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Doctor of Philosophy

Abstract

We initiate and develop from the ground up cryptography and randomness extraction
over Very Big Data Objects. These big objects are handled in the multi-stream
model, for which we study constructions as well as limitations. We propose new
views and concepts, devise new constructions and methods, introduce new lower
bound techniques, and perform extensive experimental evaluations.

The multi-stream model captures the essence of computation over external storage,
with severely restricted local memory and sequentially making only few passes over the
storage. Typically, we consider O (log n) memory size and constant many read/write
streams, where each stream is a big tape that can be scanned sequentially from left
to right for only very few times, i.e. constant or slightly above that.

For cryptography over Very Big Data Objects, our study focuses on the theoretical
foundations. Based on mild intractability assumptions, we construct one-way func-
tions and pseudorandom generators within constant many passes. From the Learning
With Errors (LWE) assumption, we devise a Public-Key Encryption (PKE) scheme
where both the encryption and decryption use constant many passes. We also com-
plement the constructions with impossibility of constant-pass super-linear stretch
pseudorandom generators and a linear lower bound for the length of private-keys in
PKE. We prove this using a new lower bound technique that we develop.

For randomness extraction over Very Big Data Objects, we obtain a streaming
randomness extractor that makes O

(
log log n

ε

)
passes, which is only slightly above

constant. Interestingly, we show that this bound is tight for every randomness extrac-
tor in our streaming model. In addition to the theoretical developments, we realize
and empirically validate our extractor as an ultra-efficient executable program, which
is used to extract randomness from Big Data. This is a novel conceptual view of
real-world data as big sources of entropy. Both in theory and in practice, this is the
first method able to extract high-quality random bits from big objects.
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Chapter 1

Introduction

Due to the advance in technology from smart phones to wearable devices, and more

importantly the spread of Internet, the world is experiencing an explosion of infor-

mation. A spectacular and ever-increasing amount of data, commonly termed as

Big Data, are being generated all over the world, which in 2011 already exceeded

5 exabytes (i.e. 5× 1018 bytes) per day [WK13]. Big Data consists of a variety of un-

structured data. These data are produced or collected by individuals, companies and

research laboratories, ranging from social networks feeds to DNA sequenced data. At

the time of the writing of this dissertation, the study on how to make use of Big Data

has attracted a lot of research efforts in theory and in practice.

To theoretically analyze the complexity of algorithms on Big Data, a suitable

computation model must be specified. This model should capture the properties and

limitations of computation over Big Data, where the major difficulty is that Big Data

cannot be stored and processed in the local memory. The standard approach is to

distinguish external storage from local memory, and put restrictions on queries to

external storage. In this dissertation, we consider the multi-stream model, where the

local memory is severely restricted in size, and the external storage is abstracted as

streams. Every stream is a long tape that provides sequential access from left to right

for a small number of times, i.e. very few passes. The complexity of an algorithm

in the multi-stream model is traditionally measured by three parameters: the size

of local memory, the number of streams, and the number of passes over all these
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streams.

This dissertation initiates the study of huge size pseudorandom and random ob-

jects in the multi-stream model. We construct pseudorandom objects such as one-way

functions, pseudorandom generators, and public-key encryption schemes. These are

also important cryptographic primitives, which shows the feasibility of cryptography

in this model. Pseudorandomness, which means computational unpredictable, is the

computational analog of true randomness in the statistical sense. Besides the com-

putational view of randomness, the second main theme of this research regards true

randomness. In particular, our starting point is that real-world Big Data are sources

of low quality (i.e. far from uniform) statistical randomness. Based on this view,

we propose a randomness extractor in the multi-stream model and devise a com-

plete method to extract randomness from Big Data. Furthermore, we implement this

method as an ultra-efficient executable program, and empirically validate its output

quality on real-world data with standard uniformity tests [RSN+10, die08]. Regard-

ing limitations, we prove lower bounds for cryptographic primitives and randomness

extractors in the multi-stream model, with a new lower bound proof technique in-

spired by [BH12]. Overall we have conducted a comprehensive and in-depth research

on both theoretical and practical aspects.

Figure 1-1 depicts the relation between the main components of this dissertation

and previous works. The discussion about the multi-stream model is in Section 1.1.

Results and their relation to previous works is summarized in Section 1.2 and 1.3.

Pseudorandom
Generators

Streaming
Cryptography

Multi-Stream
Model

Streaming
Randomness

Extraction

One-Way
Functions

Public-Key 
Encryption

Lower Bounds
for Cryptographic

Primitives

Streaming
Extractors

Lower Bounds
for Randomness

 Extractors

Experimental Study

Extraction Method

Data Stream
Model

Our Contributions
Previous Works

Multi-Source
Extractors

(Non-Streaming)

Figure 1-1: An overview of our contributions. This work includes a variety of
constructions and lower bounds, as well as empirical studies on extraction methods.
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1.1 Modeling the Computation over Big Data

In our work, we choose the multi-stream model, also known as multiple read/write

stream model in [BH12], to characterize the computation over Big Data stored in

external storage. There are several other alternatives in the literature, such as

space-bounded model, parallel disk model [Vit01], external memory Turing machines

[AM99], data stream model [BBD+02, Mut03], and reversal-bounded computation

model [CY91, HS08]. However, none of the above is appropriate for our purposes,

where we consider large input size (i.e. at least a few GBs that cannot be easily

stored in the local memory) together with large output size (of random and pseu-

dorandom objects). Here we briefly introduce these models and explain why we use

streams for external storage, and why multiple read/write streams are necessary. The

multi-stream model is discussed in Section 1.1.1.

Why streaming? The space-bounded model, which is defined through Turing ma-

chines with bounded memory plus read-only yet random1 accessible input, only cap-

tures half the essence of computation over big objects. The classical parallel disk

model is still rough by simply measuring the amount of information read from exter-

nal storage. The external memory Turing machine has a single external tape with

random access, and allows arbitrary computation with unbounded working memory

between any two Input/Output (IO) operations on the external tape. These models

have achieved various theoretical success in characterizing computation over external

storage. However, by allowing random access to external storage, these models ignore

an important nature in practice – smart heuristics are applied in modern computers

to minimize the overhead of operations on external storage, and these heuristics prefer

sequential access to random access. In this sense, we believe it is more appropriate

to model external storage in a streaming fashion, which captures the computation of

various statistics on data streams such as network monitoring, transactional traffic,

1“Random access” means that every element in a set can be accessed with the same cost, re-
gardless of how many elements are there or how these elements are aligned or structured. Although
literally containing “random”, the term “random access” has nothing to do with random bits or
randomness discussed in this dissertation.
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and database systems.

Why multiple streams? The data stream model [BBD+02, Mut03] has achieved

prominent success in both theoretical and practical studies. In this model, the local

memory size is bounded and the input is given as a stream, which is a unbounded

tape that must be scanned in one direction, e.g. from left to right. The number of

sequential passes over the stream is a crucial parameter. Ideally we wish to spend

a single pass over the input stream. Nevertheless, when realizing the input stream

as an external storage device that is not read-once, it also makes sense to consider p

passes for a small integer p, when p is constant or slightly above constant.

The limitations of the data stream model are also theoretically studied, and various

lower bound are well established. In particular, no pseudorandom objects can be

computed in this single-stream model using local memory size O (log n) and constant

many passes (see Theorem 2.5 on page 28, improved on [KGY89]). Thus, it becomes

imperative to investigate the model with multiple streams.2

1.1.1 The Multi-Stream Model

It is observed [GS05] that for many natural problems the large external storage can

be abstracted by multiple read/write streams rather than a single one. For example,

when realizing every data stream with a hard disk drive, it is quite straightforward

to think of using more than one stream in the model describing computation with

multiple hard disk drives. By adding more streams to the data stream model, the

multi-stream model captures the additional ability of external storage and is further

studied in [BH12, BJR07, GHS09].

Formally, the multi-stream model is based on a (p, s, t)-bounded Turing machine,

where p = p(n), s = s(n), and t = t(n) are functions of input length n.

Definition 1.1. A (p, s, t)-bounded Turing machine is a standard multi-tape Turing

machine with (t + 1)-many tapes. The first tape represents the local memory and its

2The reversal complexity model [CY91, HS08] is similar but unnecessary for our purposes, though
it is slight stronger with two-directional accesses.
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size is bounded by s. The other t tapes are unbounded in size but allow only p many

unidirectional sequential passes (i.e. scanning from left to right) over them. These

t tapes are called streams, and the first stream is always viewed as the (read/write)

input tape. The passes over different streams do not have to be synchronized.

A (p, s, t)-streaming algorithm is an algorithm computable with a (p, s, t)-bounded

Turing machine. A function is (p, s, t)-streaming computable if it can be evaluated

by a (p, s, t)-streaming algorithm.

Typically, we consider p = o (log n), s = O (log n), and constant t. Unless other-

wise specified, the previous typical values are assumed whenever (p, s, t) is omitted,

and “log” denotes the logarithm to base 2.

Example. Figure 1-2 depicts an example of the streaming algorithm that adds two

binary3 integers 11100 and 110. The algorithm first copies 110 to the second stream,

with two passes over both streams; then, by scanning two streams simultaneously, it

adds up 11100 and 110 without carries; finally, it scans the first stream to deal with

carries, while writing to the second stream. In the last step, the algorithm maintains

a counter in its local memory to count how many tape cells on the first stream have

been scanned before seeing the next “0” or “2”. Whenever reaching such a digit,

it writes 100 · · · 0 if reads “2” or 011 · · · 1 if reads “0”, where the length of 100 · · · 0

(resp. 011 · · · 1) equals to the value stored in the counter.

The multi-stream model is substantially stronger than the data stream model. For

example, a list of n integer elements {1, 2, . . . , n} can be sorted with s = O (log n) lo-

cal memory and p = O (log n) passes over 3 streams; whereas with a single read/write

stream, sorting n elements requires sp = Ω (n) by a standard communication com-

plexity argument [Yao79], since in average-cases Ω (n) many elements must be moved

from the first half of the input to the second half. In this dissertation, by enhancing

the data stream model with a second read/write stream, we manage to circumvent a

3The alphabet in the description is {0, 1, 2,+}, which can be encoded with 2 bits and with two
passes over two streams it is trivial to convert between strings with elements from this alphabet and
the binary representation with elements {0, 1}. For example, encode “0” with 00 and “1” with 01,
then it is easy to convert “110” (encoded by 010100) to 110.

5
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1

1 1 2 1 0 . . . .

1 1 2 1 0 . . . . 1 0 0 0 1 0

.

.

1 1 0 0 . . . . 1 1 0.1 1 1 0 0 . . . . 1 1 0.

1 1 2 1 0 . . . . . . ..

First Stream Second Stream

Figure 1-2: A streaming algorithm example for adding two binary integers.

number of previous limitations [BYRST02, KGY89, Pap10, PY12] and thus we make

cryptography and randomness extraction feasible.

While increasing feasibility, the stronger model relaxes limitations that previous

lower bound techniques are based on. As a result, there are very few lower bound

results in the multi-stream model. To the best of our knowledge, except for ω(log n)

lower bounds [CY91, Pap94] based on space hierarchy theorem and diagonalization

arguments, the first logarithmic lower bound is introduced in [GS05]. It shows that

Ω (log n) many passes are necessary for sorting n elements with O (log n) local memory

and constant many streams. Then, [BH12] proves another logarithmic lower bound

in the number of passes for approximating frequency moments. Both works indicate

that with sub-logarithmic number of passes, the multi-stream model does not attain

significant advantage over the data stream model.

This multi-stream model with reasonable parameters is exactly what we consider

in the dissertation. Unless otherwise specified, a streaming algorithm means an algo-

rithm computable with O (log n) local memory and o (log n) passes over 2 streams. In

fact, our constructions use constant or at most O (log log n) passes in total. For lower

bounds, with the new proof technique inspired by and significantly extend the ma-

chinery of [BH12] we have obtained lower bounds for families of functions. In other
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words, we do not have a concrete function to discuss, which is the case in all known

lower bounds people proved before our work. The argument information-theoretically

makes use of the minimum property shared by all functions from the whole family.

We strictly limit the number of passes for both theoretical and practical interest.

In theory, only a sub-logarithmic number of passes is interesting because following

[CY91, HS08], an algorithm using O (log n) local memory and O (log n) passes over

2 streams suffices for every function in Log-space, where Log-space is the standard

space-bounded complexity class that allows O (log n) local memory and unrestricted

random access to the read-only input. More concretely, we can double the number of

input copies using 3 passes over 2 streams, by scanning and copying the input twice to

the second stream. Therefore, with O (log n) many iterations we obtain poly(n) many

copies of the input, and hence every Log-space function can be evaluated by with a

single scan through those copies. Although O (log n) many passes is not extremely

prohibitive in practice, the polynomial blow-up in stream length detaches the model

from practice by ruining the correspondence between streams and external storage.

Streams are introduced to characterize the computation on input of huge size, and

hence another polynomial blow-up in size is intolerable. In fact, the worst-case upper

bound of the space used on the streams is exponentially related to the number of

passes [GS05].

1.2 Cryptography in the Multi-Stream Model

We begin with the motivation of obtaining cryptographic primitives in the multi-

stream model in Section 1.2.1. Then, we informally introduce cryptographic primi-

tives in Section 1.2.2 and exhibit our constructions and lower bound results in Sec-

tion 1.2.3. In Section 1.2.4 we summarize related previous works.

1.2.1 Motivations

In modern cryptography, the security commonly refers to computational security

against adversaries with limited computing power. This kind of security is described

7



with a function s(n) in the security parameter n, where n is usually the key length,

such that any adversary must spend s(n) times more computing power than an au-

thorized user who holds the key to solve the same problem. Most cryptographic

constructions consider intractable problems with only mild security parameters that

are smaller than the local memory size, i.e. the keys reside in the local memory and

allow unlimited access. However, such mild parameters may not induce a satisfiable

security s(n), especially when the underlying problems are “not so hard”, e.g. the

approximate GCD (Greatest Common Divisor) problem4. Therefore, it is natural and

theoretically motivated to question the necessity of mild key length – since computa-

tional security is described in an asymptotic way, why the security parameter must be

bounded by the local memory size? Is it possible to achieve cryptographically secure

functions for very long keys?

Formally, we put forth the question of whether cryptography is feasible in the

multi-stream model, where the local memory is smaller than the security parameter,

against arbitrary polynomial time adversaries, who are as powerful as usual. This

question is motivated in practical settings where the keys and messages are huge in

size, and in theory it falls in the fundamental research of cryptography with rudimen-

tary resources.

1.2.2 Cryptographic Primitives

We consider private-key and public-key cryptographic primitives: one-way functions,

pseudorandom generators, and public-key encryption (PKE) schemes. In the follow-

ing, we briefly explain what these primitives are, while the formal definitions are given

in Section 2.1 on page 25.

A one-way function is a function that is easy to compute (i.e. in polynomial

running time) but hard to invert. For example, multiplying two large integers is

considerably easier than factoring the product of two unknown large (prime) integers,

4The approximate GCD problem asks to find a common divisor p from a bunch of near multiples
of p, i.e.

{
pqi + ri

∣∣ p, qi, ri are integers and |ri| � p for i = 1, 2, . . . ,m
}

for an integer m ≥ 2. This
problem is related to factoring RSA modulus with partial information [HG01].
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since Integer Factorization is one of the standard intractability assumptions and no

polynomial time algorithm is known so far.

A pseudorandom generator is a polynomial time deterministic algorithm that

stretches n-bit random to `(n) > n pseudorandom bits, where pseudorandom means

indistinguishable from random bits by any polynomial time distinguisher.

A PKE scheme consists of three polynomial time algorithms for key-generation,

encryption and decryption respectively. The scheme first takes the security parameter

as input and generates a public encryption key and a private decryption key. These

two different (asymmetric) keys are used for encryption and decryption respectively.

A PKE scheme achieves Indistinguishability under Chosen Plaintext Attack (IND-

CPA) security (also known as semantic security) if for any two messages, even chosen

by an adversary, the encrypted ciphertext cannot be distinguished.

Note that unconditional constructions of the above cryptographic primitives are

impossible under current knowledge. In fact, any such construction will immediately

imply P 6= NP, which has been the most fundamental open problem in theoretical

computer science for decades. To bypass this impossibility, all cryptographic primi-

tives are constructed based on intractability assumptions (also known as cryptographic

hardness assumptions). For example, Integer Factorization, which asks to decompose

a large composite integer into smaller integers, is a standard and popular intractability

assumption.

1.2.3 Our Results

We first exhibit our constructions and then complement them with lower bounds.

Possibility results. We achieve the following constructions for private-key prim-

itives, which are formally discussed in Section 2.3 and 2.4. These constructions are

based on the general assumption that one-way functions exist in NC1, where NC1 is

the class of functions computable with O (log n)-depth circuits consisting of poly(n)-

many constant fan-in gates; see Section 2.1 on page 24 for a precise definition, and

the textbook [AB09] for more details. This assumption is quite mild since NC1 is suf-
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fices for many standard intractability assumptions , including Integer Factorization,

Decoding Random Linear Codes, the Subset-Sum Problem (see the textbook [Gol01])

and Learning With Errors ([Reg05]).

Theorem 2.8 (informally stated). If one-way functions exist in NC1, then there

is a (5,O (log n), 2)-streaming computable one-way function, i.e. computable with 5

passes, O (log n) local memory, and 2 streams.

Theorem 2.12 (informally stated). If one-way functions exist in NC1, then there

exist pseudorandom generators that are (7,O (log n), 2)-streaming computable.

For public-key cryptography, we have the following PKE scheme based on the

standard Learning With Errors (LWE) assumption (the decisional version [Reg05],

see Assumption 2.18 on page 45 for definition). The construction is presented and

analyzed in Section 2.5. Note that the key generation procedure in our construction

is not implemented in a streaming fashion.5

Theorem 2.16 (informally stated). If the decision-LWE assumption holds, there

is a PKE scheme with both encryption and decryption (O (1),O (log n), 2)-streaming

computable.

Impossibility results. We introduce a new proof technique (inspired by [BH12],

see Section 4 for details) for lower bounds of random and pseudorandom objects in

the multi-stream model. With this technique, we show the lower bound in passes for

super-linear stretch pseudorandom generators in the multi-stream model.

Theorem 4.5 (informally stated). No pseudorandom generator with super-linear

stretch `(n) = ω(n) is computable with O (log n) memory and constant many passes.

The same technique is used to prove a lower bound for PKE.

Theorem 4.8 (informally stated). For every IND-CPA secure (defined on page 26)

PKE scheme whose decryption is a streaming algorithm within constant many passes,

5This drawback is acceptable since the key generation is only invoked once in the offline phase
for multiple runs of (online) encryption/decryption. In fact, the key generation in our construction
involves matrix multiplication which are inherently not streaming computable.
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the length of its private decryption key must be at least linear in the length of the

plaintext.

1.2.4 Comparison to Previous Works

Our constructions have theoretical merit by showing the feasibility of cryptography

in the multi-stream model, which is unexpected. First, it is unexpected because

single-stream one-way functions do not exist, i.e. no (O (1),O (log n), 1)-streaming

algorithm can compute any one-way function; see Theorem 2.5 (page 28) where we

show this (also improves on [KGY89]). Also, black-box constructions of cryptographic

primitives in the multi-stream model are indeed vastly impossible, even from concrete

intractability assumptions. For example, any black-box use of lattice assumptions,

e.g. the Decoding Random Linear Codes (DRLC) assumption (see Assumption 2.21

on pager 53 for definition), must intrinsically rely on multiplying a matrix by a vector

inside the black-box, which needs Ω(log n) many passes by [GHS09]. We note that

[BJP11] ruled out families of black-box constructions and they conjectured impossi-

bility of streaming cryptography with a constant number of passes. We refute that

conjecture with explicit constructions in this dissertation.

Of course, we cannot beat lower bounds. We bypass the single-stream lower bound

by adding the second stream, and we circumvent the limitation of the multi-stream

model by resorting to non-black-box constructions. This way we bring the number

of passes down to a constant and at the same time base our constructions on general

assumptions, which contrasts folk wisdom6 in streaming computation.

More specifically, we take randomized encodings of the NC1 computation of the

assumed one-way function, and thus obtain an information-theoretically equivalent

function that is computable in the multi-stream model. The randomized encoding

technique (see Section 2.1 on page 26 for details) was introduced by the seminal work

[AIK06b] and its followups [AIK06a, AIK08] for cryptographic constructions in NC0,

6It was believed that for common types of functions, if when adding a second tape helps then
permuting the input in the single-stream model will help as well. But a permuted one-way function
is still one-way.
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where NC0 (defined on page 24) is technically orthogonal to the multi-stream model.

These are non-black-box constructions since the computation itself is encoded and

hence the constructions rely on the knowledge of how to compute those functions.

For a theoretical discussion on the existence of one-way functions and pseudo-

random generators in the multi-stream model, the assumption can be relaxed to

existence of one-way functions in Log-space (see Section 2.1 on page 24). Figure 1-3

depicts a circle of implications for one-way functions/pseudorandom generators. If

there is an one-way function in any of the four computational complexity classes, then

both one-way functions and pseudorandom generators exist in all of them. Note that

pseudorandom generators are in particular one-way functions, and however, nothing

similar is known for PKE.

Log-space

NC0

NC1

Multi-Stream
(O(1),O(log n),2)

[AIK04]

TrivialThis work

[HS08]

Figure 1-3: Implications for the existence of one-way func-
tions/pseudorandom generators.

1.3 Randomness Extraction in the Multi-Stream

Model

We also consider randomness extraction in the multi-stream model, which is not

only of theoretical interests but also leads to the empirical method of extracting

randomness from Big Data. We first discuss the motivation, the formal context, then
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present our conceptional, theoretical and experimental contributions.

1.3.1 What is Randomness Extraction?

Why randomness extraction? True randomness is a valuable resource and in-

dispensable for multiple disciplines ranging from cryptography and game theory to

algorithm design and numerical simulation of physical systems. However, obtaining

high quality random bits, i.e. uniform or statistically close to uniform ones, is in

general difficult. One major obstacle is that high quality random bits can only be

generated from a sequence of uncertain events that contain true randomness. At

the time of the writing of this dissertation, the ultimate characterization of uncer-

tain events and true randomness remains unclear in mathematics and controversial

in philosophy. Therefore, it is natural and legitimated to put aside that obstacle for

a moment, assume the existence of uncertain events, and consider what shall happen

thereafter.

Even when given recorded uncertain events, it is still a great challenge to obtain

high quality random bits, because those events are not perfect random and may be

correlated. For example, consider flipping a biased coin many times, or experiments

with more involved correlations. Suppose the uncertain events are collected to consti-

tute a random variable X over {0, 1}n. In most cases X is not necessarily uniformly

distributed, and in fact it can be far from uniform. Thus, extracting high quality ran-

dom bits from such “weakly” random X is a natural demand, which has motivated

various theoretical approaches on randomness extraction.

Here we put randomness extraction in formal context.

Definition 1.2. For every random variable X over {0, 1}n, the (Shannon) entropy

of X is denoted as

H[X]
def
=

∑
x∈{0,1}n

Pr[X = x] log2

(
Pr[X = x]−1

)
As the worst-case analog of entropy, the min-entropy[CG88] of X is H∞[X] defined
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as

H∞[X]
def
= min

x∈{0,1}n
log2

(
Pr[X = x]−1

)
Definition 1.3. The min-entropy rate of X is denoted by κ

def
= H∞[X]/n, and X is

called a weak source if κ < 1. In particular, we call X an (n, k)-source if H∞[X] ≥ k.

Unless otherwise specified, all sources that we consider in this dissertation are

(n, k)-sources with k = Ω (n) .

We generalize the above (Shannon) entropy and min-entropy to the conditional

form. Note that conditional min-entropy takes a worst-case quantity on conditions.

Definition 1.4. For a random variable Y taking values over S, (i) the conditional

(Shannon) entropy of X conditioned on Y is defined as H[X
∣∣Y ]

def
=
∑

y∈S Pr[Y =

y]H[X
∣∣Y = y]; and (ii) the conditional min-entropy of X conditioned on Y is defined

as H∞[X
∣∣Y ]

def
= miny∈S H∞[X

∣∣Y = y].

Let X = (X1, . . . , Xm) be the concatenation of m random variables. We say that (i)

every block of X has next-block-entropy k if for every i ∈ [m], H[Xi

∣∣X1, . . . , Xi−1] ≥

k; and as the worst-case analog, (ii) every block of X has next-block-min-entropy k

if for every i ∈ [m], H∞[Xi

∣∣X1, . . . , Xi−1] ≥ k.

Definition 1.5. A randomness extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a

function that takes two inputs: one is sampled from the source X over {0, 1}n, and the

other is a d-bit random seed Y ∼ Ud. Fixing an error tolerate ε > 0, we say that Ext

is a (k, ε)-extractor, if for every (n, k)-source X, the output distribution Ext(X, Y ) is

ε-close to the uniform distribution, i.e. 1
2

∑
z∈{0,1}m |Pr[Ext(X, Y ) = z]− 1

2m
| ≤ ε.

We discuss randomness extractors in the most practically relevant context and

always require d < m. In typical settings, the seed length is usually d = polylog(n)
def
=

(log2 n)c for a constant c > 0. The seed is necessary since otherwise it is impossible

to extract a single random bit from one weak source [Sha04].

The are several variants of randomness extractors in the literature. For example,

multi-source extractors [CG88, DEOR04, Rao09a, Raz05] work on multiple indepen-

dent sources and do not have to use a random seed. The second (and last) important
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variant of extractor works only for specific sources, e.g. bit-fixing sources (some bits

are fixed and the rest bits uniformly distributed) or affine sources (all the supports

constitute an affine subspace), rather than any (n, k)-source. These variants are also

considered in our work (Chapter 3).

1.3.2 Extraction from Big Data – Conceptual Contributions

As discussed in Section 1.3.1, the generation of high quality random bits must rely

on a source of randomness, i.e. a sequence of uncertain events. In this section we

bring up the idea of viewing Big Data as a weak source and evaluate the gains and

obstacles. We put randomness extraction from Big Data in the appropriate rigorous

context in Section 1.3.3.

The world bustles with uncertain events whose outcomes are routinely recorded

as Big Data. These include data generated in laboratories (e.g. DNA sequenced data)

and data produced by individuals (e.g. social network feeds). We view the generation

of such data as the sampling process from a big source, which is a random variable of

size at least a few GBs. This view initiates the study of big sources in true randomness

extraction.

Two competing factors arise in big source extraction. First, input samples must

be locally processed due to their size; second, all statistical dependencies embedded

arbitrarily in input samples must be removed. Ad hoc solutions bypass this issue by

splitting a big sample into smaller ones and processing every smaller sample individ-

ually, and thus they rely on independence assumptions that restrict applicability. In

this dissertation, we consider big source extraction in the multi-stream model that

locally process everything, and we also make mathematical analysis to prove the

extraction quality from any weak sources.

There are tangible benefits to linking randomness to Big Data. First, they are ev-

erywhere [Ban14, WK13]. Second, these data are in common use, so adversaries can-

not significantly reduce statistical entropy without making them unusable [CMBH02].

In addition, these data are accessible without any special equipment, in contrast to

previous works those resort to physical phenomena such as quantum experiments
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[PAM+10, PM13, UZZ+13, VV12] or atmospheric turbulence [MVV14]. The ability to

extract from big samples also leverages the study of quantum randomness expanders,

since it allows us to post-process while ignoring local statistical dependencies.

1.3.3 Extraction from Big Data – Technical Contributions

We consider randomness extraction in the multi-stream model (defined in Section 1.1.1)

with (O (log log n), polylog(n), 2)-bounded Turing machines, i.e. using polylog(n) local

memory and O (log log n) passes over 2 streams. The weak source X is initially stored

on the first stream, while the other stream is auxiliary. The seed permanently resides

in the local memory of size polylog(n).

In this part, we first exposit the lower bound results, and then we show that our

lower bound in some sense is tight by presenting a matching construction.

Lower bounds. We show that Ω
(
log log 1

ε

)
many passes are necessary for extrac-

tors in the multi-stream model. Furthermore, we prove a much stronger lower bound,

i.e. Ω (log n) many passes, for oblivious (k, ε)-extractors with k = n1−Ω(1) and ε < 1/2.

The lower bound results are obtained using the same technique as mentioned in Sec-

tion 1.2.3 on page 9. The proofs are given in Section 4.3.

