

Even quantum advice is unlikely to solve PP

Justin Yirka The University of Texas at Austin yirka@utexas.edu

March 2024

Abstract

We give a corrected proof that if $PP \subseteq BQP/qpoly$, then the Counting Hierarchy collapses, as originally claimed by [Aaronson, CCC 2006]. This recovers the related unconditional claim that PP does not have circuits of any fixed size n^k even with quantum advice. We do so by proving that YQP^* , an oblivious version of $QMA \cap coQMA$, is contained in APP, and so is PP-low.

1 Introduction

In [Aar06], Aaronson proved new quantum circuit lower bounds for PP, among other results. First, Aaronson proved that P^{PP} does not have circuits of size n^k for any fixed constant k even if the circuits use quantum advice states. Second, he gave an analogue of the Karp-Lipton theorem for quantum circuits, showing that if $PP \subseteq BQP/qpoly$, then the Counting Hierarchy collapses to QMA, where the Counting Hierarchy is the infinite sequence of classes $C_1P = PP$ and $C_iP = (C_{i-1}P)^{PP}$. Finally, Aaronson combined these two results to give the unconditional bound that PP does not have circuits of size n^k for any fixed constant k even with quantum advice.¹

However, Aaronson later noted there was an error in one of the proofs [Aar17]. The first of the above results was unaffected, but the proofs of the second and third results only held for quantum circuits with classical advice. Fortunately, no other results in [Aar06] were affected, but no fix for this bug was forthcoming. Very briefly, the error was a claim that for some oracle class $C^{BQP/qpoly}$ in which a machine for the base class C is able to find the quantum advice state that will be used by the oracle machine, the base machine could "hard-code" the advice state into its oracle queries so that the oracle no longer needs the power to find its own advice, thus reducing $C^{BQP/qpoly}$ to C^{BQP} . This approach works for classes with classical advice, like $C^{BQP/poly}$. But, because complexity classes such as BQP and their associated oracles are defined as maps from $\{0,1\}^*$ to $\{0,1\}$, there is no way to hard-code a quantum advice state into a query.

In this note, we give a corrected proof of Aaronson's full claims. We show that if $PP \subseteq BQP/qpoly$, then the Counting Hierarchy collapses to QMA and in fact to YQP^* . Given this correction, Aaronson's proof for the third claim, that PP does not have circuits of size n^k for any fixed constant k even with quantum advice, now goes through.

¹Slightly earlier, Vinochandran [Vin05] gave a proof that PP does not have *classical* circuits of fixed polynomial size.

Our corrected proof relies on the known equality $BQP/qpoly = YQP^*/poly$, serendipitously proven by Aaronson with Drucker [AD14], where YQP^* is an oblivious version of $QMA \cap coQMA$. Our primary technical contribution is to show $YQP^* \subseteq APP$, which is known to be PP-low, where APP is a subclass of PP with an arbitrarily small but nonzero promise gap.

For comparison, other Karp-Lipton style bounds on quantum complexity classes include that if QCMA \subseteq BQP/poly, then QCPH collapses [AGKR24] and that if NP \subseteq BQP/qpoly, then $\Pi_2^p \subseteq$ QMA^{PromiseQMA} [AD14]. As for unconditional bounds, following Aaronson's unaffected result that P^{PP} does not have quantum circuits with quantum advice of any fixed polynomial size, our result for PP is the first improved bound on fixed-size circuits with quantum advice. Our primary lemma establishes YQP* as the largest natural quantum complexity class known to be PP-low, improving on the fact that BQP is PP-low [FR99].² Additionally, while the largest witness-based class previously known to be contained in APP was FewP [Li93], our result shows that APP in fact contains oblivious-witness classes including YQP* \supseteq YMA* \supseteq YP* \supseteq FewP.

2 Preliminaries

As this note builds directly on [Aar06] and [AD14], we intentionally give only a concise background. For further background, motivation, and technical details concerning the complexity classes discussed, see these earlier works.

Note that our definitions of BQP/poly and BQP/qpoly are the standard ones in which a circuit is only required to satisfy the promise gap when the correct advice is provided. The same notation has sometimes been used to refer to other definitions, see e.g. [Zoo].

The class YQP was first described in [Aar07], but the definition was later corrected by Aaronson and Drucker [AD14]. Informally, it is the oblivious version of QMA \cap coQMA, so that the witness sent by Merlin depends only on the length of the input. In contrast to the "advice" of P/poly, this has been described as "untrusted advice". Oblivious proofs can also be thought of as restricting non-uniform classes, like P/poly or BQP/qpoly, to advice which is verifiable [GM15].

