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Abstract

Only a handful candidates for computational assumptions that imply secure key-agreement
protocols (KA) are known, and even fewer are believed to be quantum safe. In this paper, we
present a new hardness assumption—the worst-case hardness of a promise problem related to an
interactive version of Kolmogorov Complexity. Roughly speaking, the promise problem requires
telling apart tuples of strings (π, x, y) with relatively (w.r.t. K(π)) low time-bounded Interactive
Kolmogorov Complexity (IKt), and those with relatively high Kolmogorov complexity, given the
promise that Kt(x|y) < s,Kt(y|x) < s and s = log n, and where IKt(π;x; y) is defined as the
length of the shortest pair of t-bounded TMs (A,B) such that the interaction of (A,B) lead to
the transcript π and the respective outputs x, y.

We demonstrate that when t is some polynomial, then not only does this hardness assumption
imply the existence of KA, but it is also necessary for the existence of secure KA. As such,
it yields the first natural hardness assumption characterizing the existence of key-agreement
protocols.

We additionally show that when the threshold s is bigger (e.g., s = 55 log n), then the (worst-
case) hardness of this problem instead characterizes the existence of one-way functions (OWFs).
As such, our work also clarifies exactly what it would take to base KA on the existence of OWFs,
and demonstrates that this question boils down to demonstrating a worst-case reduction between
two closely related promise problems.
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1 Introduction

The notion of a key-agreement (a.k.a. key-exchange) protocol, introduced by Diffie and Hellman
[DH76] in their seminar paper “New Directions in Cryptography” from the 1976 ushered in a new
era for Cryptography. Key Agreement (KA) protocols enable two parties—Alice and Bob—that
have never previously met to use communication to establish a secret key (which later can be
used to securely communicate), with the guarantee that an eavesdropper (referred to as Eve) who
observes the transcript of communication between Alice and Bob cannot learn the secret key.

Key agreement protocols are perhaps the most important primitive enabling secure commu-
nication on the Internet—it is safe to say that a majority of electronic commerce applications
would not be possible without secure key agreement protocols. However, despite the importance
of key-exchange protocols, and so-called “public-key cryptography” in general (or “Cryptomania”
in language of Impagliazzo [Imp95]), we only know of a handful of candidate hard problems from
which KA protocols can be constructed. More specifically, these include (a) number-theory problems
based on either factoring [RSA78; Rab79] or discrete logarithms [DH76; ElG84], (b) coding-theory
based problems [McE78], (c) lattice problems as finding shortest/longest vectors in lattices [AD97;
Reg09; BCNHR22], and (d) noisy linear-algebra based problems [Ale03; ABW10]. Out of these,
the number-theory based problems can be efficiently solved by quantum algorithms [Sho99], and
the coding-theory, lattice and noisy linear algebra problems are all very related. Indeed, all popular
candidates have significant algebraic structure, as well other structure (e.g., being contained in SZK
or AM∩ coAM). While this structure is useful for constructing cryptographic protocols/primitives,
there is always the fear that this structure may eventually make the problem tractable—which
indeed is what happened with the number-theory based candidates with respect to quantum algo-
rithms.

This is in great contrast with so-called “private-key primitives” (a.k.a. ”Minicrypt” in the
language of [Imp95]) and its central primitive of a one-way function (OWF) for which lots of
candidates are known. Furthermore, recently natural average-case problems characterizing the
existence of OWFs were demonstrated [LP20; LP21; LP22], and even more recently even worst-
case hard problems (a.k.a. OWF-complete problems) characterizing the existence of OWFs were
demonstrated [LP23], and independently by [HN23] for the case of OWFs with uniform security.

As beautifully expressed by Boaz Barak in 2013 [Bar14; Bar13]:

The bottom line is that based on the currently well studied schemes, structure is strongly
associated with (and perhaps even implied by) public key cryptography. This is troubling
news, since it makes public key crypto somewhat of an “endangered species” that could
be wiped out by a surprising algorithmic advance.

While this text was written 10 years ago, the situation has not changed since then. In particular,
the following problem has remained wide open:

Can Key Agreement be based on some “unstructured” hardness assumption?

Wemay further ask whether, similar to recent characterizations of OWFs, there exists some problem
that characterizes KA—this would enable more clearly understanding whether structure is inherent
for primitives in Cryptomania:

Can we identify some problem whose worst-case hardness is equivalent to the existence
of key agreement?
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In this work, we simultaneously provide positive answers to both the above questions. We demon-
strate the existence of a (seemingly) unstructured problem, whose worst-case hardness is equivalent
to the existence of KA.

1.1 Our Results

We will demonstrate the existence of a problem whose worst-case hardness characterizes the exis-
tence of KA. This problem is motivated by a recent trends of works demonstrating Kolmogorov-
complexity style problems whose average-case hardness (with respect to the uniform distribution)
characterize the existence of OWFs [LP20; LP21; LP22], and most notably, the very recent result of
[LP23] that develops non-black-box techniques to demonstrate a promise problem whose worst-case
hardness characterizes OWFs ([HN23] independently develop a similar technique in the uniform
setting).

We highlight, however, that whereas our work is inspired by these works characterizing OWFs,
the actual details are quite different. Most notably, whereas these earlier works can work with
the (standard) notion of time-bounded Kolmogorov complexity, we will need to introduce a new
interactive variant of time-bounded Kolmogorov complexity, that we believe is of independent
interest.

Interactive Kolmogorov Complexity Roughly speaking, the Time-bounded Interactive Kol-
mogorov Complexity (IKt) of a tuples (π, x, y) is the minimal combined length |PA|+ |PB| of time-t
programs, PA and PB such that the interaction of (PA, PB) lead to the transcript π and respective
outputs x, y. We should think of IKt as the natural generalization of time-bounded Kolmogorov
complexity, Kt to interactive algorithms.

In more detail, let U be a universal TM. Given two programs PA and PB, and a bound t
on the number of steps, let (U(PA, 1

t),U(PB, 1
t)) denote the interaction between U(PA, 1

t) and
U(PB, 1

t), when simulating each program for t steps. (For concreteness, and following the literature
on communication complexity [Yao79], we will focus on a specific model of interaction, where the
players take turns to send single bits to one another.)

Definition 1.1 (IKt). For a function t : N → N, and (π, x, y) ∈ {0, 1}∗, the t-bounded interac-
tive Kolmogorov complexity of π, x, y, denoted by IKt(π;x; y), is the minimal number ℓ ∈ N for
which there exists (deterministic) programs PA and PB such that (a) |PA|+ |PB| = ℓ, and (b) The
interaction (U(PA, 1

t),U(PB, 1
t)) yields the transcript π and the respective outputs x, y.

The Relative IKt problem: RIKtP[α, β] We are now ready to formalize the promise problem,
RIKtP, that we will be considering. Roughly speaking, the promise problem requires telling apart
(a) tuples of strings (π, x, y) with relatively low t-bounded Interactive Kolmogorov Complexity, and
those with (b) relatively high Kolmogorov complexity.1 When we say relatively high/low, we mean
relative to the Kolmogorov complexity of π.

More formally,

Definition 1.2 (RIKtP). (Relative IKt problem) For functions σY < σN and t, let RIKtP[σY , σN ]
denote the following promise problem:

1Recall that the Kolmogorov complexity, K(w), of a string w is simply the length of the shortest program, w.r.t.
some fixed UTM, that outputs the string w.
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• Y =
{
(π, x, y) ∈ ({0, 1}n)3 : IKt(π;x; y) ≤ K(π) + σY

}
,

• N =
{
(π, x, y) ∈ ({0, 1}n)3 : K(π, x, y) ≥ K(π) + σN

}
.

In essence, the problem considers the cost (in terms of description length) of generating (π, x, y)
relative to the cost of generating just π:

• YES-instances correspond to tuples (π, x, y) where there IS NO significant “cost” in terms of
description length to generate (π, x, y) through (a) interaction and (b) efficiently, as opposed to
just generating π (without interaction and perhaps in efficiently).

• NO-instances, on the other hand, correspond to tuples (π, x, y) where there IS a significant cost
even just to generate (π, x, y) as opposed to generating just π.

Let us highlight that this problem is closely related to the notion of computational depth intro-
duced by Antunes et al [AFVMV06], and defined as CDt(x) = Kt(x)− K(x). The YES-instances
of our RIKtP problem can be thought of as those with small “interactive” computational depth;
as we shall discuss shortly, this will be instrumental to us to enables a worst-case to average-case
reduction.

Characterizing KA For our purposes, simply the RIKtP problem will not suffice; we will need
to condition the problem on the promise that x and y are “close” to each other in ”Kolmogorov
distance”. For a function ∆: N→ N, let2

Q∆ =
{
(π, x, y) ∈ ({0, 1}n)3 : Kt(x | y) ≤ ∆(n),Kt(y | x) ≤ ∆(n)

}
.

Observe that when ∆ = O(log n) and t ∈ poly, Q∆ can be decided in polynomial time.
In the following, we let RIKtP[σY , σN ]|Q∆

denote the promised problem (Y ∩Q∆,N ∩Q∆), for
(Y,N ) = RIKtP[σY , σN ] We are now ready to state our characterization of KA.

Theorem 1.3 (KA characterization). The following are equivalent for every polynomial t(n) > n1.1,
and every ∆(n) ≤ log n

1. Key-agreement protocols exist.

2. RIKtP[10 log n, 50 log n]|Q∆
/∈ ioBPP.

As far as we know, Theorem 1.3 yields the first plausible unstructured assumption that implies
the existence of KA, let alone the fact that this assumption also is necessary for the existence of
KA. Additionally, as far as we know, it is also only plausible non-lattice-based worst-case hardness
assumption that implies the existence of KA.

An Alternative Worst-case Characterization of OWFs As mentioned above, the recent
work of [LP23] provides a characterization of OWF through the worst-case hardness of a natural
promise problem. We here note that the same RIKtP[10 log n, 50 log n]|Q∆

problem which charac-
terizes KA when ∆ is small, characterizes OWF when ∆ is just slightly larger.

Theorem 1.4 (OWF characterization). The following are equivalent for every polynomial t(n) >
n1.1, and every ∆(n) ≥ 55 log n

2Kt(w) is defined just as K(w) except that we restrict to programs whose running is bounded by t(|w|) .
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1. One-way functions exist.

2. RIKtP[10 log n, 50 log n]|Q∆
/∈ ioBPP.

We mention that there is nothing special about the constants in the above Theorems; in fact,
the results holds as long as the constant, and their difference, is sufficiently large—we refer the
reader to the formal statements in Section 3 (see Theorems 3.4 and 3.5).

KA v.s. OWFs Note that the only difference between the characterization of KA and that of
OWFs is the size of ∆—for KA it needs to be less than log n whereas for OWFs it needs to be at
least 55 log n. As such, as a direct consequence, we get that the question of basing KA on OWF is
equivalent to demonstrating a worst-case reduction from RIKtPQ∆

with “large” ∆ to a “small” ∆.
We note, however, that while decreasing the threshold may seem like just a quantitative question,
there is a qualitative difference between the “small” threshold and the “large” threshold cases:
in the large threshold case (i.e., OWF), s is required to be bigger than the RIKtP threshold for
NO-instances, whereas for the small threshold case (i.e., KA) it is required to be smaller than the
RIKtP threshold for NO-instances.

A Note on Worst-case to Average-case Reductions using Computational Depth An-
tunes and Fortnow [AF09] elegantly used (standard) computational depth to connect worst-case
hardness of a problem when restricting attention to elements with small computational depth and
average-case hardness on sampleable distributions; this connection, however, only gave so-called
“errorless average-case hardness” (i.e., average-case hardness w.r.t. algorithms that never make
mistake—they either give the right answer or output ⊥) which is not useful for cryptography. Liu
and Pass [LP23] recently showed that such a worst-case to average-case reduction can be performed
also in the “two-sided error” case (relevant for cryptography) when considering a particular com-
putational problem related to time-bounded Kolmogorov complexity. Since as mentioned above,
our YES-instances can be thought of those with small “interactive” computational depth, we will
be able to leverage those techniques to use worst-case hardness.

1.2 Proof Overview

We here provide a detailed proof overview for the proof of Theorem 1.3. The proof of Theorem
Theorem 1.4 follows using similar techniques, but leveraging machinery already developed for OWFs
(e.g., [LP20; LP23]).

1.2.1 KA from Worst-case Hardness of RIKtP

Weak KA First, we observe that by the Key-agreement Amplification Theorem of Holenstein
[Hol06] and an application of the Goldreich-Levin theorem [GL89], to obtain (full-fledged) KA, it
suffices to obtain a weak form of KA, which we simply refer to as Weak KA defined as follows:
There exist some ϵ = 1/poly such that agreement between A and B happens with probability 1− ϵ.
Security requires that Eve cannot guess the key (output by Alice) with probability better than
1− 20ϵ.
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The Weak KA protocol We will next show how to build a Weak KA assuming the worst-case
hardness of RIKtP. Our protocols proceeds as follows. Alice and Bob on input n, perform the
following steps:

• Sample random programs: Alice and Bob respectively sample random lengths ℓA, ℓB ∈ [n], and
random length ℓ-program, PA and PB respectively.

• Run random programs: They next runs their respective programs for at most t(n) steps (i.e.,
letting PA communicate with PB, each of them running for at most t(n) steps, and let x, y denote
the respective outputs.

• Correcting Bob’s outputs: Bob samples a random length ℓ′ ∈ [log n], and a random length ℓ′

program P ′ and lets y′ denote the output of P ′(y) after at most t(n) steps. (Intuitively, this
steps enables Bob to recover Alice’s output x from his own output y given the condition that
Kt(x|y) ≤ log n.)

• Equality check: Finally, they run a equality check to determine whether the outputs x and y′ are
the same; in more detail, Alice picks a universal hash h : {0, 1}n → {0, 1}20 logn and sends over
h, z = h(x). Bob verifies if z = h(y′) and if so sends back the message success, and otherwise
abort.

• Outputs: If Bob sent the message success, the parties respectively output x, y′; otherwise, they
respectively output 0, 0.

