp}⊎{j′1<···<j′q}
={k−1,k−2,··· ,k−i+1}

means taking the sum over all possible two-partitions of the set {k−1, k−2, · · · , k−

i+ 1}. Each two-partition partitions {k − 1, k − 2, · · · , k − i+ 1} into two disjoint subsets {j1, · · · , jp}, {j′1, · · · , j′q}.
Here set elements are sorted in increasing order, i.e., j1 < · · · < jp and j′1 < · · · < j′q. Therefore this

∑
is sum of

2i−1 terms.

3

Intuitively speaking, we can obtain a good approximation of A2k only given these Bk−1, · · · ,B0,
which either has lower accuracy or is approximation of A2k

′
for much smaller k′. We will prove

that the iteration step can be easily computed in L-AC in Theorem 4.2. We need to mention that
only use the original form of Richardson Iteration does not suffice to prove BPL ⊆ L-AC1.

In Section 5 we will present the complete algorithm. We wish to compute some intermediate
matrices M(k, t) for k, t ≤ O(logn), here M(k, t) is a 1/2t-approximation of A2k . We will use the
iteration step developed in Section 4 to show that, given all M(k− i, [t/2] + 2i)’s (for i = 1, 2, · · ·),
we can compute a valid M(k, t) in O(t)-depth. Then we can compute a valid M(logn, logn) in
O(logn)-depth.

Finally in Section 6 we will discuss some open problems.

2 Preliminaries
2.1 Matrix Approximation
Definition 2.1. (l1-norm) Define the l1-norm of a vector (x1, · · · , xn)⊤ ∈ Rn to be∥∥∥(x1, · · · , xn)⊤∥∥∥

1
:= |x1|+ · · ·+ |xn|.

Define the l1-norm of a matrix A ∈ Rn×n to be

‖A‖1 := sup
x∈Rn

‖Ax‖1
‖x‖1

= max
1≤j≤n

{|x1,j |+ |x2,j |+ · · ·+ |xn,j |} .

Theorem 2.2. For any A,B ∈ Rn×n, we have:

1. ‖A + B‖1 ≤ ‖A‖1 + ‖B‖1;

2. ‖AB‖1 ≤ ‖A‖1 ‖B‖1;

3. If ‖A‖1 , ‖B‖1 ≤ 1, then for any p ∈ N∗, ‖Ap − Bp‖1 ≤ p ‖A − B‖1.

Definition 2.3. (Non-negative Matrix) We say a matrix is non-negative if each of its entry is
non-negative.

Definition 2.4. (Substochastic Matrix) We say a matrix A ∈ Rn×n is a substochastic matrix
if A is non-negative and ‖A‖1 ≤ 1.

For simplicity, we always assume that the size of a substochastic matrix is a power of 2. To
represent a substochastic matrix, we independently represent each entry in binary, accurate to
100 logn decimal places.

2.2 L-uniform AC Circuit Family and Approximate Counting
Definition 2.5. (AC circuit) AC circuit is a circuit with input gates, NOT gates, unbounded fan-
in AND/OR gates, and (possibly more than one) output gates. The size of a circuit is defined by
the number of AND/OR gates. The depth of a circuit is defined by the largest number of AND/OR
gates on any path from an input gate to an output gate.

Definition 2.6. (L-uniform AC circuit family) For functions S, d : N∗ → R+, we say a collection
of circuits {Cn}n∈N∗ is an S-size d-depth L-uniform AC circuit family, if each Cn has size ≤ S(n)
and depth ≤ d(n), and given binary representation of n, the description of Cn can be computed in
uniform O(logn)-space.

4

We need to mention that the number of input gates in Cn is not necessarily n. Also note that
since we can encode a tuple of O(1) many integers to a single integer, we can also consider circuit
collections with a tuple of integers as an index.

Definition 2.7. (Complexity Class L-AC1) We say a language L is in class L-AC1 if there exists
a poly(n)-size O(logn)-depth L-uniform AC circuit family {Cn} such that Cn computes L on n-bit
inputs.