Definition 2.1. A language L is in YQP if there exists a polynomial-time uniform family of quantum circuits $\{Y_n\}_{n\in\mathbb{N}}$ that satisfy the following. Circuit Y_n is of size poly(n) and takes as input $x \in \{0,1\}^n$, a p(n)-qubit state ρ for some $p(n) \leq \text{poly}(n)$, and an ancilla register initialized to the all-zero state, and has two designated 1-qubit "advice-testing" and "output" qubits. $Y_n(x,\rho)$ acts as follows:

- 1. First Y_n applies a subcircuit A_n to all registers, after which the advice-testing qubit is measured, producing a value $b_{adv} \in \{0, 1\}$.
- 2. Next, Y_n applies a second subcircuit B_n to all registers, then measures the output qubit, producing a value $b_{out} \in \{0, 1\}$.

These output bits satisfy the following:

• For all n, there exists a ρ_n such that for all x, the advice bit satisfies $E[b_{adv}] \ge 9/10$.

 $^{^2 \}rm Morimae$ and Nishimura [MN16] gave definitions involving quantum postselection chosen to equal AWPP and APP.

• If for any x, ρ we have $E[b_{adv}] \ge 1/10$, then on input x, ρ we have

$$\Pr\left[b_{\text{out}} = L(x) \mid b_{\text{adv}} = 1\right] \ge 9/10.$$

L is in the subclass YQP^* if the family can be chosen such that b_{adv} is independent of x.

Just as Oblivious-NP is unlikely to contain NP [FSW09], it also seems unlikely that QMA is contained in YQP. On the other hand, it is straightforward to show that any sparse language can be verified obliviously, so FewP \subseteq YP* and FewQMA \subseteq YQP*. We also have the trivial bounds BQP \subseteq YQP* \subseteq YQP \subseteq QMA and YQP \subseteq BQP/qpoly. Studying YQP may be motivated by the use of oblivious complexity classes in constructing circuit lower bounds [FSW09, GLV24], by the fact that BQP/qpoly = YQP*/poly = YQP/poly shown by [AD14], or by the results shown in this work.

The class APP was introduced by Li [Li93] in pursuit of a large class of PP-low languages. We use the equivalent definition given by Fenner [Fen03, Corollary 3.7].

Definition 2.2. $L \in \mathsf{APP}$ if and only if there exist functions $f, g \in \mathsf{GapP}$ and constants $0 \le \lambda < v \le 1$ such that for all n and $x \in \{0, 1\}^n$, we have $g(1^n) > 0$ and

- If $x \in L$ then $vg(1^n) \leq f(x) \leq g(1^n)$;
- If $x \notin L$ then $0 \leq f(x) \leq \lambda g(1^n)$.

In the above definition, recall that GapP is the closure of #P under subtraction. In other words, while every function $f \in \#P$ corresponds to a nondeterministic polynomialtime Turing Machine N such that f(x) equals the number of accepting paths of N(x), a GapP function equals the number of accepting paths minus the number of rejecting paths.

APP is a subclass of PP and is PP-low, meaning $PP^{APP} = PP$. Recall that PP can be thought of as comparing a #P function to a threshold exactly, with no promise gap. The class in fact remains unchanged if it is defined as comparing a GapP function to a threshold as simple as one-half of the possible paths or as complex as a GapP function. Then, APP can be thought of as comparing a GapP function (here f(x)) to some threshold (here $g(1^n)$), where the complexity of the threshold is limited to a GapP function which may depend on the input size but not the input, and where there is some arbitrarily small but nonzero promise gap (from $\lambda g(1^n)$ to $vg(1^n)$).

The best known upper bound on APP is PP. Compared with the class $A_0PP = SBQP \subseteq PP$ [Kup15], A_0PP contains QMA and is *not* known to be PP-low, while APP is not known to contain even NP but is PP-low.

We will use the following fact shown for uniform circuit families by Watrous [Wat08, Section IV.5], and shown earlier for QTMs by Fortnow and Rogers [FR99].

Lemma 2.3. For any polynomial-time uniformly generated family of quantum circuits $\{Q_n\}_{n\in\mathbb{N}}$ each of size bounded by a polynomial t(n), there is a GapP function f such that for all n-bit x,

$$\Pr\left[Q_n(x) \ accepts\right] = \frac{f(x)}{5^{t(n)}}$$

3 Results

We first prove our main technical result which will later allow us to prove Theorems 3.4 and 3.5.