Agreement We claim that with probability 1 − 1/n20, Alice and Bob will agree (i.e., the final
outputs are the same). Note that the only time Alice and Bob will not agree is in case, h(x) = h(y′),
yet y′ ̸= x. This can only happen when x and y′ lead to a collision in the universal hash function,
but this only happens with probability 1/n20.

Security Clearly, when the message abort is sent, then Eve can always guess the key. Intuitively,
we need to show that (1) “non-trivial agreement” (i.e., x = y′) happens with large probability, and
(2) when this happens, Eve cannot guess x with too large probability.

In more detail, consider some Eve that succeeds in guessing the key with probability, 1− 1/n19.
We will show how to use Eve to decide RIKtP[10 log n, 50 log n]|Q∆

(in probabilistic polynomial
time). Given some instance (π, x, y), need to decide whether IKt is relatively low. The idea is to see
if Eve is able to guess x given the transcript π, and if so output Y ES (since x can be predicted by
Eve who is a small algorithm). In more detail, the decider given (π, x, y) needs to embed π into a
transcript to feed to Eve. We think of π as the transcript of (PA, PB), extend it to a full transcript
by picking a random hash h : {0, 1}n → {0, 1}20 logn and let π′ = (π, h, h(x), success), and run Eve
on π′. If Eve guesses x, output YES, and otherwise NO.

We will show that if Eve succeeds with probability 1 − 1/n19 when running the protocol on
security parameter n (for some sufficiently large n), then we can decide RIKtP on all instances of
length 3n. To show this, we will consider YES- and NO-instances separately, and for simplicity
of exposition, we here assume that Eve is deterministic.

• Consider some YES instance (π, x, y) ∈ ({0, 1}n)3. Let ℓ = IKt(π, x, y). Since it is a YES-
instance, we have that IKt(π, x, y) − K(π, x, y) ≤ 10 log n; that is, K(π, x, y) ≥ ℓ − 10 log n. Due
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to the promise Q∆, we further have that Kt(x|y) ≤ log n (and that Kt(y|x) ≤ log n, but that will
not be relevant in the analysis of YES instances).

If decider fails on (π, x, y) with probability ≥ 1/3 (recall that the decider is randomized) then
with probability 1/3·2−ℓ−logn ·n−3, Eve fails and the transcript and outputs are non-aborting and
equal to (π, x, y′ = x). (We have probability 1/n of picking the right machine length ℓA for Alice,
probability 1/n of picking the right machine length ℓB for Bob, and 1/ log n probability of picking
the right length ℓ′ for Bob “correcting machine” —we here rely on the fact that Kt(x|y) ≤ log n,
and finally we have that the probability of actually picking all the right programs (given that we
picked the right lengths for them) is 2−ℓ−logn.)

Recall that Eve succeeds with probability 1− 1/n19 and thus fails with probability bounded by
1/n19; it follows that the probability that she fails and IKt(π, x, y) = ℓ also is bounded by 1/n19.
Thus, the number of tuples (π, x, y) on which Eve fails and IKt(π, x, y) = ℓ is upper bounded by

n−19

1/3 · 2−ℓ−logn · n−3
≤ 2ℓ−14 logn.

since if we denote by k, the number of such tuples, we have that k · 1/3 · 2−ℓ−logn · n−3 ≤ n−19

It follows that the Kolmogorov complexity of the tuple must be smaller than ℓ − 14 log n (to
describe the index in the list of all tuples on which Eve fails with proability 1/3)+ log n (to
describe n) plus log n (to describe ℓ) plus O(1) (to describe Eve) plus an additional log n terms
to deal with “self delimiting” (i.e., to be able decode); in total K(π, x, y) < ℓ − 10 log n, which
is a contradiction. (We note that this last part of the argument is inspired by argument in the
recent paper [LP23], relying on computational depth—as mentioned, our YES-instances can be
thought of those with small “interactive computational depth) Let us also highlight that this
part of the argument is non-black-box—it requires using the code of Eve.

• Consider some NO instance (π, x, y) ∈ ({0, 1}n)3 that is in the promise (i.e., Kt(y|x) ≤ log n, and
Kt(y|x) ≤ log n but the latter statement will not be relevant in the analysis of NO instances).

We will show that the decider will output NO with probability 2/3 in this case. Or equivalently,
that if the decider outputs YES with probability > 1/3, then K(π, x, y) < K(π) + 50 log n, so
(π, x, y) cannot be a NO-instance. Recall that the decider only outputs YES when Eve manages
to guess the key x. Intuitively, when this happens, we can compress x given π and h(x) by using
the code of Eve (which is constant, plus the description of n, which can specified in 2 log n bits).
Furthermore, since due the promise (in particular, that Kt(y|x) < log n), we can also generate
y (given x) using 2 log n bits. Since |h(x)| = 20 log n, in total, 25 log n suffice to specify x, y
given π. There is just one issue: even though we assumed that Eve is deterministic, the decider
is randomized, so to perform the above compression, we naively would also need to include the
random tape of the decider, and more specifically, the description of the hashfunction h (which
may be long).

To resolve this issue, we rely on a classic results in the literature on Kolmogorov complexity:
symmetry of information (SoI) [Zvo] which states that for all strings a, b,

K(a)− K(a|b) ≤ K(b)− K(b|a) + 10 log(|a|+ |b|)

We will let a = (π, x, y) and b = h; we may assume without loss of generality that |h| = ℓ′ for
some ℓ′ = ℓ′(n) and that the hashfunction is selected as a uniform string of length ℓ′. Given a,
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fix some b (i.e., the hashfunction h) such that (a) the decider outputs YES given this choice of
h, and (b) K(b|a) is as high as possible. By a standard counting argument, it follows that we can
find a string satisfying (a) such that K(b|a) ≥ ℓ′ −O(1) ≥ K(b)−O(1)

Above, we have argued that K(a|b) ≤ K(π) + 25 log n for a choice of b when the decider outputs
YES. It follows by SoI that K(a) ≤ K(a|b) + 10 log n2 ≤ K(π) + 45 log n (if we use any standard
universal hashfunction). (In the actual formal proof, we present a direct proof using a similar
structure as the proof of the SoI Theorem; this enables obtaining better constants).

Dealing with Non-uniform Attackers The above analysis only deals with uniform attacker—
in particular, we relied on the fact that the description size of Eve is O(1). As we now discuss, using
a trick from [LP23], we can extend the analysis to also work in the non-uniform setting. In more
details, assuming that RIKtP[5 log n, 50 log n]|Q∆

/∈ ioP/poly, we can prove that the above protocol is
secure against non-uniform adversaries. To prove this, we assume towards a contradiction that Eve
is a non-uniform algorithm that breaks the key-agreement protocol, and construct a non-uniform
algorithm that decides RIKtP[5 log n, 50 log n]|Q∆

. The issue with the above proof is that we cannot
simply use Eve to bound the Kolmogorov complexity of (π, x, y) as done in the above proof, as the
description length of Eve now is large. However, if such Eve exists, we can simulate a good attacker
using a fixed-size (inefficient) Turing machine: Let M be the Turing machine that, given a constant
c such that nc is a bound on the size of Eve, and input π′, first finds the circuit E′n of size at most
nc that maximize the advantage in predicting the output of Alice in the protocol, and then execute
E′(π′). In this case, M has prediction advantage at least as the advantage of Eve, and we can use
M to compress (π, x, y).

A Note on Universal KA and the Need for Equality Checking By our results, the above
protocol (after amplification) is a so-called universal KA protocol-namely, a protocol having the
property that if KA exists, then the protocol is a KA. A universal KA protocol was previously
presented by [HKNRR05], following ideas similar to those used by Levin to construct a universal
OWF [Lev85]. We also highlight that our protocol resembles the universal OWF construction of
[Lev85] in the sense that we are letting the players pick a random program. The problem with such
an approach is that we are not guaranteed that the programs picked by Alice and Bob actually
lead to agreement: [HKNRR05] thus lets Alice pick two program (one for her and one for Bob)
and first checks if those programs lead to agreement (with high probability). To reduce security
to RIKtP, we cannot afford to do so but rather must have Alice and Bob individually pick random
programs, and this is why we require performing equality checking to determine agreement, which
increases the round complexity. This is also the reason why our approach does not apply to public
key encryption.

1.3 Worst-case Hardness of RIKtP from KA

We next show how the existence of KA implies hardness of RIKtP.

Hardness of RIKtP from DH-Style KA For starters, let us show this statement for the special
case when the KA protocol has the special property that (a) the transcript of the protocol is
uniform, and (b) the length of the transcript is the sum of the length of the random tapes of Alice
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and Bob. For instance, the original KA protocol of Diffie and Hellman [DH76] has this property;
for concreteness, let us refer to those as DH-style protocols.

Note that any KA protocol provides a way to generate a transcript π and outputs x, y such
that (a) x = y (i.e., we have agreement), and (b) IKt(π, x, y) is upper bounded by the length of
the randomness of the respective parties plus 2× 2 log n (to describe n for each of the players, and
the constant size descriptions of Alice and Bob), which for the special case of DH-style protocols is
upperbounded by K(π) plus 4 log n with high probability over π, x, y. That is,

IKt(π, x, x) ≤ K(π) + 4 log n

On the other hand, by the security of the KA protocol, we have that (π, x, y) (as sampled from
the protocol) is indistinguishable from (π, z, z) where π is sampled from the protocol and z ← Un.
And with high probability over such strings, we have

K(π, z, z) ≥ K(π) + n−O(1)

Now, consider any polynomial-time decider for RIKtP; we shall argue that such a decider must
make some mistake. First, note that if the decider succeeds with probability 0.99 of all YES
instances, then it must output YES with probability at least 0.98 on instances sampled from the
KA. By indistinguishability, it must then still output YES with probability 0.97 on instances of
the form (π, z, z) where π sampled from the protocol and z ← Un; furthermore, by an averaging
argument, we have that for 0.9 fraction of instances so sampled, the decider outputs YES with
probability 0.9 over its own randomness. But at least a fraction 0.99 of these instances are NO
instances, so there are (lots of) instances on which the decider makes mistakes.

DH-Style KA with Small Keys We note that the above argument actually works for any DH-
style protocol where the length of the key is ≥ 51 log n. In this case, we can pad the key to length n
(by adding extra 0s), and observe that (a), the analysis of YES-instances remains unchanged, and
(b) for NO-instances, we get that K(π, z, z) ≥ K(π) + 51 log n−O(1) ≥ 50 log n. This observation
will be useful to us later on.

Hardness of RIKtP from Cond EP-KA To extend the above approach to work for any KA
(not necessarily a DH-style one), we will following the blue print from [LP20] used in order to show
that OWFs imply average-case hardness of time-bounded Kolmogorov complexity. In particular, in
analogy with the notion of an conditionally entropy-preserving PRG from [LP20], we define notion
of an conditionally entropy-preserving KA (cond-EP-KA). Roughly speaking, an entropy-preserving
KA (EP-KA) is a KA protocol where the min-entropy of the transcript is close to the length of
the randomness of both parties. A cond-EP KA is one where there exists some event E such that
conditional on E, the protocol is entropy preserving, and furthermore both agreement and security
only need to hold conditioned on E.3

Roughly speaking, the cond-EP KA property is exactly what is needed to make the above
proof (for DH-style protocols) go through. This follows from the fact that with high probability,

3This is essentially a straight-forward extension of the notion of an cond EP-PRG from [LP20] which roughly
speaking required entropy-preserving and pseudorandomness conditioned on some event E. For technical reasons, we
here defined entropy-preserving with respect to min-entropy as opposed to entropy as was done in [LP20]. Addition-
ally, to simplify the proof, we will also allow the event E to be randomized.
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strings sampled from a source with high min-entropy must have high Kolmogorov complexity (by
a standard counting argument). We just need to also verify IKt(π, x, y) is small when π, x, y is
sampled from the protocol, which holds independently of what the event is.

Cond EP-KA from KA It remains to show how to get an cond EP-KA from any KA. We
will proceed in two steps. First, we will show how to get a “weak” cond-EP KA where the key is
simply unpredictable (as opposed to indistinguishable from random), and next we will simply use
the Goldreich-Levin Theorem to strengthen it into a (full-fledged) cond-EP KA with key of length
51 log n, which as observed above suffices to conclude the argument.

It just remain to show how to turn any KA into a (weak) cond-EP KA. To do this, our start-
ing point will again be the approach from [LP20] (of constructing a cond EP-PRG from OWFs)
extended to the interactive setting; our analysis, however, is significantly different and more com-
plicated: Alice picks a pairwise independent hashfunction h (which acts as a good extractor by the
Left-over-hash Lemma (LHL) [HILL99]), sends h to Bob; next Alice and Bob run the original KA
protocols, and finally, they both pick random indexes iA, iB ∈ [r(n)] where r(n) is an upperbound
on the length of their randomness, and finally respectively send each other h(rA) and h(rB) trun-
cated to iA−2 log n and iB−2 log n bits, where rA, rB denote their respective random strings. Note
that this is no longer a secure KA, since with high probability, we are leaking a large part of the
randomness of the parties. But, if iA, iB happen to be picked as the min-entropies of (respectively)
rA|π, rB|π—let us refer to this event as E—then by the LHL, the output of the hashfunctions will
be 1/n close (in statistical distance) to uniform. We may next rely on the characterization that
two distribution are δ-close (in statistical distance) if and only if there is a coupled way of choosing
elements from the two distributions such that the two samples are equal with probability 1− δ—let
us refer to this event as W ; thus, we can define a randomized event E′ (that E happens and that
the coupled samples are equal) conditioned on which the outputs of the hashfunction is the uniform
distribution conditioned on some large event (with probability 1− 1/n). In particular, this directly
yields that conditioned on E′, the probability of every full transcript (including the hashes) is at
most

Pr[π, h] · 2−H∞(rA|π)−H∞(rB |π)+4 logn = Pr[π] · 2−H∞(rA,rB |π)+4 logn−|h|

= Pr[π] · 2−|rA|−|rB |+log(1/Pr[π])+4 logn−|h| = 2−|rA|−|rB |+4 logn−|h|

and thus the min-entropy is at least |rA|+ |rB|+ |h| − 4 log n.
Additionally, we would like to deduce that conditioned E′, security also still holds. Intuitively,

this should trivially follows since we have argued that the output of the hashfunction is uniform
conditioned on some large event (we can clearly simulate the uniform distribution, and if an attacker
can guess the key when we condition on W , then we can also guess the key given the uniform
distribution with a factor 2 loss). There is, however, a final obstacles with the above. To argue
security, we require the min-entropy of rA (and rB respectively) to be high not just conditioned
on π but also conditioned on x (and y respectively). Luckily, by the agreement property of the
KA protocols, one can show that with high probability over the execution of the KA, x and y are
deterministically determined as a function of π (to see this, we may consider Alice and Bob as
inefficient but stateless players: if they agree, then the secret key must be fixed as a function of the
transcript). As such, conditioning also on x (or y) does not change the min-entropy of rA (or rB).
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2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand for the
set of all polynomials. Let ppt stand for probabilistic poly-time, and n.u.-poly-time stand for
non-uniform poly-time. An n.u.-poly-time algorithm A is equipped with a (fixed) poly-size advice
string set {zn}n∈N (that we typically omit from the notation), and we let An stand for A equipped
with the advice zn (used for inputs of length n). Let neg stand for a negligible function. Given a
vector v ∈ Σn, let vi denote its ith entry, let v<i = (v1, . . . , vi−1) and v≤i = (v1, . . . , vi). Similarly,
for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I . For x, y ∈ {0, 1}∗, we use x||y to denote
the concatenation of x and y. For a set S ⊆ {0, 1}∗, we use S||y to denote the set {x||y : x ∈ S}.

