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Chapter �

Introduction and de�nitions

The most important problem in Computational Complexity can be brie�y stated as� P �

NP� The class P is formed by the problems that can be solved in deterministic polynomial

time and NP is the class of problems that can be solved in nondeterministic polynomial time�

Details and de�nitions can be found in ��� ���� The problem is of the utmost importance

both theoretically and practically� Polynomial time deterministic algorithms are universally

considered as e�cient algorithms� so a problem in P will have a fast algorithm� while a

problem not in P will not� Many natural and practically important problems are shown to

lay in NP but it is not known whether they belong to P or not� see ����� The widely accepted

conjecture is that P �� NP� but despite the tremendous amount of work done by many clever

minds the question is still unsettled�

In ��
�� Cook and Reckhow proposed in ��
� a plan to solve the P �� NP question� They

proved a relationship between the complexity of propositional proof systems� that is� the

size� number of symbols� of proofs of propositional tautologies� and the question whether

NP � coNP or not� The class coNP is the set of problems whose complement lies in NP�

The main result in this paper was� if there is a propositional proof system such that for any

tautology Twe can give a proof of T of polynomial size in the size of T� then NP � coNP�

They call such a desirable system super� Cook and Reckhow�s result can be restated as�

Theorem � 	
�� NP � coNP i
 there exists a propositional proof system that is super�

As P � NP implies NP � coNP� to show P �� NP is su�cient to prove that there is no

�
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supersystem� that is� for all propositional proof systems there is a tautology Twhose shortest

proof is at least superpolynomial in the size of T� This result is very di�cult and they had

little hopes in proving it directly� therefore in ��
� they proposed the following plan� known

as Cook�s program�

Try to �nd families of tautologies hard to prove for progressively more powerful

propositional proof systems until having su�cient knowledge to prove P �� NP�

This program has created a new and fruitful branch of Complexity Theory� called Proof

Complexity� Since the work of Cook and Reckhow many important results have been ob�

tained following the the lines of their program� Nevertheless many problems remain open

and the fundamental question whether P �� NP is still unsolved�

Proof complexity is also relevant to the study of e�ciency issues for Automated Theorem

Proving� Proof Complexity has strong relations with other branches of Complexity Theory�

Results about Circuit Complexity have been successfully used to get results about Proof

Complexity� giving then a new impulse to the study of Circuit Complexity�

The aim of this dissertation is to make contributions to the study of the complexity of

a certain proof system by the name of Resolution and several other proof systems related

to it� Resolution was proven long ago not to be a super proof system ����� so any new

result about Resolution will hardly be of interest to the advancement of Cook�s program�

Nevertheless� we think that is very important to understand completely the power of any

proof system� especially one so widely used as Resolution� That means studying in depth

the complexity of Resolution� Although there is plenty of papers devoted to Resolution�

there are still interesting open problems that we believe that should be solved independently

of the existence of Cook�s program� For example� we can mention whether Resolution is

automatizable or not� So� is it possible to �nd an algorithm that produces Resolution proofs

not much longer than the shortest proofs� Sometime� the shortest proofs are extremely long�

but at least� can we �nd mechanically these proofs� This algorithm would be useful because

when there were short proofs it would �nd one very fast� Another interesting open problem

comes from the fact that currently we know that there formulas that require long Resolution

proofs and others do not� but we do not know exactly why this happen� It would be very
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interesting to know why some formulas are hard for Resolution� So� in our opinion there are

still a lot of work� interesting and di�cult� to be done about Resolution�

This introductory chapter is structured as follows� In Section ��� we de�ne the proof

systems that are considered in this work� We de�ne in Section ��� the complexity measures

that are studied in this work� In Section ��� we de�ne some important formulas for Proof

Complexity� We do so because these formulas are used in several parts of this work� Besides

we believe that having de�ned proof systems� complexity measures and formulas� the discus�

sion of results about Proof Complexity in Section ��� makes more sense� In Section ��� we

explain some results about Circuit Complexity that will be used in this work� for example

the feasible monotone interpolation property which is de�ned in Section ������

��� Proof systems

The central notion of Proof System Complexity is proof system� The widely accepted

de�nition of what a proof system is was given by Cook and Reckhow in ��
��

De�nition � Let TAUT be the set of propositional tautologies� A function f � f	� �g� �
TAUT is a proof system i
 f is a polynomial time computable surjective function�

So� if f
x� � Twe say that x is an f �proof of the tautology T� that is� x � f	� �g� encodes

the proof of the tautology T in the system f � It is important that any alleged f �proof can

be checked e�ciently� that is� in polynomial time on the size of the proof� f is surjective

because f must be complete� any T� TAUT must have at least one f �proof�

To get NP �� coNP following Cook�s program� it must be proved that for every proposi�

tional proof system f � there is a class of tautologies T such that any x which holds f
x� � T�

has exponential� or at least superpolynomial� size on the size of T�

In order to compare the e�ciency of di�erent proof systems� Cook and Reckhow proposed�

De�nition � Let f�� f� � f	� �g� � TAUT be proof systems� Then f� polynomially

simulates f� if there is a polynomial time computable function g � f	� �g� � f	� �g� such

that f�
g
x�� � f�
x� for all x�
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So f� polynomially simulates f� i� there is an algorithm that translates proofs in f� into

proofs in f� which are at most polynomially longer than the original proofs in f��

It can happen that two proof systems are not comparable� that means that one system is

faster� produces shorter proofs� for some tautologies and the other system is faster for some

other tautologies� It also is possible that one proof system is better than another� that is� it

is never slower and sometime or most of the time is faster� In this work we will show that

certain proof systems are much better than others� We de�ne this in the following way�

De�nition � Let f�� f� � f	� �g� � TAUT be proof systems� Then f� dominates f� if

f� polynomially simulates f� and f� is almost exponentially separated from f�� That last

means that there is a formula T on n variables with polynomial f��proofs but requires almost

exponential f��proofs� We say that a a proof R for a formula T on n variables is almost

exponential if its size is at least ���n� logn��

The complexity of a proof system can be measured in di�erent ways� The most common

are size and length� Size is the number of symbols in the proof� length is the number of

lines in the proof� In some proof systems both measures are polynomially related� in the

case that this does not hold the preferred measure is size�

The proofs produced by any proof system can be represented in several ways� We will

consider two ways� treelike proofs and daglike proofs� In a treelike proof any line� that

is� any intermediate formula� can be used only once� If we need the same formula more than

once� it should be derived again� In a daglike proof� any line can be used as many times as

needed without having to rederive it� It is easier to get lower bounds for treelike proofs� so in

order to study a proof system it is a good idea sometimes to study �rst the treelike version

and then proceed with the daglike or unrestricted version� For some systems treelike size

and daglike size are polynomially related� on the other hand� for other systems the di�erence

is proved to be exponential� that is� for certain tautologies the system produces polynomial

size proofs but requires exponential size treelike proofs�

De�nition � We group the de�nitions of several terms of common use in Proof Complexity�
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� A boolean variable is a variable that can take only the values true or false� We

will usually refer to boolean variables just by variables� We will denote variables as

roman lowkey letters as a� b� c� etc�

� A literal is a boolean variable or its negation� For a variable v the positive literal

will be denoted by v and the negative literal by �v�

� A clause is a disjunction of literals� A clause is normally represented like l�� � � �� ln
where li for i � �n� are the literals occurring in the clause� but sometimes we will omit

the � symbols� in this case a clause looks like l� � � � ln� We will denote clauses as roman

capital letters such as A� B� C� etc�

� A k�term is a conjunction of up to k � � literals�

� A k�clause is a disjunction of k�terms� A clause is then a ��clause�

� A cnf formula is a conjunction of clauses� CNF stands for Conjunctive Normal

Form� A CNF formula looks like C� � � � � � Cn where Ci for i � �n� are the clauses

in the formula� As we are always dealing with CNF formulas we may call them just

formulas� Also we may represent formulas as a list of clauses C�� � � � � Cn� To denote

the names of the formulas we will use math capital letters such as F� PHP� etc�

� An assignment to a formula F is a mapping from the variables in F to the values

true and false� When the assignment is not total we may call it a partial assign�

ment� We will denote assignments with short greek letters such as �� �� etc� A set of

assignments will be denoted by greek capital letters� such as �� �� etc�

� Given a formula F and a partial assignment �� the restriction of F to �� denoted

F� or also Fj�� is the formula obtained after changing in F the variables mapped in �

by its values and simplifying the resulting formula�

� A formula F is unsatis�able if no assignment to the variables in F satis�es F� that is�

no assignment makes F true�

� The empty clause� denoted by �� is the clause with no literals and is unsatis�able�
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� A refutation for a formula F is a proof of the unsatis�ability of F� A refutation will

be denoted by R� a treelike refutation by T �

� A derivation of a formula F� from a formula F is a proof of F� from F� A derivation

will be denoted by R� a treelike derivation by T �

� A refutational proof system is a proof system for refuting formulas�

Our results concern mainly to refutational proof systems such as Resolution and exten�

sions and restrictions of Resolution� Another refutational proof system studied in this work

is the Cutting Planes proof system� which is also related to Resolution�

����� Resolution

resolution is a refutation proof system for CNF formulas introduced by Robinson in ��	��

The only inference rule is the Resolution rule�

C � x D � �x

C �D �

From clauses C � x and D � �x we get the clause C �D which is called resolvent� In this

example we say that variable x is cut or eliminated� A Resolution refutation of a CNF

formula F is a derivation of � from F using the resolution rule� Resolution is a sound and

complete refutation system� a set of clauses has a Resolution refutation if and only if it is

unsatis�able�

A Resolution refutation of a CNF formula F is a list of clauses C�� � � � � Cn such that Cn

is �� and for all i � �n�� Ci is either a clause in F or a resolvent from two clauses Cj and Ck

where � � j � k � i 	 n� Any refutation in the form of a list of clauses can be transformed

into a daglike refutation� The graph will have n nodes� each labeled by a clause� For a node

Ci we will draw edges from the parent clauses Cj and Ck to Ci� An initial clause will have

no incoming edges and the node � will have no outgoing edges� If the graph is a tree we will

have a treelike refutation�

Several restriction of Resolution have been proposed� These restrictions forbid to apply

the Resolution rule under certain conditions� but maintaining the completeness� The idea
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behind the restriction is to help to �nd refutations by limiting the search space� Some of the

more studied restrictions are�

� regular Resolution� Viewing the refutations as graph� in any path from � to any

initial clause� no variable is eliminated twice�

� orderedResolution� There exists an arbitrary ordering of the variables in the formula�

such that if a variable x is eliminated before a variable y on any path from an initial

clause to �� then x is before y in the ordering� As no variable is eliminated twice on

any path� ordered Resolution is a restriction of regular Resolution� This system is also

known as Davis�Putnam Resolution�

� negative Resolution� To apply the Resolution rule� one of the two clauses should

consist only of negative literals�

����� Extensions of Resolution

Resolution was generalized by Kraj� !cek in ����� The new proof system R
k� allows disjunc�

tions of conjunctions of up to k literals and provides rules to work with them�

The inference rules are�

�� ��introduction
A �Vi�I li B �Vi�J li

A � B �Vi�I�J li

�� k�cut
A �Vi�I li B �Wi�I �li

A �B
�� weakening

A

A �Vi�I li

where A and B are k�clauses� I� J are sets of indices such that jI 
 J j 	 k� where li for

i � fI 
 Jg are literals� Notice that R
�� is Resolution with a Weakening rule�

We will follow the notation in ����� so Resolution will be denoted by R
��� treelike Reso�

lution by R�
�� and treelike R
k� by R�
k��
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����� Cutting Planes

The cutting planes proof system� CP for short� is a refutational system for CNF formulas�

as Resolution is� It works with linear inequalities� The initial clauses are transformed into

linear inequalities in the following way�

j�
i��

xi �
k�
i��

�yi �

jX
i��

xi "

kX
i��


� � �yi� � �

We translate the boolean value true into � and false into 	� A CP refutation of a set

E of inequalities is a derivation of 	 � � from the inequalities in E and the axioms x � 	 and

�x � �� for every variable x� using the CP rules which are basic algebraic manipulations

as addition of two inequalities� multiplication of an inequality by a positive integer and the

following division rule�

P
i�I aixi � kP

i�I
ai
b
xi �

�
k
b

� �
where b is a positive integer that evenly divides all ai� i � I�

It can be shown that a set of inequalities has a CP refutation i� it has no f	� �g�solution�

Any assignment satisfying the original clauses is actually a f	� �g�solution� It is also well

known that CP polynomially simulates resolution ����� and this simulation preserves tree�

likeness� To unify the notation we will denote treelike CP by CP��

��� Complexity measures

In this section we present in detail the complexity measures that will be used in this work�

We will use calligraphic letters to denote these measures�

����� Size and length

In R
�� and CP size and length are polynomially related which for us means that are equiv�

alent and we will use both words indistinctly�

The length of a R
k� or R�
k� refutation R is the number of k�clauses in R� The

length of refuting a formula F in R
k�� denoted by Lk
F�� is the minimal length of all R
k�
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refutations for F� The length of R�
k� refutations is denoted by L�k
F�� Similarly� the length

of refuting F in CP or CP� is denoted by LCP 
F� or L�CP 
F��

����� Width

width is a recent complexity measure de�ned by Ben�Sasson and Wigderson in ��
�� The

width of a clause C� W
C� is the number of literals in C� The width of a set of clauses

C� W
C�� is the maximum width of the clauses in C� Note that a set of clauses can be for

example a formula or a refutation� The width of refuting a formula F� W
F � ��� is the

minimal width of all the refutations for F�

In ��
� there were also proved interesting relations between size and width�

Theorem � For an unsatis�able CNF formula F with n variables�

� L��
F� � �W�F����W�F�

� L�
F� � exp
#

W
F � �� �W
F����n��

Observe that we have not de�ned width for R
k� in general because as R
�� refutations

are R
k� refutations� the width for R
k� cannot be bigger that the width for R
��� On

the other hand is very easy to transform a R
k� refutation into a R
�� refutation without

increasing the width� but possibly increasing the size� That means that the width for R
k�

refutations cannot be smaller than the width for R
�� refutations�

����� Space

Another measure for the complexity of R
�� refutations is the amount of space it needs�

This measure was de�ned in ���� in the following way�

De�nition 	 	��� An unsatis�able CNF formula F has R
�� refutation bounded by space k

if there is a series of CNF formulas F� � � � � �Fs � such that F � F� � � � Fs � in any Fi there

are at most k clauses� and for each i � s� Fi�� is obtained from Fi by deleting� if wished�

some of its clauses and adding the resolvent of two clauses of Fi �
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Intuitively this expresses the idea of keeping a set of active clauses in the refutation� and

producing from this set a new one by copying clauses from the previous set and resolving

one pair of clauses� until � is included in the set� Initially the set of active clauses consists

of all the clauses of F� and the space needed is the maximum number of clauses that are

simultaneously active in the refutation�

The above de�nition has the important drawback that the space needed in a refutation

can never be less than the number of clauses in the formula being refuted� This is so because

the formula is the �rst one in the sequence used to derive �� Making an analogy with a more

familiar computation model� like the Turing machine� this is the same as saying that the

space needed cannot be less than the size of the input being processed� To be able to study

problems in which the working space is smaller than the size of the input� the space needed

in the input tape is usually not taken into consideration� We do the same for the case of

R
�� and introduce the following alternative de�nition for the space needed in a refutation�

De�nition 
 �	���� An unsatis�able CNF formula F has R
�� refutation bounded by space

k if there is a series of CNF formulas F� � � � � �Fs � such that F� 
 F� � � Fs � in any Fi there

are at most k clauses� and for each i � s� Fi�� is obtained from Fi by deleting some of its

clauses� or adding the resolvent of two clauses of Fi � or adding some of the clauses of F�

So we can give a de�nition of the space for refuting a formula�

De�nition � The space needed for refuting in R
�� an unsatis�able formula is the mini�

mum k for which the formula has a refutation bounded by space k�

In the new de�nition it is allowed to add initial clauses to the set of active clauses at

any stage in the refutation� Therefore these clauses do not need to be stored and do not

consume much space since in any moment at most two of them are needed simultaneously�

The only clauses that consume space are the ones derived at intermediate stages� The space

for refuting a formula can now range from constant to lineal�

There is another natural way to look at this de�nition using pebble games on graphs� a

traditional model used for space measures in Complexity Theory and for register allocation



���� COMPLEXITY MEASURES ��

problems� see ����� As said in Subsection ������ R
�� refutations can be represented as

directed acyclic graphs of indegree two� in which the nodes are labeled with the clauses�

De�nition �� In a directed acyclic graph G the source nodes are the nodes with no in�

coming edges� that is� with no predecessors and the target nodes are the nodes with no

outgoing edges� that is� with no successors�

In a graph representing a R
�� refutation� the source nodes are the initial clauses� all the

other nodes have indegree two� and the only target node is ��

The space required for the R
�� refutation of a CNF formula F� as expressed in De�ni�

tion �� corresponds to the minimum number of pebbles needed in the following game played

on the graphs of refutations of F�

De�nition �� Given a connected directed acyclic graph with one target the aim of the peb�

ble game is to put a pebble on the target of the graph� following this set of rules�

�� A pebble can be placed in any source node�


� Any pebble can be removed from any node at any time�

�� A node can be pebbled provided all its parent nodes are pebbled�

��� If all the parent nodes of node are pebbled� instead of placing a new pebble on it� one

can shift a pebble from a parent node�

An important concept that will be used often in this work is�

De�nition �� The pebbling number of a directed acyclic graph G is the minimal number

of pebbles needed to put a pebble in a target node of G following the rules of the pebbling game�

The pebbling number of a G is denote by P
G��

There are several variations of this simple pebble game in the literature� In ���� it is

shown that the inclusion of rule �� in the game can at most decrease by one the number of

pebbles needed to pebble a graph� but in the worst case the saving is obtained at the price of

squaring the number of moves needed in the game� We include rule �� so that the number of
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pebbles coincides exactly with the space in De�nition �� This fact is stated in the following

straightforward Lemma�

Lemma �� Let F be an unsatis�able CNF formula� The space needed in a R
�� refutation

R of F is P
R��

De�nition �� allows us to use techniques introduced for the estimation of the number

of pebbles required for pebbling certain graphs� for computing the space needed in R
��

refutations� However the estimation of the number of pebbles needed in the refutation of a

formula is harder than the estimation of the number of pebbles needed for a graph� since in

the �rst case one has to consider all the possible refutation graphs for the formula�

We also give the formulation of space in ��� which is equivalent to ours� but some results

in this work are proved using the terminology in ���� We start by de�ning a configuration�

De�nition �� A configuration is set of k�clauses�

We use calligraphic letters to denote con�gurations� We will use the word con�guration

to denote the set of clauses pebbled in an stage of a pebbling strategy�

The formulation of ��� uses the concept of con�guration�

De�nition �� A R
�� refutation of a formula F can be viewed as a list of con�gurations

C � C�� � � � � Cs such that C� � �� Cs � � and each Ct for t � �s� is obtained by one of the

following rules�

� axiom download� Ct � Ct�� 
 C for some clause C � F�

� memory erasing� Ct � Ct�� � C for some C � Ct���

� inference adding� Ct � Ct��
C� for some C obtained by the Resolution rule applied

to two clauses in Ct���

So� the de�nition of space of a refutation C is�

De�nition �� Given a refutation C as a list of con�gurations� the space of C is the maximal

length of a con�guration in C�
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If we call Ci to the set of pebbled clauses in the ith pebbling step� it is clear that both

De�nition �� and De�nition �� are equivalent�

We will denote the space for refuting F in R
k� as Sk
F�� and for R�
k�� by S�k 
F��

��� Formulas

We present the main CNF formulas that are studied in this work� In Section ��� we will

state results concerning these formulas� so putting our own results in context�

����� Pigeonhole Principle

The most studied CNF formula is the Pigeonhole Principle� usually shortened to PHP�

It expresses that it is not possible to have a one�to�one mapping from m objects to n places�

when m 	 n� Let the variable xi�j denote that the ith�object is placed in the jth�place� We

can write a CNF formula for the Pigeonhole Principle as follows�

xi��xi�� � � � xi�n i � �m� 
����

�xi�k�xj�k � 	 i � j 	 m� � 	 k 	 n 
����

Clauses ��� say that every object must be placed somewhere� Clauses ��� say that in every

place there is at most one object�

When m � �n the formula is known as weak pigeonhole principle� Haken in ���� gave

the �rst exponential size lower bound for R
��� Recently Razborov has dedicated a survey

���� to the Pigeonhole Principle collecting and commenting all the results concerning several

proof systems and variations of the standard Pigeonhole Principle�

����� Tseitin Formulas

These formulas where de�ned in ����� Let G � 
V�E� be a connected undirected graph with

n vertices� and let m � V � f	� �g be a marking of the vertices of G satisfying the property

X
v�V

m
x� � �
mod ���
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For such a graph we can de�ne an unsatis�able CNF formula T
G�m� in the following way�

The formula has E as set of variables� and is the conjunction of the translation in CNF of

the formulas PARv for v � V � where

PARv �

��
�

e�
v�� � � � � ed
v� if m
v� � �

e�
v�� � � � � ed
v� if m
v� � 	

Here e�
v�� � � � � ed
v� are the edges� variables� incident with vertex v� If d is the maximum

degree of a node in G� T
G�m� contains at most n�d�� many clauses� each one with at most

d many literals� The number of variables in the formula is bounded by dn
�

�

T
G�m� captures the combinatorial principle that for all graphs the sum of the degrees

of the vertices is even� When the marking m is odd� T
G�m� is unsatis�able� Suppose on

the contrary that there were a satisfying assignment � � E � f	� �g� For every vertex v� the

number of edges of v that have been assigned value � by � has the same parity as m
x�� and

therefore

X
v�V

X
�v�w��E

�

v�w�� �
X
v�V

m
v� � �
 mod ��

but in the left hand sum in the equality� every edge is counted twice and therefore this

sum must be even� which is a contradiction� Tseitin in ���� gave the �rst exponential size

lower bound for a nontrivial proof system� concretely regular R
��� Usually the marking

will be omitted and the formula will be denoted as T
G� in the understanding that we are

considering an odd marking� Note that applying an assignment to T
G�m� has curious

consequences with m� Let e be the edge joining nodes u and v� and let restrict T
G�m� with

e � �� that is� T
G�m�e��� The new formula is T
G��m��� where G� � 
V�E � e� and m�
u�

is m
u� toggled and m�
v� is m
v� toggled�
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����� Graph Tautologies

The Graph Tautologies� GTn are unsatis�able CNF formulas based on directed graphs with

n nodes� Let variable xi�j mean that there is an edge from node i to node j�

�xi�j�xj�kxi�k i� j� k � �n�� i �� j �� k 
����

�xi�j�xj�i i� j � �n�� i �� j 
����

x��i � � � xi���ixi���i � � � xn�i i � �n� 
����

Clauses ��� say that when there is an edge from node i to node j and an edge to node j

to node k� then there is an edge from node i to node k� Clauses ��� say that there are no

cycles of size two� Graphs that satisfy these clauses must have a node with no incoming

edges� Clauses ��� force that all nodes have an incoming edge� thus getting an unsatis�able

formula� This formula have short resolution proofs� see ����� nevertheless Bonet and Galesi

in ���� proved a width lower bound of n� This result is very important because it shows

that a width lower bound of the square root in the number of variables does not give a

superpolynomial size R
�� lower bound� The space for this formula is also n� see ����

����� Pebbling Contradictions

The Pebbling Contradictions are formulas based in directed acyclic graphs of indegree � and

the Pebbling Game� recall De�nitions �� and ��� Let us call w to the variable representing

node w� The meaning of variable w is that the node can be pebbled� Remember that a

source node is a node with no predecessors and a target node is a node with no successors�

Let G � 
V�E�� A node w can be pebbled if all its parents nodes are pebbled� We can

represent it with the clause �u�vw where u and v are the parents of w in G� If w is a source

the clause becomes just w and we call it source clause� otherwise it is called a pebbling

clause� In order to obtain a contradiction we add for each target node t � V the target

clause �t� We denote this contradiction by PEB 
G��

An interesting result about PEB 
G� appeared in ����� It is proven that PEB 
G� cannot

have R
�� refutations with both constant space and constant width� It is easy to �nd R
���
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in fact R�
��� refutations with constant space but the width is $
P
G�� and also R
��

refutations with constant width� but then the space is $
P
G���

These contradictions can be generalized in the following way� The contradictionPEB l
k
G�

where l� k � � is obtained from PEB 
G� by introducing k � l variables vi�j� i � �l�� j � �k� for

each variable v in PEB 
G�� Each variable v is replaced by

�
i�	l


�
j�	k


vi�j�

The resulting formula is then transformed into CNF using de Morgan�s laws� and distribu�

tivity� Hence� each source clause s in PEB 
G� will correspond to the PEB l
k
G� source clauses

si�� � � � � � si�k

for i � �l�� Each target clause �t in PEB 
G� will correspond to the PEB l
k
G� target clauses�

�t��j� � � � � � �tl�jl

for j�� � � � � jl � �k�� And each pebbling clause �u � �v � w in PEB 
G� will correspond to the

PEB l
k
G� pebbling clauses

�u��j� � � � � � �ul�jl � �v��m�
� � � � � �vl�ml

� wi�� � � � � � wi�k

for j�� � � � � jl�m�� � � � �ml � �k�� i � �l�� Clearly� PEB l
k
G� is a contradiction since PEB 
G�

is� Moreover PEB l
k
G� has small R�
k� refutations� Ben�Sasson et al� considered in ��
� the

formulas PEB �
�
G� to give a quasioptimal size separation between R
�� and R�
��� These

formulas have exponential R�
�� refutations but constant width polynomial size R
�� refu�

tations�

����� Random Formulas

Let Fn
m be the probability distribution obtained by selecting m clauses of size exactly �

independently� uniformly at random from the set of all �� � 	n
�



clauses of size � built on n

distinct variables� F � Fn
m� means that F is selected at random from this distribution� A

random ��CNF formula is a formula F � Fn
m�
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��� Circuit Complexity

In this section we introduce concepts about Circuit Complexity that will be used in several

places of this work� As said in the Introduction� Circuit Complexity results are often used

in Proof Complexity� The reason is that under certain circumstances R
�� or CP refutations

can be transformed into circuit computing a function related to the formula being refuted�

The size of the circuit is similar to that of the original refutation� so size lower bounds for

circuits can be translated into size lower bounds for refutations� see for example ��	� ����

����� Monotone circuits

De�nition �	 A boolean function in the boolean variables x�� � � � � xn is a map f �

f	� �gn � f	� �g�

De�nition �
 A monotone boolean function f is a boolean function such that for

any two inputs a and b� when a 	 b holds that f
a� 	 f
b��

De�nition �� A boolean circuit is a directed acyclic graph of indegree 
� where source

nodes are labeled by variables and boolean constants� and nonsource nodes are called gates

and are labeled with the boolean function computed at that gate�

De�nition �� A monotone boolean circuit is a boolean circuit computing a monotone

boolean function using monotone gates�

De�nition �� A monotone boolean formula is a fanout � monotone boolean circuit�

The class of real circuits was introduced by Pudl�ak���� and are a generalization of boolean

circuits�

De�nition �� A monotone real circuit is a circuit of fanin 
 computing with real

numbers where every gate computes a nondecreasing real function� The circuits output �

or � on every input of zeroes and ones only� A monotone real formula is a fanout �

monotone real circuit�



�	 CHAPTER �� INTRODUCTION AND DEFINITIONS

We list the main complexity measures for circuits�

De�nition �� Complexity measures for circuits�

�� The size of a circuit is the number of gates�


� The size of a function is the minimal size of its circuits� We will denote boolean

�monotone� circuit size by SB �SMB �� and real �monotone� circuit size by SR �SMR��

�� The depth of a circuit is the length of the longest path from the target to a source�

�� The depth of a function is the minimal depth of its circuits� We will denote boolean

�monotone� circuit depth by DB �DMB �� and real �monotone� circuit depth by DR�DMR��

�� A circuit is called formula if every gate has fanout at most �� The size of monotone

real formulas is denoted by S�
MR

�

Lower bounds on the size of monotone real circuits were given by Pudl�ak ����� Cook

and Haken ���� and Fu ����� Rosenbloom ���� shows that they are strictly more powerful

than monotone boolean circuits� since every slice function can be computed by a linear size�

logarithmic depth monotone real circuit� whereas most slice functions require exponential

size boolean circuits� On the other hand� Jukna ���� gives a general lower bound criterion

for monotone real circuits� and uses it to show that certain functions in P�poly require

exponential size monotone real circuits� Hence the computing power of monotone real circuits

and boolean circuits is incomparable�

����� The feasible monotone interpolation property

For the separations from CP� to CP and from R�
�� to R
�� in Section ��� we use the

following version of feasible monotone interpolation property� Theorem �� relates the size of

CP refutations with the size of monotone real circuits and also the size of CP� refutations

with the size of monotone real formulas�
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Theorem �� �	���� Let 
p� 
q� 
r be disjoint vectors of variables� and let A

p� 
q� and B

p� 
r�

be sets of inequalities in the indicated variables such that the variables 
p either have only

nonnegative coe�cients in A

p� 
q� or have only nonpositive coe�cients in B

p� 
r��

Suppose there is a CP refutation R of A

p� 
q� 
 B

p� 
r�� Then there is a monotone real

circuit C

p�� called the interpolant� of size O
jRj� such that for any vector 
a � f	� �gj�pj

C

a� � 	 � A

a� 
q� is unsatis�able

C

a� � � � B

a� 
r� is unsatis�able

Furthermore� if R is treelike� then C

p� is a monotone real formula�

Skipping the condition that the variables 
p either have only nonnegative coe�cients in

A

p� 
q� or have only nonpositive coe�cients in B

p� 
r�� the interpolant is real circuit or a real

formula if R was a CP refutation or a CP� refutation�

For the case of R
�� or R�
�� refutations a simpler version of Theorem �� su�ces� The

interpolant will be a monotone boolean circuit instead a monotone real circuit� This version

of Theorem �� will be also used in Section ��� to separate R
�� from R
���

Also note that it is not stated in the original formulation of Theorem �� in ���� that

treelike refutations produce formulas instead of circuits� but this can be checked easily in

the construction of the interpolant from the refutation�

��� Overview of results in the area

In this section we give an overview of results in Proof Complexity and put our results in

context� explaining its signi�cance and the relations with previous and posterior works of

others�

Haken in ���� was the �rst in proving exponential R
�� size lower bounds� He showed that

PHPn��
n requires exponential size R
�� refutations� The proof techniques of Haken where

extended in ���� to prove that PHPn���

n requires exponential size R
�� refutations� Only

recently it has been proved exponential lower bounds for PHPm
n where m � n� ���� ����

Urquhart ���� proved exponential R
�� size lower bounds for T
G� for a suitable family
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of graphs G� Chv�atal and Szemer�edi ���� showed that in some sense� almost all classes

of unsatis�able CNF formulas require exponential size R
�� refutations� In ���� �
� there

are simpli�ed proofs of these results� All these exponential lower bounds are bad news for

Automated Theorem Proving� since they mean that often the time used in �nding refutations

will be exponentially long in the size of the formula� just because the shortest refutations are

also exponentially long in the size of the formula� Re�nements of R
�� have been also studied�

It is important to know if these re�nements produce longer refutations than R
��� because

these re�nements are often used in Automated Theorem Proving� Goerdt in ���� ��� �
� gave

superpolynomial separations between R
�� and several re�nements� for ordered� negative and

regular R
�� respectively� In ���� an exponential separation between ordered R
�� and R
��

is proved� in fact between ordered and negative R
��� Recently exponential separations have

been proved between R
�� against regular and negative R
��� in ��� ��� respectively� It is

also important to study e�ciency issues for R�
�� because it is widely used in Automatic

Theorem Proving� Its importance stems from the close relationship between the complexity

of R�
�� refutations and the runtime of a certain class of satis�ability testing algorithms� the

so�called DLL Algorithms� see ���� ���� Superpolynomial separations between R�
�� and R
��

can be found in ��
�� In ����� see Section ���� this separation is proven to be exponential�

thus showing that �nding R�
�� refutations is not an e�cient strategy for �nding R
��

refutations� In ���� this result is improved by giving a nearly optimal separation between

R
�� and R�
��� All the separation results of ���� improve to exponential the previously

known superpolynomial ones� and these exponential separations harden the known results

showing ine�ciency of several widely used strategies for �nding proofs� especially for R
���

There are also exponential size lower bounds for CP� Impagliazzo et al� ��	� proved expo�

nential size lower bounds for CP�� Bonet et al� ��	� proved an exponential size lower bound

for a subsystem of CP� where the coe�cients appearing in the inequalities are polynomially

bounded in the size of the formula being refuted� This is an important result because all

known CP refutations ful�ll this property� Finally� Pudl�ak ���� and Cook and Haken ����

gave general circuit complexity results from which exponential lower bounds for CP follow�

To this day it is still unknown whether CP with bounded coe�cients polynomially simulates

CP� Since there is an exponential speedup of CP over R
��� see ����� it would be nice to �nd
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an e�cient algorithm for �nding CP refutations and a question to ask is whether trying to

�nd CP� refutations would be an e�cient strategy for �nding CP refutations� Johannsen ����

gave a superpolynomial separation� with a lower bound of the form #
nlogn�� between CP�

and CP� This was previously known for CP� with bounded coe�cients in ��	�� In ���� this

separation is improved to exponential� this means that trying to �nd CP� refutations is not

a good strategy for �nding CP refutations� The separations between R�
�� and CP� against

R
�� and CP respectively are obtained using the feasible monotone interpolation property

introduced by Kraj� !cek ����� Closely related ideas appeared previously in the mentioned

works that gave lower bounds for fragments of CP� see ��	� �	�� The interpolation method

applied to CP� translates proofs of certain formulas to monotone real circuits� a class of

circuits which generalize boolean circuits� This transformation has two important features�

it preserves the size� that is� the size of the circuit is of the order of the size of the proof from

which it is built� and it preserves the structure� that is� treelike proofs give rise to treelike

circuits� So it gives a way to reduce the problem of proving size lower bounds for CP� to

that of giving lower bounds for the size of monotone real formulas� To use this method� in

����� we extend to monotone real circuits a result from ��
� for monotone boolean circuits�

In ��� we give results about R
��� R
k� can be viewed either as an extension of R
�� or as

a restriction of bounded�depth Frege� In ��� �� it is proven that PHPcn
n requires exponential

size R
�� refutations� This is� to our knowledge� the �rst exponential lower bound for the

weak Pigeonhole Principle in a subsystem of bounded�depth Frege that extends R
��� We

state other results about PHP in several proof systems� For a complete treatment refer to

����� Beame et al� ��	� proved that PHPn�c
n requires exponential size proofs in bounded�

depth Frege systems and it is open whether lower bounds can be proved when the number of

pigeons in greater than n"c� Regarding upper bounds� Buss ���� gave polynomial size proofs

of PHPn��
n in unrestricted Frege systems� It is also known that PHP�n

n has quasipolynomial

size proofs in bounded�depth Frege ���� ���� Also in ���� there is a quasipolynomial upper

bound for depth�	�� LK� which is equivalent to R
log n�� when we allow conjunctions of up

to polylog literals� As a consequence there is an exponential separation between R
�� and

R
log n�� In ��� �� using techniques from ����� it is also obtained an exponential R
�� size

lower bound for Random Formulas with a certain clause density� Again� this is the �rst
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exponential lower for Random Formulas for a proof system stronger than R
��� This result

may be considered as a �rst step towards proving them hard for bounded�depth Frege�

Another important question to ask is whether R
�� is more powerful than R
��� In ��� we

prove that R
�� cannot polynomially simulate R
��� and therefore R
�� is superpolynomially

more e�cient than R
��� As a corollary� we see that R
�� does not have the feasible mono�

tone interpolation property� solving this way a conjecture of Kraj� !cek ����� These results

are in Section ���� This separation between R
�� and R
�� has been improved to slightly

exponential in ��� using a di�erent formula�

Another motivation for working with the system R
�� is to see how useful it can be for

Automated Theorem Proving� Given that it is more e�cient than R
��� because at least

there is a superpolynomial separation� it might be a good idea to try to �nd good heuristics

to �nd proofs in R
���

In ���� there are some results about R�
k�� It is proven that R�
k� forms a hierarchy

regarding proof size� see Subsection ������ That means that there are formulas that require

exponential size R�
k� refutation whereas they have polynomial size R�
k " �� refutations�

This separation holds also between R�
�� and R�
��� In ���� it is also proven that R
��

dominates R�
k�� see Subsection ������ This is a particular case of a simulation from �����

but we show that an increment by factor �� independent of k� su�ces� In ���� it is proved that

R
k� forms a hierarchy regarding proof size� thus extending the result in ����� and that the

Pigeon Principle with certain parameters and Random Formulas with certain initial width

require exponential size R
k� refutations� thus extending the results in ��� which hold only

for R
���

Width is a complexity measure introduced in ��
�� Under certain circumstances width

lower bounds can provide exponential size R
�� lower bounds and proving a width lower

bound should be easier than proving a R
�� size lower bound directly� In ��
�� previously

known size R
�� lower bounds for formulas such as PHP and T
G� were proved in an uni�ed

way using the concept of width� In ���� it was proved that a width lower bound of the square

root in the number of variables does not imply a superpolynomial R
�� size lower bounds�

solving an open problem in ��
�� Another interesting result about width is the combinatorial

characterization of �
�� A Player�Adversary game over CNF formulas can be used to �nd
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width bounds� this simpli�es the task of proving width lower bounds and consequently the

task of proving size lower bounds� In ��	� a relationship between R�
�� space and width was

proved and was later extended to R
�� space also in �
��

Space is also a recent complexity measure� It was introduced in ��	� along with general

results about relationships between space and size and some space lower bounds for well

studied formulas as PHP and T
G�� Independently in ��� appeared an equivalent de�nition

of space and the lower bounds in ��	� were proved using this formulation along with a new

space lower bound for GTn� The authors of ��� made a di�erence between what they call

clause space� which is what we call just space� and variable space� in which it is taken into

account not the number of clauses but the minimal number of literals that must be kept

simultaneously in order to carry out the refutation� They also extended space to other proof

systems� In ���� it was proved a new space lower bound for Random Formulas� In ���� all the

previously known space lower bounds have been proved in an simpler and uni�ed way using

the concept of dynamical satis�ability also introduced in ����� Besides this concept allows to

extend all these lower bounds to R
k�� This results appear in Section ���� The concept of

dynamical satis�ability is very similar to the combinatorial characterization of width in �
��

but it was found independently� As happened with respect to size� in ���� it is also shown

that R�
k� forms a hierarchy respect to space� see Section ���� So� there are formulas that

require nearly linear space for R�
k� whereas they have constant space R�
k"�� refutations�

In ���� a combinatorial characterization of R�
�� space is proved� see Section ���� As in the

case of the width characterization in �
� it is also via a Player�Adversary game over CNF

formulas� It would be interesting to �nd a combinatorial characterization for R
�� space�

An interesting open problem about R�
�� space is the space for PEB �
�
G� for a graph G with

a high pebbling number� In ���� is proved an exponential R�
�� size lower bound for these

formulas� That lower bound implies by a result in ��	� nearly linear R�
�� space lower bounds

that can also be obtained via the combinatorial characterization in ����� PEB �
�
G� has R
��

refutations with both polynomial size and constant width� but not much is known about the

space� In ���� using this formula the �rst separation between R
�� space and R�
�� space

is given� see Section ���� This separation shows that the characterization of R�
�� space is

not valid for R
�� space� It would be interesting to prove a matching space lower bound
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for PEB �
�
G� or �nd an smaller space upper bound� As PEB �

�
G� has constant space R�
��

refutations using the dynamical satis�ability concept only a constant space lower bound can

be proved� so if it happens that PEB �
�
G� requires nonconstant space R
�� refutations� the

dynamical satis�ability concept will not be a tight characterization of R
�� space�

��� Summary of results and organization of this work

After giving an overview of results in Proof Complexity we will comment our results sep�

arately to show clearly our contribution to the �eld of Proof Complexity� The rest of this

work is divided into three chapters� Chapter � is devoted to the results about size regarding

the Proof Systems presented in Section ���� which include size lower and upper bounds that

when they are related provide separations between di�erent proof systems or the treelike and

the general version of the same proof system� In Chapter � we present results mainly about

space complexity� including also space lower and upper bounds and relationships between

space and other complexity measures� Chapter � shows a summary of the results in this

work compared to previous and posterior related results� We also list some open problems

related to our work�

Regarding size� in Section ��� we improve separations between treelike and general ver�

sions of R
�� and CP� To do so we extended a size lower bound from ��
� for monotone

boolean circuits to monotone real circuits� The results appeared in ����� This kind of sepa�

rations is interesting because some Automated Theorem Provers rely on the treelike version

of proof systems� so the separations show that is not always a good idea to restrict to the

treelike version� What we do is to prove CP� exponential lower bounds for certain formulas

via the feasible monotone interpolation property� see Theorem ��� which clearly are also

lower bounds for R�
��� To get the separation we show R
�� polynomial size upper bounds

for the same formulas� which clearly are also upper bounds for CP� In fact we can separate

not only R�
�� from R
��� also we can separate R�
�� from certain restrictions of R
�� like

regular R
�� and negative R
��� The separation result for R�
�� and R
�� was later improved

in �����

The rest of Chapter � is devoted to R
k� and R�
k�� After the apparition of R
k� which is
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a system lying between R
�� and bounded�depth Frege it was important to study how pow�

erful it is and its relation both with R
�� and bounded�depth Frege� In Section ��� we show

that R
�� is strictly more powerful than R
��� We give a R
�� polynomial size upper bound

for a certain Clique�Coclique principle reducing it to a Pigeonhole Principle with parameters

that ensures polynomial size proofs� But as R
�� has the feasible monotone interpolation

property� and it is known that monotone circuits separating cliques from cocliques require

superpolynomial size� then R
�� refutations for this Clique�Coclique principle also require su�

perpolynomial size� This separation answers an open problem by Kraj� !cek� namely we show

that R
�� does not have the feasible monotone interpolation property� This result appeared

in ���� The separation between R
�� and R
�� was later improved in ���� In Section ��� we

present an unpublished result that shows that R
�� lower bounds for PHPn���

n provides R
��

lower bounds for PHPn�

n � This was a new attempt of solving a long standing open problem�

the R
�� size for PHPn�

n � Of course we do not know whether this approach would have made

the proof easier� but as the problem was solved while we were working a it� see ���� ����

we abandoned this approach� Section ���� deals with R�
k�� It was known that R
�� was

more powerful that R
�� and R�
�� more powerful than R�
��� so a natural question was to