Lemma 3.1. $YQP^* \subseteq APP$.

Proof. Consider any language $L \in \mathsf{YQP}^*$. Let $\{Y_n, A_n, B_n\}_{n \in \mathbb{N}}$ be the associated family of circuits and subcircuits, in which Y_n takes string x and a supposed witness or advice state as input, in which subcircuit A_n validates the advice and produces output bit b_{adv} , and in which, given A_n accepted, B_n uses the advice to verify the particular input x and outputs bit b_{adv} . Note that because we consider YQP^* , the circuit A_n only takes the witness state, not x, as input. Let k and m be polynomials in n denoting the respective sizes of the ancilla and proof registers.

We use the technique of strong, or in-place, error reduction of Marriott and Watrous [MW05] on the circuits A_n with a polynomial q in n of our choosing to produce a new circuit family $\{A'\}_{n\in\mathbb{N}}$ such that for any proof ρ ,

- $\Pr[A_n(\rho)] \ge \frac{9}{10} \Rightarrow \Pr[A'_n(\rho)] \ge 1 2^{-q};$
- $\Pr[A_n(\rho)] \leq \frac{1}{10} \Rightarrow \Pr[A'_n(\rho)] \leq 2^{-q}.$

Recall the error reduction algorithm of [MW05] involves, given some quantum input or witness state, applying a circuit C, recording whether the output is $|0\rangle$ or $|1\rangle$ in a variable y_i , applying C^{\dagger} , recording whether the circuit's ancilla register is in the all-zero state or not in a variable y_{i+1} , and repeating these steps for some number of iterations M. Call the full, amplified circuit C'.

Remark 3.2. Studying the proof of [MW05], if the final recorded bit $y_{2M+1} = 1$, then the final state of the ancilla register was projected into the all-zero state. Additionally, suppose the circuit C' is applied to an *m*-qubit proof state, so there are 2^m eigenstate $\{|\lambda_i\rangle\}_{i\in[2^n]}$ of C'. Further studying the proof of [MW05], if the initial state given to C' was an eigenstate $|\lambda_i\rangle$ and after applying C' the final two recorded bits were $y_{2M} = y_{2M+1} = 1$, then the final state of the proof register is the same as the initial state, $|\lambda_i\rangle$. If an eigenstate $|\lambda_i\rangle$ was accepted by the original circuit C with probability p, then when C' is run on $|\lambda_i\rangle$, the probability that of $y_{2M} = y_{2M+1} = 1$ is at least $p \times \min\{p, 1-p\}$.

Combining all of the above, we define $\{A''_n\}_{n\in\mathbb{N}}$ to be the amplified circuits $\{A'_n\}_{n\in\mathbb{N}}$ with the additional rule that the circuit accepts iff both $b_{adv} = 1$ and the final two recorded variables $y_{2M} = y_{2M+1} = 1$. Further, define $\{A'''_n\}_{n\in\mathbb{N}}$ so that $A'''_n = A''_n(\frac{\mathbb{I}}{2^m})$, with the maximally mixed state hard-wired into the proof register. Similarly, we define $\{Y'_n\}_{n\in\mathbb{N}}$ to apply the amplified subcircuit A'_n and B_n , we define $\{Y''_n\}_{n\in\mathbb{N}}$ to apply A''_n and B_n and thus accept iff $b_{adv}, b_{out}, y_{2M}, y_{2M+1}$ all equal 1, and we define $\{Y''_n\}_{n\in\mathbb{N}}$ so that $Y'''_n(x) =$ $Y''_n(x, \frac{\mathbb{I}}{2^m})$ with the maximally mixed state hard-wired into the proof register, meaning that it uses A'''_n as a subcircuit.

Applying Lemma 2.3, there exist GapP functions f, g and polynomials r, t such that for all *n*-bit x,

$$\Pr\left[A_n''' \text{ accepts}\right] = \frac{f(1^n)}{5^{r(n)}} \quad \text{and} \quad \Pr\left[Y_n'''(x) \text{ accepts}\right] = \frac{g(x)}{5^{t(n)}}.$$

The function f depends only on the input length n, not x, because the circuit A_n''' is independent of x. Next, we define $F(1^n) = f(1^n)5^{t(n)-r(n)}$, which is a GapP function since $5^{t(n)-r(n)} \in \mathsf{FP} \subseteq \mathsf{GapP}$ and GapP is closed under multiplication. We have

$$\frac{g(x)}{F(1^n)} = \frac{\Pr\left[Y_n'''(x) \text{ accepts}\right]}{\Pr\left[A_n''' \text{ accepts}\right]}$$

