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Introduction
One of the biggest theoretical advancements of the previous century is the notion
of computability. Trying to understand what does it mean for a problem to be
algorithmically solvable, mathematicians developed concepts like Turing machine
(Turing [1936]) and λ-calculus (Church [1932]). According to the now famous
Church-Turing thesis (Kleene [1952]), these mathematical definitions fully grasp
our intuitive understanding of an algorithm. The formal capture of this intu-
ition provided mathematicians a way to prove many deep and surprising results
concerning computability, e.g. Turing’s theorem on undecidability of the halt-
ing problem (Turing [1936]), Church’s theorem on unsolvability of the Entschei-
dungsproblem (Church [1936]). Early results from the theory of computations also
provided an alternative way to prove the famous Gödel’s incompleteness theorems
(Kleene [1943]). Then, following theoretical advances, computers were invented.

Further into the twentieth century it started to become apparent that com-
putable does not mean feasible. If the problem can be algorithmically solved, but
the algorithm must run for a time longer than the age of our universe, then it
is clear that we can not say such a problem is solvable feasibly. Restrictions on
time and space started to play a major role both theoretically and practically.
These reflections resulted in the development of the polynomial-time computabil-
ity, which is now being a universally accepted synonym (with variants allowing
randomization) of the feasible computation (Cobham [1965]).

Throughout the dramatic advances of computer science, mathematical logic
has always served as a main theoretical framework and a tool to achieve these
results. Of particular interest are relations between computability classes and
arithmetic formulas. For example, Post’s theorem established a correspondence
between arithmetic hierarchy and Turing degrees (Rogers [1967]).

The main object of study of this thesis is the bounded arithmetic firstly de-
fined by Buss [1985]. It was developed as a possible candidate for being the
formalization of a feasible reasoning (see Kraj́ıček [1995] for the history of these
developments). As we will explain below, there are various connections between
weak fragments of bounded arithmetic and computational classes with some re-
strictions on time and space. Our work focuses on mutual unprovability of various
pigeonhole principles over bounded arithmetic. The reasons to study provability
of combinatorial statements inside the weak fragments are plenty. For exam-
ple, such proofs can be translated into short propositional proofs in some proofs
systems (Kraj́ıček [2019][10.5.1]), or may provide efficient witnesses to certain
algorithmical problems (Kraj́ıček [1995][7.2.3]). Although interesting, the formal
treatment of this connections is beyond the scope of the thesis.

We assume the reader has background in mathematical logic. We also assume
some basic understanding of complexity theory, although we will not utilize any
deep results, besides some basic definitions.

Section 1.1 formulates various arithmetic theories and mentions their connec-
tion to complexity theory. This area contains many deep and profound results,
although none of them are proved in this thesis. We also spend a little time
describing coding of sequences in the arithmetic theories.

Section 1.2 introduces the reader to the pigeonhole principle. The main the-
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orem of the thesis is also stated in this section.
Section 2.1 is devoted to the proof of the theorem of Paris and Wilkie [1985],

which serves as a first step towards the main goal of the thesis.
Section 2.2 studies forcing. We prove some basic properties and, using this

new language, give a new proof of the theorem from the previous section. All
the statements of this chapter are already known, although we still provide all
the proofs, since it is important to understand the technicalities for the main
theorem.

Section 2.3 contains the proof of an easier variant of the main theorem. We
utilize forcing together with certain combinatorial arguments to show unprov-
ability of the bijective pigeonhole principle in the weak arithmetic theory I∃1
augmented by instances of the weak pigeonhol principle for open formulas.

Section 3.1 provides a proof of a modification of the theorem of Paris and
Wilkie [1985] for the new arithmetic language and corresponding theory (Kraj́ıček
[1995][12.7]).

Section 3.2 provides a proof for the main theorem. We also show one interest-
ing corollary, which provides an answer to a simplified version of an open problem
posed by Ajtai [1990][page 3].
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1. Preliminaries

1.1 Languages and theories
The current chapter closely follows the first parts of the book of Kraj́ıček [1995].
We first formulate the main languages and theories which describe arithmetic.

Definition 1.1.1. The language of Peano arithmetic (denoted by LP A) consists
of constant 0, unary symbol S (successor function), binary symbols + and · and
binary relation ≤.

One of the most important theories associated with this language is Robinson
arithmetic (denoted by Q) which consists of the following axioms (free variables
are assumed to be universally quantified):

• S(x) ̸= 0,

• (S(x) = S(y)) → (x = y),

• (x ̸= 0) → ∃y(x = S(y)),

• x+ 0 = x,

• x+ S(y) = S(x+ y),

• x · 0 = 0,

• x · S(y) = (x · y) + x,

• (x ≤ y) ↔ ∃z(x+ z = y).

Notice that N with the standard interpretation of the symbols of LP A is a
model of Q. Also notice that the symbol ≤ can be omitted, since the last axiom
defines the meaning of this predicate.

It can be shown that Q is Σ1-complete, i.e. Q can prove all true arithmetic
sentences of the form ∃xϕ(x), where ϕ(x) is bounded, meaning all the quantifiers
appearing in ϕ(x) are of the form ∃y ≤ t(x) or ∀y ≤ s(x). This is then comple-
mented by showing that all recursively enumerable relations are Σ1-representable
in Q. This can further be used to show that Q is strong enough to be able to code
sequences and so to talk about syntactic concepts. This makes Q the base theory
for modern formulations of Gödel’s incompletness theorems (Kleene [1943]).

On the other hand, Q is pretty weak. For example, it is not able to prove
that the operation + is commutative. It is often more convenient to extend Q to
a stronger theory PA− and consider it as the base theory for the other arithmetic
theories (we also extend our language by adding binary predicate < and constant
1 and call this new language LP A as well).

Definition 1.1.2. The theory PA− is an extension of Q by the following axioms
(we omit discussion whether some of these new axioms are actually redundant):

• (x < y) ↔ ((x ≤ y) ∧ (x ̸= y)),
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• S(x) = x+ 1,

• (x+ y) + z = x+ (y + z),

• x+ y = y + x,

• (0 < x) → (1 ≤ x),

• (x ≤ y) → ((x+ z) ≤ (y + z)),

• x · (y · z) = (x · y) · z,

• x · y = y · x,

• ((x ≤ y) ∧ (z ̸= 0)) → ((x · z) ≤ (y · z)),

• x · (y + z) = (x · y) + (x · z).

The theory PA− corresponds to the theory of the positive part of dicreetly-ordered
rings (Kaye [1991][2.1]).

Peano arithmetic (denoted PA) is the theory in language LP A which extends
PA− by the induction axioms of the form:

∀x ((ϕ(0, x) ∧ ∀y (ϕ(y, x) → ϕ(S(y), x))) → ∀y (ϕ(y, x)))

for all LP A-formulas ϕ(y, x).

It is easy to see that N is a model of PA. However, there are other (some
also countable) models of PA which are not isomorphic to N. They are called
non-standard models of arithmetic (Kaye [1991][1]).

Such models have been extensively studied and we will be using facts about
them throughout the whole thesis. In particular, every non-standard model N∗

of PA contains a cut I such that it is isomoprhic to N. By cut we mean that I
is closed under S and for any element m ∈ I and n ∈ N∗, such that n ≤ m, it
holds that n is also contained in I. So we can always assume that N ⊆ N∗.

In the thesis we will be mostly interested in weak subtheories of PA. To
define such theories we first need to show important classes and hierarchies of
arithmetic formulas.

Definition 1.1.3. A formula ϕ(x) is said to be contained in Σ0 if it is bounded.
Class Σ0 is also denoted Π0 and ∆0.

A formula ϕ(x) is said to be contained in Σn+1 if it is equivalent (in predicate
calculus) to a formula ∃y ψ(y, x), where ψ(y, x) is in Πn.

A formula ϕ(x) is said to be contained in Πn+1 if it is equivalent (in predicate
calculus) to the a formula ∀y ψ(y, x), where ψ(y, x) is in Σn.

A formula ϕ(x) is said to be contained in ∆n if it is contained in Σn and Πn.
The class ∃1 is defined as the subclass of Σ1 containing formulas which are

equivalent to formulas with no bounded quantifiers, i.e. formulas of the form
∃y ψ(y, x), where ψ(y, x) is a quantifier-free formula.
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It is easy to see that ∆n,Σn,Πn ⊆ ∆n+1,Σn+1,Πn+1 and so these classes form
an increasing hierarchy of formulas which is called the arithmetic hierarchy. It
can also be proven that this hierarchy does not collapse, i.e. Σn ⊊ Σn+1 and
Πn ⊊ Πn+1 for all n ≥ 0 and also ∆n ⊊ Σn,Πn and Σn ∪Πn ⊊ ∆n+1 for all n ≥ 1.
This can be established via connections between arithmetic hierarchy and Turing
degrees (Rogers [1967]), which is beyond the scope of the thesis.

It is also known that each Σ1-formula is equivalent over PA to a ∃1-formula.
This follows from the solution of Hilbert’s 10th problem (Matiyasevich [1993]).

The classes of formulas defined above give rise to weak fragments of Peano
arithmetic among which of the most prominence is Bounded arithmetic.

Definition 1.1.4. Theory I∆0 called Bounded arithmetic is the subtheory of PA
with induction axioms restricted to ∆0-formulas. We can similarly define weak
theories I∆n, IΣn and IΠn, although we will not use these theories throughout
the thesis.

Let us now show an expressive power of ∆0-formulas, i.e. how complex the
subsets of N defined by ∆0-formulas can be.

We define ∆0(N) as a set of all ∆0-definable subsets of N. It is not hard to
show that all members of ∆0(N) are computable. In fact, it can be shown that:

LinH = ∆0(N),

where LinH denotes linear-time hierarchy (Wrathall [1978]).
It can also be proven that:

TimeSpace(nc, nϵ) ⊆ ∆0(N)

for any c > 0 and 1 > ϵ > 0 (Nepomnjascij [1970]). By TimeSpace(f(n), g(n))
we mean the class of languages recognized by a deterministic Turing machine
working simultaneously in time f(n) and space g(n).

As a corollary of the above fact we can show that:

LogSpace ⊆ ∆0(N).

There are also more concrete examples of sets inside ∆0(N). The theorem of
Adleman and Manders [1977] shows that ∆0(N) contains an NP-complete set:

{(x, y, z) | ∃u < z ∃v < z : xu2 + yv = z}.

The theorem of Bennett [1962] shows that ∆0(N) contains the graph of exponen-
tiation:

{(x, y, z) | xy = z}.

We can now return to I∆0 and show main theorems regarding this theory.
The first one provides an easy way to construct models of I∆0 from another
models of the same theory (Kraj́ıček [1995][5.1.3]).

