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Abstract

The hardest problems in the complexity class NP are called NP�complete� However� not all NP�complete

problems are equally hard to solve from the average point of view� For example� the Hamiltonian circuit

problem has been shown to be solvable deterministically in polynomial time on the average� whereas the

bounded tiling problem still remains hard to solve even on the average� We therefore need a thorough

analysis of the average behavior of algorithms�

In response to this need� L� Levin initiated in ���	 a theory of average�case NP�completeness� Levin
s

theory deals with average�case NP�complete problems using polynomial�time many�one reductions� The

reducibility is a method by which we can classify the distributional NP problems�

In this thesis� we develop a more general theory of average�case complexity to determine the relative

complexity of all natural average�case intractable problems� We investigate structure of reducibilities� in�

cluding a bounded�error probabilistic truth�table reducibility� We introduce a variety of relativizations of

fundamental average�case complexity classes of distributional decision problems� These relativizations are

essential when we attempt to expand our notion of average polynomial�time computability to develop a

hierarchy above average NP problems�

Average�case analyses are very sensitive to the choice of probability distributions� We have observed that

if the input probability distribution decays exponentially with size� for instance� all NP�complete problems

are solved �fast� on the average� This phenomenon does not re
ect a signi�cant feature of average�case

analysis� This thesis includes a thorough analysis of structural properties of feasibly computable distributions

and feasibly samplable distributions�

In addition� one may ask how we can extract the essential average behavior of algorithms independent

of the choice of probability distributions� To answer this question� this thesis introduces the new notion

of quintessential computability� which expands the boundary of worst�case feasible computability �such as

polynomial�time computability�� and asserts the invariance of average�case complexity of algorithms regard�

less of which feasibly computable distributions are chosen� This thesis examines the hardness of this real

computability and its structural properties�
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Preface

The theory of average�case NP�completeness came forcibly to my attention while I was a visiting scholar

at the Universit�at Ulm from April to August of ����� In June of ����� the annual meeting of complexity

theorists from the Universit�at Ulm and the Universitat Polit�ecnica de Catalunya was held in Barcelona� Uwe

Sch�oning� the director of the Abteilung Theoretische Informatik of the Universit�at Ulm� assigned to young

researchers the topics that would be extensively studied at that year
s meeting� average�case NP�complete

problems and local search problems� Six years before� L� Levin had presented his idea of average�case

NP�completeness� and several important studies were done along these lines�

I started reading these papers and technical reports and enjoyed discussing Levin
s de�nition of �poly�

nomial on average� with Rainer Schuler� who was �nishing his thesis on probabilistic computations� The

foundations of this thesis were established during this time� and the results were presented at a conference

in New Delhi in December� �����

In June of ���	� I met Rainer Schuler again at a conference held in Amsterdam� He had with him a paper

which solved a problem we had left open in our ���� paper� We soon started working together� re�ning his

key algorithm to construct hard sets which cannot be computable in feasible time� These results were later

presented at a conference in Xi
an� China� in August of ���� and are also included in this thesis�

This thesis demands of little preparatory knowledge in the theory of computational complexity� Most

concepts are thoroughly de�ned in each section of this thesis or are self�explanatory�
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encouragement� My special thanks also go to Eric Harley and Debby Repka for pointing out typos and
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Toronto� I also thank my grandmother� Nawo� from the bottom of my heart for spiritual guidance� My great

appreciation should go to my �anc�ee Mitsue Nomura who has helped me write this thesis�

Tomoyuki Yamakami

Toronto� Canada

May �� ����

iii



iv



Contents

� Introduction �

� Foundations of Computational Complexity Theory �

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Fundamental Notions and Notation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Logic � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Sets and Numbers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Graphs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Finite and In�nite Strings � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

����� Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Asymptotic Notation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Probability Measure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Models of Computation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Deterministic Turing Machines � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Nondeterministic Turing machines � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Oracle Turing Machines � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Alternating Turing Machines � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Worst�Case Time�Space Complexity � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��	 Randomized Algorithms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Random�Input Domains � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Probabilistic Turing Machines � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Worst�Case Complexity Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Computable Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Complexity Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Worst�Case Hierarchies � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Polynomial�Time Reducibilities � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Complexity Cores � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� One�Way Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Hash Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

v



����� One�Way Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Relevant Theories � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

����� Feasible Real Numbers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

����� Kolmogorov Complexity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		

����� Resource�Bounded Measure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

� General Theory of Average Case Complexity ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Distributions and Density Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� A Notion of Easy�on�Average � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Naive De�nition of Average Polynomial Time � � � � � � � � � � � � � � � � � � � � � � � ��

����� Levin
s De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

����� Basic Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Di�erent Characterization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Random Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��	 A Notion of Domination � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Domination Relations and Equivalence Relations � � � � � � � � � � � � � � � � � � � � � ��

��	�� Fundamental Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Randomized Domination � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Distributional Decision Problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Average�Case Complexity Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Inclusions and Separations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Another Characterization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Further Topics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Feasible Distributions ��

	�� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Computable Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	���� De�nition of Computable Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	���� Rare Strings and Rare Sets � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	���� Fault�Tolerance of Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

	�� Normalization of Semi�Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�	 Samplable Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�	�� De�nition of Samplable Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�	�� Invertibly Samplable Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�	�� Closure Properties of Samplable Distributions � � � � � � � � � � � � � � � � � � � � � � � ���

	�� The P�comp � P�samp Question � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�� Universal Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

vi



	�� Domination Relations and Equivalence Relations � � � � � � � � � � � � � � � � � � � � � � � � � ���

	���� Condition I � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	���� Condition I� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	���� �P�comp versus P�samp � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

	���	 Condition II� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

	���� Condition II � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �		

	�� Other Topics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

� Average Polynomial Time Reducibilities ���

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

��� Deterministic Reducibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Many�One Reducibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Polynomial Time Isomorphism � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Deterministic Turing Reducibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Many�One Complete Problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Randomized Bounded Halting problem � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Randomized Bounded Tiling problem � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Other Complete Problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����	 Hard Problems under Samplable Distributions � � � � � � � � � � � � � � � � � � � � � � ���

����� Discussion of Complete Problems for Aver�NP�P�comp� � � � � � � � � � � � � � � � � ���

��	 Incompleteness Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Flat Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Sparse Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Unreasonable Distributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

��� Bounded�Error Probabilistic Reducibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Skew Bounded�Error Probabilistic Reducibility � � � � � � � � � � � � � � � � � � � � � � ���

����� More Structural Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Bounded Error Probabilistic Truth Table Reducibility � � � � � � � � � � � � � � � � � � ��	

����	 Application of Probabilistic Reducibility � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Structure of Reducibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Recent Topics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	 Average Case Hierarchies ���

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Distributional Polynomial�Time Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� De�nition of Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Self�Reducibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Relativization of Average Complexity Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

vii



����� Relativized Aver�P�F� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Relativized Aver�BPP�F� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Relativized Aver�NP�F� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����	 Relativized Aver�PSPACE�F� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

��	 Average Polynomial�Time Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Average Polynomial Time Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Sparse Interpolation Property � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Average Polynomial�Time Alternation Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Average Low Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Quintessential Computability ���

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Real Polynomial�Time Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� The Notion of �Real C under F� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Real Polynomial�Time Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Nearly�
p
k and Nearly��p

k Sets � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

����	 Collapsing Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

��� Fundamental Separations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

����� Construction of Hard Instances � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

����� Separation from �Quasi� Linear Exponential Time � � � � � � � � � � � � � � � � � � � � �	�

����� Separation from Advice Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	 Immunity and Bi�Immunity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Immune Sets and Complexity Cores � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Bi�Immune Sets and Resource�Bounded Measure � � � � � � � � � � � � � � � � � � � � � ���

��� Closure Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Polynomial Time Reducibilities � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Polynomially Bounded Existential Operator � � � � � � � � � � � � � � � � � � � � � � � � ��	

��� Bounded Error Probabilistic Polynomial Time � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Random Oracle Separations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Conclusion ���

A Small Lemmas ���

References ���

List of Notation ���

Index �



viii



Chapter �

Introduction

The new concept of the �automatic computing system� �a term coined by von Neumann� was proposed that

gave rise to computers in the mid ��	�
s� After �ve decades� computers have come to permeate our society�

their presence spans the range from wrist watches to weather forecasting satellites orbiting the earth�

The theory of computational complexity has emerged as computer technology has advanced� and now we

face more di�culties than ever� When a problem is given� we must write a program or construct a circuit

to solve it� To minimize the cost of solving the problem� we must presumably determine its complexity�

�Complexity� can be measured in various ways� such as �the running time spent by an algorithm�� �the

memory space used for an algorithm�� �the number of basic operations made by an algorithm�� �the number

of processors used for a circuit�� and so on� Here we focus on an algorithmic model of computation� worst�

case complexity theory deals with the worst behaviors of algorithms� that is� the maximal complexity of

algorithms when an adversary chooses �bad� instances� On the contrary� average�case complexity theory

analyzes algorithms by measuring their complexity on the average over all instances�

Traditional average�case analysis of problems has been performed to determine the expected running

time or expected tape space of algorithms to solve given problems under circumstances in which each input

instance occurs with a certain probability� We have seen that many important problems� such as the traveling

salesperson problem and the Hamiltonian circuit problem� are categorized as the hardest to solve amongNP

problems� The hardest problems in NP are called NP�complete� All NP�complete problems share the same

worst�case complexity� but they are not of the same average�case complexity� For example� relatively fast�

on�average deterministic algorithms have been found for some famous NP�complete problems� such as the

graph ��colorability problem� and the Hamiltonian circuit problem� under naturally selected distributions�

Although the notion of expected running time�space is simple and intuitive� it has limitations when used as

a base of a consistent and coherent theory and does not address the better understanding of the nature of

intractability of problems in both a theoretical and practical sense�

In ���	� Leonid Levin  ��! presented a one page paper at the Symposium on Theory of Computing�

STOC� proposing the novel idea of de�ning an average�case complexity measure� Levin demonstrated that

a randomized version of an NP�complete problem� the randomized bounded tiling problem� is complete for a

�
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randomized version of NP� This terse paper shed light on what average�case analysis should be� Early works

of Gurevich  ��! and Ben�David� Chor� Goldreich� and Luby  �! expanded Levin
s original idea to establish

a coherent framework for average�case complexity theory� Since then� numerous investigations have been

made�

This thesis tries to establish a general� consistent� and coherent theory of computational average�case

complexity and to contribute to its advancement� In particular� this thesis makes an important addition

to Levin
s theory of average�case NP�completeness by de�ning average�case hierarchies founded on average

polynomial�time computable problems� analogous to the polynomial�time hierarchy� In this thesis� we study

the structure and properties of those newly de�ned hierarchies� We also emphasize the investigation of

distributions� which is a recent undertaking� The thesis carries out a thorough analysis of computable

distributions and samplable distributions� The most innovative part of this thesis is the introduction in

Chapter � of quintessential computability under a given set of distributions and its investigations� This

new concept enables us to discuss a wide range of subjects in average�case complexity theory� We use

Kolmogorov complexity� resource�bounded measure� and random oracles to understand the true nature of

average behaviors of algorithms�

The thesis consists of eight chapters� each of which addresses a separate issue� Speci�cally� Chapter �

provides the reader with the foundations of the theory of computational complexity� the fundamental notions

and notation� necessary to read the thesis� Most results come from the author
s work �in collaboration with

R� Schuler� on average�case complexity theory  ��� ��� ���!� while some new results are appended elsewhere

in the thesis� To avoid confusion� results �theorems� lemmas� etc�� with which the author was involved are

listed under Major Contributions at the beginning of each chapter with careful attribution� More detailed

explanations will be found below�

Easy on the Average� A naive idea of capturing the average behavior of a function f is given as fol�

lows� For a distribution �� let us denote by "� the associated �probability� density function� The func�

tion f is �expected polynomial on ��average� if there is a positive integer k such that� for almost all n�P
x�jxj�n f�x�"�n�x� � nk� where �n is the conditional distribution of � de�ned on the strings of length n�

However� as discussed in Section ���� this de�nition has serious de�ciencies� such as lacking the closure prop�

erty under composition and lacking the property of machine�independence� It therefore cannot be the basis

for a consistent� fruitful theory� In the average�case setting� we view a decision problem as a pair consisting

of a set of instances and an input distribution� called a distributional �decision� problem or randomized

�decision� problems� The intended interpretation is that� for an algorithm which determines whether x � A�

each instance x is given to the algorithm with a probability speci�ed by the distribution�

In contrast� Levin  ��! called a function f polynomial on ��average if there exists a positive real number �

such that the expectation
P

x�jxj�� jxj��f�x�� "��x� converges� This expectation is taken over the in�nite set

of all nonempty strings� Later Impagliazzo  	�! pointed out that we can replace Levin
s in�nite expectation

with a series of �nite expectations� on an input ensemble f��ngn�N�
P

x���jxj�n f�x�� "��n�x� being bounded

by O�n�� where ��n is the conditional distribution of � on the strings of length at most n� In other words�



�

it is su�cient to check the expectation over all strings of length at most n�

An intuitive characterization of Levin
s notion of �polynomial on ��average� is given by Schapire  ��! as

follows� there exists a polynomialp such that� for every positive real number r� "��fx j f�x� � p�r�jxj�g� � ��r�

Here we remark that "� can be replaced by "��n� Based on Schapire
s formulation� we are able to extend

Levin
s polynomial on ��average to t on ��average for an arbitrary function t� Naturally� a distributional

decision problem �A� �� is identi�ed as �easy� on average if the problem A is computed by a deterministic

Turing machine which halts in polynomial time on ��average� The collection of all such easy�on�average

problems is considered an average�case version of P by many researchers and is denoted in this thesis by

Aver�P� �� �by AP� AvP� AverP� Aver�P� or Average�P� elsewhere�� This class is fundamental to Levin
s

theory of average�case NP�completeness� More generally� we can restrict ourselves to an arbitrary set F
of distributions� and the notation Aver�P�F� denotes the collection of all easy�on�average distributional

problems �A� ��� where � is taken from F � Under some natural distributions� several NP�complete problems

are solvable �fast on the average�� For example� the �satis�ability problem�  ��!� the �graph ��colorability

problem�  ���!� and the �Hamiltonian circuit problem� with edge probability �
�  ��! are found to be in

Aver�P� �� under some reasonable distributions�

On the other hand� an average�case counterpart of the class NP is the collection of all distributional

problems which are pairs of an NP set and a feasibly computable distribution� This collection is denoted

in this thesis by Dist�NP�P�comp� �by Dist�NP� RNP� or Random�NP elsewhere�� Levin raised an intrigu�

ing question� � Can all problems in Dist�NP�P�comp� really be �easy� on the average #� Ben�David�

Chor� Goldreich� and Luby  �! gave the following answer� this is the case unless the nondeterministic lin�

ear exponential�time class equals its deterministic counterpart� This thesis is motivated by Levin
s open

question� Chapter � is devoted exclusively to introducing Levin
s theory of average�case complexity and its

generalization�

To deal with the complexity issue� we generalize the above two classes and introduce the notion Dist�C�F��

which is the collection of all pairs �A� ��� where A � C and � � F � and the other four fundamental notions

Aver�NP�F�� Aver�BPP�F�� Aver�RP�F�� and Aver�PSPACE�F��

Input Distributions� Here we would like to remind the reader that average�case analyses are sensitive

to the choice of distributions� because �average polynomial�time computability� is founded on the behavior

of the distributions in question� The study of distributions is therefore crucial in average�case complexity

theory� In Chapter 	� we discuss the complexity of feasible distributions� In particular� we shall focus on two

types of distributions� polynomial�time computable distributions and polynomial�time samplable distribu�

tions� Gurevich  ��! called a distribution � polynomial�time computable if there exists a deterministic Turing

machine M such that j��x� �M �x� �i�j � ��i for all nonnegative integers i� Ben�David et al� introduced

polynomial�time samplable distributions which are generated by randomized algorithms �called sampling al�

gorithms  �! or generators  ��!� which run in time polynomial in the length of �outputs�� By P�comp and

P�samp� we denote the sets of polynomial�time computable and samplable distributions� respectively� In

Section 	��� we shall show that polynomial�time samplable distributions are precisely as hard as PP sets to



	 CHAPTER �� INTRODUCTION

compute deterministically in polynomial time�

Another important notion in Levin
s theory of average�case NP�completeness is domination relations

among distributions� When a distribution � majorizes another distribution � within a polynomial factor� we

say that � polynomially dominates �� More precisely� � polynomially dominates � if there exists a polynomial

p such that p�jxj� � "��x� � "��x� for all strings x� Polynomial�domination of polynomial�time samplable

distributions is closely related to the existence of cryptographic one�way functions� A �cryptographic uniform�

one�way function is a function which is easy to compute but hard to invert on most instances and is believed

to exist by many researchers� Ben�David et al�  �! �rst found this connection and showed that if such

one�way functions exist� then there is a polynomial�time samplable distribution which is not polynomially

dominated by any polynomial�time computable distribution� In Section 	��� we shall show that a much

weaker assumption� the existence of NP sets that are not nearly�RP� is enough to get the same conclusion�

Here� a set A is said to be nearly�RP if some randomized algorithm computes A on most instances� and it

behaves like a one�sided bounded�error probabilistic machine on most instances�

Moreover� if two distributions polynomially dominate each other� we say that both are polynomially

equivalent� For example� every distribution samplable relative to BPP sets in time polynomial in the size of

output is polynomially equivalent to some polynomial�time samplable distribution� Under the assumption

P � NP� every polynomial�time computable distribution is polynomially�equivalent to some polynomial�

time samplable distribution�

Average�Case Reducibility� Chapter � focuses on a variety of average�case reducibilities� For decades�

researchers have made great e�orts to achieve a better understanding of the structure and properties of

intractable problems� The term NP�complete was coined to describe the most intractable NP problems�

and many interesting NP�problems are declared to be NP�complete� that is� the hardest problems to solve

in polynomial time�

Levin
s innovation is the invention of an average�case version of such a completeness notion among

distributional decision problems� His notion of completeness is based on worst�case polynomial�time many�

one reducibility with an extra condition� the so�called domination condition for the reduction function�

which guarantees that the reduction maps more likely instances to more likely instances� He showed that

the �randomized bounded tiling problem� is complete for Dist�NP�P�comp� under this type of reduction�

Since his proof of completeness� only a dozen distributional problems have been found to be complete for

Dist�NP�P�comp�� Typical examples are� the �randomized bounded halting problem�  ��!� the �randomized

bounded Post correspondence problem�  ��!� and the �randomized word problem for Thue systems�  ���!

under polynomial�time many�one reductions� We shall discuss the issue of deterministic reductions in Section

����

In Section ���� we shall formally introduce the �average� polynomial�time many�one reductions and cul�

tivate their structural properties� Wang and Belanger  ���! de�ned polynomial�time isomorphism between

two distributional decision problems and showed that all known complete problems for Dist�NP�P�comp�

are indeed polynomially isomorphic� Section ��� will show that several typical distributional problems are



�

complete for Dist�NP�P�comp� and also polynomially isomorphic to each other�

Incompleteness results have been achieved by Gurevich  ��! and by Wang and Belanger  ���!� Gurevich

 ��! �rst drew attention to distributions of exponentially�small probability� so�called �at distributions� and

demonstrated that no 
at distribution makes a distributional problem complete for Dist�NP�P�comp� unless

NEXP collapses to EXP� We notice that the distribution used for the randomized bounded tiling problem�

for example� is not 
at� As Wang and Belanger pointed out� if we restrict ourselves to one�one� polynomially

honest reductions� we can drop the assumption EXP �� NEXP� We shall show that distributions of

another type� so�called sparse distributions� which were introduced by Gurevich  ��!� also do not make any

distributional problem complete for Dist�NP�P�comp� unless NP collapses to P� This incompleteness issue

will be discussed in Section ��	�

Another type of important reduction is �probabilistic� or �randomized� reduction� In ����� Venkate�

san and Levin  ���! used �random reductions� to demonstrate the intractability of the randomized graph

colorability problem� Later Ben�David� Chor� Goldreich� and Luby  �! introduced two more notions� �ran�

domized many�one reductions� and �randomized Turing reductions�� In Section ���� we shall introduce an

average�case version of bounded�error probabilistic truth�table reducibility� Despite the incompleteness re�

sult of 
at distributions� we are able to prove that the randomized bounded halting problem with a natural


at distribution is also complete for Dist�NP�P�comp� under these reductions�

Average�Case Hierarchies� In worst�case complexity theory� Meyer�Stockmeyer
s polynomial�time hier�

archy� f�p
k�


p
k��

p
k j k � �g� has played a central role in capturing the magnitude of intractability of given

problems� Chapter � will discuss a hierarchical issue from the average�case complexity point of view�

The distributional polynomial�time hierarchy under F is an extension of the polynomial�time hierarchy

in which �p
k and 
p

k are replaced with Dist��p
k�F� and Dist�
p

k�F�� respectively� We shall show that each

$�level of the hierarchy under P�comp� Dist�
p
k�P�comp�� has complete problems under polynomial�time

many�one reductions�

The notion will be introduced of �polynomial�time Turing� self�reducibility among distributional decision

problems� To determine the membership x �#A� we recursively produce other instances y which are of

smaller size than x� and reduce the question x �#A to y �#A� Since the size of instances becomes smaller�

these reductions terminate in polynomially�many steps� In worst�case complexity theory� the satis�ability

problem� SAT� is a typical example of self�reducible problems� We shall show that most known distributional

problems complete for Dist�
p
k�P�comp�� k � �� are self�reducible� Whether all complete problems for

Dist�NP�P�comp� are self�reducible� however� is an open question� As an application of self�reducibility� we

shall show that Dist�NP�P�comp� 	 Aver�BPP� �� if and only if Dist�NP�P�comp� 	 Aver�RP� ���
In Section ��	� we shall introduce another average�case analogue of the polynomial�time hierarchy� called

theaverage polynomial�time hierarchy under a certain set of distribution� to classify distributional decision

problems which are hard for Dist�NP�P�comp�� The hierarchy is built above Aver�P�F� and Aver�NP�F�

using relativized Turing computation�

The model of alternating Turing machines gives another characterization for the polynomial�time hi�
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erarchy� Inspired by this characterization� we shall introduce in Section ��� an average polynomial�time

alternation hierarchy under a set F of distributions using a model of alternating Turing machines� Interest�

ingly� each level of the average polynomial�time alternating hierarchy is characterized by relativized Turing

computability relative to classes in the distributional polynomial�time hierarchy� As a result� in contrast

to the worst�case situation� the alternating hierarchy is unlikely to coincide with the average hierarchy in

general �of course� depending on the underlying set of distributions��

As an example� we shall locate the probabilistic complexity class Aver�BPP�F� in the average polynomial�

time alternation hierarchy�

Quintessential Computability� In Chapter �� we shall shed light on the collective behavior of distribu�

tional decision problems under a certain set of distributions� such as P�comp or P�samp� This approach is

new in average�case complexity theory and helps us investigate average�case complexity classes in terms of

worst�case complexity classes� More precisely� we shall focus on a class of sets S� called �real P under a set

F of distributions�� which extracts the essentials of average�case complexity class Aver�P� �� in the sense

that� for every distribution � in F � the distributional problem �S� �� belongs to Aver�P� ��� In other words�

S is computable by some deterministic Turing machine whose running time is polynomial on ��average�

We are particularly interested in feasible distributions� such as P�comp� Let us denote by PP�comp the

class �P under P�comp�� We return to Levin
s original question� Dist�NP�P�comp� 	#Aver�P� ��� Now

his question can simply be rephrased in terms of worst�case complexity classes as� �Is NP included in

PP�comp #� Based on the average polynomial�time hierarchy� we further de�ne real polynomial�time classes�

f�p
kF �


p
kF ��

p
kF j k � �g� called the real polynomial�time hierarchy under F � This hierarchy enables us to

generalize Levin
s question to any level of the real polynomial�time hierarchy under P�comp� �Is 
p
k included

in �p
kP�comp #�

We will show that� for every integer k � �� �p
k 	 �p

kF 	 �e
k and 
p

k 	 
p
kF 	 
e

k for any set F of

distributions� where �e
k is the k�th level of the linear�exponential�time hierarchy� in particular� P 	 PF 	 E

if k � �� Speci�cally� let us denote by PE�comp the collection of sets computable in polynomial time on

average under every exponential�time computable distribution� Using a notion of complexity cores� we are

able to show that PE�comp collapses to P� More generally� we are able to prove that �p
kREC�comp � �p

k and


p
kREC�comp � 
p

k for all k � ��

Section ��� will discuss hardness results of the average polynomial�time hierarchy under a set of polynomial�

time computable distributions� We have already seen the inclusions P 	 PP�comp 	 E� In ����� Schuler

 ��! showed that both inclusions are truly proper using a diagonalization over polynomial�time computable

�semi�distributions�� �Later he gave an alternative proof based on Kolmogorov complexity�� We extend his

technique and show in Section ����� an even more provocative consequence� PP�comp �	 DTIME��c�n� for

each �xed constant c � �� This result will be extended to any level of the real polynomial�time hierarchy

under P�comp�

A similar technique again enables us to show that �p
kP�comp has a hard set that is not in �p

k�cn for each

constant c � �� where �p
k�f�n� in general is the collection of all sets� each of which can be computed by



�

some �p
k�type machine with some advice function of length f�n�� We note that the class of sets computed by

non�uniform polynomial�size circuits is exactly the union of all classes P�nk� k � �� It does not appear to be

simple to improve our result to answer the open question of whether all sets in PP�comp have polynomial�size

circuits� However� Schuler  ��! recently proved that if all sets in PP�comp have polynomial�size circuits� then

EXP collapses to the second level of the polynomial�time hierarchy� Hence� based on the common belief

that EXP is di�erent from the polynomial�time hierarchy� it seems unlikely that all sets in PP�comp have

polynomial�size circuits� These issues will be discussed in Section ������

Another typical example of intractable sets� discussed in Section ��	� is P�immune and P�bi�immune

sets� P�immune sets are sets that do not contain any in�nite P�subsets in them� and P�bi�immune sets are

P�immune sets whose complements are also P�immune� We show that there are some non�sparse P�immune

sets in PP�comp� but PP�comp has no P�bi�immune sets� This fact exhibits the structural di�erence between

PP�comp and the class E� which has both P�immune and P�bi�immune sets� Using the fact regarding

P�bi�immunity� PP�comp is shown to be small with respect to Lutz
s resource�bounded measure� where a

complexity class is often called small if it has p�measure �� �Note that E has p�measure ��� As an immediate

consequence� ifNP is included in PP�comp� then NP has p�measure �� and this consequence again contradicts

the popular belief thatNP is not small� Along the same lines� Schuler  �	! showed that the truth�table closure

of PP�comp and the Turing closure of PP�comp have di�erent measures�

Section ��� will show that �p
kP�comp is not closed under polynomial�time many�one reductions� the ex�

istential operators� or the probabilistic operators� Hence� the class PP�comp� for example� is structurally

di�erent from most of the well�known complexity classes� such as P� NP� BPP� and PP� However� it is not

known whether PP�comp is closed under p�honest many�one reductions� Notice that the class �p
kP�samp� real

�p
k under P�samp� is closed under p�honest polynomial�time many�one distributions� We shall show that if

PP�comp is not closed under p�honest polynomial�time many�one reductions� then there is a polynomial�time

samplable distribution which is not polynomially dominated by any polynomial�time computable distribu�

tion� Under p�honest many�one reductions� we are able to show that there exists a pair of sets in PP�comp

which are not reducible to each other� a so�called incomparable pair�

The quintessential complexity class BPPF exhibits another structure� Due to Ben�David� Chor� Gol�

dreich� and Luby  �!� the assumption NP 	 BPPP�comp implies the conclusion �p
� 	 BPPP�comp� where

�p
� is the class of sets computable in polynomial time with nonadaptive queries to NP oracles� On the

other hand� Schuler and Watanabe  ��! extended a result of Venkatesan and Levin  ���! and showed that

the NP 	#BPPP�samp question is equivalent to the NP 	#BPPP�comp�

As shown by Ben�David et al�  �!� NP 	 PP�comp leads to the conclusion E � NE� On the other

hand� NP �	 PP�comp yields the consequence P �� NP� Hence� the NP 	#PP�comp question cannot be

easily solved in the non�relativized world� At this point� we have no prospect for answering Levin
s question

either a�rmatively or negatively� Now let us turn our interest to a relativization of this question� In �����

Bennett and Gill  �! introduced a notion of random oracles to show that P is di�erent from NP in �most�

relativized worlds� More precisely� if an oracle set is chosen at random� the probability that P di�ers from