We will show bounds on the ratio $g(x)/F(1^n)$ based on whether x is in L or not in Lin order to prove L is in APP. First, note that the ratio is upper-bounded by 1 since Y_n''' only accepts if the subcircuit A_n''' accepts, and it is lower-bounded by 0 since probabilities are non-negative. Next, let $\{|\lambda_i\rangle\}_{i\in[2^m]}$ be the set of eigenvectors $|\lambda_i\rangle$ of the circuit A_n . By writing the maximally mixed state, which is hard-wired into the proof register of Y_n''' , in terms of this eigenbasis, we find

$$\frac{\Pr\left[Y_{n}^{\prime\prime\prime}(x) \text{ accepts}\right]}{\Pr\left[A_{n}^{\prime\prime\prime} \text{ accepts}\right]} = \frac{\Pr\left[Y_{n}^{\prime\prime}(x, \frac{\mathbb{I}}{2^{m}}) \text{ accepts}\right]}{\Pr\left[A_{n}^{\prime\prime\prime} \text{ accepts}\right]} = \frac{\sum_{i=1}^{2^{m}} \Pr\left[Y_{n}^{\prime\prime}(x, |\lambda_{i}\rangle) \text{ accepts}\right]}{2^{m} \Pr\left[A_{n}^{\prime\prime\prime} \text{ accepts}\right]}$$
$$= \frac{\sum_{i=1}^{2^{m}} \Pr\left[Y_{n}^{\prime\prime}(x, |\lambda_{i}\rangle) \text{ accepts} \mid A_{n}^{\prime\prime}(|\lambda_{i}\rangle) \text{ accepts}\right] \Pr\left[A_{n}^{\prime\prime\prime}(|\lambda_{i}\rangle) \text{ accepts}\right]}{2^{m} \Pr\left[A_{n}^{\prime\prime\prime\prime} \text{ accepts}\right]}$$
$$= \frac{\sum_{i=1}^{2^{m}} \Pr\left[B_{n}(x, |\lambda_{i}\rangle) \text{ accepts}\right] \cdot \Pr\left[A_{n}^{\prime\prime\prime}(|\lambda_{i}\rangle) \text{ accepts}\right]}{2^{m} \Pr\left[A_{n}^{\prime\prime\prime\prime} \text{ accepts}\right]}$$

where we have used the facts that Y''_n accepting requires A''_n to accept and that A''_n accepting guarantees the initial eigenstate $|\lambda_i\rangle$ is sent on to the subcircuit B_n within Y''_n . Define

$$\mathcal{B} = \left\{ i \in [2^m] \mid \Pr\left[A_n(|\lambda_i\rangle)\right] \le 0.1 \right\}.$$

Then we can rewrite both the numerator and denominator in the above ratio to give

$$\frac{\sum_{i\in\mathcal{B}}\Pr\left[B_{n}(x,|\lambda_{i}\rangle) \text{ accepts}\right] \cdot \Pr\left[A_{n}''(|\lambda_{i}\rangle) \text{ accepts}\right] + \sum_{i\in\overline{\mathcal{B}}}\Pr\left[B_{n}(x,|\lambda_{i}\rangle) \text{ accepts}\right] \cdot \Pr\left[A_{n}''(|\lambda_{i}\rangle) \text{ accepts}\right]}{\sum_{i\in\mathcal{B}}\Pr\left[A_{n}''(|\lambda_{i}\rangle) \text{ accepts}\right] + \sum_{i\in\overline{\mathcal{B}}}\Pr\left[A_{n}''(|\lambda_{i}\rangle) \text{ accepts}\right]}$$

We will use this expression as the starting point for our analysis of the YES and NO cases.

Now, suppose we have a YES instance with $x \in L$. As this is YQP^{*}, we are guaranteed at least one proof is accepted by A with high probability, and denote it by $|\lambda^*\rangle$. Then, we may calculate that $g(x)/F(1^n)$ is at least

$$\frac{\sum_{i\in\mathcal{B}} 0 + \sum_{i\in\overline{\mathcal{B}}} \frac{9}{10} \Pr\left[A_n''(|\lambda_i\rangle) \text{ accepts}\right]}{\sum_{i\in\mathcal{B}} 2^{-q} + \sum_{i\in\overline{\mathcal{B}}} \Pr\left[A_n''(|\lambda_i\rangle) \text{ accepts}\right]} \geq \frac{\frac{9}{10} \Pr\left[A_n''(|\lambda^*\rangle) \text{ accepts}\right]}{|\mathcal{B}| 2^{-q} + \Pr\left[A_n''(|\lambda^*\rangle) \text{ accepts}\right]}$$