Theorem 1.1.5. Let M be a model of I∆0 and I ⊆ M be a cut of M closed
under + and ·. Then I is a model of I∆0.
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In principle, however, constructing non-standard models of bounded arith-
metic is hard, since, by the theorem of Tennenbaum [1959], there is no countable
recursive non-standard model of I∆0 and, in fact, not even of the weak subtheory
IE1 of I∆0 (Paris [1984]). The class E1 consists of formulas equivalent to the
ones of the form ∃y ≤ t(x) ϕ(x, y) for quantifier-free ϕ(x, y).

There is also one more serious limitation of I∆0.

Theorem 1.1.6 (Parikh [1971]). Assume ϕ(y, x) is a ∆0-formula and

I∆0 ⊢ ∀x∃yϕ(x, y).

Then, there is a term t(x) such that

I∆0 ⊢ ∀x∃y ≤ t(x) ϕ(x, y).

Combining the above Theorem with the Theorem of [Bennett, 1962], we see
that even though we can ∆0-define the relation 2x = y, we can not prove that
the exponential function is total, i.e.:

I∆0 ⊬ ∀x∃y : 2x = y.

There are various reasons why totality of the exponentiation and its weaker ver-
sions are crucial. Most importantly for us, coding polynomial-length proofs and
computations requires totality of functions 2|x|k , where k is standard and |x|
means the binary length of x, i.e |x| is of order log(x). This leads to the following
theory.

Definition 1.1.7 (Paris and Wilkie [1981]). The theory I∆0 + Ω1 is defined as
the extension of I∆0 by the axiom Ω1 of the form:

∀x∃y : x|x| = y.

The above theory is still too weak to prove totality of the exponentiation,
although it is strong enough to talk about polynomial-time computations.

As a side remark, let us mention that there are further extensions of I∆0 +Ω1
by imposing totality of functions ωk(x), where ω1(x) is defined as x|x| and ωk+1(x)
is defined as 2(|ωk(x)|). Such theories are interpretable in I∆0, meaning one can
define a cut in I∆0 closed under ωk(x) (Hájek and Pudlák [1993]). However, there
is an interesting negative result saying, that there is no definable cut that would
be provably in I∆0 closed under all ωk(x) (Wilkie [1986], Paris and Wilkie [1987]).
In particular, no definable cut is provably closed under 2x, since exponentiation
majorizes all ωk(x).

We can now formulate the next important language which was defined by
[Buss, 1985]. The idea is that we want to extend LP A by adding symbols which
help us with coding of syntactical objects.

Definition 1.1.8. The language L extends LP A by three new function symbols
⌊x

2 ⌋, |x| and x#y.

The intended meaning of |x| is ⌊log(x)⌋ + 1 and of x#y is 2|x|·|y|.

Definition 1.1.9. The theory BASIC consists of the following axioms:
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• 1 = S(0),

• x+ 1 = S(x),

• (x < y) ↔ ((x ≤ y) ∧ (x ̸= y)),

• (x ≤ y) → (x ≤ (y + 1)),

• x ̸= x+ 1,

• 0 ≤ x,

• (x < y) → ((x+ 1) ≤ y),

• (x ̸= 0) → (2x ̸= 0),

• (x ≤ y) ∨ (y ≤ x),

• ((x ≤ y) ∧ (y ≤ x)) → x = y,

• ((x ≤ y) ∧ (y ≤ z)) → x ≤ z,

• |0| = 0,

• (x ̸= 0) → ((|2x| = |x| + 1) ∧ (|2x+ 1| = |x| + 1)),

• |1| = 1,

• (x ≤ y) → (|x| ≤ |y|),

• |x#y| = |x| · |y| + 1,

• |0#x| = 1,

• (x ̸= 0) → ((1#(2x) = 2(1#x)) ∧ (1#(2x+ 1) = 2(1#x))),

• x#y = y#x,

• |x| = |y| → (x#z = y#z),

• (|x| = |y| + |z|) → (x#u = (y#u) · (z#u)),

• x ≤ x+ y,

• ((x ≤ y) ∧ (x ̸= y)) → ((2x+ 1 ≤ 2y) ∧ (2x+ 1 ̸= 2y)),

• x+ y = y + x,

• x+ 0 = x,

• x+ (y + z) = (x+ y) + z,

• ((x+ y) ≤ (x+ z)) → y ≤ z,

• x · 0 = 0,

• x · (y + 1) = x · y + x,
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• x · y = y · x,

• x · (y + z) = (x · y) + (x · z),

• (1 ≤ x) → (((x · y) ≤ (x · z)) ↔ (y ≤ z)),

• (x ̸= 0) → (|x| = |⌊x
2 ⌋| + 1),

• (x = ⌊y
2⌋) ↔ (2x = y ∨ 2x+ 1 = y).

It is not hard to show that N with the standard interpretation of the symbols
of L is a model of BASIC.

The classes Σn,Πn and ∆n still make sense in the new language, although the
additional symbols allows one to define more subtle types of formulas.

Definition 1.1.10. A quantifier is said to be sharply bounded if it is of the form
∃x ≤ |t| or ∀x ≤ |t|, where term t does not contain x.

The class Σb
0 = Πb

0 is defined as the class of sharply bounded formulas, i.e.
formulas with all quantifiers sharply bounded.

For i ≥ 0 the classes Σb
i+1 and Πb

i+1 are defined as the smallest classes of
formulas satisfying the following properties:

• Σb
i ∪ Πb

i ⊆ Σb
i+1 ∩ Πb

i+1,

• Σb
i+1 and Πb

i+1 are closed under sharply bounded quantification, conjunction
and disjunction,

• Σb
i+1 is closed under bounded existential quantification,

• Πb
i+1 is closed under bounded universal quantification,

• the negation of a Σb
i+1-formula is a Πb

i+1-formula and vice versa.

The class Σb
∞ of bounded L-formulas is defined as ⋃︁i Σb

i = ⋃︁
i Πb

i .
A Σb

i -formula is said to be in ∆b
i if it is equivalent (in predicate calculus) to a

Πb
i -formula.

We also define formula to be in ∆b
i in a theory T if the equivalence above is

established in T .

It is also possible to define classes Σb
i and Πb

i explicitly as in the Definition
1.1.3. To do so, we first need to push the negation signs inside the quantifier-
free part and then count the number of alterations of bounded (but not sharply
bounded) quantifiers.

There is an important characterization of Σb
∞-definable subsets of N simi-

lar to the characterization of ∆0-definable sets. Namely, there is a theorem of
Stockmeyer:

PH = Σb
∞(N),

where PH denotes the polynomial-time hierarchy (Stockmeyer [1977]).
We can now formulate analogues of theories IΣn for our new language.

Definition 1.1.11. Theory T i
2 in the language L is the theory extending BASIC

by axioms of induction for Σb
i -formulas. Theory T2 is defined as the union ⋃︁i T

i
2.
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There are two other types of induction specific for the extended arithmetic
language L. Namely, for an L-formula ϕ(x) possibly with some other free variables
there is a polynomial induction:

ϕ(0) ∧ ∀x(ϕ(⌊x2 ⌋) → ϕ(x)) → ∀xϕ(x),

and a length induction:

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+ 1)) → ∀xϕ(|x|).

It is possible to show that the theory BASIC augmented with the length
induction for Σb

i -formulas is the same as the theory BASIC augmented with
the polynomial induction for Πb

i -formulas (Kraj́ıček [1995][5.2.5]). Such theory is
called Si

2 and the union ⋃︁i S
i
2 is denoted as S2. It holds that Si

2 ⊆ T i
2 ⊆ Si+1

2 and
thus S2 = T2.

Along with the induction, there is one more crucial combinatorial principle,
which gives rise to different theories of arithmetic.

Definition 1.1.12. The least number principle (denoted LNP ) for a formula
ϕ(y, x) is the sentence:

∀x (∃yϕ(y, x) → ∃y(ϕ(y, x) ∧ ∀z < y ¬ϕ(z, x))).

The theories LNP (Σi), LNP (Σb
i), and so on, are defined as extensions of PA−

(resp. of BASIC) by the least number principle restrictied to the corresponding
class of formulas.

Theorem 1.1.13.

LNP (Σi) = IΣi,

LNP (Σb
i) = IΣb

i ,

LNP (∃1) = I∃1.

There are also variants of the least number principle corresponding to the
length and polynomial inductions (Kraj́ıček [1995][5.2.6]), although we will not
work with such inductions throughout the thesis.

Turns out, the theories I∆0 +Ω1 and T2 (= S2) are, in a sense, the same, since
it holds that S2 is a conservative extension of I∆0 + Ω1, i.e. any LP A-formula
provable in S2 is already provable in I∆0 + Ω1 (Kraj́ıček [1995][5.2.15]).

Before we proceed to the next Section, let us talk a bit about coding of se-
quences in arithmetical theories. We will provide only a brief overview and for a
more thorough and detailed discussion the reader is advised to consult Kraj́ıček
[1995][5.4].

Theorem 1.1.14. There is a ∆0-formula θ(w, i, x), which we will write as (w)i =
x, such that I∆0 + Ω1 proves:

• (w)i = x ∧ (w)i = y → x = y,
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• (w)i = x ∧ j < i → (∃y ≤ w : (w)j = y),

• ∃w ∀i ∀x : (w)i ̸= x,

• ∀w ∃!l ∀i : (∃x(w)i = x) ↔ i < l,

• ∀w, y, n ≤ len(w) ∃w′ ∀x ∀i : (w′)i = x ↔ (((w)i = x∧ i ̸= n) ∨ (x = y ∧ i =
n)),

where len(w) is defined as l from the third statement.

Theorem 1.1.15. There is a ∆b
1-formula θ(w, i, x), which we will write as (w)i =

x, such that S1
2 proves:

• (w)i = x ∧ (w)i = y → x = y,

• (w)i = x ∧ j < i → (∃y ≤ w : (w)j = y),

• ∃w∀i∀x : (w)i ̸= x,

• ∀w ∃!l ∀i : (∃x(w)i = x) ↔ i < l,

• ∀w, y, n ≤ len(w) ∃w′ ∀x ∀i : (w′)i = x ↔ (((w)i = x∧ i ̸= n) ∨ (x = y ∧ i =
n)),

where len(w) is defined as l from the third statement.

The formula (w)i = x can be interpreted as saying that x is the i-th element
in the sequence coded by w. Then, the first two statements ensure that the
coding is well-defined, i.e. only one element can inhabit the i-th position of the
sequence and, if there is a j-th element inside our sequence, then there exists an
i-th element for any i ≤ j. The third statement tells us that there is the code for
the empty sequence. The fourth statement ensures that each sequence has length.
The final statement allows us to extend any given sequence by any element, or
to change any element in any given sequence.

We can represent sets as sequences with elements arranged in strictly increas-
ing order. This can be formulated by the predicate Set(w):

Set(w) ⇐⇒ ∀i < j < len(w) ∀x, y((w)i = x ∧ (w)j = y → x < y).