Theorem 4.9 (informally stated). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a

fixed (k, ε)-extractor. If Ext uses a seed of length d ≤ O (s) and is (p, s, t)-streaming

computable for a positive constant t and s = no(1), then the streaming algorithm for

Ext must make at least p = Ω
(
log log 1

ε

)
many passes, even for bit-fixing sources.

We say that an extractor is oblivious if after fixing the bits of the seed the head-

move on the streams depends only on the input length. We prove the following lower

bound for oblivious extractors.

Theorem 4.11 (informally stated). Suppose Ext : {0, 1}n × {0, 1}d → {0, 1}m is

an extractor obliviously computable with a (p, s, t)-bounded Turing machine where t

is a constant and s = no(1). If Ext is a (k, ε)-extractor with k = n0.99 and ε < 1/2,
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and d ≤ m0.99 = kΩ(1), then the streaming algorithm for Ext must make at least

p = Ω (log n) many passes, even for bit-fixing sources.

Note that all known general extractors (streaming or not), by the time when this

dissertation is written, are oblivious.

Constructions. On the positive side, our main contribution is a two-stream seeded

extractor, which we call Random Re-Bucketing (RRB). RRB is a streaming algo-

rithm that uses local memory of size polylog(n), a polylog(n) random seed, and two

read/write streams. It makes O
(
log(log 1

ε
+ log n)

)
= O

(
log(log n

ε
)
)

many passes to

produce an output ε-close to the uniform distribution for input sources of min-entropy

k = Ω(n). We obtain the following provable guarantees.

Theorem 3.17 (informally stated). For every ε > 0 and k = Ω (n), there exists

an integer λ = O
(
log n

ε

)
, d = O

(
λ log n log n

ε

)
and m = Ω

(
λn/ log n

ε

)
, such that

RRB : {0, 1}λ×n×{0, 1}d → {0, 1}m is a (k, ε)-extractor for λmany independent (n, k)-

sources. Here, the input stream to RRB consists of λ samples of all the independent

sources listed one after the other in the same stream.

In the above theorem, the λ-many sources are independent but not necessarily

identically distributed. These sources are transparent in the algorithm and only

needed for the proof, i.e. RRB treats all their samples as a whole input stream. The

same RRB algorithm, with even better parameters, also works on a single sample from

specific sources, i.e. bit-fixing or affine sources (Definition 3.1 and 3.2 on page 56).

Theorem 3.5 (informally stated). For every ε > 0 and k = Ω (n), there exists

d = O
(
log n log n

ε

)
and m = k − o (k), such that RRB : {0, 1}n × {0, 1}d → {0, 1}m is

a (k, ε)-extractor for every (n, k)-bit-fixing source.

Theorem 3.12 (informally stated). For every ε > 0 and k = Ω (n), there exists

d = O
(
log n log n

ε

)
and m = Ω

(
n/(log n

ε
)
)
, such that RRB : {0, 1}n × {0, 1}d →

{0, 1}m is a (k, ε)-extractor for every (n, k)-affine source.
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In the most typical case where ε = 1/poly(n), both the local memory size and seed

length in above results become O
(
log3 n

)
or O

(
log2 n

)
, and the number of passes is

O (log log n). RRB is asymptotically optimal in the number of passes, since we have

the tight Ω
(
log log 1

ε

)
= Ω (log log n) lower bound (page 16).

For a comprehensive treatment of parameters, we note that one can beat the

Ω
(
log log 1

ε

)
bound in the number of passes by using a very long seed. In particu-

lar, we can construct a two-stream extractor (Section 2.2 on page 31) that makes a

constant number of passes and uses a seed of length n2 to extract Ω (k) + n2 many

bits. However, this construction is mainly of theoretical relevance, since almost every

practical application calls for exponentially smaller seeds.

1.3.4 Extraction from Big Data – Experimental Contribution

We propose an empirical method for true randomness extraction from Big Data, and

implement the method as an executable program. Then, we experimentally evaluate

the efficiency and quality of the proposed method on real-world data.

The extraction method consists of a big data randomness extractor and the nec-

essary components for initial seed generation and parameter estimation. The descrip-

tion of our method is given below.

i. RRB is the big data extractor and it is implemented as an ultra-efficient executable

program, whose output quality is empirically validated (Table 3.1, Table 3.2,

Table 3.4, and Table 3.5 in Section 3.4 ) by standard statistical tests [RSN+10,

die08].

ii. The initial seed generation method consists of two phases. First, apply a multi-

source extractor following [BIW06, Zuc90] on multiple independent sources to

extract the very initial randomness without using any seed. Then, invoke RRB

to expand the very initial randomness further.

iii. The parameter estimation method is used to determine necessary parameters to

run the RRB extractor, e.g. it estimates a lower bound for the min-entropy k.
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The proposed method is validated in terms of efficiency and quality (measured by

two standard quality test suites, NIST [RSN+10] and DIEHARD [die08]) with spec-

tacular results (in terms of the reported measurements) on real-world data samples.

These samples range in size from 1.5 GB – 20 GB and they are from 12 data cat-

egories (see Table 3.6): compressed/uncompressed text, video, images, audio, DNA

sequenced data, and social network data. The empirical extraction is for ε = 10−20

and estimated min-entropy rate ranging from 1/64 to 1/2, with running time from

0.85 hours to 11.06 hours and less than 22 MB of memory on a desktop PC (Figure 3-

2-A). Note that prior to this work, processing a 20 GB sample would have taken more

than 100, 000 years of computation time and exabytes of memory (Figure 3-2-B). The

extracted outputs of our method pass all quality tests in the same way as the ideal

uniform (Table 3.1), whereas the before-extraction-datasets fail almost everywhere

(Table 3.2). Such test results provide further evidence supporting that the extraction

quality is statistically close to the ideal uniform distribution, besides the necessary

[SB00] rigorous mathematical treatment.

1.3.5 Comparison to Previous Works

For single-stream algorithms, [BYRST02] (see also [BYGW99]) showed the impossi-

bility of extracting randomness by making a single pass over the input. Their work

generalizes to the lower bound that randomness extractors with single read/write

stream and local memory of size s must make Ω(n/s) many passes.

Lower bounds are difficult to prove in the multi-stream model, since known single-

stream lower bound techniques such as crossing sequence-like or communication com-

plexity arguments cannot handle more than one stream. In this dissertation, we first

introduced the lower bound technique ([PY14]) for big pseudorandom objects, e.g.

pseudorandom generators, in the multi-stream model. However, these arguments rely

on the fact that the input is stretched in the output, which rarely holds for extractors.

Furthermore, unlike the deterministic pseudorandom generators, an extractor is a ran-

domized algorithm whose computation depends on a uniform random seed. To that

end, the lower bound proof for extractors requires more precise calculation combined
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with averaging arguments. Another difference is that the lower bounds for extractors

are not just super-constant Ω (1) many passes, but the unusual Ω (log log n). More

surprisingly, such log-log lower bound turns out tight according to the matching con-

struction of RRB. Note that lower bounds hold even for bit-fixing sources, and in

fact for any constant number of bit-fixing sources; i.e. this lower bound applies to

extractors that are simultaneously seeded and multiple-independent-source.

A technical problem in realizing a streaming extractor is that the multi-stream

model is inherently limited in permuting input blocks. This is true even when the

head can move in two directions over the streams [BH12, GHS09, GS05]. Our slightly-

above-constant lower bound implies that at least a mild form of permutation is nec-

essary. Indeed, by putting in perspective previous constructions (e.g. [RRV99, SU01,

Tre99]) we observe that they all access the input bits in a permuted fashion, and

this is true even after fixing the seed. However, these previous extractors make ex-

pensive operations when viewed as streaming algorithms. The same holds true for

extractors from multiple independent sources, where access to the input also relies

on accessing the input through streaming-wise-costly combinatorial objects such as

error-correcting codes [DEOR04, Raz05]; e.g. multiplying a matrix M by a vector x

which requires Ω (log n) many passes or polynomial local memory by [GHS09].

There are practical efficiency issues in applying previous extractors on very big

objects. Those extractors are not designed for very long input, and their running

time are commonly polynomial in the input length n, e.g. O (n2). In the context of

extraction from Big Data, even quadratic running time becomes intolerable since n

is too large. For instance, we observe that an implementation of Trevisan’s extractor

would spend more than 100, 000 years on a 20 GB input, which is estimated via

polynomial fitting of experimental results on small input samples (Figure 3-2-B on

page 87). In addition, the space used on the streams cannot grow quadratically

either, which precludes the simulation of Log-space algorithms with O (log n) passes

over 2 streams [CY91, HS08]. As a comparison, RRB achieves streaming efficiency

with running time O
(
n log log n

ε

)
and O (n) space on the streams.

Conceptually, RRB differs from known seeded extractors, e.g. Trevisan’s extrac-
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tor [Tre99] and its followups. The conceptual simplicity of RRB leads to efficiency in

the multi-stream model.

In the beginning RRB applies “streaming friendly” permutations, which cost only

O
(
log log n

ε

)
passes with an appropriately implementation. These mild permutations

prepare the input for the last part of RRB, which is an one-pass local extractor that

operates on every block with the same extractor and seed.

The last part of RRB alone, i.e. applying the same local extractor on every

block, is proved to work correctly conditioned on guaranteed next-block-min-entropy

[CG88, CMV13, SV86, Zuc96]. Here “guaranteed next-block-min-entropy” means

that conditioned on the worst-case choice of all preceding blocks, there is still enough

min-entropy left in each block (see Section 1.4 on page 14). Those previous works

[CG88, CMV13, Zuc96] use the last part of RRB alone only under restricted con-

ditions, e.g. extracting from multiple sources where each block is independently

sampled. However, to process every block locally in polylog(n) memory, every sample

must have size polylog(n) and hence there must be Ω (n/polylog(n)) many indepen-

dent samples. This is substantially different from the O
(
log n

ε

)
many independent

samples required by RRB for general weak sources (Theorem 3.17). At a retrospect,

the major effort in RRB is to obtain next-block-min-entropy from as mild as possible

input samples.

Finally, we note that RRB is an oblivious streaming extractor (i.e. after fixing the

seed the head-move on the external streams depends only on n). Thus, RRB, which

makes O
(
log log n

ε

)
passes, does not work for sources of min-entropy k = o (n), where

Ω (log n) many passes are needed (Theorem 4.11 on page 112).
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Chapter 2

Cryptography in the Multi-Stream

Model

In this chapter, we discuss cryptographic constructions in the multi-stream model.

The exposition begins with necessary notations and formal context in Section 2.1,

and a warm-up example for one-way functions in Section 2.3. The multi-stream

constructions of pseudorandom generators and the PKE scheme are presented in

Section 2.4 and Section 2.5. Finally, we summarize in Section 2.6. The lower bounds

for cryptographic primitives are discussed in Chapter 4, Section 4.2.

2.1 Preliminary – Notation and Background

We use capital letters to denote random variables and sets, and in particular X, Y, Z

for random variables and S, T for sets. For convenience we let [n]
def
= {1, 2, 3, . . . , n}.

Calligraphic letters, e.g. D, are used to denote probability distributions. We use

x ∼ D to denote that x is sampled from D, and x ∈R S when x is sampled uniformly

from the set S.

We denote types of independent random variables by calligraphic letters such as

Un for the uniform distribution over {0, 1}n and US for the uniform distribution over

a set S. All distributions are over {0, 1}n for some positive integer n unless otherwise

specified. The statistical distance between two distributions X, Y over {0, 1}n is
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defined as SD (X, Y )
def
= 1

2

∑
w∈{0,1}n

∣∣Pr[X = w] − Pr[Y = w]
∣∣. We say that X is

ε-close to uniform if SD
(
X,U|X|

)
≤ ε.

We use capital bold letters, e.g. A, to denote matrices, and lower case bold letters,

e.g. x, for column vectors, and correspondingly xT for row vectors. Let Zq := Z/qZ =

{0, 1, 2, · · · , q − 1} be the ring of integers with addition and multiplication modulo q.

Lowercase letters such as x, y are used for binary strings. By subscripting a

string with a set, e.g. x|S, we denote the subsequence of x restricted on the positions

specified by S in increasing order, and the same holds for random variables. For

example, x|{1,3,42} = (x1, x3, x42). Substrings of x are denoted by x1, x2, · · · , and in

particular (x1, . . . , xb) refers to a partition of x into b many consecutive parts, where

each part xi is called a block of x. Moreover, when x is sampled from a random

variable X, for every i ∈ [b] we denote by X i the block of X where xi is sampled

from. To avoid ambiguity, brackets are used to index bits; e.g. X1[2] denotes the

second bit of the random variable X1.

Complexity theory related notation. In this dissertation all complexity classes

are function classes (but we prefer to write e.g. NC0 instead of FNC0). Log-space

denotes the set of all functions computable by a Turing machine (transducer) with a

read-only input, O (log n) large working tape, and a write-only output tape.

For every non-negative integer i ∈ Z≥0, NCi denotes the set of functions com-

putable by families of boolean circuits that for every input length n there is one

poly-size circuit consists of constant fan-in gates and has O
(
logi n

)
depth. Since

NC0 circuits have constant depth, every output bit in an NC0 circuit only depends

on constant many input bits, regardless of the input length. Thus, NC0 is also called

“constant parallel time”.

A family of circuits is (Log-space) uniform if there is a (Log-space) Turing machine

such that on input 1n for n ∈ Z≥0, it generates the description of the corresponding

circuit in the family. In particular, every function in Log-space uniform NC1 is also

in Log-space [AB09].

In this chapter, we consider streaming algorithms for (p, s, t) = (O (1),O (log n), 2),
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following Definition 1.1 on page 4, which means algorithms computable with Turing

machines with O (log n) local memory plus constant many sequential passes over 2

read/write streams.

Cryptographic primitives. We begin with one-way function, which is a very fun-

damental cryptographic primitive. Many other primitives are in particular one-way

functions.

Definition 2.1. f : {0, 1}∗ → {0, 1}∗ is a (T, ε)-secure one-way function for T =

T (n), ε = ε(n) if f is polynomial time computable and for all sufficiently large n, for

every time T randomized algorithm A, Pry∼f(Un)[f
(
A(y)

)
= y] < ε.

For simplicity, we omit (T, ε) for computational security, which refers to T =

nω(1), ε = n−ω(1). This also applies to the notation of pseudorandom generators below.

Definition 2.2. A polynomial time computable function G : {0, 1}∗ → {0, 1}∗ is

called a (T, ε)-pseudorandom generator if ∀x, |G(x)| > |x| and G(Un) is (T, ε)-

pseudorandom, i.e. for sufficiently large n and for every randomized distinguisher

D with running time T ,
∣∣Pr[D(G(Un)) = 1]− Pr[D(U|G(1n)|) = 1]

∣∣ < ε .

We also introduce the following public-key cryptographic primitive.

Definition 2.3. A public-key encryption (PKE) scheme consists of three polynomial

time algorithms for key-generation, encryption, and decryption respectively:

i. KeyGen takes the security parameter 1n as input and it generates a public en-

cryption key PK and a private decryption key SK. Both of PK,SK have length

at least n, and n can be determined from PK,SK.

ii. Enc takes input (PK,m) and outputs a ciphertext c = Enc(PK,m), for every

m drawn from the message space M which may depend on PK.

iii. Dec takes input (SK, c) and outputs m with overwhelming probability over the

random choices of Enc. That is, Pr[Dec(SK,Enc(PK,m)) 6= m] ≤ neg(n).

The key-generation KeyGen and the encryption Enc are probabilistic polynomial

time algorithms, while the decryption Dec is deterministic.
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We say that a PKE system is streaming computable if both Enc and Dec are

(O (1),O (log n),O (1))-streaming algorithms. We do not require KeyGen to be a

streaming algorithm since it only invokes at the beginning offline phase.

In a PKE system, Indistinguishability under Chosen Plaintext Attack (IND-CPA)

security is defined through the following security experiment, which is a game between

a challenger and an adversary :

i. The challenger runs KeyGen and uses its random choices to generate a public

PK and a private SK key, and reveals the PK to the adversary.

ii. The adversary chooses two equal-length messages x0 and x1, and sends them to

the challenger.

iii. The challenger flips an unbiased coin b ∈R {0, 1}, computes c = Enc(PK,xb)

and gives the ciphertext c to the adversary.

iv. The adversary outputs b′ ∈ {0, 1} based on PK and c, and it wins if and only if

b′ = b.

Here the adversary is an arbitrary probabilistic polynomial time algorithm. The

PKE is IND-CPA secure if for every c ∈ R, we have Pr[b′ = b] < 1
2

+ 1
Nc , when the

message length N = |x0| = |x1| is sufficiently large.

Note that there are no unconditional constructions for the above cryptographic

primitives, since otherwise there must be P 6= NP. Therefore, constructions of these

primitives must be based on intractability assumptions. In this dissertation, we use

the general assumption that one-way functions exist in NC1. This assumption cov-

ers many specific popular intractability assumptions, such as Integer Factorization

(Section 1.2.2 on page 8), Learning With Errors (Assumption 2.18 on page 45) and

Decoding Random Linear Codes (Assumption 2.21 on page 53).

Randomized encoding and cryptography in NC0. The randomized encod-

ing technique (defined below) was introduced in [AIK06a, AIK06b, AIK08, AIK09,

AIK10] to show feasibilities of cryptography in NC0.
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Definition 2.4. For a function f : {0, 1}n → {0, 1}m, the function f̂ : {0, 1}n ×

{0, 1}ρ → {0, 1}m
′

is a randomized encoding of f if the following conditions hold

i. For every x ∈ {0, 1}n, the output distribution f̂(x,Uρ) uniquely determines a

f(x), i.e. f̂(x, r) 6= f̂(x′, r′) for any r, r′, as long as f(x) 6= f(x′).

ii. The output distribution is fully determined by the encoded value f(x), i.e. if

f(x) = f(x′) then f̂(x,Uρ) and f̂(x′,Uρ) are identically.

iii. |ρ| = poly(n) and there are poly(n)-time algorithms to decode f(x) from any

sample in f̂(x,Uρ), and to sample from f̂(x,Uρ) when given f(x).

This technique is used to transform a hard-to-compute function into a much easier

one that is information-theoretically equivalent. Intuitively, (i) means that f̂(x, r)

contains all information about f(x), and (ii) asserts that f̂(x,Uρ) reveals no extra

information about x other than the value of f(x). Putting these two together we

have that if f is a one-way function then f̂ is also one-way [AIK06b].

Streaming Model NC0

one-way function
pseudorandom generator (PRG)

X X

PKE (Enc & Dec) X ×
linear-stretch PRG ? X*
super-linear-stretch PRG × ?

Table 2.1: Cryptography in the Multi-Stream Model vs Cryptography in
NC0. The multi-stream model refers to the (O (1),O (log n),O (1))-streaming algo-
rithms in this table. Checkmark “X” means there exists a construction, cross “×”
means a lower bound, and question mark “?” means the problem remains open.
* The linear-stream pseudorandom generator in NC0 is constructed from
Alekhnovitch’s assumption [Ale03].

Both cryptography in the multi-stream model and cryptography in NC0 rely on

randomized encodings, but they are incomparable in a number of places. There are ob-

vious things streaming algorithms can do (e.g. compute the parity of n bits, or sample

almost uniformly from Sym(5); see Definition 2.10 on page 34 and Section 2.3.1) but

NC0 cannot, while NC0 functions can perform non-trivial permutations that stream-

ing algorithms cannot. Furthermore, there are concrete technical separations between
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the multi-stream model and highly parallel NC0, as shown in Table 2.1. For example,

there is IND-CPA secure PKE with streaming encryption and decryption, whereas

no NC0 decryption is possible1.

2.1.1 Single-Stream One-Way Functions are Impossible

We prove the impossibility of one-way functions with in the data stream model in

Theorem 2.5, which improves on [KGY89].

In [KGY89] it is shown that a streaming algorithm with local memory O (log n),

a write-only output tape, and a single (i) read-only stream over which it makes a

constant number of passes cannot compute (ii) a pseudorandom generator of linear

stretch. We improve by showing that the single stream can be (i) read-write and

that we cannot compute (ii) a one-way function; i.e. in particular, a pseudorandom

generator.

As usual we write f : {0, 1}n → {0, 1}m as a representative of a family of functions

f : {0, 1}∗ → {0, 1}∗, which contains one function for each input length n ∈ Z>0.

Theorem 2.5. Every function f : {0, 1}n → {0, 1}m that is computable by an

(O (1),O (log n), 1)-streaming algorithm (i.e. O (log n) local memory and constant

many passes over single stream) is invertible in polynomial time.

Proof. Let f : {0, 1}n → {0, 1}∗ be computable by an algorithm Af with s ≤ c log n

local memory and p passes over single external tape, where both c, p are constants.

We construct a non-deterministic Log-space adversary A that inverts f . The intuition

is that A first guesses Af ’s local memory, then simulate the computation of p passes

simultaneously while guessing the pre-image x, and finally check consistency of the

simulation. We first present the algorithm A and then discuss its correctness and

efficiency.

Let x = (x1, x2, · · · , xn) be the input. Without loss of generality, we consider Af
makes exactly p passes from left to right and only invokes new passes after scanning

the last non-blank cell. For simplicity, we prove for the case when Af is not allowed

1The problem is still open for AC0, where AC0 is the unbounded-fan-in-gates analog of NC0.
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to write on any blank cells on the external tape, i.e. the stream size is restricted to n.

The argument generalizes to larger stream size, since for single-stream algorithms the

blow-up of stream size is at most p ·2s = poly(n) when p is constant and s = O (log n).

Furthermore, we assume that Af maintains in its local memory an output index

(e.g. yc in the following algorithm) which indicates the current output position.

Input: 1n and y

Process:

1 Non-deterministically select p+ 1 local memory snapshots

C1, · · · , Cp+1 ∈ {0, 1}s, where C1 is the initial memory and Cp+1 is a legal

terminal memory

2 Initialize xc← 1, yc← 0

3 C ′i ← Ci, for i = 1, 2, · · · , p

4 while xc ≤ n do

5 Guess xxc and z ← xxc

6 for j = 1 to p do

7 Simulate Af with C ′j on z, and update C ′j, z accordingly

8 yc← the output index in C ′j

9 if Af outputs b 6= yyc then halt with “Failed”

10 end

11 xc← xc + 1

12 end

13 for i = 1 to p do

14 if C ′i 6= Ci+1 then halt with “Failed”

15 end

16 Halt with “Succeed”

Algorithm 1: A – inverting f given input length n and output y = f(x)

Lines 1–3 are for initialization. Lines 4–12 are used to simulate the computation

of Af on guesses input x1, ..., xn, and line 8 compares the output of simulation to the

target y in an online fashion. Lines 13–15 checks whether the simulation corresponds

to a consistent execution of A. If everything is consistent, line 16 reports success of
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the non-deterministic simulation.

For correctness, we prove that when A succeeds, the non-deterministic guess of

x must be a pre-image of y. Because for every i = 1, 2, . . . , p, A checks in Line 14

whether Ci+1 is exactly the memory after the computation of Af with Ci and the

guessed input x. As long as A passes this check, then Line 7 is guaranteed to simulate

in parallel the computation of Af in all p passes on the guessed input x. Conse-

quentially in Line 9, A checks whether the output of the simulation is the same as

y. Therefore, A succeeds if and only if the guessed input is a pre-image of y and

C1, · · · , Cp+1 are corresponding local memory content before each single pass.

Regarding efficiency, the adversary A stores 2p + 1 copies of Af ’s local memory,

i.e. C1, · · · , Cp+1, C
′
1, · · · , C ′p, together with one bit guessed input z, and constant

many counters, i.e. the instruction counter, iteration counters i, j, and counters xc, yc

for the input and output positions being processed. All these variables together

consume at most (2p + 1)s + 1 + O (log n) = O (log n) bits of local memory. Thus,

A is computable by a non-deterministic Log-space Turing machine. By a standard

technique, all configurations can be enumerated and organized with a poly(n)-sized

digraph. After that, there is a deterministic polynomial algorithm finding a path from

the initial configuration to a success configuration (since y = f(x), such a success path

always exists). Moreover, the success path reveals the non-deterministic guesses of x,

which is a desired pre-image.

In conclusion, f is invertible by a polynomial time algorithm and hence it is not

a one-way function.

The above adversary easily extends to the case where there is an extra write-only

tape, since it checks output consistency in an online way (Line 9 in A). Furthermore,

it extends2 to the case where the inverter is in uniform NC.

2We would like to thank Eric Allender for bringing this to our attention.
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2.2 Warm up: Streaming Encoding of Universal

Hash Functions

The universal family of hash functions is an important and widely used combinatorial

object. For instance, it serves as an indispensable part in many generic constructions

of pseudorandom generators from one-way functions (see [HILL99, HRV10, VZ12]).

It is also applicable as a randomness extractor by Lemma 3.8 (page 63), though

inefficient in seed length.

In this part, we give the formal definition of universal families of hash functions,

and then present an implementation in the multi-stream model.

Definition 2.6. Let Smn be a set of functions from {0, 1}n to {0, 1}m and Hm
n be

a random variable uniformly distributed over Smn . We say that Smn is a universal3

family of hash functions (or a hashing family for short) if it satisfies the following

two conditions:

i. Every function in Smn has a succinct bit-string representation (i.e. encoded as a

string in {0, 1}poly(n,m)) and can be efficiently evaluated, i.e. there is a polynomial

time algorithm E which computes E(h, x) = h(x) on input the binary represen-

tation of h ∈ Smn and x ∈ {0, 1}n. This algorithm E is called the universal

evaluator for Smn .

ii. For every x, y ∈ {0, 1}n and x 6= y, the random variables Hm
n (x) and Hm

n (y) are

independent and identically distributed to Um, i.e. for every z1, z2 ∈ {0, 1}m,

Pr
h∼Hm

n

[h(x) = z1 ∧ h(y) = z2] = 1/22m

The definition of hash families does not carry any hardness requirement and there

are explicit constructions. For example, a popular hashing family is the set of all

affine transformations, i.e.
{
h(x) = Mx + b

∣∣ M ∈ Zm×n2 ,b ∈ Zm2
}

where the algebra

is over Z2. Every function in this family has a description of length (m+1)n. A more

3This is sometimes referred to as “2-universal” since condition ii talks about independence be-
tween two elements.
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succinct hashing family is obtained with affine transformations defined by Toeplitz

matrices, which are matrices that have invariant values on each of its diagonals. In

the Toeplitz hashing family, every function is described with 2m+ n− 1 bits.

Now, we present a universal family of linear hash functions in the multi-stream

model. More specifically, we construct a perfect randomized encoding scheme in

[PY14] for linear hash functions4, i.e. h(x) = Mx for M ∈ Zn×n2 . This encoding

scheme achieves streaming efficiency while evaluating information-theoretically the

same function as before being encoded. Note that although the argument is for

random linear functions, everything is naturally generalized to the family of Toeplitz

functions.

Claim 2.7. Let Smn be a family of linear hash functions, and for every h ∈ Smn , h :

{0, 1}n → {0, 1}m has the form h(y) = yTH, where H ∈ {0, 1}n×m is the matrix speci-

fied by h. Then, every h ∈ Smn has a randomized encoding ĥ : {0, 1}n×{0, 1}(n−1)m →

{0, 1}nm, such that Snm(n−1)m+n = Ŝmn =
{
ĥ|h ∈ Smn

}
defines a universal family of

streaming computable hash functions from (n−1)m+n bits to nm bis. That is, there is

a streaming computable universal evaluator Ê : Ŝmn ×{0, 1}n×{0, 1}(n−1)m → {0, 1}nm

for Ŝmn such that Ê(ĥ,y, r) = ĥ(y, r). In particular, we say that ĥ is a streaming

randomized encoding of h.

Proof. Suppose y = (y1, · · · , yn), and H be as follows:

H =


h1,1 h1,2 · · · h1,m

... · · · · · · ...

hn,1 hn,2 · · · hn,m

 (2.1)

As a result, we have yTH = (
∑n

i=1 yihi,1,
∑n

i=1 yihi,2, · · · ,
∑n

i=1 yihi,m), where every

output bit depends on all n bits in y. The summation over Z2 is equivalent to parity

operation. In order to reduce the locality of the product yTH, we introduce a sequence

of random bits r ∈ {0, 1}n×m to partition every term
∑n

i=1 yihi,j into smaller “masked

4For cryptographic applications it suffices to consider linear functions rather than affine functions,
though the output, without adding a random vector b, is not uniformly distributed when x = 0.
Note that all the arguments for linear functions generalize to affine functions.
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pieces”, for each j = 1, 2, · · · ,m.