which, using the fact that x/(c+x) decreases as x decreases as well as the bound stated in Remark 3.2 on the probability the error-reduction variables y_{2M}, y_{2M+1} are 1, is at least

$$\frac{\frac{9}{10}(1-2^{-q})(0.9)(0.1)}{|\mathcal{B}|\,2^{-q}+(1-2^{-q})(0.9)(0.1)} = \frac{0.081(1-2^{-q})}{2^{m-q}+0.09(1-2^{-q})} \\ \ge \frac{0.081(1-2^{-q})}{2^{-q/2}+0.09(1-2^{-q})} \ge \frac{0.081(1-2^{-10})}{2^{-5}+0.09(1-2^{-10})} > 0.66,$$

where in the last line we used our freedom to choose the polynomial q.

On the other hand, in a NO instance, we have that $g(x)/F(1^n)$ is at most

$$\frac{|\mathcal{B}| \times 1 \times 2^{-q} + |\overline{\mathcal{B}}| \times \frac{1}{10} \times 1}{2^m \Pr[A_n^m \text{ accepts}]} \le \frac{2^m 2^{-q} + 2^m \frac{1}{10}}{2^m} = 2^{-q} + \frac{1}{10} \le 0.2.$$

We have shown a constant separation of $g(x)/F(1^n)$ in YES and NO instances. This satisfies the definition of APP in Definition 2.2 of APP, so we conclude $YQP^* \subseteq APP$. \Box

Next, the fact APP is known to be PP-low [Li93, Theorem 6.4.14] gives us the following corollary.

Corollary 3.3. YQP^* is PP-low, i.e. $PP^{YQP^*} = PP$.

We are now able to give a corrected proof of the result originally claimed for BQP/qpoly but only proved for BQP/poly by Aaronson [Aar06].

Theorem 3.4. If $PP \subseteq BQP/qpoly$, then the Counting Hierarchy collapses to $CH = QMA = YQP^*$.

Proof. We repeat Aaronson's original claimed proof [Aar06], but substitute YQP* where he relied on QMA.

Suppose $\mathsf{PP} \subseteq \mathsf{BQP/qpoly}$. From [AD14], we know that $\mathsf{BQP/qpoly} = \mathsf{YQP^*/poly}$. Then in $\mathsf{YQP^*}$, without trusted classical advice, Arthur can request Merlin sends many copies of the quantum advice $|\psi\rangle$ and a description of the circuit C such that $C, |\psi\rangle$ compute PER-MANENT, a PP-complete problem. Of course, this advice is now untrusted. Arthur verifies that $C, |\psi\rangle$ in fact work on a large fraction of inputs by simulating the interactive protocol for $\#\mathsf{P}$ due to [LFKN92], which also works for PP, using $C, |\psi\rangle$ in place of the prover. If the protocol accepts, then Arthur can use the random self-reducibility of PERMANENT to generate a circuit C' which is correct on *all* inputs (see e.g. [AB09, Sec. 8.6.2]). Thus, we have $\mathsf{PP} = \mathsf{YQP^*}$.

In this way, any level of the Counting Hierarchy $C_i P = (C_{i-1}P)^{PP}$ with i > 1 is reducible to $(C_{i-1}P)^{YQP^*}$ which by Corollary 3.3 equals $C_{i-1}P$. This works recursively for all levels, collapsing C_iP to $C_1P = PP$, so that all of $CH = PP = YQP^*$.

Given the above result, we can also fully recover the following result originally claimed by Aaronson [Aar06].

Theorem 3.5. PP does not have quantum circuits of size n^k for any fixed k. Furthermore, this holds even if the circuits can use quantum advice.

Proof. Suppose PP does have circuits of size n^k . This implies PP \subseteq BQP/qpoly, which by Theorem 3.4 implies CH = YQP^{*}, which includes P^{PP} = PP = YQP^{*}. Together, there are circuits of size n^k for P^{PP}, which contradicts the result of [Aar06] (unaffected by the bug) that P^{PP} does not have such circuits even with quantum advice.