Under this convention len(w) denotes the size of the set coded by w.
Strong theories, like PA, are able to provide coding for any bounded definable

sets, which we can formulate in a model theoretic language.

Theorem 1.1.16. For any model M of PA and any LP A-formula (possibly with
parameters from M) ϕ(x) and m ∈ M it holds that there exists some w ∈ M so
that:

∀x((∃i(w)i = x) ↔ ((ϕ(x)) ∧ (x ≤ m))),

and:

∀i < j < len(w) ∀x, y((w)i = x ∧ (w)j = y → x < y).
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If we restrict ourselves to the classes ∆0, ∆b
1, then the theorem above is true

for the theories I∆0 + Ω1, S1
2 , respectively (assuming m is the length of some

element of the model). This is known as bounded collection principles ([Kraj́ıček,
1995][5.2.11]).

Using the pairing function (denoted ⟨x, y⟩), it is then possible to code sets of
tuples and iterating ⟨x, y⟩ allows us to code triples, quadruples and so on.

We can also code bounded sets of bounded sets and so on, which allows us
to talk about relations and functions. For example, the statement: ”for every
bounded function σ it holds that σ is injective”, can be coded as:

∀σ(Set(σ) ∧ Func(σ)) : Inj(σ),

where Func(σ) is defined as:

∀z, z′ ∀x, y, x′, y′(⟨x, y⟩ = z ∧ ⟨x′, y′⟩ = z′) : (∃i, j((σ)i = z ∧ (σ)j = z′)) → ...

... → (x ̸= x′ ∨ y = y′),

and Inj(σ) is defined as:

∀z, z′ ∀x, y, x′, y′(⟨x, y⟩ = z ∧ ⟨x′, y′⟩ = z′) : (∃i, j((σ)i = z ∧ (σ)j = z′)) → ...

... → (x ̸= x′ ∨ y ̸= y′).

We can go even further and code Turing machines in the similar manner.

Theorem 1.1.17 (Buss [1985]). Any set A ⊆ N computable by a polynomial-
time Turing machine is definable by an L-formula ϕ(x), i.e. a ∈ A if and only if
N ⊨ ϕ(a). Moreover, ϕ(x) is ∆b

1 in S1
2 .

The theorem above is easily generalized to computable relations, i.e. Ak ⊆ N.
We will consider the following situation. For a model M of S1

2 and a relation
R on M, such that (M, R) satisfies theory S1

2(R), we shall consider class - to be
denoted □p

1(R) - of all relations on M that are definable by polynomial-time oracle
Turing machine with oracle access to R. By the discussion above, this notion is
well-defined, since the corresponding class of formulas is ∆b

1(R) in S1
2(R).

It then holds that for any Turing machine corresponding to a formula from
□p

1(R) and an input u ∈ M, it is possible to produce the computation tree, which
branches according to answers of the oracle R and whose depth is bounded by
|u|c for some standard number c.

1.2 Pigeonhole principles
Among different combinatorial principles expressible in the language of arithmetic
one of the most prominent is the pigeonhole principle. In its basic form it states
that there is no injective function between the sets {m|m < n+1} and {m|m < n}
(such sets are denoted [n + 1] and [n], respectively). However, since we are not
allowed to quantify over functions, we need to modify this formulation in order
to ask for a proof of such statement inside arithmetic theories. One possible
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way is to extend LP A by a new function symbol f (denote this new language
as LP A(f)) and add to PA induction axioms for all LP A(f)-formulas (resulting
theory is denoted PA(f)). Then, to prove the pigeonhole principle inside PA(f),
is to prove the statement:

∀n((∀m < n+ 1 : f(m) < n) → (∃m1 ̸= m2 < n+ 1 : f(m1) = f(m2))).

Due to various reasons it is actually more common to state pigeonhole principle
not for a function symbol f , but for a binary relation R, which meant to represent
the graph of a possible witness to failure of the pigeonhole principle.

Definition 1.2.1. The pigeonhole principle for a relation R (denoted PHP (R))
is the disjunction of the following formulas (n is universally quantified before the
disjunction):

• ∃m < n+ 1 ∀k < n : ¬R(m, k),

• ∃k1 ̸= k2 < n ∃m < n+ 1 : R(m, k1) ∧R(m, k2),

• ∃m1 ̸= m2 < n+ 1 ∃k < n : R(m1, k) ∧R(m2, k).

Here, the first disjunct states that R is not definable on the whole [n+ 1], the
second states that R is not a function and the third states that R is not injective.

Proposition 1.2.2.

PA(R) ⊢ PHP (R).

Proof. We will prove the statement by induction on n. Actually, we will prove
the stronger statement which says that R does not define the graph of a function
between pair of sets of sizes n+ 1 and n, respectively (original formulation talked
only about sets [n+ 1] and [n], which are a particular case of our generalization).
Note that we can safely state such proposition inside PA since this theory can
code finite sequences.

The statement clearly holds for n = 0. Assume now that it holds for some
n ≥ 0. Let R define graph of a function between sets A and B of sizes n+ 2 and
n+ 1. It is enough to show that such function is not injective.

Let a ∈ A and b ∈ B such that R(a, b). If there is a′ ̸= a ∈ A so that R(a′, b),
then R is not injective. Otherwise, R defines graph of a function between A\ {a}
and B \ {b}. But since sizes of A \ {a} and B \ {b} are n+ 1 and n, respectively,
such function can not be injective.

There are different variations of the pigeonhole principle. We will be interested
in the following two.

Definition 1.2.3. Surjective pigeonhole principle for a relation R (denoted as
ontoPHP (R)) is defined as a disjunction of the following formulas (n is univer-
sally quantified before the disjunction):

• ∃m < n+ 1 ∀k < n : ¬R(m, k),

• ∃k1 ̸= k2 < n ∃m < n+ 1 : R(m, k1) ∧R(m, k2),
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• ∃m1 ̸= m2 < n+ 1 ∃k < n : R(m1, k) ∧R(m2, k),

• ∃k < n ∀m < n+ 1 : ¬R(m, k).

Weak pigeonhole principle for a relation R (denoted WPHP (R)) is defined as
a disjunction of the following formulas (n is universally quantified before the
disjunction):

• ∃m < 2n ∀k < n : ¬R(m, k),

• ∃k1 ̸= k2 < n ∃m < 2n : R(m, k1) ∧R(m, k2),

• ∃m1 ̸= m2 < 2n ∃k < n : R(m1, k) ∧R(m2, k).

It is clear that ontoPHP (R) says thatR is not the graph of a bijection between
[n+1] and [n] and WPHP (R) says that R is not the graph of an injective function
from [2n] to [n].

Since PA proves PHP , it can easily prove the other variants. By a more
detailed analysis of the Theorem 1.2.2, we can actually see that IΣ1 already
proves PHP and all its variants, since it is enough to be able to talk about
bounded sets of numbers in order to complete the proof.

So, from the point of view of PA (or even IΣ1), all such principles are equally
true. It turns out, however, this does not hold for weaker theories.

Theorem 1.2.4 ([Paris and Wilkie, 1985]).

I∃1(R) ⊬ ontoPHP (R),

I∃1(R) ⊬ WPHP (R),

I∃1(R) ⊬ PHP (R).

Theorem 1.2.5 ([Kraj́ıček, 1995](12.7)).

T 1
2 (R) ⊬ ontoPHP (R),

T 1
2 (R) ⊬ WPHP (R),

T 1
2 (R) ⊬ PHP (R).

We will describe proofs of the above statements in greater details, since the
main result of the thesis heavily relies upon those theorems.

It can be shown that (Paris, Wilkie, and Woods [1988]):

T 2
2 (R) ⊢ WPHP (R),

while (Ajtai [1988], Kraj́ıček, Pudlák, and Woods [1995] and Pitassi, Beame, and
Impagliazzo [1995]):

T2(R) ⊬ ontoPHP (R).
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In particular:

T 2
2 (R) ⊬ ontoPHP (R).

The proof of the above resluts utilizes probabilistic combinatorics and, in
particular, a suitable variant of the well-known switching lemma (H̊astad [1987]),
which is far beyond the scope of the thesis.

We can finally formulate the main goal of the thesis. To do so, let us denote,
for a class C of L + {R}-formulas, the WPHP (C) as a set of instances of the
weak pigeonhole principle for all binary relations definable using formulas from
C. Then, combining the previous statements, it is possible to show:

T 1
2 (R) +WPHP (□p

1(R)) ⊬ ontoPHP (R),

that is, that T 1
2 (R) extended by the weak pigeonhole principle for □p

1(R)-formulas
cannot prove that bijective pigeonhole principle holds for R.

The above proof depends, in particular, on a difficult argument in probabilistic
combinatorics. Our aim is to prove this statement directly by a simpler forcing
argument similar to the one used in the proof of 1.2.5 as will be explained below.

The reasons to consider such direct proofs are plenty. It is known that proofs in
T 1

2 provide bounds for the propositional proofs is certain proof systems (Kraj́ıček
[2019][10.5.1]). These proofs also provide witnesses for certain algorithmic prob-
lems (Kraj́ıček [1995][7.2.3]). These connections are, however, beyond the scope
of the thesis.

As an interesting by-product of our direct proof we get the following state-
ment:

T 1
2 (R) + PHP

n
2 +1

n
2

(□p
1(R)) ⊬ PHP n+1

n (R).

There is an interesting conjecture proposed by Ajtai [1990][page 3], which can
be formulated as:

T2(R) + PHP
n
2 +1

n
2

(Σb
∞(R)) ⊬ PHP n+1

n (R),

that is, the fact that the pigeonhole principle holds up to n
2 for all functions

whose graphs are definable from R by bounded formulas does not imply that it
necessary holds for R up to n. This is in contrast to the induction, since it is
possible to show that if induction holds up to n, then it holds up to any finite
power of n (Ajtai [1990][page 3]).

However, the methods described in this thesis are not strong enough to provide
a full proof of the above conjecture.
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2. Forcing

2.1 Theorem of Paris and Wilkie
We will now present the original proof of the theorem 1.2.4 (Paris and Wilkie
[1985]), as it inspires our construction later on. Recall that we want to show:

I∃1(R) ⊬ ontoPHP (R).

Proof. The proof is done by constructing a model of I∃1(R) + ¬ontoPHP (R).
We first pick a countable non-standard model of PA and denote it M.

We then want to interpret R inside this model so that such R would violate
ontoPHP (R) but would not violate the least number principle for ∃1(R)-formulas
(recall that I∃1(R) is equivalent to the LNP (∃1(R)) by 1.1.13).

