
MASTER THESIS

Ondřej Ježil

Pseudofinite structures and limits1

Department of Algebra

Supervisor of the master thesis: prof. RNDr. Jan Kraj́ıček Ph.D.
Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2022

1This is a second version of a thesis originally defended in June 2022. It includes errata and
several parts were rewritten to improve clarity.

Title: Pseudofinite structures and limits

Author: Ondřej Ježil

Department: Department of Algebra

Supervisor: prof. RNDr. Jan Kraj́ıček Ph.D., Department of Algebra

Abstract: For a class of graph instances of a computational problem we define a
limit object, relative to some computationally restricted class of functions. The
key method here is forcing with random variables where the sample set is taken as
instances of some nonstandard size. We study the general theory of these limits,
called in the thesis wide limits, and their connection to classical problems such
as finding a large clique or with the combinatorial problems associated with the
classes of total NP search problems PPA and PPAD. Our main results are
several 0-1 laws associated with these limits and existence of a significantly large
clique of the wide limit of all graph consisting of one large clique.

Keywords: pseudofinite structure, forcing, complexity, witnessing, TFNP, clique

Contents

Introduction 2

Preliminaries 3
The ambient model M . 3
Nonstandard analysis . 3
Total NP search problems and polynomial oracle time 4

1 Forcing with random variables and the wide limit 6
1.1 Setup . 6
1.2 The first order wide limit . 7
1.3 The second order wide limit . 8
1.4 The vertex family Frud and Grud 9
1.5 Different choices of n . 10
1.6 Theories of wide limits . 11

2 General theory 12
2.1 Gk = EDGEk . 12
2.2 Sparse Gk . 13
2.3 Dense Gk . 16
2.4 Gk = ALLk . 19
2.5 Isomorphism closed categorical Gk 22

3 Dense case 24
3.1 Gk = SK1/2

k . 24
3.2 Gk = CK1/2

k . 27

4 Sparse case and TFNP 29
4.1 Gk = ∗PATHk . 29
4.2 Gk = ∗PATH≤

k . 33
4.3 Gk = ∗DPATHk . 35

Concluding remarks 37

Bibliography 38

1

Introduction
There exist several logical constructions of limits of classes of finite structures

such as the ultraproduct construction and the compactness theorem. The latter
was used in [Fag76] to prove the 0-1 law for structures over relational vocabularies.

In combinatorics, there are also several notions of limits of finite graphs. For
example the dense graph limit defined for a sequence of graphs {Gk}k>0 satisfying
the condition that

t(F,Gn) = hom(F,G)
|Gn||F |

converges for every fixed connected graph F which provided a framework (see
[LS06]) to restate and find new proofs for results in extremal graph theory. For
instance Goodman’s theorem relating the number of edges to the number of
triangles in a graph. There are other notions of limits of sequences of graphs
and we recommend to read [NDM13] to the interested reader. Another recent
use of limit objects for the results of extremal combinatorics was by Razborov in
[Raz07].

These different notions of limits directly or tangentially relate to the concept
of pseudofinite structures. For a first order language L we call an L-structure S
pseudofinite if it satisfies the theory Tf consisting of all sentences true in all finite
L-structures. Of course, the interesting case is when S is itself not finite.

In this thesis we use the concept of pseudofinite structures to define a limit
of a family of finite graphs relative to some computationally restricted class of
functions F . Instead of studying the density of substructures, we study these wide
limits (as we shall call them) both generally and by analyzing concrete examples
and tying them with the computational complexity of search problems for F . The
image to keep in mind is that we take a limit of a class of inputs to a specific
problem and the ’shape‘ of that limit then reflects how some computationally
restricted viewer may see a generic input from the original class.

The key method we use is arithmetical forcing with random variables, de-
veloped in [Kra11], which allows us to construct models of (weak) arithmetical
theories and by restricting to a language of graphs gives us Boolean valued graphs.
In these Boolean valued graphs, witnessing of existential quantifiers corresponds
to the ability of F to solve search problems over the class of graphs we are con-
sidering.

After recalling important concepts in the Preliminaries chapter we define the
wide limit in Chapter 1. In Chapter 2 we consider some examples and build
a general theory around them. In chapters 3 and 4 we analyze more complex
examples which correspond to the complexity of finding a large clique and to
semantic subclasses of TFNP respectively.

2

Preliminaries
In this chapter we recall a few important notions which we will use in the next

chapter to define the central construction we study. We do not review the notions
formally but always provide a reference for the reader unfamiliar with these top-
ics. Throughout this thesis we assume a basic knowledge of mathematical logic,
model theory and measure theory. Important concepts for us are the nonstandard
models of true arithmetic, nonstandard analysis and NP search problems. We
discuss these in more detail in the rest of this chapter.

The ambient model M
Let Lall be the language consisting of function symbols for all functions on N,

all relations and all constants. We call a model of ThLall
(N) nonstandard if it is

not isomorphic to N. From now on, we will omit the language from the subscript
of the Th(−) operator which we will continue to do when the language is clear
from context.

Every model of Th(N) contains an initial segment isomorphic to N so we can
view nonstandard models as those which also contain ‘infinite natural numbers’,
if we assume M |= Th(N) contains N as an initial segment then the elements
M \ N are called nonstandard. We recommend the introduction of [Kay91] for a
review of this topic. In the appendix of [Kra11] there is an explicit ultraproduct
construction of a model M |= Th(N) which is ℵ1-saturated.

This ℵ1-saturated model M is used throughout this thesis and we call it the
ambient model of arithmetic. For our applications we only need to know that
the model is nonstandard and the following property holds because of the ℵ1-
saturation. (Note that we can encode finite sequences and sets in M which lets
us state the property.)

Property. If {ak}k≥0 is a sequence with elements in N then there is an element
t ∈ M \ N and a sequence {bk}k<t ∈ M with ak = bk for all k ∈ N.

By overspill in M if some definable property P holds for ak with unbounded
indexes, then there is also some nonstandard n < t such that bn satisfies the
property P . Moreover, if some definable property P holds for all bk with k above
some k0 it has to also hold by induction in M for all nonstandard bn. These bn

are intuitively the limit elements of the sequence {ak}k≥0.
Now let us introduce some notation. To denote that t ∈ M is an nonstandard

number we will write t > N. For m ∈ M we denote the set of numbers below
m as ⟨m) := {0, . . . ,m − 1} ∈ M and |m| as the bit-length of the (possibly
nonstandard) number m. These definitions can be easily made rigorous using the
first order definitions of these functions.

Nonstandard analysis
The reader can refer to [Gol14] for more formal treatment of the topics dis-

cussed in this section including proofs. To use the method of forcing with random

3

variables we need to consider the concept of M-rationals. To define them we start
by simply adjoining all negative elements to the semiring M to obtain the integral
domain M. M-rationals are then simply the ordered field of fractions Frac(M)
which we denote QM.

There is a canonical injection Q ↪→ QM whose image consists exactly of the
‘standard fractions’. We call a q ∈ QM finite if there is a standard k such that
|q| < k

1 , otherwise we call it infinite. We call q ∈ QM infinitesimal if q−1 is infinite
(see also Definition 1.2.2). We will use QM in a manner similar to how hyperreal
numbers are used as an alternative foundation for the concepts of real analysis.
The following is an important result which we use throughout the thesis.

Theorem. There is a surjective function from the ring of finite M-rationals to
R which is a homomorphism of rings and the kernel is the ideal of infinitesimal
numbers.

We denote the function st(−) and call it the standard part of the M-
rational.

The following result characterizes convergence of a sequence of rational num-
bers in the language of nonstandard analysis.

Theorem. Let {ck}k≥0 be a sequence of rational numbers and let {c̃k}t≥k be its
nonstandard prolongation in M. Then

lim
k→∞

ck = r ∈ R

if and only if for any nonstandard n ≤ t we have that st(c̃n) = r.

We close this section with two inequalities heavily used in the proofs through-
out the thesis.

Theorem (Bernoulli’s inequality). Let y ∈ M and x ∈ QM, x ≥ −1, then

(1 + x)y ≥ 1 + yx.

Theorem (Exponential inequality). Let y ∈ M, x ∈ QM, x ≥ 0 and x ≤ y, then(︄
1 − x

y

)︄y

≤ e−x.

Total NP search problems and polynomial oracle
time

Our goal is to tie the properties of the wide limit with some complexity the-
oretic statements. We will recall several notions used later on.

The class of total NP search problems TFNP, first defined in [MP91], consists
of all relations on binary strings P (x, y) such that: a) There is a polynomial time
machine M which, given x, y, can decide whether P (x, y) holds. b) There exists
a constant c > 0 and for every x there exists at least one y satisfying |y| ≤ |x|c
such that P (x, y) holds.

4

While the definition of the class TFNP seems natural, the inner structure
looks more arbitrary and the class is generally studied through its semantic sub-
classes. For example it is conjectured that there is no complete problem for
TFNP [GP18] for a suitable notion of reducibility.

Various subclasses are defined as all problems reducible to some problem cor-
responding usually to a combinatorial lemma, for some appropriate definition of
reduction. Two main subclasses are relevant for us. The class PPA, polynomial
parity argument, corresponds to all problems reducible to LEAF, the problem
formulated as follows. An instance is given by a number k and a graph G on the
vertex set ⟨2|k|), presented by a Boolean circuit of polynomial size in |k| comput-
ing its neighbourhood function, such that degG(0) = 1 and ∀v : degG(v) ≤ 2.
The task is then to find some nonzero v with degG(v) = 1. The corresponding
combinatorial principle being the handshaking lemma, which assures the problem
is total.

The other class PPAD, directed polynomial parity argument, with the com-
plete problem SOURCE.OR.SINK is formulated as follows. An instance is given
by a number k and a directed graph G on the vertex set ⟨2|k|), presented by a
Boolean circuit of polynomial size in |k| computing the neighbourhood function,
such that the vertex 0 is a source and ∀v : deg+

G(v), deg−
G(v) ≤ 1. The task

is to find some nonzero vertex v which is a source or a sink. The correspond-
ing combinatorial principle here being the directed version of the handshaking
lemma.

So far, we presented what is called ‘type 1’ problem in [BCE+95]. The ones
we are interested in are ‘type 2’ problems which replace the input graph G with a
pair (α, x) consisting of an oracle α describing the neighbourhood function NG(−)
(or both N+

G (−) and N−
G (−) in the directed case) on binary string of length at

most |x|. While the goal to solve these problems remains the same, suddenly the
situation is quite different – these type 2 classes can be easily separated from
FP2, the type 2 version of polynomial time functions, by an adversary argument.
More importantly we have that PPAD is a strict subclass of PPA in the type 2
case. Intuitively one can forget the orientation to get the undirected version, but
cannot consistently assign orientation to undirected edges of a large graph.

The traditional model of computation is the Turing machines and for the type
2 problems the oracle Turing machine. But to prove separations in the type 2
case, we can abstract the computation of an oracle Turing machine into a decision
tree which describes the queries to an oracle. This abstraction is what to keep in
mind in the following chapter when we define the class of functions Frud.