In fact, as [Aar06] observes, because his proof that P^{PP} does not have circuits of size n^k for fixed k can be strengthened, we have that Theorem 3.5 can be strengthened to show for all functions $f(n) \leq 2^n$, the class $\mathsf{PTIME}(\mathsf{f}(\mathsf{f}(\mathsf{n})))$, which is like PP but for machines of running time f(f(n)), requires quantum circuits using quantum advice of size at least $f(n)/n^2$. In particular, this implies PEXP , the exponential-time version of PP , requires quantum circuits with quantum advice of "half-exponential" size (meaning a function that becomes exponential when composed with itself [MVW99]).

References

- [Aar06] Scott Aaronson. Oracles are subtle but not malicious. In Proceedings of the 21st Annual IEEE Conference on Computational Complexity, pages 340—-354.
 IEEE Computer Society, 2006. doi:10.1109/CCC.2006.32.
- [Aar07] Scott Aaronson. The learnability of quantum states. *Proc. R. Soc. A.*, 463(2088):3089–3114, 2007. doi:10.1098/rspa.2007.0113.
- [Aar17] Scott Aaronson. Yet more errors in papers, May 2017. Accessed 14 Jan. 2024. URL: https://scottaaronson.blog/?p=3256.
- [AB09] Sanjeev Arora and Boaz Barak. *Computational complexity: a modern approach*. Cambridge University Press, 2009.
- [AD14] Scott Aaronson and Andrew Drucker. A full characterization of quantum advice. SIAM Journal on Computing, 43(3):1131–1183, 2014. doi:10.1137/110856939.
- [AGKR24] Avantika Agarwal, Sevag Gharibian, Venkata Koppula, and Dorian Rudolph. Quantum polynomial hierarchies: Karp-Lipton, error reduction, and lower bounds, 2024. arXiv:2401.01633.
- [Fen03] Stephen A. Fenner. PP-lowness and a simple definition of AWPP. Theory of Computing Systems, 36:199–212, 2003. doi:10.1007/s00224-002-1089-8.
- [FR99] Lance Fortnow and John Rogers. Complexity limitations on quantum computation. Journal of Computer and System Sciences, 59(2):240-252, 1999. doi:10.1006/jcss.1999.1651.
- [FSW09] Lance Fortnow, Rahul Santhanam, and Ryan Williams. Fixed-polynomial size circuit bounds. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, pages 19–26. IEEE, 2009. doi:10.1109/CCC.2009.21.
- [GLV24] Karthik Gajulapalli, Zeyong Li, and Ilya Volkovich. Oblivious classes revisited: Lower bounds and hierarchies. ECCC: TR24-049, 2024. URL: https://eccc. weizmann.ac.il/report/2024/049/.
- [GM15] Oded Goldreich and Or Meir. Input-oblivious proof systems and a uniform complexity perspective on P/poly. ACM Transactions on Computation Theory, 7(4):1–13, 2015. doi:10.1145/2799645.
- [Kup15] Greg Kuperberg. How hard is it to approximate the Jones polynomial? *Theory* of Computing, 11(1):183–219, 2015.
- [LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive proof systems. *Journal of the ACM (JACM)*, 39(4):859– 868, 1992. doi:10.1145/146585.146605.
- [Li93] Lide Li. On the counting functions. PhD thesis, The University of Chicago, 1993. URL: https://www.proquest.com/dissertations-theses/ on-counting-functions/docview/304080357/se-2.

- [MN16] Tomoyuk Morimae and Harumichi Nishimura. Quantum interpretations of AWPP and APP. *Quantum Info. Comput.*, 16(5-6):498-514, 2016. doi: 10.26421/QIC16.5-6-6.
- [MVW99] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Superpolynomial versus half-exponential circuit size in the Exponential Hierarchy. In International Computing and Combinatorics Conference, pages 210–220. Springer, 1999. doi:10.1007/3-540-48686-0_21.
- [MW05] Chris Marriott and John Watrous. Quantum Arthur-Merlin games. Computational Complexity, 14:122–152, 2005. doi:10.1007/s00037-005-0194-x.
- [Vin05] N. V. Vinodchandran. A note on the circuit complexity of PP. *Theoretical Computer Science*, 347(1):415–418, 2005. doi:10.1016/j.tcs.2005.07.032.
- [Wat08] John Watrous. Quantum computational complexity, 2008. arXiv:0804.3401v1.
- [Zoo] Complexity Zoo: BQP/poly, BQP/mpoly, BQP/qpoly, BQP. Accessed 13 Mar. 2024. URL: https://complexityzoo.net/Complexity_Zoo:B.

ISSN 1433-8092

https://eccc.weizmann.ac.il