Thus, we design ĥ : {0, 1}n × {0, 1}(n−1)×m → {0, 1}n×m as

ĥ(y, r) = 〈y1h1,1 + r1,1, · · · , y1h1,m + r1,m,

y2h2,1 + r1,1 + r2,1, · · · , y2h2,m + r1,m + r2,m,

... · · ·

ynhn,1 + rn−1,1, · · · , ynhn,m + rn−1,m〉 (2.2)

It is easy to verify that ĥ is a perfect randomized encoding of the function h(y) =

yTH, and ĥ(y, r) uniformly distributes over all possible encodings of h(y).

We complete the proof with the realization of a universal evaluator Ê for ĥ in an

(O (1),O (log n), 2)-streaming algorithm. By scanning y and H in a row-first order,

Ê fills in all terms of the form yihi,j. Then, Ê completes the computation of ĥ(y, r)

(as represented in (2.2)) by making another two passes over r while scanning yihi,j’s

simultaneously.

2.3 Streaming One-way Functions

We present a generic compiler (Section 2.3.2) that maps every f ∈ NC1 to its random-

ized encoding f̂ in the multi-stream model. Due to a very useful coincidence regarding

the specific encoding we use, we get f̂ computable with 2 streams (the reader is en-

couraged to think ahead to see where the issue is). Corollary 2.9 immediately follows

Theorem 2.8 by [AIK06b].

Theorem 2.8. Every function f ∈ NC1 has a randomized encoding function f̂ which

is oblivious streaming computable with 5 passes.

Corollary 2.9. A streaming one-way function exists if there is a one-way function

in Log-space (defined on page 24).

Here is an advanced remark. The construction in the proof of Theorem 2.8 relies

on a specific randomized encoding that also causes a polynomial blow-up compared
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with the regular output length in Barrington’s Theorem (page 34).

2.3.1 Background: NC1 to width-5 Branching Programs

Now, we introduce the definition of a bounded-width permutation branching program.

This model is interesting for streaming computation because (i) it is completely se-

quential, (ii) every step depends only a single input bit, and (iii) it is powerful enough

to simulate functions in other classes (cf. [Bar86]).

Definition 2.10. A width-w permutation branching program consists of a sequence

of m = m(n) instructions Bn = (s1, 〈j1, σ1, τ1〉) · · · (sm, 〈jm, σm, τm〉), for ji ∈ [n] =

{1, 2, · · · , n}, σi, τi ∈ Sym(w). Here Sym(w) is the group of permutations over

[w] = {1, 2, · · · , w}. On input x = (x1, · · · , xn) ∈ {0, 1}n, Bn is evaluated as Bn(x) =

s1 · s2 · · · · · sm, where si = σi if xji = 1 and si = τi if xji = 0.

A function f : {0, 1}n → {0, 1} is recognized by Bn if there exists a cycle θ ∈

Sym(w), such that ∀x ∈ {0, 1}n, Bn(x) = θ when f(x) = 1, and Bn(x) = e is the

identity permutation when f(x) = 0.

Permutation branching programs can compute many interesting functions. In

particular, width-5 branching program is sufficient for every function in NC1, as shown

in the following theorem. This theorem holds as well for the Log-space uniform case,

i.e. all the instructions are generated by a Log-space algorithm (transducer) on input

of 1n.

Theorem 2.11 (Barrington’s Theorem [Bar86]). Any boolean function f computable

by a family of depth d and fan-in 2 circuits can be recognized by a family of width-5

permutation branching programs with m ≤ 4d. In particular, m = poly(n) for f ∈ NC1

and input length n.

Thus, evaluating f : {0, 1}n → {0, 1} on input x reduces to deciding whether

Bn(x) = s1s2 · · · sm is the identity. Let f̂ : {0, 1}n × Sym(5)m−1 → Sym(5)m be

defined as

f̂(x; r) = 〈π1, · · · , πm〉 = 〈s1r1, r
−1
1 s2r2, · · · , r−1

m−2sm−1rm−1, r
−1
m−1sm〉
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where ri ∈R Sym(5), si follows the i-th instruction in Bn and m is the length of Bn.

Then, f̂ is a randomized encoding of f , since 〈π1, · · · , πm〉 uniformly distributes over

Sym(5)m conditioned on π1π2 · · · πm = s1s2 · · · sm.

We define Sample : {0, 1}q → Sym(5) to be the algorithm that samples ri ∈R
Sym(5) within statistical distance 2−Ω(q) using q = q(n) (read-once) random bits.

Then, every permutation in Sym(5) is identified by its unique binary ID in {0, 1}7.

Thus, f̂ is represented in binary as f̂ : {0, 1}n × ({0, 1}q)m−1 → ({0, 1}7)
m

that

induces a loss of at most 2−Ω(q(n)) in the output distribution. It only remains to make

f̂ streaming computable. The issue is that non-consecutive si’s may be arbitrarily

associated with the same input bit, so we must do something about this.

2.3.2 Streaming Computable Randomized Encoding

Our streaming algorithm for f̂ is based on the following observations:

i. fixing any poly-time invertible permutation ψ over {1, . . . ,m}, then for f̂(x; r) =

〈π1, · · · , πm〉, the permuted function g(x; r) = 〈πψ(1), · · · , πψ(m)〉 is a one-way

function as long as f̂ is a one-way function;

ii. a permutation branching program (e.g. Bn) recognizes exactly the same function

after inserting dummy instructions in the form of (s, 〈j, e, e〉); in other words,

the program (s1, 〈j1, σ1, τ1〉) · · · (sm, 〈jm, σm, τm〉) recognizes essentially the same

function as (s1, 〈j1, σ1, τ1〉) · · · (s, 〈j, e, e〉) · · · (sm, 〈jm, σm, τm〉).

By the second observation, for the length m branching program Bn that recog-

nizes f , we may replace first instruction of Bn, i.e.
(
s1, 〈j1, σ1, τ1〉

)
, with one real

instruction as before together with n − 1 dummy instructions (as place holders),

i.e.
(
s′1, 〈1, e, e〉

)
· · ·
(
s′j1 , 〈j1, σ1, τ1〉

)
· · ·
(
s′n, 〈n, e, e〉

)
, where s′j1 = s1 and s′i = e for

i 6= j1. Thus, these n instructions are functionally equivalent to the original in-

struction
(
s1, 〈j1, σ1, τ1〉

)
, since s′1 · · · s′n = s1 on every input. This kind of inefficient

replacement bring us the advantage that ∀i ∈ {1, 2, . . . , n}, the permutation s′i de-

pends on xi with exactly the same index.

We apply the similar idea for the rest m− 1 instructions, and introduce m(n− 1)
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dummy permutations after all. Then, we get a length mn = poly(n) new branching

program B′n whose s′1, · · · , s′mn obliviously depend on input bits, i.e. the j-th permu-

tation s′j depends on xi for i = j (mod n). In what follows, we abuse notation and

use Bn and si instead of B′n and s′i for simplicity.

The above treatment is both conceptually and technically (modulo our random-

ized encoding) unavoidable. Conceptually, without obliviousness it would have been

complicated to aggregate all permutations depending on the same input bit at the

right position. Technically, the issue of making the branching program oblivious and

consequently blowing up its length is not an aside issue. For example, if this could

have been avoided then it would have been the case that applying our techniques

we can obtain streaming linear stretch pseudorandom generators, given that a lin-

ear stretch pseudorandom generator exists in NC0. Note that we have left as an

open question the existence of such streaming pseudorandom generators. In partic-

ular, we do not know how to achieve this even when starting from Alekhnovitch’s

assumption5 [Ale03, AIK08], which is sufficient for constructing linear stretch pseu-

dorandom generators in NC0. All these signify that removing the blow-up induced by

the transformation to an oblivious one is a conceptually difficult task with non-trivial

implications.

Now, after introducing all the necessary dummy instructions, we compute the si’s

in the following order with a single pass: s1, sn+1, · · · , smn−n+1, s2, sn+2, · · · , smn−n+2,

· · · · · · , sn, s2n, · · · , smn (sorted by their dependency on x, which coincide the sub-

scripts modular n). Then, for f : {0, 1}n → {0, 1}, we apply the first observation to

construct the oblivious randomized encoding f̂ : {0, 1}n×({0, 1}q)mn−1 → ({0, 1}7)
mn

as follows

f̂(x; y1, . . . , ymn−1) =
〈
s1r1, r

−1
n sn+1rn+1, · · · , r−1

mn−nsmn−n+1rmn−n+1 · · · , r−1
mn−1smn

〉
5For every m(n) = O (n) and µ ∈ (0, 1), there exits a positive integer ` and a family of binary

matrices {Mn}n∈Z+ , where Mn is an m(n) × n matrix with exactly ` ones in each row, such that
the distribution of Mn × Un + eµ is computational indistinguishable from Mn × Un + eµ+1/m(n),
where eµ is a random error vector whose entry equals one with probability µ (independently from
other entries) and eµ+1/m(n) is defined similarly.
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where ri = Sample(yi), r
−1
i is the inverse of ri, and si is a function of x(i mod n) for

i = 1, 2, · · · ,mn.

When f(x) = 〈f1(x), f2(x), · · · , f`(n)(x)〉 has `(n) output bits, we design f̂ =

〈f̂1, · · · , f̂`(n)〉, which consists of an individual randomized encoding f̂i one for each

fi. It is not too hard to globally rearrange the output bits and obtain the final

streaming computable function f̂ .

Proof of Theorem 2.8. Consider the function f(x) = 〈f1(x), f2(x), · · · , f`(n)(x)〉 where

fi : {0, 1}n → {0, 1} is in NC1 for every i ∈ {1, 2, · · · , `(n)}. In an analog manner as in

the construction in Section 2.3.2, let s
(i)
1 , s

(i)
2 , · · · , s

(i)
mn follow the permutation branch-

ing program of fi by Barrington’s theorem, and let r
(i)
1 , r

(i)
2 , · · · r(i)

mn−1 be sampled from

Sym(5) with the random input r. Thus, every fi has a randomized encoding

f̂i(x, r) = 〈s(i)
1 r

(i)
1 , (r(i)

n )−1s
(i)
n+1r

(i)
n+1, · · · · · · , (r

(i)
mn−n−1)−1s

(i)
mn−nr

(i)
mn−n, (r

(i)
mn−1)−1s(i)

mn〉.

Now, we turn to the construction of f̂ . Putting f̂i’s together and rearrange terms,

we define

f̂(x, r) =
〈
s

(1)
1 r

(1)
1 , · · · , s

(`(n))
1 r

(`(n))
1 ,

(r(1)
n )−1s

(1)
n+1r

(1)
n+1, · · · , (r(`(n))

n )−1s
(`(n))
n+1 r

(`(n))
n+1 ,

... · · · , ...

(r
(1)
mn−n)−1s

(1)
mn−n+1r

(1)
mn−n+1, · · · , (r

(`(n))
mn−n)−1s

(`(n))
mn−n+1r

(`(n))
mn−n+1,

... · · · , ...

(r
(1)
mn−n−1)−1s

(1)
mn−nr

(1)
mn−n, · · · , (r

(`(n))
mn−n−1)−1s

(`(n))
mn−nr

(`(n))
mn−n,

(r
(1)
mn−1)−1s(1)

mn, · · · , (r
(`(n))
mn−1)−1s

(`(n))
mn−n

〉
(2.3)

The i-th column in f̂(x, r) consists of exactly the same elements as those in the

output of f̂i(x, r). So, f̂ is just a permutation of 〈f̂1, · · · , f̂`(n)〉, and hence forms a

randomized encoding of f = 〈f1, · · · , f`(n)〉. Clearly, there exists a polynomial time

algorithm sampling an identical distribution to f̂(x, r) when given f(x). So that f̂
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inherits one-wayness from f .

We provide a streaming algorithm for f̂ . Suppose at the beginning the input is

written in one external stream while the other is blank. For efficiency we assume the

input is written as follows

〈x1, r
(1)
1 , r

(2)
1 , · · · , r`(n)

mn−n+1;x2, r
(1)
2 , · · · , r`(n)

mn−n+2; · · · ;xn, r
(1)
n , · · · , r`(n)

mn−n〉

By scanning both streams once, we can compute the following results:

〈s(1)
1 r

(1)
1 , · · · , s`(n)

mn−n+1r
`(n)
mn−n+1; · · · · · · ; s(1)

n r(1)
n , · · · , s`(n)

mn−nr
`(n)
mn−n〉

〈(r(1)
1 )−1, · · · , (r`(n)

mn−n+1)−1; (r
(1)
2 )−1, · · · , (r`(n)

mn−n+2)−1; · · · ; (r(1)
n )−1, · · · , (r`(n)

mn−n)−1〉

The content of the first tape is computable because the permutation branching pro-

grams are log-space uniform and in every block the permutations only depend on one

input bit, e.g. s
(1)
1 , · · · , s`(n)

mn−n+1 only depend on x1. The second tape contains simply

the inverse permutations of those written on the input tape. Note that in (2.3) the

inverse permutations appear nearly in the same order as what we have now on the

second tape, i.e. it requires moving the (r
(1)
n )−1, · · · , (r`(n)

mn−n)−1 part to the beginning.

Therefore, by scanning the second tape twice and together the first stream once, we

can computed exactly f̂(x, r) as in (2.3).

Thus, we generalize the construction to the multi-bit case and get a one-way

function computable with totally 5 passes over 2 external streams in the streaming

model.

One may suggest the input given in a different order. However it does not really

cause problems, since we do not care the order of random permutations r and it

is also reasonable to rename the bits in x with respect to their order in the input.

Moreover, with constant many passes we can always transform the input into the

form as assumed.
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2.4 Streaming Pseudorandom Generators

The encoding in Section 2.3.2 does not preserve pseudorandomness, simply because

the encoding is over Sym(5) but |Sym(5)| = 120 is not a power of 2. In fact,

Barrington’s theorem (Theorem 2.11, p. 34) holds for every non-solvable Sym(w),

as long as w ≥ 5. However, there is no k ∈ Z such that 2k|w!, and hence it turns

out quite non-trivial to convert the output encoding in Sym(w) into pseudorandom

binary bits. Yet, we provide a rather technical adaptation of [VZ12] to build streaming

pseudorandom generators directly from any streaming one-way function f .

Theorem 2.12. Let f : {0, 1}n → {0, 1}m be a streaming one-way function. Then,

there is a streaming computable pseudorandom generator G requiring 2 additional

passes to the streaming algorithm for 〈f (1), · · · , f (`t)〉, for `, t defined as below.

Moreover, if m = O (n), then ` = n/log n, t = O
(
n2 log2 n

)
, and the seed length

of G is O
(
n6 log3 n

)
.

Corollary 2.9 and Theorem 2.12 yield the following corollary that shows the fea-

sibility of pseudorandom generators in the multi-stream model.

Corollary 2.13. If there is a one-way function in NC1 or Log-space, then there exists

a pseudorandom generator which is streaming computable with 7 passes.

In fact, the construction in Section 2.3.2 gives an oblivious streaming one-way

function, which implies that evaluating polynomial many copies of f does not need

more passes than computing a single copy of f . The construction in [VZ12, HRV10]

is necessary as opposed to [HILL99], since it bypasses the dependency on certain pa-

rameters, i.e. the entropy of f(Un), that we cannot handle with streaming algorithms.

In particular, we cannot enumerates all possible values of H[f(Un)] (even up to some

fixed accuracy) as in [HILL99], when the entropy is not efficiently computable.

The argument in [VZ12, HRV10] relies on the following computational analog of

next-block-entropy and next-block-min-entropy (page 14).

Definition 2.14. Let random variable X = (X1, . . . , Xm) be the concatenation of m

random variables, where X and m depend on a security parameter n. For every T =
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T (n), ε = ε(n), we say that every block of X has (T, ε) next-block-pseudo-entropy

(resp. next-block-pseudo-min-entropy) k if there exists a set of random variables

Y = (Y1, . . . , Ym) such that for every i ∈ [m],

• H[Yi
∣∣X1, . . . , Xi−1] ≥ k (resp. H∞[Yi

∣∣X1, . . . , Xi−1] ≥ k);

• Yi is (T, ε)-indistinguishable from Xi conditioned on X1, . . . , Xi−1, i.e. for every6

distinguisher D that is a randomized algorithm of running time T ,

∣∣∣Pr [D (X1, . . . , Xi) = 1]− Pr [D (X1, . . . , Xi−1, Yi) = 1]
∣∣∣ ≤ ε

Proof of Theorem 2.12. In this proof, we first briefly introduce the main steps of the

pseudorandom generator construction in [VZ12] (also [HRV10]), and then present the

modification and implementation in the multi-stream model.

There are four steps in the construction:

i. Next-Block-Pseudo-Entropy Generator: Given any one-way function f , we

construct a next-block-pseudo-entropy generator Gnb : {0, 1}n → {0, 1}m that

transfers n-bit input to an output with next-block-pseudo-entropy k = n + ∆,

where ∆ ≥ log n.

ii. Entropy Equalizer: We evaluate Gnb on ` independent seeds and concatenate

their output, and then we shift it by j ∈R [m] blocks with EQ : [m]×{0, 1}`m →

{0, 1}(`−1)m. Thus, every block has the same amount of next-block-pseudo-

entropy α = k/m.

iii. Converting Shannon Entropy to Min-Entropy and Amplifying the Gap:

We take t-fold repetition of EQ, which concatenate their outputs within each

block, to convert Shannon entropy to min-entropy (Definition 1.2 on page 13).

iv. Randomness Extraction: Finally, we pick a single random universal hash

function to extract pseudo-min-entropy from each block, and concatenate the

results as the final output.

6This definition is for non-uniform distinguishers. In the uniform setting distinguishers must be
given an oracle that produces random samples of X,Y . See [VZ12] for more detailed discussion.
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For step (i), [HRV10] use the construction Gnb(s, h) = 〈f(s), h, h(s)1, · · · , h(s)n〉,

which requires a randomized encoding of the hash function h when compiling to

streaming algorithms and hence results in additional passes and less seed efficiency.

The follow-up work [VZ12] suggests that indeed Gnb(s) = 〈f(s), s〉 has next-block-

pseudo-entropy n+ log n, when s ∼ Un. Such characterization significantly simplifies

the construction as well as proof of the streaming pseudorandom generator.

We first introduce the following lemma for step (i).

Lemma 2.15 (Theorem 1.5 in [VZ12]). If f : {0, 1}n → {0, 1}m′ is a one-way

function, then for s ∼ Un, Gnb(s) = 〈f(s), s〉 has next-block-pseudo-entropy n+ log n.

Such Gnb is trivially streaming computable as long as f is a streaming one-

way function. Letting m′ = m − n, we get the generator Gnb : {0, 1}n → {0, 1}m

with (T ′, ε′)-next-block-pseudo-entropy k = n+ log n, where T ′, 1/ε′ are both super-

polynomial in n.

Secondly, let EQ : {0, 1}d` → {0, 1}m` follow the construction in [HRV10] with

` = n/ log n, d` = logm+m`,m` = (`−1)m, such that for j ∈ [m] and z(1), · · · , z(`) ∈

{0, 1}m,

EQ
(
j, z(1), · · · , z(`)

)
:=
〈
z

(1)
j , · · · , z(1)

m , · · · , z(`)
1 , · · · , z(`)

j−1

〉
For z(1), · · · , z(`) independently drawn from Gnb(Un) and j ∼ J = U[m], we denote

the output distribution of EQ by X ,

X = EQ
(
J,Gnb(Un)(1), · · · , Gnb(Un)(`)

)
where every single-bit block of X has (T ′ −O (`m), `ε′)-next-block-pseudo-entropy at

least α = k/m by Claim 5.2 in [HRV10].

EQ is streaming computable with the same number of passes as evaluating Gnb

on ` independent seeds.

Then, we consider the t-fold of X ∈ {0, 1}m` for the third step as follows, where
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t = O
(
n2 log2 n

)
.

Y = X t =
〈(
X (1)

1 , · · · ,X (t)
1

)
, · · · ,

(
X (1)
m`
, · · · ,X (t)

m`

)〉
By Claim 5.3 in [HRV10], for every i ∈ [m`], the t-bit block

(
X (1)
i , · · · ,X (t)

i

)
in Y has (T ′ −O (m`t), t

2(`ε′ + 2−κ + 2−ct))-next-block-pseudo-min-entropy αt, for a

universal constant c, every κ = κ(n) > 0, and αt = αt(n) = t · α − O
(
log t ·

√
t · κ

)
.

In particular, we set κ = log2 n.

The random variable Y is streaming computable when represented in the form

〈X (1), · · · ,X (t)〉.

Finally, we want to evaluate the same hash function (randomly drawn from Sαt−κt )

on every block of Y , to extract αt−κ almost uniform bits from the αt bits next-block-

min-entropy. [HRV10, VZ12] relies on Ext defined as

Ext
(
Y , Hαt−κ

t

)
=
〈
Hαt−κ
t , Hαt−κ

t (Y1), · · · , Hαt−κ
t (Ym`)

〉
Although Ext is not streaming computable due to the hash functions, we can

fix this problem by first relaxing one hash function for all blocks to a random hash

function for each block, and then using the randomized encoding hash family Ŝαt−κt

as in (2.2) instead. We define the new function Êxt as follows.

Êxt (Y ,H; R) =
〈
H, Ĥ(1)(Y1,R

(1)), · · · , Ĥ(m`)(Ym` ,R(m`))
〉

where H =
(
H(1), · · · ,H(m`)

)
∈R {0, 1}m`·t(αt−κ) consists of the description of m`

random linear hash function, and R =
(
R(1), · · · ,R(m`)

)
∈R {0, 1}m`·(t−1)(αt−κ) are

the random bits used in the encoding.

Êxt is streaming computable with only 2 passes after properly reordering its out-

put. When scanning X (i) on one stream and H
(1)
i ,R

(1)
i−1+R

(1)
i , · · · ,H(m`)

i ,R
(m`)
i−1 +R

(m`)
i

on the other, compute X (i)
1 H

(1)
i + R

(1)
i−1 + R

(1)
i , · · · ,X (i)

m`H
(m`)
i + R

(m`)
i−1 + R

(m`)
i , where

H
(j)
i is the i-th row of H(j) and respectively R

(j)
i is the i-th row of R(j) for j ∈ [m`].

The sums of R
(m`)
i−1 + R

(m`)
i can be prepared during the passes used to compute Gnb.
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To incorporate H(1), · · · ,H(m`) in a single function H, we define Ỹ for Y =

〈Y1, · · · ,Ym`〉 as

Ỹ = 〈(Y1, 0, · · · , 0) , · · · , (0, · · · ,Yj, · · · , 0) , · · · , (0, · · · , 0,Ym`)〉

where Ỹj has Yj in its j-th entry and zero strings otherwise, for every j ∈ [m`]. There-

fore, Ỹ has the same next-block-pseudo-entropy (Definition 2.14 on page 39) as Y and

H(Ỹj) = H(j)(Yj). That is, every block of Ỹj has (T ′ −O (m`t), t
2(`ε′ + 2−κ + 2−ct))-

next-block-pseudo-min-entropy αt. Then, we can evaluate and concatenate the single

hash function H ∈R Sαt−κtm`
on every block of Ỹ ∈ ({0, 1}tm`)m` , to extract αt − κ

almost uniform bits from next-block-min-entropy αt.

Ẽxt
(
Ỹ ,H

)
=
〈
H,H(Ỹ1), · · · ,H(Ỹm`)

〉
=
〈
H,H(1)(Y1), · · · ,H(m`)(Ym`)

〉
It is

(
T ′ − (m`t)

O(1),m`

(
t2(`ε′ + 2−κ + 2−ct) + 2−κ/2

))
-pseudorandom (cf. Claim 5.4

in [HRV10], also Lemma 3.9 on page 63). The output of Êxt is exactly a random-

ized encoding of Ẽxt, thus it is also
(
T ′ − (m`t)

O(1),m`

(
t2(`ε′ + 2−κ + 2−ct) + 2−κ/2

))
-

pseudorandom.

Putting above four steps together, we give the construction of G as follows

G
(
J(1), · · · ,J(t),U (1)

n , · · · ,U (t`)
n ; H; R

)
=G1

(
EQ
(
J(1), Gnb(Un)(1), · · · , Gnb(Un)(`)

)
, · · · ,

· · · , EQ
(
J(t), Gnb(U ((t−1)`+1)

n ), · · · , Gnb(U (t`)
n

)
; H; R

)
=G1

(
X (1), · · · ,X (t); H; R

)
=Êxt (Y ,H; R)

=
〈
H,X (1)

1 H
(1)
1 + R

(1)
1 , · · · ,X (1)

m`
H

(m`)
1 + R

(m`)
1 ,

· · · ,X (i)
1 H

(1)
i + R

(1)
i−1 + R

(1)
i , · · · ,X (i)

m`
H

(m`)
i + R

(m`)
i−1 + R

(m`)
i ,

· · · ,X (t)
1 H

(1)
t + R

(1)
t−1, · · · ,X (t)

m`
H

(m`)
t + R

(m`)
t−1

〉

G has input length t(logm + n`) + m`t(αt − κ) + m`(t − 1)(αt − κ), and output
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length m`t(αt − κ) +m`t(αt − κ). To get stretch, it suffices to have

t(logm+ n`)−m`(αt − κ)

=t(logm+ n`)− (`− 1)m
(
t · k
m
−O

(
log t ·

√
t · κ

)
− κ
)

=t(logm+ n`)− (`− 1)t(n+ log n) + (`− 1)m
(
O
(

log t ·
√
t · κ

)
+ κ
)

=t logm+ t(n+ log n)− `t log n+ (`− 1)m
(
O
(

log t ·
√
t · κ

)
+ κ
)

<0

This holds for sufficiently large n when ` = n/ log n, t = O
(
n2 log2 n

)
, κ = log2 n

and m = O (n). Moreover, G is
(
T ′ − (m`t)

O(1),m`

(
t2(`ε′ + 2−κ + 2−ct) + 2−κ/2

))
-

pseudorandom, which turns out
(
T ′ − nO(1), nO(1)

(
ε′ + 2− log2 n/2

))
-pseudorandom ac-

cording to the choice of `, t, κ. Therefore G is a pseudorandom generator if Gnb is a

next-block-pseudo-entropy generator as in Lemma 2.15 (page 41).

Note that we use a family of linear hash functions because it is not clear how to

implement with streaming algorithms the description-succinct hash family in [VZ12,

HRV10]. This causes loss in efficiency (which contrasts the purpose of improving

seed efficiency in [VZ12, HRV10]), but here we strive for a streaming feasibility result

which is not at all obvious how to get.

2.5 Streaming Public-Key Encryption

We construct an IND-CPA (defined on page 26) secure PKE system based on [Reg05]

the LWE assumption together with the PKE construction, where the encryption and

the decryption algorithms are streaming algorithms, henceforth called streaming PKE.

The key generation is not a streaming algorithm and the private keys contain a good

deal of redundancy. We also show that large private keys are necessary. The lower

bound on the length of the private key stated in Theorem 4.8 (p. 105), and discussed

in Section 4.2.2.
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Theorem 2.16. Given the decision-LWE assumption (Assumption 2.18), the con-

struction in Section 2.5.1 is an IND-CPA secure PKE. Moreover, both the encryption

and the decryption algorithms are streaming computable.

The main challenge of a streaming PKE is the decryption algorithm. The tech-

niques we developed so far do not apply, because the decryption algorithm should

output exactly the plaintext rather than any code.

We construct our streaming PKE based on the decision-LWE assumption. The

intuition of such assumption is exposited in [Reg05], which also gives reductions from

worst-case lattice problems (at the time of the writing of this dissertation, these lattice

assumptions and reductions are used in common places).

Definition 2.17 (LWE problem). Let q = q(n) ≤ poly(n), consider a list of equations

bi = 〈s, ai〉+ei (mod q) for i = 1, 2, · · · , poly(n), where s ∈ Znq , ai ∈R Znq and bi ∈ Zq.

If furthermore ei ∈ Zq follows a discrete Gaussian distribution7 with parameter α, we

denote by search-LWEq,α the problem of recovering s from such equations. In decision-

LWEq,α the goal is to distinguish (a, 〈s, a〉+ e mod q) from UZn+1
q

with non-negligible

advantage, when both s, a ∈R Znq .

Assumption 2.18 (cf. [Reg05, MP12]). When α ≥ 2
√
n, search-LWEq,α cannot

be solved in probabilistic polynomial time with non-negligible probability. If α ≥

ω(
√
n log n) then decision-LWEq,α cannot be solved in probabilistic polynomial time

with non-negligible advantage.