5

1. Forcing with random variables
and the wide limit

1.1 Setup
Our goal in this chapter is to provide a definition of a limit of an infinite

class of finite graphs in which arbitrarily large graphs occur and the number
of graphs in each cardinality tends to infinity. The following definition makes
our requirements of such a class of graphs precise. From now on E denotes a
binary relational symbol, so that formulas in the language of graphs are precisely
{E}-formulas.

Definition 1.1.1. Let {Gk}k>0 be a sequence of non-empty finite sets of (directed
or undirected) finite graphs, i.e. structures of in the first order language {E}.
We call it a wide sequence if the following holds.

• There is a strictly increasing sequence of positive whole numbers {gk}k>0
such that the underlying set of each G ∈ Gk is ⟨gk).

• limk→∞ |Gk| = ∞

By abuse of notation we will denote the wide sequence just Gk.

The second condition is not strictly important to proceed with this chapter,
but it more closely describes what sort of sequences we are interested in.

We will sometimes talk somewhat loosely about wide limits of a class of finite
graphs C which abbreviates that we imagine the class to be stratified into levels
Ck = {G ∈ C;VG = ⟨gk)} determined by some canonical choice of cardinalities.
If this sequence is wide we can proceed as if we started with a wide sequence in
the first place. Many interesting classes of graphs form a wide sequence in this
sense. For example graphs with exactly one edge, graphs with bounded degree
and so on. We will get to explore many examples in depth after we define the
wide limit.

The limit is defined by specifying a nonstandard prolongation {G̃n}n<t of the
original wide sequence and some nonstandard n < t. In the next section we will
consider a very rich sublanguage of Lall which still makes every wide sequence
definable in M and therefore there is a unique nonstandard prolongation which
we will denote just {Gt}t∈M because it is in fact also unbounded.

In the first order case we will define a Boolean valued graph limF Gn through
which we can investigate the first order properties of the limits. We then define
its ‘arithmetical expansion’ K(Gn, F) which interprets all relational symbols from
Lall.

We shall be also interested in second order properties of the Boolean valued
graph, for example whether it contains a large clique. For this we expand limF Gn

to limG
F Gn and K(Gn, F) to K(Gn, F,G) with G being second order objects (re-

lations, functions). Here the arithmetical expansion is essential, because in the
(second order) language of graphs we can express the mere existence of a clique.

6

Only with an ordering on the vertices we can actually express that such a clique
is large. In this case we shall talk about second order limit.

1.2 The first order wide limit
From now on we closely follow Chapter 1 of [Kra11]. Let M be the ℵ1-

saturated model of true arithmetic discussed in the previous chapter and let Gk

be a wide sequence of graphs and Ω := Gn for n ∈ M \ N. Since Gk is a wide
sequence Ω is an infinite set. Moreover one can check that graphs in Ω are all
pseudofinite.

The intuitive idea for the following definitions is the following. The model M
treats all its elements (including those which represent sets) as “finite objects”
which lets us define uniform probability even on sets which are infinite from the
set-theoretical perspective.

Unlike in Kraj́ıček’s book, we will not define a structure in the arithmetical
language Lall because for us the families of functions F will have their range
restricted to the vertex set ⟨gn) of any pseudofinite member of Gn and functions
from Lall could easily generate functions with range outside of this vertex set.
However nothing forbids us to interpret the relations and constants in Lall so we
define the language Lrel to consist precisely of the relational and constant symbols
in Lall

Definition 1.2.1. Let A := {A ∈ M;A ⊆ Ω} be the set of all subsets of Ω
represented by an element in M. We define the counting measure as the map

A → QM

A ↦→ |A| / |Ω| .

One can check that A is a Boolean algebra, but not a σ-algebra as it is not
closed under all countable unions. Indeed all singleton sets are part of A but the
set of all elements with standardly many predecessors in Ω is not in A.

Definition 1.2.2. We call an M-rational infinitesimal if its absolute value is
smaller than all standard fractions 1

k
, k ∈ N.

We define an ideal in A as I := {A ∈ A; |A| / |Ω| is infinitesimal} and define
a Boolean algebra B := A/I. The induced measure on B is a real-valued measure
and can be written as

µ(A/I) = st(|A| / |Ω|).

We can also check, that now µ is a measure in the ordinary sense and that B
is an σ-algebra. In fact, the following key lemma holds.

Lemma 1.2.3 ([Kra11]). B is a complete Boolean algebra.

The maximal and minimal element in B will be denoted 1 and 0 respectively.
We now define what we require of the family of functions F we already mentioned.

Definition 1.2.4. Let F be a non-empty set of functions which are elements in
M. We call it a (random) vertex family if it satisfies the following:

• The domain of any function α ∈ F is Ω and the range is ⟨gn).

7

Note that while every α ∈ F is represented by some element in M, this need
not be the case for the whole family F . Now we can finally define the first order
wide limit.

Definition 1.2.5. We define a B-valued {E}-structure limF
k→n Gk, with universe

F and {E}-sentences being evaluated by the following inductive conditions:

• [[α = β]] := {ω ∈ Ω;α(ω) = β(ω)}/I

• [[E(α, β)]] := {ω ∈ Ω;Eω(α, β))}/I

• [[−]] commutes with ∧,∨,¬

• [[(∃x)A(x)]] := ⋁︁
α∈F [[A(α)]]

• [[(∀x)A(x)]] := ⋀︁
α∈F [[A(α)]].

By abuse of notation we will usually denote the limit limF Gn.

We will also define the structure K(Gn, F) which is not important in the
first order case, but makes the definition of its second order counterpart more
manageable. This structure corresponds to a fragment, a substructure of a Lrel-
reduct to be precise, of structures K(F) defined in [Kra11] for some larger family
F .

Definition 1.2.6. K(Gn, F) will denote a B-valued Lrel ∪ {E}-structure defined
as an Lrel ∪ {E}-expansion of limF Gn. The Boolean evaluations of atomic Lrel-
sentences are defined as follows:

• [[R(α1, . . . , αk)]] := {ω ∈ Ω;R(α1, . . . , αk)}/I for any k-ary R ∈ Lrel.

We call the arithmetical expansion of the (first order) wide limit.

1.3 The second order wide limit
While we can find a truth value of a sentence in the language of graphs in the

limit limF Gn, we will encounter situations where this is not sufficient to analyze
the wide sequence {Gk}k>0.

In Chapter 3 we will investigate how the existence of large cliques corresponds
to the size of cliques in the limit graph. First we need some way to witness subsets
of vertices – this leads us to the second order wide limit. However, in the second
order case the arithmetical expansion is much more important because we cannot
just measure the set-theoretical cardinality of any such clique. For specific n we
could very well have card(⟨⌊log n⌋)) = card(⟨

⌊︂
n
2

⌋︂
)) but from the point of view of

complexity theory, cliques of size ⌊log n⌋ and
⌊︂

n
2

⌋︂
are dramatically different. In

other words, our goal is also to have means to count the number of elements in
subsets or relations with values in (random variables in) M.

When we say second order we mean two-sorted first order structures where one
sort represents the usual elements (the ‘first order’ sort) and the other represents
functions on those elements (the ‘second order’ sort). The ‘second order’ here
can also represent sets and relations by {0,1} valued functions.

8

Definition 1.3.1. We call a set of functions G ⊆ M an F -compatible functional
family if every Θ ∈ G assigns to every ω ∈ Ω a function Θω ∈ M and after we
define

Θ(α)(ω) :=
⎧⎨⎩Θω(α(ω)) α(ω) ∈ dom (Θω)

0 otherwise,

we have that for every α ∈ F and Θ ∈ G we have Θ(α) ∈ F .

Definition 1.3.2. Let F be a vertex family and G be an F -compatible functional
family. We define the structure K(Gn, F,G) as a two sorted {E} ∪Lrel-structure
with sorts F and G interpreting the first order Lrel-sentences as in K(Gn, F) and
treating the sort G as follows. Variables for G are treated as function symbols
and can form terms with variables for F . For equality we let

[[Θ = Ξ]] := {ω ∈ Ω; Θω = Ξω}/I

and for the second order quantifiers we have the following inductive clauses

• [[(∃X)A(X)]] := ⋁︁
Θ∈G[[A(Θ)]]

• [[(∀X)A(X)]] := ⋀︁
Θ∈G[[A(Θ)]].

We define the second order wide limit limG
F ;k→n Gk as {E}-reduct of the

structure K(Gn, F,G), which we analogously call the the arithmetical expan-
sion of the (second order) wide limit. By abuse of notation we will mostly
denote the wide limit limG

F Gn.

Let us note that if we have multiple Boolean valued structures S1,S2, . . . we
may add the name of the structure as a prefix to the evaluation function to get
S1[[−]] and S2[[−]] to avoid ambiguity or to emphasize the structure where the
evaluation takes place. This is different from the standard notation, which would
be including the structure name in the superscript as [[. . .]]S1 , but it is in our case
preferable for typographical reasons.

1.4 The vertex family Frud and Grud

Throughout this thesis we will mostly work with the vertex family Frud which
ties the properties of limF Gn with decision tree complexity – but decision trees can
also be seen as an abstraction of oracle Turing machine complexity we mentioned
in the Preliminaries chapter.

After we choose the sequence {Gk}k>0 and n > N we again put Ω := Gn and
define Frud as follows.

Definition 1.4.1. We define a decision tree to be a binary tree T ∈ M with
a labeling of vertices and edges ℓ. The non-leaf vertices are labeled by pairs of
numbers (u, v), where u, v ∈ ⟨gn) and each edge is labeled either by 1 or 0. Each
leaf vertex is then labeled by some element of ⟨gn).

Every sample ω ∈ Ω uniquely determines a path in (T, ℓ) by interpreting the
vertex labels as “is (u, v) ∈ Eω?” and the edge labels as true (1) and false (0)
and the path then uniquely determines an output.

9

We define Trud to be the set of all (T, ℓ) of depth at most g1/t
n , for some

nonstandard t ∈ M, and Frud to be the set of all function computed by some
(T, ℓ) ∈ Trud. For brevity we will leave out the labeling of the trees out of the
notation so a tree in Trud can be denoted just by T .

Note that if we are given a graph ω ∈ Gk on gk vertices, we need a polynomial
sized circuit with 2l inputs, l := log gk, to represent its edge relation. In the
pseudofinite case, where k = n, if we are restricted to inspect/query at most g1/t

n

edges then it corresponds to 2l/t many queries or the subexponential oracle time.
The definition of Grud is a bit more involved. The functionals in it will be

computed by tuples of elements from Frud in the following sense.

Definition 1.4.2. Let β̂ = (β0, . . . , βm−1) ∈ M be a m-tuple of elements in Frud,
for any α ∈ Frud and ω ∈ Ω we define

β̂(ω) =
⎧⎨⎩βα(ω)(ω) α(ω) < m

0 otherwise.