Fix a non-standard n ∈ M. We want to create an increasing chain of conditions
σ0 ⊆ σ1 ⊆ ..., where a condition will be the graph of a standard finite partial
injective function between [n+1] and [n], so that ⋃︁i σi would define us a bijective
function between [n + 1] and [n]. Then, interpreting R as such union, gets us
(M, R) ⊨ ¬ontoPHP (R).

At first, note that for any chain of conditions it holds that their union is an
injective function defined on a subset of [n + 1] with image inside [n]. Now fix
some enumerations of elements of sets [n + 1] and [n]. So, elements of [n + 1]
are enumerated as n0, n1, ... and elements of [n] as m0,m1, .... To ensure that
the resultant function is a bijection between [n + 1] and [n], we specify that in
each (2i + 1)-st step of the construction of σ’s we pick the first nj from the
enumeration of [n + 1] such that it is not in the domain of σ2i and similarly for
mj from the enumeration of [n]. We then extend σ2i by adding the pair (nj,mj)
to it and denote the newly acquired condition as σ2i+1. Note that the union of
chain created this way is always a bijection between [n + 1] and [n] no matter
how we proceed in each (2i)-th step.

It remains to specify each even step of the construction of our chain. Recall
that we need to ensure I∃1(R) would hold for R interpreted as ⋃︁i σi. Let us now
enumerate all ∃1(R)-formulas with one free variable and possibly some parameters
from M. There are only countably many such formulas and so we can provide
such an enumeration.

We will now define ∗-forcing. This notion is intended to characterize which
open sentences can be deduced from a finite information about R, using the
hypothesis that R is a bijection between [n+ 1] and [n].

For an open LP A(R)-sentence θ (possibly with parameters from M) and a
condition σ, we will say that σ ∗-forces θ (denoted σ ⊩∗ θ) in the following
situations:

• if θ does not contain R, then σ ⊩∗ θ iff M ⊨ θ,

• if θ is R(t, s), then σ ⊩∗ θ iff (a, b) ∈ σ, where t and s are closed terms with
values a, b, respectively,

• if θ is ¬R(t, s), then σ ⊩∗ θ iff (a′, b) ∈ σ or (a, b′) ∈ σ for a ̸= a′ and b ̸= b′,
where t and s are closed terms with values a, b, respectively,
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• if θ is θ0 ∧ θ1, then σ ⊩∗ θ iff σ ⊩∗ θ1 and σ ⊩∗ θ0,

• if θ is θ0 ∨ θ1, then σ ⊩∗ θ iff either σ ⊩∗ θ1 or σ ⊩∗ θ0,

• if θ is ¬θ0 for non-atomic θ0, then σ ⊩∗ θ iff σ ⊩∗ θ′
0, where we get θ′

0 by
pushing negation inside θ0 using De Morgan’s laws.

For an LP A(R)-sentence (possibly with parameters) ∃xθ(x) in the prenex nor-
mal form we write σ ⊩∗ ∃xθ(x) iff there is a tuple of elements a from M so that
σ ⊩∗ θ(a).

For an LP A(R)-sentence (possibly with parameters) ∀xθ(x) in the prenex nor-
mal form we write σ ⊩∗ ∀xθ(x) iff for all tuples of elements a from M it holds
that σ ⊩∗ θ(a).

To define ∗-forcing for a general sentence, we first need to get it’s prenex
normal form and then apply the above definition.

It is not hard to show that, if σ ⊩∗ θ, then, for any possible extension of σ to
a full bijection between [n+1] and [n] whose graph gives rise to an interpretation
of R, it holds that (M, R) ⊨ θ. The opposite implication is, however, not true.
We will see the reasons for this later.

Let us now go back to the construction of R. Assume we are in the (2i)-th
step and we have already constructed σ2i−1. We also let σ−1 be ∅.

Let ∃xθ(x, y) be the i-th formula of the enumeration of all ∃1(R)-formulas,
where θ(x, y) is open. If, for any possible bijection between [n + 1] and [n]
whose graph extends σ2i−1, it holds that for R, interpreted as such a graph,
(M, R) ⊨ ¬∃xθ(x, a) for any a ∈ M, then we can put σ2i to be just σ2i−1, since
no matter how we proceed further, the resulting interpretation of R would satisfy
∀y(¬∃xθ(x, y)) and so the least number principle would automatically hold for
∃xθ(x, y).

So assume there is some bijection extending σ2i−1 such that for some a ∈ M
it holds that (M, R) ⊨ ∃xθ(x, a) for R interpreted as a graph of such bijection.
Pick a tuple b from M so that (M, R) ⊨ θ(b, a). Since θ(b, a) is an open sentence,
it is clear that we can find some condition τ ⊇ σ2i so that τ ⊩∗ θ(b, a) and so
τ ⊩∗ ∃xθ(x, a). It further holds that we can assume the size of such τ is bounded
from above by the size of σ2i−1 plus some finite number k which depends only on
the formula θ(x, y) (this k equals the number of appearances of atomic formulas
of type R(t(x, y), s(x, y)) inside θ(x, y)).

Consider a set:

{b | b ≤ a ∧ ∃τ(τ ⊇ σ2i−1 ∧ |τ | ≤ (|σ2i−1| + k) ∧ τ ⊩∗ ∃xθ(x, b))},

where |σ| denotes the size of σ. Due to the bound on the size of τ , such set is
actually definable by an LP A-formula inside M. Since M ⊨ PA, it follows that
this set contains the least element c. For such an element pick τ so that τ ⊇ σ2i−1
and τ ⊩∗ ∃xθ(x, c). Then, for all b < c, it holds that any possible extension of
σ2i−1 (and subsequently of τ) interpreted as R would satisfy (M, R) ⊨ ¬∃xθ(x, b)
and so we may put σ2i to be just τ . This implies that for any extension of σ2i

to a full bijection intepreted as R, the least number principle for ∃xθ(x, y) would
hold true in (M, R).
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Note that by changing conditions to be finite partial injective functions be-
tween [2n] and [n] we can show that:

I∃1(R) ⊬ WPHP (R).

We can go even further and show that, for any two non-standard natural numbers
n and m, it is consistent with I∃1(R) that R is the graph of a bijective function
between [n] and [m] or even that R is the graph of a bijective function which
maps the whole M onto [m].

2.2 Forcing set-up
The Theorem of Kraj́ıček (1.2.5) can be proven in a similar manner as the one
of Paris and Wilkie which we have just showed ([Kraj́ıček, 1995][12.7]). We will,
however, describe a more general method which will then serve as a framework
in which one can present the proof of 1.2.5 as well as the proof of our result.

The method in question is forcing.

Definition 2.2.1. Let P be partially ordered set with an ordering ≤. We call σ
from P a condition.

For two conditions σ and τ we say that they are compatible (denoted σ∥τ) if
there is some δ so that δ ≥ σ and δ ≥ τ . Otherwise, we call σ and τ incompatible
(denoted σ ⊥ τ).

We call D ⊆ P dense, if for any σ ∈ P there is τ ∈ D so that τ ≥ σ.
We call D ⊆ P pre-dense, if for any σ ∈ P there is τ ∈ D so that τ∥σ.

It is clear that every dense set is pre-dense. There is also a canonical way of
creating a dense set out of a pre-dense one.

Proposition 2.2.2. For a pre-dense set D ⊆ P it holds that the set:

D′ = {σ | ∃τ(τ ∈ D ∧ σ ≥ τ)}

is dense in P . Such set is called generated by D.

Proof. Let δ be from P . Then, there is σ ∈ D so that σ∥δ. Since these two
conditions are compatible, it follows that there is some τ ∈ P so that τ ≥ δ and
τ ≥ σ. From the definition of D′ it follows that τ ∈ D′, proving D′ is dense.

Definition 2.2.3. We call G ⊆ P a filter, if it satisfies the following two condi-
tions:

• G is closed downwards, i.e. for any σ ∈ G and τ ∈ P so that τ ≤ σ it holds
that τ ∈ G,

• for any two σ, τ ∈ G there is some δ ∈ G so that σ ≤ δ and τ ≤ δ.

In particular, any two conditions from G must be compatible.
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From now on we will focus on a particular partially ordered set P containing
finite partial injective functions between [n+1] and [n] as in the previous section.
The ordering is just the usual inclusion. It is then clear that σ∥τ iff σ ∪ τ ∈ P .

In the next chapter we will consider P ∗ - a set of partial injective functions
between [n+ 1] and [n] which are definable in M and have sizes bounded by |n|k
for a standard k. Recall that |n| is about log n, so conditions in P ∗ are of size
(log n)k, i.e. much smaller than the n itself. All the arguments of the current
chapter would still hold true for P ∗ and the reason we are not proceeding in a
more general way already, is that we want to show the core ideas in their simplest
form.

Proposition 2.2.4. For a filter G ⊆ P it holds that ⋃︁G is a partial injective
function between [n+ 1] and [n].

We then say that G defines the graph of a partial injective function which is
denoted by G, as well.

Proof. This easily follows from the fact that all conditions of G are compatible.

Definition 2.2.5. We say that a dense set D ⊆ P is dense-definable, if there is
an LP A-formula ϕ(x) (possibly with parameters from M) so that:

D = {σ ∈ P | ϕ(σ)},

where we identify the set σ with the number coding it inside the M.
In a similar way we define pre-dense-definable sets.
We say that a filter G is generic, if, for any dense-definable set D, it holds

that G ∩D ̸= ∅.

Note that the definability of a dense set D according to the above definition
does not mean that such set itself is definable in the logical sense, since, for
example, the set P is dense-definable but is not definable inside M, since otherwise
one could define standard numbers as the sizes of conditions in P , thus violating
induction in M ([Kaye, 1991][6.1]).

Proposition 2.2.6. The function G, which is defined by a generic filter G, is a
bijection between [n+ 1] and [n].

Proof. Note that for any a ∈ [n+ 1] the set:

Da = {σ | σ is defined on a}

is dense-definable. In a similar way, for any b ∈ [n] the set:

Db = {σ | b is in the image of σ}

is dense-definable, as well. Since G is generic, it should be definable on all ele-
ments of [n+ 1] and contain every element of [n] in the image. From the propo-
sition 2.2.4 it follows that G is an injective function which finishes the proof.
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The sets Da and Db (or, more generally, the sets Db
a containing all the func-

tions defined on a and having b in their images) are a canonical example of dense-
definable subsets of P . The sets cDa containing all the functions defined on a
and of sizes ≤ c for a standard c are a canonical example of pre-dense-definable
subsets (similarly for cD

b and cD
b
a). Note that cDa is note dense, and Da is the

set generated by cDa as in the Proposition 2.2.2.

Proposition 2.2.7. A generic filter G exists.

Proof. It is crucial to note that there are only countably many dense-definable
sets, since M is countable and there are countably many formulas of LP A (even
with parameters from M). So we may enumerate all the dense-definable sets as
D1, D2, .... We then create G by a recursive process.