2.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution. The
support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a (discrete)
distribution P, let x ← P denote that x was sampled according to P. Similarly, for a set S, let
x ← S denote that x is drawn uniformly from S. For m ∈ N, we use Um to denote a uniform
random variable over {0, 1}m (that is independent from other random variables in consideration).
The statistical distance (also known as, variation distance) of two distributions P and Q over a
discrete domain X is defined by SD(P,Q) := maxS⊆X |P(S)−Q(S)| = 1

2

∑
x∈S |P(x)−Q(x)|. We

use the following standard definitions:

Definition 2.1 (Indistinguishability). Distribution ensembles P = {Pn}n∈N and Q = {Qn}n∈N
are n.u.-poly-time-indistinguishable, if∣∣∣∣ Pr

x←Pn

[D(x) = 1]− Pr
x←Qn

[D(x) = 1]

∣∣∣∣ ≤ neg(n)

for any ppt algorithm D.

Definition 2.2 (Computable distribution). A distribution ensemble P = {Pn} is computable, if
there exists (potentially inefficient) algorithm S and a computable function m ∈ poly, such that for
every n ∈ N, S(1n;Um(n)) is distributed according to Pn.

We will also use the following lemma, proved in Appendix B.

Lemma 2.3 (Coupling). Let X1 and X2 be distributions over a set Ω, such that SD(X1, X2) = ϵ.
Then there exist random variables W1 and W2, jointly distributed with X1 and X2 respectively, such
that Pr[W1 = 1] = Pr[W2 = 1] = 1− ϵ, and X1|W1=1 ≡ X2|W2=1.

2.3 Entropy

For a random variable X, let H(X) = E[log 1
Pr[X=x] ] denote the (Shannon) entropy of X, and let

H∞(X) = minx∈Supp(X) log
1

Pr[X=x] denote the min-entropy of X.

min
x∈Supp(X)

log
1

Pr[X = x]
.

11



For a random variable X and an event E, we use H∞(X | E) to denote the min-entropy of the
distribution X|E . The max-entropy of a distribution X, denoted by H0(X), is defined by

H0(X) = log|Supp(X)|.

We will use the following facts.

Lemma 2.4 (Implicit in [LP20; IRS22], explicit in [LP23]). Let X be a random variable distributed
over S ⊆ {0, 1}n, E be an set ⊆ S. It holds that

Pr[x← X : x ∈ E] ≤ log |S|+ 1−H(X)

log |S| − log |E|

Fact 2.5. Let X and Y be independent random variables. Then H∞(X,Y ) = H∞(X) + H∞(Y ).

Fact 2.6. Let X be a random variable and E an event. Then H∞(X | E) ≥ H∞(X)− log 1
Pr[E] .

2.4 Promise problems

A promise problem L = (Y,N ) is a pair of disjoint subsets of {0, 1}∗.

Definition 2.7 (Infinitely-often BPP (ioBPP)). A promise problem (Y,N ) is in ioBPP if there
exists a ppt algorithm A such that the following holds for infinitely many n’s with (Y∪N )∩{0, 1}n ̸=
∅:

• For every x ∈ {0, 1}n ∩ Y: Pr[A(x) = 1] ≥ 2/3.

• For every x ∈ {0, 1}n ∩N : Pr[A(x) = 1] ≤ 1/3.

A promise problem is in ioP/poly if the above holds with respect to n.u.− poly− time algorithm A.

For a set Q ⊆ {0, 1}∗, we denote by L|Q the promise problem (Y ∩ Q,N ∩Q).

2.5 One-Way Functions

We now formally define basic cryptographic primitives. We start with the definition of one-way
functions.

Definition 2.8 (One-way function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is called a one-way function if for every polynomial-time algorithm A,

Pr
x←{0,1}n

[
A(1n, f(x)) ∈ f−1(f(x))

]
= neg(n)

Definition 2.9 (Weak one-way function). Let m ∈ poly be a polynomial-time computable function.
A polynomial-time computable function f : {0, 1}m(n) → {0, 1}∗ is called α-weak one-way function
if for every polynomial-time algorithm A, for every large enough n,

Pr
x←{0,1}m(n)

[
A(1n, f(x)) ∈ f−1(f(x))

]
≤ 1− α(n)

f is a weak one-way function if it is 1/p-weak one way function, for some p ∈ poly.

Theorem 2.10 (Weak to strong OWFs, [Yao82]). One-way functions exist if and only if weak-one
way functions exist.
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2.6 Two-party protocols and Key-Agreement Protocols

For a two-party protocol (A,B), we denote by (π, x, y) ← (A(a),B(b))(z) the transcript π, the
output of A, x, and the output of B, y, sampled from a random interaction of A(a, z) and B(b, z).
Such a protocol is t-time, if both A and B run in time at most t(n) on input (a, b, z) of length
n. A protocol is ppt if it is t-time for t ∈ poly. A protocol is deterministic if both A and B are.
Two-party protocol is an ℓ-bit protocol if the length of the outputs of the parties in (A,B)(1n) is
ℓ(n).

Definition 2.11 (Key-Agreement). A poly-time two-party protocol (A,B) is a (α, δ)-key-agreement
protocol if the following holds:

• α-Agreement: Pr(π,x,y)←(A,B)(1n)[x = y] ≥ α(n).

• δ-leakage: For every poly-time algorithm Eve, Pr(π,x,y)←(A,B)(1n)[Eve(π) = x] ≤ δ(n).

Such a protocol is a key-agreement protocol if it is a (1− neg(n),neg(n))-key-agreement.

The following lemma shows that it is possible to amplify an 1-bit weak key-agreement protocol
into a key-agreement. This lemma is a simple case of the more general result of Holenstein [Hol06].

Lemma 2.12 (Key-agreement amplification, [Hol06]). The following holds for every constants
α > β. Assume there exists a 1-bit, (1− n−α, 1− n−β)-key agreement protocol. Then, there exists
a key-agreement protocol.

We use Goldrich-Levin to generalize the above lemma to n-bit protocols. The proof of the
following lemma is in Appendix B.

Lemma 2.13. The following holds for every constants α > β. Assume there exists an n-bit,
(1− n−α, 1− n−β)-key agreement protocol. Then, there exists a key-agreement protocol.

The following well-known fact states that in every two-party protocol with independent inputs,
given the transcript there is no dependency between the views of the parties.

Fact 2.14. Let (A,B) be a two-party protocol, and let RA, RB be independent random variables. Let
(Π, X, Y ) ← (A(RA),B(RB)) be the transcript and outputs of the parties in an execution of (A,B)
on random inputs. Then, for every π.rA and rB,

RA|Π=π,RB=rB ≡ RA|Π=π and RB|Π=π,RA=rA ≡ RB|Π=π.

2.7 Hashing and Extraction

We will use 2-universal families in the proofs.

Definition 2.15 (2-universal family). A family of function

F =
{
f : {0, 1}n → {0, 1}ℓ

}
is 2-universal if for every x ̸= x′ ∈ {0, 1}n it holds that Prf←F [f(x) = f(x′)] =

2−ℓ.
A universal a family is explicit if given a description of a function f ∈ F and x ∈ {0, 1}n, f(x)

can be computed in polynomial time (in n, ℓ).
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For example, the family of all binary matrices of size n × ℓ is a 2-universal hash family, when
thinking on M(x) = x·M , for M ∈ {0, 1}n×ℓ and x ∈ {0, 1}n. An important property of 2-universal
families is that they can be used to construct a strong extractor. This is stated in the leftover hash
lemma:

Lemma 2.16 (Leftover hash lemma [ILL89]). Let n ∈ N, ε ∈ [0, 1], and let X be a random

variable over {0, 1}n. Let H =
{
h : {0, 1}n → {0, 1}ℓ

}
be a 2-universal hash family with ℓ ≤

H∞(X)− 2 log 1/ε. Then,

SD((H,H(X)), (H,Uℓ)) ≤ ε

for Uℓ being the uniform distribution over {0, 1}ℓ and H being the uniform distribution over H.

The Goldreich-Levin theorem is useful to extract pseudorandomness. We will use the following
version of it.

Lemma 2.17 (Goldreich-Levin [GL89; Yao82]). There exists an oracle-aided PPT A such that the
following holds. Let n, ℓ ∈ N be numbers, and Q a distribution over {0, 1}n × {0, 1}∗, and let D be
an algorithm such that∣∣∣∣∣∣∣ Pr

(x,z)←Q,
r=(r1,...,rℓ)←({0,1}n)ℓ

[D(z, r,GL(x, r1), . . . ,GL(x, rℓ)) = 1]− Pr
(x,z)←Q,

r=(r1,...,rℓ)←({0,1}n)ℓ

[D(z, r,Uℓ) = 1]

∣∣∣∣∣∣∣ ≥ α

for some α, where GL(x, r) := ⟨x, r⟩ is the Goldreich-Levin predicate. Then

Pr
(x,z)←Q

[
AD(1n, 1ℓ, 1⌈1/α⌉, z) = x

]
≥ poly(α, 2−ℓ, 1/n).

2.8 Kolmogorov Complexity

We introduce the notion of (time-bounded) Kolmogorov complexity. Roughly speaking, the t-time-
bounded Kolmogorov complexity, Kt(x | z), of a string x ∈ {0, 1}∗ conditioned on a string z ∈ {0, 1}∗
is the length of the shortest program P = (M,y) such that, when simulated by an universal Turing
machine, P (z) outputs x in t(|x|) steps. Here, a program P is simply a pair of a Turing Machine
M and an input y, where P (z) is defined as M(y, z). When there is no running time bound (i.e.,
the program can run in an arbitrary number of steps), we obtain the notion of (time-unbounded)
Kolmogorov complexity.

Let U be some fixed Universal Turing machine that can emulate any program P with polynomial
overhead. Let U(P (z), 1t) denote the output of P (z) when emulated on U for t steps. In this paper
we fix U to be universal Turing machine with poly log time overhead (That is, when simulating a
t-time TM M on input |y| = n, U((M,y)) runs in time O(t(n) logc(n)) for some constant c). We
now define the notion of Kolmogorov complexity.

Definition 2.18. Let t be a polynomial. For all x ∈ {0, 1}∗ and z ∈ {0, 1}∗, define

Kt(x | z) = min
P∈{0,1}∗

{|P | : U(P (z), 1t(|x|)) = x}
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where |P | is referred to as the description length of P . When there is no time bound, we define

K(x | z) = min
P∈{0,1}∗

{|P | : U(P (z), 1t
′
) = x for some finite t′}

When there is no condition (i.e., z is an empty string), we simply omit “ | z” and let Kt(x) (resp
K(x)) denote the “plain” t-time-bounded (resp time-unbounded) Kolmogorov complexity of x.

We use K(x, y) to denote the Kolmogorov complexity of some generic self-delimiting encoding
of the pair x, y. Recall that we use K(x||y) to denote the complexity of the concatenation of x and
y. We will use the following well-known facts:

Fact 2.19. For every x, y ∈ {0, 1}∗,

K(x, y) ≤ K(x) + K(y) + log(K(x)) + 2 log log(K(x)) +O(1).

And more generally,

Fact 2.20 (Chain rule). For every x, y ∈ {0, 1}∗,

K(x, y) ≤ K(x) + K(y | x) + log(K(y | x)) + 2 log log(K(y | x)) +O(1).

The following lemma bounds the Kolmogorov complexity of an output of randomized algorithm.
The proof is by following the proof of the well-known Symmetry of Information theorem to get more
tight constants in our settings.

Lemma 2.21. Let x, y ∈ {0, 1}∗, and assume that there is an algorithm D (that halts on every

input), a polynomial t(n) = nc, and a function fy : {0, 1}t(|x|) → {0, 1}ℓ such that

Pr
r←{0,1}t(|x|)

[D(x, r, fy(r)) = y] > 1/4.

Then,
K(x, y) ≤ K(x) + ℓ+ log(ℓ) + 2 log log(ℓ) +O(|D|) +O(c).

Proof. Consider the following algorithm D′.

Algorithm 2.22 (D′).

Input: Algorithm D, c ∈ N, ℓ ∈ N, i ∈ [2ℓ+2] and x ∈ {0, 1}∗.
Operation:

1. Compute t = t(|x|), and for every r ∈ {0, 1}t and z ∈ {0, 1}ℓ, execute D(x, r, z).

2. Let S be the list of every outputs y′ such that
∣∣{r ∈ {0, 1}t : ∃z s.t. D(x, r, z) = y′

}∣∣ > 1/4 · 2t,
ordered according to the lexicographic order.