Definition 2.8. (GapMaj) For n ∈ N∗ and a, b ∈ R such that 0 ≤ a < b ≤ n, define GapMaj[a, b]
on n bits as follow:

GapMaj[a, b](x1, · · · , xn) :=

YES if x1, · · · , xn contains ≥ b 1’s
NO if x1, · · · , xn contains ≤ a 1’s
⊥ otherwise

2.3 Tool: Pairwise Independent Hash Function
We will use pairwise independent hash function as a tool for approximating counting in AC.

We shall use the following construction based on convolution, which was also used in [Nis92b].

Definition 2.9. (Convolution-Based Pairwise Independent Hash Function) Suppose m
is a power of 2. Define Hm :

[
m3
]
× [m] → [m] by: for (k, x) ∈

[
m3
]
× [m], let x1 · · ·xlogm be

binary representation of x − 1, let a1 · · · a2 logmb1 · · · blogm be binary representation of k − 1, let
yj :=

(∑logm
i=1 ai+jxi + bj

)
mod 2 for j ∈ [logm], then define Hm(k, x) by letting y1 · · · ylogm be

binary representation of Hm(k, x)− 1.

Theorem 2.10. Hm is Pairwise Independent Hash Function in the following sense: for any
1 ≤ i < j ≤ m, when k is sampled from the uniform distribution over

[
m3
]
, the joint distribution

of (Hm(k, i),Hm(k, j)) is identical to uniform over [m]× [m].

3 Approximate Counting in AC
The goal of this Section is to prove Theorem 3.1, which will be a building block for the proof

of BPL ⊆ L-AC1.

Theorem 3.1. Let n, a, b ∈ N such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size

O

(
log b

b−a

log logn + 1

)
-depth L-uniform AC circuit family {Cn,a,b} that computes GapMaj[a, b] on n bits.

The proof depends on the next few Lemmas.

Lemma 3.2. [Ajt90] Let n ∈ N∗. Then there exists poly(n)-size O(1)-depth L-uniform AC circuit
family {C(0)

n } that computes GapMaj[n/3, 2n/3] on n bits.

Lemma 3.3. (Exact Counting) Let n, l ∈ N∗ such that n ≥ l. Then there exists a poly(n)-size
O
(

log l
log logn + 1

)
-depth L-uniform AC circuit family {En,l} such that on l bits of input, En,l outputs

the exact number of 1’s over the input bits, in binary form.

5

Proof.
We only need to show how to compute sum of O(

√
logn) many O(logn)-bit non-negative integers

in O(1)-depth, then by divide-and-conquer we can compute sum of l bits in O
(

log l
log logn + 1

)
-depth.

View the O(logn)-bit integers as 2

[√
logn

]
-base O(

√
logn)-digit integers. Use the grade-school

algorithm to sum O(
√

logn) integers. We first guess the result and all carry-bits, which involve

at most O(
√

logn) · O
(

log
(√

logn · 2
[√

logn
]))

= O(logn) bits, and thus has at most poly(n)

choices. Then we can apply a local check on each digit, each local check involves at most O(logn)
bits, and thus deciding whether all local checks are passed can be computed in O(1)-depth. Then we
can take the result of the only guess that passes all local checks. The total cost is O(1)-depth.

Lemma 3.4. Let n, a, b ∈ N such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size
O
(log n

b−a

log logn + 1
)

-depth L-uniform AC circuit family {C(1)
n,a,b} that computes GapMaj[a, b] on n bits.

Proof.
Only consider the case that n is a power of 2, otherwise we can use a simple padding argument.

By Lemma 3.2, it suffices to show how to reduce GapMaj[a, b] on n bits to GapMaj[n3/3, 2n3/3] on
n3 bits, via a poly(n)-size O

(log n
b−a

log logn + 1
)

-depth L-uniform AC circuit.
If b− a ≤ 4

√
n then we can directly compute the number of 1’s exactly via Lemma 3.3. Below

we only consider b− a > 4
√
n.