2.5.1 The Construction

In our construction the public and private keys are “streaming usable” forms of the

following two matrices: A and a random matrix D. Matrix A is statistically close

to uniform, and at the same time orthogonal to

 I

D

. The latter consists of short

vectors which cannot be retrieved from a uniformly random matrix. This is also

7A discrete Gaussian distribution over Zq is defined by DZq,α(x) = ρα(x/q)/ρα(Zq), where

ρα(x) =
∑∞
k=−∞ α−1 exp(−π(x+kα )2) follows a continuous Gaussian distribution, and ρα(Zq) =∑

x∈Zq
ρα(x/q).
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known as the lattice hardness assumption, which is popular nowadays due to its

computational simplicity and resistant to attacks by quantum computers.

KeyGen: Pick a matrix D ∈ Z(m−w)×w
p uniformly at random from {0,±1}(m−w)×w.

Uniformly at random pick A ∈ Zn×(m−w)
q , and compute A ∈ Zn×mq as A = [−AD | A]

mod q. Let

 I

D

 = [d1, · · · ,dw]. Here k = d2 log ne, q = 2k,m = 3nk,w = nk, for

the security parameter n.

For an arbitrary message length N , KeyGen outputs N copies of A as the public

key, and nN copies of d1 as the private key. Each copy of A is written in row-first

order, i.e. (a11, a12, · · · , a1m, a21, · · · , a2m, · · · , an1, · · · , anm).

Enc: On input a message x = (x(1), · · · , x(N)) ∈ {0, 1}N , for i = 1, 2, · · · , N , uni-

formly choose si ∈R Znq and xi ∈R
{
qx(i)/2

}
× Zw−1

q .

Sample ei ∈ Zmq for i = 1, 2, · · · , N , where each entry eij ∼ Dα follows the discrete

Gauss distribution with mean 0 and standard deviation α, for j = 1, 2, · · · ,m.

For every i = 1, 2, · · · , N , sequentially output yi, where yi is a randomized encod-

ing of sTi A + eTi + (xTi ,0) mod q. That is, for R ∈R Z(n−1)×m
q , realizing eTi , (x

T
i ,0)

as 1 ×m row vectors, and recalling that A is an n ×m matrix, we define yi is the

row-first order of Yi as follows

Yi =


si1

. . .

sin

 ·A +

 R

(xT ,0)

+

 eTi

−R



Dec: Given the ciphertext {yi}i=1,2,··· ,N and the decryption key nN copies of d1.

We recover the message x ∈ {0, 1}N by computing b = [1 1 · · · 1]1×nYid1 mod q

and outputing x(i) = b2b/q + 1/2c mod 2 for every i = 1, · · · , N .

Comparison with [Reg05]. The above construction is similar to the PKE con-

struction in [Reg05]. We borrow from [MP12] the key generation and encryption algo-

rithms which enable us to turn them into streaming computable encryption/decryption.
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Note that [MP12], unlike the above construction, achieves a CCA-secure PKE (de-

fined on page 50). By the time when the dissertation is written, we do not know how

to perform ciphertext validity checks (as in e.g. [MP12]) in a streaming fashion.

2.5.2 Correctness, Efficiency, and Security Analysis

We show correctness, IND-CPA security, and how to encrypt/decrypt in a streaming

fashion.

Correctness. Since A

 I

D

 = 0 by the construction of A, and [1 1 · · · 1]1×nYi =

stiA + eti + (xti,0) mod q:

[1 1 · · · 1]1×nYi

 I

D

 = eti

 I

D

+ xti mod q

In particular, the first entry of above vector is b = [1 1 · · · 1]1×nYid1 = etid1+x(i) ·q/2

mod q. As the summation of ‖d1‖ samples from Dα, etid1 follows the Gaussian

distribution D√‖d1‖·α
where ‖d1‖ ≤ O(n log n). Therefore, Pr[|etid1| >

√
n log nα] <

2−Ω(n). As long as α < n2
√
n logn

< q√
n logn

, the noise etid1 is bounded by q/4 with

overwhelming probability 1− 2−Ω(n). That is, x(i) can be determined with error less

than 2−Ω(n). Recalling that the assumption only requires α to be ω(
√
n log n), we can

set α =
√
n(log n)3/2.

Streaming computability. For the encryption scheme, the input includes the

plaintext x together with N copies of A in row-first order and a stream of random

bits (rx1, r
e

1, · · · , rxN , reN , r1, · · · , rN), where each rxi contains the randomness for

xi and rei for sampling ei, and ri = (r
(i)
11 , r

(i)
12 , · · · , r

(i)
(n−1)m) denotes the random bits

used to encode yi. With a single pass we generate sequentially xt1, e
t
1, · · · ,xtN , etN . By

an identical construction as in the proof of Theorem 2.12 we can copy random bits

r(i) and compute all yi’s in parallel with logarithmic memory and constant passes over

two streams. Thus, the encryption is computable in the streaming model.
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In the decryption scheme, for each i we first compute the column vector Yid1,

then add all its entries to determine b. However, since Yi appears in row-first order,

b is not computable by reading a single copy of d1 with constant passes. We use

multiple copies of d1 in the private key to compute in a streaming fashion Yid1.

Our key generation algorithm KeyGen cannot be implemented as a streaming

algorithm, since it involves a matrix multiplication AD, and generates polynomially

many copies of A and d1. This is somehow acceptable in the sense that KeyGen

invokes only once at the beginning.

We conclude by discussing the length-efficiency of the construction in Section 2.5.1.

For an N -bit long plaintext, the ciphertext contains N×nm elements from Zq, which

has length Nmnk = O(Nn2 log2 n), while both the public and the private key are

of the same length. The amount of random bits used in Enc is also asymptotically

the same. This is because for every i, rxi and ri together require mnk − 1 many

random bits, and rei is bounded by O(mn). In conclusion, a factor of O(n2 log2 n)

is introduced to the length of ciphertext and keys. The blow-up in the key length

is somehow inevitable, as we show a lower bound linear in N on the length of the

private key.

Security. The above constructed PKE system is IND-CPA secure.

Claim 2.19. If Assumption 2.18 is true, then the construction in Section 2.5.1 is

IND-CPA secure.

Proof. Let us consider the standard IND-CPA security experiment. First, the adver-

sary is given the public key A and he chooses two distinct message x,x′ ∈ {0, 1}N

within polynomial time. Then, the challenger computes two ciphertexts y,y′ ∈

ZN×mnq using private random bits. For IND-CPA security, it suffices to prove that y

and y′ are computationally indistinguishable.

To prove A is statistically close to uniform, we introduce the following lemma

(c.f. Lemma 4.5.1 in [HILL99], also in [ILL89]).
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Lemma 2.20 (Leftover Hash Lemma). Suppose that a random variable X ∈ {0, 1}n

has min-entropy at least m and ` = m− 2ε. Then,

δ
(
〈H`

n(X ), H`
n〉, 〈U`, H`

n 〉
)
≤ 2−(ε+1)

where δ(·) denotes the statistical distance function, and the two appearances of H`
n in

〈H`
n(X ), H`

n〉 refer to the same sample.

Since A is uniformly chosen, D has min-entropy (log2 3)(m−w)w, and the binary

representation of −AD is of length nw log q = nwk < (log2 3)(m−w)w− 2nwk. We

identify the uniformly random matrix A as a linear hash function which shrinks D

with min-entropy (log2 3)(m−w)w to less than (log2 3)(m−w)w− 2nwk bits. Then,

δ
(
〈−AD,A〉, 〈UZn×wq

,UZn×(m−w)
q

〉
)
≤ 2−(nwk+1) < 2−n

2 log2(n)

Therefore, the distribution of A = [−AD|A] has negligible statistical distance

from the uniform distribution. Conditioning this event we assume A as uniformly

chosen though it incurs small loss.

We show that if our PKE is not secure then Assumption 2.18 is not true. Suppose

the PKE system is not IND-CPA secure: an adversary algorithm A, who knows A

but not s, distinguishes y from y′ with non-negligible advantage, i.e. |Pr[A(y) = 1]−

Pr[A(y′) = 1]| ≥ n−O(1) over the randomness of A and internal random coins in the

encryption. Then applying the standard hybrid argument A implies a distinguisher

A∗ for yi 6= y′i with non-negligible advantage. In particular, A∗ must be able to

distinguish the first column of Yi and Y′i, for other columns are identically distributed.

A∗ essentially distinguishes between (a1, s
t
ia1 + ei1 + q/2 (mod q)) and (a1, s

t
ia1 + ei1

(mod q)) which are information theoretically equivalent to yi and y′i, recalling the

construction of Enc and the fact that yi is a randomized encoding of stiA+eti+(xti,0)

(mod q). In the meanwhile, A∗ requires only m − 1 samples (aj, s
t
iaj + eij mod q)

for j = 2, 3, · · · ,m (while yj in y does not help at all as long as j 6= i, since A∗ can

sample them internally).
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Now, for randomly chosen si ∈R Znq , A∗ distinguishes (ai, 〈si, ai〉 + ei mod q)

(or equivalently (ai, 〈si, ai〉 + ei + q/2 mod q)) from (ai,UZq) with non-negligible

advantage. Moreover, A∗ has polynomial running time and uses at most m − 1 =

poly(n) samples (aj, 〈s, aj〉+ ej mod q) for aj ∈R Znq and j = 2, 3, · · · ,m.

However, suchA∗ solves exactly the decision-LWEq,α problem with α =
√
n(log n)3/2,

which immediately contradicts Assumption 2.18. Thus, in conclusion, the PKE con-

struction in Section 2.5.1 is IND-CPA secure.

2.5.3 Remarks on CCA-Security in the Multi-Stream Model

A PKE system is secure against Chosen Ciphertext Attack (CCA) if no polynomial

time randomized adversary can win the following security experiment with probability

greater than 1/poly(n). Such a PKE is also called a CCA-secure PKE.

i. The challenger runs KeyGen and uses its random choices to generate a public

PK and a private SK key, and reveals the PK to the adversary.

ii. The adversary on input 1n and PK chooses ciphertexts c1, · · · , cm for m =

poly(n), and sends them to the challenger.

iii. The challenger computes xi = Dec(SK, ci) for every i, and sends x1, . . . , xm to

the adversary.

iv. The challenger selects x ∼ Un and sends c = Enc(PK, x) to the adversary.

v. The adversary wins if it outputs x′ = x based on PK, x1, . . . , xm, and c.

Our IND-CPA secure construction is similar to the CCA-secure PKE in [MP12].

At this stage we cannot conjecture either way about the existence of CCA-secure

PKE in the multi-stream model. In what follows we discuss difficulties in achieving

CCA-security with streaming decryption, even when the encryption is a polynomial

time algorithm.

A weak point of a streaming decryption is that it lacks the ability of perform-

ing common types of validity checks on the ciphertext. Due to entropy-memory size

considerations with O (1) many passes a streaming algorithm can perform at most

O (log n) many independent tests when checking whether a given input is legal. This
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gives potential advantage to an adversary who can sample polynomially many cipher-

texts.

In particular, as far as it concerns the CCA-secure scheme of [MP12], we first

note that the way the LWE assumption is used is by exactly making a validity test

on the ciphertext (see previous paragraph). Furthermore, the [MP12] construction

involves operations we cannot compute in a streaming sense (matrix multiplication,

inverting a random matrix). It is not clear how these operations can be adapted

in a streaming fashion. Note that when decrypting a ciphertext there is not much

flexibility. In a correct decryption we always get the unique encrypted message,

whereas for encryption there is no such thing as “correct ciphertext” which allows

one to use e.g. randomized encodings. We discuss in this section about the limitations

of streaming PKE systems. It is somehow inevitable that our construction achieves

merely IND-CPA secure (as in [Reg05]) starting from the CCA-security in [MP12].

A major weakness point is that a streaming decryption algorithm lacks the power

of performing validity check. Since the streaming decryption algorithm is able to

perform at most O (log n) independent tests to check whether the given input is a

legal ciphertext. By randomly picking polynomially many ciphertexts, the adversary

collects polynomially many uniformly distributed legal ciphertexts, and it may extract

a lot of information from those legal ciphertexts.

Another weakness point comes from the usage of LWE assumption. By such as-

sumption, modifying the error vector in a small range would not change the de-

crypted message, while the decrypted message varies for big changes in the error

vector. Therefore by observing the decrypted message for differentially changed error

vectors, it seems quite hopeful to find out the real value without masked by any error

vector. As soon as the error vector is eliminated, the learning problem becomes much

easy to solve.

We further note that many important operations in the [MP12] construction are

difficult for a streaming device. For example, inverting a random matrix and multi-

plying two matrices. That is why we failed in adapting the [MP12] construction for

the streaming model. Moreover, we strongly suspect the existence of any CCA-secure
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PKE with constant-pass streaming decryption schemes. There are two reasons why

we cannot follow the same argument: the first is the lack of validity checking methods

in the streaming model, which gives the adversary too much power to extract informa-

tion with chosen ciphertext; the second reason appears to be the difficulty of matrix

operations in their decryption algorithm, such as inversion and multiplication.

2.6 Conclusions and Remarks on Practicality

Our work leaves open the possibility of streaming cryptography for a number of

popular private and public-key primitives. As a next step we propose to study the

streaming possibility for the following cryptographic primitives: (i) linear-stretch

pseudorandom generators, (ii) CCA-secure PKE, (iii) signature schemes, and (iv)

message authentication.

It is also open whether the number of passes we achieve (see Table 2.2 below)

are optimal, and also simultaneously improve the seed-efficiency of streaming pseudo-

random generators from NC1 one-way functions. For example, our generic streaming

one-way function is done with 5 passes, whereas when starting from a concrete as-

sumption (Assumption 2.21) we can do it with 4 passes, which is optimal.

# of passes external tapes

one-way function 5
1 Read-Only (RO)

& 1 Read-Write (RW)

pseudorandom generator
7
15

2 RW
1 RO & 1 RW

PKE Enc 5 1 RO & 1 RW
PKE Dec 2 2 RO *

Table 2.2: Expense of cryptographic primitives in the multi-stream model.
* The private key and ciphertext are given in different external tapes.

Some remarks on practicality. Randomized encodings generally demand huge

amounts of randomness (typically Ω(n4)) for input length n, and thus our generic

compilers can be understood as feasibility results. In practice, starting from concrete

52



intractability assumptions we can do much better. Here is a practical example which

in fact resembles a lot the one in [AIK10] (but a few model-specific differences – our

model is not two dimensional but things are arranged similarly).

Assumption 2.21 (Decoding Random Linear Codes (DRLC)). A random linear

code fcode maps fcode : (A,x, e) 7→ (A,Ax + e), where A ∈ GF(2)m×n, x ∈ GF(2)n,

e ∈ GF(2)m. Choose positive constants κ, ε, δ such that κ = n
m
< 1 − H2

(
(1 + ε)δ

)
,

where H2(p) = −p log2 p− (1− p) log2(1− p) for p < 1/2 and H2(p) = 1 otherwise. If

A,x are chosen uniformly at random, while e has at most δm
2

one-entries, then fcode

is a one-way function.

Theorem 2.22. Suppose that the DRLC assumption holds true. Then, there exists

a one-way function F computable by a streaming algorithm with 2 streams, 4 passes

and O(log n) internal memory. Furthermore, if the DRLC input is of size N the

corresponding input size for F is n ≤ 2N .

Construction outline. Suppose the random bits (r11, r21, · · · , rmn) are given on the

extra stream (this is without loss of generality/not necessary), and parse the input

stream as (x1, a11, a21, · · · , am1, · · · , xn, a1n, · · · , amn, e1, · · · , em).

First, by scanning over both two streams, we compute (a11x1 + r11, · · · , am1x1 +

rm1, a12x2 + r12, · · · , am2x2 + rm2, · · · , a1nxn + r1n, · · · , amnxn + rmn, e1, · · · , em).

Then, we compute (a11x1+r11, · · · , am1x1+rm1, a12x2+r12−r11, · · · , am2x2+rm2−

rm1, · · · , a1nxn+r1n−r1(n−1), · · · , amnxn+rmn−rm(n−1), e1−r1n, · · · , em−rmn). This

is the randomized encoding of Ax + e computable with 4 passes over 2 streams.

We end this chapter with a note on the practicality of the multi-stream model.

One physical analog of a stream is a hard-disk or a disk-array. It makes sense to

think of physical disks of linear size, e.g. 2n or 3n, for any input length n, as long

as the input fits in the disks. Whereas, a polynomial blow-up, e.g. n2 or n3, is not

reasonable when n is already quite large (even comparable to the size of disks). For

pragmatic analysis of computation in the multi-stream model, we believe that this

stream-size parameter should be added to the other parameters: number of passes,

53



local memory size and number of streams. In this dissertation, all constructions make

very few passes and the stream size never exceeds 2× input length.

54



Chapter 3

Randomness Extraction in the

Multi-Stream Model

In this chapter, we discuss randomness extraction in the multi-stream model and from

real-world Big Data. We first provide an overview of the problem and previous works,

then present the construction and mathematical analysis of the RRB extractor in the

multi-stream model. Finally, we describe the experiments of real-world randomness

extraction in Section 3.3, with the experimental results summarized in Section 3.4.

By Definition 1.5 (page 14), a seeded randomness extractor is a function Ext :

{0, 1}n × {0, 1}d → {0, 1}m that takes two inputs. The first input is a sample from

the source and the second input is the seed. We say that Ext is a (k, ε)-extractor if for

every (n, k)-source X and a uniformly random seed Y ∼ Ud, the output distribution

Ext(X, Y ) is ε-close to uniform, i.e. SD (Ext(X, Y ),Um) ≤ ε. In typical settings,

d = polylog(n), ε = 1/poly(n), k = nΩ(1), and m = Ω (k) or at least m = kΩ(1).

For this type of extractors, there are non-explicit constructions ([Sha11, NZ96], by

probabilistic method) with optimal parameters, and explicit constructions, e.g. Tre-

visan’s extractor [Tre99] and its followups, that achieved nearly optimal parameters,

i.e. for every ε > 0, k = nΩ(1) and any constant δ > 0, they extract m = k1−δ bits

with seed length d = O (log n).

For specific sources X, rather than the worst-case (n, k)-source chosen by an

adversary, extracting randomness becomes considerably easier. For example, if all
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the bits in X are independent and identically distributed (not necessarily uniform),

then uniform random bits can be generated following a simple strategy – partition X

into pairs of bits, for each pair of bits output the first if and only if they are distinct.

This simple algorithm is known as von Neumann extractor [von51] and easy to prove

its correctness for the specific source X. In this work, we consider the following

specific sources.

Definition 3.1 (Bit-fixing sources). An (n, k)-source X is an (n, k)-bit-fixing source,

if there exists and T ⊆ [n], |T | = k, and y ∈ {0, 1}n−k, such that XT ∼ Uk while

X[n]\T = y is a fixed constant (string).

Note that every bit-fixing source is in particular an affine source.

Definition 3.2 (Affine sources). We say that X is an (n, k)-affine source if X is

uniformly distributed over a k-dimensional affine subspace of {0, 1}n. That is, X
def
=

X ′ · A + b for a fixed matrix A ∈ {0, 1}k×n and row vector b ∈ {0, 1}n, and a

k-dimensional random row vector X ′ ∼ Uk.

We say that Ext is a (k, ε)-extractor for bit-fixing sources (resp. affine sources)

if SD (Ext(X,Ud),Um) ≤ ε holds for every (n, k)-bit-fixing source (resp. (n, k)-affine

source) X. Although there are deterministic extractors for bit-fixing sources [KZ06,

Rao09b, GRS06], it is unclear whether there is extractors for bit-fixing sources in the

multi-stream model. Furthermore, the known lower bound results (e.g. Theorem 4.9

and Theorem 4.11 in Section 4.3, also [BYRST02]) are proved for bit-fixing sources.

Another variant is the multi-source extractor, which takes as input multiple sam-

ples from independent sources. Multi-source extractors are able to extract from gen-

eral weak sources without a uniform random seed [BIW06, DEOR04, Raz05, Zuc90],

although they are mostly theoretical achievements and not suitable for practical

applications on big objects. We implement a seedless multi-source extractor (cf.

[BIW06, Zuc90]) for the initial seed generation in our experimental study (Sec-

tion 3.3.2 on page 83).

For randomness extractors in the multi-stream model, we consider super-constant

passes since in Theorem 4.9 (on page 109) we obtain an Ω (log log n) lower bound.
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Formally, a streaming extractor is an (o (log n),O (log n),O (1))-streaming algorithm

where (i) the sample from the source is written on the first stream in the beginning

of the computation, and (ii) the random seed of size polylog(n) is stored in the local

memory. For multi-source streaming extractors, we concatenate all input samples in

the same input stream. In the discussion about lower bounds (see Section 4.3 on

page 108), we allow free access to the seed (regardless of size), which makes the lower

bounds stronger.

3.1 The Random Re-Bucketing (RRB) Extractor

Here we present the RRB extractor together with its streaming implementation. This

extractor makes O
(
log log n

ε

)
many passes. We also present its first provable property,

which is that it extracts randomness from bit-fixing sources. RRB is a parametric

algorithm. In the next section we will see that with different parameters RRB enjoys

next-block-entropy guarantees and hence works for more general sources.

At a high-level, RRB consists of three stages, as depicted in Figure 3-1.

…

Input sample (n bits)

…

h h hh

Random seed (d bits)

I. Local entropy equalizer
(implement with 2 streams)

II. Global entropy equalizer
(implement with 2 streams)

III. Local extraction
(implement with 1 stream)

Super-blocks

Blocks

Output

h h h

γ fraction of blocks 

Figure 3-1: The Random Re-Bucketing (RRB) extractor. The random seed of
size polylog(n) is used only in Stages I & III. In Stage III the same local extractor h
is used for the first γ fraction of blocks. The number of super-blocks b also depends
on an error tolerance ε and the empirically estimated min-entropy rate κ. In the
main body, we explain how to realize this description as an algorithm that uses two
streams.
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I. Partition the n-bit long input into b = O
(
log2

n
ε

)
many super-blocks, each of

length n/b. Inside each super-block, choose uniformly and independently a ran-

dom point to cyclically shift the super-block.

II. Re-bucket the b super-blocks into n/b many blocks each of size b, where the i-th

block consists of the i-th bit from every super-block, for i = 1, 2, . . . , n/b.

III. Specify a local extractor h : {0, 1}b → {0, 1}κb/2 using the uniform random seed;

for example, h can be a random Toeplitz matrix. Then, locally apply h on the

first bO = γn/b blocks, concatenate, and output the result. Here the effectiveness

factor γ = Ω (1) denotes the fraction of blocks used for local extraction.

Note that only stage I and III use randomness, whereas stage II performs a fixed

but “streaming-friendly” permutation. Therefore, the seed y has following structure:

y = 〈 h︸︷︷︸
hash function

, y1, . . . , yb︸ ︷︷ ︸
indices for cyclic shifts

〉

The final local extraction can be performed in-place since the blocks are of size b =

O
(
log n

ε

)
which is sufficiently small.

Let us now introduce the shifting operator and after that we will describe RRB.

Definition 3.3. For z = (z1, . . . , zm) ∈ {0, 1}m and r ∈ {0, 1, 2, . . . ,m− 1}, shift(z, r)

denotes the string that obtained by cyclic shifting z to the left for r-bits, i.e. shift(z, r) =

(zr+1, zr+2, . . . , zm, z1, z2, . . . , zr).

For input length n, min-entropy k = Ω (n), and error tolerance ε > 0, the con-

struction RRB : {0, 1}n×{0, 1}d → {0, 1}m has parameters m = k−o (k), b = Θ(log n
ε
)

and d = b + b log n
b
, bO = n/b. For convenience and without loss of generality, we

further assume b to be a power of 2. Let σ1, σ2 denote the two streams and let σ2[j]

denote the j-th bit in σ2. Perhaps it helps to think of these parameters as follows.
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Typical values

input length n output length m = Ω (n)

error tolerance ε = 1/nΩ(1) number of super-blocks b = O (log n)

min-entropy k = Ω(n) seed length d = O
(
log2 n

)

Here is the pseudo-code description of RRB.

Input: σ1 ← x, where x is an n-bit-long sample from weak source

Result: an m-bit-long binary string distributed ε-close to Um

Initialization:

k ← lower bound on the min-entropy of the source

b← the number of super-blocks

d← seed length

y ← Ud the random seed

partition y = (h, y1, . . . , yb) ∈ {0, 1}2b ×
{

0, 1, 2, . . . , n
b
− 1
}b

,

where h describes a hash function h : {0, 1}b → {0, 1}m/bO

Process:

1 partition σ1 = x =
(
x1, x2, . . . , xb

)
, where |xi| = n

b
for 1 ≤ i ≤ b

2 σ2 ← (shift(x1, y1), . . . , shift(xb, yb))

3 for j = 1 to
⌈

log b
⌉

do

4 σ1 ←
(
σ2[1], σ2[n

2
+ 1], σ2[2], σ2[n

2
+ 2], . . . , σ2[n

2
], σ2[n]

)
5 σ2 ← σ1

6 end

7 partition σ1 =
(
z1, . . . , zn/b

)
where |zi| = b for 1 ≤ i ≤ n

b

8 Output: σ2 ←
(
h(z1), . . . , h(zbO)

)
Algorithm 2: RRB – randomness extractor in the multi-stream model

Claim 3.4. RRB is streaming computable with O (log b) passes over two streams and

O (b+ log n) local memory.
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Proof. We analyze the number of passes and the usage of local memory stage-by-

stage.

In Stage I (steps 1 and 2), step 2 makes four passes by copying the corresponding

substrings (i.e. the super-blocks) from σ1 to σ2. In particular, in two passes write

to σ2 the left part of shift(xi, yi) together with placeholders of the right part (i.e.

(xi,yi+1, xi,yi+2, . . . , xi,n/b, ∗, ..., ∗)) for i ∈ [b]; then invoke another two passes to fill in

the placeholders with the rest of the yi bits of shift(xi, yi) (i.e. xi,1, . . . , xi,yi). Note,

the latter does not need to store every yi in memory, since yi is already recorded

implicitly as the length of the placeholders.

In Stage II (the for-loop, steps 3–6), the iteration costs O (log b) passes in total

since the inner loop requires constant many passes: step 4 takes two passes over σ1

and one pass over σ2; step 5 is trivial and in fact it can be done by simply renaming

σ1 and σ2 without any actual process over the streams.

Stage III (steps 7 and 8) is done using two passes in total. For every i ∈{
1, 2, . . . , n

b

}
it reads zi from σ1 into memory and then write h(zi) to σ2. Since h

is computable within O (log n) space, b+ O (log n) local memory is sufficient to buffer

zi and compute h(zi).

Therefore, RRB uses O (log b) passes over two streams σ1, σ2 and O (b+ log n) local

memory.

3.1.1 Streaming Extraction from Bit-fixing Sources

In the following theorem, we validate that RRB works on (n, k)-bit-fixing sources.

Theorem 3.5. For every k = Ω (n), there exists b = Θ(log n
ε
), such that for d =

b+ b log n
b

and bO = n
b
, RRB is a (k, ε)-extractor for every (n, k)-bit-fixing source with

m = k − o (k).

Proof. The proof relies on the following two lemmas. Lemma 3.6 asserts that the first

two stages of RRB achieves next-block-min-entropy guarantee. Lemma 3.9 illustrates

how the last stage of RRB extracts randomness from next-block-min-entropy.
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Lemma 3.6. Fix an arbitrary (n, k)-bit-fixing source X, Y ∼ Ud, and let random

variable1 Z = (Z1, . . . , Zn/b) be the content of σ1 in step 5 in the computation of

RRB(X, Y ). Then, for every k = Ω (n) and for every positive δ < k
n

, with probability

greater than 1− n
b
· exp (−2δ2b) = 1− 2−Ω(b)n over the random choice of Y , all blocks

in Z have next-block-min-entropy α =
(
k
n
− δ
)
b.

Proof of Lemma 3.6. We first analyze the structure of Z and then bound the proba-

bility that zj has min-entropy Ω (kb/n). We conclude by union bound the next-block-

min-entropy lower bound for the blocks in Z.

Since X is an (n, k)-bit-fixing source without loss of generality there exists S ⊆

[n] consisting of k indices such that XS = Uk, whereas X[n]\S is fixed. Let Sj =

S
⋂{

n
b
(j − 1) + 1, n

b
(j − 1) + 2, . . . , n

b
· j
}

denote the indices of unfixed bits in the

j-th input block for j ∈ [b] (i.e. xj in step 1 of RRB). Then, let kj = |Sj| and

k =
∑b

i=j kj.