Definition 1.4.3. The family Grud consists of all functionals Θ such that there
is m ∈ M and some β̂ = (β0, . . . , βm−1) ∈ M that computes it.

Lemma 1.4.4 ([Kra11]). Grud is (Frud)-compatible.

Proof. (sketch) By induction in M we have that all the depth of all the trees is
bounded by g1/t

n for some t > N.
If we take some Θ ∈ Grud and α ∈ Frud we can compute Θ(α) also by a tree

in Trud by concatenating the trees computing α and βis.

1.5 Different choices of n
Even though we generally pose no requirements on n > N there are examples

of wide sequences for which the outcome of the limit is sensitive to the choice of
the non-standard number n.

Example 1.5.1. Let

Gk :=
⎧⎨⎩{(⟨k), E); |E| = 2, E(0, 1)} k even

{(⟨k), E); |E| = 1,¬E(0, 1)} k odd.

Let n > N then

lim
Frud

G2n+1[[E(0, 1)]] = 0, (1.1)

but

lim
Frud

G2n[[E(0, 1)]] = 1. (1.2)

Even though the concrete wide limits we will investigate in the following
chapters do not depend on the specific n, it is important to note that we cannot
generally remove the parameter n from the definition of the limit.

10

1.6 Theories of wide limits
If limF Gn is the first order wide limit we will be interested in which exact

{E}-sentences are valid in it. By valid we mean that their [[−]] value is 1.

Definition 1.6.1. We define Th(limF Gn) as the set of all valid {E}-sentences in
limF Gn.

In the next chapter (Theorem 2.3.4) we will see that if a universal {E}-
sentence ϕ holds for all ω ∈ Gk for k big enough then limF Gn[[ϕ]] = 1. In
particular, a wide limit of undirected graphs is a Boolean valued undirected graph
and a wide limit of directed graphs is a Boolean valued directed graph.

Lastly, let us recall the concept of 0-1 laws which say that a certain proba-
bility tends either to 0 or 1 and not to any intermediate value. Here, instead of
probability, we can think about the Boolean values 0 and 1 and ask when does
it happen that limF Gn[[ϕ]] ∈ {0,1} for every {E}-sentence ϕ. This is exactly
equivalent to the situation where the theory Th(limF Gn) is complete. Later in
the thesis we prove such 0-1 law for several wide limits.

11

2. General theory

2.1 Gk = EDGEk

The first and simplest wide sequence we will consider of is the class of undi-
rected graphs with exactly one edge. We put

EDGEk := {(⟨k), E); |E| = 1},

and one can check that this is indeed a wide sequence because |EDGEk| =
(︂

k
2

)︂
which tends to infinity as k does.

Now every graph ω ∈ EDGEk has an edge. How does this reflect in the Frud

wide limit? The naive guess could be that there should also be an edge but
another view lets us see this should not be the case. The limit encompasses the
procedure of randomly sampling an exponentially large graph and then inspecting
a subexponential part of its edges. In the pseudofinite case this means that we
search for one edge in the nonstandard set of vertices but only search through
infinitesimally small portion and so we should almost always fail.

This is exactly how we prove in the following theorem.
Theorem 2.1.1.

lim
Frud

EDGEn[[(∃x)(∃y)E(x, y)]] = 0.

Proof. Any two trees Tα and Tβ computing potential witnesses α, β of the formula
E(x, y) on some subset of Ω can be then combined into one tree that outputs an
edge on the same subset of Ω, so we can just analyze the case where the witnesses
are computed by the same tree. Let T ∈ Trud be a tree of depth n1/t, for some
t > N, that outputs a pair of vertices.

Start from the root of T and always choose the path that corresponds to the
nonexistence of an edge. At the end we obtain some answer, that gives us a set
of at most 2 · n1/t + 2 vertices the tree inspected or outputted. Now we can find
at least: (︄

n− 2n1/t − 2
2

)︄
= (n− 2n1/t − 2)(n− 2n1/t − 3)

2 (2.1)

different ω ∈ Ω such that T (ω) is not an edge in ω.
The probability that any of those graphs is sampled is(︂

n−2n1/t−2
2

)︂
|Gk|

= (n− 2n1/t − 2)(n− 2n1/t − 3)
n(n− 1) (2.2)

=
(︄

1 − 2n1/t + 2
n

)︄
·
(︄

1 − 2n1/t + 2
n− 1

)︄
(2.3)

≥
(︄

1 − 2n1/t + 2
n− 1

)︄2

(2.4)

≥ 1 − 4n1/t + 4
n− 1 . (2.5)

And one can clearly see that st(1 − 4n1/t+4
n−1) = 1. This proves that the Boolean

value we are considering is 0.

12

2.2 Sparse Gk
One can see that in Theorem 2.1.1 the exact shape of graphs in Gk does not

play a crucial role. If Gk consisted of all graphs on k vertices containing say
exactly one triangle, or any other fixed subgraph of constant size, and no other
edges, we would still find that the non-existence is valid in the Frud wide limit.

A more general case would be to consider a family of graphs in which there is
an infinitesimally small chance that two independent uniformly random vertices
have an edge between. However, this is not sufficient.

Example 2.2.1. Let Gk consist of those graphs on the vertex-set k which contains
the edge E(0, 1) and then has exactly one other edge. As k increases, the fraction
of edges gets smaller than any standard positive fraction. But

[[(∃x)(∃y)E(x, y)]] = 1,

as witnessed by x being the constant 0 and y the constant 1 both of which are
computable by a Trud tree of depth 0.

One can see that having distinguished vertices can result in the edge being
found even in the sparse case. We want to distinguish from this situation by
considering the sequences Gk satisfying the following natural definition.

Definition 2.2.2. We say that {Gk}∞
k=0 is isomorphism closed, if there is k0

such that for every k > k0, every ω1 ∈ Gk, and every graph ω2 such that Vω2 = ⟨gk)
it holds that if ω1 ∼= ω2 then ω2 ∈ Gk.

Theorem 2.2.3. Let an isomorphism closed Gk have the following property.
There is a sequence {bk}k and for big enough k, a uniformly sampled 2-element
{u, v} ⊆ gk and every ω ∈ Gk we have

Pr[Eω(u, v)] ≤ bk,

and some k0 ∈ N such that limk→∞ k1/k0bk = 0. Then

lim
Frud

[[(∃x)(∃y)E(x, y)]] = 0.

Proof. Let us define the number cu,v := |{ω ∈ Gk;Eω(u, v)}|, which is the number
of graphs ω in Gk satisfying EG(u, v). Of course cu,u = 0 for every u.

Claim: Let u ̸= v, u′ ̸= v′ be vertices, then cu,v = cu′,v′ .
proof of claim: Let ρ := (uu′)(v v′) be a permutation with cycles (uu′) and (v v′).
We can let ρ act on Gk by sending ω to a graph ρ(ω) which renames the edges
coordinate-wise.

The fact that Gk is isomorphism closed implies that ρ restricts to a bijection:

ρ′ : {ω ∈ Gk;Eω(u, v),¬Eω(u′, v′)} → {ω ∈ Gk;Eω(u′, v′),¬Eω(u, v)}

which proves the claim.
Now we define a matrix with entries

aω,{u,v} :=
⎧⎨⎩1 Eω(u, v)

0 otherwise

13

where the rows are indexed by one of |Gk| many graphs in Gk and the columns are
indexed by the k(k−1)

2 many 2-element sets of numbers in k. We take any distinct
vertices u, v and define p := Prω∈Gk

[Eω(u, v)] = cu,v

|Gk| , by the claim the choice of
u, v does not matter.

The assumption from the statement is equivalent to the equality

∑︂
{u,v}

aω,{u,v} ≤ k(k − 1)
2 bk

for every ω. We combine this with the claim and the definition of p to get

k(k − 1)
2 |Gk| p =

∑︂
{u,v}

∑︂
ω∈Gk

aω,{u,v} (2.6)

=
∑︂

ω∈Gk

∑︂
{u,v}

aω,{u,v} (2.7)

≤ |Gk| k(k − 1)
2 bk (2.8)

which implies
p ≤ bk.

Now let k := n and let T ∈ Trud be a tree of depth n1/t for some t > N, where
every leaf of T is labeled by some edge. Walk down the tree T from the root
by answering negatively to every edge, which gives us a set ET of all edges T
inspected or outputted and |ET | ≤ n1/t + 1.

Now we just need to prove that the probability that T finds an edge is infinites-
imally small. This is enough to prove the theorem, since the trees computing any
two witnesses for x and y in the statement can be combined to construct T and
if any tree T succeeds with only infinitesimally small probability, no random
vertices can witness an edge on a set of non-zero measure.

We use the fact that p ≤ bn to derive

Pr
ω∈Gn

[T finds an edge] ≤
∑︂

{u,v}∈ET

Pr
ω∈Gn

[Eω(u, v)] (2.9)

=
∑︂

{u,v}∈ET

cu,v

|Gn|
(2.10)

≤
∑︂

{u,v}∈ET

p (2.11)

= (n1/t + 1)p (2.12)
≤ (n1/t + 1)bk (2.13)
≤ n1/k0bk, (2.14)

standard part of which is 0.

The assumption limk→∞ k1/k0bk = 0 for some k0 may seem unintuitive at first.
However, it captures what is “too sparse” for the trees in Trud. The following
example shows that just requiring the ratio of edges to all pairs is infinitesimal is
not enough for the theorem to hold.

14

Example 2.2.4. Let Gk consist of all graphs on the vertex set ⟨k) with precisely
⌈k(k−1)

2 log k
⌉ edges.

Then we claim that
[[(∃x)(∃y)E(x, y)]] = 1.

Let α and β be vertices computed by the tree of the same shape which inspects
a set of any n1/t distinct edges for some t > N. If it finds an edge we define α
and β in any way so that they are the distinct vertices incidental with this edge.
Otherwise, we let α(ω) = β(ω) = 0.

Let T be a tree of the same shape, that computes the pair {α, β} then we
can compute the probability where such a tree fails as the fraction of all graphs
which have no edges that T inspects. Let m =

(︂
n
2

)︂
. We get

Pr
ω∈Gn

[T fails] =

(︂
m−n1/t

⌈n(n−1)
2 log n ⌉

)︂
(︂

m

⌈n(n−1)
2 log n ⌉

)︂ (2.15)

=
(m−n1/t)!

⌈n(n−1)
2 log n ⌉!(m−⌈n(n−1)

2 log n ⌉−n1/t)!
m!

⌈ n(n−1)
2 log n

⌉!(m−⌈n(n−1)
2 log n ⌉)!

(2.16)

=
(m− n1/t)!(m−

⌈︂
n(n−1)
2 log n

⌉︂
)!

m!(m−
⌈︂

n(n−1)
2 log n

⌉︂
− n1/t)!