Let l :=
⌈

12n2

(b−a)2

⌉
. Suppose the GapMaj[a, b] instance is x1, x2, · · · , xn. Let Hn be the hash

function defined in Definition 2.9. Define y1, · · · , yn3 as follow: for i ∈ [n3], let yi be 1 if at
least a+b

2n fraction of xHn(i,1), · · · , xHn(i,l) is 1, otherwise let yi be 0. Note that y1, · · · , yn3 can
be computed via a poly(n)-size O

(
log l

log logn + 1
)

-depth L-uniform AC circuit, by Lemma 3.3. Here

O
(

log l
log logn + 1

)
= O

(log n
b−a

log logn + 1
)

.
Let’s do some simple calculations. Assume p fraction of x1, · · · , xn is 1. Let Si be number of

1’s in xHn(i,1), · · · , xHn(i,l). Then we have Ei∼[n3][Si] = pl and Vari∼[n3][Si] ≤ l. So if p ≤ a
n , then

Pri∼[n3]

[
Si ≥ l · (a+b)

2n

]
≤ l(

l· (b−a)
2n

)2 = 4n2

l(b−a)2
≤ 1

3 . Similarly if p ≥ b
n then Pri∼[n3]

[
Si ≤ l · (a+b)

2n

]
≤

1
3 . This means if x1, · · · , xn is YES/NO instance of GapMaj[a, b], then y1, · · · , yn3 is YES/NO
instance of GapMaj[n3/3, 2n3/3]. The reduction is completed.

Proof of Theorem 3.1.
We will try to reduce to Lemma 3.4. Suppose the GapMaj[a, b] instance is x1, x2, · · · , xn. We

only consider the case n is a power of 2, otherwise use a simple padding argument. We only consider
the case 10

(
b

b−a

)2
< n

b−a (or equivalently, n(b−a) > 10b2), otherwise we can directly apply Lemma
3.4.

Let l :=
[
n(b−a)
2b2

]
. For i ∈ [n3], let yi := xHn(i,1) ∨ · · · ∨ xHn(i,l), here Hn is the hash function

defined in Definition 2.9. Then y1, · · · , yn3 can be computed via poly(n)-size O(1)-depth L-uniform
AC circuit.

Assume p fraction of x1, · · · , xn is 1. Let Si be number of 1’s in xHn(i,1), · · · , xHn(i,l). Then we
have Ei∼[n3][Si] = pl and Ei∼[n3][S

2
i] = l(l − 1)p2 + lp ≤ lp+ l2p2. Thus by

Ei∼[n3][Si]
2

Ei∼[n3][S
2
i]

≤ Pr
i∼[n3]

[Si ≥ 1] ≤ E
i∼[n3]

[Si]

6

we know: if p ≤ a
n , then Pri∼[n3][Si ≥ 1] ≤ la

n ; if p ≥ b
n , then Pri∼[n3][Si ≥ 1] ≥ (lb

n)
2

lb
n
+(lb

n)
2 ≥ lb

n −
(
lb
n

)2.
To summarize, if x1, · · · , xn is YES/NO instance of GapMaj[a, b], then y1, · · · , yn3 is YES/NO
instance of GapMaj

[[
n3 · la

n

]
,
⌈
n3 ·

(
lb
n −

(
lb
n

)2)⌉].
Finally we observe that

(
lb
n −

(
lb
n

)2) − la
n = l ·

(
b−a
n − lb2

n2

)
≥ n(b−a)

3b2
· b−a

2n = (b−a)2

6b2
. Thus by

Lemma 3.4, GapMaj
[[
n3 · la

n

]
,
⌈
n3 ·

(
lb
n −

(
lb
n

)2)⌉] over n3 bits can be computed via a poly(n)-size

O

(
log b

b−a

log logn + 1

)
-depth L-uniform AC circuit.

4 The Iteration Method
In this section, we will introduce the iteration step, which is the core of our proof of BPL ⊆

L-AC1.

Theorem 4.1. (The Iteration) Let A ∈ Rn×n be a substochastic matrix and k, t ∈ N∗ such that
logn ≥ k ≥ t. Suppose substochastic matrices B0, · · · ,Bk−1 are approximations of A20 , · · · ,A2k−1

such that
∥∥∥Bi − A2i

∥∥∥
1
≤ εi for i = 1, 2, · · · , k − 1. Define

C :=−
t−1∑
i=1

∑
{j1<···<jp}⊎{j′1<···<j′q}
={k−1,k−2,··· ,k−i+1}

Bjp · · ·Bj1B2
k−iBj′1

· · ·Bj′q

+
∑

{j1<···<jp}⊎{j′1<···<j′q}
={k−1,k−2,··· ,k−t+1}

Bjp · · ·Bj1B2
k−tBj′1

· · ·Bj′q .