Now, we upper bound Pr [H∞[Z1] < α], the probability over the random choice of

Y that Z1 does not have min-entropy α =
(
k
n
− δ
)
b. Note that for every fixed Y ,

Z1 is a deterministic projection of X = (X1, . . . , Xn). Thus, its min-entropy equals

to the number of unfixed bits from X. Therefore, it suffices to count the number of

unfixed bits in Z1.

For every Y = y and yj determined by y as in RRB, let Ij = Ij(yj) be the indicator

that the j-th bit of Z1 is not fixed. However, as long as b is a power of 2 the j-th

bit of Z1 is also the first bit in shift(Xj, yj), i.e. Z1,j = shift(Xj, yj)1 = (Xj)yj+1 =

Xn
b

(j−1)+yj+1. Thus, H∞[Z1] =
∑b

j=1 Ij where for every j ∈ [b], Ij = 1 if and only if

n
b
(j − 1) + yj + 1 ∈ S.

By definition, yj’s are independent and uniformly chosen from
{

0, 1, . . . , n
b
− 1
}

.

Thus, (i) all Ij’s are independent from each other; (ii) n
b
(j − 1) + yj + 1 uniformly

distributes in
{
n
b
(j − 1) + 1, n

b
(j − 1) + 2, . . . , n

b
· j
}

and hence Ij = 1 if and only if

n
b
(j − 1) + yj + 1 ∈ Sj. Then, by definition of kj we have E [Ij] = kjb/n for j ∈ [b],

1Here, we abuse notation and we write Z instead of z because we wish to refer to the transfor-
mation of the algorithm on the statistical source. For the same reason we use Xj in the argument
instead of xj in the description of RRB to emphasis it as a random variable depending on X.
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and furthermore, E
[∑b

j=1 Ij

]
=
∑b

j=1 E [Ij] =
∑b

j=1
kjb

n
= kb

n
.

Since H∞[Z1] =
∑b

j=1 Ij, E [H∞[Z1]] = kb
n

and I1, . . . , Ib are independent we upper

bound Pr [H∞[Z1] < α] by Hoeffding’s inequality (see below)

Pr [H∞[Z1] < α]

= Pr

[
b∑

j=1

Ij < α

]
= Pr

[
b∑
i=j

Ij < E

[
b∑

j=1

Ij

]
− δb

]

≤ exp

(
−2(δb)2

b

)
= exp

(
−2δ2b

)
Lemma 3.7 (Hoeffding’s Inequality). For independent almost surely bounded random

variables X1, . . . , Xn, i.e. Pr[Xi ∈ [ai, bi]] = 1 for i ∈ [n], let Y = X1 + · · · + Xn.

Then, for any positive ∆,

Pr

[
Y − E [Y ] ≥ ∆

]
≤ exp

(
− 2∆2∑n

i=1(bi − ai)2

)

Since Pr [H∞[Z1] < α] ≤ exp (−2δ2b) and Z1 is symmetric2 to Z2, . . . , Zn/b, by

union bound he have that

Pr
[
∃j ∈ [

n

b
] such that H∞[Zj] < α

]
≤ n

b
· exp

(
−2δ2b

)
= 2−Ω(b) · n

b

Noticing that Z is a permutation of X and X is a bit-fixing source, we have that

H∞[Zj
∣∣ Z1, Z2, . . . , Zj−1] = H∞[Zj] for every j ∈ [n

b
]. The above inequality is equiv-

alent to

Pr

[
∀j ∈ [

n

b
], H∞[Zj

∣∣ Z1, . . . , Zj−1] ≥ α =

(
k

n
− δ
)
b

]
≥ 1− n

b
· exp

(
−2δ2b

)

We introduce the Leftover Hash Lemma [ILL89, IZ89] and apply it in the proof

of Lemma 3.9, which asserts that a single extractor with the same seed suffices to

2Unlike other sources that lack such a degree of independence, bit-fixing sources are technically
easier to handle exactly because the random bits are independent and this induces symmetry for all
Zi’s.
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extract randomness from each of the blocks.

Lemma 3.8 (Leftover Hash Lemma[ILL89, IZ89]). Let S ⊆ {0, 1}n and |S| ≥ 2α.

Let ρ > 0 and H be a family of 2-universal hash functions mapping n bits to α − ρ

bits. Then, the distribution (h, h(x)) is at most 2−ρ/2-close to uniform, when h is

chosen uniformly at random from H and x sampled uniformly from S.

Lemma 3.9 (cf. Lemma 6 in [Zuc96]). Let H be a family of 2-universal hash functions

mapping b bits to α−ρ bits. If a random variable Z = (Z1, . . . , Z`) has next-block-min-

entropy α and h is chosen uniformly at random from H, then (h, h(Z1), . . . , h(Z`)) is

2−ρ/2 · ` close to uniform distribution.

Proof of Lemma 3.9. We use the standard hybrid argument and for i ∈ {0, 1, . . . , `}

we let Hi(Z)
def
=
(
h, h(Z1), . . . , h(Zi),U(α−ρ)(`−i)

)
. In particular, H0(Z) = U|h|+(α−ρ)`

and H`(Z) = (h, h(Z1), . . . , h(Z`)). Thus, it suffices to bound SD (H`(Z), H0(Z)).

Since Z = (Z1, . . . , Z`) has next-block-min-entropy α it follows that

H∞
[
Zi
∣∣ h(Z1), . . . , h(Zi−1)

]
≥ H∞

[
Zi
∣∣ Z1, . . . , Zi−1

]
≥ α

Therefore, by the Leftover Hash Lemma (page 63), SD (Hi(Z), Hi−1(Z)) ≤ 2−ρ/2

holds for every i ∈ {1, . . . , `}. Finally, we have

SD (H`(Z), H0(Z)) ≤
∑̀
i=1

SD (Hi(Z), Hi−1(Z)) ≤ 2−ρ/2 · `

The universal family of hash function in Lemma 3.9 can be uniformly sampled

with b+α−ρ−1 ≤ 2b bits. For concreteness define h : {0, 1}b → {0, 1}α−ρ as follows

h(z)
def
= Tz

where T is a randomly chosen (α−ρ)×b Toeplitz matrix (first appeared on page 32),

i.e. by uniformly sampling b+α− ρ− 1 elements from Z2, and all operations are over
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Z2. Note that there exist hashing families that can be sampled with b-many bits but

not practically realizable for big sources. This is why we use the Toeplitz hashing

family here.

By Lemma 3.6 and Lemma 3.9 and by setting ` = bO = n
b
, we conclude that with

probability at least 1 − n
b
· exp (−2δ2b) over the random choice of Y , the statistical

distance is bounded as SD
(
RRB(X, Y ),U(α−ρ)bO

)
≤ 2−ρ/2 · n

b
. That is, for X and

Y ∼ Ud as above, and for m = (α− ρ)` =
((

k
n
− δ
)
b− ρ

)
n
b

= k − δn− ρn
b

,

SD
(
RRB(X, Y ),U(α−ρ)bO

)
≤
(
2−ρ/2 + exp

(
−2δ2b

))
· n
b

Consequently, RRB is a (k, ε)-extractor for k = Ω (n), ε =
(
2−ρ/2 + exp (−2δ2b)

)
· n
b

and m = k −
(
δ + ρ

b

)
n. For every constant δ > 0, it suffices to set ρ = 2 log n

ε
and

b = 1
2δ2 ln n

ε
= Θ(log n

ε
), such that m = k − (δ + 4δ2 log e)n . Therefore, RRB is a

(k, ε)-extractor for bit-fixing sources with m = k − o (k) and b = Θ(log n
ε
) as long as

k = Ω (n).

Moreover, RRB is streaming computable with O
(
log n

ε

)
memory and O (log b) =

O
(
log log n

ε

)
passes over two streams by Claim 3.4.

3.2 Extraction from Affine and General Sources

Stages I and II of RRB provably guarantee a strong lower bound on the next-block-

entropy. We show this in Section 3.2.1. If instead of guaranteed next-block-entropy

we had next-block-min-entropy then by Lemma 3.9 Stage III would have extracted

(almost) uniform random bits. Section 3.2.2 and Section 3.2.3 show how the next-

block-entropy guarantee implies a next-block-min-entropy guarantee for affine sources

and general sources. In Section 3.2.4 we present the random extractor for general

sources. then again we obtain a next-block-min-entropy guarantee.
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3.2.1 The RRB Next-Block-Entropy Guarantee

We show that at the end of Stage II in RRB the input X is transformed into Z and

Z has guaranteed next-block-entropy whenever H∞[X] = Ω (n).

Lemma 3.10. Let X be a random variable over {0, 1}n such that H∞[X] ≥ k = cn

for a constant c > 0. Let Y ∼ Ud and Z = (Z1, . . . , Zn/b) at step 5 in the computation

of RRB(X, Y ). Then, for every positive constant c0 < 1 − (1 − c)2/3 and for every

` <
n(1−(1−c)2/3−c0)

b2
, each of Z1, . . . , Z` has next-block-entropy Ω (b) with probability at

least 1− 2−Ω(b) over the random choice of Y .

Proof. In the construction of RRB (page 57), Stages I & II operate as follows:

(I) partition X into b super-blocks (X1, . . . , Xb) and perform cyclic shifting inside

each super-block (shift(X1, Y1), . . . , shift(Xb, Yb));

(II) convert b super-blocks to n/b blocks by re-bucketing, such that Z =
(
Z1, . . . , Zn/b

)
=
(
(shift(X1, Y1)1, . . . , shift(Xb, Yb)1) , . . . . . . ,

(
shift(X1, Y1)n/b, . . . , shift(Xb, Yb)n/b

))
.

We assert that many super-blocks in X have next-block-entropy Ω (n/b). For

every constant c1 > c, there exist S ⊆ [b] such that |S| ≥ (c1−1)cb
c1−c · b and for every

i ∈ S, H
[
Xi

∣∣ X1, . . . , Xi−1

]
≥ k

c1b
. Otherwise, suppose there exists S satisfying

|S| < (c1−1)c
c1−c b and H

[
Xi

∣∣ X1, . . . , Xi−1

]
< k

c1b
for every i ∈ [b]\S. Then,

H [X] =
b∑
i=1

H
[
Xi

∣∣ X1, . . . , Xi−1

]
=
∑
i∈S

H
[
Xi

∣∣ X1, . . . , Xi−1

]
+
∑
i∈[b]\S

H
[
Xi

∣∣ X1, . . . , Xi−1

]
<
∑
i∈S

|Xi|+
∑
i∈[b]\S

k

c1b

=|S| · n
b

+ (b− |S|) k
c1b

=
k

c1

+
n

b

(
1− c

c1

)
· |S| < k (3.1)

Now, we show H
[
Zj
∣∣ Z1, Z2, . . . Zj−1

]
≥ Ω (b) with probability 1 − 2−Ω(b) (over

the choice of Y ) for every j ∈ {1, . . . , `}. Recall that Zj[i] denotes the i-th bit in Zj

for every i ∈ [b]. It suffices to lower bound H
[
Zj[i]

∣∣ Z1, . . . , Zj−1;Zj[1], . . . , Zj[i− 1]
]

for every i ∈ S and sum them up.
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H
[
Zj[i]

∣∣ Z1, . . . , Zj−1;Zj[1], . . . , Zj[i− 1]
]

=H
[
Zj[i]

∣∣ (Z1[1], . . . , Z1[b]), . . . , (Zj−1[1], . . . , Zj−1[b]); (Zj[1], . . . , Zj[i− 1])
]

=H
[
Zj[i]

∣∣ (Z1[1], . . . , Zj[1]), . . . , (Z1[i− 1], . . . , Zj[i− 1]);

(Z1[i], . . . , Zj−1[i]), . . . , (Z1[b], . . . , Zj−1[b])
]

≥H[Zj[i]
∣∣ (Z1[1], . . . , Zn/b[1]), . . . , (Z1[i− 1], . . . , Zn/b[i− 1]);

(Z1[i], . . . , Zj−1[i]), . . . , (Z1[b], . . . , Zj−1[b])
]

=H
[
Zj[i]

∣∣ shift(X1, Y1), . . . , shift(X i−1, Yi−1);

(Z1[i], . . . , Zj−1[i]), . . . , (Z1[b], . . . , Zj−1[b])
]

≥H
[
Zj[i]

∣∣ (X1, Y1), . . . , (X i−1, Yi−1); (Z1[i], . . . , Zj−1[i]), . . . , (Z1[b], . . . , Zj−1[b])
]

=H
[
Zj[i]

∣∣ X1, . . . , X i−1; (Z1[i], . . . , Zj−1[i]), . . . , (Z1[b], . . . , Zj−1[b])
]

(3.2)

In the above (3.2) holds because for every i ∈ [b], Zj[i] = shift(X i, Yi)j = X i,Yi+j

is independent from Y1, . . . , Yi−1.

Since Zj[i] is drawn from X i let us first lower bound the conditional entropy of

X i. Recalling that for every i ∈ S, H
[
X i

∣∣ X1, . . . , X i−1

]
≥ k

c1b
,

H
[
X i

∣∣ X1, . . . , X i−1; (Z1[i+ 1], . . . , Zj−1[i+ 1]), . . . , (Z1[b], . . . , Zj−1[b])
]

≥H
[
X i

∣∣ X1, . . . , X i−1

]
− H [(Z1[i+ 1], . . . , Zj−1[i+ 1]), . . . , (Z1[b], . . . , Zj−1[b])]

≥H
[
X i

∣∣ X1, . . . , X i−1

]
− (j − 1)(b− i)

>
k

c1b
− (j − 1)(b− i) > k

c1b
− jb

For notational simplicity we let k1
def
= k

c1b
− jb and

Ci
def
=
(
X1, . . . , X i−1; (Z1[i+ 1], . . . , Zj−1[i+ 1]), . . . , (Z1[b], . . . , Zj−1[b])

)
Similarly to (3.1) we prove that for S ′

def
=
{
i′ ∈ [n

b
]
∣∣H [X i,i′

∣∣ Ci; (X i,1, . . . , X i,i′−1)
]
≥ k2

}
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there must be |S ′| > k1−k2n/b
1−k2

since otherwise

H
[
X i

∣∣ Ci] =

n/b∑
i′=1

H
[
X i,i′

∣∣ Ci; (X i,1, . . . , X i,i′−1)
]

≤ 1 · |S ′|+ k2 ·
(n
b
− |S ′|

)
≤ k1

Recalling (3.2) and for Yi = yi such that yi + j ∈ S ′ we have

H
[
Zj[i]

∣∣ Z1, . . . , Zj−1;Zj[1], . . . , Zj[i− 1]
]

≥H
[
Zj[i]

∣∣ X1, . . . , X i−1; (Z1[i], . . . , Zj−1[i]), . . . , (Z1[b], . . . , Zj−1[b])
]

=H
[
Zj[i]

∣∣ Ci; (Z1[i], . . . , Zj−1[i])
]

=H
[
X i,yi+j

∣∣ Ci; (X i,yi+1, . . . , X i,yi+j−1)
]

≥H
[
X i,yi+j

∣∣ Ci; (X i,1, . . . , X i,yi+j−1)
]
≥ k2 (3.3)

Recalling that Yi is uniformly chosen from
{

0, 1, . . . , n
b
− 1
}

for every j ∈ [n
b
] there

is Pr [Yi + j ∈ S ′] ≥ |S′|−j+1
n/b

. Let p
def
= |S′|−j+1

n/b
. Then,

E
[
H
[
Zj[i]

∣∣ Z1, . . . , Zj−1;Zj[1], . . . , Zj[i− 1]
]]
≥ pk2

New notation. Let HS
def
=
∑

i∈S H
[
Zj[i]

∣∣ Z1, . . . , Zj−1;Zj[1], . . . , Zj[i− 1]
]
.

Now, apply Lemma 3.7 to get the following bound, where the probability is taken

over r1, . . . , rb used for shifting.

Pr [HS < pk2|S| − δ] ≤ Pr

[
HS < E [HS]− δ

]
≤ exp

(
−2δ2

|S|

)

Since H
[
Zj
∣∣ Z1, . . . , Zj−1

]
≥
∑

i∈S H
[
Zj[i]

∣∣ Z1, . . . , Zj−1;Zj[1], . . . , Zj[i− 1]
]

=

HS, we conclude

Pr
[
H
[
Zj
∣∣ Z1, . . . , Zj−1

]
< pk2|S| − δ

]
≤ exp

(
−2δ2

|S|

)
(3.4)

Finally, we specify the parameters. Recall that k1 = k
c1b
− jb and set c1, k2 as
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follows,

c1 =
c

1− (1− c)2/3
, k2 = 1−

√
1− k1b

n
= 1−

√
(1− c)2/3 +

jb2

n

Then, by the way we define S, S ′ and p we have

b ≥|S| ≥ (c1 − 1)c

c1 − c
· b =

(
1− (1− c)1/3

)
b

n

b
≥|S|′ > k1 − k2n/b

1− k2

=
n

b

(
k1b/n− k2

1− k2

)
=
n

b

(
1−

√
(1− c)2/3 +

jb2

n

)

p =
|S|′ − j + 1

n/b
>

(
1−

√
(1− c)2/3 +

jb2

n

)
− jb

n

and in addition 1− exp
(
−2δ2

b

)
≤ 1− exp

(
−2δ2

|S|

)
.

Thus, with probability at least 1− exp
(
−2δ2

b

)
we have

H
[
Zj
∣∣ Z1, . . . , Zj−1

]
≥ pk2|S| − δ

>

(
1−

√
(1− c)2/3 +

jb2

n
− jb

n

)(
1−

√
(1− c)2/3 +

jb2

n

)(
1− (1− c)1/3

)
b− δ

Recalling that j ≤ ` <
n(1−(1−c)2/3−c0)

b2
for c0 > 0 and thus jb2

n
+ (1− c)2/3 < 1− c0

and moreover 1−
√

(1− c)2/3 + jb2

n
− jb

n
= Ω (1), there exists δ = Θ(b) such that

H
[
Zj
∣∣ Z1, . . . , Zj−1

]
> Ω (1) · b− δ = Ω (b)

We conclude that Zj has next-block-entropy Ω (b) with probability at least 1 −

exp (−2δ2/b) = 1− 2−Ω(b).

By union bound the first ` blocks in Z, i.e. Z1, . . . , Z`, each has next-block-

entropy Ω (b) with probability at least 1 − exp (−2δ2/b) ` = 1 − 2−Ω(b)`, for every

` <
n(1−(1−c)2/3−c0)

b2
= Ω

(
n
b2

)
.

By Lemma 3.10 we immediately obtain the following corollary.

68



Corollary 3.11. For every (n, k)-source X with k = Ω (n), there exists b = O
(
log n

ε

)
and ` = Ω

(
n

log2 n
ε

)
, such that each of Z1, . . . , Z` has next-block-entropy Ω

(
log n

ε

)
with

probability 1− ε
n

.

3.2.2 Streaming Extraction from Affine Sources

We show that for specific parameters the RRB extractor also works for affine sources.

Theorem 3.12. For every ε > 0 and k = Ω (n), there exists b = Θ(log n
ε
), d =

O (b log n), ` = Ω
(
n
b2

)
, and m = Ω

(
n
b

)
such that RRB : {0, 1}n × {0, 1}d → {0, 1}m is

a (k, ε)-extractor for every (n, k)-affine source.

The proof of Theorem 3.12 consists of two parts. First, Lemma 3.10 guarantees

certain next-block-entropy, and then Lemma 3.13 states that for affine sources next-

block-entropy also means next-block-min-entropy.

Lemma 3.13. For every (n, k)-affine source X = X ′ · A + b, and every partition

X = (X1, X2), H∞
[
X2

∣∣ X1

]
= H

[
X2

∣∣ X1

]
.

Proof. Let A = [A1 A2] and b = (b1,b2) such that

X1 = X ′ ·A1 + b1, X2 = X ′ ·A2 + b2

By the definition of conditional entropy and denote the rank of a matrix by rank(·),

we have

H
[
X2

∣∣ X1

]
= H [X]− H [X1] = rank(A)− rank(A1)

On the other hand H∞
[
X2

∣∣ X1

]
= − log

(
max(y,z)∈R Pr[X2 = z

∣∣ X1 = y]
)
, where

R denotes the range of X ′A and the probability is taken over X ′ ∼ Uk. By the
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definition of X1, X2

Pr[X2 = z
∣∣ X1 = y]

= Pr
[
X ′ ·A2 + b2 = z

∣∣ X ′ ·A1 + b1 = y
]

= Pr [X ′ ·A2 + b2 = z ∧X ′ ·A1 + b1 = y] /Pr [X ′ ·A1 + b1 = y]

= Pr [X ′ ·A + b = (y, z)] /Pr [X ′ ·A1 + b1 = y]

=2−rank(A)/2−rank(A1) = 2−rank(A)+rank(A1)

Therefore, we conclude that

H∞
[
X2

∣∣ X1

]
=− log

(
max

(y,z)∈R
Pr[X2 = z

∣∣ X1 = y]

)
=rank(A)− rank(A1) = H

[
X2

∣∣ X1

]
Thus, next-block-entropy transforms to next-block-min-entropy for affine sources.

Note that Z in Step 5 of RRB is in particular a permutation of the input X,

which is an (n, k)-affine source when X follows an (n, k)-affine source and (y1, . . . , yb)

is fixed. As a result, Lemma 3.10 and Lemma 3.13 together imply that each of the

first ` blocks of Z have next-block-min-entropy b′ = Ω (b), with probability 1− 2−b
′′
t,

where b′′ = Ω (b). Then, by Lemma 3.9 we use y0 ∈ {0, 1}2b to sample h : {0, 1}b →

{0, 1}(b′−ρ) and apply h on every block of (Z1, . . . , Z`), which has next-block-min-

entropy b′ = Ω (b). Hence, we obtain (b′ − ρ)t bits that are 2−ρ/2` close to uniform.

Putting things together and by setting ` = Θ(n/b2) as in Lemma 3.10, ρ = b′′ ≥

2
(
log 1

ε
+ log `+ 1

)
and b′ > 2ρ we are ready to conclude the theorem. Specifically,

b = Θ(log n
ε
) and RRB is a (k, ε)-extractor for (n, k)-affine sources with m = `(b′−ρ) ≥

`b′/2 = Ω (n/b) and statistical error at most (2−b
′′

+ 2−ρ/2)` ≤ ε.

3.2.3 Next-Block-Entropy to Next-Block-Min-Entropy

To prove that RRB extracts randomness from every (n, k)-source, we show how to

convert the guaranteed next-block-entropy (Lemma 3.10 on page 65) to next-block-
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min-entropy.

We denote by Xλ def
=
(
X1, . . . , Xλ

)
the concatenation of λ ∈ Z+ independent and

identically distributed3 random variables X1, . . . , Xλ over U = {0, 1}n. For every

x ∈ U , let HX(x)
def
= log 1

Pr[X=x]
for x ∈ Supp (X), and let HX(x)

def
= 0 otherwise. We

also abuse notation and let HX(xi)
def
= log 1

Pr[Xi=xi]
, when there is no ambiguity.

If every random variable Xi has entropy H[Xi] = Exi∼Xi [HX(xi)] ≥ α, then

there exists random variable X̃, such that SD
(
X̃,Xλ

)
≤ ε and X̃ has min-entropy

H∞[X̃] ≥ λα−O
(√

λ · log(1/ε) · log (|U| · λ)
)

.

Theorem 3.14 (cf. Lemma 2.1 in [HRV10]). Let λ ∈ Z+ and X1, . . . , Xλ be indepen-

dent random variables taking values in U = {0, 1}n with (Shannon) entropy H[Xi] ≥ α

for every i ∈ {1, . . . , λ}. Let 0 < ε ≤ 1/e2. Then, with probability at least 1− ε over

x1, . . . , xλ ∼ Xλ,

λ∑
i=1

HX [xi] ≥ λα−O

(√
λ · log

1

ε
· log (|U| · λ)

)

More specifically,

λ∑
i=1

HX [xi] ≥ λα−
√

8λ · ln 1

ε
·
(

log |U|+ 1

2
log λ

)

When the random variables have linear entropy rate, i.e. H[X] = Ω (|X|) =

Ω (log |U|), we prove the following corollary with explicit bound for λ.

Corollary 3.15. If in Theorem 3.14 we let α = κ · log |U| = Ω (log |U|), then there

exists λ ≤ 32
κ2 · ln 1

ε
such that with probability at least 1− ε over x1, . . . , xλ ∼ Xλ,

λ∑
i=1

HX [xi] ≥
1

2
λα

Proof of Theorem 3.14. Standard concentration bounds do not apply on unbounded

variables HX(xi)’s. We lower bound
∑λ

i=1 HX(xi) in three steps: (i) introduce interme-

diate (bounded) variables H≥τX (xi)
def
= min

{
HX(xi), log 1

τ

}
for τ = O

(
log |U|
|U| ·

√
ln 1

ε

)
3The proof holds even when Xi’s are independent but not identically distributed.
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(to be specified later) to approximate HX(xi), (ii) upper bound the error of such an

approximation, and (iii) apply Chernoff-Hoeffding Inequality on
∑λ

i=1 H
≥τ
X (xi). Note

that both steps (ii) and (iii) rely on different forms of measure concentration. Thus,

the lower bound for
∑λ

i=1 H
≥τ
X (xi) implies a lower bound for

∑λ
i=1 HX(xi).

From the definition of H≥τX (xi), we have 0 ≤ H≥τX (xi) ≤ log 1
τ

and H≥τX (xi) ≤ HX(xi)

with equality when HX(xi) ≤ log 1
τ
. Let ∆i(xi)

def
= HX(xi) − H≥τX (xi) ≥ 0 and ∆i

def
=

∆i(Xi). Then, ∆i(xi) ≥ q > 0 holds if and only if ∆i(xi) = HX(xi)−H≥τX (xi) ≥ q and

HX(xi) > H≥τX (xi) = log 1
τ
, which is equivalent to HX(xi) ≥ q + log 1

τ
. As a result, for

every q > 0 and for every i ∈ {1, . . . , λ},

Pr [∆i ≥ q] = Pr
xi∼Xi

[∆i(xi) ≥ q]

= Pr
xi∼Xi

[
HX(xi) ≥ q + log

1

τ

]
=

∑
xi∈U:

HX(xi)≥log(2q/τ)

Pr[Xi = xi]

≤ |U| · 2− log(2q/τ) = τ |U| · 2−q

Let ∆
def
=
∑λ

i=1 ∆i =
∑λ

i=1 HX(Xi)−
∑λ

i=1 H
≥τ
X (Xi). We lower bound ∆ using the

Chernoff bound for random variables with exponential vanishing tails. To make the

exposition self-contained, we provide the proof of Claim 3.16 (in our notation).

Claim 3.16 (Lemma A.2 in [Vad04]). Let ∆, λ, τ as above. Let β
def
= e1/3

21/2 < 0.987,

then,

Pr [∆ > 2λτ |U|] ≤ βλτ |U| = 2−Ω(λτ |U|) (3.5)

Proof of Claim 3.16. We consider the expectation of an exponential generating func-

tion as in usual Chernoff bounds. For every t ∈ (0, 1) and for every i ∈ {1, . . . , λ},

E
[
2t∆i

]
= Pr [∆i = 0] · 20 +

∫ ∞
q=0

d

dq
(−τ |U| · 2−q) · 2tqdq

= 1− τ |U|+
(
−τ |U|
1− t

· 2−(1−t)q
) ∣∣∣∣∞

q=0

= 1 +
τ |U| · t
1− t

≤ e
τ |U|·t
1−t

72



Thus, by the independence of the sampling of Xi’s,

E
[
2t∆
]

=
λ∏
i=1

2t∆i ≤
λ∏
i=1

exp(
τ |U| · t
1− t

) = e
λτ |U|·t

1−t

By Markov’s Inequality, for every t ∈ (0, 1), we have

Pr[∆ > 2λτ |U|] = Pr[2t∆ > 2t·2λτ |U|] ≤ e
λτ |U|·t

1−t

2t·2λτ |U|
=

(
et/(1−t)

22t

)λτ |U|

For t = 1/4, et/(1−t)/22t = β < 1, and the probability Pr[∆ > 2λτ |U|] ≤ βλτ |U| =

2−Ω(λτ |U|).