(2.17)

=
n1/t−1∏︂

i=0

m−
⌈︂

n(n−1)
2

⌉︂
− i

m− i
(2.18)

≤

⎛⎝1 −

⌈︂
n(n−1)
2 log n

⌉︂
n(n−1)

2

⎞⎠n1/t

(2.19)

≤

⎛⎝1 −

⌈︂
n(n−1)
2 log n

⌉︂
n(n−1)

2

⎞⎠n1/t

(2.20)

≤
(︄

1 − 1
log n

)︄n1/t

(2.21)

And for any standard k we have
(︄

1 − 1
log n

)︄n1/t

≤
(︄

1 − 1
log n

)︄k·log n

(2.22)

≤ (e− 1
ln 2)k. (2.23)

So st(Prω∈Gn [T fails]) = 0 and we get

µ([[(∃x)(∃y)E(x, y))]] ≥ µ([[E(α, β)]]) (2.24)
= st(1 − Pr

ω∈Gn

[T fails]) (2.25)

= 1. (2.26)

15

2.3 Dense Gk
Let us now consider how the density of a specific kind of substructure in the

wide sequence corresponds to that substructure existing in the wide limit. The
following theorem presents a sufficient condition for the existence to have nonzero
measure. Furthermore, this condition holds generally for all F which contain all
constants.

Theorem 2.3.1. Let F contain all constants, Gk be a wide sequence and let
ϕ0(x) be an open {E}-formula such that

lim
k→∞

Pr
ω∈Gk

a∈⟨gk)l

[ω |= ϕ0(a)] ≥ p.

Then µ([[(∃x)ϕ0(x)]]) ≥ p.

Proof. We define a matrix with components

Cω,a =
⎧⎨⎩1 ω |= ϕ0(a)

0 otherwise.

By overspill in M we have that

st
⎛⎝ 1

|Gn| gl
k

∑︂
ω∈Gn

∑︂
a∈⟨gk)l

Cω,a

⎞⎠ ≥ p.

We claim that there is one a such that st(Prω∈Gn [ω |= ϕ0(a)]) ≥ p. Assume
for contradiction, that for all a we have 1

|Gn|
∑︁

ω∈Gn
Cω,a < p. Then

1
|Gn| gl

n

∑︂
ω∈Gn

∑︂
a∈⟨gn)l

Cω,α = 1
gl

n

∑︂
a∈⟨gn)l

1
|Gn|

∑︂
ω∈Gn

Cω,α (2.27)

< p, (2.28)

which is a contradiction after taking the standard part of each value.
Therefore there is a tuple a such that µ([[ϕ0(α)]]) ≥ p, let γa be the constant

function ω ↦→ α in F and

[[ϕ]] =
⋁︂
α

[[ϕ0(α)]] (2.29)

≥ [[ϕ0(γa)]]. (2.30)

By taking µ of both sides we prove the theorem.

Example 2.3.2. Recall Example 2.2.4 it is not hard to notice that for a Gk which
consists of graphs with exactly

⌈︂
k(k−1)
2 log k

⌉︂
edges we have

lim
k→∞

Pr
ω∈Gk

(u,v)∈⟨k)2

[¬Eω(u, v)] = 1,

by the theorem it follows that we have

lim
F

Gn[[(∃x)(∃y)¬E(x, y)]] = 1.

16

We follow with an application of the theorem on a more complex wide se-
quence.

Example 2.3.3. Consider

SK1/2
k := {(⟨k), E);E has a clique of size ⌊k/2⌋, |E| =

⃓⃓⃓
EK⌊k/2⌋

⃓⃓⃓
},

a wide sequence of all graphs with exactly one ⌊k/2⌋-clique and no other edges.
One can check that for any {E}-formula ϕl(x) stating that x forms a clique of
size l we have that

lim
k→∞

Pr
ω∈SK1/2

k

a∈⟨k)l

[ω |= ϕ(a)] ≥ (1/2)l.

First notice that we can compute the probability for fixed a because SK1/2
k is

isomorphism closed. So we have

Pr
G∈SK1/2

k

[G |= ϕl(a)] =

(︂
k−l

⌊k/2⌋−l

)︂
(︂

k
⌊k/2⌋

)︂ (2.31)

=
l∏︂

i=0

k − ⌊k/2⌋ − i

k − i
(2.32)

=
l∏︂

i=0

(︄
1 − ⌊k/2⌋

k − i

)︄
(2.33)

≥
l∏︂

i=0

(︄
1 − k/2

k − i

)︄
(2.34)

≥
(︄

1 − k/2
k − l

)︄l

(2.35)

≥
(︄

1 − 1
2(1 − l/k)

)︄l

, (2.36)

and since l ∈ N, so from the point of view of standard analysis a constant, we
can just check that

lim
k→∞

1 − l/k = 1. (2.37)

This proves that for any F that contains all constants we have

lim
F

SK1/2
n [[(∃x)ϕl(x)]] > 0.

Now the following theorem describes sufficient conditions for a universal sen-
tence to hold in the wide limit for any F .

Theorem 2.3.4. Let F be any vertex family, Gk a wide sequence and let ϕ0(x)
be an open {E}-formula, such that

lim
k→∞

Pr
ω∈Gk

[ω |= (∀x)ϕ0(x)] = 1.

Then limF Gn[[(∀x)ϕ0(x)]] = 1.

17

Proof. We have that st(Prω∈Gn [ω |= (∀x)ϕ0(x)]) = 1 and therefore [[ϕ0(α)]] = 1
for each tuple α in F . Therefore

[[ϕ]] =
⋀︂
α

[[ϕ0(α)]] (2.38)

=
⋀︂
α

1 (2.39)

= 1. (2.40)

Example 2.3.5. Let us define

GA
k := {(⟨k), E); |E| = 2}, (2.41)

GB
k := {(⟨k), E); |E| = (k · (k − 1)/2) − 3}, (2.42)

Gk := GA
k ∪ GB

k , (2.43)

and let

ϕ0(a, b, c, d) :=

⎛⎜⎜⎜⎝ ⋀︂
x,y∈{a,b,c,d}
x, y distinct

(x ̸= y)

⎞⎟⎟⎟⎠ →

⎛⎜⎜⎜⎝ ⋁︂
x,y∈{a,b,c,d}
x, y distinct

E(x, y)

⎞⎟⎟⎟⎠ ,
which says that if a, b, c, d are distinct, there is an edge between one of them. The
universal closure is valid on all graphs in GB

k and none of the graphs in GA
k . Since(︂(n

2)
2

)︂
/
(︂(n

2)
n−3

)︂
is infinitesimal we have that limk→∞

(︂(k
2)
2

)︂
/
(︂(k

2)
k−3

)︂
= 0 and we have by

Theorem 2.3.4 that limF Gn[[(∀a, b, c, d)ϕ0(a, b, c, d)]] = 1 for any F containing all
constants.

The Theorem 2.3.4 also implies that since all ω ∈ Gk satisfy that Eω is an-
tireflexive then so does limF Gn and if Eω are all symmetrical then so is the wide
limit edge relation E. This combined with Theorem 2.2.3 proves the following.
Corollary 2.3.6 (0-1 law for too sparse Frud sequence). Let Gk be any wide
sequence satisfying the statement of the Theorem 2.2.3. Then Th(limFrud

Gn) is
the theory of the empty graph and therefore complete.

It is natural to ask whether we can weaken the assumption of Theorem 2.3.4
to an assumption analogous to Theorem 2.3.1. In other words, is

lim
k→∞

Pr
ω∈Gk

a∈⟨gk)l

[ω |= ϕ0(a)] = 1

enough to imply limF Gn[[(∀x)ϕ0(x)]] = 1? Unfortunately no, as we can see in the
following example.
Example 2.3.7. Recall Example 2.2.4 where Gk consists of all graphs on ⟨k) with
exactly

⌈︂
k(k−2)
2 log k

⌉︂
edges. One can easily check that

lim
k→∞

Pr
ω∈Gk

u,v∈⟨k)

[ω |= ¬E(u, v)] = 1,

but we proved that limFrud
Gn[[(∃x)(∃y)E(x, y)]] = 1 in other words we have

lim
Frud

Gn[[(∀x)(∀y)¬E(x, y)]] = 0.

18

2.4 Gk = ALLk

Now we return to F = Frud and prove a theorem with a more limited use
which however forces the truth value of the existential sentence in the wide limit
to be 1.

Theorem 2.4.1. Let ϕ0(x0, . . . , xl−1) be an open {E}-formula. Furthermore for
0 < p ≤ 1, consider subsets A ⊆ ⟨gk)l with the property that for all for all a ∈ A
we have

Pr
ω∈Gk

[ω |= ϕ0(a)] ≥ p

and
{{ω |= ϕ0(a)} ⊆ Gk; a ∈ A} are mutually independent.

Moreover let Ak be the set with the largest cardinality that has this property.
If limk→∞ |Ak| = ∞, then limFrud

Gn[[(∃x)ϕ0(x)]] = 1.

Proof. Let x = (x0, . . . , xl−1). Let Ta be a tree of some standard depth d, that
tests whether G |= ϕ0(a).

By overspill in M we have n′ > N many tuples a0, . . . , an′−1 ∈ An, such that
Prω∈Gk

[ω |= ϕ0(ai)] ≥ p, we can assume n′ < n1/t0 for some t0 > N.
For j ∈ [l] construct a tree Tj inductively as follows: Start with Ta0 . Replace

the label of every accepting leaf by (a0)j and remove the label of every rejecting
leaf. Call this tree T 0

j . Assume we have already constructed Tm
j . Construct

T i+1
j by appending Tam+1 to every undefined leaf, relabeling every satisfied leaf

to (ai+1)j and removing labels from every rejecting leaf. We will define Tj as T n′
j

with undefined leaves labeled by 0. (This can be done because all instances of
induction are in Th(N).) Note that dp(Tj) = d · n′ < n1/t for some t > N.

Call α the tuple computed by T0, . . . , Tl−1. We will prove that the probability
of α being a witness to ϕ0(x) is 1. For each ai we have, that the probability of
ω |= ϕ0(ai) is at least p. The mutual independence of {ω |= ϕ0(ai); i ∈ [n′]} and
the construction of Tj implies that Tj has a probability of (1 − p)n′ of failing,
which is obviously infinitesimal.

We now use this theorem to characterize the theory of another wide limit. We
denote

ALLk = {G undirected graph; VG = ⟨k)}.
Note that if we consider an open {E}-formula ϕ(x) and convert it to DNF, we

get a disjunction of conjunctions. Each such conjunction says which first order
literals should be satisfied on the variables x, the following theorem is proved for
conjunctions of literals. By the fact that [[−]] commutes with disjunctions, we can
find out the value of any existential sentence.

In the statement of the following theorem we use the notation ϕb for an {E}-
formula ψ and b ∈ {0, 1} to mean

ψb :=
⎧⎨⎩ψ b = 1

¬ψ b = 0.