Then ∥∥∥C − A2k
∥∥∥
1
≤

t−1∑
i=1

2i−1ε2k−i + 2tεk−t.

Proof.
Note that

C − A2k =−
t−1∑
i=1

∑
{j1<···<jp}⊎{j′1<···<j′q}
={k−1,k−2,··· ,k−i+1}

Bjp · · ·Bj1

(
A2k−i − Bk−i

)2
Bj′1

· · ·Bj′q

−
∑

{j1<···<jp}⊎{j′1<···<j′q}
={k−1,k−2,··· ,k−t+1}

Bjp · · ·Bj1

(
A2k−t+1 − B2

k−t

)
Bj′1

· · ·Bj′q .

So ∥∥∥C − A2k
∥∥∥
1
≤

t−1∑
i=1

2i−1
∥∥∥A2k−i − Bk−i

∥∥∥2
1
+ 2t

∥∥∥A2k−t − Bk−t

∥∥∥
1

≤
t−1∑
i=1

2i−1ε2k−i + 2tεk−t.

7

Theorem 4.2. (Computing the Iteration) Let n, k, t,A,B0, · · · ,Bk−1, ε0, · · · , εk−1,C be as
defined in Theorem 4.1. Let 4 logn ≥ d ≥ t/10. Then there exists a poly(n)-size O(d)-depth
L-uniform AC circuit family {In,k,t,d} that on inputs Bk−t, · · · ,Bk−1, if

t−1∑
i=1

2i−1ε2k−i + 2tεk−t ≤
1

2d+2

is satisfied, then In,k,t,d outputs a substochastic matrix C′ such that
∥∥∥C′ − A2k

∥∥∥
1
≤ 1/2d.

The intuition behind Theorem 4.2 is that to approximately compute C, all arithmetic operations
only need a multiplicative accuracy of 1/2Θ(d). This can be done efficiently by L-uniform AC circuit
by Theorem 3.1.

Proof of Theorem 4.2.
We observe that C is the sum of 2t−1 “+” terms and 2t−1 − 1 “−” terms, and each term is a

multiplication of not more than t+1 substochastic matrices. We will first show how to approximate
the multiplication of substochastic matrices and then show how to approximate their sum.

To approximate Z := XY for two substochastic matrices X,Y, we only need to approximate∑n
r=1 Xi,rYr,j for each pair (i, j) ∈ [n]2. We first represent each entry Xi,r,Yr,j using n100 bits

such that fraction of 1’s in these n100 bits is equal to the entry, then use a layer of AND gate to
represent each Xi,rYr,j using fraction of 1’s in n200 bits, and then represent each 1

n

∑n
r=1 Xi,rYr,j

using fraction of 1’s in n201 bits. Then we invoke Cn201,l,⌈l(1+1/220d+10)⌉ (as defined in Theorem 3.1,
which has depth ≤ O

(
d

log logn + 1
)

≤ O
(

d
log(t+1)

)
)2 for l = 1, 2, · · · , n200 over these n201 bits.

Suppose l0 is the smallest index such that Cn201,l0,⌈l0(1+1/220d+10)⌉ outputs 0, then we have

l0 − 1

n200
< Zi,j <

l0
(
1 + 1

220d+10

)
n200

and thus3
Zi,j

1 + 1
220d+10

− 1

n100
≤ 1

n100

[
l0

n100

]
≤ Zi,j .

Use [l0/n
100]/n100 as an approximation of Zi,j , then we obtain an approximation Z̃ of Z such that

Z − Z̃ is non-negative and Z̃ is substochastic and
∥∥∥Z − Z̃

∥∥∥
1
≤ 1/220d+10 + 1/n99. We need to be

careful that here we need a multiplicative small error on each entry and thus we need to strengthen
Lemma 3.4 to Theorem 3.1.

Then multiplication of not more than t+1 substochastic matrices can be computed via O(log(t+
1)) layers of multiplication of two matrices. Recall that multiplying two matrices uses O

(
d

log(t+1)

)
-

depth and has additive error 1/220d+10+1/n99. So the total depth for computing multiplication of
not more than t+ 1 substochastic matrices is O(d) and the total error is ≤ t(1/220d+10 + 1/n99) ≤
1/219d+5.