�nd out whether we can separate successive levels of R
k� or R�
k�� The answer is yes� We

show exponential separations between successive levels of what we can call now the R�
k�

hierarchy and Segerlind et al� ���� showed separations for the R
k� hierarchy� We also prove

that R
�� simulates R�
k� which is a particular case of a theorem by Kraj� !cek ����� but we

can make the simulation shorter than the general simulation�

In Chapter � we show our results concerning R
k� space� R
�� space was de�ned in ��	�

improving a de�nition from ����� Also in ��� there is an equivalent formulation of R
�� space�

In Section ��� we give general results for R
�� and R�
�� space that appeared mainly in ��	��

In Section ��� a combinatorial characterization of R�
�� space is proved� This result appeared

in ����� As in the case of the width characterization in �
� it is also via a Player�Adversary

game over CNF formulas� It would be interesting to �nd a combinatorial characterization

for R
�� space� In Section ��� we give another result from ����� namely the �rst space

separation from R
�� to R�
��� We show that PEB �
�
G� requires less space for R
�� than for

R�
��� at least one third less� In Section ��� we show a result from ����� As happened with
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respect to size� R�
k� forms a hierarchy respect to space� So� there are formulas that require

nearly linear space for R�
k� whereas they have constant space R�
k " �� refutations� In

Section ��� we present another result from ����� We extend all previously known R
�� space

lower bounds to R
k� in a simpler and uni�ed way� that holds for R
�� as well� using the

concept of dynamical satis�ability presented also in �����



Chapter �

Size

In this chapter we present the results relative to proof size� In Section ��� we prove several

separations� The �rst� in Subsection ������ is an exponential separation between CP� and

R
�� which of course implies an exponential separation between R�
�� and R
�� and also

between CP� and CP� This separation was later improved in ����� The second separation

in Subsection ����� is between CP� and regular R
��� In Section ��� we present a super�

polynomial separation between R
�� and R
��� We give a polynomial R
�� refutation of

PHP with certain parameters� whereas there are only superpolynomial R
�� refutations for

PHP with the same parameters� This solves an open question posed by Kraj� !cek in �����

namely that R
�� has not the feasible monotone interpolation property� see Theorem ��� In

Section ��� we prove that R
�� size lower bounds for PHPn���

n can be translated into R
��

size lower bounds for PHPn�

n � This was a way of solving a longstanding open problem� the

size complexity of PHPn�

n � but as it was solved in ���� ��� later� we abandoned this work� In

Section ��� we prove that R�
k� forms a hierarchy with respect to size and also we show that

R
�� dominates R�
k� only by doubling the size of the refutation�

��� Size separation between CP� and R���

The main result of this section is an exponential separation between CP� and CP and

also between R�
�� and R
��� The separations are obtained through the feasible monotone

��
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interpolation property� see Section ������ To apply this property we had to extend the lower

bounds for monotone boolean circuits of ��
� to monotone real circuits� see Section ������

The results in this section are part of ���� and also have appeared in Galesi�s dissertation

����� I include in this work the results in which I had a signi�cative part explaining also

some results in ���� ��� which are needed to understand this section�

Before discussing how the results are obtained we need to de�ne some new concepts that

will be used only in this section�

����� Real Communication Complexity

De�nition �� A R 
 X � Y � Z is a multifunction if for every pair 
x� y� � X � Y �

there is a z � Z with 
x� y� z� � R�

We view such a multifunction as a search problem� that is� given input 
x� y� � X � Y �

the goal is to �nd a z � Z such that 
x� y� z� � R�

De�nition �� A deterministic communication protocol P over X�Y �Z speci�es

the exchange of information bits between two players� I and II� that receive as inputs respec�

tively x � X and y � Y and �nally agree on a value P 
x� y� � Z such that 
x� y� P 
x� y�� � R�

De�nition �	 The deterministic communication complexity of R� CC
R�� is the

number of bits communicated between players I and II in the optimal protocol for R�

De�nition �
 A real communication protocol over X � Y � Z is executed by two

players I and II who exchange information by simultaneously playing real numbers and then

comparing them according to the natural order of R�

This generalizes ordinary deterministic communication protocols in the following way�

in order to communicate a bit� the sender plays this bit� while the receiver plays a constant

between 	 and �� so that he can determine the value of the bit from the outcome of the

comparison�

Formally� such a protocol P is speci�ed by a binary tree� where each internal node v is

labeled by two functions f Iv � X � R� giving player I�s move� and f IIv � Y � R� giving player
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II�s move� and each leaf is labeled by an element z � Z� On input 
x� y� � X � Y � the

players construct a path through the tree according to the following rule�

At node v� if f Iv 
x� 	 f IIv 
y�� then the next node is the left son of v� otherwise

the right son of v�

The value P 
x� y� computed by P on input 
x� y� is the label of the leaf reached by this

path�

A real communication protocol P solves a search problem R 
 X � Y � Z if for every


x� y� � X � Y � 
x� y� P 
x� y�� � R holds�

De�nition �� The real communication complexity CCR
R� of a search problem R

is the minimal depth of a real communication protocol that solves R�

Let f � f	� �gn � f	� �g be a monotone boolean function� let X �� f��
�� and Y ��

f��
	�� and let the multifunction Rf 
 X � Y � �n� be de�ned by


x� y� i� � Rf i� xi � � and yi � 	

De�nition �� The Karchmer�Wigderson game for f is de�ned as follows� Player I

receives an input x � X and Player II an input y � Y � They have to agree on a position

i � �n� such that 
x� y� i� � Rf � We will call Rf is the Karchmer�Wigderson game for the

function f �

There is a relation between the real communication complexity of Rf and the depth of

a monotone real circuit or the size of a monotone real formula computing f � similar to the

boolean case�

Lemma �� �Kraj
��cek ��	�� Let f be a monotone boolean function� Then

�� CCR
Rf � 	 DMR
f��


� CCR
Rf � 	 log��� S�MR
f��

For a proof see ��
� or ����� Notice that by 
�� a linear lower bound for the real com�

munication complexity of Rf gives an exponential lower bound for the size of the smallest

monotone real formula computing f �
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����� DART games and Structured Protocols

Raz and McKenzie ��
� introduced a special kind of communication games� called DART

games� and a special class of communication protocols� the structured protocols� for solving

them�

De�nition �� For m�k � N� DART
m�k� is the set of communication games speci�ed by

a relation R 
 X � Y � Z such that�

� X � �m�k� The inputs for Player I are k�tuples of elements xi � �m��

� Y � 
f	� �gm�k� The inputs for Player II are k�tuples of binary colorings yi of �m��

� For all i � �� � � � � k let ei � yi
xi� � f	� �g� that is� the xi�th bit in the m�bits string

yi� The relation R 
 X � Y � Z de�ning the game only depends on e�� � � � � ek and z�

hence we can describe R
x� y� z� as R

e�� � � � � ek�� z��

� R

e�� � � � � ek�� z� can be expressed as a DNF Search Problem� There exists a DNF

tautology FR de�ned over the variables e�� � � � � ek such that Z is the set of terms of

FR� and R

e�� � � � � ek�� z� holds if and only if the term z is satis�ed by the assignment


e�� � � � � ek��

De�nition �� A structured protocol for a DART game is a communication protocol

for solving the search problem R� where player I gets input x � X� player II gets input

y � Y � and in each round� player I reveals the value xi for some i� and II replies with

yi
xi��

De�nition �� The structured communication complexity of R � DART
m�k��

denoted by SC
R�� is the minimal number of rounds in a structured protocol solving R�

In ��
� it is was proven that CC
R� 	 SC
R� � #
logm�� This is easy to generalize to

real communication complexity�

Lemma �� For a DART game R� CCR
R� 	 SC
R� � #
logm��
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Proof� Observe that at each structured round the two players transmit dlogme " � bits�

The �rst player transmits a number in �m� and the second answers with a bit� Observe that

w�l�o�g� we can assume that both players know the structure of the protocol of the game�

Therefore at each round they both know what is the coordinate i of the inputs they have to

talk about and they have no need to transmit it� so the result follows� q�e�d�

Theorem �� is a generalization to real communication complexity of a result of ��
�� It

is necessary to produce lower bounds for monotone real circuits� The proof of Theorem ��

can be found in ���� ����

Theorem �� Let m�k � N� For every relation R � DART
m�k�� where m � k���

CCR
R� � SC
R� � #
logm� �

From Lemma �� and Theorem �� follows�

Corollary �	 	��� CCR
R� � SC
R� � #
logm��

Another corollary to Theorem ��� is that for DART games� real communication protocols

are no more powerful than deterministic communication protocols�

Corollary �
 Let m�k � N� For R � DART
m�k� with m � k��� CCR
R� � $
CC
R���

Proof� CC
R� � CCR
R� � SC
R� � #
logm� � #
CC
R��� q�e�d�

At this point we must de�ne the following concepts�

De�nition �� A minterm �respectively a maxterm� of a boolean function f � f	� �gn �
f	� �g is a set of inputs x � f	� �gn such that f
x� � � �respectively f
x� � 	� and for each

y � f	� �gn obtained from x by changing a bit from � to 	 �respectively by changing a bit

from 	 to �� it holds that f
y� � 	 �respectively f
y� � ���

We will apply the feasible monotone interpolation property� see Subsection ����� on a

formula A

p� 
q� 
 B

p� 
r� such that A

p� 
q� will encode that 
p is a minterm of f and B

p� 
r�

will encode that 
p is maxterm of f � Given a CP� refutation of A

p� 
q�
B

p� 
r�� the interpolant

provided by Theorem �� will be a monotone real formula C

p� which computes the function
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f � The fact that C

p� is a monotone real treelike circuit if the refutation R is treelike is

not part of the original theorem� but can be directly obtained from the proof of the theorem

in ����� The reason is that the underlying graphs of the refutation and the circuit are the

same� Therefore if we are able to prove exponential lower bound for the size of the treelike

monotone real circuits computing f we immediately obtain an exponential lower bound for

CP� and a fortiori for R
�� refutations for A

p� 
q� 
B

p� 
r��

To get the separation we need a monotone boolean function such that�

� has exponential lower bounds for monotone real formulas computing it and

� the corresponding A

p� 
q�
B

p� 
r� have polynomial size R
�� refutations� and therefore

also polynomial size CP refutations�

For the monotone boolean function f we consider the monotone function genn of n� inputs

ta�b�c� a� b� c � �n� de�ned as follows�

De�nition �� genn

t� � � i
 � n� where for c � �n�� � c means c is generated� which is

de�ned recursively by � c i
 c � � or there are a� b 	 n with � a � � b and ta�b�c � � �

Sometimes we will write a� b � c for ta�b�c � ��

We will prove exponential lower bounds for the size of treelike monotone real circuits

computing genn in Section ������ The formulas A

p� 
q� and B

p� 
r� expressing respectively a

minterm and a maxterm of genn� with short R
�� refutations are presented in Section ������

����� Lower bounds for Real Communication Complexity

We want to prove a #
n�� lower bound for the real communication complexity of the

Karchmer�Wigderson game associated to genn� We will consider a DART game related

to the genn function� In this game the generation will proceed in a pyramidal way� We �rst

de�ne a set that will ease the de�nition of the game�

De�nition �� For d � N� let Pd � f 
i� j� � � 	 j 	 i 	 d g�

Following ��
�� we de�ne the DART game PYR
m�d�� related to the genn� with param�

eters m � d�
 and n �
	
d��
�



m " �� so that d � n�����
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De�nition �� We regard the indices as elements of Pd� so that the inputs for the two

players I and II in the PYR
m�d� game are respectively sequences of elements xi�j � �m�

and yi�j � f	� �gm with 
i� j� � Pd� and we picture these as laid out in a pyramidal form with


�� �� at the top and 
d� j�� � 	 j 	 d and the bottom� The goal of the game is to �nd either

an element colored � at the top of the pyramid� or an element colored � at the bottom of the

pyramid� or an element colored � with the two elements below it colored �� That is we have

to �nd indices 
i� j� such that one of the following holds�

�� i � j � � and y���
x���� � 	� or


� yi�j
xi�j� � � and yi���j
xi���j� � 	 and yi���j��
xi���j��� � 	� or

�� i � d and yd�j
xd�j� � ��

Observe that� setting ei�j � yi�j
xi�j� for � 	 j 	 i 	 d� this search problem can be de�ned

as a DNF search problem given by the following DNF tautology�

�e��� �
�

��j�i�d��

ei�j � �ei���j � �ei���j��� �

�
��j�d

ed�j

Therefore� PYR
m�d� is a game in DART
m�
	
d��
�



��

Theorem �� For some � 	 	 and su�ciently large n CCR
Rgenn� � #
n���

Proof� The theorem follows from the following results�

d 	 SC
PYR
m�d�� 
Lemma ���

#
logm�SC
PYR
m�d�� 	 CCR
PYR
m�d�� 
Theorem ���

CCR
PYR
m�d�� 	 CCR
Rgenn� 
Lemma ���

q�e�d�

Lemma �� is proved in ��
�� In ���� ���� Theorem �� is proven for every DART game R�

Lemma �� is an adaptation of a proof in ��
�� A lower bound on the structured communica�

tion complexity of PYR
m�d� was proved in ��
��

Lemma �� ���	�� SC
PYR
m�d�� � d�
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Lemma �� shows that the real communication complexity of the game PYR
m�d� is

bounded by the real communication complexity of the Karchmer�Wigderson game for genn

for a suitable n� The proof is adapted from ��
��

Lemma �� Let d�m � N and let n �� m � 	d��
�



" �� then CCR
PYR
m�d�� 	 CCR
Rgenn��

Proof� We prove that any protocol P solving the Karchmer�Wigderson game for genn can

be used to solve the PYR
m�d� game� Recall that PYR
m�d� is a DART 
m�
	
d��
�



� game�

so the two players I and II receive inputs respectively of the form 
x���� � � � � xd�d� where

xi�j � �m� for all 
i� j� � Pd and 
y���� � � � � yd�d� where yi�j � f	� �gm for all 
i� j� � Pd�

From their respective inputs for the PYR
m�d� game� Player I and II compute respec�

tively a minterm txa�b�c and a maxterm tya�b�c� for genn and then they play the Karchmer�

Wigderson game applying the protocol P �

As in ��
� we consider �xed the element � as a bottom generator and the element n as

the element we want to generate� We interpret the remaining n �
	
d��
�



m elements between

� and n � � as triples 
i� j� k�� where 
i� j� � Pd and k � �m��

Now player I computes from his input 
x���� � � � � xd�d� an input txa�b�c for genn such that

genn
txa�b�c� � � by setting the following 
recall that a� b � c means ta�b�c � ���

�� � � gd�j for � 	 j 	 d

g���� g��� � n
gi���j � gi���j�� � gi�j for 
i� j� � Pd��

where gi�j �� 
i� j� xi�j� � f�� � � � � n� �g and all the other bits txa�b�c � 	� This completely

determines txa�b�c and obviously genn
txa�b�c� � � since we have forced a generation of n 
in a

pyramidal form��

Likewise Player II computes from his input 
y���� � � � � yd�d� a coloring col of the elements

from �n� by setting col
�� � 	� col
n� � � and col

i� j� k�� � yi�j
k� 
the k�th bit of y�i�j���

From this coloring� he computes an input tya�b�c by setting tya�b�c � � i� it is not the case that

col
c� � � and col
a� � col
b� � 	� Obviously genn
tya�b�c� � 	�
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Playing the Karchmer�Wigderson game P for genn now yields a triple 
a� b� c� such that

txa�b�c � � and tya�b�c � 	� By de�nition of ty� this means that col
a� � col
b� � 	 and col
c� � ��

and by de�nition of tx one of the following cases must hold�

� a � b � � and c � gd�j for some j 	 d� By de�nition of col� yd�j
xd�j� � ��

� c � n and a � b � g���� In this case� y���
x���� � 	�

� a � gi���j � b � gi���j�� and c � gi�j� Then we have yi�j
xi�j� � �� and yi���j
xi���j� �

yi���j��
xi���j��� � 	�

In any case� the players have solved PYR
m�d� without additional communication� q�e�d�

From Theorem �� we obtain consequences for monotone real circuits analogous to those

obtained in ��
� for monotone boolean circuits� An immediate consequences of Theorem ��

and Lemma �� is that any treelike monotone real circuit computing the boolean function

genn must have exponential size�

Theorem �� S�
MR


genn� � ���n
�� for some � 	 	�

Consider now the following de�nition

De�nition �	 Let 
t be an input to genn� We say that n is generated in a depth�d pyra�

midal fashion by 
t if there is a mapping m � Pd � �n� such that the following hold �recall

that a� b � c means ta�b�c � ���

�� � � m
d� j� for every j 	 d

m
i " �� j��m
i" �� j " �� � m
i� j� for every 
i� j� � Pd��

m
�� ���m
�� �� � n

We need a function related to genn in order to produce a unsatis�able CNF formula to

get the size separations�

De�nition �
 Call pyrn the boolean function that outputs � on every input to genn for

which n is generated in a depth�d pyramidal fashion� and outputs � on all inputs where genn

is ��
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We can obtain an analogous of Theorem �� also for the simpler case in which the gener�

ation is restricted to be only in a pyramidal form�

Corollary �� S�
MR


pyrn� � ���n
�� for some � 	 	�

Proof� Observe that in Lemma �� Player I from its input� builds an input for genn

which forces a depth�d pyramidal generation� So Lemma �� can be easily adapted to pyrn

to prove that CCR
PYR
m�d�� 	 CCR
Rpyrn�� Lemma �� and Theorem �� imply that

CCR
Rpyrn� � #
n��� for some � 	 	� Finally Lemma �� gives the Theorem� q�e�d�

The other consequences drawn from Theorem �� and Lemma �� in ��
� apply to monotone

real circuits as well� We just state without proof the following result�

Theorem �� There are constants 	 � �� � � � such that for every function d
n� 	 n�� there

is a family of monotone functions fn � f	� �gn � f	� �g that can be computed by monotone

boolean circuits of size nO��� and depth d
n�� but cannot be computed by monotone real circuits

of depth less than � � d
n��

The method also gives a simpler proof of the lower bounds in ����� in the same way as

��
� simpli�es the lower bound of �����

����� Separation between CP� and R���

As observed in Subsection ������ Theorem �� allows to reduce the task of proving lower

bounds for CP� to that of giving lower bounds for the size of treelike monotone real cir�

cuits� In this Section we build an unsatis�able CNF formula GEN

p� 
q� 
 COL

p� 
r� and

we will obtain exponential lower bounds for CP� refutations using Corollary ��� That is�

we build GEN

p� 
q�
 C OL

p� 
r� in such a way that the interpolant provided by Theorem ��

is a monotone real treelike circuit computing the function genn� where n is generated in a

pyramidal form� After that we also show that GEN

p� 
q� 
 COL

p� 
r� admits polynomially

size R
�� refutations�

Let n and d be natural numbers whose values will be �xed below� Recall that Pd ��

f 
i� j� � � 	 j 	 i 	 d g� The clauses in GEN

p� 
q� will encode the property that the inputs
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p de�ne a pyramidal generation� and therefore genn

p� � �� The clauses in COL

p� 
r� will

say that that the inputs 
p de�ne a coloring� so that genn

p� � 	 follows�

More precisely� the variables pa�b�c for a� b� c � �n� represent the input to genn� The

variables qi�j�a for 
i� j� � Pd and a � �n� will encode a pyramidal structure for some mapping

m de�ning a pyramidal generation� see De�nition �
� The meaning of qi�j�a is that the

mapping m is assigning the element a � �n� to the position 
i� j� of the pyramid� The

variables ra for a � �n� represent a coloring of the elements in �n� by 	� � such that� � is

colored 	� n is colored � and the elements colored 	 are closed under generation� that is� if

in a triangle of the pyramid the two base elements are colored 	� then also the top must be

colored 	� The set GEN

p� 
q� is given by 
���� � 
����� and COL

p� 
r� by 
���� � 
��
��

�
��a�n

qi�j�a for 
i� j� � Pd 
����

�qd�j�a � p����a for � 	 j 	 d and a � �n� 
����

�q����a � pa�a�n for a � �n� 
����

�qi���j�a � �qi���j���b � �qi�j�c � pa�b�c for 
i� j� � Pyrd�� and a� b� c � �n� 
����

�p����a � �ra for a � �n� 
����

�pa�a�n � ra for a � �n� 
����

ra � rb � �pa�b�c � �rc for a� b� c � �n� 
��
�

If GEN

t� 
q� is satis�able for a �xed vector 
t � f	� �gn� � then n is generated in a depth�

d pyramidal fashion� and if COL

t� 
r� is satis�able� then gen

t� � 	� Observe that the

variables 
p occur only positively in GEN

p� 
q� and only negatively in COL

p� 
r�� Hence

from Theorem �� and Corollary �� we can prove size lower bounds for CP� refutations of

GEN

p� 
q� 
 COL

p� 
r��

Theorem �� L�CP 
GEN

p� 
q� 
 COL

p� 
r�� � ���n
��

On the other hand� there are polynomial size R
�� refutations of these clauses�

Theorem �� L�
GEN

p� 
q� 
 COL

p� 
r�� � nO���
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Proof� First we resolve clauses 
���� and 
���� to get

�qd�j�c � �rc 
����

for � 	 j 	 d and � 	 c 	 n�

Now we want to derive �qi�j�c � �rc for every 
i� j� � Pd and � 	 c 	 n� by induction on i

downward from d to �� The induction base is just 
�����

Now by induction we have

�qi���j�a � �ra and �qi���j���b � �rb �

we resolve them against 
��
� to get �qi���j�a � �qi���j���b � �pa�b�c � �rc for � 	 a� b� c 	 n and then

resolve them against 
���� and get

�qi���j�a � �qi���j���b � �qi�j�c � �rc

for every � 	 a� b 	 n� All of these are then resolved against two instances of 
����� and we

get the desired �qi�j�c � �rc for every � 	 c 	 n�

Finally� we have in particular �q����a � �ra for every � 	 c 	 n� We resolve them with 
����

and get �q����a � �pa�a�n for every � 	 a 	 n� These are resolved with 
���� to get �q����a for every

� 	 a 	 n� Finally� this clause is resolved with another instance of 
���� 
the one with

i � j � �� to get the empty clause� q�e�d�

It is easy to check that the above refutation is an negative R
�� refutation� The following

corollary is an easy consequence of the above theorems and known simulation results�

Corollary �� The clauses GEN

p� 
q� 
 COL

p� 
r� exponentially separate R�
�� from R
��

and negative R
�� as well as CP� from CP�

The R
�� refutation of GEN

p� 
q� 
 COL

p� 
r� that appears in the proof of Theorem ��

is not regular� We do not know whether GEN

p� 
q� 
 COL

p� 
r� has polynomial size regular

R
�� refutations� To obtain a separation between R�
�� and regular R
�� we will modify the

clauses COL

p� 
r��
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����� Separation of CP� from regular R���

The clauses COL

p� 
r� are modi�ed into clauses RCOL

p� 
r�� so that GEN

p� 
q�
RCOL

p� 
r�

allow small regular R
�� refutations� but in such a way that the lower bound proof still

applies� We replace the variables ra by ra�i�D for a � �n�� � 	 i 	 d and D � fL�Rg�
giving the coloring of element a� with auxiliary indices i being a row in the pyramid and

D distinguishing whether an element is used as a left or right predecessor in the generation

process�

The set RCOL

p� 
r� is de�ned as follows�

�p����a � �ra�d�D for a � �n� and D � fL�Rg 
����

�pa�a�n � ra���D for a � �n� and D � fL�Rg 
���	�

ra�i���L � rb�i���R � �pa�b�c � �rc�i�D for i � d� a� b� c � �n� and D � fL�Rg 
�����

�ra�i�D � ra�i� �D for � 	 i 	 d and D � fL�Rg 
�����

�ra�i�D � ra�j�D for � 	 i� j 	 d and D � fL�Rg 
�����

Due to the clauses 
����� and 
������ the variables ra�i�D are equivalent for all values of the

auxiliary indices i�D� Hence a satisfying assignment for RCOL

p� 
r� still codes a coloring of

�n� such that elements a with �� � � a are colored 	� the elements b with b� b � n are colored

�� and the 	�colored elements are closed under generation� Hence if RCOL

t� 
r� is satis�able�

then gen

t� � 	�

Hence any interpolant for the clauses GEN

p� 
q� 
RCOL

p� 
r� satis�es the assumptions

of Corollary ��� and we can conclude

Theorem �� L�CP 
GEN

p� 
q� 
RCOL

p� 
r�� � ���n
��

On the other hand� we have the following upper bound on regular R
�� refutations of

these clauses�

Theorem �� There are regular R
�� refutations of the clauses GEN

p� 
q� 
 RCOL

p� 
r� of

size nO����

Proof� First we resolve clauses 
���� and 
���� to get

�qd�j�a � �ra�d�D 
�����
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for � 	 j 	 d� � 	 a 	 n and D � fL�Rg� Next we resolve 
���� and 
���	� to get

�q����a � ra���D 
�����

for � 	 a 	 n and D � fL�Rg� Finally� from 
���� and 
����� we obtain

�qi���j�a � �qi���j���b � �qi�j�c � ra�i���L � rb�i���R � �rc�i�D 
�����

for � 	 j 	 i � d� � 	 a� b� c 	 n and D � fL�Rg�
Now we want to derive �qi�j�a � �ra�i�D for every 
i� j� � Pd� � 	 a 	 n and D � fL�Rg� by

induction on i downward from d to �� The induction base is just 
������

For the inductive step� resolve 
����� against the clauses

�qi���j�a � �ra�i���L and �qi���j���b � �rb�i���R �

which we have by induction� to give

�qi���j�a � �qi���j���b � �qi�j�c � �rc�i�D

for every � 	 a� b 	 n� All of these are then resolved against two instances of 
����� and we

get the desired �qi�j�c � �rc�i�D�

Finally� we have in particular �q����a � �ra���L� which we resolve against 
����� to get �q����a for

every a 	 n� From these and an instance of
���� we get �� q�e�d�

Note that the refutation given in the proof of Theorem �� is actually a ordered refutation�

It respects the following elimination order

p����� � � � pn�n�n

r��d�L r��d�R � � � rn�d�L rn�d�R

q��d�� � � � q��d�n � � � qd�d�� � � � qd�d�n

r��d���L � � � rn�d���R q��d���� � � � qd���d���n
���

r����L r����R q����� � � � q����n �

Corollary �� The clauses GEN

p� 
q� 
 RCOL

p� 
r� exponentially separate the following

proof systems� R�
�� from regular R
�� and ordered R
���
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The separation between R�
�� and R
�� was later improved in ����� Recall the de�nition

of the Pebbling Contradictions from Subsection ������ They show that for a certain graph

G� L�
PEB
�
�
G�� � O
n�� but L��
PEB �

�
G�� � exp
#
n� log n��� They also prove that

this separation is nearly optimal� because if for a formula F� L�
F� � s then L��
F� �

exp
O
s log log s� log s���

��� R�	� has not the monotone interpolation property

In this section we prove that R
�� cannot polynomially simulate R
��� More precisely� we

prove that a certain Clique�Coclique principle� as de�ned by Bonet� Pitassi and Raz in ��	��

has polynomial size R
�� refutations� but every R
�� refutation requires quasipolynomial size�

The Clique�Coclique principle that we use� C LIQUEnk�k� � is the conjunction of the following

set of clauses�

xi�� � � � � � xi�n � 	 l 	 k 
���
�

�xl�i � �xl�j � 	 l 	 k� � 	 i� j 	 n� i �� j 
�����

�xl�i � �xl��i � 	 l� l� 	 k� � 	 i 	 n� l �� l� 
�����

y��i � � � � � yk��i � 	 i 	 n 
���	�

�yl�i � �yl��i � 	 l� l� 	 k�� � 	 i 	 n� l �� l� 
�����

�xl�i � �xl��j � �yt�i � �yt�j � 	 l� l� 	 k� � 	 t 	 k�� � 	 i� j 	 n� l �� l�� i �� j 
�����

We start with a reduction from C LIQUEnk�k� to PHPk
k� that can be carried over in R
���

Theorem �	 Let k� � k 	 n� If PHPk
k� has R
�� refutations of size S� then C LIQUEnk�k�

has R
�� refutations of size Snc for some constant c 	 	�

Proof� We use the following R
�� reduction to transform the formula C LIQUEnk�k� into

PHPk
k�� The meaning of variable pi�j is that pigeon i sits in hole j� We perform the following

substitutions�

pi�j �
n�
l��


xi�l � yi�l� �pi�j �
n�

l���j� 	�j

xi�l � yj��l�
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First we show how to get clauses 
���� from clauses 
���
� and 
���	�� If we expand clause


���� for a certain i we have�


xi�� � y���� � 
xi�� � y���� � 
xi�� � y���� � � � � � 
xi�n � y��n��

xi�� � y���� � 
xi�� � y���� � 
xi�� � y���� � � � � � 
xi�n � y��n��

xi�� � y���� � 
xi�� � y���� � 
xi�� � y���� � � � � � 
xi�n � y��n��

� � �


xi�� � yk� ��� � 
xi�� � yk���� � 
xi�� � yk���� � � � � � 
xi�n � yk��n�


�����

We apply successively for � 	 j 	 k� the ��introduction rule to clauses y��� � � � � � yk��� and

xi�� � � � � � xi�n along variables xi�� and yj�� and get�


xi�� � y���� � 
xi�� � y���� � � � � � 
xi�� � yk���� � xi�� � � � � � xi�n 
�����

Observe that the conjunctions in 
����� form the �rst column in 
������ To add the

second column of 
����� to 
����� we apply successively for � 	 j 	 k� the ��rule to clauses

y��� � � � � � yk��� and 
����� along variables xi�� and yj�� and get�


xi�� � y���� � 
xi�� � y���� � � � � � 
xi�� � yk�����

xi�� � y���� � 
xi�� � y���� � � � � � 
xi�� � yk���� � xi�� � � � � � xi�n


�����

Now it is clear how to get 
������

Now we will show how to get the initial clauses 
����� Let us consider the clause �pi�t� �pj�t�

We �rst generate pi�� � � � � � pi�k� and pj�� � � � � � pj�k� � Let us rewrite them as�


xi�� � yt��� � 
xi�� � yt��� � 
xi�� � yt��� � � � � � 
xi�n � yt�n� �A 
�����


xj�� � yt��� � 
xj�� � yt��� � 
xj�� � yt��� � � � � � 
xj�n � yt�n� �B 
���
�

where A is pi���� � ��pi�t���pi�t���� � ��pi�k� and B is pj���� � ��pj�t���pj�t���� � ��pj�k��
For the sake of brevity we use pi�j as abbreviation of the ��disjunction it denotes� It is clear

that �pi�t � �pj�t is A � B� that is�

pi�� � � � � � pi�t�� � pi�t�� � � � � � pi�k� � pj�� � � � � � pj�t�� � pj�t�� � � � � � pj�k�
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Now we will get A � B from 
������ 
���
� and 
������ We apply the cut rule to 
���
�

and �xi�� � �xj�l � �yt�� � �yt�l for � 	 l 	 n� l �� �� and get�

�xi�� � �yt�� � 
xj�� � yt��� �B 
�����

Solving it with �xi�� � �xj�� we get �xi�� � �yt�� � B� Solving this clause with 
����� we get


xi�� � yt��� � � � � � 
xi�n � yt�n� � A � B 
�����

Now we can get rid successively of 
xi��� yt���� � � � � 
xi�n � yt�n� as we did with 
xi�� � yt����
It remains to show how to simulate a normal R
�� step� We have pi�j � A and �pi�j � B

and we want to get A � B� We expand both clauses�


xi�� � yj��� � 
xi�� � yj��� � 
xi�� � yj��� � � � � � 
xi�n � yj�n� �A 
���	�


xi�� � y���� � 
xi�� � y���� � 
xi�� � y���� � � � � � 
xi�n � y��n��

xi�� � y���� � 
xi�� � y���� � 
xi�� � y���� � � � � � 
xi�n � y��n��

� � �


xi�� � yj����� � 
xi�� � yj����� � 
xi�� � yj����� � � � � � 
xi�n � yj���n��

xi�� � yj����� � 
xi�� � yj����� � 
xi�� � yj����� � � � � � 
xi�n � yj���n��

� � �


xi�� � yk���� � 
xi�� � yk���� � 
xi�� � yk���� � � � � � 
xi�n � yk��n� � B


�����

If we get clauses �xi�l � �yj�l �B for � 	 l 	 n� we solve them all with 
���	� and get A�B
as desired� We will show how to get �xi�� � �yj�� � B� We solve 
����� with �yj�� � �yl��� l �� j of

course� With these we get rid of the �rst column of 
����� and we add a literal �yj��� We can

get rid of the rest of columns by solving enough times with clauses �xi�� � �xi�l� l �� �� and we

get �xi�� � �yj�� � B� q�e�d�

We will use the feasible monotone interpolation property for R
��� see Subsection ������

together with the following result of Alon and Boppana ���� establishing a lower bound

to the size of monotone boolean circuits that separate large cliques from small cocliques�

In the following� F 
m�k� k�� is the set of monotone functions that separate k�cliques from

k��cocliques on m nodes�
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Theorem �
 ���� If f � F 
m�k� k�� where � 	 k� 	 k and k
p
k� 	 m�
� logm�� then

SMB 
f� � �

�

�
m

�k
p
k� logm

��
p
k������

�

Theorem �� Let k �
p
m and k� � 
logm���� log logm� Then�

�� C LIQUEmk�k� has R
�� refutations of size polynomial in m� and


� every R
�� refutation of C LIQUEmk�k� has size at least exp
#

logm���
p

log logm���

Proof� Regarding �� we have that k� log k� 	 �
�

logm��� and so �

p
k� logk� 	 m��� � k�

On the other hand� Buss and Pitassi ���� proved that PHPk
k� has R
�� refutations of size

polynomial in k whenever k � �
p
k� log k�� Therefore� by Theorem �
� C LIQUEmk�k� has R
��

refutations of size polynomial in m�

Regarding �� we apply the feasible monotone interpolation theorem for R
��� We have

logm

�
p

log logm
	
p
k� 	 logm�

Therefore� by Theorem ��� if f � F 
m�k� k�� is a monotone interpolant� then

SMB 
f� � �

�

�
m

�
p
m
logm��

� logm
�
p
log logm � �

�


 m

m���

� logm
�
p
log logm

�

which is exp
#

logm���
p

log logm��� q�e�d�

As a corollary� we solve an open problem posed by Kraj� !cek �����

Corollary �� R
�� does not have the feasible monotone interpolation property�

��� R�	� and PHP
n�

n

At the time of writing ��� the question about the size of R
�� refutations of PHPnc

n � where

c � �� was still not settled� Before ���� ��� appeared� R
�� could have been used to settle

this question� al least for PHPn�

n �

In ���� it was de�ned the monotone R
�� proof systems and shown that it was equivalent

to R
�� for PHPm
n �
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A monotone clause contains only positive literals� Let R�S� T be subsets of f�� � � � �mg�
Let PR�j 
resp� S� T � the disjunction of the variables pi�j � where i � R 
resp� S� T �� Let

C� � A�PR�j �PS�j and C� � B �PR�j �PT�j� where R�S� T are disjoint sets� The monotone

inference rule with respect to hole j allows us to derive C� � A�B�PR�j� A monotone R
��

refutation of PHPm
n is a sequence of monotone clauses� where the �nal clause is � and where

every clause is either an initial clause of the form pi�� � � � � � pi�n where i � f�� � � � �mg or

follows from two previous clauses by the monotone R
�� rule�

Now we will show how to get a R
�� refutation of PHPn
�
�

n from a monotone R
�� refutation

of PHPn�

n of similar size� The idea comes from �����

Lemma �� Let R a monotone R
�� refutation of PHPn�

n � then there are a R
�� refutation

R� of PHPn
�
�

n of similar size�

Proof� From the clauses in PHP
n
�
�

n we will show how to get the pigeon clauses in PHP
n�

n �

These are the only clauses needed for monotone R
��� Then we will show how to perform

the monotone R
�� rule� The pigeon clauses in PHPn�

n are�

Pi�� � � � � � Pi�n � 	 i 	 n� 
�����

where Pi�j is not a variable� but a conjunction� that we de�ne next� Let us divide the set

f�� � � � � n�g into n
�
� sets of n

�
� elements� Let the set Ai � fn �

� 
i � �� " �� � � � � n
�
� ig� Let us

divide the set f�� � � � � n �
�g into n

�
� sets of n elements� Let the set Bi � fn
i���" �� � � � � nig�

Let i � Ak� let A
i� the rank of i in the set Ak� Let B
l� the l�th element in Bk� then�

Pi�j �
n�
l��


pA�i��l � pB�l��j��

For example� Pn��� is 
p
n
�
� ��
� p

n
�
��n����� � 
p

n
�
� ��
� p

n
�
��n����� � � � � � 
p

n
�
� �n

� p
n
�
� ��

��

We will show a R
�� derivation of 
����� for i from PHPn
�
�

n � The expansion of the clause

looks like this�


pk��� � pk� ��� � 
pk��� � pk������ � � � � � 
pk� �n � pk��n������

pk��� � pk� ��� � 
pk��� � pk������ � � � � � 
pk� �n � pk��n������

pk��� � pk� ��� � 
pk��� � pk������ � � � � � 
pk� �n � pk��n������

� � �


pk� �� � pk��n� � 
pk��� � pk����n� � � � � � 
pk� �n � pk��n���n�


�����
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Conjuncting successively pk��� � � � � � pk��n and pk� �� � � � � � pk� �n over variables pk� �� and pk��i

for � 	 i 	 n we get


pk��� � pk���� � 
pk� �� � pk���� � 
pk��� � pk���� � � � � � 
pk��� � pk��n� � 
�����

�pk��� � � � � � pk��n 
�����

This is the �rst column of the expansion plus the literals that will allow us to get the rest of

the columns� To get the second column we conjunct successively 
����� and pk����� � � � � �
pk����n over variables pk��� and pk����i for � 	 i 	 n� and so on�

Now we will show how to get rid of two R
�� clauses such as Pi�j and Pk�j with the

invaluable help of the hole clauses for the hole j in PHPn
�
�

n � This will be used extensively in

simulating the monotone R
�� rule�

Let Pi�j be the R
�� clause 
pk��� � pk��j� � 
pk��� � pk����j� � � � � � 
pk��n � pk��n���j� and

Pk�j be 
pk��� � pk��j� � 
pk� �� � pk����j�� � � � � 
pk� �n � pk��n���j�� If k� �� k� then we can solve


pk��� � pk� �j� � 
pk� �� � pk����j� � � � � � 
pk��n � pk��n���j� with �pk��i�j � �pk��j for 	 	 i � n and

get �pk��j� Solving it with 
pk� ��� pk� �j�� 
pk���� pk����j�� � � � � 
pk��n � pk��n���j� we get rid of

the �rst conjunctant� To eliminate the second conjunctant� that is� 
pk��� � pk����j� we solve


pk��� � pk��j� � 
pk��� � pk����j� � � � � � 
pk��n � pk��n���j� with �pk��i�j � �pk����j to get �pk����j�

When k� � k� we cannot do that� Let us show how to overcome the problem� To eliminate

the �rst conjunction of Pi�j� namely 
pk��� � pk��j� we solve 
pk��� � pk��j� � 
pk��� � pk����j� �
� � � � 
pk��n � pk��n���j� with �pk��i�j � �pk��j for � 	 i � n� and get 
pk��� � pk���� � �pk��j� As in

fact k� � k� we can rewrite it as 
pk����pk� ���� �pk� �j� But now we can solve it with �pk� ��� �pk���

getting �pk���� �pk��j� With this we can eliminate the �rst conjunction from 
pk� ��� pk��j�� The

rest of conjunction can be eliminated in a similar way�

The last part is to show how to simulate a monotone R
�� rule over a hole� say j� We

have clauses C� � A � PR�j � PS�j and C� � B � PR�j � PT�j� Let us suppose that T � f�g�
so PT�j � P��j� Do not get confused with the notation� PT�j� with T a set� is a disjunction

of pigeons that share the same hole� Pi�j with i a number is pigeon in �n��� this pigeon is

in fact a R
�� clause and it is formed from literals in PHPn
�
�

n � which are denoted with a p

instead of a P � In this case we can solve P��j with all the pigeons in PS�j and get as desired

C� � A � B � PR�j� In general jT j � n�� because now we are working with PHPn�

n � For
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simplicity C� � A � PS�j and C� � B � PT�j� we omit the common holes� Without loss of

generality let T � f�� � � � ig� We make i copies of C� and solve the k�th with Pk�j � Now we

will call Pk�j just k because we know we are talking about a pigeon and we know the hole is

j� We get i clauses like these�

A �B � f�� �� �� � � � � i� �� ig
A �B � f�� �� �� � � � � i� �� ig
A �B � f�� �� �� � � � � i� �� ig