Theorem 2.4.2 (Everything exists). Let ϕ(x, y) = ⋀︁m−1
i=0 ψi(x, y) ∧ ⋀︁l−1

i=0 ϑi(y),
where ψi, ϑi are basic formulas such that

19

• each ψi is not of the form (yi = yj)b, E(yi, yj)b, xi ̸= xi, E(xi, xi) for b ∈
{0, 1}

• if ψi is of the form (xi = z)b for z in x or y then no other ψj is of the form
(xi = z)1−b or (z = xi)1−b

• if ψi is of the form E(xi, z)b for z in x or y then no other ψj is of the form
E(xi, z)1−b or E(z, xi)1−b.

If β is a tuple of vertices computed by Frud of the same length as y then

lim
Frud

ALLn[[(∃x)ϕ0(x, β)]] = lim
Frud

ALLn[[
l−1⋀︂
i=0

ϑi(β)]],

specifically if the conjunction is empty then

lim
Frud

ALLn[[(∃x)ϕ0(x, β)]] = 1.

Proof. We will construct one tree T computing the whole tuple of witnesses α,
such a construction can be straightforwardly split into a tuple of trees with each
computing the specific element.

First we concatenate all the trees used to compute β. At each leaf we can now
proceed knowing the value of β at the specific ω ∈ Ω. Now we simply construct
a tree as in Theorem 2.4.1 but searching only over edges not checked previously
and only to fulfill each ψi. Since we assume Gk = ALLk, both of the conditions of
the theorem are satisfied. So by analogous argument, we have a tree that finds a
witness for all of the ψi(x, β) with probability infinitesimally close to 1.

Therefore

[[(∃x)ϕ(x, β)]] = [[(∃x)
m−1⋀︂
i=0

ψi(x, β)]] ∧ [[
l−1⋀︂
i=0

ϑi(β)]] (2.44)

= [[
l−1⋀︂
i=0

ϑi(β)]]. (2.45)

The statement of the theorem was rather technical, but we can now use it to
prove the following corollaries.

Corollary 2.4.3. For each open {E}-formula ϕ(x) that is not a contradiction in
the theory of graphs we have that limFrud

ALLn[[(∃x)ϕ(x)]] = 1.

Proof. The conditions on ψi are exactly saying that the conjunction is not a
contradiction. Every other formula can be rewritten as a disjunction of such
conjunctions and by the theorem we can satisfy at least one of them.

Corollary 2.4.4. For each open {E}-formula ϕ(x, y) that is not falsifiable by y
in the theory of graphs we have that limFrud

ALLn[[(∀y)(∃x)ϕ(x)]] = 1.

Proof. No β can falsify (∃x)ϕ(x, β), this means we can invoke the theorem on
one of the non-falsifiable disjuncts.

20

Theorem 2.4.5. The theory

Th(lim
Frud

ALLn)

is the theory of the Rado graph and therefore complete.

Proof. In [Gai64] it was proved that the theory of the Rado graph is axiomatized
by the theory of undirected graphs and the sentences Ei,j which say that if we
have a set A of i distinct vertices and a set B of j distinct vertices such that
A ∩ B = ∅, then there is a vertex v which has an edge with all vertices from A
and with no vertices from B.

Each Ei,j satisfies the statement of Corollary 2.4.4 and because it is also a
complete theory, we have proved the theorem.

Corollary 2.4.6. (0-1 law for ALLk) For every {E}-sentence ϕ we have that

lim
Frud

ALLn[[ϕ]] ∈ {0,1}.

The wide sequence ALLk is maximal in the sense that for every Gk with gk = k
we have that Gk ⊆ ALLk. Since we proved 0-1 law for ALLk we can ask whether
this tells us anything about the subobjects of ALLk since they consist in some
sense of all other wide sequences. From now on we no longer assume Gk denotes
ALLk.

Definition 2.4.7. Let Gk be a wide sequence. We say that G ′
k is a portion of

Gk if we have G ′
k ⊆ Gk for all k big enough which we denote G ′

k ≤ Gk. We say it
is a large portion if we have

p := lim
k→∞

|G ′
k|

|Gk|
> 0,

which we denote G ′
k ≤l Gk. Moreover, if the limits tends to 1 we call G ′

k a major
portion.

By elementary probability theory we can prove the following.

Lemma 2.4.8. Let G ′
k ≤l Gk be a wide sequence and its large portion, let A ⊆ Gn

be an event in M and let A′ = G ′
n ∩ A. Then we have

st
(︃

Pr
ω∈Gn

[A]
)︃

= 1 ⇒ st
(︃

Pr
ω∈G′

n

[A′]
)︃

= 1.

Corollary 2.4.9. Let Gk be a wide sequence such that

lim
k→∞

|Gk|
2(gk

2) > 0

then Th(limFrud
Gn) is the theory of Rado graph.

Proof. The condition on the limit assures that Gk ≤l ALLgk
. Which, by Lemma

2.4.8, is enough to replicate the proof for ALLgk
.

We will use a similar argument in Chapter 4 to instead prove something about
a wide sequence by first proving it for its portions.

21

2.5 Isomorphism closed categorical Gk
Take an isomorphism closed wide sequence Gk, what are its isomorphism closed

portions? It turns out it is easy to classify them because any such portion can
be constructed as a union of those wide sequences which always have one iso-
morphism type of each Gk and those precisely match the isomorphism closed
sequences which satisfy the following property.

Definition 2.5.1. We say that {Gk}∞
k=0 is categorical if there is k0 such that

for every k > k0 if we have ω1, ω2 ∈ Gk then ω1 ∼= ω2. For a categorical wide
sequence {Gk}∞

k=0 we denote Gk the lexicographically minimal element of Gk.

One can see isomorphism closed Gk as the natural wide sequences and categor-
ical isomorphism closed wide sequences as their building blocks. The concept of
isomorphism closed categorical wide sequences can be already limiting the form
of the sequence. We have the following lemma which limits sizes of Gk to specific
values.

Lemma 2.5.2. Let {Gk}∞
k=0 be categorical and isomorphism closed, then for large

enough k

|Gk| = gk!
|Aut(Gk)| .

Proof. Every ρ ∈ Sgk
defines an isomorphism ρ : Gk → ρ(Gk), where ρ(Gk) is a

graph obtained from Gk by renaming every edge coordinate wise by ρ.
Claim: For any ρ, π ∈ Sgk

:

ρ(Gk) = π(Gk) ⇐⇒ ∃τ ∈ Aut(Gk) : ρ ◦ τ = π.

Proof of claim. “⇒” Let ρ(Gk) = π(Gk), therefore τ := ρ−1 ◦ π ∈ Aut(Gk) and
ρ ◦ τ = ρ ◦ ρ−1 ◦ π = π.

“⇐” Let ρ ◦ τ = π. Then π(Gk) = ρ(τ(Gk)) = ρ(Gk).
Notice that the τ in the statement of the claim is uniquely determined by

ρ−1 ◦ π. Therefore if we defined a quotient set Sgk
/ ∼ with ρ ∼ π ⇐⇒ ρ(Gk) =

π(Gk), then |Sgk
/ ∼| = gk!

|Aut(Gk)| .
The Lemma follows from noticing that if we start with {Gk} and then we

build Gk by finding isomorphic graphs on the vertex set ⟨gk), we can only do so
by trying different permutation from Sgk

and these permutations find the same
graph if and only if they are in the same ∼-class. Therefore there is a bijection
between Sgk

/ ∼ and Gk.

So far we did not encounter an isomorphism closed wide sequence Gk and
a {E}-sentence ϕ for which we proved 0 < limFrud

Gn[[ϕ]] < 1. One can use
isomorphism closed categorical wide sequences to construct such a wide sequence.

Example 2.5.3. Let

nonEDGEk := {(⟨k), E); |E| = (k(k − 1)/2) − 1} (2.46)
Gk := EDGEk ∪ nonEDGEk, (2.47)

Then one can see that µ(limFrud
Gn[[(∃x)(∃y)E(x, y)]]) = 1

2 .

22

However, each EDGEk and nonEDGEk have complete theories. So natural
follow up to this question is whether the 0-1 law holds for all isomorphism closed
categorical wide sequences.

Theorem 2.2.3, Corollary 2.4.9 and Lemma 2.5.1 already give some conditions
on what any counterexample would have to satisfy. However, we did not find any
nor did we rule out its existence.

Question 2.5.4. Is there a isomorphism closed categorical wide sequence Gk and
an {E}-sentence ϕ such that

0 < lim
Frud

Gn[[ϕ]] < 1?

23

3. Dense case

3.1 Gk = SK1/2
k

Now we turn to analyze dense wide sequences in the second order case; that is
the case when we shall be interested in second order properties of the wide limit.
In this chapter we assume F = Frud and G = Grud. We will consider the problem
of finding a large clique in a graph.

Generally it is considered a computationally hard problem to find a large
clique in a graph. It is an NP-hard problem and thus it is conjectured that it
cannot be solved in polynomial time. We first turn to the following wide sequence.

Definition 3.1.1. Let

SK1/2
k = {(⟨k), E);E consists of exactly one ⌊k/2⌋-clique}.

Limiting inputs to SK1/2
k makes the problem less complex, because for a vertex

v to be a part of the biggest clique it is enough that it has nonzero degree.
Naturally we want to see whether there is a large clique in limG

F SK1/2
n , every

sample has a clique of size ⌊n/2⌋, but is there a subset of F witnessing that?
Here to measure the size of such a clique, the second order wide limit by itself

is not a sufficient object. Instead we need to turn to the arithmetical expansion
K(Gn, F,G) and ask whether we can find an injective function from some large
initial segment into a clique. This can be expressed as a second order sentence
with parameters from F . It is not hard to prove the following result which also
demonstrates how the sentence is formed. The value n1/t is understood to be
rounded down to the nearest nonstandard integer in the following theorem.

Theorem 3.1.2. For every t > N we have

K(SK1/2
k , F,G)[[E has a clique of size n1/t]] = 1.

Proof. (sketch) We need to analyze the value

[[(∃Λ)(∀u)(∀v)(((u ̸= v ≤ n1/t) → E(Λ(u),Λ(v))) ∧ (Λ : [n1/t] ↪→ M))]] (3.1)

which is more precisely written as⋁︂
Λ

⋀︂
u

⋀︂
v

[[(u ̸= v < n1/t) → (E(Λ(u),Λ(v)) ∧ Λ(u) ̸= Λ(v))]]. (3.2)

So we want to find some n1/t-tuple of trees computing some Λ, computed by some
(γ0, . . . , γn1/t−1), which is injective on ⟨n1/t) and its ⟨n1/t) range is a clique in E.

We define (γ0, . . . , γn1/t−1) as follows. The tree T0 computing γ0 inspects all
the edges (u, v) ∈ ⟨n1/t) × ⟨n1/t) in some specified order and outputs the first
vertex it finds with an edge and outputs 0 otherwise. The tree Ti computing
γi extends Ti−1 by not outputting the i-th vertex with the property but instead
continues inspecting and outputs the (i+ 1)-th vertex for which it finds an edge.
Also every such tree has depth at most n1/t · n1/t = n2/t = n1/(t/2).

One can check that the probability the tree γi does not find i vertices with an
edge is infinitesimal and therefore it always outputs a vertex in the clique of ω.