3. output the i-th element in S.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Note that the input to D′ can be encoded using O(D)+O(c)+log ℓ+2 log log ℓ+ℓ+O(1)+K(x)
bits. To see that the lemma holds, it is enough to see that y is among the 4 · 2ℓ first elements in S.
By assumption, y is in the set S. Moreover, since for every fixed r there are at most 2ℓ different
values of z, and thus at most 2ℓ outputs of D, we get that the size of S is at most

|S| ≤ 2t · 2ℓ

2t−2
= 4 · 2ℓ.

□

We will also use the following bound on the Kolmogorov complexity of strings sampled from
distributions with high min-entropy.

Lemma 2.23. For every n ∈ N, and every distribution D, it holds that

Pr
x←D

[K(x) ≥ H∞(D)− log n] ≥ 1− 1/n.

3 Interactive Kolmogorov Complexity

To define interactive Kolmogorov complexity, we consider an interactive universal TM U. Given
two programs PA = (MA, wA) and PB = (MB, wB), and a bound t on the number of steps, let
(U(PA, 1

t),U(PB, 1
t)) denote the interaction between U(PA, 1

t) and U(PB, 1
t): The interaction is

carried out in rounds. In odd numbered rounds, A is active and B is idle, and vice versa in even
numbered round. In each round, the active program can read a received bit from the last round,
perform some computation and then output a bit, at which point we move on to the next round.

The emulation of each program stops when the program either halts or reaches t steps; when
the first program reach the bound t on the number of steps, a special symbol is sent to the other
program, that can then run (without sending additional messages) until it halts or also reaches t
steps. The transcript of the interaction is the concatenation of all bits sent during the emulation
(excluding the special halt symbol). The output of A (B resp.) is the output of U(PA, 1

t) (U(PB, 1
t)

resp.) at the end of the emulation.

Definition 3.1 (IKt). For a function t : N → N, and (π, x, y) ∈ {0, 1}∗, the t-bounded inter-
active Kolmogorov complexity of π, x, y, denoted by IKt(π;x; y), is the minimal number ℓ ∈ N,
such that the following holds for programs PA and PB with |PA| + |PB| = ℓ. In the interaction
(U(PA, 1

t),U(PB, 1
t)), the transcript is π and the outputs of PA and PB are x and y resp.

Consider the following promise problem, RIKtP:

Definition 3.2 (RIKtP). (Relative IKt problem) For functions σY < σN and t, let RIKtP[σY , σN ]
denote the following promise problem:

• Y =
{
(π, x, y) ∈ ({0, 1}n)3 : IKt(π;x; y) ≤ K(π) + σY

}
,

• N =
{
(π, x, y) ∈ ({0, 1}n)3 : K(π, x, y) ≥ K(π) + σN

}
.

The following lemma shows that for the right choice of parameters, the above is a well-defined
promise problem (that is, that Y ∩N = ∅).
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Lemma 3.3. For every t, large enough n and (π, x, y) ∈ ({0, 1}n)3,

K(π, x, y) ≤ IKt(π;x; y) + 2 log n.

Proof. Let PA and PB be the programs with |PA| + |PB| = IKt(π;x; y) that, when interacting,
produce π as the transcript and x, y as the outputs. Then, by Fact 2.19,

K(π, x, y)

≤ |PA|+ |PB|+ log|PA|+ 2 log log|PA|+O(1)

≤ |PA|+ |PB|+ log 2n+ 2 log log 2n+O(1)

≤ |PA|+ |PB|+ 2 log n,

where the second inequality holds since by assumption PA is the minimal program that, when
interacting with PB, the transcript and output of PA are π, x. Thus, |PA| ≤ 2n+O(1). □

We also define the following condition on the input, in which x and y are close to each other.
For a function ∆: N→ N, let

Q∆ =
{
(π, x, y) ∈ ({0, 1}n)3 : Kt(x | y) ≤ ∆(n),Kt(y | x) ≤ ∆(n)

}
.

Observe that when ∆ = O(log n) and t ∈ poly, Q∆ can be decided in polynomial time. By defining
Kt(x | x) = 0 for every x ∈ {0, 1}∗, we get that

Q0 =
{
(π, x, y) ∈ ({0, 1}n)3 : x = y

}
.

3.1 Characterization of Key-Agreement and One-Way Functions

We now state our main theorems. The first theorem characterize the existence of key-agreement
protocols.

Theorem 3.4 (KA characterization). The following are equivalent for every constants ϵ > 0, d ≥ 0,
c1 > 3 and c2 with c2 − c1 > 9 + 2d, for every polynomial t(n) > n1+ϵ, and for ∆(n) = d log n:

1. Key-agreement protocols exist.

2. RIKtP[c1 log n, c2 log n]|Q∆
/∈ ioBPP.

The proof that Item 2 implies Item 1 is given in Section 4. The proof that Item 1 implies Item 2
is given in Section 5.

Theorem 3.5 (OWFs characterization). The following are equivalent for every constants ϵ > 0,
c1 ≥ 0, c2 and d with c2 − c1 > 11 and d > c2 + 4, for every polynomial t(n) ≥ n1+ϵ, and for every
function ∆(n) ≥ d log n:

1. One-way functions exist.

2. RIKtP[c1 log n, c2 log n]|Q∆
/∈ ioBPP.

The proof that Item 2 implies Item 1 is given in Section 6. The proof that Item 1 implies Item 2
is given in Section 7.
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4 Worst-Case hardness of RIKtP =⇒ KA

In this section we prove the following theorem, that states that the worst-case hardness of RIKtP|Q∆

implies the existence of key-agreements protocols.

Theorem 4.1. Let c1, c2 and d ≥ 0 be constants such that 0 ≤ c1 < c2− 9− 2d, let ∆(n) = d log n,
and let t(n) be a polynomial. Then the following holds: If RIKtP[c1 log n, c2 log n]|Q∆

/∈ ioBPP,
key-agreement protocols exist.

To prove the theorem, fix t = t(n), c1, c2, d and ∆ as in Theorem 4.1, and let c = c2 − 2 − d.
For simplicity, in the following, for a string x ∈ {0, 1}∗, let (x)n be the first n bits of x0n (that
is, an n bits string containing the first n bits of x, or appropriate padding if necessary). Let

H =
{
h : {0, 1}n → {0, 1}c logn

}
be a 2-universal family, and consider the following protocol:

Protocol 4.2 ((A,B)).

Parameter: function t : N→ N, c ∈ N.
Input: 1n.

Operation:

1. A samples ℓA ← [n] and PA ← {0, 1}ℓA, B samples ℓB ← [n] and PB ← {0, 1}ℓB. B samples
ℓC ∈ [∆(n)], and PC ∈ {0, 1}ℓC .

2. A and B interact according to (U(PA, 1
t(n)),U(PB, 1

t(n))). Let π be the transcript of the interac-
tion, and let x, y be the outputs of A and B, respectively.

3. B executes U(PC(y), 1
t(n)) to get the output y′. Let x̂ = (x)n and ŷ = (y′)n.

4. A samples a hash function h← H, and sends h, h(x̂). If h(ŷ) ̸= h(x̂), B sends 0 and the parties
output 0n. Otherwise, B sends 1, and the parties output x̂ and ŷ respectively.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let oA and oB denote the output of A and B in the above protocol, respectively. The transcript
of the above protocol is of the form π̃ = (π, h, h(x̂), b) for b ∈ {0, 1}. Below we bound the agreement
probability and the leakage of the above protocol. In the following, let Π̃ be the random variable
that distributed according to the transcript of Protocol 4.2, and let Π, X, X̂, Y, Ŷ ,H,OA and OB

be the random variables distributed according to π, x, x̂, y, ŷ, oA and oB, respectively.

4.1 Agreement

We start by analyzing the agreement probability of Protocol 4.2.

Lemma 4.3. For every n ∈ N, it holds that Pr[OA = OB] ≥ 1− n−c.

Proof. The only events in which A and B do not agree, is when x̂ ̸= ŷ but h(x̂) = h(ŷ). by the
2-universal property of H, for every such x̂ ̸= ŷ, Prh[h(x̂) = h(ŷ)] = n−c. Thus,

Pr[OA = OB] = 1− Pr
[
X̂ ̸= Ŷ ,H(X̂) = H(Ŷ )

]
= 1− Pr

[
X̂ ̸= Ŷ

]
Pr

[
H(X̂) = H(Ŷ ) | X̂ ̸= Ŷ

]
≥ 1− n−c.

□

18



4.2 Security

We next bound the leakage of Protocol 4.2.

Lemma 4.4. Assume there exists an algorithm Eve such that Pr
[
Eve(1n, Π̃) = OA

]
≥ 1 − n−c+1

for infinitely many n’s. Then RIKtP[c1 log n, c2 log n]|Q∆
∈ ioBPP.

Consider the following algorithm, that given an attacker Eve that guesses the output of Pro-
tocol 4.2 with too good probability, decides RIKtP|Q∆

. In the following we only focusing on the
executions of Protocol 4.2 in which |x| = |y| = |π| = n (and show this is enough). In this case,
x̂ = x.

Algorithm 4.5.

Input: π ∈ {0, 1}n, x ∈ {0, 1}n, y ∈ {0, 1}n.
Operation:

1. Sample h and let π′ = (π, h, h(x), 1).

2. Execute Eve(1n, π′) to get x′.

3. If x′ = x answer “Yes”. Otherwise answer “No”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, given π, x, y (and assuming that (π, x, y) ∈ Q∆), Algorithm 4.5 simply checks if Eve
outputs x on the input π′ = (π, h, h(x), 1). In the following, Let Y and N be the Yes and No
instances of the problem RIKtP[c1 log n, c2 log n], respectively. Similarly, let Y|Q∆

and N|Q∆
be the

Yes and No instances of the problem RIKtP[c1 log n, c2 log n]|Q∆
.

Proof of Lemma 4.4. Assume there exists an algorithm Eve such that Pr
[
Eve(1n, Π̃) = OA

]
≥ 1−

n−c+1 for infinitely many n’s. We will show that Algorithm 4.5 decides RIKtP[c1 log n, c2 log n]|Q∆

for every such n. In the following, fix n ∈ N with Pr
[
Eve(1n, Π̃) = OA

]
≥ 1− n−c+1.

Soundness: We now show that for every No instance, Algorithm 4.5 answer ”Yes” with proba-
bility at most 1/3. To do so, first notice that, by definition, for every (π, x, y) ∈ {0, 1}3n for which
Algorithm 4.5 answer ”Yes” with probability at least 1/3, the following holds: With probability
at least 1/3 over the choice of h and randomness rE for Eve, Eve(1n, (π, h, h(x), 1); rE) = x. We
can now finish the proof using the Symmetry of Information theorem [Zvo]. However, to get better
parameters, we instead use Lemma 2.21. Let D(n, π, h(x), h, rE) = Eve(1n, (π, h, h(x), 1); rE), and
define fx(h, rE) = h(x). By Lemma 2.21, for every large enough n and assuming that (π, x, y) ∈ Q∆,

K(π, x, y) ≤ K(n, π, x, y)

≤ K(n, π, x) + K(y | x) + 2 logK(y | x)
≤ K(n, π) + |h(x)|+ log|h(x)|+ 2 log log|h(x)|+O(|D|) + ∆(n) + 2 log(∆(n))

≤ K(π) + log n+ 2 log log n+ |h(x)|+ 2 log|h(x)|+O(1) + ∆(n) + 2 log(∆(n))

< K(π) + c log n+ 2 log n+∆(n)

= K(π) + c2 log n,
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where the second equality holds by Fact 2.20, and the third inequality holds by Fact 2.19 and the
fact that log n ≥ 2 log log n for large enough n. Namely, by the above (π, x, y) is not in N . We get
that for every No instance (π, x, y) ∈ N|Q∆

, Algorithm 4.5 answer ”no” with probability smaller
than 1/3.

Completeness: For the other direction, let β = n−c+1, and assume toward a contradiction that
Algorithm 4.5 does not output ”Yes” with probability at least 2/3 on every input (π, x, y) ∈ {0, 1}3n
from Y|Q∆

. Let S be the set of (π, x, y) ∈ Q∆∩{0, 1}3n on which Algorithm 4.5 answers ”No” with
probability at least 1/3. By definition of Algorithm 4.5, for every (π, x, y) ∈ S it holds that that

Pr
h,rE

[Eve(1n, (π, h, h(x), 1); rE) ̸= x] ≥ 1/3. (1)

Moreover, for every (π, x, y) ∈ Q∆ with IKt(π;x; y) = ℓ, it holds that in a random run of the
protocol,

Pr[(Π, X, Y ) = (π, x, y), OA = x] ≥ 1/n3 · 2−ℓ−∆(n). (2)

Indeed, let P π,x,y
A and P π,x,y

B be the programs of length
∣∣P π,x,y

A

∣∣ + ∣∣P π,x,y
B

∣∣ = ℓ that realize the
t-bounded interactive Kolmogorv complexity of π, x, y (that is, the program that when interact
produce π as transcript and x, y as outputs), and let P π,x,y

C be the program of length Kt(x | y) ≤
∆(n) that realize the conditional t-bounded Kolmogorov complexity of x given y. Then, in Step 2 of
Protocol 4.2, with probability at least 1/n3 it holds that ℓA = |PA|, ℓB = |PB|, and ℓC = |PC |. Given
this event, with probability 2−ℓA−ℓB−ℓC it holds that PA = P π,x,y

A , PB = P π,x,y
B , and PC = P π,x,y

C .
Finally, since PC(y) = x, with the above probability A and B agree, and h(x̂) = h(ŷ) (that is, A’s
output is x).