To apply the concentration bound for
∑λ

i=1 H
≥τ
X (xi), we need to first lower bound

E
[∑λ

i=1 H
≥τ
X (xi)

]
, where the expectation is over (x1, . . . , xλ) ∼ Xλ. Recall that for

x1, . . . , xλ satisfying ∆ ≤ 2λτ |U|, there is
∑λ

i=1 H
≥τ
X (xi) ≥

∑λ
i=1 HX(xi)−2λτ |U|. We

denote by p
def
= Pr [∆ > 2λτ |U|], and now we lower bound E

[∑λ
i=1 H

≥τ
X (xi)

]
in terms

of
∑λ

i=1 HX(xi) as follows.

E

[
λ∑
i=1

H≥τX (xi)

]
= (1− p) · E

[
λ∑
i=1

H≥τX (xi)
∣∣ ∆ ≤ 2λτ |U|

]

+ p · E

[
λ∑
i=1

H≥τX (xi)
∣∣ ∆ > 2λτ |U|

]

≥ (1− p) · E

[
λ∑
i=1

HX(xi)− 2λτ |U|
∣∣ ∆ ≤ 2λτ |U|

]

≥ (1− p) · E

[
λ∑
i=1

HX(xi)
∣∣ ∆ ≤ 2λτ |U|

]
− 2λτ |U| (3.6)

Now, we lower bound (1− p) · E
[∑λ

i=1 HX(xi)
∣∣ ∆ ≤ 2λτ |U|

]
. Since HX(xi) ≥ α,

we have E
[∑λ

i=1 HX(xi)
]

=
∑λ

i=1 H[Xi] ≥ λα, and by Jensen’s Inequality4 or by

4If X is a random variable and f is a convex function, then f (E [X]) ≤ E [f(X)].
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multivariate calculus,

∑
x=(x1,...,xλ)∈Uλ∑λ
i=1 ∆i(xi)>2λτ |U|

Pr[Xλ = x] · log
1

Pr[Xλ = x]

≤|U|λ · Pr [∆ > 2λτ |U|]
|U|λ

· log
|U|λ

Pr [∆ > 2λτ |U|]

=p · log
|U|λ

p

=p ·
(
λ log |U|+ log

1

p

)

Therefore,

λα ≤ E

[
λ∑
i=1

HX(xi)

]

= (1− p) · E

[
λ∑
i=1

HX(xi)
∣∣ ∆ ≤ 2λτ |U|

]

+ p · E

[
λ∑
i=1

HX(xi)
∣∣ ∆ > 2λτ |U|

]

≤ (1− p) · E

[
λ∑
i=1

HX(xi)
∣∣ ∆ ≤ 2λτ |U|

]
+

∑
x=(x1,...,xλ)∈Uλ∑λ
i=1 ∆i(xi)>2λτ |U|

Pr[Xλ = x] · log
1

Pr[Xλ = x]

≤ (1− p) · E

[
λ∑
i=1

HX(xi)
∣∣ ∆ ≤ 2λτ |U|

]
+ p ·

(
λ log |U|+ log

1

p

)
(3.7)

Combining (3.6) and (3.7), we get the following lower bound:

E

[
λ∑
i=1

H≥τX (xi)

]
≥ λα− p ·

(
λ log |U|+ log

1

p

)
− 2λτ |U| (3.8)

Now, we apply a standard form of Chernoff-Hoeffding Inequality on
∑λ

i=1 H
≥τ
X (xi),
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where 0 ≤ H≥τX [xi] ≤ log 1
τ

for every xi ∈ U and i ∈ {1, . . . , λ}.

Pr

[
λ∑
i=1

H≥τX (xi) ≤ E

[
λ∑
i=1

H≥τX (xi)

]
− δ

]

= Pr

[
−

λ∑
i=1

H≥τX (xi) + E

[
λ∑
i=1

H≥τX (xi)

]
≥ δ

]

≤ exp

(
− 2δ2∑λ

i=1(log 1
τ
− 0)2

)

= exp

(
− 2δ2

λ(log 1
τ
)2

)

For δ = log 1
τ

√
λ
2

ln 1
ε
, we have

Pr

[
λ∑
i=1

H≥τX (xi) ≤ E

[
λ∑
i=1

H≥τX (xi)

]
− δ

]

= Pr

[
λ∑
i=1

H≥τX (xi) ≤ E

[
λ∑
i=1

H≥τX (xi)

]
− log

1

τ

√
λ

2
ln

1

ε

]

≤ exp

(
− 2δ2

λ(log 1
τ
)2

)
= ε

Recalling that
∑λ

i=1 HX(xi) ≥
∑λ

i=1 H
≥τ
X (xi) and the lower bound in (3.8), the

following inequality holds with probability at least 1− ε over x1, . . . , xλ ∼ Xλ,

λ∑
i=1

HX(xi) ≥
λ∑
i=1

H≥τX (xi)

≥λα− 2λτ |U| − p ·
(
λ log |U|+ log

1

p

)
− δ (3.9)

where δ and τ depends on ε.

Finally, we fix parameters and conclude the proof. For the given λ and ε, select τ

such that

λ =
log2 1

τ

2τ 2|U|2
· ln 1

ε
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Since λ ∈ Z+, we have τ = O
(

log |U|
|U| ·

√
ln 1

ε

)
. We let c

def
= τ |U|/ log |U| = O

(√
ln 1

ε

)
,

and thus,

τ =
c log |U|
|U|

Then, δ = λτ |U|. Moreover, λτ |U| ≥ p ·
(
λ log |U|+ log 1

p

)
, since

λ =
log2 1

τ

2τ 2|U|2
ln

1

ε
=

(
log |U|

c log |U|

)2

2(c log |U|)2
ln

1

ε
= Ω

((
1

c

)2

ln
1

ε

)
≥

log
(

1
c

+ log 1
β

)
c log |U| · log 1

β

=⇒ λτ |U| ≥
log
(

log |U|
τ |U| + log 1

β

)
log 1

β

=⇒ 1 ≥ βλτ |U| ·
(

log |U|
τ |U|

+ log
1

β

)
=⇒ λτ |U| ≥ βλτ |U| ·

(
λ log |U|+ log

1

βλτ |U|

)
≥ p ·

(
λ log |U|+ log

1

p

)
where the last inequality holds because p ≤ βλτ |U| by (3.5).

Thus, by (3.9) we have

Pr
x1,...,xi∼Xλ

[
λ∑
i=1

HX(xi) ≥ λα− 4λτ |U|

]
≥ 1− ε (3.10)

For the general case, we upper bound λτ |U| by O
(√

λ · log(1/ε) · log (|U| · λ)
)

as follows. Recall that c ≤ O (log |U|) and hence τ < 1, log log 1
τ
> 0, therefore for
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ε ≤ 1/e2,

log log
1

τ
+

1

2

(
log ln

1

ε
− log 2

)
≥ 0

=⇒ log log
1

τ
+

1

2

(
log ln

1

ε
− log 2

)
+ log |U| − log c− log log |U|

≥ log |U| − log c− log log |U|

=⇒ log |U|+ 1

2
log

(
(log 1

τ
)2

2(c log |U|)2
ln

1

ε

)
≥ log

(
|U|

c log |U|

)
=⇒ log |U|+ 1

2
log λ ≥ log

1

τ

=⇒
log |U|+ 1

2
log λ

log 1
τ

· λτ |U| ≥ λτ |U|

Notice that λτ |U|
log 1

τ

=
√

1
2
λ ln 1

ε
in the above inequality, and thus we conclude

λτ |U| ≤
(

log |U|+ 1

2
log λ

)
·
√

1

2
λ ln

1

ε
= O

(√
λ · log

1

ε
· log (|U| · λ)

)

By plugging in this upper bound for λτ |U| into (3.10), we have that with proba-

bility at least 1− ε over x1, . . . , xλ ∼ Xλ, the following holds:

λ∑
i=1

HX(xi) ≥λα− 4λτ |U|

≥λα−
√

8λ · ln 1

ε
·
(

log |U|+ 1

2
log λ

)
=λα−O

(√
λ · log

1

ε
· log (|U| · λ)

)

This completes the proof for Theorem 3.14.

Then, we prove Corollary 3.15 with the explicit constants.

Proof of Corollary 3.15. By Theorem 3.14, for α = Ω (log |U|) and let c = α
8 log |U| be
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a constant, with probability at least 1− ε, we have:

λ∑
i=1

HX [xi] ≥ λα− 4λτ |U|

Recalling that in the proof of Theorem 3.14,

τ =
c log |U|
|U|

=
α

8|U|

λ =
log2 1

τ

2τ 2|U|2
· ln 1

ε

We lower bound
∑λ

i=1 HX [xi] as follows,

λ∑
i=1

HX [xi] ≥ λα− 4λτ |U| = λα− 4λ · α
8

=
1

2
λα

On the other hand, λ is upper bounded as follows,

λ =
log2 1

τ

2τ 2|U|2
· ln 1

ε
=

log2(8|U|/α)

2(α/8)2
· ln 1

ε

=
(3 + log |U| − logα)2

α2/32
· ln 1

ε

≤ 32 ·
(

log |U|
α

)2

· ln 1

ε
=

32

κ2
· ln 1

ε

3.2.4 Streaming Extraction from Any Source

We show the last and most general property of RRB, which holds for arbitrary sources.

In particular, we show that RRB extracts randomness when given (on the same

stream one after the other) O
(
log n

ε

)
many samples from independent arbitrary (n, k)-

sources. Actually, we believe that RRB works even on a single sample, as concluded

in Conjecture 4.13 on page 115.

Theorem 3.17. For every ε > 0 and k = Ω (n), there is a number of sources λ =
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O
(
log n

ε

)
, such that for b = Θ(λ log n

ε
), d = O (b log n), ` = Ω

(
n/ log2 n

ε

)
, and m =

Ω
(
λn/ log n

ε

)
, we have that RRB : {0, 1}λ×n × {0, 1}d → {0, 1}m is a (k, ε)-extractor

for λ many independent (n, k)-sources. Here, the samples of these sources are listed

one after the other in the same stream, which is the input stream for RRB.

Proof. Let the input to RRB be partitioned as X = (X(1), X(2), . . . , X(λ)) where

X(1), . . . , X(λ) are independent random variables over {0, 1}n and H∞[X(i)] ≥ k

for every i ∈ [λ]. We want to show that SD
(
RRB

(
X(1), . . . , X(λ)), Y

)
,Um

)
≤ ε

when Y ∼ Ud. For convenience, let b′ = b/λ and partition Y = (Y0, Y1, . . . , Yb) =(
Y0, Y

(1), . . . , Y (λ)
)

where Y (i) =
(
Y

(i)
1 , . . . , Y

(i)
b′

)
def
=
(
Y(i−1)b′+1, . . . , Yib′

)
is the ran-

domness used to shift blocks in X(i) for every i ∈ [λ]. And similarly to the partition

of Y , we also partition X =
(
X1, . . . , Xb

)
where X(i) =

(
X(i−1)b′+1, . . . , X ib′

)
.

Input. In this construction RRB runs as if X is a single source (see description of

RRB on page 59), where the parameters and the length of X(1), . . . , X(λ) are set in a

way such that each X(i) corresponds to a super-block in the RRB description.

The proof consists of three parts:

i. after Stage I and II in RRB, we get an interlace (defined below) of Z(1), . . . , Z(λ);

ii. with many independent samples the next-block-entropy guarantee of RRB (as in

Lemma 3.10, p. 65) transforms to next-block-min-entropy guarantee;

iii. Stage III applies a hash function to extract randomness from guaranteed next-

block-min-entropy (Lemma 3.9, p. 63).

Definition 3.18. Suppose Z(1), . . . , Z(λ) are partitioned into blocks such that for every

i ∈ [λ], Z(i) =
(
Z

(i)
1 , . . . , Z

(i)
`

)
. An interlace of Z(1), . . . , Z(λ) makes up its i-th block

by collecting the i-th block from each of the Z(1), . . . , Z(λ) as follows.

interlace(Z(1), . . . , Z(λ)) =
(

(Z
(1)
1 , . . . , Z

(λ)
1 ), . . . , (Z

(1)
` , . . . , Z

(λ)
` )
)

To prove (1) above we identify the execution of Stage I and II in RRB by a different

algorithm that results in an identical execution to that of RRB. Consider the run of
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RRB until the end of Step 5 on input X(i) =
(
X

(i)

1 , . . . , X
(i)

b′

)
for b′ = b/λ and get

Z(i) =
(
Z

(i)
1 , . . . , Z

(i)
n/b′

)
, for every i ∈ [λ]. Note here X

(i)

j = X(i−1)b′+j for every i ∈ [λ]

and j ∈ [b′] since X(i) =
(
X(i−1)b′+1, . . . , X ib′

)
.

Then, realize every Z(1), . . . , Z(λ) as super-blocks and do re-bucketing on Z
(i)
j ’s

for i ∈ [λ] and j ∈ [n/b′]. Thus, we obtain
(

(Z
(1)
1 , . . . , Z

(λ)
1 ), . . . , (Z

(1)
n/b′ , . . . , Z

(λ)
n/b′)

)
,

which is exactly the interlace of Z(1), . . . , Z(λ).

Recalling that Z
(i)
j =

(
shift(X

(i)

1 , Y
(i)

1 )j, . . . , shift(X
(i)

b′ , Y
(i)
b′ )j

)
and hence

(
Z

(1)
j , . . . , Z

(λ)
j

)
=
((

shift(X
(1)

1 , Y
(1)

1 )j, . . . , shift(X
(1)

b′ , Y
(1)
b′ )j

)
,

. . . ,
(
shift(X

(λ)

1 , Y
(λ)

1 )j, . . . , shift(X
(λ)

b′ , Y
(λ)
b′ )j

))
=
((

shift(X1, Y1)j, . . . , shift(Xb′ , Yb′)j
)
,

. . . ,
(
shift(X(λ−1)b′+1, Y(λ−1)b′+1, . . . , shift(Xλb′ , Yλb′)j

))
=
(
shift(X1, Y1)j, . . . , shift(Xλb′ , Yλb′)j

)
=
(
shift(X1, Y1)j, . . . , shift(Xb, Yb)j

)
Therefore,

interlace
(
Z(1), . . . , Z(λ)

)
=
((
Z

(1)
1 , . . . , Z

(λ)
1

)
, . . . ,

(
Z

(1)
n/b′ , . . . , Z

(λ)
n/b′

))
=
(
shift(X1, Y1)1, . . . , shift(Xb, Yb)1, . . . , shift(X1, Y1)n/b′ , . . . , shift(Xb, Yb)n/b′

)
=interlace

(
shift(X1, Y1), . . . , shift(Xb, Yb)

)
which is exactly the intermediate result in Step 5 of RRB on input (X, Y ) (partitioned

into b super-blocks). Therefore, with the same algorithm (RRB) we can get the

interlace of Z(1), . . . , Z(λ) derived from λ many independent random variables (each

partitioned into b′ = b/λ super-blocks).

In the remainder of the proof, our analysis is about Z =
(
Z1, . . . , Zn/b′

)
=(

(Z
(1)
1 , . . . , Z

(λ)
1 ), . . . , (Z

(1)
n/b′ , . . . , Z

(λ)
n/b′)

)
as computed with this new sub-algorithm

(which replaces Stage I and II), and by equivalence the same analysis applies to

the execution of RRB.
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Now, let us show how the next-block-entropy guarantee is converted to next-block-

min-entropy guarantee. By Lemma 3.10 there exists b′ = Θ(log n
ε
) and ` = Ω

(
n

log2 n
ε

)
such that

(
Z

(i)
1 , . . . , Z

(i)
`

)
has next-block-entropy α = Ω

(
log n

ε

)
with probability at

least 1− ε
n

over the random choice of Y (i). As a result the above statement holds for

every i ∈ [λ] with probability at least 1 − λε
n

. That is, by suffering a loss of λε
n

, the

argument goes through conditioned on the premise that all Z(i)’s have next-block-

entropy guarantee α.

Notice that independent random variables with next-block-entropy α implies next-

block-min-entropy by Corollary 3.15 (page 71). Fix j ∈ [`] and apply this corollary

on Z(1), . . . , Z(λ). Then, since H
[
Z

(i)
j

∣∣Z(i)
j−1, . . . , Z

(i)
1

]
≥ α for every i ∈ [λ], there must

be Z̃j such that SD
((
Z̃j, Zj−1, . . . , Z1

)
, (Zj, Zj−1, . . . , Z1)

)
≤ ε′ + 2−Ω(λ) and

H∞
[
Z̃j
∣∣Zj−1, . . . , Z1

]
≥ 1

2
λα

Therefore, when λ = Ω
(
log n

ε

)
, α = Ω

(
log n

ε

)
, b′ = Θ(log n

ε
) and ε′ = ε

n
, there

exists β = Ω (λα) and Z̃1, . . . , Z̃` such that SD
((
Z̃1, . . . , Z̃`

)
, (Z1, . . . , Z`)

)
≤ ε`

n
+ λε

n

with next-block-min-entropy guarantee

H∞
[
Z̃j
∣∣Z̃j−1, . . . , Z̃1

]
≥ β

Finally, setting ρ = 2 log n
ε

in Lemma 3.9 we conclude that

SD (RRB (X, Y ) ,Um) = SD ((H(Z1), . . . , H(Z`)) ,Um)

≤SD
((
H(Z̃1), . . . , H(Z̃`)

)
,Um

)
+
ε

2
+
λε

n

≤2−ρ/2 · `+
ε

2
+
λε

n
=
ε`

n
+
ε

2
+
λε

n
≤ ε

where H is uniformly chosen (with random seed Y0) from a family of 2-universal hash

functions mapping b bits to β−ρ bits. Recalling that ` = Ω
(
n/ log2 n

ε

)
, α = Ω

(
log n

ε

)
and β = Ω (λα), the output length m = (β − ρ)` = Ω (λα`) = Ω

(
λn

log n
ε

)
. Therefore,

RRB : {0, 1}λn × {0, 1}d → {0, 1}m is the extractor from λ many independent (n, k)
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sources as stated in Theorem 3.17.

3.3 Experimental Study

The complete empirical method consists of: (i) initial randomness generation, (ii)

parameter estimation, and (iii) streaming extraction. Components (ii) and (iii) rely

on initial randomness.

Initial randomness is generated in two phases. First, extract randomness from

multiple independent sources without using any seed. Then, use RRB to expand this

initial randomness further.

Parameter estimation determines a suitable pair (κ, γ) of min-entropy rate κ
def
=

k/n and effectiveness factor γ
def
= bO/(

n
b
).

The heart of our method is the RRB extractor realized as a two-stream algorithm

with each stream maintained on a different hard disk. RRB has provable guarantees

and is highly practical.

3.3.1 Experimental set-up.

We empirically evaluate the quality and the efficiency of our method.

Quality evaluation is performed on big samples from 12 semantic data categories:

compressed/uncompressed audio, video, images, text, DNA sequenced data, and so-

cial network data (for audio, video, and images the compression is lossy). The initial

randomness used in our experiments consists of 9.375 × 108 bits ≈ 117 MB gener-

ated from 144 pieces of 4 MB compressed audio and one piece of 15 GB compressed

video. The produced randomness is used for parameter estimation on samples rang-

ing in size from 1 GB to 16 GB from each of the 12 categories. The estimated κ and

γ vary within [1/64, 1/2] and [1/32, 1/2] respectively, cross-validated (i.e. excluding

previously used samples) on samples of size 1.5 GB – 20 GB with error tolerance

ε = 10−20. Final extraction quality is measured on all 12 categories by NIST and

DIEHARD.

Operating system kernel-level measurements are taken for the running time and
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memory usage of RRB. These measurements are taken from RRB on input sizes 1 GB

– 20 GB, min-entropy rate κ ∈ {1/4, 1/8}, and error tolerance ε ∈ {10−10, 10−20}.

For comparison, we measure quality and efficiency for three of the most popular

representatives of extractors. The quality of Local Hash and von Neumann extractor

is evaluated on 12 GB raw data (from the 12 categories) and 12 GB adversarial

synthetic data (Table 3.2). The efficiency is measured for von Neumann extractor,

Local Hash, and Trevisan’s extractor (Figure 3-2).

3.3.2 Empirical initial randomness generation.

Seeded extraction, as in RRB, needs uniform random bits to start. All the random-

ness for the seeds in our experiments is obtained by randomness bootstrapping in

two phases: (i) obtain initial randomness ρ through (seedless) multiple-independent-

source extraction, and (ii) use ρ for parameter estimation and run RRB to extract

a longer string ρlong, |ρlong| = 2
√
|ρ̂|/54−7, where ρ̂ is the part of ρ used as the seed

of RRB during bootstrapping. By elementary information theory, ρlong can be used

instead of a uniformly random string.

Phase (i) is not known to have a streaming implementation, which is a not an

issue since it only extracts from small samples. Start with 144 statistically inde-

pendent compressed audio samples ρ1, . . . , ρ144: each sample is 4 MB of high-quality

(320 Kbps) compressed recording (MPEG2-layer3). Taken together, the samples last

4.1 hours. These samples are generated privately – without malicious adversarial con-

trol – using different independent sound-settings and sources. Partition the samples

into 16 groups, each consisting of 9 = 32 samples. Every ρi can be interpreted as a

field element in GF [p], where p = 257885161−1 is the largest known Mersenne prime and

4 MB < log2 p bits. For the first group {ρ1, . . . , ρ9}, compute ρ(1) = ρ′ ·ρ′′+ρ′′′ where

ρ′ = ρ1 ·ρ2+ρ3, ρ′′ = ρ4 ·ρ5+ρ6, and ρ′′′ = ρ7 ·ρ8+ρ9; which is a two-level recursion. In

the same way, compute ρ(2), . . . , ρ(16) and finally let ρ = ρ(1) + · · ·+ ρ(16), with all op-

erations in GF [p]. We call this the BIWZ method due to the authors [BIW06, Zuc90]

who studied provable multi-source extraction based on the field operation x · y + z.

Phase (ii) uses the 4 MB extracted by BIWZ out of which 3.99 MB are used
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in parameter estimation for compressed video. The remaining 10 KB are used to

run RRB on 15 GB compressed video, which is generated and compressed privately,

i.e. without malicious adversarial control. Our hypothesis is that the estimated pa-

rameters are valid for RRB, i.e. n bits of compressed video contain min-entropy n/2

that can be extracted by RRB with effectiveness factor γ = 1/32. This hypothesis is

verified experimentally (Table 3.1). With the given seed and κ = 1/2, γ = 1/32, and

ε = 10−100, RRB extracts the final 9.375× 108 random bits.

Here is why BIWZ works. Each ρ(i) has provable extraction guarantees [BIW06]

for sources of relatively high min-entropy (e.g. ≥ 0.9 log2 p), and the same method

works for any linear min-entropy; e.g. in theory, 109 levels suffice for min-entropy n/8.

Each ρ(i) alone is empirically measured to be indistinguishable from ideal uniform

random bits. By summing up the ρ(i)’s, the statistical distance provably reduces to

the minimum among all sources associated with the ρ(i)’s. In the summation for ρ, 16

is a safety factor. BIWZ cannot work on samples > 7 MB because the required prime

p exceeds current human knowledge. Note that mathematically deep followup works

are quite limited in practice even on sample size n = 8× 106 bits= 1 MB because of

e.g. arithmetic over GF [2n].

3.3.3 Empirical parameter estimation protocol.

There are two crucial parameters for RRB: the min-entropy rate κ and the effective-

ness factor γ. In theory, γ is determined by κ, n, ε. In practice, better, empirically

validated values are estimated simultaneously for κ and γ. This works because in ad-

dition to min-entropy, κ induces the next-block-min-entropy guarantee for a fraction

of γ blocks (Figure 3-1).

For every semantic data category, the following protocol estimates a pair of (κ, γ).

First, get a bit sequence s of size 1 GB by concatenating sampled < 1 MB segments

from the target data category. Then, compress s into s′ using LZ77 [ZL77] (s′ = s if

s is already compressed). Since the ideal compression has |s′| equal to the Shannon

entropy of s, the compression rate |s
′|
|s| is also an upper bound for the min-entropy

rate. To obtain a lower bound for the min-entropy rate (required parameter for
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RRB), we start from κ′ = |s′|
2|s| and search inside [0, κ′]. For min-entropy rate κ ∈{

κ′, κ
′

2
, κ
′

4
, κ
′

8
, κ
′

16

}
and effectiveness factor γ ∈

{
γ′, γ

′

2
, γ
′

4
, γ
′

8
, γ
′

16

}
, extract from s using

RRB, with parameters κ, γ, and ε = 10−20 and seed from the initial randomness.

Apply NIST tests on the extracted bits for every (κ, γ) pair. If the amount of extracted

bits is insufficient for NIST tests, then start over with an s twice as long. We call a

pair of (κ0, γ0) acceptable if NIST fails with frequency at most 0.25% for every run

of RRB with parameters κ ≤ κ0 and γ ≤ γ0. This 0.25% threshold is conservatively

set slightly below the expected failure probability of NIST on ideal random inputs,

which is 0.27%. If (κ0, γ0) is a correctly estimated lower bound, then every estimate

(κ, γ) with κ ≤ κ0 and γ ≤ γ0 is also a correct lower bound. Hence, the extraction

with (κ, γ) should be random and pass the NIST tests. We choose the acceptable

pair (if any) that maximizes the output length.

There is strong intuition in support of the correct operation of this protocol.

First, the random sampling for s preserves with high probability the min-entropy rate

[NZ96]. Second, an extractor cannot extract almost-uniform randomness if the source

has min-entropy much lower than the estimated one. Finally, NIST tests exhibit a

certain ability to detect non-uniformity. Verification of the estimated parameters is

done by cross-validation.

3.3.4 Streaming realization of the RRB extractor.

The streaming extractor RRB, as defined in Section 3.1 (page 57), uses d + 2 log2 n

bits local memory and 3dlog2 log2
n
ε
− 2 log2 κ+ 2 log2 3 + 1e passes over two streams,

for input length n, min-entropy rate κ, error tolerance ε and seed length d. RRB is

also parameterized by the effectiveness factor γ as shown below.

Given n, ε, and the estimated κ, γ, our method invokes RRB with k = κn, m =

1
2
γκn, and the number of super-blocks b = 9

2κ2 log2
n
ε
. For convenience, n is padded

to a power of 2, κ and γ are rounded down to an inverse power of 2, and b is rounded

up to a power of 2. Hereafter, no further rounding is needed. Let σ1 and σ2 denote

two read/write streams. The input sample x ∈ {0, 1}n is initially on σ1. Get a

seed y of length d = b(1 + κ
2

+ log2
n
b
) from the initially generated randomness, and
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store it in local memory. We interpret y as y = (y0, y1, . . . , yb) ∈ {0, 1}(1+κ
2

)b ×{
0, 1, 2, . . . , n

b
− 1
}b

.

If there is theoretical knowledge for κ, then RRB provably (by Theorem 3.17

on page 78) extracts from λ = 32
κ2 log2

n
ε

many independent samples from arbitrary

(n, k)-sources, concatenated as a single input of length λn, for b = λ ln n
ε
, γ =

1−(1−κ)2/3+
√

1+8(1−κ)2/3

8 ln(n/ε)
, and d = (log2 n + 2)b. In this case, RRB extracts m ≥

n
(
1− (1− κ)2/3

) (
1− (1− κ)1/3

)
κ−2 log2 e = Ω (n) bits that are ε-close to uniform,

from λn bits input and d bits random seed. For instance, RRB can use a seed smaller

than 6.7 MB to extract more than 8.8 GB of randomness for n = 20 GB, κ = 0.5 and

ε = 10−20.

3.3.5 Standard statistical tests.

Here we explain how to read the test results of NIST and DIEHARD, which are

standard batteries for statistical tests of uniformity.

Each statistical test measures one property of the uniform distribution by com-

puting a P-value, which on ideal random inputs is uniformly distributed in [0, 1].

For each NIST test, subsequences are derived from the input sequence and P-values

are computed for each subsequence. A significance level α ∈ [0.0001, 0.01] is chosen

such that a subsequence passes the test whenever P-value ≥ α and fails otherwise.

If we think that NIST is testing ideal random inputs, then the proportion of passing

subsequences has expectation 1 − α, and the acceptable range of proportions is the

confidence interval chosen within 3 standard deviations. Furthermore, a second-order

P-value is calculated on the P-values of all subsequences via a χ2-test. An input

passes one NIST test if (i) the input induces an acceptable proportion and (ii) the

second-order P-value ≥ 0.0001. An input passes one DIEHARD-test if P-value is in

[α, 1− α].