� � �

A � B � f�� �� �� � � � � i� �� i� �g


�����

The j�th and the j " ��th clauses only di�er in the j element� We solve this element for all

the pairs of consecutive clauses and get i�� clauses� Again the j�th and the j" ��th clauses

only di�er in the j element� We solve again pairs of consecutive clauses� At the end of this

process we get clauses A � B � Pi�j and A � B � P��j� From these we get A � B as desired�

q�e�d�

��� Size and R��k�

In this Section we prove results concerning R�
k� size� The �rst one is an exponential

separation between successive levels of R�
k�� We separate exponentially R�
k� from R�
k"

��� We �rst give in Subsection ����� polynomial size R�
k� refutations for PEB l
k
G�� to do

so we prove a general proposition for Horn formulas� In Subsection ����� we give the R�
k�

lowers bounds needed to establish the separation� Last� in Subsection ����� we show that

R
�� dominates R�
k��

����� Upper bounds for Generalized Pebbling Contradictions

To give the upper bound we will transform PEB l
k
G� into a Horn formula using the R
k�

��introduction rule and then apply the following proposition�

Proposition �� Let F be an unsatis�able Horn formula� Then there is a linear R�
��

refutation of F that uses any input clause from F at most once�
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Proof� We will show how to construct the treelike refutation for F� It is well known ����

that the following method can be used to decide the unsatis�ability of a Horn formula F�

Let M� � �� The set Md�� is obtained from Md by adding some atom x �� Md

from F such that there is a clause Ad � �y��� � ���yl�x in F with x�� � � � � xk �
Md� l � 	� If no more atom can be added to Md according to the above rule then F

is unsatis�able iff there is a clause �x��� � ���xk in F such that x�� � � � � xk �Md�

Actually when F is unsatis�able� this method performs a unit R
�� refutation of F� The

treelike form of this refutation may however be of exponential size� Now using the sets Mi

from the above construction 
in order of decreasing i� the following algorithm produces a

linear R�
�� refutation of F�

Start with the clause C� � �x� � � � � � �xk such that x�� � � � � xk � Md�� where

d� is the �nal index� Now we will subsequently derive clauses Ci and indices di

for i � �� �� � � � such that Ci is a disjunction of some negated variables from Mdi �

Obtain di and Ci from di�� and Ci�� as follows� Let di � di�� be the minimal

index such that all variables in Ci�� are fully contained in Mdi��� This means

that in order to construct Mdi�� from Mdi a variable x from Ci had been added

such that there is a clause in F of the form Adi � �y� � � � � � �yl � x� Ci�� is

obtained from Ci by resolving with Adi on x� Notice that all variables in Ci are

contained in Mdi� Continue like this until Ci is ��

Since M� � � and di�� � di� � will be derived in at most d� steps� Moreover since any

clause Adi is di�erent� any input clause is used at most once� q�e�d�

With this we can give the desired upper bound�

Theorem �� There is a R�
k� refutation of PEB l
k
G� that involves less than twice the num�

ber of clauses in PEB l
k
G��

Proof� For some node v and i � �l� let vi denote the clause vi�� � � � � � vi�k and let �vi denote

the k�term �vi���� � �� �vi�k� Hence� each source clause si���� � ��si�k is denoted by si for i � �l��

From the target clauses

�t��j� � � � � � �tl�jl
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with j�� � � � � jl � �k�� we derive by solely using the ��introduction rule� and using each of

these clauses once� the k�clause


�t��� � � � � � �t��k� � � � � � 
�tl�� � � � � � �tl�k�

which is abbreviated by

�t� � � � � � �tl �

In a similar way we derive from the pebbling clauses

�u��j� � � � � � �ul�jl � �v��m�
� � � � � �vl�ml

� wi�� � � � � � wi�k

for j�� � � � � jl�m�� � � � �ml � �k� the k�clause

�u� � � � � � �ul � �v� � � � � � �vl � wi �

Observe� that we arrive at the Horn formula PEB l
�
G� if we consider the formulas vi and

�vi as variables and their negations� Moreover any R�
�� refutation of this Horn formula is

essentially a R�
k� refutation� since a cut involving vi and �vi corresponds to a cut in R�
k��

Proposition �� yields a treelike refutation of this Horn formula of PEB l
�
G� that uses each

input clause at most once� Combining these refutations we obtain a R�
k� refutation of

PEB l
k
G� that uses each input clause at most once� Since we did not use weakening� the

number of nodes in the refutation tree is less then twice the number of leaves� Hence the

stated bound follows� q�e�d�

Note that PEB �
�
G� are the Pebbling Contradictions in ����� By Theorem �� and the

lower bound of ���� we get an almost exponential separation between R�
�� and R�
���

Corollary �� R�
�� dominates R�
���

����� Lower bounds for Generalized Pebbling Contradictions

In this section we show that any R�
k� refutation of PEB l
k��
G� with l � k is of size at least

��P�G�����k� Recall that P
G� is the pebbling number of G� see De�nition ��� To obtain the

lower bound we generalize a game introduced in ���� to prove lower bounds for R�
��� It is

a ��Player game where the two players build a partial assignment� one variable per round�
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Here we extend the rules of this game such that at each round the two players can play with

up to k variables at once�

A game on contradictions

The game Gk
F� is a ��Player game played on the unsatis�able CNF formula F� The aim

of the �rst player� the Prover� is to build an assignment that falsi�es an initial clause of F�

The aim of the second player� the Delayer� is to get the maximal number of points�

At each round the Prover asks for a set L of up to k yet unassigned literals in F� The

Delayer answers with a partial� possibly total� assignment 
 to the variables in L� If 


falsi�es either the conjunction or the disjunction of the literals in L� then the round is over�

Otherwise the Prover extends 
 to a total assignment over the variables in L and the Delayer

scores one point�

We show that each R�
k� refutation yields a strategy for the Prover in which the Delayer

scores a number of points at most logarithmic in the size of the refutation� Actually already

a special type of decision tree� called k�decision tree� here� for F can be used by the Prover

to obtain a good strategy�

It is well known� see ����� that a R�
�� refutation of a CNF formula F can be transformed

into a binary decision tree T of the same size such that for any assignment to F� T yields a

falsi�ed clause of F� In T each inner node is labeled by a variable and the decision how to

continue the path at an inner node is determined by the assignment to its variable� So any

total assignment will lead to a leaf node of T associated to a clause that is falsi�ed by that

assignment� Here we consider binary decision trees where each inner node is labeled by a

k�term� The decision how to continue a path at an inner node is determined by the value of

its k�term� We call such a tree a k�decision tree for F� Similar to the well known result for

k � � one obtains the following result for any k � ��

Proposition �� If F has a R�
k� refutation of size S� then F has k�decision tree of size

	 S�

Proof� We will describe a recursive procedure� called DT� that in top�down fashion maps

a proof tree T for F into a decision tree DT
T � for F that has not more nodes than T � If
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T consists of one leaf node 
labeled by an initial clause� then DT
T � � T � Otherwise let D

denote the clause labeling the root of T and consider three cases�

�� If D � A � B is obtained by a k�cut from the clauses A � Vl�L l and B � Wl�L �l
labeling the roots of the two direct subtrees T� and T� 
respectively� of T � then the

root of DT
T � is labeled by the k�term C �
V

l�L l and DT
T � consists of the two

direct subtrees DT
T��� DT
T��� such that any assignment satisfying 
falsifying� C is

led into DT
T�� 
resp�� DT
T����

�� If D is obtained by ��introduction� involving the k�terms C�� C� such that C� � C� is

in D� then label the root of DT
T � by C� and branch to DT
T�� 
resp� DT
T��� if C�

is falsi�ed 
satis�ed��

�� If D is obtained by weakening and T � is the direct subtree of T then let DT
T � �

DT
T ���

The correctness of the transformation is proved by observing that the following invariant

is maintained� any complete assignment � that is led to DT
T � through the yet partially

constructed decision tree� is falsifying the clause D labeling the root of T � q�e�d�

For k � � also the reverse inequality holds� see ����� Since for any contradiction F in

k�CNF there is a trivial k�decision tree of linear size� just check for each clause whether it

is falsi�ed� we obtain the following separation between the size of k�decision trees and the

size of R�
k� refutations�

Proposition �� There is a family 
Fn � of contradictions such that Fn has a ��decision tree

of size O
n� but any R�
k� refutation of Fn has size ���n��

Proof� Since by Theorem 

 R�
k� is simulated by R
��� the lower bound is given by the

known lower bounds for ��CNF contradictions� see ��
�� q�e�d�

Proposition �	 If F has a k�decision tree of size S� then the Prover has a strategy for

Gk
F� such that the Delayer scores at most blog Sc points�
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Proof� Let T be a k�decision tree of size S� The Prover�s strategy will maintain the

following invariant� if the Delayer has scored p points� then the currently constructed partial

assignment � will lead to a node in T such that the subtree T� rooted at this node is of size

at most S��p�

At the beginning the invariant holds since T is by assumption of size at most S� Now

assume that the partial assignment � constructed so far is such that T� is of size at most

S��p� Let C be the k�term labeling the root of T��

In the next round the Prover asks for the set of those literals L in C that are yet

unassigned by �� Now � is extended in this round to an assignment �� that will assign a

value to the conjunction of L and therefore also the same value to C� Hence� �� will lead to

a subtree T�� of T�� If the delayer scores a point the Prover is able to guarantee that T�� is of

at most half the size of T�� Since the assignments chosen by the Delayer left C unassigned�

the Prover is able to choose �� such that it leads into the smaller one of the both direct

subtrees of T�� Hence T�� has a size less than half of the size of T�� in this case� This shows

that the invariant can be maintained� q�e�d�

As a consequence we obtain the following corollary�

Corollary �
 If the Delayer in Gk
F� has a strategy that yields at least p points� then any

k�decision tree for F � as well as any R�
k� refutation for F� is of size at least �p�

Notice however that this method will not allow us to prove directly lower bounds for

R�
k� refutations of formulas in k�CNF �

The Delayer�s strategy

We show a strategy for the Delayer that gives a high score which will be translated into

R�
k� size lower bounds�

Let us in the following �x a dag G � 
V�E� where each nonsource node has indegree ��

�x further constants l� k with l � k � �� We will describe a strategy for the delayer that

yields at least 
P
G�� ���k points in the game Gk
PEB
l
k��
G���

For sets S� T 
 V let us denote by P
S� T � the pebbling number of the graph G� � 
V�E��
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where E� � E n 

V � S� 
 
T � V ��� In other words we obtain G� from G by additionally

making each node in S to a source node� and each node in T to a target node�

To describe the strategy of the Delayer we will need Lemma 
	� It is a generalization of

the following lemma from �����

Lemma �� 	��� For any node v in G and any subsets S� T 
 V

P
S� T � 	 maxfP
S� T 
 fvg��P
S 
 fvg� T � " �g �

Lemma 	� For any disjoint sets W�S� T 
 V � there exists a partition X�Y of W �X 
Y �

W and X � Y � �� such that� P
S� T � 	 jXj" P
S 
X�T 
 Y � �

Proof� We proceed by induction on jW j� If jW j � �� the claim follows by Lemma ��

For the inductive step consider a partition of W into two nonempty sets W � and W ��� By

applying the inductive hypothesis to W �� there is a partition X �� Y � of W � such that P
S� T � 	
jX �j" P
S 
X �� T 
 Y �� �

Let now S� � S 
 X � and T � � T 
 Y �� By the inductive hypothesis applied to W ���

there is a partition X ��� Y �� of W �� such that P
S�� T �� 	 jY ��j"P
S� 
X ��� T � 
 Y ��� � De�ne

X � X � 
X �� and Y � Y � 
 Y ��� All together we have

P
S� T � 	 jX �j" P
S 
X �� T � 
 Y ��

	 jX �j" jX ��j" P
S 
X � 
X ��� T 
 Y � 
 Y ���

� jXj" P
S 
X�T 
 Y � �

q�e�d�

Now we are ready to describe the strategy of the Delayer for the game Gk
PEB
l
k��
G���

She keeps two sets of source and target nodes that she 
eventually� modi�es at each round�

At the beginning S� � T� � �� Let Sr and Tr be the sets built after round r� Assume that

at round r"� the Prover asks for a term C of at most k literals� Let us denote by W the set

of nodes associated with the variables in C� W is divided into the four sets W �Sr� W � Tr�
W�� and W� � W n 
Sr 
 Tr 
W��� where W� 
 W n 
Sr 
 Tr� is a maximal set with the

property that P
Sr� Tr 
W�� � P
Sr� Tr�� Now the Delayer assigns � to every unassigned
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variable in C that is associated with a node in W �Sr� and she assigns 	 to every unassigned

variable in C associated with a node in 
W �Tr�
W�� If now C is either satis�ed or falsi�ed

by the constructed assignment� the round is over� and the Delayer sets Tr�� � Tr 
W�� and

Sr�� � Sr� in this case the pebbling number remains the same P
Sr� Tr� � P
Sr��� Tr����

Otherwise the Prover assigns a value to the remaining unassigned variables in C� the Delayer

scores one point and de�nes Sr�� and Tr�� as follows� by Lemma 
	� she chooses a partition

X�Y of W� s�t�

P
Sr� Tr 
W�� 	 P
Sr 
X�Tr 
W� 
 Y � " jXj�

Now Sr�� � Sr 
X� and Tr�� � Tr 
W� 
 Y 
in this case the pebbling number decreases

by at most jXj 	 k��

Assuming that the Delayer follows this strategy� she maintains the following invariants�


I�� If a variable vi�j is assigned a value in round r or before then the associated node v is

in Sr 
 Tr� 
I
� If v � Sr then there are at most k associated variables vi�j that are assigned

to 	� 
I�� If v � Tr then there are at most k � � associated variables vi�j that are assigned

to �� 
I�� P
G� 	 P
Sr� Tr� " jSrj� 
I�� At the end of round r the Delayer achieved at least

djSrj�ke points�

To see that 
I
� holds� notice that for any node v the Prover is allowed to assign at most

k of its associated variables� 
I�� follows by a similar argument� by observing that if the

Prover was allowed to assign a variable in round r"� then W� was not empty in that round�

and therefore at least one node in W� has been added to Sr which follows by the maximality

of W�� To see Invariant 
I��� observe that in each round r"� the pebbling number decreases

at most by the number of nodes we add to Sr� 
I�� follows since in case the Delayer scores

no point in round r"� then Sr�� � Sr� and otherwise if she scores a point� jSr��j 	 jSrj"k�

Now observe that at the end of the game Gk
PEB
l
k��
G��� say at round e� the pebbling

number is considerably reduced� Namely we have�

Lemma 	� P
Se� Te� 	 ��

Proof� Let G� � 
V�E�� where E � � E n 

V � Se� 
 
Te � V ��� Remember that P
Se� Te�

was de�ned to be the pebbling number of G�� The game ends when the constructed partial
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assignment falsi�es a clause of PEB l
k��
G�� If a source clause si�� � � � � � si�k�� associated to

a source s in G is falsi�ed then s � Te due to 
I�� and 
I
�� Hence s is both a source and a

target node in G�� which shows that one pebble su�ces for a pebbling of G�� Similarly� when

a target clause �t��j� � � � � � �tl�jl is falsi�ed then t � Se by 
I�� and 
I�� 
since l � k� and the

pebbling number of G� is one� Finally assume that a pebbling clause associated to a node w

with predecessors u and v is falsi�ed� Similar to the previous considerations we obtain that

u� v � Se� and w � Te� Hence� for a pebbling of G� it su�ces to use three pebbles� q�e�d�

Due to Invariant 
I�� this implies that jSej � P
G� � �� Moreover we have

Lemma 	� The Delayer scores at least jSej�k points�

Proof� In any round at most k nodes are added� and in case a node has been added to Sr

in round r� the Delayer has scored a point in round r� q�e�d�

Hence the Delayer will score at least 
P
G�� ���k points�

Theorem 	� If G is a dag where any nonsource node has indegree 
� and l � k � �� then

the Delayer can score at least 
P
G�� ���k points in the game Gk
PEB
l
k��
G���

Almost exponential separations for R��k�

It is shown in ���� that there is an in�nite family of graphs G� where each nonsource node

in G has indegree �� such that P
G� � #
n� log n�� where n is the number of nodes in G�

Combining Theorem 
� with Corollary �� this shows that for such a graph G� any R�
k�

refutation for PEB l
k��
G� has size ���n�k logn�� On the other hand PEB l

k��
G� consists of at

most O
n� clauses� Hence� by Theorem �� there is R�
k"�� refutation of PEB l
k��
G� of size

O
n�� This yields an almost exponential separation between R�
k� and R�
k " ���

Corollary 	� There is a family of graphs G such that any R�
k� refutation for PEB l
k��
G�

has size ���n� logn� whereas there is a R�
k " �� refutation for PEB l
k��
G� of size O
n��

Corollary 	� Let k 	 	� There is a family of CNF formulas F with a R�
k" �� refutation

of size s such that any R�
k� refutation has size �s� log s�
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Corollary 	� R�
k " �� dominates R�
k��

Besides these separation between successive levels of the R�
k� hierarchy� there are a few

known separations between R
�� and R
��� We have shown a superpolynomial separation

in Section ���� Later this separation was improved in ��� to slightly exponential� In ����

they proved a separation between successive levels of the R
k� hierarchy� and extended some

lower bounds of ��� that hold only for R
�� to R
k��

����� R��� dominates R��k�

Moreover� R
�� simulates R�
k�� see ���� ��� In fact we are able to improve the simulations

from ���� ��� by showing that an increment by factor �� independent of k� su�ces�

Theorem 		 If F has a R�
k� refutation of size S then F has a R
�� refutation of size �S�

Proof� For a R�
k� derivation P let s
P � denote the number of k�clauses in P that are

not obtained by the weakening rule� and a
P � denote the number of k�clauses in P that are

obtained by ��introduction� Below we will prove the following statement by induction on

a
T �� for all formulas F in CNF � and for all clauses C� if T is a R�
k� derivation of C from

F then there is a R
�� derivation P of C from F with s
P � � s
T �" a
T �� Since weakenings

can be removed in R
�� refutations the theorem follows�

If a
T � � 	 then T is already a R
�� derivation� Now assume a
T � 	 	� and consider the

last k�cut in T where a k�term
V

l�L l with jLj � � is involved� say

A �Vl�L l B �Wl�L �l
A �B

Since this was a last cut� A � B� and B � Wl�L �l are clauses� Let T�� T� denote subtrees

deriving A�Vl�L l and B�Wl�L�l� respectively� Since T� must contain some ��introduction

to produce the term
V

l�L l we have that a
T�� � a
T � and we conclude by the inductive

hypotheses that there is a R
�� derivation P� of B �Wl�L �l from F of size s
P�� � s
T�� "

a
T��� Consider also the rest of the derivation T � � T n
T�
T��� T � derivesC from F�
A�B��
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By the inductive hypothesis we obtain a R
�� derivation P � of C from F � 
A � B� with

s
P �� � s
T �� " a
T �� � s
T � " a
T ��Pi���� s
Ti� " a
Ti��

Now we add B�Wl�L �l to the initial clauses and show how to transform T� to a derivation

tree T �
� of A�B from F�
B�Wl�L�l� with s
T �

�� � s
T��"r� and a
T �
�� � a
T���r for some

r � �� Note that
V

l�L l can arrive to A �Vl�L l through several paths� say r� Now� trace

in T� the occurrence of the term
V

l�L l towards the leaves until one encounters a k�clause in

which this term is introduced by ��introduction� Denote these k�clauses by Ci �
V

l�L l for

i � �� � � � � r� and denote the clauses from which they�re derived by Ai�
V

l�Li
l and Bi�

V
l�L�i l

with L � Li 
 L�i� and Ci � Ai �Bi� Now replace for i � �� � � � � r the ��introduction

Ai �
V

l�Li
�l Bi �

V
l�L�i l

Ci �
V

l�L l

by two k�cuts 
and eventually one weakening�

B �Wl�L �l Ai �
V

l�Li
l

Ai �B �Wl�LnLi
�l

Ai �B �Wl�L�i �l Bi �
V

l�L�i l

Ci �B

Further replace on the path towards the root of T� the term
V

l�L l by B� To obtain the

derivation tree T �
� one may again need to add some weakenings on this path�

Applying the inductive hypothesis to T �
� we obtain a R
�� derivation P� of A � B from

F � 
B �Wl�L �l� with s
P�� � s
T �
�� " a
T �

�� � 
s
T�� " r� " 
a
T��� r� � s
T�� " a
T���

Now combine the R
�� derivations P�� P �� and P� to obtain the R
�� derivation P �

P�� P�� P
� of C from F with size s
P � � S
P�� " s
P�� " s
P �� � s
T � " a
T �� q�e�d�

An immediate corollary of previous Theorem and lower bounds for each level of the R�
k�

hierarchy is the following Theorem�

Corollary 	
 R
�� dominates R�
k� for k � ��
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Chapter �

Space and width

In this chapter we include the results concerning mainly to space� In Section ��� we deal with

R
�� and R�
�� space� the results come from ��	� ��� In Section ��� we show a combinatorial

characterization of R�
�� space� A very simple Player�Adversary game from ���� played

over any CNF formula F� can be used to �nd out S��
F�� This characterization however

does not hold for R
�� space� In �
� there is a combinatorial characterization of width� In

Section ��� we show that for PEB �
�
Tn� where Tn is the complete binary tree of n levels

requires less space in R
�� than in R�
��� This is the �rst separation between R�
�� space

and R
�� space� This leaves two interesting open problems about R
�� space� First� how

much is S�
PEB �
�
G�� for any G or concretely for Tn� Second� is it possible to give an easy

combinatorial characterization of R
�� space� The results in Section ��� and Section ���

come from ����� The rest of this chapter is devoted to results about R
k�� In Section ��� it is

proven that R�
k� forms an strict hierarchy concerning space� Remember that in Section ���

it was proven that R�
k� formed also a strict hierarchy concerning size� Last� there has

been some work done for proving space lower bound for R
��� We can cite ���� �� ���� In

Section ��� give an uni�ed way for proving all known space lower bounds which holds not

only for R
��� it also holds for R
k��

��
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��� Space for R���

In this section we give upper and lower bounds for R
�� space� After some general results�

we will show two examples of families of unsatis�able formulas that can be refuted within

less space than its number of clauses� The �rst example are unsatis�able ��CNF formulas�

Theorem ��� The second example are the formulas whose clauses are all possible combi�

nations of literals in such a way that every variable appears once in every clause� We will

see that the space needed to refute these formulas is bounded by the number of di�erent

variables in it� In fact we will prove a more general result about the space needed in R�
��

refutations�

De�nition 	� We say that a graph G� is embedded in a graph G� if a graph isomorphic

to G� can be obtained from G� by adding nodes and edges or inserting nodes in the middle

of edges of G��

The following claim is straightforward�

Claim 
� If G� is embedded in G� then the number of pebbles needed to pebble G� is less or

equal that the number of pebbles needed to pebble G��

This is so because any pebbling strategy for the G� can be easily adapted to pebble G��

We restate here with more detail what a restriction is� recall De�nition �� Let F a CNF

formula� and � a 
partial� truth assignment to the variables in F� F� is a modi�cation of F

according to �� For every variable x in � if its truth value is �� all the clauses in F containing

the positive literal x are deleted and all occurrences of �x are deleted� If the truth value of

x is 	� then all clauses in F containing �x are deleted and all occurrences of the literal x are

deleted�

The next lemma� an easy adaptation of ���� Theorem ��� states the well known fact that

for a R
�� refutation of a formula F� for any partial truth assignment � to the variables� we

can get a R
�� refutation of F�� the formula after applying the partial assignment� embedded

in the initial R
���
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Lemma 
� Let R be a R
�� refutation of the CNF formula F� let � be a partial truth

assignment and the F� formula after applying the partial assignment� There is a R
�� refu�

tation of F� whose R
�� graph is embedded in R�

Proof� We construct a new refutation R� transforming the clauses of R� Every original

clause is either eliminated or transformed into a new one� The new graph of clauses� after

maybe contracting some adjacent nodes representing the same clause� is also a refutation

graph� and by construction� the new refutation graph is embedded in the original one�

To build the new refutation we start transforming the initial clauses going downward

following the original refutation� If an original clause contains a literal that has been assigned

value � by �� then the whole clause is deleted� If it contains a literal with value 	� then the

literal is deleted from the clause� Otherwise the clause remains unchanged�

If a clause in the original refutation is the resolvent of two previous ones� there are two

cases depending on whether the resolved variable has been given a value by � or not� Suppose

that clause C is the resolvent of A � x and B � x�

� variable x has been assigned by �� If A � x 
resp� B � �x� has been replaced by A�


resp� B �� then C is replaced by A� 
resp� B�� if �
x� � 	 
resp� �
x� � ���

� variable x has not been assigned by �� If A � x 
resp� B � �x� has been replaced by A�


resp� B �� then C is replaced by the resolvent of A� and B� if both contain variable x�

and otherwise C is replaced by any of A� or B � that does not contain variable x�

Consider the part of the new graph connected to �� Contracting nodes of indegree one�

we obtain a refutation graph that is embedded in the original one� q�e�d�

We now give a relation between treelike size and treelike space�

Theorem 
� If L��
F� 	 s then S��
F� 	 dlog se" ��

Proof� We will show that the refutation tree for F can be pebbled with d " � pebbles�

where d is the depth of the biggest complete binary tree embedded in the refutation graph�

As the biggest possible complete binary tree embedded in a tree of size s has depth dlog se�
the theorem holds� It is a well known fact� see for example ����� that d " � pebbles su�ce
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to pebble a complete binary tree of depth d with the directed edges pointing to the root� In

fact d"� pebbles su�ce to pebble any binary tree whose biggest embedded complete binary

tree has depth d� In order to see this we use induction on the size of the tree� The base case

is obvious� Let T be refutation tree� and T� and T� be the two subtrees from the root� Let

us call dc
T � the depth of the biggest embedded subtree in T � So

dc
T � �

��
�

max
dc
T��� dc
T��� if dc
T�� �� dc
T��
dc
T�� " � if dc
T�� � dc
T��

By induction hypothesis one can pebble T� with dc
T��"� pebbles and T� with dc
T��"�

pebbles� Let us suppose that dc
T�� � dc
T��� then dc
T � � dc
T�� and one can pebble �rst

T� with dc
T��"� pebbles� leave a pebble in the root of T� and then pebble T� with dc
T��"��

For this second part of the pebbling one needs dc
T�� " � 	 dc
T�� " �� The other case is

similar� q�e�d�

As a �rst example� consider the class of unsatis�able formulas in CNF with at most two

literals per clause�

Theorem 
� Any unsatis�able CNF formula with at most two literals in each clause can

be refuted in R�
�� within constant space�

Proof� The �rst part of the proof is similar to the one for showing that the set of ��CNF

unsatis�able formulas can be recognized in nondeterministic logarithmic space� In fact it is

not hard to see that this result can also be derived from this Theorem� Given a ��CNF

formula F one can construct a directed graph GF related to it� This graph will be useful

to know whether the formula is unsatis�able or not� and in the former case� will provide us

with a strategy to �nd a refutation that can be pebbled with constant space�

The set V of vertices of GF is the set of literals in F� For any clause 
x� � x��� that can

be viewed as the implication �x� � x� or also �x� � x�� we include in E a directed edge from

�x� to x� and another one from �x� to x�� If the clause has only one literal x� we consider it

as 
x� � x�� and include in E and edge from �x� to x�� No other edge is included in E�

The formula is unsatis�able if and only if there is a cycle in the graph that contains a

literal� say x�� and its negation� We can use this cycle to get a R
�� refutation� Starting from
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node x�� let us call the clauses related to the edges in the cycle C�� C�� � � � � Ck� All these are

initial clauses� and suppose that C�� � � � Cl are the clauses corresponding to the edges from

x� to �x� in the cycle� and Cl�� � � �Ck correspond to the edges from �x� to x�� One can resolve

C� with C� getting a new clause which will be resolved with C� and so on� When resolving

with Cl one gets the clause x�� For this only � pebbles are needed� Analogously� starting

from literal �x� one can resolve Cl�� with Cl�� and so on� until resolving with Ck and thus

getting the clause �x�� Resolving �nally both clauses x� and �x� � is obtained� This shows

that at most � pebbles are needed to pebble such a refutation� q�e�d�

We can apply Theorem �� to compute the space needed in the refutation of our second

example� the formula CTn de�ned as follows�

De�nition 
� The formula complete tree� CTn for short� on n variables� fx�� � � � � xng
is the set of clauses with all possible combinations of literals with the restriction that each

variable appears once in each clause�

CTn � fx�x� � � � xn� �x�x� � � � xn� � � � � �x��x� � � � �xng�

Observe that this formula has �n clauses� It is not hard to see that CTn can be refuted

using space n " �� This is so since a straightforward R�
�� refutation that resolves the

variables in di�erent stages� has size �n�� � �� Theorem �� assures that this refutation can

be pebbled with n" � pebbles� In Corollary �� it is shown that this amount of space is also

necessary�

For some of the following results this concept will be very useful�

De�nition 
� We say that a CNF unsatis�able formula is minimally unsatisfiable if

removing any clause the formula becomes satis�able�

The following result attributed to M� Tarsi can be found in ����

Lemma 
� Any minimally unsatis�able CNF formula must have more clauses than vari�

ables�
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In ��� we give a new� simpler proof of the fact that any minimally unsatis�able CNF

formula must have more clauses than variables� To prove this� we only use elementary

properties of regular R�
���

Proof� 
of Lemma ��� Let F be a minimally unsatis�able formula over a set of variables

x�� � � � � xn� We consider a regular R�
�� refutation of the formula� This must exist since

regular R
�� is refutationally complete� Observe that since the formula is minimally unsat�

is�able� every variable in F is resolved at least once in the refutation� Let T be the tree

associated to the R�
�� refutation of F and consider a postorder transversal of T � the root

comes after the nodes of its subtrees in the transversal� For every variable xi we mark with

vi the �rst node in the transversal of the tree that is a resolvent of variable xi� There are as

many such nodes as variables�

Let us call outer nodes of type � to the marked nodes of T that do not have any marked

nodes in one of the two subtrees hanging from them� and outer nodes of type 
 to those

marked nodes in T that do not have any marked nodes in neither one of the subtrees

hanging from them�

We claim that we can associate to each outer node xi one or two initial clauses 
depending

on the type of the node� containing variable xi that are not associated to any other outer

node� For doing so� we order the outer nodes in the order given by the postorder transversal

of T � Let vi be such an outer node� We consider �rst the case in which vi is of type �� It

results from resolving variable xi and therefore it must have in its left and right subtrees two

initial clauses� one containing the literal xi� and the other one containing the negated literal�

Moreover� these clauses cannot be in the subtrees of any of the other previous outer nodes

in the postorder� To prove this� let us suppose that there is an outer node vj previous to vi

containing variable xi in one of the initial clauses in its subtrees� and let v be the deepest

common ancestor of vi and vj in T � The occurrence of xi in the subtree of vj has to be

resolved at some point� If it is resolved in the subtree of v containing vj then we contradict

the fact that vi is the �rst place in the postorder traversal in which xi is resolved� Otherwise

the clause in node v must contain the variable xi� but this contradicts the fact that T is

a regular R�
�� refutation� since in the path from � to vi through v� variable xi is resolved

more than once� If vi is of type �� then its subtree that does not contain any other outer



���� SPACE FOR R
�� �


node must contain some initial clause with the variable xi� By the same argument as above

this clause cannot appear in the subtrees from any of the other previous outer nodes in the

postorder�

Starting from the last outer node in the postorder� we can then always associate to each

outer node vi one or two initial clauses� containing variable xi belonging to the subtree rooted

at vi and have not been associated yet�

We consider now a binary tree T � embedded in T containing all the marked nodes in

T � each one corresponding to one of the variables� T � can have some other inner nodes of

T that are not marked� but have two marked nodes as descendants� The leaves in T � are

the initial clauses associated to the outer nodes in T as explained in the claim above� All

the leaves are di�erent clauses� T � is a binary tree with at least n inner nodes� one for each

variable� and therefore at least n" � leaves� From this follows that the number of clauses in

F is at least n " �� q�e�d�

It is obvious that the result does not apply for non minimally unsatis�able CNF formulas

in general� As an easy counterexample just consider the formula fx�� �x�� x�x�x�g� But the

result can be extended to some nonminimally unsatis�able formulas provided that all the

variables are used in some R
�� refutation� Let us formalize the concept of used subset of

variables of a formula�

De�nition 
	 Let F an unsatis�able CNF formula over the set of variables V � We say

that a subset of the variables V � 
 V is used in R
�� if there exists a R
�� refutation of F�

possibly deriving � more than once� in which all the variables in V � are resolved at least once�

that is there exists a R
�� refutation of F with associated dag G such that�

� The target �or targets� of G correspond to ��

� the leafs are labeled with clauses in F and

� every variable in V � is resolved at least once�

Lemma �� can be generalized in the following way�

Theorem 

 If F is an unsatis�able formula with a R
�� refutation in which all its variables

are used� then F has more clauses than variables�
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Proof� In proof in fact a more general result from which the Theorem directly follows� We

consider a extension of R
��� that we call union R
�� in which besides the resolution rule

we allow to infer from two clauses C� and C� with the property that no literal in C� appears

negated in C�� the clause C� � C�� Clearly the new inference rule is sound� We de�ne an

unsatis�able set of clauses to be used in union R
�� in the same way as above but allowing

also the new rule in the refutation of the set of clauses�

We prove by induction of the number jV j of variables in F that if V is used in union R
��

then F has more clauses than variables� Observe that the result for R
�� follows directly

from this fact� since R
�� is a special case of union R
���

The base case is straightforward� if V has one just variable� then F must have two clauses�

Let us suppose now that V contains n clauses� If F is minimally unsatis�able we are

done� Otherwise let us consider a minimally unsatis�able subset of clauses Fm 
 F � Let

us call V� the variables in Fm and V� to the rest of variables in F� If V� � � then since the

number of clauses is F is greater than the number of clauses in Fm and this number is greater

than jV�j 
Sm is minimally unsatis�able� the result is also proved�

If V� �� �� then we transform F into F� by deleting from the clauses in F all the variables

in V�� We claim that F� is unsatis�able and all its variables are used in union R
��� As

the variables in F are used� there is a union R
�� graph G that ful�lls the conditions of

De�nition �
� We remove from the refutation graph all the variables in V�� The nodes

in G corresponding to clauses that only have variables from V� have no label� Also� if a

node in G resulted from the R
�� of a variable in V�� this node contains now the union of

the corresponding clauses� without the variables in V�� All the nodes in G containing some

variable in V� appear also in G�� We obtain in this way a union refutation for F� with a graph

G� embedded in G� � might be derived in G� more times than in G� All the variables in V�

appear in some leaf of G� and all the leaves are used in the new union R
��� Because of this�

V� is a set of variables used in union R
�� of cardinality smaller than n� and by the induction

hypothesis F� has more clauses than variables� The number of clauses in F� is greater than

jV�j and the number of clauses in Fm grater than jV�j� Putting both parts together� the total

number of clauses in F is greater than the number of its variables� q�e�d�
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The concept of a set of clauses used in a proof� can be de�ned in an analogous way as

that of used variable� In a used set of clauses� all the variables must be used� From this

observation and the above result we obtain the following consequence�

Corollary 
� Any subset of clauses S of an unsatis�able CNF formula F used in a R
��

refutation has more clauses than variables�

We may wonder whether it is of any use having nonminimally unsatis�able formulas�

The answer is yes� Buss and Pitassi have proved in ���� that PHPm
n � where m � �

p
n logn is

faster to refute than its minimally unsatis�able subformula� which is of course� PHPn��
n �

Now we give space bounds with respect to the number of variables�

Theorem �� Every unsatis�able formula with n variables can be resolved using R
�� in

space at most n " ��

Proof� As mentioned in the proof of Theorem ��� for pebbling a tree of depth d� d " �

pebbles su�ce� If we consider regular R�
��� which is complete� we have refutation trees

whose depth is at most the number of variables in the formula being refuted� q�e�d�

There is a matching lower bound� since there are formulas of n variables whose refutation

graphs can only be pebbled with n"� pebbles� This is a consequence of the following result�

Theorem �� Let F an unsatis�able CNF formula and k the smallest number of literals of

a clause of F� Any R
�� refutation of F needs at least space k " ��

Proof� For any pebbling strategy� there is a �rst step� let us call it s� in which the set of

pebbled clauses becomes unsatis�able� This step must exist because the �rst pebbling step

consists of pebbling an initial clause� which is always satis�able� and the last step pebbles

�� In step s� an initial clause has to be pebbled since according to the pebbling rules the

only other possibility would be to pebble a clause with both parents pebbled� and this step

would not transform the set of pebbled clauses into an unsatis�able set� Therefore the set

of pebbled clauses at step s contains at least k variables�the ones of the initial clause�

Let us suppose than the set of pebbled clauses at step s is minimally unsatis�able� then�

by Lemma ��� it has at least k " � clauses because it has at least k variables� On the
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other hand� if this set is not minimally unsatis�able� we can throw aside clauses until the

remaining set becomes minimally unsatis�able� Notice that we cannot delete the initial

clause last added to the set� otherwise the set of clauses would be a subset of the clauses at

stage s� � and becomes therefore satis�able� So� k " � clauses are still needed because the

initial clause is contained in the set and has at least k variables � q�e�d�

Theorem �� can be used to give a R
�� space lower bound for CTn� De�nition ��� All

the clauses of CTn have exactly n variables� hence�

Corollary �� S�
CTn� � n " ��

Theorem �� can be strengthened to allow to prove lower bounds for the space needed in

the refutation of a more general class of formulas�

Theorem �� Let F be a unsatis�able CNF formula� and let k be the maximum over all

partial assignments � of the minimum number of literals of a clause in F�� The space needed

in a R
�� refutation of F is at least k�

Proof� Let � be any partial assignment to the variables in F� and R a refutation of F that

needs the smallest amount of space� From Lemma �� we know that there exists a refutation

R� for F� embedded in the structure of R� Theorem �� guarantees that to pebble F� one

needs at least a number of pebbles equal to the length of the shortest clause in F� � But as R�

is embedded in R� one cannot pebble R with fewer pebbles than R�� To �nish the proof we

just need to consider an assignment � which produces a shortest clause of maximal length�

q�e�d�

We give an upper bound on the size of R
�� refutations of a formula in terms of the space

and the depth needed in a refutation� We say that the depth of a R
�� refutation is the

size of the longest path from � to an initial clause in the graph of the refutation�

Theorem �� If a R
�� refutation R of F has depth d� S�
R� � s� then L�
F� 	 	d�s
s



�

Proof� Let R be the R
�� refutation proof that can be pebbled with s pebbles� The depth

of a clause C in R is the length of the longest path from C to ��
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We associate a set A of at most s clauses in R with an array depth
A� � a� � � � as of s

numbers between � and d" � in the following way� Sort the clauses in A by depth in R and

for � 	 j 	 s let aj be the depth of the clause of j�th smallest depth� If there are less than

j clauses in A then let aj � d " �� In this way the array depth
A� has always s positions�

We can compare these arrays as base d " � numbers in the usual way�

R can be pebbled with s pebbles� W�l�o�g� we can suppose that in the pebbling strategy

pebbles are removed from clauses in the �rst moment they are not needed anymore� that is�

pebbles can only be removed from a clause only immediately after one of its successors has

been pebbled�

In the pebbling strategy pebbles are placed and removed� We consider the stages right

before the pebbles are placed� Let Fi be the set of clauses containing pebbles at the stage

right before the i�th time a pebble is set or shifted� F� is the empty set� Observe that� by the

special form of pebbling strategy we are considering� Fi�� is obtained from Fi by pebbling

one clause� and eventually removing one or the two predecessors of this clause�

We claim that if Fi�� and Fi are two consecutive pebbling stages as described� then

depth
Fi� 	 depth
Fi���� If in stage Fi�� no clauses are deleted� then the result is clear�

since either one of the non�used pebbles at stage i 
with depth d " �� is placed at depth

	 d� or some pebble is shifted to a position with smaller depth� In the other case one or

two pebbles are deleted in stage i " �� but this can only happen if at stage i " � a clause

C resolvent of the clauses with the removed pebbles is pebbled� Fi�� di�ers from Fi since it

contains C and does not contain one or the two predecessors of C� Since the depth of C is

smaller than the depth of its predecessors the inequality holds�

In each stage i in the pebbling strategy at most a new clause is considered and it holds

depth
Fi� 	 depth
Fi���� Because of this the number of clauses in the refutation is bounded

by the set of possible values of the function depth
A� for sets A of size at most s� depth
A� is

encoded by an ordered sequence of s numbers ranging from � to d" �� Since there are
	
d�s
s



possible values for these sequences� the size of the refutation is bounded by

	
d�s
s



� q�e�d�

We get several consequences from this result�

Corollary �� Any family of unsatis�able CNF formulas with R
�� refutations of polyno�
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mial depth and constant space� have R
�� refutations of polynomial size�

In some types of R
��� the depth of the proof is automatically bounded� An example

is regular R
��� For this type of R
�� it is required that in every path from � to an initial

clause in the refutation graph� every variable is solved at most once� Clearly in this case the

number of variables is a bound on the depth of the proof�

Corollary �� If an unsatis�able CNF formula on n variables has a regular R
�� refutation

of space s� then the size of this refutation is bounded by
	
n�s
s



�

An interesting question is whether the depth of the refutation can be taken out of the

bound given by Theorem ��� A way to do this would be by showing that a refutation of a

formula can be transformed into another one that uses the same amount of space� but has

bounded depth� It is not clear that this result holds� but as we see in the next section� it

does hold for the case of R�
���

We consider now the question of measuring the space for R�
�� refutations� Recall that

in this case all the nodes in the underlying graph have fanout one� and that the same clause

may appear more than once in this graph� Since in De�nition � does not refer to the structure

of the underlying graph� we measure initially the treelike space needed for the refutation of

an unsatis�able formula as the minimum number of pebbles needed to play the game on

a refutation tree of the formula� Later on we will show that it is also possible to give a

characterization of treelike space in terms of list of clauses kept in memory� in a similar way

as in De�nition �� We start showing that a R�
�� refutation can be made regular without

increasing the space� Tseitin ���� showed that the same result holds also if the size of the

R�
�� refutation� instead of the space� is considered�

Theorem �	 If F is a CNF unsatis�able formula� such that S��
F� � s then F has a regular

R�
�� refutation that can be pebbled with s pebbles�

Proof� Let F be any formula and T any R�
�� refutation of F and for any clause C let TC
be the subtree in the refutation tree that derives C from initial clauses� Suppose that the

last R�
�� step in the refutation� the one having � as resolvent� resolves the variable x� and
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that this variable is resolved more than once in T � Applying Lemma �� to Tx 
resp� T�x� with

the partial truth assignment �
x� � 	 
resp� �
x� � �� and then adding again the literal x


resp� �x� to the clauses that had it deleted� one derives x 
resp� �x� or directly �� Putting

both refutation trees together� the resulting R�
�� refutation is embedded in T and resolves

variable x at most once� One can continue in this way with the parent clauses of x and �x

modifying the refutation until the initial clauses are reached� The way in which the new

refutation is constructed assures that on every path from � to an initial one� every variable

is resolved at most once� and moreover the new refutation in embedded in the former one�

and therefore it does not need more space� q�e�d�

We can give now a de�nition of space in R�
�� considering list of clauses kept in memory�

with the particularity that when a clause is used to derive other clauses� it is removed from

the memory�

De�nition �
 Let k � N� we say that an unsatis�able CNF formula F has a R�
�� refu�

tation bounded by space k if there is a series of CNF formulas �without having repeated

clauses� F� � � � � �Fs � such that F� 
 F� � � Fn � in any Fi there are at most k clauses� and for

each i � s� Fi�� is obtained from Fi by

� deleting �if wished� some of its clauses�

� adding the resolvent of two clauses of Fi and deleting the parent clauses�

� adding �if wished� some of the clauses of F �initial clauses��

We show the equivalence of this de�nition and De�nition �� applied to trees� Clearly if a

formula can be refuted in space k according to De�nition ��� then there is a refutation tree

than can be pebbled with k pebbles�

For the other direction� the successive lists Fi will be formed by the pebbled clauses in

the tree� A problem can happen in case there are repetitions in the set of pebbled clauses�

because in the list there can be only one copy of each clause� When deleting one instance of

this clause we are deleting the only occurrence of the clause in the list� We show that one

can always have a R�
�� refutation using the same space and in which two occurrences of

the same clause are never pebbled simultaneously�
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Lemma �� Let s be the minimum number of pebbles needed in any R�
�� refutation of F�

There is a regular R�
�� refutation of F that can be pebbled with s pebbles in such a way that

two nodes corresponding to the same clause are not pebbled simultaneously�

Proof� By Theorem �
 we can suppose that there is a regular R�
�� refutation of F using s

pebbles� Since every clause in the tree has at most one successor clause� when the successor

clause is pebbled� in any sensible strategy� the parent clause can be deleted immediately� In

Theorem �� it is proved that the space needed to pebble a tree is the depth of its biggest

embedded subtree� An optimal strategy is then� starting from the root� pebble �rst the

subtree with the biggest embedded complete subtree and then the other subtree� Apply this

rule recursively to both subtrees� If we follow this strategy when a clause� A is pebbled then

we pebble the subtree that derives its mating clause A�� Since we are dealing with a regular

refutation� A cannot be in the tree deriving A�� Otherwise� there would a path going from

the copy of A deriving A� to the resolvent of A and A� and then to �� in which a variable has

to be resolved twice� contradicting the fact that we are dealing with regular R�
��� q�e�d�

Using Theorem �
 and the fact that in the proof of Theorem ��� applies to any kind of

R
��� we get�

Lemma ��� If an unsatis�able formula F with n variables has a R�
�� refutation of space

s� then it has a R�
�� refutation of size
	
n�s
s



�

In the case of R�
�� we can show a connection between the concepts of size and width� For

any unsatis�able formula F� the di�erence between the width in a refutation of F minus the

initial width of the formula� is bounded by the space in any R�
�� refutation of the formula�

The proof of this fact relies on the following lemma from Ben�Sasson and Wigderson�

Lemma ��� 	��� Let F be a CNF unsatis�able formula� and for a literal a� let F� and F�

be the formulas resulting from assigning a the truth values � and � respectively� If for some

value k� W
F� � �� 	 k � � and W
F�� 	 k then W
F � �� 	 maxfk�W
F�g

Theorem ��� S�� 
F� � � � W
F � �� �W
F��
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Proof� Let F be an unsatis�able CNF formula� and s the minimum number of pebbles

needed in any R�
�� refutation of F� T � We prove by induction on the depth of T � d� that

W
F � �� 	 W
F� " s � �� For d � 	� we have that � is an initial clause� and the results

holds trivially� For d 	 	� let T be a R�
�� refutation of F of depth d and let x be the last

variable being resolved� Let T� and T� be the subtrees in the refutation deriving the literals

x and �x from initial clauses� and let s� and s� be the number of pebbles needed to pebble

these subtrees reaching the literals x and �x�

Since we are dealing with a R�
�� refutation� by the proof of Theorem ��� either s� or s�

must be smaller than s� W�l�o�g� let us consider s� � s� Also� T� and T� have depth smaller

than d�

Applying the partial assignment x � 	 to all the clauses in T� 
respectively the partial

truth assignment x � � to the clauses in T��� we obtain two refutation trees deriving � from

two sets of clauses F�� F� � By induction� W
F� � �� 	 W
F�� " s� � � 	 W
F� " s � ��

and W
F� � �� 	 W
F�� " s� � � 	 W
F� " s � �� Applying Lemma �	� we obtain

s� � � W
F � �� �W
F� q�e�d�

This result shows that width lower bounds can be used to obtain space lower bounds

for R�
��� Consider for example� for the case of a Tseitin formulas related to an undirected

graph G with odd marking� Ben�Sasson and Wigderson have proved a width lower bound of

the expansion of G ��
�� By Corollary �	�� this can be translated into a space lower bound

for R�
�� refutations of this formulas of at least the expansion of G minus the maximal

degree of the graph� In �
� it is proven that Theorem �	� also holds for R
��� solving an

open problem from ��	��

��� Combinatorial characterization of R���� space

We show that the Player�Adversary game from ���� played over CNF propositional formulas

gives an exact characterization R�
�� space� This characterization is purely combinatorial�

This game was used for proving size lower bounds for R�
��� see ���� ���� Let us call F to

a generic CNF formula� A generalization of the game� Gk
F�� was presented in Subsec�

tion ������ Here we recall the original game as in ���� ��� that here is called G�
F��
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The combinatorial game

The game is played in rounds on an unsatis�able CNF formula F by two players� Prover

and Delayer� Prover wants to falsify some initial clause and Delayer tries to retard this as

much as possible� In each round Prover chooses a variable in F and asks Delayer for a value

for this variable� Delayer can answer either 	�� or �� In this last case Prover can choose the

truth value 
	 or �� for the variable and Delayer scores one point� The variable is set to the

selected value and the next round begins� The game ends when a clause in F is falsi�ed 
all

its literals are set to 	� by the partial assignment constructed this way� The goal of Delayer

is to score as many points as possible and Prover tries to prevent this� The outcome of the

game is the number of points scored by Delayer�

De�nition ��� Let F be an unsatis�able formula in CNF � We denote by g
F� the maxi�

mum number of points that Delayer can score while playing the game on F with an optimal

strategy of Prover�

Our result shows that for an unsatis�able CNF formula F� the space needed in R�
��

refutation of F is exactly g
F� " �� Observe that the outcome of the combinatorial game

depends only on the structure of F� This characterization of R�
�� space is therefore com�

pletely independent of the notion of R
��� We use the characterization and the relations

from space and size in R�
�� to slightly improve a lower bound for R�
�� size in terms of the

points scored in the combinatorial game from �����

Atserias and Dalmau have given recently �
� a combinatorial characterization of R
��

width that also depends only on the structure of the formula being considered� These two

results point out the naturalness of R
�� and its space and width complexity measures�

We show that for an unsatis�able CNF formula F� the number of points that Delayer

can score while playing the game on F provides both an upper and a lower bound on the

R�
�� space of F�

We show �rst that g
F� " � is an upper bound for the R�
�� space�

Theorem ��� If for a CNF formula F� S�� 
F� � S� then Delayer has a strategy in which

she can score at least S � � points� that is� S � � 	 g
F��
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Proof� Let be S the minimum space needed in any R�
�� refutation of F� We give a strategy

for Delayer for playing the combinatorial game on F that scores at least S � � points with

any strategy of Prover� We prove the result by induction on S�

For the base case S � �� Delayer just needs to answer � to the �rst variable asked by

Prover�

For S 	 �� let x be the �rst variable asked by Prover and let Fx�� and Fx�� the CNF

formulas obtained after given value � and 	 respectively to variable x in F� Any R�
��

refutation of F requires S pebbles and therefore either

i� the R�
�� space for refuting each of Fx�� and Fx�� is at least S � � or

ii� for one of the formulas� say Fx�� � the R�
�� space is at least S�

Any other possibility would imply that F could be refuted in space less than S�

In the �rst case Delayer can answer � and scores one point� By induction hypothesis

Delayer can score S � � more points playing the game in any of the formulas Fx�� or Fx���

In the second case Delayer answers the value leading to the formula that requires treelike

resolution space S 
x � � in this case� and the game is played on Fx�� in the next round�

q�e�d�

On the other hand g
F� is also a lower bound for the R�
�� space� Let us consider a

R�
�� refutation of F� T � Prover and Delayer play a modi�cation of the game G�
F� over T
that is called G�

�
T �� This new game can be seen as several G�
F� games played in parallel

where Prover chooses the variables to ask in an order induced by the refutation T � Delayer

will still use the strategy that scores at least g
F� points� Prover starts at the empty clause

in T and in general� when placed in a clause C� Prover chooses the resolved variable x from

the two parent clauses of C� and at the end of the round moves to one of the parent clauses

of C or both of them according to the answer of Delayer� In this later case the current game

forks into to games� If Prover is placed in a clause C is because the assignment built so

far falsi�es all clauses in the path from C to �� If Delayer assigns to x a value 	 or � then

Prover moves to the parent clause that is falsi�ed by the partial assignment and the new

round starts� If Delayer assigns x value � then Prover mark the clause with � and the game
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forks into two games� In one of them x is set to 	 and Prover moves to the parent clause

falsi�ed� in the other game x is set � and Prover moves to the other parent clause and a new

round start for each of the two new games� Each of the parallel games ends when Prover

can move to an initial clause� The game G�
�
T � ends when all parallel games end�

For a refutation T let us denote by game
T � the subgraph of T formed by all the clauses

that are visited by Prover and the edges joining them� in the game G�
�
T �� with a strategy

from Delayer scoring at least g
F� points� We show that the pebble game played on game
T �

needs at least g
F� " � pebbles� Since game
T � is a subgraph of T � by Claim �	 this implies

that R�
�� space for F is at least g
F� " ��

Theorem ��� For any CNF F� S��
F� � g
F� " ��

Proof� Let T be a R�
�� refutation of F� game
T � is also a tree and in any path from � to

an initial clause in game
T � there are at least g
F� nodes marked with � 
branching nodes��

We will show that game
T � requires at least g
T � " � pebbles� This implies the result since

game
T � is a subgraph of T �

Consider any strategy for pebbling the tree game
T �� and consider the �rst moment s

in which all the paths going from an initial clause to the empty clause contain a pebble�

After moment s � � a pebble has to be placed on an initial clause Ci� and before that� the

path going from Ci to � is the only path without pebbles� This path contains at least g
F�

nodes marked with �� In each one of these nodes starts a path going to an initial clause� All

these paths are disjoint and they all contain a pebble at instant s�� 
otherwise there would

be at moment s a path from the empty clause to some initial clause without any pebble��

Together with the pebble at moment s� this makes at least g
F� " � pebbles� q�e�d�

This combinatorial game was de�ned in ���� as a tool for proving lower bound for the

size of R�
�� refutations� Impagliazzo and Pudl�ak proved the following result�

Theorem ��� 	��� If Delayer has a strategy on a formula F which scores r points then

L��
F� � �r�

Based on the relations between size and space in R�
�� refutations and the above char�

acterization� we can slightly improve this result by a factor of two� For this we rephrase

Theorem ���
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Theorem ��	 If for a CNF formula F S�� 
F� � s then L��
F� � �s � ��

Together with the combinatorial characterization of R�
�� space this implies�

Corollary ��
 For any unsatis�able CNF formula F� if Delayer has a strategy on F which

scores r points then� L��
F� � �r�� � ��

We have given an exact characterization of the R�
�� space for refutations of a CNF

formula based on a purely combinatorial game and independent of the R
�� method� In

Section ��� we show that this characterization cannot be used for R
�� space� It would be

interesting to �nd a characterization for R
�� space� This could help to answer the question

of whether there are families of formulas that have R
�� refutations of small width but

require a large amount of space� a question proposed by Ben�Sasson in ����� We conjecture

that the Pebbling Contradictions� PEB �
�
G� for a suitable G� de�ned in ��
� are an example

of a family with this property� These formulas have R
�� refutations with small size and

width ��
� and require a large amount of space in R�
��� This last result follows from our

characterization and the fact that Delayer has always a strategy scoring many points ����

when playing the combinatorial game on these formulas�

��� Separation between R��� space and R���� space

In this section we give a R
�� space upper bound that separates R
�� space from R�
��

space� Recall the de�nition of the Pebbling Contradictions from Subsection ������ We are

using PEB �
�
G� for a suitable graph G� It is convenient here to write the formula PEB �

�
G��

De�nition ��� For a dag G with indegree 
� the clauses of PEB �
�
G� are as follows�

�� The source clause for a source node s is s�s��


� The target clauses for a target node t are �t� and �t��

�� The pebbling clauses for any nonsource node w with parent nodes u and v are �u��v�w�w��

�u��v�w�w�� �u��v�w�w� and �u��v�w�w��
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Let Tn be the complete tree with n levels and let F �s C mean that clause C can be

derived in space s from F or a subset of F�

Lemma ��� For n � �� if PEB �
�
Tn��� �s�� �� PEB �

�
Tn��� �s�� � and PEB �
�
Tn��� �s �

then PEB �
�
Tn� �s ��

Proof� We give a R
�� strategy for refuting PEB �
�
Tn� measuring the space needed� The

variables names follows the representation of Tn in Figure ���� Since PEB �
�
Tn��� �s � it

follows that PEB �
�
Tn� �s b�b�� This is because all the clauses in PEB �

�
Tn��� occurs in

PEB �
�
Tn� except for clauses �b� and �b�� Similarly� since PEB �

�
Tn��� �s�� � it is also clear

that PEB �
�
Tn� �s�� d�d�� So we can derive the two clauses b�b� and d�d� using space s by

�rst deriving b�b� in space s� keeping it� and then deriving d�d�� The maximum amount of

space used until this point is s�

From clauses �a�� �a�� the pebbling clauses for a 
which are initial clauses� and clause b�b��

we can derive using constant space � �c� and �c�� This means that from the stage with the

clauses d�d� and b�b� we can derive d�d� �c� and �c� using space �� see Table ����

Now from d�d�� �c�� �c� and the pebbling clauses for c we get in space � �e� and �e�� The

derivation is very similar to that in Table ���� but now clauses �c� and �c� must be kept in

memory as they are not initial clauses� The detailed derivation is in Table ����

Since PEB �
�
Tn��� �s�� � it follows that PEB �

�
Tn� �s�� f�f�� During this derivation we

have to keep �e� and �e�� so the maximum amount of space used is s� From f�f�� �e�� �e� and the

pebbling clauses for e we get �g� and �g� in space � as in Table ���� Again as PEB �
�
Tn��� �s�� �

it follows clear that PEB �
�
Tn� �s�� g�g�� From g�g�� �g� and �g� we derive � in space �� q�e�d�

It is easy to check that PEB �
�
T�� can be pebbled with � pebbles� see Table ���� That

means that PEB �
�
T�� needs at most � pebbles and PEB �

�
T�� � pebbles� Using Theorem ��	�

PEB
�
�
T�� can be pebbled also with � pebbles� thus saving one pebble� From this follows the

upper bound for the resolution space of PEB �
�
Tn��

Corollary ��� For every n� S�
PEB �
�
Tn�� 	 �n�� " ��

Proof� The result follows from the fact that for n � � mod �� PEB �
�
Tn� has a R
��

refutation with space at most �
n " ���� " �� We prove this by induction on n� The base
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Figure ���� Drawing of Tn
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case n � � is clear since in Table ��� there is a R
�� refutation of PEB �
�
T�� with space

�� It also holds that for any n� PEB �
�
Tn��� requires space at most s " � if PEB �

�
Tn� can

be refuted using space s� For the induction step� let us suppose that n � � mod �� By

induction hypothesis the space needed for PEB �
�
Tn��� is at most �
n� ���� " �� Using the

above property we get that the space needed for PEB �
�
Tn��� and for PEB �

�
Tn��� respectively

at most �
n � ���� " � and �
n � ���� " � � �
n " ���� " �� By Lemma ��	 PEB �
�
Tn�

requires also at most space �
n " ���� " �� q�e�d�

On the other hand in the case of R�
��� the space needed in a refutation of PEB �
�
Tn�

is at least n � �� This follows our characterization of R�
�� space together with the lower

bound obtained in ���� on the number on points obtained by Delayer�s when playing the

combinatorial game on PEB
�
�
G�� We just need the particular case of this result when G is

Tn�

Theorem ��� 	��� For every n Delayer has a strategy in which at least n� � points can be

scored� when playing the combinatorial game on PEB �
�
Tn��

Corollary ��� For every n� S��
PEB �
�
Tn�� � n� ��
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Table ���� R
�� derivation of �c� and �c�

d�d� b�b�

d�d� b�b� �c��b�a�a�

d�d� b�b� �c�b�a�a�

d�d� b�b� �c�b�a�a� �c��b�a�a�

d�d� b�b� �c�a�a�

d�d� b�b� �c�a�a� �a�

d�d� b�b� �c�a�

d�d� b�b� �c�a� �a�

d�d� b�b� �c�

d�d� b�b� �c� �c��b�a�a�

d�d� �c�b�a�a� �c�

d�d� �c�b�a�a� �c� �c��b�a�a�

d�d� �c�a�a� �c�

d�d� �c�a�a� �c� �a�

d�d� �c�a� �c�

d�d� �c�a� �c� �a�

d�d� �c� �c�
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Table ���� R
�� derivation of �e� and �e�

�c� �c� d�d�

�c� �c� d�d� �e� �d�c�c�

�c� �c� d�d� �e�d�c�c�

�c� �c� d�d� �e�d�c�c� �e� �d�c�c�

�c� �c� d�d� �e�c�c�

�c� �c� d�d� �e�c�

�c� �c� d�d� �e�

�c� �c� d�d� �e� �e� �d�c�c�

�c� �c� �e�d�c�c� �e�

�c� �c� �e�d�c�c� �e� �e� �d�c�c�

�c� �c� �e�c�c� �e�

�c� �e�c� �e�

�e� �e�
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Table ���� R
�� refutation of PEB �
�
T��

a�a�

a�a� �a��b�c�c�

a��b�c�c�

a��b�c�c� �a��b�c�c�

�b�c�c�

�b�c�c� b�b�

b�c�c�

b�c�c� a�a�

b�c�c� a�a� �a��b�c�c�

b�c�c� a��b�c�c�

b�c�c� a��b�c�c� �a��b�c�c�

b�c�c� �b�c�c�

c�c�

c�c� �c�

c�

c� �c�

�
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��� Space separations for R��k�

We proof that R�
k� forms a hierarchy with respect to space� Remember that in Section ���

a similar result was proven for size�

Consider the following de�nition from ���� Given a CNF F over variables in X� and

a k � N� de�ne a new formula Fk this way� for any set of literals l�� � � � � ls over X� with

s 	 k� consider a new literal zl��			�ls meaning l� � � � � � ls� Let E
X� k� be the set of clauses

�zl��			�ls � li� for i � �s� and �l� � � � � � �ls � �zl��			�ls� Then Fk is F 
 E
X� k��

The following two Lemmas were proved in ����

Lemma ��� 	�� For any CNF F and k � N� if F has R
k� �resp� R�
k�� refutations of size