For every ℓ ∈ N, let Sℓ =
{
(π, x, y) ∈ S : (π, x, y) ∈ {0, 1}3n, IKt(π;x; y) = ℓ

}
, and fix ℓ∗ such

that the algorithm fails on Sℓ∗ ∩ Y|Q∆
. Combining Equations (1) and (2) get that,

β ≥ Pr
[
Eve(1n, Π̃) ̸= OA, OA = X

]
≥ 1/3 · Pr[(Π, X, Y ) ∈ S, OA = X]

≥ Ω(1/n3 · 2−ℓ∗−∆(n) · |Sℓ∗ |),

and thus,
|Sℓ∗ | ≤ Ω(n3 · β · 2ℓ∗+∆(n))

On the other hand, there exists an algorithm that given n, ℓ and i ∈ [|Sℓ|], output the i-th element
in Sℓ according to the lexicographic order (by enumerating over all the possible values of (π, x, y) ∈
Q∆∩({0, 1}n)3 with IKt(π;x; y) = ℓ and computing the failure probability of Algorithm 4.5). Thus,
by Fact 2.19, for every (π, x, y) ∈ Sℓ∗ it holds that

K(π) ≤ K(n, π, x, y)

≤ log n+ 2 log log n+ log ℓ∗ + 2 log log ℓ∗ + log|Sℓ∗ |+O(1)

≤ 3 log n+ (3 log n+ log β + ℓ∗ +∆(n))

= 6 log n+ ℓ∗ + (1− c) log n+∆(n)

< ℓ∗ − c1 log n
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where the last inequality holds since c > c1 + d + 7, and ∆(n) = d log n. The above implies that
Sℓ∗ ∩ Y = ∅, and thus Sℓ∗ ∩ Y|Q∆

= ∅. Namely, Algorithm 4.5 has no error. □

4.3 Proving Theorem 4.1.

We are now ready to use Lemma 2.12 in order to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemmas 4.3 and 4.4, Protocol 4.2 has agreement 1 − n−c and leakage
1−n−c+1. Thus, by Lemma 2.13, Protocol 4.2 can be amplified into a key-agreement protocol. □

Remark 4.6 (The non-uniform setting). A similar theorem can be proven when assuming that
RIKtP[c1 log n, c2 log n]|Q∆

/∈ ioP/poly, and when the key-agreement is secure against non-uniform
adversaries. In this case, we assume that Eve is a non-uniform algorithm that breaks the key-
agreement protocol, and want to construct a non-uniform (randomized) algorithm that decides
RIKtP[c1 log n, c2 log n]|Q∆

.
The issue with the above proof is that we cannot simply use Eve to bound the Kolmogorov

complexity of π, x, y as done in the proof of Lemma 4.4, as Eve does not have constant size. However,
we can find Eve using a small Turing machine: Let M be the (inefficient) Turing machine that,
given a constant c such that nc is a bound on the size of Eve, and input (1n, π̃), first find the circuit
E′n of size at most nc that maximize the advantage in predicting the output of A in Protocol 4.2,
and then execute E′(1n, π̃). Observe that M has prediction advantage at least as the advantage of
Eve. The theorem now follows using the same proof, by replacing Eve in the proof of Lemma 4.4
with M , and replacing Eve in Algorithm 4.5 with E′ = {E′n}n∈N.

5 KA =⇒ Hardness of RIKtP

In this part, it is shown that if a key-agreement protocol exists, RIKtP is hard. We prove the
following theorem.

Theorem 5.1. Assume there exists a key-agreement protocol. Then for any ϵ > 0, any t(n) ≥ n1+ϵ,
any ∆(n) ≥ 0 and for every constants c2 > c1 > 3, RIKtP[c1 log n, c2 log n]|Q∆

/∈ ioBPP.

To prove Theorem 5.1, we will need the following definition of conditional entropy-preserving
key-agreement protocol, in which the min-entropy of the transcript is almost equal to the amount
of randomness used by the parties. In the following, randomized event is an event that can be
dependent in additional random variables, jointly distributed with the inputs of the parties of the
protocol (see Lemma 2.3 for an example).

Definition 5.2 (Conditional entropy-preserving key-agreement (Cond-EP KA)). Let sA = sA(n), sB =
sB(n) be efficiently computable functions. A deterministic two-party protocol (A,B) is (d, sA, sB)-
cond-EP KA if the following holds. For every n ∈ N, let (Πn, Xn, Yn) be the distribution of the
transcript and the outputs in the interaction (A(UsA(n)),B(UsB(n)))(1n). Then there exists a se-
quence of randomized events {En}n∈N such that:

1. Agreement: Pr[Xn = Yn | En] = 1

2. Secrecy: For every poly-time algorithm D,∣∣Pr[D(1n,Πn, Xn) = 1 | En]− Pr
[
D(1n,Πn,U|Xn|) = 1 | En

]∣∣ = neg(n).
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3. Entropy: H∞(Πn | En) ≥ sA(n) + sB(n)− d log n.

A protocol is d-cond-EP KA if it is (d, sA, sB)-cond-EP KA for some functions sA, sB.

We say that such a protocol has transcript of length n if Pr[|Πn| = n] = 1. The main lemma
in this part states that the conclusion of Theorem 5.1 holds assuming that conditional entropy-
presrving key-agreement protocol exists.

Lemma 5.3. Let c2 > c1 > 2.1 and ϵ > 0 be constant. Assume there is a 0.1-Cond-EP KA
protocol with key of length (c2 + 2) log n, transcript of length n, and running time n1+ϵ. Then
RIKtP[c1 log n, c2 log n]|Q∆

/∈ ioBPP for every t(n) ≥ 2n1+ϵ, ∆(n) ≥ 0, and for every constants
c2 > c1 > 2.

Proof of Lemma 5.3. Let c1, c2, ϵ and ∆ be as in Lemma 5.3, and let (A,B) be a (0.1, sA, sB)-cond
EP KA protocol with key-length, transcript-length and running time as stated in Lemma 5.3. In
the following, assume toward a contradiction that RIKtP[c1 log n, c2 log n]|Q∆

∈ ioBPP, and let M be
the algorithm that, for infinitely many n’s, decides RIKtP[c1 log n, c2 log n]|Q∆

with error probability
at most 0.01 on every input of length 3n. We will show that M contradicts the secrecy assumption
of (A,B).

To do so, let s(n) = sA(n) + sB(n), and for every n, let Πn, Xn, Yn be the distribution of the
transcript and outputs in a random execution of the protocol (A,B), and let En be the event
promised by Definition 5.2. Let Πn|En , Xn|En be the joint distribution of Πn, Xn conditioned on

En. Define Π′n = Πn|En , and let X ′n be equal to (Xn|En ||0n−|X|). Let Z ′n ← ({0, 1}|X|||0n−|X|). By
the secrecy assumption, no algorithm can distinguish between (Π′n, X

′
n) and (Π′n, Zn) noticeable

advantage. Fix n such that M succeed. We start by bounding the Kolmogorov complexity of Π′.
By definition, H∞(Π′) = H∞(Π | En) ≥ sA(n) + sB(n)− 0.1 log n. Thus, by Lemma 2.23, with

probability at least 0.99 over π ← Π′n, it holds that

K(π) ≥ sA(n) + sB(n)− 0.1 log n−O(1). (3)

Moreover, since π is an transcript of the interaction of (A, B), it can be compressed by encoding n,
and the randomness used in the interaction. Thus, by Fact 2.19,

K(π) ≤ sA(n) + sB(n) + log n+ 2 log log n+O(1).

We now use M to construct an algorithm D that breaks the secrecy assumption of (A,B). Let
D be the algorithm that given π, z outputs M(π, z0|π|−|z|, z0|π|−|z|). We want to show that,∣∣Pr[D(Πn, Xn) = 1 | En]− Pr

[
D(Πn,U|Xn|) = 1 | En

]∣∣ ≥ 1/2. (4)

Observe that the distribution of Π′n, X
′
n is exactly equal to the distribution of (Πn, Xn||0n−|Xn|)|En .

Moreover, by Equation (3) with probability at least 0.99 over (π, x)← (Π′n, X
′
n) it holds that,

IKt(π;x0n−|x|;x0n−|x|) ≤ 2(log n+ 2 log log n) + sA(n) + sB(n) +O(1) ≤ K(π) + c1 log n,

where the above holds by our choice of c1 and by Fact 2.19, since given n and the right randomness,
A and B output π, x, x (and since padding x with 0n−|x| can be done in time at most t/2). Thus,
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it holds that a sample from (Π′n, X
′
n, X

′
n) is an Yes instances with probability at least 0.99. By the

assumption that the error probability of M is at most 0.01, it holds that,

Pr[D(Πn, Xn) = 1 | En] = Pr
[
M(Π′n, X

′
n, X

′
n) = 1

]
(5)

≥ Pr
[
M(Π′n, X

′
n, X

′
n) = 1 | (Π′n, X ′n, X ′n) ∈ Y|Q∆

]
− 0.01 ≥ 0.98.

On the other hand, the distribution of Π′n, Z
′
n is equal to the distribution (Πn|En ,U|Xn|||0n−|Xn|).

Since H∞(Πn|En ,U|Xn|) ≥ s(n)− 0.1 log n+(c2+2) log n (recall that |Xn| = (c2+2) log n), it holds

by Lemma 2.23 that, with probability at least 0.99 over the choice of π ← Π|En and z ← {0, 1}|Xn|,

K(π, z0n−|z|, z0n−|z|) ≥ s(n)− 0.01 log n+ (c2 + 2) log n−O(1) ≥ K(π) + c2 log n,

and thus a sample from (Π′n, Z
′
n, Z

′
n) is a No instance with probability at least 0.99. By the

assumption that the error probability of M is at most 0.01, it holds that,

Pr
[
D(Πn,U|Xn|) = 1 | En

]
≤ Pr

[
M(Π′n, Z

′
n, Z

′
n) = 1 | (Π′n, Z ′n, Z ′n ∈ N|Q∆

]
+ 0.01 ≤ 0.02. (6)

Combining Equations (5) and (6) yields Equation (4). □

5.1 Key-Agreement to weak-cond-EP Key-agreement

In the rest of this section we show how to constract conditional entropy-preserving key-agreement
from a key-agreement protocol. We start by constructing a weaker form of cond-EP KA, defined
below, in which instead of requeiring that the secret key is indistinguishable from uniform, we only
require it to be unpredictable.

Definition 5.4 (Weak-Cond-EP KA). Let sA = sA(n), sB = sB(n) be efficiently computable func-
tions. A detrministic two-party protocol (A,B) is (d, sA, sB)-weak-cond-EP KA if the following holds.
For every n ∈ N, let (Πn, Xn, Yn) be the distribution of the transcript and the outputs in the inter-
action (A(UsA(n)),B(UsB(n)))(1n). Then there exists a sequence of randomized events {En}n∈N such
that:

1. Agreement: Pr[Xn = Yn | En] = 1

2. Secrecy: For every poly-time algorithm Pred, Pr[Pred(1n,Πn) = Xn | En] = neg(n).

3. Entropy: H∞(Πn | En) ≥ sA(n) + sB(n)− d log n.

A protocol is weak-cond-EP KA if it is (d, sA, sB)-weak-cond-EP KA for some d ∈ N, and some
functions sA, sB.

We now prove the next lemma, that states that weak-cond EP key-agreement can be constructed
from a key-agreement protocol.

Lemma 5.5 (KA to weak-Cond-EP KA). Assume there exists a key-agreement protocol. Then,
there exists a weak-cond-EP KA.
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In the following, let (A,B) be a t-time key agreement protocol, for t ∈ poly. Assume that A
and B get t(n) random bits as input (and are detrministic algorithms). We claim that the next

protocol (Â, B̂) is a weak-cond-EP protocol. Let Ht(n) =
{
h : {0, 1}t(n) → {0, 1}t(n)

}
be an explicit

2-universal family, such that, for every i ≤ t(n), the family Hi =
{
h≤i : h ∈ Ht(n)

}
is a 2-universal

family, for h≤i(x) = h(x)≤i (for example, the family of all matrices of size t(n)× t(n)). We further
assume without loss of generality that the description size of h ∈ Ht(n) is log(

∣∣Ht(n)

∣∣) (that is,
sampling h ∈ H is equivalent to sample |h| uniform bits).

Protocol 5.6 ((Â, B̂)).

Common input: 1n.

Â’s input: rA ∈ {0, 1}t(n), zA ∈ [t(n)], h ∈ Ht(n).

B̂’s input: rB ∈ {0, 1}t(n), zB ∈ [t(n)].

Operation:

1. Â and B̂ interact according to (A(rA),B(rB))(1n).

2. Â sends h to B̂ (in 2|h| rounds, in which B answers with 0). Â computes h(rA) and B̂ computes
h(rB).

3. Â and B̂ interact in additional 2t(n) rounds to send h(rA)≤zA−logn and h(rB)≤zB−logn: In the

(2i)th round, Â sends h(rA)i if i ≤ zA − log n or 0 otherwise. In the (2i + 1)th round, B̂ sends
h(rB)i if i ≤ zB − log n or 0 otherwise.

4. Â and B̂ output the outputs of A and B, respectively.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fix n ∈ N . Let RA, RB,Π, X and Y be the random variables distributed according to the
randomness rA, rB of the parties, the transcript π and the outputs of the parties x, y, in a random
execution of (A,B)(1n). For every transcript π of (A,B)(1n), let

zA(π) =
⌈
H∞(RA | Π = π)

⌉
=

⌈
log

∣∣∣{rA ∈ {0, 1}t(n) : ∃rB ∈ {0, 1}t(n) s.t. (A(rA),B(rB))(1n) = (π, ·, ·)
}∣∣∣⌉,

and similarly,

zB(π) =
⌈
H∞(RB | Π = π)

⌉
=

⌈
log

∣∣∣{rB ∈ {0, 1}t(n) : ∃rA ∈ {0, 1}t(n) s.t. (A(rA),B(rB))(1n) = (π, ·, ·)
}∣∣∣⌉.

Let zA, zB ∈ [t(n)] be numbers such that Pr
[
zA(Π) = zA, zB(Π) = zB

]
≥ 1/t(n)2, and let E1 be

the event over RA, RB that zA(Π) = zA and zB(Π) = zB. Then,

Pr
RA,RB

[E1] ≥ 1/t(n)2. (7)

ForH ← Ht(n), let Π̂ be the distribution of the transcript of the protocol (Â(RA, zA, H), B̂(RB, zB))(1n).

Let MA = H(RA)≤zA−logn0
t(n)−zA+logn be the messages sent by Â in Step 3 of the protocol,
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and similarly, let MB = H(RB)≤zB−logn0
t(n)−zB+logn be the messages sent by B̂. Let M̂A ←

({0, 1}z
A−logn||0t(n)−zA+logn) and M̂B ← ({0, 1}z

B−logn||0t(n)−zB+logn) be the random variables ob-
tains by replacing the hashed randomness with uniformly chosen bits in the messages of Â and B̂.
We will use the following two claims.