To summarize, suppose C = −
∑2t−1−1

i=1 Di+
∑2t−1

i=1 D′
i, here each Di,D′

i is multiplication of some
substochastic matrices. Then we can compute their approximations D̃i, D̃′

i in O(d) depth such that∥∥∥Di − D̃i

∥∥∥
1
≤ 1/219d+5 and

∥∥∥D′
i − D̃′

i

∥∥∥
1
≤ 1/219d+5.

2In Theorem 3.1 we take (a, b) = (l, ⌈l(1 + 1/220d+10)⌉), and then b
b−a

≤ O(d).
3Since n200Zi,j is an integer, we have l0−1

n200 < Zi,j =⇒ l0
n200 ≤ Zi,j .

8

We approximate 1
2t−1

∑2t−1−1
i=1 D̃i and 1

2t−1

∑2t−1

i=1 D̃′
i. Use the similar idea as summing

1
n

∑n
r=1 Xi,rYr,j , we can compute substochastic matrices C−,C+ using O(d)-depth, such that∥∥∥∥∥∥C− − 1

2t−1

2t−1−1∑
i=1

D̃i

∥∥∥∥∥∥
1

≤ 1

219d+5
,

∥∥∥∥∥∥C+ − 1

2t−1

2t−1∑
i=1

D̃′
i

∥∥∥∥∥∥
1

≤ 1

219d+5
.

Then 2t−1(C+ − C−) is a good approximation of A2k since

∥∥∥2t−1(C+ − C−)− A2k
∥∥∥
1
≤ 2t−1

∥∥∥∥∥∥C− − 1

2t−1

2t−1−1∑
i=1

D̃i

∥∥∥∥∥∥
1

+ 2t−1

∥∥∥∥∥∥C+ − 1

2t−1

2t−1∑
i=1

D̃′
i

∥∥∥∥∥∥
1

+

2t−1−1∑
i=1

∥∥∥Di − D̃i

∥∥∥
1
+

2t−1∑
i=1

∥∥∥D′
i − D̃′

i

∥∥∥
1

+

∥∥∥∥∥∥−
2t−1−1∑
i=1

Di +
2t−1∑
i=1

D′
i − A2k

∥∥∥∥∥∥
1

≤ 2t−1

219d+5
+

2t−1

219d+5
+

2t−1

219d+5
+

2t−1

219d+5
+
∥∥∥C − A2k

∥∥∥
1

≤ 1

29d+4
+

(
t−1∑
i=1

2i−1ε2k−i + 2tεk−t

)

≤ 1

29d+4
+

1

2d+2
.

Here the last step is from the statement of Theorem 4.2.
Finally we compute a substochastic matrix C′ which is a good approximation of A2k and

2t−1(C+ − C−). Here we need to be careful that C and 2t−1(C+ − C−) are not necessarily non-
negative or substochastic (but A2k is guaranteed substochastic). Let

C′′
i,j := max{2t−1(C+

i,j − C−
i,j), 0},

C′
i,j :=

1

n100

[
C′′
i,j

(
1− 1

2d+1

)
· n100

]
.

We can compute C′ given C+,C− by hardwiring the map (C+
i,j ,C

−
i,j) 7→ C′

i,j , which is L-uniform.
Obviously C′ is non-negative. Note that C′′ is entrywise closer to A2k than 2t−1(C+ − C−) and
hence ∥∥∥C′′ − A2k

∥∥∥
1
≤
∥∥∥2t−1(C+ − C−)− A2k

∥∥∥
1
≤ 1

29d+4
+

1

2d+2

Therefore C′ is substochastic since ‖C′‖1 ≤
(
1− 1

2d+1

)
‖C′′‖1 ≤

(
1− 1

2d+1

) (
1 + 1

29d+4 + 1
2d+2

)
≤ 1.

9

Also note that ∥∥∥C′ − A2k
∥∥∥
1
≤
∥∥C′ − C′′∥∥

1
+
∥∥∥C′′ − A2k

∥∥∥
1

≤ 1

n99
+

1

2d+1

∥∥C′′∥∥
1
+
∥∥∥C′′ − A2k

∥∥∥
1

≤ 1

n99
+

1

2d+1

(
1 +

1

29d+4
+

1

2d+2

)
+

1

29d+4
+

1

2d+2

≤ 1

2d
.