S� then Fk has R
�� �resp� R�
��� refutations of size O
kS��

Lemma ��� 	�� For any CNF F and k � N� if Fk has R
�� �resp� R�
��� refutations of

size S� then F has R
k� �resp� R�
k�� refutations of size O
kS��

It is not di�cult to see that similar relations holds for the space�

Lemma ��� For any CNF F and k � N� if there are R
k� �resp� R�
k�� refutations of F

using space S� then there are R
�� �resp� R�
��� refutations of Fk using space at most S" ��

Lemma ��	 For any CNF F and k � N� if there are R
�� �resp� R�
��� refutation of Fk

using space S� then there are R
k� �resp� R�
k�� refutations using space at most S " ��

We will extend Lemma �		 in to give exponential lower bounds for R�
k� space�

Lemma ��
 For any CNF F over n variables and k � N� if L�k
F� � S� then S�k
F� �
#
 logSlogn ��

Proof� Let F be a CNF contradiction over n variables such that L�k
F� � S� Lemma ���

implies that L��
Fk � � S
k
� Since the space in R
�� is always upper bounded by the number

of variables� it is easy to see that Lemma �		 in turn implies that S�� 
Fk � � #
logS� log n��

which implies the claim by Lemma ���� q�e�d�

As a corollary of the previous lemma and the size lower bound of Corollary 
�� we obtain

a space lower bound for PEB k
k��
G� for any constant k�
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Corollary ��� S�k 
PEB k
k��
G�� � #
n� log n��

On the other hand we can obtain constant space R�
k " �� refutations of PEB k
k��
G��

Lemma ��� S�k��
PEB k
k��
G�� � O
���

Proof� Notice that the refutation presented in Theorem �� consists of an underlying linear

treelike refutation where the leaves are replaced by complete binary trees of constant size�

because the number of leaves in these binary trees is at most 
�k�k��� It is obvious that only

a constant number of pebbles is needed to pebble such a proof� q�e�d�

Therefore the R�
k� space hierarchy� for k constant� is strict�

Corollary ��� Let k 	 	� There is a family of CNF formulas F over n variables such that

S�k��
F� � O
��� but S�k 
F� � #
n� log n��

��� Space lower bounds for R�k�

We present the concept of ��dynamical satis�ability for a CNF formula F� This concept

provides an uni�ed way for proving space lower bounds for R
k�� There are similarities

between the concept of dynamical satis�ability and the combinatorial characterization of

width in �
�� but our method was found independently as the result of a detailed inspection

of the common points to all space lower bounds proofs already known 
��	� �� �����

In �
� it is proved that S�
F� � W
F � �� �W
F�� so width lower bounds for F can be

translated into space lower bounds for F when the width of F is small� In the case of PHP the

width characterization in �
� cannot be used to derive meaningful space lower bounds as PHP

has large width� whereas the concept of ��dynamical satis�ability can provide meaningful

lower bounds for PHP� Besides width lower bounds cannot be used e�ectively to derive size

lower bounds when the initial width is large� To overcome this di�culty also in �
� they

transform any formula F with large clauses into the standard non�deterministic extension of

F� called EF� see ���� The formula EF has small initial width� so the width lower bounds

for this formula can be translated into width lower bounds for the original formula F and
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consequently to space lower bounds� So this method from �
� can be used instead the ��

dynamical satis�ability to get space lower bounds� Nevertheless neither the authors of �
�

nor the authors of ���� noticed this possibility and the concept of ��dynamical satis�ability

is simpler�

De�nition ��� Let F be a CNF over n variables and let � 	 � 	 n� F is ��dynamically

satis�able if there is a class �F of partial assignments such that the following properties hold�

�� closure under inclusion� if � � �F and � v �� then � � �F�


� extendibility� if � � �F and j�j � � and C is a clause in F� then there is a partial

assignment � � �F such that � w �� �
C� � ��

We show that dynamical satis�ability implies space lower bounds for R
k��

Theorem ��� Let F be an unsatis�able CNF formula� which is ��dynamically satis�able�

Then Sk
F� 	 

k
�

Proof� Let �F be the class of partial assignments that makes F ��dynamically satis�able�

Let C�� � � � � Cs be a set of con�gurations expressing a refutation of F in R
k�� Assuming by

contradiction that Sk
F� 	 

k
� we build a sequence of partial assignments to the variables of

F� �i� where i � 	� � � � � s� These assignments have the following three properties� �i � �F�

Cij�i � � and j�ij 	 kjCij� The contradiction is reached since no partial assignment can

satisfy Cs which includes the empty clause� so Sk
F� 	 

k
�

Since C� � �� �� can be set as the empty assignment� Given �i� we build �i�� according

to the rule used to produce Ci�� from Ci�

� Axiom Download� Let C be the downloaded clause of F� If a clause can be downloaded�

then jCij 	 ��k � �� hence j�ij 	 �� k 	 �� �� since k � �� Since F is ��dynamically

unsatis�able and j�ij � �� by the extendibility of �F� there is a � � �F such that

� w � and Cj� � �� Notice that by the closure property of �F and the fact that C is

a clause� we can assume that � is setting to � at most on literal in C� Setting �i�� to

� it follows that �i�� � �F and Ci��j�i��
� �� As j�j 	 j�j " � and jCi��j � jCij " ��

then j�i��j 	 kjCi��j�
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� Inference Adding� Set �i�� � �i� The derived k�clause is satis�ed from soundness of

R
k� and �i�� � �F because �i � �F�

� Memory Erasing� Let C be the k�clause deleted from Ci to get Ci��� Clearly Ci��j�i �
�� For every k�clause Cj in Ci�� let �j v �i be minimal 
with respect to v� such

that Cjj�j � �� De�ne �i�� �
F

j �j� As �i�� v �i and �i � �F then by the closure

property �i�� � �F� By construction Ci��j�i��
� �� Finally� as at most k variables are

needed to satisfy a k�clause� j�i��j 	 kjCi��j

q�e�d�

It is easy to prove size lower bounds for R�
k� from Theorem ��� and Theorem �	
�

Since S�k 
F� � Sk
F�� a space lower bound for R
�� also yields a size lower bound for R�
���

Corollary ��� If F is ��dynamically unsatis�able� then L�k
F� � ���
�k��

The rest of this section will be devoted to prove space lower bounds for R
k� using

��dynamical satis�ability�

����� Semiwide formulas

We show that the concept of semiwideness� introduced in ���� implies dynamical satis�ability�

De�nition ��� 	
� A partial assignment � for a satis�able CNF F is F�consistent if �

does not falsify F and can be extended to an assignment satisfying F�

The notion of consistency is used to de�ne semiwideness for a CNF F�

De�nition ��� 	
� A CNF F is ��semiwide if and only if there exists a partition F��F��

of F such that F� is satis�able and for any clause C in F��� any F��consistent assignment ��

with j�j � �� can be extended to an F��consistent assignment satisfying C�

Now we prove that semiwideness is a particular case of dynamical satis�ability�

Lemma ��	 Let F be an unsatis�able CNF over n variables� If F is ��semiwide� then F

is ��dynamically satis�able�
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Proof� Let F��F�� be the partition of F guaranteed by ��semiwideness of F� Fix

�F � f� j � is F� �consistentg

If � is F��consistent� any � such that � v � is F��consistent� so �F has the closure property�

Finally to show that �F preserves extendibility� we prove that for any clause C in F and any

� � �F� such that j�j � �� there is an extension � of � in �F that satis�es C� If C � F� � by

F� �consistency of �� there is a � extending � satisfying � and F� �consitent� Hence � � �F�

If C � F��� since j�j � �� then by semiwideness of F� there is a � extending � satisfying

C and F� �consistent� Hence � � �F� q�e�d�

We will consider now two semiwide formulas� namely Graph Tautologies and Pigeon�

hole Principle� ��� proved that the class of contradictions GTn is n
�
�semiwide� Hence by

Lemma ��
 and Theorem ����

Corollary ��
 GTn is n
�
�dynamically satis�able and Sk
GTn� 	 n

�k
�

Besides� these formulas provide another example that separates R
�� from R�
k�� In ����

it is proved that GTn has polynomial size R
�� refutations� hence also polynomial size R
k�

refutations� This along with Corollaries ��� and ��� gives another proof for Corollary 
��

Alekhnovich et al� prove in ��� that for m 	 n� PHPm
n is n�semiwide� we have by

Lemma ��
 and Theorem ����

Corollary ��� For any m 	 n� PHPm
n is n�dynamically satis�able and Sk
PHPm

n � 	 n
k
�

����� Random formulas

Recall the de�nition of Random Formulas from De�nition ������� A random ��CNF formula

F is a formula F � Fn
m� In this subsection we prove that random ��CNF with clause%variable

ratio � 	 ��� requires #
n�k�
���
��� � space in R
k�� Our result can be extended to any l�CNF�

We need some preliminary de�nitions from �����

The matching game is a two�player game de�ned on bipartite graphs G � 
U� V�E��

For a node u � U � let N
u� � fv � V j 
u� v� � Eg�
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The �rst player� Pete� is looking for a subset U � 
 U unmatchable into V � downloading

vertices of U into U � or removing vertices from U �� one at time� The second Player� Dana�

tries to delay as long as she can Pete� forcing a matching of U � into V � During the game the

players will build a set of edges m 
 E and the set U � as follows�

Initially m � � � U �� At each round only one the following occurs�

�� Pete downloads a u � U into U �� and Dana� if possible� answers by vu � N
u� such

that v is not a vertex of any edge in m� Then 
u� vu� is added to m�

�� Pete removes a u from U �� Then 
u� vu� is also removed form m� releasing vu for a

future use by Dana�

Pete wins when no answer is possible for Dana in case �� Dana wins the game when she

can force a matching of the whole U into V � The set m de�nes a partial matching in G� The

complexity of the game� M
G�� is the cardinality of the smallest U � Pete has to produce in

any strategy to win� Notice that when jU j 	 jV j Pete can always win and M
G� 	 jV j" ��

Moreover� if M
G� 	 k� then there is strategy for Dana such that for any U � 
 U � jU j 	 k�

and for any u � U n U � she can always �nd a vu to match u�

Given a CNF F� the bipartite graph GF � 
U� V�E� associated to F is de�ned this way�

U is the set of clauses of F� V is the set of variables of F and 
C� x� � E i� the variable x

appears 
negated or not� in C� It is the clear that any partial matching m in GF� de�nes an

assignment �m that satis�es all clauses mentioned in m and such that j�mj � jmj�

Lemma ��� Let F be a CNF � If M
GF� 	 �� then F is ��dynamically satis�able�

Proof� Let F be formed by the clauses C�� � � � � Ct� Since M
GF� 	 �� there is a strategy

S for Dana such that as long as jU �j � �� she can always extends the matching m built so

far� to any other possible clause still not in U ��

Let I � fi�� � � � � ilg 
 �t� be a set of indices� We need the order of the indices in I to be

meaningful� Therefore any set J obtained permuting the elements of I will be considered

di�erent from I� For I 
 �t�� let PI � fJ j J is a permutation of Ig� Given an ordered set

I 
 �t�� let FI � fCi � F j i � Ig� where the order of I is inherited in FI � Let moreover mI



���� SPACE LOWER BOUNDS FOR R
K� ��

the matching built by Dana following the strategy S when the clauses in FI are put by Pete

into U � in the order inherited from I� Let �I be the assignment associated to the matching

mI � We de�ne �F as follows�

�F �
�

I
	t
�jI j�


�
J�PI

�J

�F is clearly closed under inclusion by de�nition� Let � � �F� with j�j � � and let Cl

be a clause in F� There is a I 
 �t�� and a J � PI � such that � � �J � Since there is a ���

correspondence between mJ and the domain of �J � then jIj � �� If l � I� then Cl is satis�ed

by �I and we have nothing to prove� Otherwise let J � � J 
 flg and l is the last element

in the order of J �� jJ �j 	 � and hence �J � � �F� Moreover �J � clearly satis�es Cl� �J � w �J

since l is de�ned as last element in the order of J �� Hence �F veri�es extendibility� q�e�d�

When F is a random k�CNF� Ben�Sasson and Galesi in ���� proved the following result

Lemma ��� 	��� Let F � Fn
��n� � 	 ���� For any � � �� M
GF� � n

���� �

which� by Lemma ��	� implies

Corollary ��� If F � Fn
��n� � 	 ���� then F is n

���� �dynamically satis�able�

Which by Theorem ��� and Corollary ��� in turns implies�

Corollary ��� If F � Fn
��n� � 	 ���� then for each k � �� Sk
F� � #
n�k � �

���
��� � and

L�k
F� � ���n�k��
���
��� ��

����� Tseitin Contradictions

Recall the de�nition of Tseitin Contradictions from Section ������ To prove the R
k� space

lower bound we follow ����

De�nition ��� Let G be a connected graph over n nodes� The connectivity expansion

c
G� of a connected graph G is the the minimal number of edges to remove from G to obtain

a graph in which the largest connected component is of size at most n���
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Let G � 
V�E� be a constant degree connected graph and consider the CNF T
G�� Let

� be a partial assignment on variables of T
G�� Let E
�� be the subset of E corresponding to

the variables assigned by �� and letGmax
�� � 
Vmax
��� Emax
��� be the maximal connected

component in 
V�E � E
����

De�nition ��� We say that an assignment � with j�j � c
G� is admissible for T
G� if

there exists an assignment �� such that ��� � 
 ��� and �
� for all v �� Vmax
��� �� satis�es

PARv�

Note that in order admissible assignments to exist it must happen that all remaining

connected components outside Vmax must have even weight� otherwise one small connected

component could not be satis�ed�

The following lemma was proved in ����

Lemma ��� Assume that � is admissible for T
G�� Then for any v� � Vmax
�� there exists

an assignment �� such that � 
 �� and for each vertex v �� v�� �� satis�es PARv�

We will prove that Tseitin Contradictions associated to a graph G of bounded degree d

are 
c
G� � d��dynamically satis�able�

Theorem ��	 Let G be a connected graph� then T
G� is 
c
G� � d
G���dynamically satis�

�able�

Proof� We de�ne the class of partial assignments �T�G� as�

�T�G� � f� j j�j � c
G�� d
G� and � is admissibleg

We need to show that �T�G� ful�lls the properties of closure and extendibility�

For closure� if � � �T�G�� any � v � is also admissible� For extendibility� let � � �T�G�

such that j�j � c
G� � d
G�� Now consider any clause C from T
G�� Let v be such that

C � PARv� We will build a � that preserves extendibility for C� Now we split the proof in

to cases�

� v �� Vmax� As � is admissible we can satisfy C by setting one free variable of C� Let �

be � plus the set variable� Clearly j�j 	 c
G��d
G� and � is admissible� so � � �T�G��
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� v � Vmax� Our goal is to set a variable in C in such a way that the new biggest

connected component has odd weight and all the remaining connected components

have even weight� Let e�� � � � � ei all the edges incident to v� clearly i 	 d
G�� Let

V j
max be the biggest connected component after assigning truth values to the variables

e�� � � � � ej� Any ej can be always assigned is such a way that V j
max has odd weight� It

can happen than a new connected component is detached from V j
max because it was

linked to V j
max only by edge ej through v� This new connected component must have

even weight� We will set edges until one of them� say e� satis�es C� This must always

happen� Let us suppose that none of the variables e�� � � � � ei�� satis�es C� Then PARv

after applying the assignment is either ej or �ej depending on the actual weight of v�

We can set variable ei to satisfy C and V i
max must have odd weight� otherwise we

can satisfy T 
V i
max� and so T
G� which is unsatis�able� Note that jV i

maxj 	 n��� The

assignment � will be � plus e and its truth value� � is admissible because all connected

components outside Vmax have even weight and as we are adding only one variable to

� clearly � 	 c
G� � d
G��

q�e�d�

Linear lower bounds for Tseitin contradictions are a consequence of the following Lemma

which uses expander graphs�

Lemma ��
 	��� 
� There exists a family of constant degree connected graphs G � 
V�E�

with connectivity expansion #
jV j��

Theorem ��� Let G be connected graph over n vertices provided by Lemma ���� Then for

any k � �� Sk
T
G�� 	 #
n��
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Chapter �

Recapitulation

This work has dealed mainly with Proof Complexity� Our aim was to prove lower and upper

bounds for complexity measures such as size and space� related to refutational Proof Systems

as R
��� R
k� and CP�

In order to prove some of the results� for example the separation between R�
�� and R
��

and CP� and CP� Section ���� or the separation between R
�� and R
��� Section ���� we

needed to use results from Circuit Complexity� see Theorem ��� or extend a result from ��
�

for monotone boolean functions to monotone real function as we did in Section ����

Separation of Proof Systems regarding di�erent complexity measures is one of the main

aims of Proof Complexity� Section ��� is an intermediate step in separating treelike version

of proof systems from the daglike version� Our separation of CP� from CP� in fact from

regular R
��� represents an improvement of previous results� see ����� Later our separation

of R
�� from R
��� was improved in �����

We were among the �rst researchers interested in a recent Proof System� R
k�� proposed

by Kraj� !cek in ����� We gave some of the �rst results about the size and space complexity

of this Proof System�

In Section ��� we solve an open problem posed by Kraj� !cek also in ����� We show that

R
�� does not have the feasible monotone interpolation property� That means that R
��

refutations of certain CNF formulas cannot be transformed into monotone boolean circuits

of similar size� computing a function related to the CNF formula� To do so� we proved a

��
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polynomial size upper bound for R
�� refutations of the CNF formula based on a Clique�

Coclique principle� As it is known that the monotone boolean circuit computing a related

function need superpolynomial size we conclude that R
�� does not have the Interpolation

property� Besides� as R
�� has this property we get a superpolynomial separation between

R
�� and R
��� which was the �rst separation between both systems�

In Section ��� we present an unpublished result that shows that R
�� lower bounds for

PHPn���

n provides R
�� lower bounds for PHPn�

n � This was a new attempt of solving a long

standing open problem� the R
�� size for PHPn�

n � Of course we do not know whether this

approach would have made the proof easier� but as the problem was solved while we were

working a it� see ���� ���� we abandoned this approach�

In Section ���� we study the size complexity of R�
k� It was known that R
�� was more

powerful that R
�� and R�
�� more powerful than R�
��� so a natural question was to �nd out

whether we can separate succesive levels of R
k� or R�
k�� We show exponential separations

between successive levels of what we can call now the R�
k� hierarchy and Segerlind et al�

���� showed separations for the R
k� hierarchy� We also prove that R
�� simulates R�
k�

which is a particular case of a theorem by Kraj� !cek� but we can make the simulation shorter

than the general simulation�

In ��	� we introduced the space complexity measure for R
��� This new measure has

been studied in several papers as for example� ��� ��� ��� ���� In Section ��� we give

general results for R
�� and R�
�� space that appeared mainly in ��	�� In Section ��� a

combinatorial characterization of R�
�� space is proved� This characterization makes easier

the task of proving bounds for R�
�� space� As in the case of the width characterization in

�
� it is also via a Player�Adversary game over CNF formulas� It would be interesting to

�nd a combinatorial characterization for R
�� space�

In Section ��� we give the �rst space separation from R
�� to R�
��� We show that

PEB �
�
G� requires less space for R
�� than for R�
��� at least one third less� In Section ���

we show that� as happened with respect to size� R�
k� forms a hierachy respect to space�

So� there are formulas that require nearly linear space for R�
k� whereas they have constant

space R�
k"�� refutations� In Section ��� all known R
�� space lower bounds from ��	� �� ���

have been extended to R
k� in an simpler and uni�ed way� that also holds for R
��� using
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the concept of dynamical satis�ability from �����

In the next table we list the bounds we have proved in this work among several related

bounds� Note that this list is not intended to be complete� for example only R
k� and CP

is mentioned� Its only purpose is to help to put in context this work� Citations in boldface

appear in this work� To interpret the table note that not all bounds follows the O and #

notation� For the bounds not following this notation� if nothing is said in the corresponding

cell� we understand that we are referring to a lower bound� For example� the R
�� size bound

for PHPn��
n is a lower bound and appeared in �����

Last� we must recall some open problems related to this work� An interesting open prob�

lem for us� and also for Ben�Sasson ���� is the exact R
�� space complexity of PEB �
�
G�� We

gave a nontrivial space upper bound ���� but we could not �nd a matching lower bound or

prove a lower upper bound matching trivial space lower bounds for PEB �
�
G�� Our upper

bound is the �rst space separation between R
�� and R�
��� In ���� a combinatorial char�

acterization of R�
�� space is proved� similar to the width characterization in �
�� It will

interesting to �nd a combinatorial characterization for R
�� space� which may help to solve

the space complexity of PEB �
�
G�� The space separation in ���� shows that the character�

ization of R�
�� space is not valid for R
�� space� As PEB �
�
G� has constant space R�
��

refutations using the dynamical satis�ability concept only a constant space lower bound can

be proved� so if it happens that PEB �
�
G� requires nonconstant space R
�� refutations� the

dynamical satis�ability concept will not be a tight characterization of R
�� space�
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