Put G0 to be ∅. To create Gi+1 take Di+1. Assume Gi equals {σ | σ ≤ τ}
for some fixed condition τ . Since Di+1 is dense, we can find some δ ∈ Di+1 so
that δ ≥ τ . Put Gi+1 to be {σ | σ ≤ δ}. It is then clear that ⋃︁i Gi is a generic
filter.

Using the similar argument as in the Proposition above, we can prove that,
for any fixed condition σ ∈ P , there exists a generic filter G which extends σ, i.e.
σ ⊆ ⋃︁

G.
Generic filters also intersect all the pre-dense-definable sets, as in the propo-

sition below.

Proposition 2.2.8. If G is generic, then, for any pre-dense-definable set D, it
holds that there is some σ ∈ D so that σ ⊆ ⋃︁

G (actually, σ ∈ G).

Proof. Let D′ be the dense set generated by D as in the Proposition 2.2.2. Note
that if D is definable, then so is D′. Since G is generic, it holds that there is
some τ ∈ D′ so that τ ∈ G. But then, there is some σ ∈ D so that σ ≤ τ . Since
G is closed downwards, it follows that σ ∈ G, finishing the proof.

We can finally define forcing.

Definition 2.2.9. Let ϕ be an LP A(R)-sentence possibly with parameters from
M. We say that a condition σ ∈ P forces ϕ (denoted as σ ⊩ ϕ), if, for any generic
filter G which extends σ, it follows that (M, G) ⊨ ϕ, where (M, G) denotes an
LP A + R-structure, where R is interpreted as the graph of a function definable
by G.

Let us go back to the relation ⊩∗, which was defined during the proof of the
Theorem 1.2.4. Recall the Definition 2.1.

We have shown that σ ⊩∗ θ implies σ ⊩ θ. The opposite, however, does not
hold. As a counterexample consider σ = ∅ and θ = R(a, b) ∨ ¬R(a, b). It is then
clear that σ ⊩ ϕ, although σ does not ∗-force R(a, b) nor ¬R(a, b).

However, the fact is that σ ⊩ θ does provide certain information about ⊩∗,
assuming θ is not very complex.

Proposition 2.2.10. Assume θ is an open LP A(R)-sentence with parameters
and σ is a condition. Then:

• if θ does not contain R, then σ ⊩ θ iff σ ⊩∗ θ,
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• if θ is R(a, b), then σ ⊩ θ iff σ ⊩∗ θ,

• if θ is ¬R(a, b), then σ ⊩ θ iff σ ⊩∗ θ.

Proof. The first equivalence is clear. To prove the second, note that it is enough
to show σ ⊩ θ implies σ ⊩∗ θ, since the other direction has been already discussed.

Let θ be R(a, b) and assume σ ⊩ θ. Assume that σ ⊮∗ θ, meaning (a, b) /∈ σ.
Then, we may find some b′ ̸= b so that {(a, b′)}∥σ. This implies σ′ = σ ∪ {(a, b′)}
is in P and σ′ ⊩ ¬R(a, b), contradicting our initial assumptions.

The third case is done analogously.

It is also clear that forcing a sentence θ is equivalent to forcing a sentence ϕ
which is equivalent to θ in predicate calculus. This will be helpful as it allows us
to work with prenex normal forms and CNFs/DNFs.

We are almost ready to give a proof of the Theorem 1.2.4 in this new forcing
language. But first, we need the following lemma.

Lemma 2.2.11. Let θ be an open LP A(R)-sentence and σ be a condition. Then,
σ ⊮ θ implies that there is some condition τ so that σ ⊆ τ and τ ⊩ ¬θ.

Proof. Since σ ⊮ θ, we may find some generic G extending σ so that (M, G) ⊨ ¬θ.
Since θ is open, we may rewrite ¬θ is as a formula D in DNF (that is D is
equivalent to ¬θ for in all (M, G)):⋁︂

i

Ri1(ai
1, b

i
1) ∧ ... ∧Rik(ai

k, b
i
k),

where ik ∈ {−1, 1} and R1(a, b) denotes R(a, b), while R−1(a, b) denotes ¬R(a, b).
The rewriting procedure first puts θ into DNF according to rules of predicate
calculus. Then, we evaluate atomic subformulas inside M to get their truth
values. Finally, we evaluate all the terms inside M so that R(t(a, b), s(a, b)) may
be rewritten to R(a′, b′), where M ⊨ (t(a, b) = a′) ∧ (s(a, b) = b′). It is then clear,
that to force ¬θ is the same as to force D. Since D is true in (M, G), we may
find some particular i so that:

(M, G) ⊨ Ri1(ai
1, b

i
1) ∧ ... ∧Rik(ai

k, b
i
k).

This means, G contains map ρ consisting of pairs (ai
j, b

i
j) which are inside the

positive occurrences of R (i.e. ij = 1) and some (a′
j
i, b′

j
i) which contradict pairs

(ai
j, b

i
j) appearing in negative occurrences of R. Note that all such pairs are

compatible with σ, since G extends σ, and there are only finitely many of them.
So we can define τ to be the union of σ and ρ we have just considered. Then
τ ∈ P and τ ⊩ D, implying τ ⊩ ¬θ.

Note that in the proof above the size of τ is bounded by the size of σ plus
some finite number, which depends only on θ.

Corollary 2.2.12. For σ ∈ P and an open LP A(R)-formula with parameters θ,
it holds that:

• if θ is ⋀︁i θi, then σ ⊩ θ iff σ ⊩ θi for all i,

• if θ is ⋁︁i θi, then σ ⊩ θ iff ∀τ ⊇ σ ∃τ ′ ⊇ τ ∃i : τ ′ ⊩ θi.
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Proof. Let us start with the first statement. If σ ⊩ θi for all i, then, clearly,
σ ⊩ θ. So, assume σ ⊮ θi for some i. Using the lemma above, we can find some
τ ⊇ σ so that τ ⊩ ¬θi. Then, clearly, τ ⊩ ¬θ and so σ ⊮ θ.

Let us now focus on the second part of the corollary. Assume σ ⊮ θ. Then,
we can find some τ ⊇ σ so that τ ⊩ ¬θ. From the first part of the corollary, it
follows that τ ⊩ ¬θi for all i and so there is no τ ′ ⊇ τ so that ∃i : τ ′ ⊩ θi.

Finally, assume ∃τ ⊇ σ ∀τ ′ ⊇ τ ∀i : τ ′ ⊮ θi. In particular, ∀i : τ ⊮ θi. Then,
we can extend τ to τ1 so that τ1 ⊩ ¬θ1. Since τ1 ⊮ θi for all i, we can extend
it to τ2 so that τ2 ⊩ ¬θ2. Note that τ2 ⊩ ¬θ1, since it extends τ1. We proceed
inductively to create τk so that τk ⊩ ¬θi for all i. Using the first part of the
corollary, it follows that τk ⊩ ¬θ and, since τk ⊇ σ, it follows that σ ⊮ θ.

Again, as in the previous lemma, the size of τ ′ from the second part of the
previous corollary can be bounded by the size of τ plus some finite number, which
depends only on θ.

Corollary 2.2.13. For σ ∈ P and an open LP A(R)-formula with parameters
θ(x) it holds that:

• σ ⊩ ∀xθ(x) iff σ ⊩ θ(a) for all a ∈ M,

• σ ⊩ ∃xθ(x) iff ∀τ ⊇ σ∃τ ′ ⊇ τ∃a ∈ M : τ ′ ⊩ θ(a).

Proof. The first claim is clear. To prove the second statement, at first assume
σ ⊩ ∃xθ(x) and τ ⊇ σ. Pick any generic G extending τ . Note (M, G) ⊨ ∃xθ(x)
and so we may find a ∈ M such that (M, G) ⊨ θ(a). Since θ(x) is open, it follows
that there is a finite τ ′ so that τ ′ ⊩ θ(a). Also note that we can assume such τ ′

is compatible with τ and so τ ′ ∪ τ ∈ P .
Finally, assume ∀τ ⊇ σ∃τ ′ ⊇ τ∃a ∈ M : τ ′ ⊩ θ(a). Note that the set:

{τ ′ ∈ P | (τ ′ ⊥ σ) ∨ (∃a ∈ M : τ ′ ⊩ θ(a))}

is definable and the assumption above implies it is dense. This finishes the whole
proof.

We can now formulate a proof of:

I∃1(R) ⊬ ontoPHP (R),

using forcing.
Recall, that any generic G defines bijection between [n + 1] and [n] as was

shown in 2.2.6. This can be stated as:

∅ ⊩ (∀a < n+ 1 ∃!b < n : R(a, b)) ∧ (∀b < n ∃!a < n+ 1 : R(a, b)).

It is now enough to show that, for any ∃1(R)-formula with parameters and
one free variable θ(x), the set Dθ(x) defined as:

{σ ∈ P | σ ⊩ LNP (θ(x))}

is dense-definable.
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Assuming the above is true, it follows that for any generic G and any ∃1(R)-
formula with one free variable θ(x), G intersectsDθ(x) and so (M, G) ⊨ LNP (θ(x))
implying (M, G) ⊨ I∃1(R), while also (M, G) ⊨ ¬ontoPHP (R).

The density of Dθ(x) has been already shown in the proof of 1.2.4, which was
done in the beginning of the current Chapter. Recall, that for a given condition
σ we have constructed τ ⊇ σ so that τ ⊩∗ θ(a), while for any b < a and any
possible extension of τ to a full bijection between [n+ 1] and [n] it was true that
for R interpreted as graph of such bijection (M, R) ⊨ ¬θ(b), which in our new
language can be formulated as:

τ ⊩ θ(a) ∧ (∀b < a¬θ(b)),

implying τ ⊩ LNP (θ(x)). Thus, τ ⊇ σ is a member of Dθ(x).
Definability of Dθ(x) can be shown by a detailed analysis of the sentence

LNP (θ(x)) and by using Propositions 2.2.13, 2.2.12 and 2.2.10, as in the original
proof in the Section 2.1. This finishes the proof of 1.2.4.

2.3 WPHP for open formulas
Recall that the main goal of this thesis it to prove the following statement:

T 1
2 (R) +WPHP (□p

1(R)) ⊬ ontoPHP (R).

We first prove an easier variant which, in turn, explains the main idea without
technical complications caused by working in T 1

2 (R).

Theorem 2.3.1.

I∃1(R) +WPHP (open(R)) ⊬ ontoPHP (R),

where open(R) denotes the class of quantifier-free LP A(R)-formulas with param-
eters.

The proof of this theorem occupies the rest of the subsection and is sum-
marized at the end. We proceed in the same way as during the earlier proof of
1.2.4. The only difference is that we start with a countable non-standard model of
Th(N), instead of PA, so that some arguments become easier. The theory Th(N)
consists of all LP A-sentences which are true in N. The existence of a countable
non-standard model of Th(N) is established in the similar way as for a countable
non-standard models of PA (Kaye [1991][1]).