To summarize, we can output a valid C′ in O(d)-depth. And the circuit is poly(n)-size and
L-uniform.

5 The Complete Algorithm
Theorem 5.1. Let n be a power of 2. Then there exists a poly(n)-size O(logn)-depth L-uniform
AC circuit family {Mn}4 such that on input a substochastic matrix A ∈ Rn×n, Mn outputs a
substochastic matrix M ∈ Rn×n such that ‖M − An‖1 ≤ 1/n.

Proof.
Only consider logn ≥ 10. For k, t ∈ N such that k ≤ logn and 1 ≤ t ≤ 3 logn − 2k, we

wish to compute a substochastic matrix M(k, t), which is an approximation of A2k , such that∥∥∥M(k, t)− A2k
∥∥∥
1
≤ 1/2t. Then M := M(logn, logn) is the desired matrix.

For k = 0, we can trivially let M(0, t) := A. Now we show how to recursively compute M(k0, t0)
for k0 = 1, 2, · · · , logn.

In Theorem 4.1, take the same n,A and take k := k0, take Bk−i := M(k − i, [t0/2] + 2i) for
1 ≤ i ≤ k. Then we can take εk−i := 1/2[t0/2]+2i for 1 ≤ i ≤ k − 1 and ε0 = 0. Now we will invoke
Theorem 4.1, 4.2 by choosing parameter t properly according to the following two cases.

Case 1. k ≤ 2t0 + 2.
Take the parameter t in Theorem 4.1 to be t := k. Then

k−1∑
i=1

2i−1ε2k−i + 2kε0 =

k−1∑
i=1

1

22[t0/2]+3i+1
≤ 1

2t0+2
.

In Theorem 4.2 take d := t0. It is easy to verify that logn ≥ k ≥ t and 4 logn ≥ d ≥ t/10 hold
when we invoke Theorem 4.1, 4.2. Given Bk−1, · · · ,B0, use In,k0,k0,t0 (defined in Theorem 4.2) we
can compute a substochastic matrix C′ such that

∥∥∥C′ − A2k
∥∥∥
1
≤ 1/2t0 .

Case 2. k ≥ 2t0 + 3.
Take t := 2t0 + 3 in Theorem 4.1. Then

2t0+2∑
i=1

2i−1ε2k−i + 22t0+3εk−2t0−3 ≤
2t0+2∑
i=1

1

22[t0/2]+3i+1
+

1

2[t0/2]+2t0+3
≤ 1

2t0+2
.

In Theorem 4.2 take d := t0. Given Bk−1, · · · ,B0, use In,k0,2t0+3,t0 we can compute a substochastic
matrix C′ such that

∥∥∥C′ − A2k
∥∥∥
1
≤ 1/2t0 .

4We require that given n, description of Mn can be computed in space O(logn).

10

To summarize, take M(k0, t0) := C′, we can compute M(k0, t0) given M(k0 − i, [t0/2] + 2i) for
1 ≤ i ≤ k0, via a poly(n)-size O(t0)-depth L-uniform AC circuit.

Let γ > 0 be a concrete constant such that we can compute M(k0, t0) given M(k0− i, [t0/2]+2i)
via a poly(n)-size γt0-depth L-uniform AC circuit. Note that if M(k0−i, [t0/2]+2i) can be computed
in 2γ(2(k0 − i) + ([t0/2] + 2i))-depth for 1 ≤ i ≤ k0, then M(k0, t0) can be computed in

γt0 + max
1≤i≤k0

{2γ(2(k0 − i) + ([t0/2] + 2i))} ≤ 2γ(2k0 + t0)

-depth. Also note that M(0, t0)’s are just the inputs, so by induction we know M(k0, t0) can be
computed in 2γ(2k0 + t0)-depth. Specially, M(logn, logn) (which is the desired output) can be
computed in 6γ logn ≤ O(logn)-depth. Also note that we use “compute M(k0, t0) given M(k0 −
i, [t0/2] + 2i)” O((logn)2) many times, so the total circuit size for computing M(logn, logn) is still
poly(n).

Corollary 5.2. BPL ⊆ L-AC1.

6 Open Problems
1. Our algorithm based on the improved iteration can be thought of as low-depth of precision

requirement. Can this method be applied to obtain other interesting results in derandomizing
BPL? It seems that the space-bounded model or nondeterministic space-bounded model
cannot deal with low accuracy aggregating on many bits at low cost, as in the AC circuit
model.