We compare the statistical behavior of bits produced by our method with ideal

random bits. For ideal random bit-sequences, α is the ideal failure rate. Anything

significantly lower or higher than this indicates non-uniform input. In our tests, we

choose the largest suggested significance level α = 0.01; i.e. the hardest to pass the
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test. All tests on our extracted bits appear statistically identical to ideal randomness

(Table 3.1).

3.3.6 Experimental platform details.

The performance of the streaming RRB, von Neumann extractor, and Local Hash

is measured on a desktop PC, with Intel Core i5 3.2 GHz CPU, 8 GB RAM, two

1 TB hard drives and kernel version Darwin 14.0.0. The performance of Trevisan’s

extractor is measured on the same PC with the entire input and intermediate results

stored in main memory.

We use the following software platforms and libraries. TPIE [TPI13] is the C++

library on top of which we implement all streaming algorithms – TPIE provides

application-level streaming I/O interface to hard disks. For arbitrary precision integer

and Galois field arithmetic we use GMP [GMP14] and FGFAL [FGF07].

3.4 Experimental Data
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Figure 3-2: Running time of RRB compared with other extractors. Running
time is measured on input samples of size 1 GB – 20 GB for von Neumann extractor,
local hash extractor (with block-size 1024 bits), and for RRB (with k = n/4, ε = 10−10

and k = n/8, ε = 10−20). Trevisan’s extractor is only measured for ε = 0.001 on sam-
ples of size up to 5 MB = 4 × 107 bits, since the available implementations of finite
fields cannot handle larger samples or smaller ε. The running time of Trevisan’s ex-
tractor on larger input size (in particular, 103, 407 years for 20 GB input) is estimated
by polynomial fitting assuming all data in the main memory, which is an unrealistic
advantage. The exact form of the fittest polynomial is determined through cross-
validation and standard analysis of polynomial norms.
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Extractor and data
setting

NIST Test Suite

Number of tests Observed (Ideal) freq. P-val < 0.0001

Raw data 2256 1931 (6.09) 1561 (0.22)
Von Neumann 2256 966 (6.09) 785 (0.22)
Von Neumann on adversary 2256 1507 (6.09) 1435 (0.22)
Local hash 2256 16 (6.09) 1 (0.22)
Local hash on adversary 2256 781 (6.09) 170 (0.22)
RRB 2256 4 (6.09) 0 (0.22)
RRB on adversary 2256 5 (6.09) 1 (0.22)

Table 3.2: Comparative extraction quality performance. The raw data consists
of 12 files each of size 1000 MB from the 12 data categories and the adversarial data are
generated by simply replacing 10 MB in each file with fixed values. NIST tests are applied
on the raw data and extraction output of von Neumann, local hash, and RRB extractors
on raw data and adversarial data. The second column is the total number of NIST tests
per setting. The third column is the number of NIST tests that fail because of proportion
(Methods p. 86), and the fourth column is the number of NIST tests that fail because of
the second-order P-value. All are compared with the expected number of the ideal uniform
random bits. Except from RRB and “RRB on adversary”, all other test results indicate
non-uniform output (i.e. noticeably different from ideal uniform).
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(a) Compressed audio

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.1408 0.1330 0.1596 0.2660 0
1/4 0.1596 0.1596 0.1330 0.5319 0

1/8 0.1064 0.1330 0 0 0

1/16 0.2660 0.5319 0 0 0
1/32 0 0 0 0 0

* Table entries are percentages; e.g. the first entry means

0.1408% = 0.001408.

(b) Audio

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.1698 0.1164 0.1400 0.1182 0.1773
1/4 0.0887 0.0560 0.0532 0.1330 0.5319

1/8 0.0332 0 0 0 0

1/16 0 0 0 0 0
1/32 0 0 0 0 0

(c) Compressed video

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.1964 0.1272 0.1533 0.1330 0.1330

1/4 0.1850 0.1544 0.2013 0.1478 0.0887
1/8 0.1983 0.1869 0.2660 0.1773 0
1/16 0.2161 0.1182 0.1773 0.2660 0
1/32 0.2660 0.2660 0.3546 1.0638 0

(d) Video

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.2579 0.2716 0.2482 0.2327 0.2660
1/4 0.2490 0.2992 0.3639 0.4137 0.5319
1/8 0.2660 0.3080 0.4255 0.5319 1.0638

1/16 0.1995 0.1773 0.1330 0 0

1/32 0.3546 0.3546 0 0 0

(e) Compressed image

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.2872 0.3224 0.3919 0.2364 0.1773
1/4 0.2095 0.2128 0.2660 0.2660 0
1/8 0.2520 0.2128 0.3989 1.0638 0

1/16 0.1182 0 0 0 0

1/32 0 0 0 0 0

(f) Image

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/4 0.4110 0.4074 0.3191 0.3324 0.4433
1/8 0.3622 0.3823 0.2520 0.3546 0.1773
1/16 0.3723 0.4199 0.3191 0.6649 0.5319

1/32 0.3657 0.4728 0.1330 0 0

1/64 0.4433 0.7092 0 0 0

(g) Compressed social network data

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.2176 0.2037 0.2482 0.3657 0.3546
1/4 0.1924 0.1995 0.2520 0.4728 0.7092
1/8 0.2305 0.2240 0.2660 0.5319 0.5319
1/16 0.2327 0.2364 0.2660 0.5319

1/32 0.0887 0 0 0 0

(h) Social network data

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/8 0.3191 0.3137 0.3324 0.3989 0.2660
1/16 0.3103 0.3103 0.3682 0.4255 0
1/32 0.2128 0.3103 0.3191 0.5319 0

1/64 0.1330 0.1330 0 0 0

1/128 0 0 0 0 0

(i) Compressed DNA sequenced data

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.1854 0.2150 0.1596 0.1995 0.2660

1/4 0.1471 0.1662 0.1120 0.1182 0

1/8 0.1418 0.1680 0.1064 0.1330 0
1/16 0.1662 0.2364 0 0 0
1/32 0.2660 0.3546 0 0 0

(j) DNA sequenced data

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/8 0.2579 0.2660 0.1596 0 0

1/16 0.2240 0.1596 0 0 0
1/32 0.2364 0.2660 0 0 0
1/64 0 0 0 0 0
1/128 0 0 0 0 0

(k) Compressed text

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/2 0.3707 0.3961 0.3191 0.2327 0.3546
1/4 0.2943 0.3158 0.3080 0.3546 0.7092
1/8 0.1950 0.2520 0.2128 0.2660 0

1/16 0.1662 0.2364 0.1330 0 0

1/32 0 0 0 0 0

(l) Text

PPPPPκ
γ

1/2 1/4 1/8 1/16 1/32

1/8 0.2812 0.2561 0.2240 0.2313 0.1064

1/16 0.2766 0.2660 0.2455 0.2837 0.0887
1/32 0.2402 0.2081 0.2128 0.2660 0.1773
1/64 0.1900 0.2128 0.1773 0.3546 0
1/128 0 0 0 0 0

Table 3.3: Empirical estimation for κ and γ for the 12 data categories. For
every data category we realize the empirical estimation method described in Methods
p. 84. Following the discussion in Section 3.3.3 on page 84, the selected acceptable
(κ, γ) pair is the top-left corner of the consistent subtable where the percentage of
failures is smaller than 0.25% (slightly below the ideal 0.27% for NIST). Samples used
for parameter estimation are not used in any other part of the experiment.
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Data category (compressed) Audio Video Images Social network DNA sequenced Text

DIEHARD Suite P-val P-val P-val P-val P-val P-val

Birthday spacings 0.438088 0.310881 0.058193 0.554324 0.808198 0.000052
Overlapping permutations 0.752959 0.428180 0.639592 0.723372 0.056572 0.243835
Ranks of 31x31 matrices 0.569184 0.339979 0.920656 0.482406 0.385041 0.362155
Ranks of 32x32 matrices 0.547909 0.403446 0.613285 0.433728 0.352847 0.321909
Ranks of 6x8 matrices 0.645499 0.845557 0.345142 0.018670 0.701125 0.881740
Bit stream test 0.387205 0.593575 0.014402 0.654673 0.125810 0.431669
Monkey tests OPSO 0.355216 0.197500 0.667192 0.914133 0.238029 0.572953
Monkey tests OQSO 0.645485 0.669454 0.480169 0.629274 0.027371 0.834129
Monkey tests DNA 0.486269 0.940092 0.174359 0.591367 0.874612 0.858750
Count 1’s in a stream of bytes 0.608089 0.917741 0.427466 0.822289 0.726707 0.597594
Count 1’s in specific bytes 0.714184 0.097330 0.151793 0.462850 0.294159 0.656062
Parking lot test 0.152996 0.151125 0.687893 0.119339 0.251395 0.044892
Minimum distance test 0.897483 0.896119 0.638546 0.846002 0.654949 0.466783
Random spheres test 0.546443 0.057325 0.295651 0.501201 0.782601 0.678879
The squeeze test 0.541244 0.436086 0.144311 0.721372 0.942856 0.919760
Overlapping sums test 0.240819 0.239792 0.053650 0.577147 0.055292 0.307435
Runs test (up) 0.962195 0.537571 0.269606 0.671718 0.411167 0.079167
Runs test (down) 0.813418 0.358613 0.321261 0.837789 0.472629 0.807418
Craps test no. of wins 0.642862 0.586490 0.113479 0.737114 0.252371 0.015010
Craps test throws per game 0.276496 0.697953 0.028449 0.927459 0.278761 0.611609

Data category (uncompressed) Audio Video Images Social network DNA sequenced Text

DIEHARD Suite P-val P-val P-val P-val P-val P-val

Birthday spacings 0.385522 0.828963 0.004437 0.208048 0.057008 0.955554
Overlapping permutations 0.724376 0.512534 0.985741 0.209806 0.863579 0.918563
Ranks of 31x31 matrices 0.842685 0.636229 0.357475 0.881277 0.600983 0.409768
Ranks of 32x32 matrices 0.822334 0.503910 0.890231 0.619142 0.419850 0.576953
Ranks of 6x8 matrices 0.591588 0.563394 0.957945 0.013593 0.175439 0.339026
Bit stream test 0.155471 0.321259 0.228977 0.527317 0.863584 0.206301
Monkey tests OPSO 0.630120 0.714526 0.012538 0.058461 0.534801 0.723825
Monkey tests OQSO 0.398779 0.380577 0.955060 0.251407 0.694832 0.169836
Monkey tests DNA 0.862675 0.260406 0.576408 0.890297 0.507449 0.823096
Count 1’s in a stream of bytes 0.452006 0.915969 0.211816 0.616283 0.206299 0.192805
Count 1’s in specific bytes 0.283858 0.819726 0.257865 0.244149 0.763107 0.782839
Parking lot test 0.020669 0.256870 0.590298 0.293398 0.931840 0.076152
Minimum distance test 0.467898 0.851627 0.267924 0.343415 0.767186 0.734031
Random spheres test 0.316626 0.077993 0.473525 0.700093 0.822260 0.033127
The squeeze test 0.922929 0.258466 0.260324 0.584267 0.434682 0.751415
Overlapping sums test 0.001460 0.030426 0.074745 0.009624 0.034810 0.080606
Runs test (up) 0.185805 0.954631 0.998131 0.516886 0.526526 0.637137
Runs test (down) 0.034008 0.365320 0.967070 0.368460 0.390886 0.759504
Craps test no. of wins 0.032640 0.979268 0.068112 0.537164 0.856300 0.259566
Craps test throws per game 0.018952 0.675906 0.882955 0.428987 0.757852 0.280388

Table 3.5: Extraction quality evaluation by DIEHARD. The test inputs for
DIEHARD are the same extracted outputs as in Table 3.4. DIEHARD computes P-values
for every extracted output in every statistical test. When there are multiple P-values in
one test DIEHARD uses a Kolmogorov-Smirnov (KS) test to obtain a final P-value. In case
there are multiple final P-values the first obtained one is reported. The test passes if the
final P-value is in [0.01, 0.99].
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Chapter 4

Limits of the Multi-Stream Model

for Random and Pseudorandom

Objects

In this chapter, we devise a new lower bounding methodology (Section 4.1), which is

one of the central technical contributions of this dissertation. With this methodology,

we first show impossibility of cryptographic primitives in Section 4.2, which comple-

ments the constructions of streaming pseudorandom generators and PKE schemes

in Section 2.4 (page 39) and Section 2.5 (page 44). Then, we demonstrate lower

bounds for randomness extractors in Section 4.3 that complements the construction

of streaming extractors in Section 3.1 (page 57).

4.1 Overview of the Lower-Bound Technique

In this section, we first describe the lower bound technique.

Dependency graphs and dependency trees. The concepts of dependency graphs

and dependency tree were originally introduced in [BH12] based on the treatment in

[GHS09, GS05], where they discuss the sortedness across different blocks. We make

use of these concepts in a quite different way, with an information theoretical argu-
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ment on the growth of the entropy inside every single block.

Let an (s, t, p) streaming algorithm have p + 1 phases induced by the p passes:

whenever one pass ends on any of the streams the computation enters a new phase.

The crucial observation in [GS05] is that when writing to a particular cell in the i-th

phase, what is written only depends on the local memory together with the t cells

currently being scanned by the t heads. Moreover, those t cells are written before the

i-th phase, since no cell can be visited twice in a single phase.

Definition 4.1. Let F be a deterministic streaming algorithm such that on input x,

F makes at most p passes over t external tapes. The dependency graph, denoted by

Γ(x), is a directed (p + 1)-layered graph associated with the computation of F (x) as

follows. Level i is associated with the i-th layer in Γ(x) and it consists of all nodes

labeled (v, i) if and only if the tape cell v has ever been visited in the i-th phase or

before.1 Γ(x) has an edge (u, i)→ (v, i+ 1) if and only if any head is reading the cell

u when v is being written in the (i + 1)-st phase. Furthermore, there is always an

edge (u, i) → (u, i + 1) as long as (u, i) is in Γ(x) and i ≤ p. The dependency tree

rooted at v is the subgraph of all nodes in Γ(x) with a directed path to (v, p+ 1).

In the dependency graph Γ(x), each level represents a single phase in the compu-

tation of F (x). Therefore the nodes (except for those at level 1) have in-degree at

most t, while all edges are heading to the next level. Intuitively, those directed edges

depict the information flow excluding the local memory.

We also remark that not all old passes (over the remaining streams) are necessarily

finished when a new phase begins. In the new phase the algorithm will continue to

process old passes.

Example (dependency graph) An example of a dependency graph is depicted

on Figure 4-1, which is an example of a simple algorithm that adds up 11100 and

110. This dependency graph has two external tapes and seven levels, where each

level consists of exactly the nodes corresponding to all tape cells that have ever been

visited before the associated pass begins.

1For completeness we assume that all input cells are visited before the first phase.
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level 2

level 3

1 1 1 0 0 + 1 1 0

1 1 1 0 0 . . . . 1 1 0.

level 1

1 1 1 0 0 + 1 1 0

level 6

1 1 2 1 0 . . . . . . .

1 1 2 1 0 . . . . 1 0 0 0 1 0

level 7

.

.

1 1 1 0 0 . . . . 1 1 0.

1 1 2 1 0 . . . . . . ..

level 4

level 5

Figure 4-1: A dependency graph example.

In the dependency graph, level 1 represents the input “11100” and “110”; level

3 corresponds to copying the second input “110” to the second tape; level 5 adds

up the two numbers “11100” and “110” without carries; level 7 deals with carries.

Level 2,4 and 6 are there only for completeness, since every time we begin two passes

simultaneously, and as a result the actual task of passes associated with level 2,4 and

6 are handled in level 3,5 and 7 respectively.

The first six levels are trivial. In the last level, the algorithm maintains a counter

in its working memory to count how many cells have been scanned before finding the

next “0” or “2”, and it writes 100 · · · 0 if reads “2” or 011 · · · 1 if reads “0”, where the

length of 100 · · · 0 (resp. 011 · · · 1) equals to the value stored in the counter.

Every node v in the dependency graph defines a sub-tree2 rooted at v with all

leaves at level 1. This tree is called the dependency tree of v. Intuitively, it describes

the information flow, excluding the working memory, from input cells “collecting

2 If two distinct parent nodes share the same child u we create two copies of u including the
subtrees rooted at u.

97



information” at v. The information going to v through its internal working memory

is upper bounded by the size of internal space s and the number of internal nodes in

the dependency tree.

Figure 4-2 is a dependency tree example for the root v being the first output cell

in Figure 4-1. (a) is the skeleton of the dependency tree rooted at v; (b) is the actual

dependency tree of v. (b) duplicates at level 4 to eliminate the shared children and

to transform the skeleton to a tree, since there is a shared children node at level 4

in the skeleton. In particular, Lemma 4.3 and Corollary 4.4 hold for the skeleton as

well as for the corresponding dependency tree.

Then, we generalize the definition of dependency trees/graphs for blocks. The

blocks are “super nodes” in Γ(x) by merging nodes with the same dependency.

Definition 4.2. A block is an equivalence class consisting of all nodes corresponding

to tape cells at the same level on the same tape such that they depend on exactly the

same set of blocks at the previous level. Specifically, an input block refers to a set of

nodes at the first level corresponding to consecutive tape cells on the input tape.

Note that if two cells, from the same tape and the same level, have the same

dependency on blocks at the previous level, then any cell in between must have exactly

the same dependency, because the dependency changes “monotonically”. Therefore,

the partition of blocks is well-defined such that every block consists of only consecutive

tape cells.

Henceforth, we abuse notation and let Γ(x) be the generalized dependency graph

whose nodes corresponds to blocks as in Definition 4.2. Intuitively, blocks are used

to package the entropy from the input, and Γ(x) describes the direct information

flow during the computation, i.e. except from those bits stored and transferred in

the local memory. Later on in the proofs, we formalize the idea to analyze statistical

dependencies between the input and the output with dependencies of blocks in Γ(x).

We bound the number of blocks at each level for the input x partitioned into b

input block, i.e. x = (x1, x2, · · · , xb).

98



0

level 2

level 4

level 5

1 1 1 0 + 1 0

1 1 0 0 . . . . . 1 0

1 1 1 0 . . . . . . .

1

1

2

1

0

level 1

1 1 1 0 + 1 01

level 3

1 1 0 0 . . . . . 1 01 1

1 1 1 0 . . . . . . .

level 7

0 0 1 01 1 2 1 0 . . . . .

2

1

level 6

.

.

0

level 5

1 1 1 0 + 1 0

1 1 0 0 . . . . . 1 0

1 1 1 0 . . . . . . .

1

1

2

1

01 1 1 0 + 1 01

1 1 0 0 . . . . . 1 01 1

1 1 1 0 . . . . . . .

level 7

0 0 1 01 1 2 1 0 . . . . .

2

1

level 6

.

.

01 1 1 0 + 1 0

1 1 0 0 . . . . . 1 0

1

1 1

01 1 1 0 + 1 01

1 1 0 0 . . . . . 1 01 1

level 1

level 2

level 3

level 4

level 5

level 4

level 1

level 2

level 3

（b）

（a）

Figure 4-2: A dependency tree example.
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Lemma 4.3 (cf. Lemma 3.4 in [BH12]). Suppose x is partitioned into b blocks for

b ≥ 1. For a cell v, we write Ib(v) ⊆ {1, 2, · · · , b} to denote the set of input blocks

that v depends on according to its dependency tree, and let r(v) and l(v) denote

the cell immediately to the right and the the left of v, respectively. Let C be the

set of cells on any single tape at level i in G(x), for 1 ≤ i ≤ p + 1. Let the set

Sr = {v ∈ C|Ib(v) 6= Ib(r(v)) } and Sl = {v ∈ C|Ib(v) 6= Ib(l(v)) }. Then, |Sr| =

|Sl| ≤ (b+ 1)ti−1.

Corollary 4.4. Partition x into b input blocks and let Γ(x) be the dependency graph.

Then, the number of blocks at level i in Γ(x) is bounded ≤ (b+1)ti−1, where t denotes

the number of tapes.

Proof of Lemma 4.3. The first part |Sr| = |Sl| is obvious by the symmetry in the

definition of Sr and Sl. We show the upper bound by induction on i. For i = 1, Sr

consists of all cells at the right boundaries of each block xj for 1 ≤ j ≤ b and the

immediate cell to the left of x, |Sr| = b+ 1.

For i > 1, note that every element v ∈ Sr must injectively correspond to some

cell u at level i − 1 such that Ib(u) 6= Ib(r(u)). Because Ib(v) 6= Ib(r(v)) implies

that after written to the cell v and before writing to r(v), at least one head moves

forward and crosses a block boundary at level i − 1. By induction hypothesis, there

are at most (b+ 1)ti−2 such u in each tape at level i− 1, and in total t tapes, so that

|Sr| ≤ (b+ 1)ti−1.

4.2 Lower Bounds for Cryptographic Primitives

4.2.1 Lower Bound for Pseudorandom Generators

The lower bound technique is first applied to prove that super-linear stretch pseu-

dorandom generators cannot be computed with constant many passes in the multi-

stream model. Note that for every positive constant c > 0 and any sub-linear n1−c

stretch is easy to achieve, by simply running in parallel n1−c copies of a single-bit

stretch pseudorandom generator on independent seeds of length nc.
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Theorem 4.5. Suppose `(n) = ω(n) and G : {0, 1}n → {0, 1}`(n) is a pseudorandom

generator. Then, no streaming algorithm can compute G.

We prove Theorem 4.5 by analyzing the information flow in the computation, and

by partitioning appropriately the output into blocks, we upper bound the entropy

transferred to each output block from the input. Intuitively, a single block cannot

collect much entropy and therefore it cannot induce large stretch.

Our proof makes use of the following observation and the concept of a depen-

dency graph originally introduced in [BH12, GHS09] (in fact, [GS05]). We tailor

them for cryptographic applications to partition the computation into p + 1 phases

corresponding to p passes.

Observation 4.6 (cf. [GS05]). When a tape cell is written, its content only depends

on the local memory and the t cells currently being scanned by the heads of the external

streams. Moreover, those t cells are written before this pass, since no cell can be visited

twice before making a new pass.

Proof of Theorem 4.5. Suppose G is efficiently computable in the streaming model,

and the input to G is x ∈R {0, 1}n. We want to distinguish G(x) from y ← U`(n).

First, we exhibit an advised distinguisher as follows, where the advice A is a set of

strings depending merely on the input length.

Input: 1n and y

Data: Advice A

1 for z ∈ A do

2 if z appears in y then
Output: 1

3 end

4 end

Output: 0

Algorithm 3: DA – distinguishing G(x) from y (with advice A)
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To illustrate DA is an efficient distinguisher, the following claim suffices.

Claim 4.7. There is an advice A satisfying the following two conditions:

i. Pr[DA
(
G(Un)

)
= 1]− Pr[DA(U`(n)) = 1] ≥ 1/nO(1)

ii. A has at most poly(n) many elements.

Now, we show how to determine a useful A (later on we will show how to gen-

erate it). Consider the computation process of G on input x and the corresponding

dependency graph G(x). The input x, written on the first stream, is partitioned into

b = d n
logn
e input blocks, with at most log n bits in each block. Here each input block

must contain only consecutive bits of x from consecutive tape cells by Definition 4.2.

At the end of the computation, when the output G(x) is written on the output tape,

G(x) has at most (b + 1)tp blocks by Corollary 4.4. Without loss of generality, we

assume that there are exactly (b + 1)tp blocks, labeled from 1 to (b + 1)tp according

to their positions.

Recall that |G(x)| = `(n), each block in the G(x) has `(n)
(b+1)tp

bits on the average.

Therefore, there must be a block labeled v that outputs, in expectation, at least

`(n)
(b+1)tp

bits when x← Un. Let G(x)|v denote the output of G(x) in the block v. Since

|G(x)| = `(n), it always holds
∣∣G(x)|v

∣∣ ≤ `(n), and therefore,

Pr
x

[∣∣G(x)|v
∣∣ > `(n)

2(b+ 1)tp
]
>

1

2(b+ 1)tp
(4.1)

Let the advice A consist of all possible strings that are sufficiently long and could

appear as G(x)|v. Formally,

A =

{
z
∣∣∣∃x ∈ {0, 1}n such that z = G(x)|v and |z| > `(n)

2(b+ 1)tp

}
(4.2)

By (4.1) and (4.2), G(x)|v ∈ A with probability greater than 1
2(b+1)tp

. Therefore,

Pr[DA
(
G(Un)

)
= 1] ≥ Pr[G(x)|v ∈ A] >

1

2(b+ 1)tp
= Ω

(
log n

tp · n

)
(4.3)
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However, for a uniformly distributed input,

Pr[DA(U`(n)) = 1] ≤
∑
z∈A

Pr[z appears in U`(n)]

≤
∑
z∈A

`(n)∑
j=1

Pr[z appears in U`(n) starting at position j]

≤
∑
z∈A

`(n)∑
j=1

1

2|z|
<
∑
z∈A

`(n)∑
j=1

2−
`(n)

2(b+1)tp

= 2−
`(n)

2(b+1)tp `(n)|A| = 2log `(n)− `(n)
2(b+1)tp |A| (4.4)

As long as `(n) = ω(n) and t, p = O (1), and recalling b = Θ(n/ log n), there is

`(n)

2(b+ 1)tp
= Ω

(
`(n) log n

n

)
= ω(log `(n)) = ω(log n)

Thus, (4.4) implies

Pr[DA(U`(n)) = 1] < 2−ω(log `(n))|A| = n−ω(1)|A| (4.5)

Combining (4.3) and (4.5), the advantage of DA is non-negligible when |A| = nO(1).

Pr[DA
(
G(Un)

)
= 1]− Pr[DA(U`(n)) = 1] = Ω

(
log n

tp · n

)
− n−ω(1) = Ω

(
log n

tp · n

)

Therefore, it suffices to show the advice A has polynomial size |A| = nO(1), which

finishes the proof of Claim (4.7). A trivial upper bound appears to be the total

number of all possible outputs in block v. We use this bound and calculate how

many distinct strings can appear as G(x)|v.

We analyze how G(x)|v is determined in G(x). Note that the content of a block is

fully determined by: (i) the blocks with an edge to it in the dependency graph; (ii)

and a snapshot of the local memory when the head moves into it. It easily generalizes

to that G(x)|v, as the content in block v, is fully determined by all input blocks

corresponding to leaf nodes in v’s dependency tree together with the snapshots for

all non-leaf nodes.
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Recall that in the dependency graph G(x) every node has in-degree at most t

and the graph has p layers in total. Thus, we can bound the size of the dependency

tree, i.e. t-branching and height p. Since all the tape cells in block v share the same

dependency tree and input dependency set by our partitioning method, we assert

that G(x)|v depends on at most tp input blocks, each with length log n at most. On

the other hand, the dependency tree has at most 1 + t + · · · + tp−1 non-leaf nodes,

each of which depends on an s-bit snapshot of the local memory besides other blocks

directing to it.

Then, the entropy of G(x)|v is upper bounded as H
(
G(x)|v

)
≤ tp × log n + (1 +

t + · · · + tp−1)s. Plugging in that t = O (1), p = O (1), s = O (log n), this concern

becomes

H
(
G(x)|v

)
≤ tp × log n+ (1 + t+ · · ·+ tp−1)s = tp log n+

tp − 1

t− 1
O (log n) = O (log n)

As a result, G(x)|v has at most 2O(logn) = nO(1) possibilities, which implies |A| =

nO(1) = poly(n).

Thus, we have proved Claim (4.7) and it follows that DA is an efficient distin-

guisher.

It remains to to argue that the advice is polynomial time computable, in order

to eliminate the necessity of requiring a non-uniform oracle advice. It suffices to

enumerate all possible computation of block v.

To enumerate the computation process of block v on every input, we do follows:

i. A′ ← ∅;

ii. enumerate all dependency trees of height p where every node has in-degree either

t or 1;

iii. for all dependency trees, enumerate all possible values in leaf nodes, each has

log n bits;

iv. for every tree with leaf nodes, enumerate the local memory when entering each

of its blocks;

v. from leaf nodes to the root node evaluate the content of every node;
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vi. place the whole string in block v to A′ if it has length greater than `(n)
2(b+1)tp

;

vii. output A′.

A′ is not exactly the same as A defined in (4.2), for A′ may have more elements

than A. However, since A ⊆ A′, this advice A′ does satisfy Claim (4.7). As a result,

the distinguisher defined by A′ is good enough.

Therefore, we have found a uniform polynomial time efficient distinguisher D for

G, violating the assumption of G being a pseudorandom generator.

4.2.2 Lower Bound for Public-Key Encryption

Theorem 4.8. For every IND-CPA secure PKE whose decryption scheme is a stream-

ing algorithm, the private key has length Ω(N), where N is the length of the plaintext.