Claim 5.7.
SD((Π, H,MA,MB)|E1 , (Π|E1 , H, M̂A, M̂B)) ≤ 2/

√
n.

Proof. Immediate from Lemma 2.16 and the definition of the event E1. □

Claim 5.8. There exist an event E2 ⊆ E1 and an efficient oracle-aided algorithm Red such that
Pr[E2 | E1] ≥ 1/2, and the following holds. Assume there exists an algorithm Pred such that

Pr
[
Pred(Π̂) = X | E2

]
= δ. Then, Pr

[
RedPred(Π, zA, zB) = X

]
≥ δ/2t(n)2.

Moreover H∞(Π̂|E2) ≥
∣∣RA

∣∣+ ∣∣RB
∣∣+ |H| − 2 log(t(n))− 2 log n− 1.

Proof. Let Red be the algorithm that, given π, zA and zB, samples h ← Ht(n), m
A ← M̂A and

mB ← M̂B and executes Pred(π, h,mA,mB). In the following we show that, for some event E2, if

Pr
[
Pred(Π̂) = X | E2

]
= δ, then

Pr
[
Pred(Π, H, M̂A, M̂B) = X | E1

]
≥ δ/2, (8)

which concludes the claim by Equation (7). We start by showing that

SD((Π, X,H,MA,MB)|E1 , (Π, X,H, M̂A, M̂B)|E1) ≤ 1/10. (9)

That is, Claim 5.7 holds also when we add the output X. To see the above, for every π, let x(π) be
the value of x that maximise the probability Pr[X = x | Π = π]. By Claim 5.7 and data processing,
it holds that,

SD((Π, x(Π), H,MA,MB)|E1 , (Π, x(Π), H, M̂A, M̂B)|E1) ≤ 2/
√
n ≤ 1/30.

It thus enough to show that

SD((Π, X,H, M̂A, M̂B)|E1 , (Π, x(Π), H, M̂A, M̂B)|E1) ≤ 1/30,

and,
SD((Π, X,H,MA,MB)|E1 , (Π, x(Π), H,MA,MB)|E1) ≤ 1/30.

By data processing, it is enough to bound the later, as M̂A and M̂B are independent from Π and
X. Observer that, since x(Π) is fixed given Π, it holds that

SD((Π, X,MA,MB)|E1 , (Π, x(Π),M
A,MB)|E1) = Pr[X ̸= x(Π) | E1].

Assume toward a contradiction that Pr[X ̸= x(Π) | E1] > 1/20. Since Pr[E1] ≥ 1/t(n)2, we get that
Pr[X ̸= x(Π)] > 1/(20t(n)2). We now show that, by definition of x(Π), the agreement probability
of (A,B) given E1 in this case is at most 1− 1/(20t(n)2), which is a contradiction to the agreement
property of key-agreements protocols, as t(n) is polynomial. Indeed, by Fact 2.14, the inputs
RA, RB are in a product distribution given the transcript π. By data processing, also the outputs
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X and Y are in product distribution given the transcript. We get that for every fixed π and an
output y of B̂, the probability that X = y is at most Pr[X = x(π)]. Taking expectation over Y and
Π, we get that Pr[X = Y ] ≤ Pr[X = x(Π)] ≤ 1− 1/(20t(n)2), as we wanted to show.

Overall, we got that Equation (9) holds.
Next, we use Lemma 2.3 and Equation (9) to show Equation (8). By Lemma 2.3 and Equa-

tion (9), there are some random variables W (jointly distributed with (Π, X,MA,MB)) and Ŵ

(jointly distributed with (Π, X, M̂A, M̂B)), such that Pr[W = 1] = Pr
[
Ŵ = 1

]
≥ 9/10, and,

(Π, X,MA,MB)|E1,W=1 ≡ (Π, X, M̂A, M̂B)|
E1,Ŵ=1

. (10)

Let E2 be the event that W = 1 and E1 occurs, and assume that Pr
[
Pred(Π̂) = X | E1,W = 1

]
=

Pr
[
Pred(Π̂) = X | E2

]
= δ. By definition ofW , we get that Pr

[
Pred(Π, H, M̂A, M̂B) = X | E1, Ŵ = 1

]
=

δ, and thus Equation (8) holds.

Lastly, to see the moreover part of the claim, fix π ∈ {0, 1}∗, h ∈ H,mA ∈ {0, 1}t(n) and

mB ∈ {0, 1}t(n). We want to upper bound the probability

Pr
[
(Π, H,MA,MB) = (π, h,mA,mB) | E2

]
= Pr

[
(Π, H, M̂A, M̂B) = (π, h,mA,mB) | E1, Ŵ = 1

]
,

where the equality holds by Equation (10). Since Pr
[
Ŵ = 1

]
≥ 9/10, and by the definition of

M̂A, M̂B it holds that

Pr
[
(Π, H, M̂A, M̂B) = (π, h,mA,mB) | E1, Ŵ = 1

]
≤ 10/9 · Pr

[
(Π, H, M̂A, M̂B) = (π, h,mA,mB) | E1

]
≤ Pr[Π = π | E1] · 2−|H|−z

A−zB+2 logn+1.

Thus, to conclude the claim it is enough to show that for every π, Pr[Π = π | E1] ≤ 2−|RA|−|RB|+zA+zB+2 log t(n).
By Equation (7), Fact 2.6 and the definition of E1, it is enough to show that for every π with
zA(π) = zA and zB(π) = zB, it holds that

Pr[Π = π] ≤ 2−|RA|−|RB|+zA+zB . (11)

To see Equation (11), letRA(π) =
{
rA ∈ {0, 1}t(n) : ∃rB ∈ {0, 1}t(n) s.t. (A(rA),B(rB))(1n) = (π, ·, ·)

}
and RB(π) =

{
rB ∈ {0, 1}t(n) : ∃rA ∈ {0, 1}t(n) s.t. (A(rA),B(rB))(1n) = (π, ·, ·)

}
be sets such that

zA(π) =
⌈
log

∣∣RA(π)
∣∣⌉ and zB(π) =

⌈
log

∣∣RA(π)
∣∣⌉. It holds that,

Pr[Π = π] = Pr
[
RA ∈ RA(π), RB ∈ RB(π)

]
=

∣∣RA(π)
∣∣ · ∣∣RB(π)

∣∣
2|RA|+|RB| ≤ 2−|RA|−|RB|+zA+zB

as we wanted to show. □
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Proving Lemma 5.5.

Proof of Lemma 5.5. Let (A,B) be a t-time key agreement protocol, and fix n ∈ N . Let (Â, B̂) be as
defined in Protocol 5.6, and let E2 be the event promised by Claim 5.8. LetRA, RB, ZA, ZB, H,X, Y,Π
and Π̂ be as defined above, and let R̂A = (RA, ZA, H) and R̂B = (RB, ZB).

By Claim 5.8, condition on the event E2, the distribution of the transcript of (Â(R̂A), B̂(R̂B))(1n)
has min-entropy at least∣∣∣RA

∣∣∣+ ∣∣∣RB
∣∣∣+ |H| − 2 log(t(n))− 2 log n− 1 =

∣∣∣R̂A
∣∣∣+ ∣∣∣R̂A

∣∣∣− 4 log(t(n))− 2 log n− 1.

Let E be the event that E2 happened, ZA = zA, ZB = zB, and X = Y . By definition, given E
the protocol has agreement 1. To see the secrecy, observe that since

Pr
[
X = Y | E2, Z

A = zA, ZB = zB
]

is noticeable, it is enough to prove the secrecy given E3 =
{
E2, Z

A = zA, ZB = zB
}
. However, since

the distribution of (Π̂, X)|E2,ZA=zA,ZB=zB is exactly the distribution considered in Claim 5.8, we get

that the existence of an algorithm Pred that break the secrecy of (Â, B̂)|E2,ZA=zA,ZB=zB implies the

existence of a protocol that breaks the secrecy of (A,B) (by guessing the values of zA and zB).
□

5.2 Weak-cond-EP Key-agreement to cond-EP Key-agreement

We now show how to construct a conditional entropy-preserving key-agreement protocol from a
weak conditional entropy-preserving key-agreement. We use Goldreich-Levin to prove the following
lemma.

Lemma 5.9 (Weak-Cond-EP KA to Cond-EP KA). Assume there exists a weak-cond-EP KA
protocol (A,B). Then, for every constants c ∈ N and ϵ > 0, there exists a 0.1-cond-EP KA with
key of length c log n, transcript of length n and running time t(n) = n1+ϵ.

Let (A,B) be a m-bits (d, sA, sB)-weak-Cond-EP KA, and let δ > 0 be a constant to be chosen
later. Let (A′,B′) be the following protocol:

Protocol 5.10 ((A′,B′)).

A′’s input: n, rA ∈ {0, 1}s
A(⌊nδ⌋), r1, . . . , rc logn ∈ ({0, 1}m)c logn.

B′’s input: n, rB ∈ {0, 1}s
B(⌊nδ⌋).

Operation:

1. A′ and B′ interact according to (A(rA),B(rB))(1⌊n
δ⌋). Let x and y be the outputs of A and B,

respectively.

2. A′ sends r1, . . . , rc logn (bit by bit, where B answers with 0’s).

3. Let k be the number of bits sent so far. If k < n, A′ and B′ continue sending 0’s until the length
of the transcript is n.

4. A′ outputs GL(x, r1), . . . ,GL(x, rc logn), and B′ outputs GL(y, r1), . . . ,GL(y, rc logn).
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Proof of Lemma 5.9. Let (A,B) be an m-bit (d, sA, sB)-weak-cond EP KA, and let {En}n∈N be
the events and constant promised by Definition 5.4. Let e ∈ N be a number, such that ne is
an upper bound on the running time of (A,B), and on the time taking to compute sA(n), sB(n).
Let δ = ϵ/10(e + d). Finally, let (A′,B′) be as defined in Protocol 5.10. Then, the running time
of (A(n, ·),B(n, ·)) is at most n1+ϵ. Moreover, the length of the transcript of (A′(n, ·),B′(n, ·)) is
exactly n.

Let
{
E⌊nδ⌋

}
n∈N

be the sequence of events required in Definition 5.2. Observe that, for every

n ∈ N, given the event E⌊nδ⌋, A
′,B′ always agree, and by Fact 2.5, the min-entropy of the transcript

is at least sA(⌊nδ⌋)+sB(⌊nδ⌋)−d log ⌊nδ⌋+ c log n ·m ≥ sA(⌊nδ⌋)+sB(⌊nδ⌋)+ c log n ·m−0.1 log n,
as required.

For the secrecy property, let Πn, Xn, Yn be as defined in Definition 5.4. By Lemma 2.17, it is

enough to show that there is no ppt algorithm Pred such that Pr
[
Pred(1n,Π⌊nδ⌋) = X⌊nδ⌋ | E⌊nδ⌋

]
≥

1/poly(n) for infinitely many n’s. Assume towards a contradiction that such Pred exists. Then, the
algorithm Pred′, that given 1n

′
,Πn′ samples n← [(n′+1)1/δ] and executes Pred(1n,Πn′) has notice-

able probability to predict Xn′ given the event En′ , for infinitely many n’s. This is a contradiction
to the secrecy property of (A,B).

□

5.3 Proving Theorem 5.1

Proof. Fix c1, c2 as in Theorem 5.1, and assume there exists a KA protocol. By Lemma 5.5, there
exists a weak-cond-EP KA protocol. By Lemma 5.9 there exists a 0.1-cond EP KA with key of
length (c2 + 2) log n and running time t′(n) = n1+ϵ/2. Finally, the theorem follows by Lemma 5.3.

□

6 Worst-Case hardness of RIKtP =⇒ OWF

In this section we prove the following theorem, that states that the worst-case hardness of RIKtP
implies the existence of one-way functions.

Theorem 6.1. Let c1, c2 be constants such that 0 ≤ c1 < c2 − 11, and let t : N → N be an
efficiently computable function. Then the following holds: If RIKtP[c1 log n, c2 log n] /∈ ioBPP, one-
way functions exist.

The above is stronger than stated in Theorem 3.5, as if RIKtP[c1 log n, c2 log n]|Q∆
/∈ ioBPP for

some ∆, then RIKtP[c1 log n, c2 log n] /∈ ioBPP
To prove the theorem, fix t = t(n), c1 and c2 as in Theorem 4.1, and let c = c2 − 3. For

simplicity, in the following, for a string x ∈ {0, 1}∗, let (x)n be the first n bits of x0n (that
is, an n bits string containing the first n bits of x, or appropriate padding if necessary). Let

H =
{
h : {0, 1}2n → {0, 1}c logn

}
be a 2-universal family, and consider the following function f :

Algorithm 6.2 (f).

Parameter: function t : N→ N, c ∈ N.

28



Input: ℓA ∈ [n], ℓB ∈ [n], a ∈ {0, 1}n, b ∈ {0, 1}n, h ∈ H.
Operation:

1. Let PA = a≤ℓA and PB = b≤ℓB

2. f simulates the interaction of (U(PA, 1
t(n)),U(PB, 1

t(n))). Let π be the transcript of the interac-
tion, and let x, y be the outputs of A and B, respectively.

3. Let (ℓ, π, h, h((x)n||(y)n)) be the output of f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Below we assume there is an algorithm Eve that invert the above function with high probability,
and show how to use such Eve in order to decide RIKtP. In the following, let LA ← [n], LB ←
[n], A← {0, 1}n, B ← {0, 1}n and H ← H. Let Π, X and Y be the random variables that gets the
values of π, x and y in the execution of f(LA, LB, A,B,H).

Lemma 6.3. Assume there exists an algorithm Eve such that

Pr
[
Eve(1n, f(LA, LB, A,B,H)) ∈ f−1(f(LA, LB, A,B,H))

]
≥ 1− n−c1−6

for infinitely many n’s. Then RIKtP[c1 log n, c2 log n] ∈ ioBPP.

We prove Lemma 6.3, but first let us use it in order to prove Theorem 6.1.

Proof of Theorem 6.1. Immediate from Lemma 6.3 and Theorem 2.10. □

To prove Lemma 6.3 we will use the following lemma, on interactive Kolmogorov complexity.