NP relative to this oracle is �� In Section ���� we shall show that NP and PP�comp are mutually exclusive
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�i�e�� NP �	 PP�comp and PP�comp �	 NP� in �most� relativized worlds� To be more precise� let us denote

by PX
PX�comp a �natural� relativization of the class PP�comp relative to oracle X� We will show that� with

probability �� NPX �	 PX
PX�comp and PX

PX�comp �	 NPX � relative to random oracle X�



Chapter �

Foundations of Computational

Complexity Theory

��� Introduction

The theory of computational complexity �rst drew attention from mathematicians as a weak notion of

recursive functions� To measure the complexity of a given problem� we use particular models of computation�

such as Turing machines� circuits� or PRAM
s to solve the problem�

In this chapter� we shall de�ne and explain most of the fundamental notions and notations in �worst�case�

computational complexity theory so that the uninitiated reader can read through this thesis without the help

of supplementary textbooks�

In Section ���� we shall cover the elementary notions of graphs	 numbers	 sets� and functions� The

basic terminology in probability theory and logic will be also introduced� The thesis follows the standard

terminology often used in mathematics and theoretical computer science�

We use Turing machines as a model of computation� In general� deterministic Turing machines compute

partial recursive functions� but our interests lie only in resource�bounded computations� and we need the

notions of running time and tape space of the Turing machines� The reader should pay careful attention

to the models we shall use in this thesis because di�erent models lead to di�erent consequences� Several

variations of Turing machines will be introduced in Section ���� and many popular complexity classes� such

as P and NP� will be de�ned in Section ����

The �eld of randomized algorithms has grown tremendously in the last decade and has found many

applications because of their simplicity and speed� We shall introduce the basic notions of randomized

Turing machines� probabilistic Turing machines� and random functions in Section ��	�

In Section ���� universal hash functions will be introduced� Hash functions are a useful tool in designing

randomized algorithms�

Section ����� will explain the theory of polynomial analysis initiated by Ko and Friedman  ��! in the early

�
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����
s� The theory of Kolmogorov complexity also provides us with a succinct description of information�

We also cover the notion of resource�bounded Kolmogorov complexity measure and Lutz
s resource�bounded

measure theory� which are popular in structural complexity theory�

For complete references� the reader may refer to  	�� ��� 	� 	�� ��!�

Major Contributions� Although this chapter is introductory� a few results are included�

Lemma ����� o�ers a new characterization of all %�level classes in the polynomial�time hierarchy by

the model of semi�deterministic alternating Turing machines which run in polynomial time with constant

alternation�

Proposition ����	 shows the existence of an NP set which is not nearly�RP� provided that strong one�way

functions exist�

��� Fundamental Notions and Notation

We shall begin with terminology from mathematical logic and then explain mathematical notions and nota�

tions� graphs� sets� numbers� strings� and functions� This section will include a preliminary introduction to

probability theory�

����� Logic

In propositional logic� we deal only with Boolean variables which take values � �truth� and � �falsehood��

�Note that traditionally� in mathematical logic� � represents �falsehood� and � represents �truth��� The

terms are Boolean variables and the logical constants � and �� As logical connectives� we use the symbols


 �negation�� � �conjunction�� and � �disjunction�� The set of �propositional� formulas is de�ned by the

following clauses�

�i� every term is a formula�

�ii� if � and 	 are formulas� then 
���� �� � 	�� and �� � 	� are formulas� and

�iii� formulas are de�ned only by clauses �i���ii��

Unless there may be confusion� we freely omit parentheses from formulas� e�g�� 

� and � � �	 � 

��

The negation of a Boolean variable v is sometimes denoted by v for simplicity� A Boolean variable and its

negation are called literals�

Let � � ��x�� x�� � � � � xn� be a formula with all distinct variables being explicitly exhibited as x�� x�� � � � � xn�

We write V ar��� for the set fx�� x�� � � � � xng� A truth assignment for � is a function � � V ar��� 
 fT� Fg�
Given a truth assignment �� we de�ne an evaluation  �!� of � on � in the following recursive way�

�i� in the case that � is a variable v�  �!� � T if and only if ��v� � T �

�ii� in the case that � is of the form 
�	��  �!� � T if and only if  	!� � F �
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�iii� in the case that � is of the form �	� � 	���  �!� � T if and only if  	�!� � T and  	�!� � T � and

�iv� in the case that � is of the form �	� � 	���  �!� � T if and only if  	�!� � T or  	�!� � T �

A propositional formula � is satis
able if there exists a truth assignment � for � such that  �!� � T � In

this case� � is said to satisfy �� For example� the formula 

�x � y� � �
z � y� is satis�able� witnessed by

the assignment � such that ��x� � ��y� � T and ��z� � F � A formula � is valid �or a tautology� if  �!� � T

for any truth assignment � for ��

For a property Q� the notation �xQ�x� means that Q�x� holds for all elements x� and the notation

�xQ�x� means that there exists an element x satisfying Q�x�� The notation �&xQ�x� means that there exists

the unique element x satisfying Q�x�� For a property Q de�ned on an in�nite set S� we say that Q�x� holds

for almost all �or almost every� x in S if the set fx � S j Q�x� does not hold g is �nite� In this case� we also

say that Q holds almost everywhere� The notation
�
� xQ�x� means that Q�x� holds for almost all x� and

�
� xQ�x� means that Q�x� holds for in�nitely many x� Clearly

�
� and

�
� are dual concepts�

Generally� for a property Q� we write  Q! � � if Q is true� and  Q! � � otherwise� For a set S� 
S denotes

the characteristic function for S that is de�ned as 
S�x� �  x � S!� �Note that �characteristic functions�

here are di�erent from those used in probability theory�� For brevity� we also use the notation S�x� to mean


S�x��

����� Sets and Numbers

Sets� Intuitively� a set is a collection of objects� called its members or elements� The notation x � A

expresses that x is an element of A� and � is called the membership relation� The symbol ' denotes the

empty set that contains no elements� We use the standard set notation f� j �g� For example� the notation

fx j Q�x�g represents the set whose elements x satisfy a property Q�x�� For two sets A and B� we say A is

a subset of B� symbolically A 	 B� if every element of A is an element of B�

For two sets A and B� the intersection of A and B is denoted A �B and is de�ned by A �B � fa j a �
A � b � Bg� The union of A and B is denoted A �B and is de�ned by A�B � fa j a � A � b � Bg� The

set A� B denotes the of A and B that is de�ned by A �B � fa j a � A � b �� Bg�
The of A and B � denoted A�B� is the set of all ordered pairs �a� b� such that a � A and b � B� where an

ordered pair is the set fa� fa� bgg� In contrast� the set fa� bg is sometimes referred to as an unordered pair� The

power set of S is denoted by P�S� and is de�ned as the collection of all subsets of S� i�e�� P�S� � fA j A 	 Sg�
For a set S� kSk denotes the cardinality of S that intuitively expresses the number of elements in S� If

S is not �nite� then let kSk � ��

Binary Relations� A binary relation on a set S is a subset of the Cartesian product S � S� i�e�� f�a� b� j
a� b � Sg� Conventionally� we write aRb when �a� b� � R� For a binary relation R on S� we say that R

is re�exive if aRa holds for all elements a � S� and that it is transitive if aRb and bRc imply aRc for all

a� b� c � S� Moreover� a relation R on S is symmetric if aRb implies bRa for all a� b � S� on the other hand�

R is antisymmetric if aRb and bRa imply a � b for all a� b � S�
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A binary operator � on a set S is called associative if a��b�c� � �a�b��c for all a� b� c � S� commutative

if a� b � b� a for all a� b � S�

Numbers� LetZbe the set of all integers f� � � ������� �� �� �� � � �g� and let N denote the set of all nonnega�

tive integers� called natural numbers� The set of all rational numbers fmn j m�n �Z� n �� �g is simply denoted

by Q� and Q� denotes the set of all nonnegative rational numbers� Similarly� the notation R denotes the set

of all real numbers� and in particular� we denote by R� the set of all nonnegative real numbers� �Remember

that the superscript ( does not mean �positive��� We use the notation � to mean the in
nity� and let

R�� � R� � f�g and R� � R� f����g� For the arithmetical operations ( �addition� and � �multipli�

cation�� we follow the standard convention� for any numbers r � R and s � R�� f�g� r(� � �( r � ��

s � � � � � s � �� �s � � � � � ��s� � ��� and � � � � � � � � �� Moreover� we assume that �� � r

and r �� for any real number r � R�

The absolute value of a real number is denoted jrj�
For any two real numbers a and b �a � b�� let �a� b� denote an open �real� interval de�ned by �a� b� �

fx � R j a � x � bg� let  a� b� and �a� b! be half�open intervals which are de�ned by  a� b� � �a� b� � fag and

�a� b! � �a� b� � fbg� respectively� and let  a� b! be an closed interval de�ned by  a� b! � �a� b�� fa� bg�
For a real number x� let bxc ��oor of x� be the maximal integer not exceeding x� and let dxe �ceiling of

x� be the minimal integer not smaller than x�

Lebesgue Measure� For a closed interval I �  a� b! of the line R� let jIj � b � a� Let S � fIkgk�Nbe

a countable collection of closed intervals on R� For a subset E of R� we say that S is a covering of E if

E 	 S�
i�k Ik� The Lebesgue outer measure of a set E� denoted m��E�� is de�ned by

m��E� � inf

� �X
k��

jIkj
����� fIkgk�Nis a covering of E

�
�

where the in�mum is taken over all coverings of E� If no such covering exists� then take m��E� � ��

A set E is called �Lebesgue� measurable if� for every set S 	 R�

m��S �E� (m��S �E� � m��S��

If E is measurable� its Lebesgue outer measure is called its Lebesgue measure �or simply measure� and is

denoted by m�E�� Note that m� �� �!� � �� �Thus� m is a probability measure on the sample space  �� �!��

It is well known that� assuming the axiom of choice� there exists a non�measurable set �see� e�g��  ���!��

Polynomials and Logarithms� We are interested only in polynomials and logarithms with integer coef�

�cients� For a positive integer d� a polynomial �in n� of degree d is a function p�n� of the form�

p�n� �
dX
i��

ain
i�
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where each ai � Zand ad �� �� The constants a�� a�� � � � � ad are called the coe�cients of the polynomial�

Exponentials are functions of the form �p�n	� where p is some polynomial� In particular� we call a function a

linear�exponential if it is of the form �cx�d for some constants c� d � Q��

This thesis uses mainly logarithms to base �� and for the sake of convenience� we often omit the base and

simply write logx for log� x� Whenever we deal with logarithms of rational numbers� we follow a special

convention� we de�ne log z to be � whenever � � z � � to simplify the case�by�case description� For brevity�

we also write llog�n� for blog��n( ��c and write ilog�n� for dlog� ne for all n � N�

The notation log�k	 n denotes k iterations of logarithms� namely� de�ne log��	 n � n� and log�k	 n �

log�log�k��	 n� for k � �� Also let log� n � minfk � N j log�k	 n � �g� The function log� n grows extremely

slowly� For example� log� �� � � and log� ����� � 	�

The kth Harmonic number� Hk� is de�ned by
Pk

i��
�
i �

The binomial coe�cients are de�ned as follows� for n� k � �� if n � k� then�

�
� n

k

�
A �

�
� n

n� k

�
A �

n&

k&�n� k�&
�

and if k � n� then �nk � � ��

����� Graphs

A directed graph G is a pair �V�E�� where V is a �nite set and E is a binary relation on V �i�e�� a subset

of V � V �� The set V is called a vertex set or node set� and its element is called a node or vertex� The set

E is called an edge set� and its element is called an edge� An undirected graph G � �V�E� is a variation of

directed graph whose edge set is a symmetric relation� For an undirected graph� we identify two edges �a� b�

and �b� a� and often write fa� bg as an unordered pair�

We say that a node t is adjacent to a node s if �s� t� is an edge in a graph�

A �
nite� path of length k from a node s to a node t in a graph G � �V�E� is a ��nite� sequence

�v�� v�� � � � � vk� of nodes in N such that s � v�� t � vk� and �ai� ai��� � E for all i with � � i � k� In this case�

we say that the path p contains the nodes v�� v�� � � � � vk and also the edges �v�� v��� �v�� v��� � � � � �vk��� vk�� A

node t is reachable from a node s if there exists a path p from s to t�

A path is simple if all nodes in the path are distinct�

Given a path p � �v�� v�� � � � � vk�� a subpath p� is a subsequence of p� that is� for some i� j with � � i �

j � k� p� � �vi� vi��� � � � � vj��

We can naturally extend the de�nition of graphs and paths to in
nite graphs and in
nite paths� For

example� an in�nite path from a node s in a graph is an in�nite sequence� rather than a �nite one� starting

from s�

A graph G� � �V �� E�� is a subgraph of G � �V�E� if V � 	 V and E� 	 E� Given a set V � 	 V � the

subgraph of G � �V�E� induced by V � is the graph G� � �V �� E��� where E� � f�u� v� � E j u� v � V �g�
An undirected graph is connected if every two nodes are reachable from each other�
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In a graph� a path p � �v�� v�� � � � � vk� forms a cycle if �i� v� � vk and �ii� v� �� vi for some i with

� � i � k� A graph with no cycle is said to be acyclic�

A forest is an acyclic� undirected graph� and a tree is a connected� acyclic� undirected graph� In particular�

the tree that contains no nodes is called the empty tree or null tree�

A rooted tree is a tree in which one of the nodes is distinguished from the others� this distinguished node

is called the root of the tree�

Let x and y be any nodes in a rooted tree T � �V�E� with root r� The node y is called an ancestor of

x if there exists a path from r to x which contains y� If y is an ancestor of x� then x is a descendant of y�

�Note that x is an ancestor and descendant of x itself�� The node y is called a parent of x if �y� x� is an

edge on the path from r to x� If y is a parent of x� then x is a child of y� Any two nodes which have the

same parent are siblings� A node with no children is called a leaf �or external node�� while the other non�leaf

nodes are called internal nodes�

A subtree rooted at x is the tree induced by the set of all descendants of x�

The degree of a node x in a rooted tree T is the number of children of x in T � The depth of a node x is

the length of the path from the root of T to x� The height of T is the largest depth of any node in T �

����� Finite and In�nite Strings

An alphabet $ is a nonempty� �nite set� Given an alphabet $� a word or string over $ is a �nite sequence of

symbols from $� The empty string is the unique string consisting of no symbols and is denoted by �� Let

us denote by $� the set of all strings over $ �of course� $� contains ��� and for the sake of convenience� set

$� to be $� � f�g� the set of all nonempty strings�

In this thesis� however� we consider only the binary alphabet $ � f�� �g �a string over f�� �g is often

called a binary string� because this restriction does not a�ect any of our arguments�

The length of a string x is the number of symbols in x and is denoted by jxj� For example� j�����j � ��

and in particular� j�j � �� For every n � N� let $n �$�n� $�n� respectively� denote all strings of length n

�length � n� length � n� respectively�� We note that a subset of $� is sometimes called a language over $�

For two strings x and y� the concatenation of x and y is the string consisting of the symbols of x followed by

the symbols of y� and is denoted by xy �or sometimes x � y�� For example� if x � ���� and y � ������ then

xy � ���������� Given a string s� s$n denotes the set fsy j y � $ng� For a string x and a natural number

n� the notation xn is recursively de�ned by� x� � �� and xn�� � x � xn for n � N�

We assume the standard order on $��

� � � � � � �� � �� � �� � �� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ��� � ���� � � � �

�Sort length�wise and then sort lexicographically�� With respect to this order� x� denotes the predecessor

of x if one exists� and x� denotes the successor of x� For example� ����� � ���� and ����� � ����� This

ordering enables us to identify strings with natural numbers in the following fashion� let s� � �� s� � ��

s� � �� s
 � ��� and so forth� In general� let sn be the n�th string �N�B� � is the �th string� of $� in the

order� It is easy to see that jsnj � llog�n��
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It is convenient to de�ne in
nite strings as in�nite sequences of symbols from $� We sometimes call a

string in $� a 
nite string to stress the �niteness of strings� For simplicity� $� denotes the set of all in�nite

strings�

We say that x is a pre
x of y� symbolically x v y� if xs � y for some string s� For a string x and a

natural number i with i � jxj� the notation x	i denotes the �rst i bits of x� i�e�� the string s such that

jsj � i and s v x� For the sake of convenience� whenever i � jxj� set x	i � x� Furthermore� by x
i we

mean the string s such that x � x	i��s� Hence� x � x	i��x
i�

Let f be a function on N� For a set S 	 $�� S is of density f�n� if kS �$kk � f�k� for all k � N�

The complement of a set A� symbolically A� is $� �A� and the symmetric di
erence of two sets A and

B� symbolically A�B� is �A�B� � �B �A�� The disjoint union of A and B� symbolically A�B� is the set

f�x j x � Ag � f�x j x � Bg�
Any subset of f�g� or f�g� is called a tally set� and TALLY denotes the collection of all tally sets� A

set S is �polynomially� sparse if there exists a polynomial p such that kS � $nk � p�n� for all n � N� By

SPARSE� we denote the collection of all sparse sets� By de�nition� TALLY 	 SPARSE�

Dyadic Rational Numbers� A real number r in the unit interval  �� �! is uniquely identi�ed with its

shortest binary representation� i�e�� of the form

mX
i��

ai � �i (
�X
j��

bj � ��j�

where all ai
s and bj
s are in f�� �g �the term �shortest� is necessary because� for example� the binary

representation of the number ��� is ��� as well as ������ � � �� � � ��� We use the notation �am � � �a��b� � � � bk � � ���
to denote this ��nite or in�nite� binary representation� This expression helps us identify a real number with

a pair of ��nite or in�nite� strings am � � �a� and b� � � �bk � � � separated by ���� the delimiter symbol� By

padding �
s if necessary� we can view r as an in�nite string in $��

Let us de�ne dyadic rational numbers as rational numbers with 
nite binary representations� Here are

examples� ���� is a dyadic rational number and is identi�ed with the string �������� but ��� is not a dyadic

rational number because its binary representation is of the form ��������� � � ��� and is in�nite�

����� Functions

In general� we will be using n�ary �partial� functions� For a function f � dom�f� �domain of f� denotes the

set of elements from which f maps� and ran�f� �range of f� denotes the set of elements to which f maps�

We say that f is a �partial� function from A to B �or f maps from A to B�� symbolically f � A 
 B� if

A � dom�f� and ran�f� 	 B� and that f is a �partial� function on A if f maps from A to A� A function f is

one�one �or injective� if� for any two elements x� y � dom�f�� f�x� � f�y� implies x � y� and f is called onto

�or surjective� if� for every element y � ran�f�� there exists an element x such that f�x� � y� If a function

f is one�one and onto� then we call f a bijection �or bijective��

For a function f and an element y� in general� the notation f���y� �inverse image of y by f� denotes the
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set fx � dom�f� j f�x� � yg� however� if this set is a singleton �i�e�� kfx � dom�f� j f�x� � ygk � ��� then

by convention f���y� denotes the element x such that f�x� � y�

The lambda notation in � calculus is a useful tool for describing functions by their values� Based on each

value f�x� of a function f � the lambda notation ��x�f�x�� denotes the function f itself� Here we shall see

some examples� The notation �x��c logx( d� expresses the function f de�ned as f�z� � c log z( d for all z�

and �x��cx
k�d expresses the function f de�ned as f�z� � �cz

k�d for all z�

For two functions f and g� provided that ran�g� 	 dom�f�� the composition f � g expresses the function

h such that h�x� � f�g�x�� for all x � dom�g��

We say that f majorizes g� denoted by f � g� if dom�g� 	 dom�f� and f�x� � g�x� for all x � dom�g��

A function f is �weakly� increasing �or monotone� if� for every pair of elements x� y � dom�f�� x � y

implies f�x� � f�y�� and a strictly increasing function f is obtained simply by replacing the above condition

f�x� � f�y� with f�x� � f�y�� Similarly� we can de�ne �weakly� decreasing functions and strictly decreasing

functions� A function f is unbounded if� for every x� there exists an element y � x such that f�y� � f�x��

A function f on $� is called length�increasing if jf�x�j � jxj for all x � $�� and f is length�preserving if

jf�x�j � jxj for all x � $��

A function f from dom�f� to R is convex if� for any x� y � dom�f� and any real number 
 �  �� �!�

f�
 � x( ��� 
� � y� � 
 � f�x� ( ��� 
� � f�y��

and f is concave if we replace the symbol � by � in the above inequality�

A function f on $� is polynomially honest �p�honest� for short� if there is a polynomial p such that

jxj � p�jf�x�j� for all x� Similarly� a function f on $� is exponentially honest �exp�honest� for short� if there

is a constant c � � such that jxj � �cjf�x	j�c for all x�

Traditionally� a function f on $� is called polynomially bounded �p�bounded� for short� if there exists a

polynomial p such that jf�x�j � p�jxj� for all strings x� A function f from $� to R� is called polynomially

bounded �p�bounded� for short� if there exists a polynomial p such that f�x� � p�jxj� for all x  ��!� Note

that any composition of two p�bounded functions is also p�bounded� Similarly� exponentially bounded �exp�

bounded� for short� functions are de�ned by replacing p�n� as above by an exponential �p�n	�

A function f from dom�f� to R is positive if f�x� � � for all x � dom�f�� Given a subset S of dom�f��

we say that f is positive on S if f�x� � � for all x � S�

For any functions f and g mapping to R�� we denote by f � g� f ( g� minff� gg� and maxff� gg the

functions de�ned� respectively� as follows� for all x� �f � g��x� � f�x� � g�x�� �f ( g��x� � f�x� ( g�x��

minff� gg�x� � minff�x�� g�x�g� and maxff� gg�x� � maxff�x�� g�x�g�
For a function f from N to R�� f is negligible if� for every positive polynomial p� it holds that f�n� � �

p�n	

for almost all natural numbers n�

For two integers a and b� the notation ajb means that there exists an integer c satisfying b � c � a� The

equivalence relation of congruence modulo n� is de�ned as follows� two integers a and b are congruent modulo

n if nj�a� b�� and this is denoted by a � b �mod n��

Let f be a function fromN �orR� toR� and let r � R� If� for every real number � � �� there exists a number
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x� � N �or x� � R� such that jf�y� � rj � � for all y in N �or R� larger than x�� we write limx
� f�x� � r�

Analogously� for an increasing function f from $� to R�� the notation �limx
� f�x� � r� means that

�i� f�x� � r for all x � $�� and

�ii� for every real number s with s � r� there exists a string x such that s � f�x��

����	 Asymptotic Notation

We often use O��� �big oh�� o��� �little oh�� )��� �big omega�� ���� �little omega�� and *��� �theta� as sets

of functions� Let f be a function from N to R�� We formally de�ne �ve sets� O�f�� o�f�� )�f�� ��f�� and

*�f��

�� O�f� is the set of functions h such that� for some constant c � �� h�n� � c � f�n� for almost all n�

�� o�f� is the set of functions h such that� for every constant c � �� h�n� � c � f�n� for almost all n�

�� )�f� is the set of functions h such that� for some constant c � �� c � f�n� � h�n� for almost all n�

	� ��f� is the set of functions h such that� for every constant c � �� c � f�n� � h�n� for almost all n�

�� *�f� � O�f� �)�f��

To emphasize the variable n used for the function f � we also write O�f�n�� for O�f� and similarly for the

other four sets�

For example� �n��n � o�n�� but �n��n� �� o�n��� �n�n��� � ��n� but �n�n��� �� ��n���

De�nition ����� We de�ne the following three notations�

�� nO��	 �
S
k��O�nk��

�� �O�n	 �
S
k��O��kn��

�� �n
O���

�
S
k��O��n

k

��

Traditionally� the notations O�f�n��� etc� � are de�ned as �pseudo��functions� the notation �g�n� �

O�f�n���� for example� means that g is in O�f�n��� In this thesis� we follow this convention and loosely use

the notations O���� etc� � as if they are �functions�� As an example� when we write that n& � O�
p

��n�ne �n��

we actually mean that the function �n�n& belongs to O�
p

��n�ne �n��

����
 Probability Measure

We begin with the formal de�nitions of probability theory�

A sample space ) is an underlying set� This thesis uses a subset of $� as a sample space )� A ��
eld

�)�F� consists of a sample space ) and a subset F of P�)� satisfying the following conditions�
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�i� ' � F�

�ii� E � F implies E � F� where E � )� E � and

�iii� fEigi�N	 F implies
S
i�NEi � F�

Any set in F is referred to as an event�

A probability measure Pr is a function from F to  �� �! that satis�es the following conditions�

�i� for all set A 	 )� � � Pr A! � ��

�ii� Pr )! � �� and

�iii� �Countable Additivity� for mutually disjoint events fEigi�N� Pr 
S
i�NEi! �

P
i�NPr Ei!�

For an event E � the notation Pr E ! denotes the probability of E � A support of Pr is any F�set A for which

Pr A! � ��

The conditional probability of E� given E� is denoted by Pr E� j E�! and is given by�

Pr E� � E�!
Pr E�!

assuming that Pr E�! � ��

A probability space is a triplet �)�F�Pr�� where �)�F� is a ���eld and Pr is a probability measure de�ned

on the sample space )� When ) is clear from the context� ) may be omitted�

A collection of events fEigi�I � where I is an index set� is independent if� for all subsets S 	 I�

Pr 
T
i�S Ei! �

Q
i�S Pr Ei!� or equivalently� Pr Ej j

T
i�S Ei! � Pr Ej! for all j � I� Similarly� fEigi�I

is pairwise independent if� for any pair fi� jg 	 I� Pr Ei � Ej ! � Pr Ei! �Pr Ej!�
A �discrete� random variable X is a function over the sample space ) whose range D is either a �nite or

countable in�nite subset of R such that� for all x � D� fw � ) j X�w� � xg � F� By identifying $� with N�

we can introduce discrete random variables whose ranges are particular subsets of $��

The expected value or expectation of a random variable X is denoted by E X! and is de�ned by
P

x�� x �
Pr X � x!�

In this thesis� we deal mainly with discrete probability measure on a ���eld with a sample space ) 	 $��

and the notation Pr �! will be reserved to denote the �uniform� probability measure� For more details on

probability theory� the reader may refer to a text devoted to the subject� for example  ��!�

��� Models of Computation

As a model of �computation�� we focus on Turing machines which were introduced by A� Turing and E� Post

in the ����
s� This thesis uses the standard models of Turing machines with a �nite number of semi�in
nite

tapes �i�e�� the tape has a leftmost square but is in�nite to the right��

We shall informally use the terms �algorithms� and �algorithmically computable� in this thesis� Although

there is no precise de�nition for these terms� we stand on the common belief� known as Church
s Thesis�

that algorithms are described by Turing machines�
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Figure ���� The hardware of a Turing machine

����� Deterministic Turing Machines

A k�tape o��line deterministic Turing machine is formally a sextuple hQ�$� q�� ACC�REJ� �i which consists

of Q� a �nite set of states� $� a tape alphabet with a special symbol for the blank� q�� an initial state�

ACC� a set of accepting states� REJ � a set of rejecting states� and �� a transition function from Q � $k to

$k�� � Q �ACC �REJ � fR�N�Lgk� Figure ��� illustrates the hardware of a Turing machine�

Turing machines are casually called just machines� The function � is considered a program �or an

algorithm� for the machine� and we often identify a Turing machine with its program �or algorithm��

A con
guration �or instantaneous description� of a machineM is a description which contains the contents

of each tape� the position of each tape head� and the state of the machine� The initial con
guration is a

con�guration in which the input tape contains an input� other tapes are blank� the internal state of the

machine is the initial state� and all head positions on tapes are the leftmost squares� An accepting �rejecting	

resp�� con
guration of M on x is a con�guration of M on x whose state is an accepting �rejecting� resp��

state� A halting con
guration of M is either an accepting or a rejecting con�guration� i�e�� a con�guration

from which no other con�gurations can be reached by the transition function�

To describe how the machine works� we need a concept of �computation��

De�nition ����� �Computation� A computation of M on input x is a ��nite or in�nite� sequence of

con�gurations of M such that�

�i� it starts with the initial con�guration of M on x�
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�ii� each step from a con�guration to another con�guration is made by the transition function� and

�iii� if �nite� it ends in a halting con�guration of M on x�

An accepting �rejecting	 resp�� computation is a computation which terminates in an accepting �rejecting�

resp�� con�guration�

A deterministic Turing machine M accepts an input x if there is an accepting computation of M on input

x� otherwise� M rejects x� Denote by L�M � the set of all strings which are accepted by M �

Let M �x� denote the output of a machine M on input x if it exists� The running time of M on input x

is the length of the computation of M on x� and we denote by TimeM �x� the running time of M on x� In

the case where the computation is not �nite� we set TimeM�x� � ��

De�nition ����� �Time�Space Constructible� A function f on N is called time�constructible if there

exists a deterministic Turing machine M which� on input �n� terminates after exactly f�n� steps are made�

A function f on N is space�constructibility if there exists a deterministic Turing machine which� on input �n�

it marks the f�n�th square of the �rst work tape �among a �nite number of work tapes��

����� Nondeterministic Turing machines

Another important model of computation is �nondeterministic� Turing machines� A nondeterministic Turing

machine is a variant of deterministic Turing machines with the exception that the transition function � is a

map from Q� $k to P�$k�� � Q �ACC �REJ � fR�N�Lgk��
As for nondeterministic Turing machines� we alter the de�nition of �computation� to a set of �compu�

tations�� a so�called �computation tree�� A computation tree of M on input x is a tree whose nodes are

con�gurations of M on x� in which the root of the tree is the initial con�guration� and the children of each

node are such con�gurations that are reachable from the node in one step by the transition function� All

con�gurations following each con�guration by a single application of the transition function is called non�

deterministic choices if the number of such con�gurations is more than �� An accepting �rejecting	 resp��

computation is a path from the root to a leaf which ends with an accepting �rejecting� resp�� con�guration�

The accepting criteria of nondeterministic Turing machines is similar to that of deterministic machines

and is determined by the existence of an accepting computation� More precisely� the machine M accepts x

if there exists an accepting computation of M on input x� otherwise� the machine rejects x�

A nondeterministic Turing machine for which the number of accepting paths on each input is at most

one is called unambiguous  ���!�

In general� average�case complexity measure is sensitive to the de�nition of time�complexity of nonde�

terministic Turing machines �see  ��!�� and we should pay careful attention to the de�nition of the running

time of the machine when dealing with nondeterministic computations�

In worst�case complexity theory� the running time of a nondeterministic Turing machine is often de�ned

to be the minimal length of all accepting computation paths if one exists� otherwise� it is de�ned to be
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�� For time�space constructible complexity bounds �such as �polynomial�time� or �logarithmic�time��� we

may assume that all computation paths on each input are of the same length� and by convention let the

running time be the maximal length of any computation path� since time�constructible complexity bounds

t guarantee that we can modify any machine having this bound to a machine for which the length of any

computation path is exactly t� This is explained as follows� every time�bounded Turing machine is designed

in such a way that each has an internal clock �which does not access oracles�� and this clock adjusts the

running time of the machine no matter what computation path it follows� We call the machines equipped

with internal clocks clocked Turing machines�

Summing up� there are three models of nondeterministic Turing machines together with their running�

time criteria�

�i� A model of nondeterministic Turing machines with traditional measurement of running time� namely�

the shortest accepting path if one exists� or else � �or equivalently� taking the shortest rejecting path��

�ii� A model of nondeterministic Turing machines with strict measurement of running time� that is� the

shortest accepting path if one exists� or else� the longest rejecting path�

�iii� A model of clocked nondeterministic Turing machines�

As long as the running time of a machine on an accepting computation path is bounded above by some

time�constructible function �most time�bounded complexity classes in worst�case complexity theory satisfy

this condition�� all these de�nitions are essentially equivalent �neglecting constant slowdown�� Since average�

case complexity theory does not require this condition� the choice of a model is very important and often

leads us to di�erent consequences� In later chapters� we shall discuss the choice of models and possible

consequences�

Historically� Goldreich  ��! �rst discussed the average running time of nondeterministic Turing machines

and used a model of nondeterministic Turing machines� the lengths of whose computation paths are measured

by some time�bounded deterministic Turing machines� His de�nition is actually equivalent to choosing model

�iii� as described above� Later Wang and Belanger  ���!� and also Schuler and Yamakami  ��! presented

interesting results based on model �iii�� In particular� Schuler and Yamakami  ��! constructed an average�

case version of the �worst�case� polynomial�time hierarchy based on model �i�� but the average�case hierarchy

obtained here does not seem to be a proper analogue of the worst�case hierarchy �it lacks some properties like

NPP � NP�� In this thesis� we choose the most general model �i�� even though the model does not seem to

provide the property that time�bounded nondeterministic computations can be simulated by space�bounded

deterministic machines of the same complexity�

De�nition ����� �Running Time of Nondeterministic Turing Machines� For a nondeterministic

Turing machine M � the running time of M on input x� TimeM �x�� is de�ned to be the length of the shortest

accepting computation path of M on x if one exists� otherwise� it is de�ned to be ��
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����� Oracle Turing Machines

To speed up the computation of an algorithm or to make it as accurate as possible� we need a supplementary

source of information which the algorithm can retrieve and use� Such a source is called an oracle� and a

Turing machine equipped with a system retrieving information from an oracle is called an oracle Turing

machine� An oracle Turing machine makes a query to an oracle and receives its answer in a single step� We

start by describing those notions formally�

An oracle Turing machine is a Turing machine with the following additional devices� a distinguished tape�

a so�called oracle tape or query tape� and three distinguished states � QUERY� YES� and NO� A computation

�tree� of an oracle machine M with an oracle �set� on input x is de�ned in a way similar way to that for

�non�oracle� Turing machine except that it incorporates oracle queries� Initially the query tape is blank�

If the machine M enters the QUERY state� then in a single step� M queries a string to the oracle which

appears on the query tape� if this string belongs to the oracle set� then M enters the YES state� otherwise�

M enters the NO state� Immediately after each oracle query� the query tape becomes blank�

We can easily extend the de�nition of oracle Turing machines with set oracles �or oracle sets� into those

equipped with function oracles f � The oracle machine has the QUERY state and the YES state� if it makes

a query z to an oracle� then the oracle returns the value f�z� of the function f in a single step and the

machine enters the YES state� at the same time� the head of the query tape is moved to the leftmost square

of the tape�

Since oracle Turing machines with the empty oracle �i�e�� the empty set� can be easily translated into

non�oracle Turing machines �because we know the oracle answers�� we often identify such oracle machines

with non�oracle ones� In this sense� without loss of generality� we can view non�oracle Turing machines as

a special case of oracle Turing machines� Therefore� subsequent de�nitions will be stated only for oracle

machines without repeating similar de�nitions for non�oracle machines�

De�nition ����� �Adaptive�Nonadaptive Query� An oracle Turing machine M is said to make

nonadaptive queries if� on each computation path� M produces a list �called a query list� of all strings which

are possibly queried before the �rst query is made� Otherwise� M is said to make adaptive queries�

A query list provides us with su�cient information about which strings will possibly be queried in future

computations� We remark that it is not necessary for an oracle machine to query all the strings in the query

list�

Let Acc�M�A� x� denote the set of �codes of� accepting computation paths of M on input x with oracle

A� and similarly Rej�M�A� x� denotes that of rejecting computation paths� Let Q�M�A� x� y� be the set of

strings queried by M with oracle A on input x on computation path y� If M is deterministic� then we simply

denote by Q�M�A� x� the set of all strings queried by M on input x with oracle A�

By L�M�A� we denote the set of strings accepted by M with oracle A� and we simply say that M with

oracle A recognizes �or accepts� a set B if B � L�M�A�� For a machine M � MA�x� denotes the output of

a computation of M on input x� For a deterministic Turing machine M with an output tape �also called a
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transducer�� we say that M computes a function f if f�x� � MA�x� for all x � $��

By TimeAM�x�� we denote the running time of machine M with oracle A on input x� Similarly� SpaceAM �x�

denotes the tape space used by M with oracle A on input x� Technically speaking� there are two possible

de�nitions for SpaceAM �x� depending on whether the space of the query tape is counted� This possibly changes

the power of relativized space�bounded complexity classes� such as PSPACE� In this thesis� we take all

tapes including query tapes into consideration in order to measure the tape space used by the machine M

with oracle A�

����� Alternating Turing Machines

The notion of alternating Turing machines was introduced by Chandra� Kozen� and Stockmeyer  ��! as an

extension of nondeterministic Turing machines�

Each machine is equipped with extra states� called � �universal� and � �existential�� Each con�guration in

a �nite tree of computation for an alternating Turing machine is labeled as either universal ��� or existential

���� according to the states of the machine� Next we de�ne an accepting computation tree� First we

recursively determine the yes�con
gurations�

�i� a halting con�guration is a yes�con�guration if it is an accepting con�guration�

�ii� a non�halting ��con�guration is yes�con�guration if at least one of its children is so� and

�iii� a non�halting ��con�guration is a yes�con�guration if all of its children are so�

For convenience� con�gurations which are not yes�con�gurations are called no�con
gurations� An accepting

computation tree T � of M on input x is a subtree of a computation tree T of M on x satisfying the following

conditions�

�i� all con�gurations in T � are yes�con�gurations�

�ii� an existential con�guration in T � has one child node in T � and

�iii� a universal con�guration in T � has all of its children in T �

The machine accepts an input if there exists an accepting computation tree �equivalently� the root of the

computation tree has a yes�con�guration�� otherwise� the machine rejects the input�

Alternation is the maximum over� all computation paths from the root to a leaf� of the number of times

in which di�erent labels of con�gurations �i�e�� �� or ��con�gurations� change� Note that� by convention�

the initial con�guration is assumed to contribute the �rst alternation� For example� nondeterministic Turing

machines have ��alternation because all con�gurations are ��con�gurations�

Here we shall introduce a new variant of alternating Turing machines� so�called �semi�deterministic�

alternating Turing machines� which embodies deterministic computations relative to some alternating Turing

machines� This notion is useful for describing the %�level of the polynomial�time hierarchy� for example �see

Section ����� A semi�deterministic alternating Turing machine is� roughly speaking� an alternating Turing
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machine which puts an additional restriction on its computation tree� For simplicity� we assume that the

number of nondeterministic choices is �� Then� any computation path can be encoded as a binary string�

We label each computation path with this code to distinguish individual computation paths� For brevity�

write smj to denote the jth string of the set $m in the standard order �N�B� �m is the �th string of $m��

De�nition ����� �Semi�Deterministic Alternating Turing Machines� A semi�deterministic Tur�

ing machine is an alternating Turing machine with the following constraints for the �rst three series of ��

and ��con�gurations of the computation trees Tx of the machine on each input x�

On input x� the machine starts with an ��state� and during this state the machine produces computation

subpaths� Let p� be any such computation subpath and suppose that the machine makes k queries� By

the above coding scheme� the subpath p� is labeled by b � b�b� � � �bk� where bi � f�� �g� � � i � k� Next

the machine enters an ��state in which it produces exactly �m branches for some m � log k� each of which

is labeled by an m bit string c � c�c� � � � cm� where ci � f�� �g� � � i � m� Let p� be any such a branch

following p�� Consider the current con�guration� called critical� and denote it by dl� where l is the label bc

attached to the subpath p�p�� At the next step� the machine chooses either an ��state or ��state� depending

on the label l �� b� � � � bkc� � � � cm�� The machine enters an ��state if bj � � and c � smj for some j� otherwise�

it enters an ��state�

All critical con�gurations of the computation tree Tx satisfy the following two conditions on their la�

bels with respect to yes� or no�con�gurations� for any two critical con�gurations dl and dl� � where l �

b� � � � bkc� � � � cm and l� � b�� � � � b�k�c�� � � �c�m� � assuming that c � smj and c� � sm
�

j for some j with � � j �

minfk� k�g�

�i� if b� � � �bj�� � b�� � � �b�j��� then con�gurations dl and dl� have the same label� and

�ii� if b� � � �bj � b�� � � � b�j but b� � � � bj�� �� b�� � � �b�j�� then con�gurations dl and dl� have di�erent labels�

A semi�deterministic Turing machine M is said to have k�alternations if the maximal alternation of all

computation trees of M is at most k ( � �because the �rst two alternations are �xed and should not be

counted��

We de�ne the running time of an alternating Turing machine as follows�

De�nition ����	 �Running Time of Alternating Turing Machines� The running time of an alter�

nating Turing machine on input x is the minimal height of accepting computation trees of M on x if M

accepts x� otherwise� the running time is de�ned to be ��

����� Worst�Case Time�Space Complexity

In worst�case complexity theory� the time �or space� complexity of an algorithm is often considered as a

function de�ned on the natural numbers N because we are interested only in the instances of each length

which are hard to compute�
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De�nition ����� Let M be an oracle Turing machine and A a set� Let t be a function on N� and let T be

a set of functions on N�

�� The Turing machine M with oracle A is called t�time bounded �or a t�time Turing machine� for short�

if TimeAM �x� � t�jxj� for all x� Similarly� M with oracle A is t�space bounded �or a t�space Turing

machine� if SpaceAM �x� � t�jxj� for all x�

�� The oracle machine M is T �time bounded �or a T �time Turing machine� if M with oracle A is t�time

bounded for some t in T � The notion of a T �space Turing machine is de�ned analogously�

Here we use conventional abbreviations� if T is the set of polynomials� we say that M is polynomial�time

�or polynomial�space� bounded� and similarly� if T is the set of exponentials �linear�exponentials� logarithms�

resp��� M is called exponential�time �linear�exponential�time� logarithmic�space� resp�� bounded�

��� Randomized Algorithms

In this thesis� we would like to use two di�erent terms� randomized Turing machines and probabilistic Turing

machines� to cope with randomized algorithms�

A randomized Turing machine is a model of randomized computation and a variant of a nondeterministic

Turing machine with no accepting criteria� Intuitively� we equip a machine with a special mechanism for

generating an unbiased coin 
ip in one step which determines the choice of the next con�gurations� More

precisely� a randomized Turing machine is a Turing machine with a distinguished state� called coin�tossing

state� in which the �nite control unit speci�es two possible next states� The ��nite or in�nite� computation

of a randomized Turing machine is determined by its input as well as by the outcomes of the coin tosses

performed by the machine�

We can view randomized Turing machines as partial functions with two variables� one of which is a

�usual� input initially written on the input tape� and the other of which is a random input �or random seed��

that is a binary sequence representing the outcomes of the coin tosses� Following Blass and Gurevich  ��!�

we shall formalize this model below�

A randomized Turing machine M is equipped with an auxiliary semi�in�nite read�only tape� called a

random tape which may consist of an in
nite sequence r of �random� bits �i�e�� r � $��� The head on

the random tape can move only to the right and cannot stay at the same square after the machine reads a

symbol on the tape� The machine
s access to the random tape corresponds to a coin�
ip� and we may say

that the machine �ips a �fair� coin when it accesses the random tape� For each in�nite random sequence r�

let ReadM�x�r� be the initial segment of r that is read by M on input x during its computation� Note that

if a computation is �nite� then ReadM�x�r� is also �nite� but not conversely� Let the sample space )M �x� be

)M �x� � fReadM�x�r� j r � $�g�

Recall that m is the Lebesgue measure on the line R� We de�ne the probability measure Pr on the sample



�� CHAPTER �� FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

space )M �x� as follows� for any event E 	 )M �x��

Pr E! � m�fr � $� j ReadM�x�r� � Eg�

by identifying  �� �! with $�� Throughout this thesis� we use Pr �! to denote this probability measure� In

particular� if event E consists only of �nite strings� then

Pr E! �
X
s�E

��jsj�

Abusing notation� we let )M denote the set f�x� s� j s � )M �x�g� �Note that )M is not a sample space��

We shall de�ne the running time of the machine M on input x as follows� For any input �x� r� � $��$��

let TM �x� r� denote the time taken by M on input x and random input r� Whenever M does not halts� let

TM �x� r� � �� Next let TimeM �x� �� to be the �partial� function from )M �x� to N such that TM �x� r� �

TimeM �x�ReadM�x�r�� for all r � $�� For convenience� if �x� r�� �� )M � then TimeM �x� r�� is unde�ned�

Unless stated otherwise� the notation �xs�TimeM �x� s� is used to mean the total function de�ned as above

from +M to N���

For each input x to a randomized Turing machine� let us denote by M �x� a random variable over the

sample space )M �x�� Let Q be a property on f�� �g� Then we denote by PrM  Q�M �x��! the probability

that Q�M �x�� holds� For the sake of convenience� we also use the notation M �x� r� to mean the output

of a computation by M on input x with random seed r when r is in )M�x�� In the case where r ��
)M �x�� let M �x� r� be unde�ned� Thus� M �x� r� is a partial function� The notation Prs Q�M �x� s��! and

Prs Q�M �x� s�� j s � )M �x�! are also used to denote PrM  Q�M �x��!�

����� Random�Input Domains

Blass and Gurevich  ��! created a general framework for the average analysis of randomized algorithms based

on the notion of �dilations�� Here we take a simpli�ed approach�

De�nition ����� �Random�Input Domain� A subset + of $� � $� is called a random�input domain

if� for all x� s� s� � $�� �x� s� � +� s� v s� and s �� s� imply �x� s�� �� +� For each string x� we set

+�x� � fs j �x� s� � +g�

It is important to note that +�x� consists only of 
nite strings and that it may not be a sample space

with respect to Pr because Pr +�x�! � ��

De�nition ����� �Rarity Functions� ���� Let + be a random�input domain� The rarity function of +

is denoted by U� and de�ned by

U��x� �
�P

s���x	 ��jsj

for all x� If the rarity function U� satis�es U��x� � � for all x� then we call + almost total�
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In other words� ��U��x� � Pr +�x�!�

For a randomized Turing machine M � let +M � f�x� s� � )M j s is �niteg� In particular� when +M is

almost total� there is no need to di�erentiate between +M �x� and the sample space )M �x� since Pr +M �x�! �

Pr )M �x�! � ��

De�nition ����� �RandomFunctions� A random function f is a function from a random�input domain

to R��� A random function f with its random�input domain + is called almost total if + is almost total and

Prs f�x� s� � � j s � )M�x�! � �� where the subscript s in this equation emphasizes the random variable

over )M �x�� For a random function f with its random�input domain +� the �conditional� expectation of f

on input x� symbolically Es f�x� s� j s � +�x�!� is de�ned by

X
s���x	

U��x� � f�x� s� � ��jsj�

For example� the partial function �xs�TimeM �x� s� for a randomized Turing machine M is a random

function from )M to N�

����� Probabilistic Turing Machines

The notion of probabilistic Turing machines was proposed by de Leeuw� Moore� Shannon� and Shapiro  ��!

in ����� Pioneer works on probabilistic Turing machines were done by Gill  ��! and Santos  ��!�

A probabilistic Turing machine M is a randomized Turing machine with the following accepting criteria�

for every x� either Prs M �x� s� � � j s � )M�x�! � �
� or Prs M �x� s� � � j s � )M�x�! � �

�  ��!� We say that

M accepts x if Prs M �x� s� � � j s � )M �x�! � �
� � and M rejects x if Prs M �x� s� � � j s � )M �x�! � �

� � By

this de�nition� the rarity function U�M of +M is bounded above by � because

�

U�M �x�
�

X
s��M�x	

��jsj � Pr +M�x�! � Prs M �x� s� halts j s � )M �x�! �
�

�
�

For a probabilistic Turing machine M � let L�M � denote the set of all strings which are accepted by M �

We say that M recognizes D if D � L�M ��

Let D be the set recognizable by a probabilistic Turing machine M � The error probability of M for D is

the function eM de�ned by

eM �x� � PrM  M �x� �� 
D�x�!�

where 
D is the characteristic function for D� Clearly eM �x� � �
�
� We say that M recognizes D with bounded

error probability  ��! if there is a constant � with � � � � �
� such that eM �x� � � for every x� We simply call

M a bounded�error probabilistic Turing machine if M recognizes some set with bounded�error probability�

A probabilistic Turing machine M is said to make a one�sided error if it satis�es the additional condition�

if M rejects x� then all of its �nite computation paths terminate in rejecting con�gurations� Such a machine

is sometimes referred to as a random Turing machine� In contrast� the previous probabilistic Turing machines

are said to make two�sided errors�
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Another type of measure was given by Gill  ��!� For a probabilistic Turing machine M � let D be the set

accepted by M � Set

Time�M �x� �

�	

 minfn j Prs M �x� s� � 
D�x� within n steps j s � +M �x�! � �

�g if one exists�

� otherwise�

Note that the term +M �x� can be replaced by )M �x� because PrM  M �x� � 
D�x�! � ����

A relationship between two measures �xs�TimeM �x� s� and �x�Time��x� is best described in the following

lemma�

Lemma ����� ���� Let � be a real number satisfying � � � � �� For every bounded�error probabilistic

Turing machine M 	 there exists a constant c � � such that Time�M �x� � c �Es TimeM �x� s�� j s � +M�x�!���

for all strings x� In particular	 Time�M �x� � c �Es TimeM �x� s� j s � +M �x�!�

Proof� Let � be the error probability bound of M � Hence� � � � � �
� � Let c � �

���� and c� � c���� For

simplicity� write h�x� � Es TimeM �x� s�� j s � +M �x�!�

Let x be an arbitrary string� By Lemma A���

Prs TimeM �x� s�� � c � h�x� j s � +M �x�! �
�

c
�

This is equivalent to

Prs TimeM �x� s� � c� � h�x���� j s � +M�x�! �
�

c
�

Let D be the set accepted by M �

Prs M �x� s� �� D�x� in time c� � h�x���� j s � +M �x�! � Prs M �x� s� �� D�x�! � ��

The probability that M �x� s� � D�x� in time c� � h�x���� is estimated by

Prs M �x� s� � D�x� in time c� � h�x���� j s � +M �x�!

� �� Prs M �x� s� �� D�x� in time c� � h�x���� j s � +M�x�!

�Prs TimeM�x� s� � c� � h�x���� j s � +M �x�!

� �� �� �

c

� �� �� �� ��

�
�

�

�
�

By the de�nition of Time�M �x�� we conclude that Time�M �x� � c� � h�x����� that is�

Time�M �x� � c� �Es TimeM �x� s�� j s � +M �x�!����

�

We �nish this section by introducing the following terminology for probabilistic Turing machines�
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De�nition ����� �Time Complexity� A probabilistic Turing machine M is called t�time bounded �or

a t�time Turing machine� if Time�M �x� � t�jxj� for all x� For a set T of functions� M is T �time bounded �or

a T �time machine� if M is t�time bounded for some t � T �

��� Worst�Case Complexity Classes

For years� theoretical computer scientists have been interested in resource�bounded computations and have

studied their complexity and structural properties� In this section� we shall review central concepts in the

theory of worst�case complexity�

����� Computable Functions

One of the most natural concepts in worst�case complexity theory is �polynomial�time computability�� A

function f on $� is polynomial�time computable �P�computable� for short� if there is a deterministic Turing

machine with one input tape and one output tape �i�e�� a transducer�� which computes f in time polynomial

in terms of length of the input� Denote by FP the collection of all polynomial�time computable functions�

To study algorithms on di�erent objects� such as graphs� sequences� circuits� etc�� we use an encoding of

objects into strings� the encoding must be e�ective and secure� In this thesis� we use Regan
s paring function

 ��! as the basis of encoding and extend the function to multi�functions� Formally� a pairing function is a

bijection from $� �$� onto $��

First recall that the notation x� denotes the predecessor of string x in the standard order on $� unless

x is the empty string�

De�nition ����� �Paring Function� The function h�� �i from $� � $� to $� is de�ned as follows� for

all pairs �x� y� � $� � $��

hx� yi �

�	

 d�x�y if jyj � ��

d�x�i� �y
���! otherwise�

where d��� � �� d��x� � ��d�x�� d��x� � ��d�x�� i� �x! � ��x� and i� �x! � ��x for all x�

Below we list without proofs several important properties of this paring function�

�i� h� i is monotone� i�e�� x � x� and y � y� imply hx� yi � hx�� y�i�

�ii� h� i is computable in linear�time in the lengths of x and y�

�iii� h�n� yi � h�m� zi if and only if n( jyj � m ( jzj� n � m� or y � z�

�iv� �jxj( jyj � jhx� yij � �jxj( jyj( � for all x and y�

�v� For any increasing function f on $�� hf�x�� xi� � hf�x��� x�i for all x�



�� CHAPTER �� FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

This paring function is recursively generalized to a bijection from �$��k onto $� as hx�� x�� � � � � xki �

hx�� hx�� � � � � xkii� It is clear that�

�
k��X
i��

jxij( jxkj � jhx�� � � � � xkij � �
k��X
i��

jxij( jxkj( ��

����� Complexity Classes

A complexity class is a collection of subsets of $�� For a complexity class C� the complement of C� denoted

by co�C� is the collection of sets S such that $� � S is in C�

De�nition ����� For a function t on N� let DTIME�t�� NTIME�t�� and DSPACE�t� denote the class

of all sets recognizable by deterministic t�time� nondeterministic t�time� and deterministic t�space Turing

machines� respectively� Similarly� let BPTIME�t� denote the class of sets recognizable by t�time bounded

probabilistic Turing machines with bounded error probability� and let RTIME�t� denote the collection of

sets computable by one�sided error� probabilistic �i�e�� random� t�time Turing machines� For a set T of

functions� let DTIME�T � �
S
t�T DTIME�t�� In a similar fashion� we de�ne NTIME�T �� BPTIME�T �� and

DSPACE�T ��

Using these notations � we can introduce several important complexity classes� For deterministic classes�

we use the following basic complexity classes�

�� P � DTIME�nO��	� �polynomial�time��

�� E � DTIME��O�n	� �linear�exponential�time��

�� EXP � DTIME��n
O���

� �exponential�time��

A set S in P is said to be polynomial�time computable �P�computable� for short�� Similarly� we use the ter�

minology exponential�time computable �EXP�computable� for short� and linear�exponential�time computable

�E�computable� for short�� respectively� for sets in EXP and in E�

For space�bounded complexity classes� we use�

�� PSPACE � DSPACE�nO��	� �polynomial�space��

�� ESPACE � DSPACE��O�n	� �linear�exponential�space��

It is worth noting that PSPACE is closed under complement� i�e�� PSPACE � co�PSPACE�

For nondeterministic classes� we set�

�� NP � NTIME�nO��	��

�� NE � NTIME��O�n	��

�� NEXP � NTIME��n
O���

��
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Interestingly� NP�sets have the following characterization by logical terms� a set A is NP if and only if there

exists a set B � P and a polynomial p such that A � fx j �y jyj � p�jxj�� hx� yi � B!g�
For probabilistic classes� let�

�� RP � RTIME�nO��	� �random polynomial�time��

�� RE � RTIME�nO��	� �random linear�exponential�time��

�� BPP � BPTIME�nO��	� �bounded�error probabilistic polynomial�time��

	� BPE � BPTIME��O�n	� �bounded�error probabilistic linear�exponential�time��

The class ZPP �zero�error probabilistic polynomial�time� is de�ned by RP � co�RP�

It is important to note that DTIME�O�n�� �� NTIME�O�n��  ��!� This is the only separation result we

have known until now�

Other important complexity classes are UP and PP� The class UP �unambiguous polynomial time�

is de�ned by polynomial�time unambiguous Turing machines� The probabilistic class PP �probabilistic

polynomial time� consists of sets which are de�ned by polynomial�time probabilistic Turing machines whose

error probability is � ���� Actually� the value ��� can be replaced by any real number � satisfying � � � � ��

By de�nition� P 	 UP 	 NP and P 	 RP 	 BPP 	 PP�

Using the notion of oracle Turing machines� we can introduce relativized complexity classes� For a set

S and a complexity class C� the notation CS �C relative to S� denotes the class naturally obtained from

the de�nition of C with the help of S as oracle� and CD �C relative to D� denotes the union of all CS for

any S � D� All complexity classes de�ned above are naturally relativized using the notion of oracle Turing

machines� such as PA� NPA� BPPA� RPA� UPA� etc�

As mentioned before� the empty oracle set does not change the computational power of the Turing

machines� thus� we have P
 � P� NP
 � NP� etc� We remember an important result due to Zachos �see�

e�g��  ���!� that BPPBPP � BPP�

Let �P �pronounced �sharp P� or �number P�� be the collection of all functions on $� which are

computed by polynomial�time counting Turing machines� It is not di�cult to see that f is in �P if and

only if there exist a set A � P and a polynomial p such that f�x� � kfy � $p�jxj	 j hx� yi � Agk for all x�

The counting of solutions is relevant to probabilistic computation� The following result shows a relation�

ship between these two notions�

Lemma ����� ��� P�P � PPP and FP�P � FPPP�

Proof� First we show the inclusion PP 	 P�P� This inclusion is easily seen as follows� For a set A � PP�

there is a probabilistic Turing machine M � We modify M so that all computation paths of M on each input

x are of the same length� say p�x�� The success probability of M on x is equal to the ratio of kAcc�M�x�k
to �p�x	� Let us de�ne f�x� � kAcc�M�x�k for all x� Obviously f � �P� Using this f � we can determine in

polynomial time whether � � f�x� � �p�x	� which means x � A� Therefore� A belongs to Pf 	 P�P�



�� CHAPTER �� FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

Next we shall show the other inclusion that �P 	 FPPP� thus� we have P�P 	 PPP�

Take a �P�function f � There exists a polynomial�time nondeterministic Turing machine M such that�

for every x� f�x� equals the number of accepting computation paths of M on input x� Take a polynomial p

and assume that the number of nondeterministic computation paths of M on input x is exactly �p�jxj	 �this

is always true if we pad extra nondeterministic� rejecting paths��Clearly � � f�x� � �p�jxj	 for all x�

We then de�ne the set A � fhsi� xi j kAcc�M�x�k � ig so that�

f�x� � maxfi � N j hsi� xi � Ag�

A binary search technique helps us compute the value f�x� deterministically by simply querying polynomially�

many strings of the form hsi� xi� � � i � �p�jxj	� to oracle A� Therefore� we have f � FPA�

In the rest of the proof� we must show that A is in PP� Let us de�ne the following randomized Turing

machine N �

begin randomized algorithm for N

input hsi� xi
if i � � then accept and halt

generate a bit b �b � f�� �g� at random

if b � � then simulate M on input x and halt

generate a string y of length p�jxj� at random

�assume that y is the jth string in $p�jxj	� where �p�jxj	 is the �th string�

if j � �p�jxj	 � i then accept else reject

end�

This machine N obviously runs in polynomial time because M does so� It is also easy to see that� for each

hsi� xi�
hsi� xi � A�� PrN  N �hsi� xi� � �! �

�

�
�

Hence� A � PP� �

A set S is in �P �pronounced �parity P�� if there exist a polynomial p and a set A � P such that� for

each x� x � S if and only if kfy � $p�jxj	 j hx� yi � Agk is odd  ��!� We remark that UP 	 �P� A set