Proof of Theorem 4.8. We begin with an overview of the proof.

We use the idea of dependency graph introduced in Section 4.1 and the notion of

blocks as in Definition 4.2 (page 98). By the way of contradiction assume that the

private key has length n = o (N).

First, partition the length n private key SK into blocks of size at most logN

and fix the other part of the input. Then, the outputs of the decryption scheme are

also partitioned into blocks according to their dependency on blocks in SK. With

similar argument as in Section 4.2.1, we obtain that each output block has at most

O (logN) bits entropy. This is because each output block depends on O (1) many

input blocks each of size O (logN), and also it depends on O (1) many snapshots of

the local memory corresponding to non-leaf nodes each of size O (logN).

Since n = o (N), there are at most O (n/ logN) = o (N/ logN) output blocks by

Corollary 4.4 on page 100. Recalling that output length is N , every output block

carries ω(logN) bits in expectation. In particular, there must be an output block B

expected to output ω(logN) bits.

However, note that B has entropy at most O (logN). So, it is possible to enu-

merate the O (logN) bits entropy and thus decrypt B with probability at least
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2−O(logN) = N−O(1), which is significantly larger than a random guessing for ω(logN)

bits.

Here the formal argument starts.

We make exactly the same contradiction hypothesis as in the overview. First,

for a fixed public-key system with public key PK and length-n private key SK, we

pick a plaintext x ∈R {0, 1}N . We also sample3 c = EncPK(x, r) ∈ EncPK(x) as the

ciphertext of x, i.e. c is sampled from the ciphertext space where x← UN , and r is the

uniform local random bits used by the encryption scheme. Now, let us consider the

dependency graph of DecSK(c). Suppose B = B(c) is an output block with maximal

expected output length `B = E[`B(c)] = E[|B(c)|] = O
(
N
n

logN
)

= ω(logN).

The adversary randomly chooses two message x0,x1 ∈R {0, 1}N , and transmits

them to the challenge oracle. The challenge oracle will select one out of {x0,x1} by

flipping a coin b, sample r uniformly at random, and return c = EncPK(xb, r) to the

adversary. The adversary does the following (algorithm A(c)) to estimate b:

i. Randomly choose a block B′.

ii. Try to decrypt c by enumerating the unknown bits of information for every

possible dependency tree.

iii. If in any decryption B′ is a substring of xi and |B′| > `B/2, mark xi as “possible”,

i ∈ {0, 1}.

iv. Upon finishing the enumeration, if exactly one among x0 and x1 is possible then

output its index.

v. Otherwise answer by flipping an unbiased coin.

Because the enumeration step only enumerates O (logN) bits, it is easy to verify

that A has running time poly(N). Now, let us calculate the success advantage of the

adversary.

Consider the case c ∈ EncPK(x0). The block B′ hits the maximal output block

3We use the following notational convention. When the random choices r of Enc are not denoted,
by Enc we refer to the set of outputs of Enc one for each possible r and a fixed input x.
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B with probability at least 1/N . Since `B(c) ≤ N ,

Pr
x0∼UN ,Enc

[
`B(c) >

1

2
`B
]

= Pr
c

[
`B(c) >

1

2
`B
]
>

`B
2N

Notice that when B′ = B and `B(c) > `B/2, x0 is always marked “possible”. There-

fore,

Pr
x0∼UN ,Enc

[
x0 is “possible”

∣∣ c ∈ EncPK(x0)
]

>Pr
c

[
`B(c) >

1

2
`B
∣∣B′ = B

]
Pr
B′

[B′ = B] >
`B

2N2

Then, we calculate that false positive probability Prx1∼UN ,c[x1 is “possible”
∣∣ c ∈

EncPK(x0)]. For every c, there are at most 2O(logN) = NO(1) decrypted B′ with

sufficient length, each of which appears in randomly chosen x1 with probability <

N/2`B/2. Thus

Pr
x1∼UN ,c

[x1 is “possible”
∣∣ c ∈ EncPK(x0)]

=
∑

c∈EncPK(x0)

Pr[c] Pr
x1∼UN

[x1 is “possible”
∣∣ c]

≤
∑

c∈EncPK(x0)

Pr[c]
∑

B′ decrypted from c

Pr
x1∼UN

[B′ is a substring of x1 and |B′| > `B
2

]

<
∑

c∈EncPK(x0)

Pr[c]
∑

B′ decrypted from c

N

2`B/2
≤ NO(1) · N

2`B/2

=
NO(1)

2`B/2
=

NO(1)

2ω(logN)
= NO(1)−ω(1) = N−ω(1)

Combining above two inequalities, when x0 ← UN , r← U|r|, and c = EncPK(x0, r) ∈

EncPK(x0), the adversary succeeds with advantage

Pr
r←U|r|

[A(c) = 0]− Pr
x1←UN ,r←U|r|

[A(c) = 1] >
`B

2N2
−N−ω(1)
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Because the case c ∈ EncPK(x1) is symmetric, we have

Pr[A reports b “possible” ]− Pr[A reports (1− b) “possible” ] >
`B

2N2
−N−ω(1)

Therefore, A succeeds with probability significantly larger than 1
2
,

Pr
c

[A(c) = b] >
1

2
+

1

2
(
ω(logN)

N2
−N−ω(1)) =

1

2
+

1

NO(1)

However, such an adversary A implies that the public-key system is not IND-CPA

secure. We conclude that for any IND-CPA secure public-key system with a streaming

computable decryption scheme, the private key must have length Ω(N).

4.3 Lower Bounds for Randomness Extractors

We lower bound the number of passes for all general (Section 4.3.1) and oblivious

(Section 4.3.2) streaming extractors. Note that both lower bounds are obtained with

nemesis bit-fixing sources. Moreover, in the proof we allow free access to the random

seed (even if the seed length d is greater than the local memory size), which makes

the lower bound even stronger.

4.3.1 Lower Bound for General Extractors

Consider the streaming algorithm that computes an extractor Ext by making in total p

passes over constant many streams and using local memory of size s. If the algorithm

makes Ω (log n) passes, then we already have p = Ω
(
log log 1

ε

)
for every ε = 1/2poly(n),

e.g. ε = 2−n
2
, which is sufficiently small for any meaningful discussion4. Also, the

streaming algorithm is barely interesting if the output length is close to the local

memory size, e.g. m ≤ o (s log n).

We obtain the following lower bound for the case p = o (log n) and m ≥ s log n.

4For randomness extractors, n denotes the length of each sample from the weak source. The
input length of an extractor is usually n+polylog(n), but certainly no more than poly(n), even when
the extractor uses multiple sources.
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Theorem 4.9. Fix arbitrary positive integer λ ≥ 1 and an error tolerance ε > 0.

Suppose the extractor Ext : ({0, 1}n)λ × {0, 1}d → {0, 1}m outputs ε-close to uniform

strings on input of λ-many bit-fixing sources each of min-entropy k together with a

d-bit long seed, and Ext is computable by a (p, s, t)-streaming algorithm. If t is a

constant, n − k ≥ Ω (n), k > m = s · (log 1
ε
)Ω(1) and d ≤ O (s), then the streaming

algorithm must make at least p = Ω
(
log log 1

ε

)
passes.

Proof. To construct a nemesis weak source we first introduce the parameters speci-

fying the dependency graph Γ(x(1), . . . , x(λ), y) induced by the computation process

of Ext(x(1), . . . , x(λ), y), where recall that the x(i)’s come from the weak sources and

y is the random seed. Γ(x(1), . . . , x(λ), y) is uniquely specified by Ext(x(1), . . . , x(λ), y)

since the computation of Ext is deterministic. Let `
def
= tp = no(1) upper bound

the number of leaf nodes in every dependency tree in Γ(x(1), . . . , x(λ), y), where each

leaf node is an input block. We partition the input (length λn) equally into b
def
=⌈

λ`n
n−k−log(1+λ)−tp(p+1)(p log t+logn)

⌉
= O (λ`) = o (n) many blocks each of size λn/b,

where for simplicity from this point on we assume that b|n. Then, there are at most

bO
def
= tpb output blocks by Corollary 4.4 (page 100). Furthermore, the number g of

different choices of dependency tree is upper bounded as follows.

g ≤
p+1∏
i=1

(bti−1)t
p+1−i

< (bO)l(p+1) = (tpb)t
p(p+1)

Now, we define a function F : {0, 1}λn × {0, 1}d → [g] such that for every

x(1), . . . , x(λ) ∈ {0, 1}n, y ∈ {0, 1}d, F (x(1), . . . , x(λ), y) = z, where z is the distinct

index of the dependency tree rooted at the largest5 output block A in the dependency

graph Γ(x(1), . . . , x(λ), y). Such a function F is well-defined since Γ(x(1), . . . , x(λ), y)

is unique for fixed (x(1), . . . , x(λ), y). Moreover, since A is the largest among the bO

many output blocks, it contains at least m/bO output bits.

By averaging there are at least 2λn+d/g many tuples (x(1), . . . , x(λ), y) sharing the

same output z0 under F . Then, by a simple probabilistic argument we conclude

that there exist sets S ′1, · · · , S ′λ ⊆ {0, 1}n, |S ′i| ≥ 2n

(1+λ)g
such that for every x =

5If there are more than one block being largest then we can choose i as the index of any of them.
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(
x(1), . . . , x(λ)

)
∈ S ′ def

= S ′1×· · ·×S ′λ, there exists Rx ⊆ {0, 1}d satisfying |Rx| ≥ 2d

(1+λ)g

and for all y ∈ Rx, F (x(1), . . . , x(λ), y) = z0. For convenience, we denote by Tree(z0)

the dependency tree indexed by z0 and note that |S ′| =
∏λ

i=1 |S ′i| ≥ 2λn/((1 + λ)g)λ.

Now, we lower bound the number of x ∈ S ′ inducing identical content in all the

leaf nodes Tree(z0). Recall that every dependency tree has at most ` leaf nodes (input

blocks), in particular at most ` · λn
b

= λ`n/b input bits are contained in the leaf nodes

of Tree(z0). Moreover, their indices are fully determined by z0. Let Dz0 be the set

consisting of those indices, then |Dz0| ≤ λ`n/b and x|Dz0 contains exactly the content

of all leaf nodes of Tree(z0) on input x. Partition Dz0 =
(
D

(1)
z0 , . . . , D

(λ)
z0

)
such that

D
(i)
z0 is the part of Dz0 consistent with x(i).

For every i, by averaging there is x
(i)
0 ∈ {0, 1}|D

(i)
z0
| and a sufficiently large subset

S ′′i ⊆ S ′i, such that |S ′′i | ≥ |S ′i|/2|D
(i)
z0
|, and moreover if x ∈ S ′′ def

= S ′′1×· · ·×S ′′λ, then the

values of the bits in leaf nodes of Tree(z0) is fixed to x0 =
(
x

(1)
0 , . . . , x

(λ)
0

)
. Formally,

x|Dz0 = x0 for every x ∈ S ′′, and

|S ′′| ≥
λ∏
i=1

|S ′i|
2|D

(i)
z0
|
≥ |S ′|

2|Dz0 |
≥ |S ′|

2λ`n/b
(4.6)

Recalling that for every x ∈ S ′ there exists Rx ⊆ {0, 1}d, |Rx| ≥ 2d

(1+λ)g
, such

that for every y ∈ Rx, the dependency tree rooted at the largest output block A is

Tree(z0). If furthermore x ∈ S ′′, then Tree(z0) has only x|Dz0 = x0 in its leaf nodes.

That is, for every x ∈ S ′′ and every y ∈ Rx, the largest output block A acquires

all its information entropy from the local memory during the computation, since the

input blocks it depends on have fixed content. Note that there are no more than

tp intermediate nodes in Tree(z0), while to each node at most s bits entropy can be

transferred from local memory. Thus, for such x and y, A acquires at most tps bits

information entropy during the entire computation.

Following the specific choice of b on page 109, we have

b =
⌈ λ`n

n− k − log(1 + λ)− tp(p+ 1)(p log t+ log n)

⌉
≥ λ`n

n− k − log(1 + λ)− log g

Therefore, |S ′′i | ≥
|S′i|

2λ`n/b
≥ 2n

(1+λ)g·2λ`n/b ≥ 2k.
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Now, we are ready to present the nemesis bit-fixing sources. We denote by USi
the uniform distribution over Si

def
=
{
x(i) ∈ {0, 1}n

∣∣ x(i)|
D

(i)
z0

= x
(i)
0

}
. Note that USi is

bit-fixing by definition, and since 2k ≤ |S ′′i | ≤ |Si| = 2n−|D
(i)
z0
|, USi is also an (n, k)-

source. Let S = S1×· · ·×Sλ, then US is the corresponding product distribution, and

moreover, |S| =
∏λ

i=1 |Si| =
∏λ

i=1 2n−|D
(i)
z0
| = 2λn−|Dz0 |.

Finally, for this specific nemesis bit-fixing source, we lower bound the statistical

distance between the extraction output Ext(US,Ud) and the uniform distribution Um.

Fix arbitrary z0 ∈ [g]. Denote by E = E(x, y) the event F (x, y) = z0. Then,

for every x ∈ S ′′ ⊆ S, we have Rx ⊆ {0, 1}d such that |Rx| ≥ 2d

(1+λ)g
and for every

y ∈ Rx there is F (x, y) = z0 and hence E(x, y). Recall that |S ′′| ≥ |S ′|/2|Dz0 | by (4.6),

|S| = 2λn−|Dz0 |, and |S ′| ≥ 2λn

(1+λ)λgλ
,

Pr
x←US ,y←Ud

[E(x, y)]

≥ Pr
x←US

[x ∈ S ′′] · Pr
y←Ud

[E(x, y)
∣∣ x ∈ S ′′]

≥ |S
′′|
|S|
· min
x∈S′′

Pr
y←Ud

[y ∈ Rx]

≥ |S
′|/2|Dz0 |

2λn−|Dz0 |
· min
x∈S′′

|Rx|
2d

≥ |S
′|

2λn
· 1

(1 + λ)g
=

1

(1 + λ)1+λg1+λ

On the other hand, the possible outputs of A conditioned on E are at most 2t
ps,

since A is fully determined by the ≤ tps bits from the local memory. By conditioning

on E and taking into account the position of A in the output, there are 2t
psm distinct

choices for A while there are at most 2m−m/bO possibilities for the rest m−m/bO bits

in the output. Thus, there are at most 2t
psm · 2m−m/bO possible outputs conditioned

on E (by union bound). Let Z ⊆ {0, 1}m be defined as follows.

Z
def
=
{
z ∈ {0, 1}m

∣∣ ∃x ∈ {0, 1}λn,∃y ∈ {0, 1}d, such that F (x, y) = z0,Ext(x, y) = z
}

It immediately follows that |Z| ≤ 2t
psm·2m−m/bO , and in fact Z =

{
Ext(x, y)

∣∣ E(x, y)
}

is the range of Ext given that E(x, y) holds.
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Therefore, we lower bound the statistical distance between Ext(US,Ud) and Um by

SD (Ext(US,Ud),Um)) =
1

2

∑
z∈{0,1}m

|Pr[Ext(US,Ud) = z]− Pr[Um = z]|

≥ 1

2

∑
z∈Z

(
Pr[Ext(US,Ud) = z]− 1

2m

)
=

1

2

(
Pr[Ext(US,Ud) ∈ Z]− |Z|

2m

)
≥ 1

2

(
Pr

x←X ,y←Ud
[E(x, y)]− |Z|

2m

)
≥ 1

2(1 + λ)1+λg1+λ
− 2t

psm · 2m−m/bO
2m+1

≥ 1

2(1 + λ)1+λ(tpb)tp(p+1)(1+λ)
− 2t

ps+logm−1−m/bO

Since Ext is a (k, ε)-extractor, ε ≥ SD (Ext(US,Ud),Um)) by definition. Thus,

when m/bO = ω(tps+ tp(p+ 1)(p log t+ log b))

ε ≥ Ω

(
1

(tpb)2tp(p+1)(1+λ)

)

In conclusion, we get p = Ω
(
log log(1

ε
)
)

for every m = s · (log 1
ε
)Ω(1).

4.3.2 Lower Bound for Oblivious Extractors

A streaming algorithm is oblivious if there is a predetermined sequence according to

which the head moves on streams.

Definition 4.10. A streaming extractor Ext is an oblivious streaming extractor if

after fixing the input length and the random seed, its head moves on the streams

depending only the time step. In other words, for fixed random seed y, Exty(·)
def
=

Ext(·, y) is an oblivious streaming algorithm,

For oblivious extractors, we obtain the following lower bound, which is exponen-

tially separated from the oblivious RRB extractor which makes log log(1/ε)-passes.

Theorem 4.11. Suppose Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor com-

putable obliviously with a (p, s, t)-streaming algorithm where p = o (log n) and t is a
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constant. Then, for every constants α, β ∈ (0, 1) and for every ε < 1
2
, k = n1−α,m ≥

k1−β, and d ≤ m
2t2p

= m1−o(1), there must be s ≥ mΩ(1) = nΩ(1). Moreover, this holds

for bit-fixing sources.

This lower bound indicates that constructing a streaming extractor for sources of

min-entropy o(n) with sub-logarithmic number of passes is far from what we know

today. It is hard to imagine how an extractor can intelligently adapt its computation

(i.e. head moves) based on the specific content of the given sample. To the best

of our knowledge, every other extractor in the literature is oblivious at the time of

the writing of this dissertation, except from von Neumann’s extractor [von51] (which

works only under very strong independence assumptions).

The following theorem implies Theorem 4.11.

Theorem 4.12. Suppose Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor for

bit-fixing sources and it is computable obliviously with a (p, s, t)-streaming algorithm

where p = o (log n) and t is a constant. Then, for every k = o
(
n
tp

)
and constant

ε < 1
2
, and for every b > tp

1−2ε−ktp/n = O (tp), there must be s > m−tpbd−tpb
t2pb

.

In particular, for m = nΩ(1) and d ≤ m0.99, this theorem implies that s ≥ m1−o(1).

Proof. First, we consider the dependency graph Γ(x, y) with the input equally parti-

tioned into b blocks, where each block has length n/b. By Corollary 4.4 (page 100),

there are at most tpb output blocks and hence the longest output block, denoted by

A, contains at least m/(tpb) bits. Then, there are c = tp many leaf nodes in the

dependency tree TA rooted at A, since it is a t-branching tree with depth p.

Going over all 2d choices of random seeds, every specific input block would be

hit 2dc/b times in average one input block appears as a leaf node in TA for ≤ 2dc/b

distinct random seeds (since a single seed may induce a TA hitting the same input

block multiple times). Thus, there exists
⌈
kb
n

⌉
input blocks that are hit by at most(⌈

kb
n

⌉
c
b

)
· 2d distinct random seeds.

Suppose the input is a bit-fixing source X with all its entropy concentrated in

those
⌈
kb
n

⌉
input blocks. Then, only ≤

(⌈
kb
n

⌉
c
b

)
· 2d distinct random seeds are able
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to induce TA with at least one unfixed leaf node. That is, with probability 1−
⌈
kb
n

⌉
c
b
,

all the leaf nodes in TA are fixed. In such case, A is fully determined by the local

memory when the heads enter any intermediate nodes in TA, which is bounded by tps

since there are less than tp intermediate nodes in TA. Thus, A is fully determined by

the tps bits from local memory and r bits from the seed. For this 1−
⌈
kb
n

⌉
c
b

fraction of

random seeds, each possible output in A appears with probability at least 2−(d+tps).

Finally, we lower bound the statistical distance between Ext(X,Ud) and uniform

distribution with their restriction on the output block A,

SD (Ext(X,Ud),Um)

≥SD
(
Ext(X,Ud)|A,U|A|

)
≥
(

1−
⌈kb
n

⌉c
b

)
· 2d · 2tps

(
1

2d+tps
− 1

2|A|

)
≥
(

1−
⌈kb
n

⌉c
b

)
· 2d · 2tps

(
1

2d+tps
− 1

2m/(tpb)

)
≥
(

1−
⌈kb
n

⌉c
b

)(
1− 1

2m/(tpb)−d−tps

)
(4.7)

Assume for contradiction that s ≤ m−tpbd−tpb
t2pb

. Then, m/(tpb) − d − tps ≥ 1 and

hence
1

2m/(tpb)−d−tps
≤ 1

2

Plugging it into (4.7), and recalling that c = tp (the number of leaf nodes in TA,

defined on page 113),

SD (Ext(X,Ud),Um) ≥
(

1−
⌈kb
n

⌉c
b

)
· 1

2
=

1

2
−
⌈kb
n

⌉ tp
2b
≥ 1

2
− ktp

2n
− tp

2b

Therefore, SD (Ext(X,Ur),Um) > ε for every constant ε < 1
2
, k = o

(
n
tp

)
, p = o (log n),

and b > tp

1−2ε−ktp/n = O (tp). This contradicts the condition that Ext is a (k, ε)-

extractor.

Therefore, it must be the case that s > m−tpbr−tpb
t2pb

.
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4.3.3 Remarks and Future Directions

The lower bounds in Section 4.3.1 and Section 4.3.2 complement the RRB construction

in Section 3.1. They are tight in number of passes and in min-entropy rate for bit-

fixing and affine sources. In other words, Ω (log log n) many passes and min-entropy

k = Ω (n) are sufficient and necessary for ε = 1/poly(n) and for affine sources.

The only gap is that RRB is proved (Section 3.2.4 on page 78) to extract random-

ness from O (log n) many independent samples for general (n, k)-sources, whereas

the ideal extractor only takes one sample.6 In the practical randomness extraction

method (Section 3.3 on page 82) that works on real-world data, we use RRB as a

single-source extractor and this approach (including the extractor and other compo-

nents) is empirically validated by our experimental results (see Section 3.4).

We conjecture that RRB works on a single sample from an arbitrary adversary

(n, k)-source as long as k = Ω (n). It remains of theoretical interest to prove this

conjecture, although such “arbitrary adversary (n, k)-sources” do not exits in practice.

Conjecture 4.13. For every ε > 0 and k = Ω (n), there is b = Θ(log2 n
ε
), d =

O (b log n), ` = Ω
(
n/ log2 n

ε

)
, and m = Ω

(
n/ log2 n

ε

)
, such that for every (n, k)-source

RRB : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor.

Another future direction is to study intelligent constructions of non-oblivious ran-

domness extractors, which may open a new page of randomness extraction.

6Actually, we have obtained the proof for the general case, i.e. RRB extracts Ω (n) bits from any
single (n,Ω (n))-source, after the dissertation was sent out for review. This result will appear in
future publications.

115



116



Bibliography

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach,
volume 1. Cambridge University Press Cambridge, 2009.

[AIK06a] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private
randomizing polynomials and their applications. Computational Com-
plexity, 15(2):115–162, 2006. (also CCC’05).

[AIK06b] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0.
SIAM Journal of Computing (SICOMP), 36(4):845–888, 2006. (also
FOCS ’04).

[AIK08] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom genera-
tors with linear stretch in NC0. Computational Complexity, 17(1):38–69,
2008. (also RANDOM’06).

[AIK09] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography with con-
stant input locality. Journal of Cryptology, 22(4):429–469, 2009. (also
CRYPTO’07).

[AIK10] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography by cellular
automata or how fast can complexity emerge in nature? In ICS, pages
1–19, 2010.

[Ale03] Michael Alekhnovich. More on average case vs approximation complex-
ity. In Foundations of Computer Science (FOCS), pages 298–307. IEEE,
2003.

[AM99] L. Arge and P. B. Miltersen. External memory algorithms. chapter On
Showing Lower Bounds for External-memory Computational Geometry
Problems, pages 139–159. American Mathematical Society, Boston, MA,
USA, 1999.

[Ban14] M. Bansal. Big data: Creating the power to move heaven and earth.
MIT Technology Review, 2014.

[Bar86] D. A. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. Journal of Computer and
System Sciences, 38(1):150–164, 1989 (also STOC ’86).

117



[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’02, pages 1–16, New York, NY, USA, 2002. ACM.

[BH12] P. Beame and T. Huynh. The value of multiple read/write streams for
approximating frequency moments. ACM Transactions on Computation
Theory, 3(2):6, 2012. (also FOCS ’08).

[BIW06] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness us-
ing few independent sources. SIAM Journal on Computing, 36(4):1095–
1118, 2006.

[BJP11] J. Bronson, A. Juma, and P. A. Papakonstantinou. Limits on the stretch
of non-adaptive constructions of pseudo-random generators. In Theory
of Cryptography Conference (TCC), pages 504–521, 2011.

[BJR07] P. Beame, T. S. Jayram, and A. Rudra. Lower bounds for randomized
read/write stream algorithms. In Proceedings of the Thirty-ninth Annual
ACM Symposium on Theory of Computing, STOC ’07, pages 689–698,
New York, NY, USA, 2007. ACM.

[BYGW99] Z. Bar-Yossef, O. Goldreich, and A. Wigderson. Deterministic ampli-
fication of space-bounded probabilistic algorithms. In Conference on
Computational Complexity (CCC), pages 188–198. IEEE, 1999.

[BYRST02] Z. Bar-Yossef, O. Reingold, R. Shaltiel, and L. Trevisan. Streaming
computation of combinatorial objects. In Annual IEEE Conference on
Computational Complexity (CCC), volume 17, 2002.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM Journal on
Computing, 17(2):230–261, 1988.

[CMBH02] I. J Cox, M. L Miller, J. A Bloom, and C. Honsinger. Digital watermark-
ing, volume 53. Springer, 2002.

[CMV13] K-M Chung, M. Mitzenmacher, and S. P. Vadhan. Why simple hash
functions work: Exploiting the entropy in a data stream. Theory of
Computing, 9(30):897–945, 2013.

[CY91] J. Chen and C.-K. Yap. Reversal complexity. SIAM Journal on Com-
puting, 20(4):622–638, 1991.

[DEOR04] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved randomness
extraction from two independent sources. In RANDOM, pages 334–344.
Springer, 2004.

118



[die08] The marsaglia random number CDROM including the Diehard Battery
of Tests of Randomness. 2008.

[FGF07] Fast Galois Field Arithmetic Library in C/C++. 2007. http://web.

eecs.utk.edu/~plank/plank/papers/CS-07-593/.

[GHS09] M. Grohe, A. Hernich, and N. Schweikardt. Lower bounds for processing
data with few random accesses to external memory. Journal of the ACM,
56(3):Art. 12, 58, 2009.

[GMP14] The GNU Multiple Precision Arithmetic Library. 2014.

[Gol01] O. Goldreich. Foundations of cryptography. Cambridge University Press,
Cambridge, 2001. Basic tools (Vol. I).

[GRS06] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-
fixing sources by obtaining an independent seed. SIAM Journal on Com-
puting, 36(4):1072–1094, 2006.

[GS05] M. Grohe and N. Schweikardt. Lower bounds for sorting with few random
accesses to external memory. In Symposium on Principles of Database
Systems (PODS), pages 238–249, 2005.

[HG01] N. Howgrave-Graham. Approximate integer common divisors. In Cryp-
tography and Lattices, pages 51–66. Springer, 2001.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal of Computing
(SICOMP), 28(4):1364–1396, 1999. (also STOC’89).

[HRV10] I. Haitner, O. Reingold, and S. Vadhan. Efficiency improvements in
constructing pseudorandom generators from one-way functions. In Sym-
posium on Theory Of Computing (STOC), pages 437–446, 2010.

[HS08] A. Hernich and N. Schweikardt. Reversal complexity revisited. Theoret-
ical Computer Science, 401(1-3):191–205, 2008.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random genera-
tion from one-way functions. In Symposium on Theory Of Computing
(STOC), pages 12–24, 1989.

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In
Foundations of Computer Science (FOCS), pages 248–253. IEEE, 1989.

[KGY89] M. Kharitonov, A. V. Goldberg, and M. Yung. Lower bounds for pseu-
dorandom number generators. In Foundations of Computer Science
(FOCS), pages 242–247, 1989.

119

http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593/
http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593/


[KZ06] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing
sources and exposure-resilient cryptography. SIAM Journal on Com-
puting, 36(5):1231–1247, 2006.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. EUROCRYPT 2012, pages 700–718, 2012.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and applications. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’03, pages 413–413, Philadelphia, PA, USA, 2003.
Society for Industrial and Applied Mathematics.

[MVV14] D. G. Marangon, G. Vallone, and P. Villoresi. Random bits, true and
unbiased, from atmospheric turbulence. Scientific Reports, 2014.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, 1996.
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