Lemma 6.4. Let n be a large enough number, r < n, and t = t(n) be a function. For every
π ∈ {0, 1}n such that K(π) = k the following holds.∣∣{x, y ∈ ({0, 1}n)2 : IKt(π;x; y) ≤ k + r

}∣∣ ≤ 2r+7 logn

Proof of Lemma 6.4. Assume towards a contradiction that∣∣{x, y ∈ ({0, 1}n)2 : IKt(π;x; y) ≤ r + s
}∣∣ > 2r+7 logn.

We will show that K(π) < k. For every π′ ∈ {0, 1}n, let Sπ′ =
∣∣{x, y ∈ ({0, 1}n)2 : IKt(π;x; y) ≤ k + r

}∣∣.
Observe that there are at most d = (k+r)22k+r

2r+7 logn strings π′ ∈ {0, 1}n with Sπ′ > 2r+7 logn, since there

are at most (k + r)22k+r pairs of programs PA, PB such that |PA|+ |PB| ≤ (k + r).
Thus, to encode π, it is enough to describe the set of all π′ ∈ {0, 1}n with Sπ′ > 2r+7 logn, and

then describe the index of π inside this set. To describe the above set it is enough to describe n, k,
and s. Thus,

K(π) ≤ log n+ 2 log log n+ log k + 2 log log k + log r + 2 log log r + log d

≤ 4 log n+ 2 log(k + r) + k − 7 log n

≤ 7 log n+ k − 8 log n

< k

□
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6.1 Proving Lemma 6.3

Next, we prove Lemma 6.3. Consider the following algorithm, that given an attacker Eve that
inverts the function f with too good probability, decides RIKtP. In the following we only focusing
on the executions of f in which |x| = |y| = |π| = n.

Algorithm 6.5.

Input: π ∈ {0, 1}n, x ∈ {0, 1}n, y ∈ {0, 1}n.
Operation:

1. For every ℓ ∈ [2n]:

(a) Sample h← H and compute h(x||y).
(b) Execute Eve(ℓ, π, h, h(x||y)) to get LA, LB, A,B, h. Execute (A≤LA

, B≤LA
) for t(n) steps to

get π′, x′, y′.

(c) If LA + LB ≤ ℓ, π′ = π, x′ = x and y′ = y, answer “Yes”.

2. Answer “No”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, given π, x, y (and assuming that (π, x, y) ∈ Q∆), Algorithm 4.5 tries to use Eve to get
programs PA, PB that produce (π, x, y). In the following, let Y and N be the Yes and No instances
of the problem RIKtP[c1 log n, c2 log n], respectively.

Proof of Lemma 4.4. Assume there exists an algorithm Eve such that

Pr
[
Eve(1n, f(LA, LB, A,B,H)) ∈ f−1(f(LA, LB, A,B,H))

]
≥ 1− n−c1−6

for infinitely many n’s. We will show that Algorithm 6.5 decides RIKtP[c1 log n, c2 log n] for every
such n. In the following, fix such n ∈ N.

Soundness: First, notice that for every (π, x, y) ∈ {0, 1}3n for which Algorithm 6.5 answer ”yes”
with probability larger than 1/3, the following holds with the same probability: For some ℓ ∈ [2n],
Eve outputs PA and PB that outputs x and y. Thus, there exists a ppt algorithm D, such that
with probability at least 1/3 over the choice of h and the randomness rE of Eve the following holds.
Given h(x||y) and the right choice of ℓ, D(n, π, ℓ, h(x||y), h, rE) outputs x, y. By Lemma 2.21, we
get that for every large enough n,

K(π, x, y) ≤ K(n, π, x, y)

≤ K(n, π) + |h(x||y)|+ 2 log|h(x||y)|+ log ℓ+ 2 log log ℓ+O(1)

≤ K(π) + log n+ 2 log log n+ |h(x||y)|+ 2 log|h(x||y)|+ log ℓ+ 2 log log ℓ+O(1)

< K(π) + c log n+ 3 log n

= K(π) + c2 log n,

Namely, by the above (π, x, y) is not in N . We get that for every No instance (π, x, y) ∈ N ,
Algorithm 4.5 answer ”no” with probability at least 2/3.
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Completeness: We start by showing that the following holds for every (π, x, y) ∈ ({0, 1}n)3
with K(π) = k. If, for some ℓ ≤ k + c1 log n, Eve finds some pre-image of (ℓ, π,H,H(x||y)) with
probability at least 3/4, then with probability at least 2/3 Algorithm 6.5 outputs ”yes” on (π, x, y).
Indeed, by Lemma 6.4, there are at most 2(c1+7) logn different values that the outputs (x′, y′) can
get for every pair of programs of total length k + c1 log n that produce π as transcript. Since H
is a 2-universal family, and since c ≥ c1 + 8, with probability at most 2−c logn · 2c1+7 logn ≤ 1/n
over the choice of H there is such a pair that with H(x′||y′) = H(x||y). Thus with probability at
least 3/4− 1/n > 2/3, Eve must output programs that output x and y. In this case, Algorithm 6.5
outputs ”yes”.

Next, let β = n−c1−6, and assume toward a contradiction that Algorithm 4.5 does not output
”yes” with probability at least 2/3 on every input (π, x, y) ∈ {0, 1}3n from Y. That is, there
exists (π, x, y) ∈ Y such that with probability at least 1/4, for every ℓ ≤ K(π) + c1 log n, Eve does
not invert successfully (ℓ, π,H,H(x||y)) . In particular, Eve fails on (IKt(π;x; y), π,H,H(x||y))
with probability at least 1/4. Let S be the set of (π, x, y) ∈ {0, 1}3n on which Eve fails to invert
(IKt(π;x; y), π,H,H(x||y)) with probability at least 1/4. We next bound the size of S.

Observe that for every (π, x, y) with IKt(π;x; y) = ℓ, it holds that in a random execution of f ,

Pr[(Π, X, Y ) = (π, x, y), LA + LB = ℓ] ≥ 1/n2 · 2−ℓ. (12)

For every ℓ ∈ N, let Sℓ =
{
(π, x, y) ∈ S : (π, x, y) ∈ {0, 1}3n, IKt(π;x; y) = ℓ

}
, and fix ℓ∗ such

that the algorithm fails on Sℓ∗ ∩ Y|Q∆
. Combining Equations (1) and (2) get that,

β ≥ Pr
[
Eve(1n, f(LA, LB, A,B,H)) /∈ f−1(f(LA, LB, A,B,H))

]
≥ 1/4 · Pr[(Π, X, Y ) ∈ S]
≥ Ω(1/n2 · 2−ℓ∗ · |Sℓ∗ |),

and thus,
|Sℓ∗ | ≤ Ω(n2 · β · 2ℓ∗)

On the other hand, there exists an algorithm that given n, ℓ and i ∈ [|Sℓ|], output the i-th
element in Sℓ according to the lexicographic order (by enumerating over all the possible values of
(π, x, y) ∈ {0, 1}3n with IKt(π;x; y) = ℓ and computing the failure probability of Eve). Thus, by
Fact 2.19, for every (π, x, y) ∈ Sℓ∗ it holds that

K(π) ≤ K(n, π, x, y)

≤ log n+ 2 log log n+ log ℓ∗ + 2 log log ℓ∗ + log|Sℓ∗ |+O(1)

≤ 3 log n+ (2 log n+ log β + ℓ∗)

= 5 log n+ ℓ∗ − (c1 + 6) log n

< ℓ∗ − c1 log n

The above implies that Sℓ∗ ∩ Y = ∅. Namely, Algorithm 4.5 has no error. □

7 OWF =⇒ Worst-Case Hardness of RIKtP

In this section we prove that one-way functions imply the hardness of RIKtP.
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Theorem 7.1. For any constant c1, c2, d, d− 4 > c2 > c1 ≥ 0, if one-way functions exist, then for
any ε > 0, any polynomial t(n) ≥ n1+ϵ, and for ∆(n) = d log n, RIKtP[c1 log n, c2 log n]|Q∆

̸∈ ioBPP.

To prove the above theorem, we will use the following definition and theorem from [LP20].

Definition 7.2. An efficiently computable function g : {0, 1}n × {0, 1}n+γ logn → {0, 1} is a ε-
conditionally-secure α-entropy-preserving pseudorandom generator (ε-cond α-EP-PRG) if there
exist a sequence of events = {En}n∈N such that the following conditions hold:

• (pseudorandomness): For every PPT attacker A and sufficiently large n ∈ N,

|Pr[s← {0, 1}n : A(1n, g(s)) = 1 | En]− Pr[r ← {0, 1}n+γ logn;A(1n, r) = 1]| < ε(n), (13)

• (entropy-preserving): For all sufficiently large n ∈ N, H([g(Un | En)]n) ≥ n − α log n, where
[·]n denote the function that truncates any string to its n-bit prefix.

We refer to the constant α as the entropy-loss constant.

We say that g has rate-1 efficiency if its running time on inputs of length n is bounded by
n + O(nε) for some constant ε < 1. The proof of Theorem 7.1 is immediate from the following
theorem and lemma.

Theorem 7.3 ([LP20]). Assume that one-way functions exist. Then, for any γ > 0, α > 0, there
exists a rate-1 efficient 0.1-cond α-EP-PRG g : {0, 1}n → {0, 1}n+γ logn.

Lemma 7.4. For any constant c1, c2, d, d − 4 > c2 > c1 ≥ 0, if there exists a rate-1 efficient
0.1-cond (0.1c1)-EP-PRG g : {0, 1}n → {0, 1}n+(c2+2) logn, then for any ε > 0, any polynomial
t(n) ≥ n1+ϵ, and for ∆(n) = d log n, RIKtP[c1 log n, c2 log n]|Q∆

̸∈ ioBPP.

Proof of Theorem 7.1. Immediate from Theorem 7.3 and Lemma 7.4. □

Proof of Lemma 7.4. We first aim at a weaker goal: showing the hardness of RIKtP[c1 log n, c2 log n]
(without the conditionQ∆). And we will show that our proof also shows the hardness of the problem
even when conditioned on Q∆.

For any constant c1, c2, let g be the cond EP-PRG g : {0, 1}n → {0, 1}n+(c2+2) logn. We will
use an algorithm that decides RIKtP to break the cond EP-PRG g. Let m denote m = m(n) =
n+ (c2 +2) log n. We will consider an “embedding” h that maps a string ∈ {0, 1}m to a transcript
(π, x, y) where |π| = |x| = |y| = 2n, and h is defined as follows. For any s ∈ {0, 1}m, h will create a
transcript where Alice will produce the whole string s and Bob will keep “silent”. In more detail,
h(s) is defined to be

π = s10s20 . . . sn0, x = sn+1,...,m02n−(m−n), y = 02n

Note that h(s) = (π, x, y) will define a transcript where Alice sends s1, Bob sends 0, Alice sends
s2, and so on until 2n rounds. And after the interaction Alice will output the remaining part of s
(padded with zeros until it is of length 2n), and Bob will simply output 2n zeros.

Consider any polynomial t(n) ≥ n1+ϵ, ε > 0. Observe that for a pseudorandom string s ∈
{0, 1}m, h(s) will have small IKt-complexity. Namely, for any v ∈ {0, 1}n, s = g(v),

IKt(h(s)) ≤ n+ γ (14)
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where γ is a sufficiently large constant. Intuitively, this follows from our choice of f and the fact
that s is pseudorandom. In more detail, we argue that the transcript h(s) can be produced as
follows: Alice will hardwire the string v and the code of g, and she will run g on input v to obtain
s = g(v). Alice will then send each of the first |v| bits in s to Bob, and outputs what remains
padded to length 2|v|. Bob will simply answer each Alice’s message by 0, and count the number
of rounds. Bob will then output as many zeros as rounds. Notice that both Alice and Bob run in
time t(n) (since g is rate-1 efficient), Alice can be described using |v|+ O(1) bits, and Bob is just
a machine of constant length. On the other hand, for a random string r ∈ {0, 1}m, h(r) will have
K-complexity at least

K(h(r)) ≥ m− 1− log n > n+ c2 log n+ 1 (15)

with probability at least 1− 1
n , which follows from a standard counting argument for K-complexity.

Notice that we can also define another mapping h′, which embeds a string ∈ {0, 1}m to a
transcript ∈ ({0, 1}2n+1)3, in an analogous way. The above two observations will also hold if we
consider h′.

We move on to proving that RIKtP is hard. Towards this, we assume for contradiction that
there exists a polynomial time algorithm that decides RIKtP[c1 log n, c2 log n] = (Y,N ) on infinitely
many input lengths. By a Chernoff-type argument, we can show that there exists a ppt algorithm
M such that M succeeds with probability at least 0.99 on each YES/NO instance. Note that M
will succeed on every (π, x, y) ∈ Y ∪ N such that |π| = |x| = |y| = l for infinitely many l ∈ N. It
follows either M succeeds for infinitely many l of the form l = 2n, or for infinitely many l of the
form l = 2n + 1. We assume that the former is the case and present the rest of the proof. If the
later is the case, the lemma will essentially follow from the same proof with minor changes (where
we replace the mapping h by h′).

Given the algorithm M that decides RIKtP, we will use it to construct an attacker that breaks
the cond EP-PRG g. Our attacker A, on input 1n and a string s ∈ {0, 1}m(n), and A needs to decide
whether s is pseudorandom or random. A will use the embedding h, and compute (π, x, y) = h(s).
Then A simply outputs M(π, x, y).

We turn to analyzing our attacker A. Recall that M decides RIKtP[c1 log n, c2 log n] on every
(π, x, y), |π| = |x| = |y| = l, for infinitely many l of the form l = 2n. Fix some sufficiently large n
such that M succeeds on l = 2n, and let En be the event associated with the cond EP-PRG g on
seed length n. The following two claims will show that A distinguishes g from random on input
length n.

Claim 7.5. A(1n, r) will output 0 with probability at least 1
2 −

2
n − 0.01 where r ← Um.