24

Intuitively this is because the expected ratio of the vertices in ⟨n1/t) which are
also in the clique is about one half. Moreover, every γi outputs the i-th element
element of the ordering and thus it is injective.

At first glance the lower bound n1/t for every nonstandard t may seem optimal
given the proof method we used, but there is a way to radically improve it. The
idea is to partition the set of vertices into many smaller ones and let γi search
only in the i-th set. First we need the following lemmas.

Lemma 3.1.3. Let S ⊆ ⟨n) such that |S| = m > N, then

st
(︃

Pr
ω∈Ω

[S contains no vertices in the clique of ω]
)︃

= 0.

Proof. There are
(︂

n−m

⌊n
2 ⌋
)︂

different graphs in SK1/2
n in which the clique does not

intersect S. We then bound the probability as(︂
n−m

⌊n
2 ⌋
)︂

(︂
n

⌊n
2 ⌋
)︂ =

(n−m)!(n−
⌊︂

n
2

⌋︂
)!

(n)!(n−
⌊︂

n
2

⌋︂
− c)!

(3.3)

=
m−1∏︂
i=0

(n− i−
⌊︂

n
2

⌋︂
)

(n− i) (3.4)

=
m−1∏︂
i=0

⎛⎝1 −

⌊︂
n
2

⌋︂
n− i

⎞⎠ (3.5)

≤

⎛⎝1 −

⌊︂
n
2

⌋︂
n

⎞⎠m

(3.6)

≤

⎛⎝1 −

⌊︂
n
2

⌋︂
n

⎞⎠n· m
n

(3.7)

≤ e−⌊n
2 ⌋m

n . (3.8)

But
⌊︂

n
2

⌋︂
m
n

is infinite therefore the bound is infinitesimal.

Lemma 3.1.4. Let a ∈ M, let v0, . . . , va−1 ∈ ⟨n) distinct vertices, then there
exist trees Tvi

such that

st
(︃

Pr
ω∈Ω

[∀i : (vi, Tvi
(ω)) ∈ Eω|∀i : vi is in the clique]

)︃
= 1.

Proof. The tree Tvi
inspects all the edges (vi, j) where j ranges over ⟨n1/t) for

some t > N and outputs j if (vi, j) ∈ Eω. By Lemma 3.1.3 we have that only an
infinitesimal number of graphs have their clique not intersect ⟨n1/t) so each Tvi

succeeds on all but an infinitesimally small portion of Ω. But if one Tvi
finds a

neighbour of vi, then all do, since nonzero degree vertices in every ω form a clique
and the same w ∈ ⟨n1/t) is a neighbour of all vis.

Lemma 3.1.5. Let a ∈ M and S0, . . . , Sa−1 ⊆ ⟨n) be sets of size m ∈ M then

Pr
ω∈Ω

[︄
a−1⋃︂
i=0

[Si contains no vertices in the clique of ω]
]︄

≤ a · e−⌊n
2 ⌋m

n .

25

Proof. Follows from the proof of Lemma 3.1.3 and union bound.

Now we are ready to improve on Theorem 3.1.2.

Theorem 3.1.6. Let m = 2 lnn. Then

K(SK1/2
k , F,G)[[E has a clique of size ⌊n/m⌋]] = 1.

Proof. Partition a subset of ⟨n) to sets S0, . . . , S⌊n/m⌋−1 each of size at least m.
Specifically if m divides n then we partition the whole ⟨n).

By Lemma 3.1.5 we have that with probability that we do not sample ω which
have the clique intersect all Sis⌊︃

n

m

⌋︃
· e−⌊n

2 ⌋m
n = eln⌊ n

m⌋−⌊n
2 ⌋m

n
, (3.9)

we can bound the exponent as

ln
⌊︃
n

m

⌋︃
−
⌊︃
n

2

⌋︃
m

n
≤ ln n

m
− n

2 · m
n

+ m

n
(3.10)

≤ lnn− lnm− m

2 + m

n
1 (3.11)

≤ lnn− ln lnn− lnn+ 2 lnn
n

(3.12)

≤ − ln lnn+ 2 lnn
n

(3.13)

which is negative and infinite, because ln x
x

x→∞→ 0 as and therefore (3.9) is in-
finitesimal.

So with probability infinitesimally close to 1 we have in each Si a vertex vi

which is also a part of the clique. By Lemma 3.1.4 we have that there exists a
tree verifying whether a given vertex is in the clique and since m ≤ n1/t for some
t we can concatenate the trees to get a tree TSi

which finds in Si an element of
the clique with probability infinitesimally close to 1.

Finally we can have a function Λ ∈ G computed by (γ0, . . . , γ⌊n/m⌋−1) by
letting γi be computed by TSi

we have already verified [[Λ is a clique]] = 1.
Because TSi

(ω) ∈ Si when TSi
succeeds, and Si are disjoint we have

[[Λ : ⟨⌊n/m⌋) ↪→ M]] = 1.

Which proves the theorem.

One can also check that for SK1/l
k , the graphs whose edges are exactly one ⌊k/l⌋

clique for some l ∈ N, the wide limit has a clique of size ⌊n/m⌋ for m = l · ln(m)
by the same technique.

Even though the size of the clique has radically increased, we still did not
find a clique in E of size n/2. One can verify that with the method provided one
cannot obtain such a clique because the probability that any of ⌊n/2⌋ two-element
sets does not intersect the clique is too large.

Question 3.1.7. Is ⌊n/(2 lnn)⌋ the clique number in the Boolean valued graph
limGrud

Frud
SK1/2

n , measured in K(SK1/2
k , F,G)?

26

3.2 Gk = CK1/2
k

Now let us mention the more complex case of the wide sequence CK1/2
k

CK1/2
k = {(⟨k), E);E contains a ⌊k/2⌋ clique.}

We are still guaranteed that every ω contains a large clique, but there is no
easy way to check whether a given vertex v is contained in the large clique. To
prove the following theorem we can use that CK1/2

k is isomorphism closed to apply
the analysis of SK1/2

k at least for the case of cliques of standard size.

Theorem 3.2.1. Let c ∈ N then

K(CK1/2
k , F,G)[[E has a clique of size c]] > 0.

Proof. Consider the set

G+
n = {(G,U);G ∈ Gn and U ⊆ ⟨n) is a ⌊n/2⌋ clique in G }

and projections

π1 : G+
n → Gn, (G,U) ↦→ G

π2 : G+
n → P(⟨n)), (G,U) ↦→ U.

From the fact that CK1/2
k is isomorphism closed, we have that

⃓⃓⃓
π−1

2 [U1]
⃓⃓⃓

=⃓⃓⃓
π−1

2 [U2]
⃓⃓⃓

for any U1, U2 ∈ P(⟨n)) of size ⌊n/2⌋. We will set ν :=
⃓⃓⃓
π−1

2 [U]
⃓⃓⃓

for
some clique U of size ⌊n/2⌋ so we have ν |Gn| = G+

n . Let ϕc(x) be a {E}-sentence
that is satisfied iff x is a c sized clique. Denote an event in the sample space Gn

Aa := {ω ∈ Gn;ω |= ϕc(a)}.

and in the sample space G+
n

A+
a := {(G,U) ∈ G+

n ; a is a subclique of U}.

Notice that if (G,U) ∈ A+
a then G ∈ Aa which implies (by another argument

with projections) that
ν · |Aa| ≥

⃓⃓⃓
A+

a

⃓⃓⃓
so in conjunction with Example 2.3.3 we have

Pr
G∈Gn

[Aa] ≥

⃓⃓⃓
A+

a

⃓⃓⃓
|G+

n |
= Pr

G∈SK1/2
k

[a is in the clique]

> (1/2)c

and since c is constant we have PrG∈Gn [Aa] > 0.

27

Of course it remains to show that by using non-constant trees we can actually
increase the value all the way to 1, we did not get to prove that.

Finally one can return to cliques of nonstandard size and intuitively one ex-
pects this to be hard. For a clique of size greater than n1/t for any t > N one has
to check more than n1/t edges to even know whether a given set is a clique and
the counting argument used in the previous theorem implies that just guessing
the clique of nonstandard size is not enough. We therefore present the following
conjecture.

Conjecture 3.2.2. Let m ∈ M such that m ≤ c lnn for any c ∈ N, then

K(CK1/2
k , F,G)[[E has a clique of size ⌊n/m⌋]] = 0.

28

4. Sparse case and TFNP

4.1 Gk = ∗PATHk

Now we turn our attention to a wide sequence which is made up of ‘the hardest
instances in LEAF’. That is, if we are given a degree 1 vertex labeled 0 and search
for another degree 1 vertex, it is the hardest if there are only two degree 1 vertices
and the path from 0 to the solution is as long as possible.

Definition 4.1.1. We define ∗PATHk (the pointed paths on k vertices) as the
set of all (undirected) graphs ω on the vertex set ⟨k), where ω is isomorphic to
the path on k vertices and degG(0) = 1.

One can also see that it is not fruitful to analyze the Frud limit, because there
are only k−1 edges in each ω ∈ ∗PATHk and therefore, by an analogous argument
to the proof of Theorem 2.2.3, we have that limFrud

∗PATHk[[(∃x)(∃y)E(x, y)]] =
0. Moreover in the type 2 version of the problem the graph is presented by an
oracle which gives us the neighbour set for each vertex, so we define a new family
F as follows.

Definition 4.1.2. After we fix n, we define Fnbtree as the set of all functions
computed by some some labeled tree with the following shape:

• Each non-leaf node is labeled by some w ∈ ⟨n).

• For each {u, v} ⊆ ⟨n) and a node w there is an outgoing edge from w labeled
{u, v}.

• Each leaf is labeled by some m ∈ ⟨gn).

• The depth of the tree is at most g1/t
n for some t > N.

Computation of such a tree on an undirected graph ω goes as follows. We
interpret the non-leaf nodes as questions ”what is the neighbour set of w?” and the
edges as answers from our graph ω, and thus we follow a path in the computation
tree determined by ω until we find a leaf, in which case the computation returns
the label of the leaf. We will denote the set of all such trees as Tnbtree.

We now shift our focus to analyzing the ability of trees from Fnbtree to find
the non-zero degree 1 vertex in G ∈ ∗PATHn. We say that a tree T ∈ Tnbtree fails
at a graph ω if T (ω) is not a non-zero vertex of degree one in ω.

Definition 4.1.3. Let m ≤ n and v ∈ ⟨m) and U ⊆ ⟨m) with |U | ≤ 2, then we
define

Gv?=U
m := {G ∈ Gm;NG(v) = U},

where NG is the neighbour-set function of G.

29

Lemma 4.1.4. There are bijections for all nonstandard m ≤ n and distinct
u, v, w ∈ ⟨m) \ {0}:

Gv?={u,w}
m

∼= Gm−2 × [2] (4.1)
Gv?={u,0}

m
∼= Gm−2 (4.2)

G0?={u}
m

∼= Gm−1. (4.3)

Proof. (sketch) For (4.1) we can just contract all of u,v,w into one vertex and
relabel the rest of the graph, leaving the orientation as one remaining bit of
information. This is obviously reversible and a bijection.