S is near�testable if there exists an f � FP such that� for all nonempty strings x� f�x� � 
S�x� ( 
S�x��

�mod ��� Let NT denote the collection of all near�testable sets  ��!� It is known that P 	 NT 	 �P and

NT is also included in E �PSPACE  ��!� It is also known that �P�P � �P  ��! and NP 	 RP�P  ���!�

The class P�poly consists of all sets A such that there exist a p�bounded function f from N to $� and

a set B � P satisfying A � fx j hx� f�jxj�i � Bg� This class is also known as the collection of all sets

computable by �non�uniform� families of polynomial�size circuits�

A set S is in APT �almost polynomial time�  ��! if there exists a polynomial p and a deterministic Turing

machine M which accepts S such that the set fx j TimeM�x� � p�jxj�g is sparse�
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����� Worst�Case Hierarchies

We shall de�ne several important hierarchies in worst�case complexity theory�

De�nition ����� �Polynomial Time Hierarchy� ���� �
�� ���� The polynomial�time hierarchy con�

sists of the following complexity classes� �p
� � 
p

� � �p
� � P� �p

k � P�
p
k�� � 
p

k � NP�
p
k�� � and

�p
k � co�
p

k for k � �� We also use the cumulative polynomial�time hierarchy PH �
S
k���

p
k�

Note that 
p
k��p

k 	�p
k�� 	 
p

k����p
k�� for all k � � �see  ���!�� It is known that if NP 	 BPP� then

NP � RP  ��! and also PH � BPP  ���!� A recent achievement is Toda
s theorem  ���! that PH 	 PPP�

For a function f on N and a set A� let PA�O�f�n		� be the collection of sets B which are computed by a

polynomial�time deterministic oracle Turing machine M with oracle A such that the number of queries by

M on input x is bounded above by c � f�n� ( d� where c and d are constants depending only on M � For a

class C of sets� set PC�O�f�n		� to be the union of all PA�O�f�n		� for every A � C� In particular� we write �p
k

for P�
p
k���O�logn	��

Moreover� we de�ne two hierarchies over E and EXP as follows�

De�nition ����� �Exponential�Time Hierarchies� cf� ���

�� The linear exponential�time hierarchy is de�ned as follows� �e
� � 
e

� � �e
� � E� and for each k � ��

�e
k � E�

p
k � 
e

k � NE�
p
k�� � and �e

k � co�
e
k� Let EH �

S
k���

e
k�

�� The exponential�time hierarchy is de�ned as follows� �exp
� � 
exp

� � �exp
� � EXP� and for each

k � �� �exp
k � EXP�

p
k � 
exp

k � NEXP�
p
k � and �exp

k � co�
exp
k � Let EXPH �

S
k���

exp
k �

We next consider alternating Turing machines�

De�nition ����	 Let ATIME�t�n�� be the class of all sets which are computed by alternating Turing

machines in time t�n�� We also de�ne two alternation�bounded classes� Let ATIME��k�n�� t�n�� be the

class of all sets computed by semi�deterministic alternating Turing machines with at most k�n��alternations

in time t�n�� Similarly� let ATIME��k�n�� t�n�� be the class of all sets computed by alternating Turing

machines� starting with existential states� with at most k�n� alternations and in time t�n�� For sets K
and T of functions� we de�ne ATIME��K� T � �

S
k�K

S
t�T ATIME��k�n�� t�n��� and ATIME��F � T � and

ATIME�T � can be de�ned similarly�

All three hierarchies introduced above are characterized by alternating Turing machines with constant�

alternation�

Lemma ����� Let k � �� Then	

�� �p
k � ATIME��k� nO��	�	 
p

k � ATIME��k� nO��	�	 and PSPACE � ATIME�nO��	��
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�� �e
k � ATIME��k� �O�n	� and 
e

k � ATIME��k� �O�n	��

�� �exp
k � ATIME��k� �n

O���

� and 
exp
k � ATIME��k� �n

O���

��

Proof� Here we show only the claim for �p
k� For a set A ��p

k� take a deterministic oracle Turing machine

M which is p�time bounded and an oracle set B � 
p
k�� �if k � �� then let B � '� such that A � L�M�B��

where p is an increasing polynomial� Since B � 
p
k��� there are k�alternation bounded polynomial�time

alternating Turing machines N� and N� which recognize B and B� respectively� Now we construct a semi�

deterministic alternating Turing machine which recognizes A as follows� on input x� simulate M on input

x except for oracle queries� whenever M queries yi� guess its oracle answer ans�yi� and store values yi and

ans�yi�� then universally choose blog p�n�c bits c� and if c is the ith element of $llog�p�n		� then erase all

symbols except yi and ans�yi�� and �nally simulate N� on yi if ans�yi� � �� or else� simulate N� on yi�

Conversely� take a polynomial�time semi�deterministic alternating Turing machine M � We build a de�

terministic oracle machine M � and an oracle set B such that L�M � � L�M�B�� Step by step� we decide

a computation path of M on input x which leads to an accepting con�guration of M on x if one exists�

Assume that b�� � � � � bm are determined� and M � is at the �m ( ��th node c which has two children c�� c��

To decide which child node to choose� we follow the procedure� follow the leftmost path until M enters a

universal state� and then choose the path labeled with the �m( ��th string� letting p be a label of this path�

query a string hx� pi� if the oracle answers �yes�� then let bm�� � �� and otherwise� let bm�� � �� then choose

cbm�� and go into the next node�

Oracle set B is de�ned by the following algorithm� on input hx� pi� simulateM on x and deterministically

follow a computation path labeled with p and then simulate the rest of the computation tree T � Since T has

�k � ���alternation� B belongs to ATIME��k � �� nO��	� � 
p
k��� Clearly� we have L�M � � L�M �� B�� �

The relationship between the polynomial�time hierarchy and the linear exponential�time alternation hi�

erarchy is summarized as the following lemma�

Lemma ����� For each k � �	 TALLY �
p
k 	�p

k if and only if �e
k � 
e

k�

Proof� Use Book
s tally�encoding technique  �	!� For a set A� de�ne a tally part of A as Tally�A� �

f�n j the binary representation of n is of the form �w and w � Ag� It is not di�cult to see that A �
ATIME��k� �O�n	� if and only if Tally�A� � ATIME��k� nO��	�� Hence� A � 
e

k if and only if Tally�A� � 
p
k�

A similar equivalence relation also holds between �e
k and �p

k� The lemma� therefore� follows from these

characterizations� �

Sch�oning  ��! has constructed two hierarchies within NP�

De�nition ����� �Low and High Hierarchies within NP� ���� Let n � ��
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�� The low hierarchy within NP is de�ned as follows� L�p
n � fA � NP j �p

n�A� 	 �p
ng and L
p

n �

fA � NP j 
p
n�A� 	 
p

ng�

�� The high hierarchy within NP is de�ned as follows� H�p
n � fA �NP j�p

n�� 	�p
n�A�g and H
p

n �

fA � NP j 
p
n�� 	 
p

n�A�g�

����� Polynomial�Time Reducibilities

Polynomial�time reducibilities play a very important role in computational complexity theory� We brie
y

sketch such reducibilities�

A set D is called polynomial�time many�one reducible �p�m�reducible� for short� to a set E� denoted by

D �p
m E� if there exists a function f in FP such that� for all x� x � D if and only if f�x� � E� This

function f is called a �polynomial�time many�one� reduction and is said to reduce D to E� Furthermore�

if f is one�one� then we say that D is polynomial�time ��� reducible �p���reducible� for short� to E� A set

D is polynomial�time Turing reducible �p�T�reducible� for short� to E� denoted by D �p
T E� if there exists

a deterministic polynomial�time Turing machine M such that D � L�M�E�� A set D is polynomial�time

truth�table reducible �p�tt�reducible� for short� to E� denoted by D �p
tt E� if there is a polynomial�time oracle

Turing machine M which with oracle E makes nonadaptive queries such that D � L�M�E��

A set D is polynomial�time many�one �Turing	 truth�table	 resp�� complete� p�m�complete� for short�

�p�T�complete� p�tt�complete� resp�� for short� for a class C if D � C and every set in C is p�m�reducible

�p�T�reducible� p�tt�reducible� resp�� to D� For a complexity class C� we simply say that D is C�complete if

D is p�m�complete for C�

One of the most useful NP�complete problems is the bounded halting problem� BHP� de�ned as follows�

assuming that fMigi�Nis an e�ective enumeration of all nondeterministic polynomial�time Turing machines�

let

BHP � fhsi� x� �ni jMi accepts x within time n g�

We quickly sketch the proof that BHP is NP�complete� To see that BHP � NP� it is enough to check the

following algorithm�

begin nondeterministic algorithm for BHP

input y

if y is not of the form hsi� x� �ni then reject

�Now assume that y � hsi� x� �ni�
simulate nondeterministically Mi on input x for n steps

if Mi does not halt then reject

end�

The running time of this algorithm is bounded by a polynomial in n since each simulation of machine Mi

does not exceed n steps� Hence� BHP �NP� Next we show that BHP is NP�hard� For any NP set A� take

a nondeterministic Turing machine M which recognizes A in polynomial time� Also take a strictly increasing
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polynomial p such that TimeM�x� � p�jxj� for all strings x� Let i be an index such that L�M � � L�Mi��

Now let us de�ne f as f�x� � hsi� x� �p�jxj	i� The function f reduces A to BHP and is clearly one�one�

p�honest� increasing� length�preserving� and P�computable�

Notice from the above proof that every NP set is p���reducible to BHP by p�honest� monotone� length�

preserving reductions�

Another typical example of NP�complete sets is the satis
ability problem SAT that is de�ned as

SAT � fhF i j F is a satis�able formula g�

where hF i denotes an appropriate binary encoding of a formula F � There is a p�honest� one�one reduction

from BHP to SAT� therefore� SAT is also NP�complete�

The Turing closure �many�one closure	 truth�table closure� resp�� of a class C is the collection of sets

which are polynomial�time Turing �many�one� truth�table� resp�� reducible to some sets in C�

Lemma ����	
 Every set in �exp
k 	 k � �	 is p�m�reducible to some set in �e

k� That is	 the many�one

closure of �e
k is exactly �exp

k �

Proof� By a padding argument� Assume that A is a set in �exp
k � There exist a polynomial p and a

semi�deterministic alternating Turing machine M which� on input x� recognizes A in time �p�jxj	 with k�

alternations� Let N be another machine that� on input x of the form x��p�jxj	� simulates M on input x�

By de�nition� it follows that N �x��p�jxj	� � M �x� for all x� It is important to notice that N is �O�n	�time

bounded� For the desired reduction� de�ne f�x� � x��p�jxj	 for all x� �

Two sets A and B are called polynomially isomorphic �p�isomorphic� for short� if there exists a P�

computable� p�invertible bijection f which reduces A to B� This reduction f is called a polynomial�time

isomorphism �p�isomorphism� for short�� Berman and Hartmanis  ��! raised the question of whether NP�

complete sets are all p�isomorphic� This is known as the �isomorphism conjecture��

A set S is P�printable if there is a P�computable function f such that f��n� outputs the list of all strings

in S �$n� It is known that a set A is P�printable if and only if A is p�isomorphic to some tally set  �!� It is

easy to see that if P � NP� then all sparse sets in P are P�printable  �!�

A set S is �Turing� self�reducible if there exists a deterministic oracle Turing machine M such that�

�i� S � L�M�S�� and

�ii� On every input x� M queries only strings whose length is smaller than jxj�

For example� SAT and BHP are both self�reducible�

����� Complexity Cores

We shall review a notion of complexity cores and their existence shown by Book and Du  ��!�
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De�nition ������ �Complexity Cores� Let A be a set and let C be a class of sets� An in�nite set H

is a complexity core �or hard core� for A with respect to C if� for every set C in C� if C 	 A� then C �H is

�nite� A complexity core H is called proper if H 	 A�

Lemma ����	� ��	� Let C be a recursively enumerable class of recursive sets� If C is closed under


nite union and 
nite variation	 then any in
nite recursive set A not in C has an in
nite recursive	 proper

complexity core for A with respect to C�

Proof� Assume that A is an in�nite recursive set not in C� Since C is recursively enumerable� all subsets

of A that are in C can be e�ectively enumerated as fC�� C�� � � �g� For each k � N� let Dk �
Sk
i��Ci� Note

that Dj 	 Dj�� for every j� Now let D �
S
j��Dj � If A � D is in�nite� then A �D is an in�nite proper

complexity core for A since any subset C of A that is in C is a subset of D� and thus �AD� �C � '� Now

let us assume that A �D is �nite� There are in�nitely many k satisfying that Dk �� Dk�� since� otherwise�

C is closed under �nite union� and thus A is in C� a contradiction� For each k with Dk �� Dk��� take the

element ak that is the minimal in Dk�� � Dk� Let H � fak j Dk �� Dk��g� This H is clearly in�nite and

also a proper complexity core for A� �

��	 One�Way Functions

This section will de�ne one�way functions� A one�way function is a function which is computed easily but

whose inverse is hard to compute� We shall introduce the new notions of nearly�RP and nearly�BPP sets

and show that if one�way functions exist� then all NP sets are nearly�BPP using hash function technique�

��	�� Hash Functions

We shall introduce hash functions as a useful tool in the discussion of randomized algorithms�

For n�m � N �n � m�� let Hn�m denote the family of pairwise independent universal hash functions from

$n to $m which is de�ned as follows� a hash function h in Hn�m is of the form h � �M� b�� where M is an

m by n bit matrix and b is a bit vector� and takes its value as h�x� � Mx � b� Hence� the set Hn�m can

be identi�ed with the set of all m by n( � matrices over f�� �g� and each hash function h is encoded into a

string of length m�n ( ��� Note that kHn�mk � �m�n��	�

Lemma ����	 ��
� If x �� y	 n � m	 and i � m	 then Prh h�x�	i � h�y�	i j h � Hn�m! � ��i�

Moreover Prh h�x�	i � w	i j h � Hn�m! � ��i for 
xed x and w with jwj � i�

Proof� An easy exercise� �

Fix n and c and assume i � n and kXk � �� We say that a function h from $n to $n�c i�distinguishes
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x on X if h�x�	i�c �� h�w�	i�c for all w � X � fxg� otherwise� h i�indistinguishes x on X�

Proposition ����� Let n � N	 x � $�	 and i � N� Assume that ilog�kXk� � i � n�

�� Prh h i�distinguishes x on X j h � Hn�n�c! � �� ��c�

�� �����c���i�c � Prhy  h�x�	i�c � y	i�c�h i�distinguishes x on X j h � Hn�n�c�y � $n�c! � ��i�c�

Proof� �� Fix x and i� and let �i�x � Prh h i�distinguishes x on X j h � Hn�n�c!� Then�

�i�x � ��Prh �w � X � fxg�h�w�	i�c � h�x�	i�c� j h � Hn�n�c!