Fix some non-standard n ∈ M and let P be the set of all finite partial injective
functions between [n+ 1] and [n] ordered by inclusion.

We have already proven that (2.2.6):

∅ ⊩ ¬ontoPHP (R),

and also (1.2.4):

∅ ⊩ I∃1(R).

The majority of the following subsection occupies the proof of the Lemma
below.
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Lemma 2.3.2. For any open formula with parameters θ(x, y) and m ∈ M the
set of all conditions forcing WPHP 2m

m (θ(x, y)) is dense (definability of such set
can be shown using Propositions 2.2.13, 2.2.12 and 2.2.11).

The Lemma above implies:

∅ ⊩ WPHP 2m
m (θ(x, y)),

for any open θ(x, y) and m ∈ M, which, in turn, finishes the proof of 2.3.1. Recall
that WPHP 2m

m (θ(x, y)) is a disjunction of the following sentences:

• ∃k < 2m ∀l < n : ¬θ(k, l)

• ∃l1 ̸= l2 < m ∃k < 2m : θ(k, l1) ∧ θ(k, l2)

• ∃k1 ̸= k2 < 2m ∃l < m : θ(k1, l) ∧ θ(k2, l).

To prove the Lemma 2.3.2, note that we may assume m is non-standard,
since, for any finite number m, the WPHP 2m

m (θ(x, y)) holds in (M, R) for any
interpretation of R.

Assume the Lemma 2.3.2 is false. This implies existence of a σ ∈ P which
cannot be extended to any other condition τ such that τ ⊩ WPHP 2m

m (θ(x, y)).
We will show that the above is a contradiction for any σ ∈ P . First, consider the
case σ = ∅.

Proposition 2.3.3. For any open LP A(R)-formula with parameters θ(x, y) it
holds that there exists standard k so that for any (a, b) ∈ [n + 1] × [n] the
sentence θ(a, b) is equivalent to:⋁︂

i

Ri1(ai
1, b

i
1) ∧ ... ∧Rik(ai

k, b
i
k),

where the equivalence is meant in a forcing sense, i.e. forcing θ(a, b) is the same
as forcing the sentence written above. The DNF above can also be made so no
two different DNF-terms are compatible.

Proof. Since θ(x, y) is an open LP A(R)-formula, it can be rewritten to:⋁︂
i

Ri1(ti1(x, y), si1(x, y)) ∧ ... ∧Rin(tin(x, y), sin(x, y)) ∧ θi(x, y),

where θi(x, y) does not contain R. The rewriting procedure is made in the similar
way as in the proof of the Lemma 2.2.11. However, we can not get rid of the part
without R and evaluate all the terms inside M as before, since the part free of
R and arithmetic terms, respectively, may contain free variables x and y. Only
after we substitute some particular values for the x and y, the form identical to
the one in Lemma 2.2.11 is achieved, meaning, for any a ∈ [2m] and b ∈ [m], the
sentence θ(a, b) is equivalent to:⋁︂

i

Ri1(ai
1, b

i
1) ∧ ... ∧Rik(ai

k, b
i
k),

where the equivalence is meant in a forcing sense, i.e. forcing θ(a, b) is the same as
forcing the sentence written above. It is also clear that we can force all DNF-terms
to be of the same standard length k as above. The final part of the Proposition
can be achieved by possibly prolonging all the DNF-terms.

24



Using the above Proposition we shall now proceed to define a set [θ(a, b)],
which is associated to θ(a, b).

Definition 2.3.4. Let θ(x, y) and a, b be as above. Put θ(a, b) into DNF as in
the Proposition 2.3.3. Then, [θ(a, b)] is defined as a union of [Di], where Di is a
DNF-term:

Ri1(ai
1, b

i
1) ∧ ... ∧Rik(ai

k, b
i
k).

The [Di] is then defined as a set of all ⊆-minimal conditions σ ∈ P satisfying the
following properties:

• for all ij = 1 it holds that (ai
j, b

i
j) ∈ σ,

• for all ij = −1 it holds that (a′
j
i, bi

j) ∈ σ and (ai
j, b

′
j
i) ∈ σ, where a′

j
i ̸= ai

j

and b′
j
i ̸= bi

j.

Notice that the size of conditions inside θ(a, b) is bounded by 2k, where k
is the length of every DNF-term Di. It is clear that, for any σ ∈ [Di], it holds
that σ ⊩∗ Di, implying σ ⊩∗ θ(a, b). So, for any σ ∈ [θ(a, b)], it follows that
σ ⊩ θ(a, b). It further holds that any two different σ and σ′ from [θ(a, b)] are
incompatible.

Proposition 2.3.5. Asuming σ = ∅ cannot be extended to any condition τ so
that τ ⊩ WPHP 2m

m (θ(x, y)), it follows that:

∀a, a′ ∈ [2m] ∀b ∈ [m] ∀σ ∈ [θ(a, b)] ∀σ′ ∈ [θ(a′, b)] (σ ̸= σ′) : σ ⊥ σ′, (2.1)

∀a ∈ [2m] ∀b, b′ ∈ [m] ∀σ ∈ [θ(a, b)] ∀σ′ ∈ [θ(a, b′)] (σ ̸= σ′) : σ ⊥ σ′, (2.2)

∀a ∈ [2m] ∀τ ∈ P ∃b ∈ [m] ∃σ ∈ [θ(a, b)] : τ∥σ. (2.3)

Proof. The (2.1) is true, since, otherwise, for τ = σ∪σ′, it would hold that τ ∈ P
and τ ⊩ θ(a, b) ∧ θ(a′, b), implying τ ⊩ WPHP 2m

m (θ(x, y)). The (2.2) is true by
the similar argument.

To prove (2.3) it is enough to show that its negation implies (by the Lemma
2.2.12) existence of τ ∈ P so that:

∃a ∈ [2m] ∀b ∈ [m] : τ ⊩ ¬θ(a, b),

since such τ forces WPHP 2m
m (θ(x, y)).

The negation of (2.3) is the following statement:

∃a ∈ [2m] ∃τ ∈ P ∀b ∈ [m] ∀σ ∈ [θ(a, b)] : τ ⊥ σ.

We pick τ and a as above and try to show τ ⊩ ∀b ∈ [m] : ¬θ(a, b). Due to the
Corollary 2.2.13, it is the same as showing τ ⊩ ¬θ(a, b) for all b ∈ [m].

Recall that ¬θ(a, b) is equivalent (in a forcing sense) to:

¬(
⋁︂
i

Ri1(ai
1, b

i
1) ∧ ... ∧Rik(ai

k, b
i
k)),
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which, in turn, is equivalent to:⋀︂
i

R−i1(ai
1, b

i
1) ∨ ... ∨R−ik(ai

k, b
i
k).

We have assumed ∀σ ∈ [θ(a, b)] : τ ⊥ σ, which implies:

∀i∃j : τ ⊩∗ R−ij (ai
j, b

i
j).

This, in turn, implies:

∀i : τ ⊩∗ R−i1(ai
1, b

i
1) ∨ ... ∨R−ik(ai

k, b
i
k),

and so:

τ ⊩∗ ⋀︂
i

R−i1(ai
1, b

i
1) ∨ ... ∨R−ik(ai

k, b
i
k).

Since ⊩∗ implies ⊩, it follows that τ ⊩ ¬θ(a, b) and so the (2.3) holds.

The Proposition above has been shown true under the assumption that σ = ∅
can not be extended to any condition τ , so that τ forces WPHP 2m

m (θ(x, y)). The
final step is to show that this Proposition is contradictory.

We can think of (2.1), (2.2) and (2.3) as properties of a certain combinatorial
structure. This leads to the following definition.

Definition 2.3.6. Let c be a standard number. Denote Ac
n,m a two-dimensional

array indexed by (a, b) ∈ [2m] × [m] and consisting of sets of partial injective
functions σ from [n+ 1] to [n] of size ≤ c satisfying the following properties:

• ∀a, a′ ∈ [2m] ∀b ∈ [m] ∀σ ∈ Ac
n,m(a, b) ∀σ′ ∈ Ac

n,m(a′, b) (σ ̸= σ′) : σ ⊥ σ′,

• ∀a ∈ [2m] ∀b, b′ ∈ [m] ∀σ ∈ Ac
n,m(a, b) ∀σ′ ∈ Ac

n,m(a, b′) (σ ̸= σ′) : σ ⊥ σ′,

• ∀a ∈ [2m] ∀τ ∈ P ∃b ∈ [m] ∃σ ∈ Ac
n,m(a, b) : τ∥σ.

Proposition 2.3.7. Assuming σ = ∅ can not be extended to any τ so that
τ ⊩ WPHP 2m

m (θ(x, y)), it follows that Ac
n,m exists for some standard c.

Proof. Just note that c = 2k and Ac
n,m(a, b) = [θ(a, b)] satisfy all the properties

above, assuming σ = ∅ can not be extended to any τ forcing WPHP 2m
m (θ(x, y)).

If we prove that for any standard c the Ac
n,m does not exist, then σ = ∅

can be extended to some τ ∈ P so that τ ⊩ WPHP 2m
m (θ(x, y)). We first show

non-existence of Ac(n,m) for c = 1, so as to explain the idea.

Theorem 2.3.8. An array A1
n,m does not exist for any non-standard n and m.

Proof. Assume such an array exists and denote it A. Denote N as a number of
all functions inside A. More precisely, N = ∑︁

a,b |A(a, b)|. We want to compute
N in two different ways. Notice that, due to the first and second properties of

26



Ac
n,m, it follows that the same σ ∈ P can appear only once in each row and each

column. This implies:

N =
∑︂

a

|
⋃︂
b

A(a, b)| =
∑︂

b

|
⋃︂
a

A(a, b)|.

Firstly, we analyze the maximum number of functions inside any column of
A. Note that the first property of Ac

n,m says that any two functions of the same
column are incompatible. Since c = 1, any function of our array is just a pair
(a, b) ∈ [n + 1] × [n]. For such pairs (a, b) and (a′, b′) to be incompatible means
that either a = a′ and b ̸= b′, or a ̸= a′ and b = b′. The size of the set of pairs
satisfying the property above is ≤ n+ 1. To see this, assume the size is ≥ n+ 2
and denote such set as S. Pick two different pairs (a, b) and (a′, b′) from S. Since
they are incompatible, we may assume b = b′ and a ̸= a′. Since the number
of elements of S is at least n + 2, it follows that S contains a pair (a′′, b′′) so
that a′′ ̸= a. Then, either (a, b) or (a, b′) is compatible to (a′′, b′′), resulting in a
contradiction.

Since there are m columns, it follows that:

N ≤ m · (n+ 1).