For (4.2) we can do the same, but the orientation is given by 0.

Definition 4.1.5. Let m ≤ n. Let v, u, w ∈ ⟨m) such that v ̸= u, v ̸= w and let
T ∈ Tnbtree with root labeled by v. By Tv?={u,w} we denote the induced subtree
of T whose root is the node connected to v by the edge {u,w} and the rest of its
nodes are those accessible from this root by a (possibly nonstandard) path in the
original tree T .

Lemma 4.1.6. Let T ∈ Tnbtree, with root labeled v ∈ [m] \ 0, we have for each
Tv?={u,w} a tree T̃ v?={u,w} of the same depth, such that

Pr
ω∈Gm

[Tv?={u,w} fails|v? = {u,w}] = Pr
ω∈Gm−2

[T̃ v?={u,w}]. (4.4)

For a tree T with the root labeled 0, we have a tree T̃ 0?={u,w} of the same depth,
such that

Pr
ω∈Gm

[T0?={u} fails|v? = {u}] = Pr
ω∈Gm−1

[T̃ 0?={u}]. (4.5)

Proof. (sketch) To construct the tree, we just replace all vertices in labels of
Tv?={u,w} by their renumbering from the bijection in (4.1).

One can then check that the trees Tv?={u,w} and T̃ v?={u,w} are isomorphic in
a sense that their computation on a graph ω and ω̃ respectively, ω̃ being the
corresponding (m − 2)-vertex graph, agree with the structure of the path and
that correctness of leaves is preserved under the renumbering. Essentially they
emulate the same computation but on a smaller graph.

Lemma 4.1.7. For all nonstandard t > N,m ≥ n− 2n1/t and k ∈ ⟨n1/t + 1) for
all trees T ∈ Tnbtree of depth k we have

Pr
ω∈Gm

[T fails] ≥
k∏︂

i=0

(︃
1 − 2

m− 2i− 2

)︃
.

Proof. We proceed by induction on k.
k = 0 : We have that the probability of success of a straight guess is at most

1
m−1 . Therefore

Pr
ω∈Gm

[T fails] ≥
(︃

1 − 1
m− 1

)︃
≥
(︃

1 − 2
m− 2

)︃
. (4.6)

30

(k − 1) ⇒ k : First we assume that the root is labeled 0. Then we have

Pr
ω∈Gm

[T fails] =
∑︂

u∈V \{0}
Pr

ω∈Gm

[E(0, u)] Pr
ω∈Gm

[T0?={u} fails|E(0, u)] (4.7)

≥ Pr
ω∈Gm

[T0?={u} fails|E(0, u)] (4.8)

= Pr
ω∈Gm−1

[T̃ 0?={u} fails] (4.9)

≥
k−1∏︂
i=0

(︃
1 − 2

m− 2i− 2

)︃
(4.10)

≥
k∏︂

i=0

(︃
1 − 2

m− 2i− 2

)︃
. (4.11)

Now we assume that the root is labeled v ̸= 0. First we notice that

Pr
ω∈Gm

[E(v, 0)] = 1
m− 1 (4.12)

Pr
ω∈Gm

[N(V) = 1] = 1
m− 1 (4.13)

Pr
ω∈Gm

[|N(V) \ {0}| = 2] = 1 − 2
m− 1 , (4.14)

the first two probabilities are obviously 1
m−1 because they correspond to v being

positioned on one of the ends of the non-zero segment which has length m − 1.
The event in (4.14) is the complement of the union of the first two events, which
have empty intersection, giving us that stated probability.

Then we have for p := Prω∈Gm [T fails]

p = Pr
ω∈Gm

[E(v, 0)] Pr
ω∈Gm

[T fails|E(v, 0)] (4.15)

+ Pr
ω∈Gm

[|N(v) \ {0}| = 2] Pr
ω∈Gm

[T fails| |N(v) \ {0}| = 2] (4.16)

+ Pr
ω∈Gm

[|N(v)| = 1] Pr
ω∈Gm

[T fails| |N(v)| = 1] (4.17)

≥ Pr
ω∈Gm

[|N(v) \ {0}| = 2] Pr
ω∈Gm

[T fails| |N(v) \ {0}| = 2] (4.18)

≥ (1 − 2
m− 1) (4.19)∑︂

u,w∈V \{0}
u̸=w

Pr
ω∈Gm

[v? = {u,w}] Pr
ω∈Gm

[Tv?={u,w} fails|v? = {u,w}] (4.20)

≥ (1 − 2
m− 1) Pr

ω∈Gm

[Tv?={u0,w0} fails|v? = {u0, w0}] (4.21)

≥ (1 − 2
m− 1) Pr

ω∈Gm−2
[T̃ v?={u0,w0} fails] (4.22)

≥ (1 − 2
m− 1)

k−1∏︂
i=0

(1 − 2
m− 2i− 4) (4.23)

31

≥ (1 − 2
m− 2)

k∏︂
i=1

(1 − 2
m− 2i− 2) (4.24)

≥
k∏︂

i=0
(1 − 2

m− 2i− 2). (4.25)

where in (4.21) we choose u0, w0 with the lowest value of

Pr
ω∈Gm

[Tv?={u0,w0}|v? = {u0, w0}],

the bound follows the fact that all Prω∈Gm [v? = {u,w}] are the same for distinct
non-zero u,w. In (4.22) we use the Lemma 4.1.6 and in (4.23) we use the induction
hypothesis.

Corollary 4.1.8. For a tree T ∈ Tnbtree and c ∈ N we have that

st
(︃

Pr
ω∈Gn−c

[T fails]
)︃

= 1.

Proof. Since T has depth at most n1/t for some t > N we by the previous lemma
that

Pr
ω∈Gn−c

[T fails] ≥
n1/t∏︂
i=0

(︃
1 − 2

n− 2i− c− 2

)︃
(4.26)

≥
(︄

1 − 2(n1/t + 1)
n− 2n1/t − c− 2

)︄
(4.27)

and the standard part of the lower bound is 1.

Finally, we can prove the following theorem.

Theorem 4.1.9.

lim
Fnbtree

∗PATHn[[(∃v)(∃u)(∀w)((v ̸= 0) ∧ (E(v, u)) ∧ (E(v, w) → u = w))]] = 0

Proof. Expanding the value of the formula in the statement we get⋁︂
α

⋁︂
β

⋀︂
γ

[[(α ̸= 0) ∧ (E(α, β)) ∧ (E(α, γ) → β = γ)]],

to prove it evaluates to 0 we need to find for every α, β some γ such that

[[(α ̸= 0) ∧ (E(α, β)) ∧ (E(α, γ) → β = γ)]] = 0.

For any α, β we define

γ(ω) :=
⎧⎨⎩v N(α(ω)) = {v}
w w ∈ N(α(ω)) \ {β(ω)},

such a function can be computed by a tree in Fnbtree which we can construct by
concatenation of trees computing α and β.

32

Let T be the tree computing α. Now we proceed by contradiction, let

ϵ := µ([[(α ̸= 0) ∧ (E(α, β)) ∧ (E(α, γ) → β = γ)]]) > 0,

by definition this means that

ϵ = st
(︃

Pr
ω∈Gn

[(α ̸= 0) ∧ (E(α, β)) ∧ (E(α, γ) → β = γ)]
)︃
> 0.

But by definition of γ and Corollary 4.1.8 we have

0 < ϵ

= st
(︃

Pr
ω∈Gn

[(α ̸= 0) ∧ (E(α, β)) ∧ (E(α, γ) → β = γ)]
)︃

≤ st
(︃

Pr
ω∈Gn

[(α ̸= 0) ∧ (E(α, β)) ∧ |N(α)| = 1]
)︃

≤ st
(︃

Pr
ω∈Gn

[(α ̸= 0) ∧ |N(α)| = 1]
)︃

= st
(︃

Pr
ω∈Gn

[T does not fail]
)︃

= 0.

A contradiction.

Corollary 4.1.10. Th(limFnbtree
∗PATHn) is complete.

Proof. By applying Theorem 2.3.4 we have that the sentences ¬Ck stating that
there are not any cycles of length k ∈ N are valid all in limFnbtree

∗PATHn, the
sentence D1,2

1,rest stating that there is exactly one vertex of degree 1 and all other
vertices have degree 2 is valid by Theorem 4.1.9.

Let T = {¬Ck, k ∈ N} ∪ {D1,2
1,rest}, and let A1,A2 |= T , then we can see by

the handshaking lemma that M1 and M2 are both infinite. And we can see that
they can be decomposed into one path starting at 0 with no end, and then more
infinite paths which have the order type of Z. The duplicator of Ehrenfeucht-
Fräıssé game has a winning strategy by responding to any element on the order
type Z with a far enough element on the path of the order N.

4.2 Gk = ∗PATH≤
k

So far we have proved that the hardest instances of LEAF do not have a solu-
tion in the Fnbtree limit and that they satisfy the 0-1 law. We can generalize this
result to a larger class of instances. Let us state that while we did not explicitly
define computation of trees in Tnbtree on graphs with vertices of zero degree we
can for example let the computation proceed as follows without changing the
definition of the trees. If we are at a node labeled v and there are no neighbours
of v present in ω we continue on the path by taking the edge labeled {v}.

Definition 4.2.1. We define ∗PATH≤
k (the pointed paths on k vertices of length

at most k) as the set of all (undirected) graphs ω on the vertex set ⟨k), where
ω has a subgraph isomorphic to the path on l ≤ k vertices, degG(0) = 1 and no
other edges.

33

Immediately we have that ∗PATHk is a portion of ∗PATH≤
k , we can prove

even more.
Definition 4.2.2. We define ∗PATHl

k as the portion of ∗PATH≤
k where the path

subgraph is of length exactly l.
Lemma 4.2.3. Let c ∈ N, then

lim
k→∞

⃓⃓⃓
∗PATHk−c

k

⃓⃓⃓
⃓⃓⃓
∗PATH≤

k

⃓⃓⃓ = 1
ec!

So ∗PATHk−c
k is a large portion of ∗PATH≤

k and specially ∗PATHk ≤l ∗PATH≤
k .

Proof. By direct computation we have that the fraction
⃓⃓⃓
∗PATHk−c

k

⃓⃓⃓
/
⃓⃓⃓
∗PATH≤

k

⃓⃓⃓
is

(k − 1)!/(c!)∑︁k−1
i=1

∏︁i−1
j=0(k − j − 1)

= (k − 1!)
c!∑︁k−1

i=1
(k−1)!

(k−i−1)!

(4.28)

= (k − 1!)
c!∑︁k−c−1

i=1
(k−1)!

(k−i−1)!

(4.29)

= 1
c!∑︁k−1

i=1
1

(k−i−1)!
(4.30)

= 1
c!∑︁k−2

i=0
1
i!
, (4.31)

and the denominator tends to ec! as k → ∞.
Lemma 4.2.4. Let T ∈ Tnbtree be a tree, then

st
(︄

Pr
ω∈∗PATHn−c

n

[T fails]
)︄

= 1.