Proof. Given r ← Um, let (π, x, y) = h(r). Recall that π is half random and half all-zero, and by a
standard counting argument for K, we have that with probability at least 1/2, K(π) ≥ n − 1. In
addition, it follows from Equation 15 that with probability at least 1− 1

n , K(π, x, y) > n+c2 log n+1.
By a Union bound, K(π, x, y)−K(π) ≤ c2 log n with probability 1/2− 1/n. Finally, notice that if
this is the case, (π, x, y) will be a NO instance, and M will output 0 with probability at least 0.99,
and this claim follows from again a union bound. □

Claim 7.6. A(1n, s) will output 0 with probability at most 0.3 where s← Un | En.

Proof. Let S denote the random variable distributed as g(Un | En). Let Π, X, Y be the random
variable such that (Π, X, Y ) = h(S). It follows from Equation 14 that the IKt-complexity of Π, X, Y
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is at most
IKt(Π;X;Y ) ≤ n+ γ

with probability 1. We turn to proving that Π also has high K-complexity with high probability.
By the definition of Π and h, it holds that

H(Π) ≥ H([S]n)

which is at least
n− 0.1c1 log n

since g is entropy-preserving conditioned on En. Let W = supp(Π) and Z = {z ∈ {0, 1}2n : K(z) <
n − (c1/2) log n} ∩ W . Notice that 2H(Π) ≤ |W | ≤ 2n, and by a standard counting argument
|Z| ≤ 2n−(c1/2) logn+1. By Lemma 2.4, we have that the probability that Π ∈ Z is at most

Pr[Π ∈ Z] ≤ log |W |+ 1−H(Π)

log |W | − log |Z|
≤ 0.2

In other words, the probability that Π has K-complexity ≥ n− (c1/2) log n is at least 0.8. Condi-
tioned on this event, and recall that Π, X, Y always has small IKt-complexity, we conclude that

IKt(Π;X;Y )−K(Π) ≤ (c1/2) log n+ γ ≤ c1 log n

which implies that (Π, X, Y ) is a YES instance. Recall that M will output 1 with probability
at least 0.99 on YES instances, it follows by a union bound that M(Π, X, Y ) will output 1 with
probability 0.8− 0.01, which concludes the proof of this claim. □

Finally, note that our proof only concerns with x, y where y is an all-zero string, and x is an
almost all-zero string except for its first (c2 + 2) log n bits. It follows that

Kt(y | x) ≤ Kt(x | y) ≤ 2 log n+ (c2 + 2) log n ≤ ∆

Thus, for any s ∈ {0, 1}m, (π, x, y) = h(s), it holds that (π, x, y) ∈ Q∆, and our proof also shows
the hardness of RIKtP[c1 log n, c2 log n]|Q∆

. □
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A GapMIKtP and Average-case Hardness

We also consider the GapMIKtP promised problem.
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Definition A.1 (GapMIKtP). For functions σY < σN and t, let GapMIKtP[σY , σN ] denote the
following promise problem:

• Y =
{
(π, x, y) ∈ ({0, 1}n)3 : IKt(π;x; y) ≤ σY

}
,

• N =
{
(π, x, y) ∈ ({0, 1}n)3 : K(π, x, y) ≥ σN

}
.

In the following we prove that the average case hardness of GapMIKtP on some distributions
imply the worst-case hardness of RIKtP.

Definition A.2 (Hard on average). Let D = {Dn}n∈N be a distribution ensemble with Supp(Dn) ⊆
{0, 1}n. We say that L = (Y,N ) is ϵ-hard on average on D if for every ppt algorithm A, for every
large enough n with (Y ∪N ) ∩ {0, 1}n ̸= ∅,

Pr
x←Dn

[(x ∈ Y ∧ A(x) ̸= 1) ∨ (x ∈ N ∧ A(x) = 1)] ≥ ϵ(n).

We consider flat distributions.

Definition A.3 (Flat distribution). A distribution D is flat if D is uniform over its support.

We next prove the following theorem.

Theorem A.4. Let 0 < c1 < c2, β > 0 be constants. Let D = (Π = {Πn}n∈N, X = {Xn}n∈N, Y =
{Yn}n∈N) be a distribution over {0, 1}n × {0, 1}n × {0, 1}n, such that for every n ∈ N, Πn is a
computable, flat distribution with H∞(Πn) = s(n). Assume that GapMIKtP[s(n) + c1 log n, s(n) +
c2 log n] is 2n−β-hard on average over D. Then for every constant 1 < α,

RIKtP[(c1 + β) log n, (c2 − α) log n] /∈ ioBPP.

Moreover, if for some ∆ = ∆(n) and every n ∈ N, Pr
[
Kt(Xn | Yn) ≤ ∆(n),Kt(Yn | Xn) ≤ ∆(n)

]
=

1, then RIKtP[(c1 + β) log n, (c2 − α) log n]|Q∆
/∈ ioBPP.

Before proving Theorem A.4, we derive the following corollary.

Corollary A.5. Let c1, c2, β > 0 and d ≥ 0 be constants such that c2 − 16 − 2d − β > c1 ≥ 0,
and t = t(n) be an efficiently computable function. Let D = (Π = {Πn}n∈N, X = {Xn}n∈N, Y =
{Yn}n∈N) be a distribution over {0, 1}n × {0, 1}n × {0, 1}n, such that for every n ∈ N, Πn is a
computable, flat distribution with H∞(Πn) = s(n).

• If GapMIKtP[s(n) + c1 log n, s(n) + c2 log n] is 2n−β-hard on average over D, one-way functions
exist.

• If additionally, Pr
[
Kt(Xn | Yn) ≤ d log n,Kt(Yn | Xn) ≤ d log n

]
= 1, key-agreement protocols ex-

ist.

Proof of Corollary A.5. Immediate from Theorems 3.4, 3.5 and A.4. □

In the proof of Theorem A.4, we will use the coding theorem.

Lemma A.6 (Coding theorem). Let D = {Dn}n∈N be a computable distribution ensemble over
{0, 1}n. Then for every n ∈ N and every x ∈ Supp(Dn), it holds that

K(x) ≤ − log(Pr
D
[x]) + log n+ 2 log log n+O(1).
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Proof of Theorem A.4. Let c1, c2, δ, α, s and D be as in Theorem A.4. We start by bounding the
Kolmogorov complexity of a random sample from Π. By Lemma 2.23, with probability at least
1− n−β over π ← Πn,

K(π) ≥ s(n)− β log n.

By Lemma A.6, and since Π is computable and flat,

K(π) ≤ s(n) + log n+ 2 loglog n+O(1) ≤ s(n) + α log n.

Next, assume toward a contradiction that RIKtP[(c1 + β) log n, (c2 − α) log n] ∈ ioBPP, and
let A be the algorithm that, for infinite many n’s, decides RIKtP[(c1 + β) log n, (c2 − α) log n]
with error at most n−β on every input of length 3n. In the following we show that A solves
GapMIKtP[s(n) + c1 log n, s(n) + c2 log n] on (Πn, Xn, Xn) with small error for any such n. Indeed,
fix such n and fix (π, x, y) ∈ Supp(Πn, Xn, Yn) such that

s(n)− β log n ≤ K(π) ≤ s(n) + α log n

. Observe that if IKt(π;x; y) ≤ s(n) + c1 log n, then it holds that

IKt(π;x; y) ≤ s(n) + c1 log n ≤ K(π) + β log n+ c1 log n,

and thus A must answer correctly for any such π, x, y with probability at least 1−n−δ/2. Similarly,
if K(π, x, y) ≥ s(n) + c2 log n, then,

K(π, x, y) ≥ s(n) + c2 log n ≥ K(π)− α log n+ c2 log n,

and thus A must answer correctly for any such π, x, y with probability at least 1 − nβ. Overall,
with probability at least 1 − n−β over Πn, A error with probability at most n−β. Thus, the error
probability of A over (Πn, Xn, Yn) is at most 2n−β, which is a contradiction.

The moreover part of the theorem follows by the same proof, by noticing that it is enough to
assume that A succeed on the support of the distribution (Π, X, Y ). □

B Missing proofs

B.1 Proving Lemma 2.3

Lemma B.1 (Lemma 2.3, restated). Let X1 and X2 be distributions over a set Ω, such that
SD(X1, X2) = ϵ. Then there exist random variables W1 and W2, jointly distributed with X1 and
X2 respectively, such that Pr[W1 = 1] = Pr[W2 = 1] = 1− ϵ, and X1|W1=1 ≡ X2|W2=1.

Proof. Let P1 be a random variable over [0, 1], jointly distributed with X1, defined as follows.
For every x, P1|X1=x is uniformly distributed over the interval [0,Pr[X1 = x]]. Define the random
variable P2 (jointly distributed with X2) symmetrically with respect to X2.
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For every x ∈ Ω, let px = min{Pr[X1 = x],Pr[X2 = x]}, and let W1 be a random variable such
that W1 = 1 iff P1 ≤ pX1 , and W2 be such that W2 = 1 iff P2 ≤ pX2 . Then it holds that,

Pr[W1 = 1] =
∑
x∈Ω

Pr[X1 = x]
px

Pr[X1 = x]

=
∑
x∈Ω

min{Pr[X1 = x],Pr[X2 = x]}

=
∑
x∈Ω

min{Pr[X1 = x],Pr[X2 = x]}

+ 1/2 ·
∑
x∈Ω

max{Pr[X1 = x],Pr[X2 = x]} − 1/2 ·
∑
x∈Ω

max{Pr[X1 = x],Pr[X2 = x]}

= 1/2 ·
∑
x∈Ω

min{Pr[X1 = x],Pr[X2 = x]}+ 1/2 ·
∑
x∈Ω

max{Pr[X1 = x],Pr[X2 = x]}

+ 1/2 ·
∑
x∈Ω

min{Pr[X1 = x],Pr[X2 = x]} − 1/2 ·
∑
x∈Ω

max{Pr[X1 = x],Pr[X2 = x]}

= 1/2 ·
∑
x∈Ω

(Pr[X1 = x] + Pr[X2 = x])− 1/2 ·
∑
x∈Ω
|Pr[X1 = x]− Pr[X2 = x]|

= 1− ϵ,

and similarly Pr[W2 = 1] = 1− ϵ. Moreover, for every x ∈ Ω,

Pr[X1 = x |W1 = 1] =
Pr[X1 = 1]Pr[P1 ≤ px]

Pr[W1 = 1]
=

px
Pr[W1 = 1]

=
px

Pr[W2 = 1]
=

Pr[X2 = 1]Pr[P2 ≤ px]

Pr[W2 = 1]
= Pr[X2 = x |W2 = 1].

□

B.2 Proving Lemma 2.13

Lemma B.2 (Lemma 2.13, restated). The following holds for every constants α > β. Assume
there exists an n-bit, (1−n−α, 1−n−β)-key agreement protocol. Then, there exists a key-agreement
protocol.

To prove the above lemma, we use the following weak version of GL.

Lemma B.3. There exists a ppt oracle-aided algorithm Dec such that the following holds. Let
n ∈ N be a number, x ∈ {0, 1}n, and and let Pred be an algorithm such that

Pr
r←{0,1}n

[Pred(r) = GL(x, r)] > 3/4 + 0.01,

where GL(x, r) := ⟨x, r⟩ is the Goldreich-Levin predicate. Then Pr
[
DecPred(1n) = x

]
= 1− neg(n).

Proof of Lemma B.3. We use Pred to decode each bit of x separately. For every i, let ei be the
vector that has 1 in the i-th entry, and 0’s everywhere else. Observe that, for a uniformly chosen
R← {0, 1}n,

Pr[Pred(R) = GL(x,R) ∧ Pred(R⊕ ei) = GL(x,R⊕ ei)] ≥ 1/2 + 0.01.
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Thus,
Pr[Pred(R)⊕ Pred(R⊕ ei) = GL(x,R)⊕GL(x,R⊕ ei)] ≥ 1/2 + 0.01.

By linearity of the inner product we get that,

Pr[Pred(R)⊕ Pred(R⊕ ei) = xi] ≥ 1/2 + 0.01.

Let Dec be the algorithm that for every i, computes Pred(R)⊕Pred(R⊕ ei) for n random values of
R, and let x′i to be the majority of the outputs. Then, Dec outputs x′ = x′1, . . . , x

′
n. By Chernoff

bound, x′i is equal to xi with all but negligible probability. By the union bound, the above is true
for all i’s simultaneously with all but negligible probability, as we wanted to show. □

Proof of Lemma 2.13. Let (A,B) be a n-bit, (1 − n−α, 1 − n−β)-key agreement protocol. We will
construct a 1-bit, (1 − n−α, 1 − n−β/10)-key agreement protocol. The lemma than follows by
Lemma 2.12 by choosing (α′, β′) = (α, β + (α− β)/2).

Let (A′,B′)(1n) be the protocol in which the parties simulates (A,B)(1n) to get transcript π and
outputs x and y respectively. Then, A′ samples r ∈ {0, 1}n and sends it to B′. Finally, A′ outputs
⟨r, x⟩ and B′ outputs ⟨r, y⟩.

Clearly, the agreement probability is at least as the agreement probability of (A,B). For leakage,
assume toward a contradiction that there exists a ppt algorithm Eve that, given π, r guesses x with
probability larger than 1−n−β/10, for infinitely many n’s. Fix such n, and let Π, X, Y,R be the val-
ues of π, x, y, r in a random execution of (A′,B′)(1n). Let B =

{
(π, x) : Prr←{0,1}n [Eve(1

n, π,R) = ⟨r, x⟩] ≥ 7/8
}
.

Then,

1− n−β/10 < Pr[Eve(1n,Π, R) = ⟨R,X⟩] ≤7/8 · (Pr[(Π, X) /∈ B]) + Pr[(Π, X) ∈ B]
= 7/8 + 1/8 · Pr[(Π, X) ∈ B]

Thus, Pr[(Π, X) ∈ B] > 1− 8/10 · n−β. Let Dec be the algorithm promised by Lemma B.3, and let
Eveπ(r) = Eve(1n, π, r). By Lemma B.3, for every (π, x) ∈ B it holds that Pr

[
DecEveπ(1n) = x

]
≥

1− neg(n). We get that,

Pr
[
DecEveΠ(1n) = X

]
≥ Pr[(π,X) ∈ B](1− neg(n)) ≥ 1− 8/10 · n−β(1− neg(n)) > 1− n−β,

with contradiction to the leakage assumption of (A,B). □
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