We now want to find a minimum number of functions inside any row of A.
Note that the third property of Ac

n,m implies that for any finite function τ ∈ P we
can find some pair (a, b) in our row so that such pair would be compatible with
τ . We claim that the size of the set of pairs satisfying the property above is ≥ n.
Assume there exists such set with fewer elements and denote it as S. Pick any pair
(a, b) from S. Denote PHP(a,b) as the set of all functions σ ∈ P so that |σ| = 2
and σ is defined on a, while also σ contains b in it’s image. Since all the elements
of S are pairwise-incompatible (second property of Ac

n,m) and (a, b) ∈ S, it follows
that, for any (a′, b′) ∈ S and σ ∈ PHP(a,b), either σ ⊥ (a′, b′), or σ extends (a′, b′).
Since |S| < n, it follows that we can find some b′ ∈ [n] so that (a, b′) /∈ S. Then,
PHP(a,b) contains precisely n functions σ extending (a, b′). All such functions are
of the form {(a, b′), (a′, b)} and, since |S| < n, we can pick some (a′′, b) /∈ S, which
defines us σ = {(a, b′), (a′′, b)}. Such σ does not extend any of the functions from
S. But σ is incompatible with all the elements of S, contradicting the initial
assumption.

Since there are 2m rows it follows that:

N ≥ 2m · n.

Combining the two inequalities above, gets us:

n+ 1
n

≥ 2,

which is a contradiction, since n > 1 and M is a model of true arithmetic.

It remains to generalize the proof for the case c ≥ 1. Note that the assumption
c = 1 allowed us to derive an explicit form of all the elements from each row and
column from Ac

n,m. This is not so easy for the general c. However, we can still
utilize the ideas of the Theorem 2.3.8.
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So assume some Ac
n,m exists and let us call it A. We want to proceed as before

and estimate N = ∑︁
a |⋃︁b A(a, b)| = ∑︁

b |⋃︁a A(a, b)| in two different, contradic-
tory, ways.

We start by analyzing the rows of A. Note that each row contains (≤ c)-large
pairwise incompatible partial injective functions betwenn [n+ 1] and [n] so that
for any τ ∈ P there is some function σ inside the row satisfying σ∥τ .

The lower bound on the size of rows can be achieved using PHP-trees which
we have already seen in the proof of 2.3.8.

Definition 2.3.9. A PHP -tree over D ⊆ [n + 1] and R ⊆ [n] is defined by
induction as follows:

• a single node (a root) is a PHP -tree over any D and R,

• for every a ∈ D the following is a PHP -tree over D,R:

– at the root the tree branches according to all b ∈ R, labeling the
corresponding edge (a, b),

– at the end-point of the edge (a, b) the tree continues as a PHP -tree
over D \ {a}, R \ {b};

• for every b ∈ R the following is a PHP -tree over D,R:

– at the root the tree branches according to all a ∈ D, labeling the
corresponding edge (a, b),

– at the end-point of the edge (a, b) the tree continues as a PHP -tree
over D \ {a}, R \ {b}.

A PHP -tree is defined as a PHP -tree over [n + 1], [n]. We will further assume
that all PHP -trees are uniform in depth, i.e. all the paths which start at the root
are of the same depth. We identify each PHP -tree with a set of partial functions
corresponding to maximal paths which start in a root.

For σ ∈ P we define PHPσ-tree as a PHP -tree T of depth 2|σ| so that for
each τ ∈ T it holds that either τ ⊥ σ, or τ extends σ. For any τ ∈ P with the
domain D and image R we define PHP τ

σ -tree (assuming σ∥τ) as a PHPσ-tree
over [n+ 1] \D and [n] \R.

The PHP -trees play major role in the proof of the famous Ajtai’s theorem
([Kraj́ıček, 2019][15.1]). In the original definition they need not be uniform in
depth, although this assumption will be helpful for us.

Lemma 2.3.10. Let S be a set of (≤ c)-large pairwise incompatible partial
injective functions betwenn [n + 1] and [n] so that for any τ ∈ P there exists
some function σ ∈ S satisfying σ∥τ . Then, there exists a set S ′ containing d-
large pairwise incompatible partial injective functions between [n+ 1] and [n] for
some standard d dependent on c only, so that |S ′| ≥ d!

(︂
n
d

)︂
and, for any τ ∈ S ′,

there exists a unique σ ∈ S such that τ extends σ.

Proof. Note that the size of any PHP -tree of depth d is ≥ d!
(︂

n
d

)︂
, where by size

we mean the size of the corresponding set of partial injective functions.
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We will define S ′ in c steps. At first, pick some σ ∈ S. Define S1 to be a
PHPσ-tree of size ≤ 2c. Note that for any τ ∈ S1 and σ ∈ S such that σ∥τ it
holds that |σ ∩ τ | ≥ 1.

Assume we have just finished the i-th step (i ≥ 1) and assume Si is a PHP -
tree of depth 2ic. Assume further that for any τ ∈ Si and σ ∈ S such that σ∥τ
it holds that |σ ∩ τ | ≥ i.

For any τ ∈ Si we can pick some στ ∈ S so that στ ∥τ . Define Sτ
i to be

a PHP τ
στ

-tree of size ≤ 2c. We then define Si+1 as a PHP -tree which is con-
structed by attaching each Sτ

i to the corresponding leaf of Si. Note that the
resulting PHP -tree may not be uniform in depth, but we can prolong it so that
the uniformity condition will hold. We can also prolong our tree so that its depth
would be 2(i+ 1)c.

It is enough to show that for any δ ∈ Si+1 and σ ∈ S so that σ∥δ it holds that
|σ ∩ δ| ≥ (i+ 1). So pick any δ ∈ Si+1 and σ ∈ S as above. Note that, since Si+1
extends Si, it follows that |σ∩ δ| ≥ i. Pick τ ∈ Si such that δ extends τ and note
that |σ∩ τ | ≥ i. It holds that δ \ τ is (a subset of) a member of a PHP τ

στ
-tree Sτ

i

and so, in case σ ⊈ τ , it is true that |(δ \ τ) ∩ σ| ≥ 1, proving |σ ∩ δ| ≥ (i + 1).
In case σ ⊆ τ , it follows that σ ⊆ δ and so |σ ∩ δ| = c.

So let S ′ be Sc. For any σ ∈ P and τ ∈ S ′ it holds that either σ ⊥ τ , or
|σ∩τ | ≥ c, implying τ ⊇ σ, since the size of σ is c. It further holds that S ′ extends
S and, since it is a PHP -tree of depth 2c2, it follows that |S ′| ≥ (2c2)!

(︂
n

2c2

)︂
.

Let us shift our focus to columns of A. Note that such columns contain (≤ c)-
large pairwise incompatible partial injective functions between [n + 1] and [n].
As we will see below, using the Theorem 2.3.10, we will create the new array A′

containing partial injective functions of the same standard size d. This new array
would still satisfy properties (2.1) and (2.2) (and even (2.3), which will not be so
important for us).

We can also interpret members of such A′ as d-large matchings of a complete
bipartite graph with components of sizes n+ 1 and n. Using the graph-theoretic
language we can proceed as in the proof of the famous Erdős–Ko–Rado theorem
[Katona, 1972].
Lemma 2.3.11. Assume F is a family of d-large pairwise incompatible matchings
of a complete bipartite graph with components of sizes u and v, where u ≥ v.
Then:

|F| ≤ d!
(︄
u

d

)︄
.

Proof. For v = d the claim holds, since the set of all matchings of Ku,d satisfies
the property above.

For any v-large matching of Ku,v denoted as M , it holds that any two sub-
matchings of M are compatible, and so F can contain at most one d-large sub-
matching of M .

There are d!
(︂

u
d

)︂(︂
v
d

)︂
-many different d-large matchings of Ku,v and, since each d-

large matching of Ku,v can be extended to (v− d)!
(︂

u−d
v−d

)︂
-many v-large matchings,

it follows that:

|F| ≤ v!
(︄
u

v

)︄
· 1

(v − d)!
(︂

u−d
v−d

)︂ = u!
(u− d)!

(u− v)!
(u− d)! = d!

(︄
u

d

)︄
.
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The the upper bound given above is tight, since we can produce a set of
pairwise incompatible d-large matchings of size d!

(︂
u
d

)︂
by picking d elements from

the smaller component of Ku,v and defining S to be the set of all d-large matchings
which cover the elements we have picked.

We can, finally, combine the Lemmas 2.3.11 and 2.3.10 to prove the following
theorem.

Theorem 2.3.12. An array Ac
n,m does not exist for any finite c.

Proof. Assume such an array exists and denote it A. Each row Aa satisfies the
conditions of the lemma 2.3.10 and so we can create sets A′

a as in the lemma.
We now create a new array A′. For each a ∈ [2m] and b ∈ [m] we put τ from

A′
a inside A′(a, b) if and only if τ extends some σ ∈ A(a, b). Due to the Lemma

2.3.10, it follows that each τ extends some σ from Aa and such σ is unique, so A′

is well-defined.
Notice that for any a ∈ [2m] and b, b′ ∈ [m] it is true that for any two different

τ ∈ A′(a, b) and τ ′ ∈ A′(a, b′) it holds that τ ⊥ τ ′. This holds, since τ extends
some σ ∈ A(a, b) and τ ′ extends some τ ′ ∈ A(a, b′) and, since τ ̸= τ ′, it follows
that σ ̸= σ′, implying σ ⊥ σ′. Then, clearly, τ ⊥ τ ′.

The same is true for different τ, τ ′ from the same column, i.e. τ ⊥ τ ′.
Let us now calculate:

N =
∑︂

a

|
⋃︂
b

A(a, b)| =
∑︂

b

|
⋃︂
a

A(a, b)|.

The Lemma 2.3.11 implies:

N ≤ m · (2c2)!
(︄
n+ 1
2c2

)︄
,

while 2.3.10 and the way A′ is constructed implies:

2m · (2c2)!
(︄
n

2c2

)︄
≤ N.

Combining these two inequalities, gets us:

2 ≤ n+ 1
n− 2c2 ,

which is a contradiction, since n is non-standard and c is finite and M is a model
of true arithmetic.

So Ac
n,m does not exist for any non-standard n,m and finite c. This implies

σ = ∅ can be extended to some τ ∈ P so that τ ⊩ WPHP 2m
m (θ(x, y)) for fixed

non-standard m and an LP A(R)-formula with parameters θ(x, y).
Recall that we are trying to show that the set of all conditions which force

WPHP 2m
m (θ(x, y)) is dense. This will imply:

∅ ⊩ WPHP (open(R)),
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finishing the proof of 2.3.2 and, in turn, the Theorem 2.3.1.
So pick σ ∈ P and assume it can not be extended to any τ ∈ P so that

τ ⊩ WPHP 2m
m (θ(x, y)). By the same arguments as for σ = ∅ (2.3.7), this implies

the existence of an array Ac
n,m,σ denoted as A, which satisfies all the properties

of Ac
n,m plus all it’s members are partial functions between [n + 1] \ Dom(σ)

and [n] \ Im(σ), where Dom(σ) denotes the domain of σ and Im(σ) denotes the
image of σ. This condition is important, since we are now focusing only on those
τ ∈ P which extend σ, which is the same as to work with those partial injective
functions, whose domains are inside [n+1]\Dom(σ) and whose ranges are inside
[n] \ Im(σ).