Proof. (sketch) By an analogous argument to how we proved Lemma 4.1.7 we get
that

Pr
ω∈∗PATHn−c

n

[T fails] ≥
n1/t∏︂
i=0

(︄
1 − (c+ 2)

n− 2i− 2

)︄
,

standard part of which is also 1. The constant c appears because there is a (1− c
m

)
chance of finding a degree 0 in the induction step.
Lemma 4.2.5. It holds that

lim
c→∞

lim
k→∞

⃓⃓⃓⋃︁c
i=0 ∗PATHk−c

k

⃓⃓⃓
⃓⃓⃓
∗PATH≤

k

⃓⃓⃓ = 1.

Proof. ∗PATHk−i
k are disjoint for different choices of i, so by direct computation

we have that the fraction
⃓⃓⃓⋃︁c

i=0 ∗PATHk−c
k

⃓⃓⃓
/
⃓⃓⃓
∗PATH≤

k

⃓⃓⃓
is

c∑︂
i=0

⃓⃓⃓
∗PATHk−c

k

⃓⃓⃓
⃓⃓⃓
∗PATH≤

k

⃓⃓⃓ =
c∑︂

i=0

1
i!∑︁k−2

j=0
1
j!

(4.32)

=
⎛⎝ 1∑︁k−2

j=0
1
j!

⎞⎠ c∑︂
i=0

1
i! , (4.33)

34

which tends to
1
e

c∑︂
i=0

1
i!

as k → ∞; which itself tends to 1 as c → ∞.

Theorem 4.2.6.

lim
Fnbtree

∗PATH≤
n [[(∃v)(∃u)(∀w)((v ̸= 0) ∧ (E(v, u)) ∧ (E(v, w) → u = w))]] = 0

Proof. (sketch) The probability that a tree fails on any of ∗PATHn−i
n is infinites-

imal due to Lemma 4.2.4. This is true for any of their finite unions so for⋃︁c
i=0 ∗PATHn−i

n in particular. In Lemma 4.2.5 we proved that ⋃︁c
i=0 ∗PATHk−i

k

is a large portion of ∗PATH≤
k with ratio tending to 1 as c → ∞. If the probabil-

ity that a tree fails in ∗PATH≤
n is not infinitesimally close to 1 then there would

have to be a c large enough, such that the tree succeeds on ⋃︁c
i=0 ∗PATHk−i

k with
probability which is not infinitesimal.

So we have for a larger set of instances that their wide limit has no solution
relative to Fnbtree. Using analogous arguments, we can further get the following
corollary.

Corollary 4.2.7.

Th
(︃

lim
Fnbtree

∗PATH≤
n

)︃
= Th

(︃
lim

Fnbtree

∗PATHn

)︃
Proof. (sketch) We can prove that any tree T ∈ Tnbtree fails to find a vertex of
degree 0 in ∗PATH≤

k with probability infinitesimally close to 1 analogously to how
we proved that it fails to find a nonzero vertex of degree 1. This covers the only
first order property whose validity is different between the graphs in the wide
sequences in question.

4.3 Gk = ∗DPATHk

As ∗PATHk was the wide sequence consisting of the hardest instances of LEAF
which is the complete problem for PPA, we define ∗DPATHk analogously but
in the directed case so it consists of the hardest instances of SOURCE.OR.SINK
which is the complete problem for PPAD.

Definition 4.3.1. We define ∗DPATHk (the pointed directed paths on k vertices)
as the set of all directed graphs G on the vertex set ⟨k), where G is isomorphic
to the path on k vertices such that deg+

G(0) = 0 and deg−
G(0) = 1.

But now, since we are working with directed graphs which have two types of
neighbour sets N+

G (v) = {w ∈ VG;EG(w, v)} and N−
G (v) = {w ∈ VG;EG(v, w)},

we would like to define a family Fdtree of those trees which can inspect either of
the neighbour sets.

Definition 4.3.2. After we fix n, we define Fdtree as the set of all functions
computed by some labeled tree with the following shape:

35

• Each non-leaf node is labeled by some v ∈ ⟨n) and a symbol ◦ ∈ {+,−}.

• For each v ∈ ⟨n) and a node w there is an outgoing edge from w labeled
{v} and also an outgoing edge labeled ∅.

• Each leaf is labeled by some m ∈ ⟨gn).

• The depth of the tree is at most g1/t
n for some t > N.

Computation of such a tree on an undirected graph G goes as follows. We
interpret the non-leaf nodes as questions ”what is N◦

G(v)?” and the edges as
answers from our graph G, and thus we follow a path determined by G until we
find a leaf, in which case the computation returns the label of the leaf.

We denote the set of such trees Tdtree.

We will not cover details, but analysis of these trees in Tdtree finding the
nonzero sink is more or less the same as the Fnbtree case for ∗PATHk, so we have
the following.

Theorem 4.3.3.

lim
Fdtree

∗DPATHn[[(∃v)(∀w)((v ̸= 0) ∧ ¬E(v, w))]] = 0

Corollary 4.3.4. Th(limFdtree
∗DPATHn) is complete.

In the type 2 complexity theory of TFNP we know that there is no (ora-
cle polynomial time) reduction from LEAF to SOURCE.OR.SINK. An impor-
tant question arises – is this reflected in the second order arithmetical expansion
K(∗PATHn, Fnbtree, Gnbtree)? Where Gnbtree is defined analogously as Grud but
with the components in the tuple from Fnbtree. More specifically we ask the
following.

Question 4.3.5. Consider an instance of SOURCE.OR.SINK defined by some
Θ ∈ Gnbtree. Let ϕΘ be the first order statement which says ‘Θ has a solution’.
Are all ϕΘ valid in K(∗PATHn, Fnbtree, Gnbtree)?

36

Concluding remarks
In this thesis we built a basic theory around wide limits of graphs, proved sev-

eral general theorems and described the theories of the wide limits limFrud
EDGEn,

limFrud
ALLn, limFnbtree

∗PATHn, limFnbtree
∗PATH≤

n and limFdtree
∗DPATHn and

proved that they are complete (Corollary 2.3.6, Theorem 2.4.5 and corollaries
4.1.10, 4.2.7 and 4.3.4). We also proved that limGrud

Frud
SK1/2

n contains a clique of
size ⌊n/(2 lnn)⌋ (Theorem 3.1.6) and also that nonexistence of finite cliques is
not valid in the more complex wide limit limGrud

Frud
CK1/2

n (Theorem 3.2.1).
During the development we planned to analyze wide limits the family FP V of

polynomial functions. In [Kra11] it was proven that forcing with FP V results in
quantifier elimination which implies that if an {E}-sentence holds in all graphs
in Gk for k large enough, it has to hold in the limit. However the second order
limit can still provide some information about the ability of polynomial time
functions to search interesting subsets of ⟨gk). In the end we did not get any
new results about it. We want to mention that even though it would seem that
the properties of FP V limits directly correspond to the P vs. NP question it
seems that something a bit different happens. The way the limit objects are
defined, it is not enough that some polynomial time algorithm does not exist to
see that we cannot witness some property in the limit, but it is important that
no polynomial algorithm succeeds on any standard fraction of inputs. This more
closely resembles the generic case polynomial time (see [GMMU07]).

Another natural question would be to consider structures over general lan-
guages than just the language of graphs, and allow trees to query atomic sen-
tences. Other combinatorial structures like hypergraphs and tournaments could
be considered. Furthermore, wide limits of finite universal algebras could be con-
sidered which could require a whole new theory. This all leads to the fact that
generalized spectra, the elementary classes of the Σ1

1 logic (see [Fag74]), with
restricted vertex sets can be stratified into a wide sequence. There could be a
connection to the theory of spectra of sentences.

Considering structures over arbitrary vocabularies opens the door to connect-
ing the concept of a wide limit with the complexity of the Constraint Satisfaction
Problem. Solutions to CSP(A) form a wide sequence and depending on the
tractability of the class we could expect different behaviour from limF CSP(A)n.

Finally, important direction in studying wide sequences would be to charac-
terize some limF Gn without the direct construction and therefore to prove upper
and lower bounds for search problems in F .

37

Bibliography
[BCE+95] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and

Toniann Pitassi. The relative complexity of np search problems.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on
Theory of Computing, STOC ’95, page 303–314, New York, NY,
USA, 1995. Association for Computing Machinery.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time
recognizable sets. In Richard Karp, editor, Complexity of computa-
tion, volume 7, page 2741. SIAM-ASM Proceedings, 1974.

[Fag76] Ronald Fagin. Probabilities on finite models. The Journal of Sym-
bolic Logic, 41(1):50–58, 1976.

[Gai64] Haim Gaifman. Concerning measures in first order calculi. Israel
journal of mathematics, 2(1):1–18, 1964.

[GMMU07] Robert Gilman, Alexei G Miasnikov, Alexey D Myasnikov, and
Alexander Ushakov. Report on generic case complexity. arXiv
preprint arXiv:0707.1364, 2007.

[Gol14] Isaac Goldbring. Lecture notes on nonstandard analysis. Ucla sum-
mer school in logic, 2014.

[GP18] Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified
complexity theory of total functions. J. Comput. System Sci., 94:167–
192, 2018.

[Kay91] Richard Kaye. Models of Peano arithmetic, volume 15 of Oxford
Logic Guides. The Clarendon Press, Oxford University Press, New
York, 1991. Oxford Science Publications.

[Kra11] Jan Kraj́ıček. Forcing with random variables and proof complexity,
volume 382. Cambridge University Press, 2011.

[LS06] László Lovász and Balázs Szegedy. Limits of dense graph sequences.
Journal of Combinatorial Theory, Series B, 96(6):933–957, 2006.

[MP91] Nimrod Megiddo and Christos H Papadimitriou. On total functions,
existence theorems and computational complexity. Theoretical Com-
puter Science, 81(2):317–324, 1991.

[NDM13] Jaroslav Nešetřil and Patrice Ossona De Mendez. A model theory
approach to structural limits. arXiv preprint arXiv:1303.2865, 2013.

[Raz07] Alexander A. Razborov. Flag algebras. The Journal of Symbolic
Logic, 72(4):1239–1282, 2007.

38

	Introduction
	Preliminaries
	The ambient model M
	Nonstandard analysis
	Total NP search problems and polynomial oracle time

	Forcing with random variables and the wide limit
	Setup
	The first order wide limit
	The second order wide limit
	The vertex family Frud and Grud
	Different choices of n
	Theories of wide limits

	General theory
	Gk=EDGEk
	Sparse Gk
	Dense Gk
	Gk=ALLk
	Isomorphism closed categorical Gk

	Dense case
	Gk=SKk1/2
	Gk=CKk1/2

	Sparse case and TFNP
	Gk=*PATHk
	Gk=*PATHlk
	Gk=*DPATHk

	Concluding remarks
	Bibliography