2. Our algorithm involves a “×O(log logn)” step when multiplying O(logn) matrices and a
“/O(log logn)” step in approximating counting in AC, which seems coincidentally achieves
O(logn)-depth. Can we improve the algorithm to obtain an O

(
logn

log logn

)
-depth circuit?

References
[AB84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computa-

tions. In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 471–
474. ACM, 1984.

[Ajt90] Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Jin-Yi
Cai, editor, Advances In Computational Complexity Theory, Proceedings of a DIMACS
Workshop, New Jersey, USA, December 3-7, 1990, volume 13 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 1–20. DIMACS/AMS,
1990.

[AKM+20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron
Sidford, and Salil P. Vadhan. High-precision estimation of random walks in small space.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1295–1306.
IEEE, 2020.

11

[CDR+21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error re-
duction for weighted prgs against read once branching programs. In Valentine Ka-
banets, editor, 36th Computational Complexity Conference, CCC 2021, July 20-23,
2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages
22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[CDST22] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating iterated
multiplication of stochastic matrices in small space. Electron. Colloquium Comput.
Complex., TR22-149, 2022.

[CH20] Kuan Cheng and William Hoza. Hitting sets give two-sided derandomization of small
space. Electron. Colloquium Comput. Complex., TR20-016, 2020.

[CHL+23] Lijie Chen, William M. Hoza, Xin Lyu, Avishay Tal, and Hongxun Wu. Weighted
pseudorandom generators via inverse analysis of random walks and shortcutting. In
64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023,
Santa Cruz, CA, USA, November 6-9, 2023, pages 1224–1239. IEEE, 2023.

[Coo20] Joshua Cook. Size bounds on low depth circuits for promise majority. Electron. Collo-
quium Comput. Complex., TR20-122, 2020.

[DPT23] Dean Doron, Edward Pyne, and Roei Tell. Opening up the distinguisher: A hardness to
randomness approach for BPL = L that uses properties of BPL. Electron. Colloquium
Comput. Complex., TR23-208, 2023.

[DT23] Dean Doron and Roei Tell. Derandomization with minimal memory footprint. In
Amnon Ta-Shma, editor, 38th Computational Complexity Conference, CCC 2023, July
17-20, 2023, Warwick, UK, volume 264 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023.

[HH23] Pooya Hatami and William Hoza. Theory of unconditional pseudorandom generators.
Electron. Colloquium Comput. Complex., TR23-019, 2023.

[Hoz21] William Hoza. Better pseudodistributions and derandomization for space-bounded com-
putation. Electron. Colloquium Comput. Complex., TR21-048, 2021.

[Hoz22] William Hoza. Recent progress on derandomizing space-bounded computation. Elec-
tron. Colloquium Comput. Complex., TR22-121, 2022.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput.,
31(5):1501–1526, 2002.

[Nis92a] Noam Nisan. RL ⊆ SC. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A.
Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 619–623. ACM, 1992.

[Nis92b] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb.,
12(4):449–461, 1992.

[PP22] Aaron (Louie) Putterman and Edward Pyne. Near-optimal derandomization of
medium-width branching programs. Electron. Colloquium Comput. Complex., TR22-
150, 2022.

12

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. Certified hardness vs. randomness for log-space.
In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023,
Santa Cruz, CA, USA, November 6-9, 2023, pages 989–1007. IEEE, 2023.

[PV21] Edward Pyne and Salil P. Vadhan. Pseudodistributions that beat all pseudorandom
generators. Electron. Colloquium Comput. Complex., TR21-019, 2021.

[Pyn23] Edward Pyne. Time-space tradeoffs for BPL via catalytic computation. Electron.
Colloquium Comput. Complex., TR23-168, 2023.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). J. Comput. Syst.
Sci., 58(2):376–403, 1999.

[Vio07] Emanuele Viola. On approximate majority and probabilistic time. In 22nd Annual
IEEE Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San
Diego, California, USA, pages 155–168. IEEE Computer Society, 2007.

[Vio10] Emanuele Viola. Randomness buys depth for approximate counting. Electron. Collo-
quium Comput. Complex., TR10-175, 2010.

13
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