Then, we proceed in the exact same way as in the Theorem 2.3.12 and create
a new array A′ whose rows are of size ≥ (2c2)!

(︂
n−|σ|

2c2

)︂
and which satisfies first two

conditions of A2c2
n,m-arrays. This can be done in the same way as in the Lemma

2.3.10 by considering PHP -trees over [n+ 1] \Dom(σ) and [n] \ Im(σ), instead
of the ones over [n+ 1] and [n].

Finally, we count:

N =
∑︂

a

|
⋃︂
b

A′(a, b)| =
∑︂

b

|
⋃︂
a

A′(a, b)|.

The Lemma 2.3.11 implies N ≤ m · (2c2)!
(︂

n+1−|σ|
2c2

)︂
and the way A′ is constructed

implies N ≥ 2m · (2cc)!
(︂

n−|σ|
2c2

)︂
. Combining these two inequalities, gets us:

2 ≤ n+ 1 − |σ|
n− |σ| − 2c2 ,

which is a contradiction, since n is non-standard and c, |σ| are finite. This finishes
the proof of 2.3.2 and, in turn, of 2.3.1.

Let us briefly summarize the proof. We have started with a model of Th(N),
denoted as M. We have then considered P to be a set of all partial injective
functions from [n+ 1] to [n] of standard sizes. Using 2.2.6 we have established:

∅ ⊩ ¬ontoPHP (R),

and, using 1.2.4:

∅ ⊩ I∃1(R).

The next step was to show:

∅ ⊩ WPHP 2m
m (θ(x, y))

for any open LP A(R)-formula with parameters θ(x, y) and m ∈ M. We have
achieved this by showing a stronger statement, i.e. that the set of all conditions
forcing WPHP 2m

m (θ(x, y)) is dense-definable, where definability easily followed
from the Propositions 2.2.13, 2.2.12 and 2.2.11.

Density of the above set was proved by contradiction. Assuming the above
set was not dense and σ being the witness, we have defined an array [θ(a, b)]
and showed that such array satisfied properties (2.1), (2.2) and (2.3). Finally,
by combinatorial arguments (2.3.11) and (2.3.10), we have proved that an array
satisfying mentioned properties cannot exist (2.3.12).
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3. WPHP for polynomial-time
machines

3.1 Case for T 1
2 (R)

We will now prove the Theorem 1.2.5:

T 1
2 (R) ⊬ ontoPHP (R),

using the forcing machinery from previous section (the original proof used proof
theory and witnessing functions).

Proof. Recall that T 1
2 (R) is axiomatized by the least number principle for all

Σb
1(R)-formulas. To proceed as in the proof of 1.2.4, we need to pick a countable

non-standard model of Th(N) denoted M. Pick some non-standard n from M.
We consider a cut Mn ⊆ M defined as:

{a | a ≤ 2|n|c , c is standard}.

Similarly to the Theorem 1.1.5 it is possible to show that Mn is a model of T2.
This Mn would serve as a base model which we want to expand by interpreting
R.

Define P ∗ as the set containing all the partial injective functions between
[n+ 1] and [n] of sizes ≤ |n|c, for some standard number c. This means each such
condition σ is coded by some w ∈ Mn so that len(w) ≤ |n|c for some standard c
dependent on w.

Propositions 2.2.6 and 2.2.7 are true for P ∗, implying:

∅ ⊩ ¬ontoPHP (R).

We will now show that the set of all conditions forcing the least number
principle for Σb

1(R)-formulas with parameters from Mn is dense-definable. So
let θ(x) be such formula and let σ be from P ∗. It is possible to represent each
instance θ(a) as a DNF inside Mn. To achieve this, first push negations inside the
atomic subformulas of θ(a). Then, replace universal and existential quantifiers
by conjunctions, respectively disjunctions, over all possible witnesses. Finally,
put the formula into DNF denoted D. Since all the quantifiers are bounded,
this formula is well-defined in Mn. Note that all the universal quantifiers in the
original instance θ(a) (after we push the negation to the atomic subformulas) are
bounded by |n|c for some standard c. So, all the DNF-terms of D are of the size
≤ |n|d, for some standard d dependent on θ(a) only, since |2|n|c1 |c2 = |n|c1·c2 .

Assume σ ⊮ LNP (θ(x)) and let G be a generic filter extending σ for which
(Mn, G) ⊨ θ(a) for some a ∈ Mn. As in the proof of 1.2.4, it is possible to find
some τ ⊇ σ so that:

τ ⊩ θ(a).
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We can also show that the size of such τ can be made ≤ |σ| + |n|d, for some
standard d dependent on θ(a) only. Again, as in the proof of 1.2.4, we can then
define a set:

{b | b ≤ a ∧ ∃τ(τ ⊇ σ ∧ |τ | ≤ (|σ| + |n|d) ∧ τ ⊩ θ(a))}.

Since Mn is a model of T2, this set has the least element e. It follows that there
exists τ ⊇ σ so that |τ | ≤ |σ| + |n|d and τ ⊩ θ(e), while for any b < e there is no
τ ′ ⊇ σ and subsequently τ ′ ⊇ τ forcing θ(b), thus showing τ ⊩ LNP (θ(x)).

3.2 Polynomial-time machines
We are now ready to prove the main theorem of the thesis.

Theorem 3.2.1.

T 1
2 (R) +WPHP (□p

1(R)) ⊬ ontoPHP (R).

Proof. We have already shown:

∅ ⊩ ¬ontoPHP (R),

and:

∅ ⊩ T 1
2 (R).

We are left to prove:

∅ ⊩ WPHP (□p
1(R)),

which we will show by arguing that the set of all conditions from P ∗ forcing
WPHP 2m

m for any fixed polynomial-time machine with an oracle access to R is
dense-definable (as usual, definability of such set is clear and so we will focus on
density).

Let M be such a machine and assume σ ∈ P ∗ cannot be extended to any τ so
that τ ⊩ WPHP 2m

m (M). We can then create a two-dimensional array A∗ indexed
by [2m]× [m], such that A∗(a, b) contains maximal paths in the computation tree
of M on input (a, b) corresponding to the computation asserting (a, b) is accepted.
Since T 1

2 (R) extends S1
2(R), it follows that such tree is bounded in depth by |n|c.

Each path of this tree is a conjunction of atomic and negated atomic statements
R(s, t) and we can represent it by all ⊆-minimal maps from P ∗ compatible with
the answers. Note that each such map has the size bounded by |n|c, for some
standard c dependent on the given map.

Proceeding as in the proof of 2.3.5, we derive that such an array, denoted A∗,
satisfies the following properties:

∀a, a′ ∈ [2m] ∀b ∈ [m] ∀σ ∈ A∗(a, b) ∀σ′ ∈ A∗(a′, b) (σ ̸= σ′) : σ ⊥ σ′, (3.1)

∀a ∈ [2m] ∀b, b′ ∈ [m] ∀σ ∈ A∗(a, b) ∀σ′ ∈ A∗(a, b′) (σ ̸= σ′) : σ ⊥ σ′, (3.2)
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∀a ∈ [2m] ∀τ ∈ P ∗ ∃b ∈ [m] ∃σ ∈ A∗(a, b) : τ∥σ. (3.3)

We then proceed as in the Theorem 2.3.12 and prove that such an array cannot
exist, since, otherwise, we could extend it to an array (A∗)′ so that that each
row of (A∗)′ contained ≥ (2|n|2c)!

(︂
n+1−|σ|

2|n|2c

)︂
different functions and each column of

(A∗)′ contained ≤ (2|n|2c)!
(︂

n−|σ|
2|n|2c

)︂
different functions. Then, since |σ| ≤ |n|l for

some standard l, it would follow:

2 ≤ n+ 1 − |n|l

n− |n|l − 2|n|2c
,

which is a contradiction, since n is non-standard and both c and l are standard.

Using the same ideas as in the above proof, we can show the following state-
ment, which has been already discussed in the first chapter.

Theorem 3.2.2.

T 1
2 (R) + PHP

n
2 +1

n
2

(□p
1(R)) ⊬ ontoPHP (R).

Proof. As before, assuming that the statement is not true, we create an array
indexed by [n

2 + 1] × [n
2 ] which satisfies the properties (3.1), (3.2), (3.3). Then:

(n2 + 1)(2|n|2c)!
(︄
n− |n|k

2|n|2c

)︄
≤ n

2 (2|n|2c)!
(︄
n+ 1 − |n|k

2|n|2c

)︄
,

implying:

(n2 + 1)(n− |n|k − 2|n|2c) ≤ n

2 (n+ 1 − |n|k).

The above inequality leads to:

n− |n|k − 2|n|2c(n2 + 1) ≤ n

2 ,

which is a clear contradiction.
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Conclusion
In Section 1.1 we have described several basic arithmetic theories. In Section 1.2
we have defined pigeonhole principles and formulated the main theorem of the
thesis. We have also stated an open problem posed by Ajtai [1990][page 3] re-
garding mutual unprovability of the pigeonhole principle for different parameters
over the bounded arithmetic theory T2.

In Section 2.1 we have showed a proof of the theorem of Paris and Wilkie
[1985]. We have then developed some theory behind the forcing and reinterpreted
the proof of the previous section’s theorem in the new language. In Section 2.3
we have showed a proof of an easier variant of the main theorem. To achieve this,
we have defined certain combinatorial structures and, using different counting
arguments, proved that such structures cannot exist.

In Section 3.1 we have provided a proof of the theorem of Kraj́ıček [1995][12.7],
which can be thought of as a modification of the Theorem of Paris and Wilkie
[1985] for the extended arithmetical language and corresponding theory. In Sec-
tion 3.2 we have provided a proof for the main theorem and stated some corol-
laries.

As we have already discussed, direct proofs in T 1
2 provide bounds for propo-

sitional proofs (Kraj́ıček [2019][10.5.1]) and witnesses to certain algorithmical
problems (Kraj́ıček [1995][7.2.3]). The next possible step after the proof of the
main theorem would be to treat those connections and, possibly, derive some
interesting results in the corresponding areas of mathematical logic.

We have also answered an easier version of the open problem posed by Ajtai
[1990][page 3] and so it is tempting to ask, whether it is possible to achieve
stronger results using the methods we have developed.
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