� ��
X

w�X�fxg
Prh h�w�	i�c � h�x�	i�c j h � Hn�n�c!

� �� kXk � �

�i�c
� �� kXk � �

�log�kXk	�c

� �� kXk � �

kXk � �c � �� �

�c
�

�� Let ��i�x � Prhy  h�x�	i�c � y	i�c � h i�distinguishes x on X j h � Hn�n�c � y � $n�c!� We show the

�rst inequality of the claim�

��i�x � Prhy  h�x�	i�c � y	i�c j h � Hn�n�c� y � $n�c!

�
X

y�jyj�n�c
���n�c	 �Prh h�x�	i�c � y	i�c j h � Hn�n�c!

�
X

y�jyj�n�c
���n�c	 � ���i�c	 � ���i�c	�

The second inequality is shown as follows� In the calculation� we omit the term �h � Hn�n�c��

��i�x �
X

y�jyj�n�c
���n�c	 �Prh h�x�	i�c � y	i�c!

�Prh h i�distinguishes x on X j h�x�	i�c � y	i�c!

�
X

y�jyj�n�c
���n�c	 � ���i�c	 �

�
���

X
w�X�fxg

Prh h�w�	i�c � y	i�c j h�x�	i�c � y	i�c!

�
A

�
X

y�jyj�n�c
���n�c	 � ���i�c	 �

�
�� kXk � �

���i�c	

�

� ���i�c	 �
�

�� kXk
�log�kXk	�c

�
� ���i�c	��� ��c��

�

��	�� One�Way Functions

In computational complexity theory� there are several de�nitions of one�way functions� A function f is

polynomially invertible �p�invertible� for short� if there is a function g in FP such that g � f�x� � x for
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all x� whereas f is weakly p�invertible if there is a P�computable function g such that f � g�x� � x for all

x � ran�f�� Note that if f is weakly p�invertible� then we can determine whether x � ran�f� by checking if

f � g�x� � x�

A �weakly� one�way function is a one�one� p�honest� P�computable function on $� whose inverse is not

computable in polynomial�time �cf�  ��� 	�� 	!�� It is shown in  ��� ��! that one�way functions exist if and

only if P �� UP�

In cryptography� slightly di�erent one�way functions are used� We need only uniform one�wayness in

this thesis� A �uniform� strong one�way function is a function f such that f is P�computable and� for all

randomized Turing machines M working in polynomial�time� the function

�n�Prx�s f�M �f�x� � s�� � f�x� j x � $n � s � )M �x�!

is negligible� H,astad� Impagliazzo� Levin� and Luby  	�! showed a close relationship between the existence

of strong one�way functions and that of pseudo�random �number� generators�

Let us introduce RP�like and BPP�like sets� called nearly�RP and nearly�BPP sets� respectively� which

look like one�sided and two�sided� bounded�error probabilistic sets on most instances�

De�nition ��	�� �Nearly�BPP Sets and Nearly�RP Sets� �����

�� A set A is nearly�BPP if� for every polynomial p� there exist a set S and a polynomial�time randomized

Turing machine M such that� for each x�

�i� x � $� � S implies PrM  M �x� �� A�x�! � �

 � and

�ii� Prx x � S j x � $n! � �
p�n	 for almost all n�

�� A set A is nearly�RP if� for every polynomial p� there exist a set S and a polynomial�time randomized

Turing machine M such that� for each x�

�i� x � A� S implies PrM  M �x� �� A�x�! � �
� �

�ii� x � A� S implies PrM  M �x� �� A�x�! � �� and

�iii� Prx x � S j x � $n! � �
p�n	 for almost all n�

We can amplify the success probability of M on string inputs from A� S by repeating its computations

at random� A new Turing machine N is de�ned as follows� on input x �n � jxj�� repeatedly run M on input

x independently p�n� many times� and accept x if and only if M �x� � � for some trial� Consider x in A�S�

Then� the error probability that N �x� � � is at most ����p�n	� Hence� PrN  N �x� � A�x�! � �� ��p�n	� On

the other hand� if x � A�S� then PrN  N �x� �� A�x�! � �� Without loss of generality� we can further assume

that the length of all nondeterministic computation paths of N on x is exactly p�jxj� for some polynomial p�

Clearly� from the de�nition� RP �BPP� resp�� is properly contained in the class of nearly�RP �nearly�

BPP� resp�� sets�
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Here we show that the assumption that every NP set is nearly�RP implies that no strong one�way

functions exist�

Proposition ����� ����� If every NP set is nearly�BPP	 then there is no strong one�way function�

Proof� Assume that every NP set is nearly�BPP and a strong one�way function exists� By  �!� there

exists a length�preserving strong one�way function which is one�one on at least �n

p�n	 elements in $n for each

n� where p is an adequate increasing polynomial� Let f be such a function� Let D � fx j kf���x�k � �g�
We then have kD �$nk � �n

p�n	 for almost all n�

Denote by sni the ith string of $ilog�n	 �in particular� sn� � �ilog�n	�� Consider the following sets fTxgx�

for each x�

Tx � fxsni j �z � $jxj f�z� � x � the �i ( ���th bit of z is �� � � i � n !g�

Note that Tx � Ty � ' unless x � y� Let A �
S
x Tx� Clearly� A is in NP� By our assumption� for

the polynomial 	n�p�n�� there is a set S and a polynomial�time randomized Turing machine M satisfying

conditions �i���ii� of De�nition �������� with kSnk � �n

�n��p�n	 for almost all n� In particular�

kSn�ilog�n	k � �n�ilog�n	

	�n( ilog�n���p�n( ilog�n��
� �n � �n

	n� � p�n�
�

�n

�n � p�n�
�

Hence� we have�

Prx Tx �	 A� S j x � $n! � Prx �i xsni � A � S! j x � $n!

�
n��X
i��

Prx xsni � A � S j x � $n!

�
n��X
i��

Prx xsni � S j x � $n! � n � kSn�ilog�n	k
�n

�
n

�n
� �n

�n � p�n�
�

�

�p�n�
�

Hence� Prx Tx 	 A� S j x � $n! � �� �
�p�n	

� Moreover�

Prx x � D � Tx 	 A� S j x � $n! � Prx x � D j x � $n! ( Prx Tx 	 A� S j x � $n!� � � �

�p�n�
�

We assume that� for x �� S� PrM  M �x� � A�x�! � � � ��jxj� We then de�ne the randomized Turing

machine N as follows�

begin randomized algorithm for N

input x �say� n � jxj�
let z �� �

for i � � to n� �

if M �xsni � � � then let z �� z� else let z �� z�

end�for
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P

BPP

nearly-RP

nearly-BPP

RP

NP

Figure ���� Predicted inclusion relationships

output z

end�

Assume that x � D and Tx 	 A� S� The success probability PrN  f�N �x�� � x! is bounded by

PrN  f�N �x�� � x! � PrM  M �xsni � � A�xsni �! � ��� ��n�ilog�n	�n � �� ��ilog�n	�� �
�

�
�

Thus� we obtain PrN  f�N �x�� � x! � ���� Using this inequality� the probability that N computes the

inverse of f is bounded by

Prx�s f�N �f�x�� s�� � f�x� j x � $n � s � )M �x�!

� Prx x � D � Tx 	 A� S j x � $n!

�Prx�s f�N �x� s�� � x j x � D �$n � Tx 	 A� S � s � )M �x�!

� �

�p�n�
�PrN  f�N �x�� � x!

� �

�p�n�
� �

�
�

�

	p�n�
�

This contradicts the one�wayness of f � �

Figure ��� illustrates the inclusion relationships we predict�

As can be seen� nearly�RP sets and nearly�BPP sets are related to the density of sets�

De�nition ��	�� A set S is C�f�n��close if there exists a set B in C such that k�A�B� �$nk � f�n� for

almost all n�



	� CHAPTER �� FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

Lemma ����� Let f be a function on N such that f�n� � ��logn�� For C � fRP�BPPg	 every C��n�f�n	�
close set is nearly�C�

Proof� We shall establish the lemma for C � BPP� Since f�n� � ��logn�� we have limn
� c�logn
f�n	 � �

for all number c � �� This implies that limn
� nc

�f�n�
� � for every constant c � �� Hence� ��f�n	 � o



�

p�n	

�
for any polynomial p�

Let A be BPP��n�f�n	�close� There exist a polynomial�time probabilistic Turing machine M and a set

B such that k�A�B��$nk � �n�f�n	 for almost all n� In other words� Prx A�x� �� B�x� j x � $n! � ��f�n	�

We de�ne S � fx j A�x� �� B�x�g� Then� we have Prn x � S! � ��f�n	� By the above calculation� for

any polynomial p� Prn x � S! � �
p�n	 for almost all n� This yields the desired consequence� �

��
 Relevant Theories

In this section� we shall discuss several important and relevant branches of computational complexity theory�

��
�� Feasible Real Numbers

A real number is viewed as an in�nite sequence of dyadic rational numbers which converges to it� If the

convergence rate is fast enough and the nth element of the convergence sequence is e�ectively constructible�

we can obtain a good approximation scheme for the real number in question� Ko and Friedman  ��! called

such real numbers computable real numbers and initiated polynomial analysis of the real numbers based on

real numbers computable in polynomial time�

De�nition ����� �Computable Real Numbers� ���� Let t be a function on N� A real number r is

t�time computable �t�space computable� resp�� if there exists a deterministic Turing machine M which� on

input �n� produces dyadic rational number dn in time t�n� �using space t�n�� resp�� satisfying the condition

jr � dnj � ��n� We call the sequence fdngn�Na convergence sequence for r�

De�nition ����� �Computable Sequence� A sequence fxngn�Nof real numbers is polynomial�time

computable �P�computable� for short� if there exists a polynomial p and a deterministic Turing machine M

which� on input ��n� �k�� produces a dyadic rational number d in time p�n( k� satisfying jd� xnj � ��k�

In polynomial analysis� functions map fromRtoR� Although these real functions are intriguing� functions

we are now interested only in functions that are �discrete� mappings from $� to the unit interval  �� �!� Here

we modify the regular de�nition of feasible real functions to suit our setting�

De�nition ����� �Computable Real�Valued Functions� A function f from $� to R� is called t�time

computable �t�space computable� resp�� if there exists a deterministic Turing machine M which works in time
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t �using space t� resp�� satisfying that jM �x� �i� � f�x�j � ��i for all i � N and all x � $��

Lemma ����� �� If x and y are P�computable real numbers	 then so are �x	 x ( y	 x � y	 maxfx� yg	
minfx� yg	 and jxj �absolute value of x��

�� Let x be a P�computable real number with x �� �� Then	 the inverse �
x is also a P�computable real

number�

Proof� ��� Assume that fxngn�Nand fyngy�Nare convergence sequences witnessing x and y� respectively�

For �x� maxfx� yg� and minfx� yg� consider the sequences f�xngn�N� fmaxfxn� ynggn�N� and

fminfxn� ynggn�N� respectively� For x ( y� let zn � xn�� ( yn��� then the sequence fzngn�Nrepresents

x(y� For x �y� assume that the absolute values of xn and yn are bounded above by �k for some �xed natural

number k� Then� we let zn � xn�k�� � yn�k��� The sequence fzngn�Nrepresents x � y�
��� Assume that fxngn�Nis a convergence sequence witnessing x� Take an integer k � N such that

jxj � ��k��� Therefore� jxnj � jxn � x ( xj � jxj � jx� xnj � ��k�� � ��n� So� for all n � k� jxnj � ��k

holds� Let x�n � x�k�n�
� We have jx�n � xj � ���k�n�
� Let zn be the inverse of x�n rounded down to

polynomially�many bits such that jx�n � �
zn
j � ���k�n�
� Then� we have����x� �

zn

���� � jx� x�nj(
����x�n � �

zn

���� � ���k�n�
 ( ��n � ���k�n���

Also we have ���� �

zn

���� �

���� �

zn
� x�n ( x�n

���� � jx�nj �
���� �

zn
� x�n

���� � ��k � ���k�n�
 � ��k���

Hence� �����x � zn

���� �
jx� �

zn
j

jxj � j �
zn
j � �k � �k�� � ���k�n�� � ��n�

�

Lemma ����� Let fangn�Nbe an in
nite convergence sequence in which each ai is in  �� �!� Let t be a

function on N� Let p be a time�constructible function on N and assume that p is increasing and unbounded�

Also assume that jap�i	 � ap�j	j � ��i ( ��j for almost all i� j � N� If the sequence fangn�Nis t�time

computable	 then the limit limn
� an is O�n ( t�p�n ( �� ( n ( ����time computable� In particular	 if

fangn�Nis P�computable and p � nO��		 then limn
� an is P�computable�

Proof� Since fangn�Nis t�time computable� there is a deterministic Turing machine M satisfying jan �
M ��n� �i�j � ��i for all n� i � N� Let N ��n� � M ��p�n��	� �n���� More precisely� N is a deterministic Turing

machine de�ned as below�

begin algorithm N

input �n

compute n( �
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compute p�n( �� �needing O�p�n( �� ( n� steps�

��� simulate M on input ��p�n��	� �n���

end�

If p�n� � n� then we use the convention that whenever M tries to check the i�th bit of the input� it writes

down i in binary on a checking tape� and then it retrieves the answer automatically�

Then� the running time of N on input �n needs at most

c � �TimeM ��p�n��	� �n��� ( n� � c � �t�p�n( �� ( n( �� ( n�

for almost all n� where c is an appropriate positive constant� We next claim that jr � N ��n�j � ��n� This

is seen as follows�

jr� N ��n�j � jc�M ��p�n��	� �n���j
� jc� ap�n��	j( jap�n��	 �M ��p�n��	� �n���j
� ��n�� ( ��n�� � ��n�

Therefore� r is computable in time O�n( t�p�n ( �� ( n( ���� �

The interested reader may refer to  �	!�

��
�� Kolmogorov Complexity

In this thesis� we use time�bounded generalized Kolmogorov complexity given by Hartmanis  ��!� Intuitively�

the Kolmogorov complexity of a �nite string is the length of the shortest program that will generate the

string�

To de�ne Kolmogorov complexity� we need a notion of universal Turing machines that can simulate the

behavior of any other Turing machines� We assume that fMigi�Nis an e�ective enumeration of all Turing

machines� Now consider the following machine U � on input hi� xi� U simulates the ith machine Mi on input

x�

A code is a pre�x�code or instantaneous code if the set of code words is pre�x�free� i�e�� no code word is

a pre�x of another code word� A pre�x�code is called self�delimiting if there is a Turing machine which �i�

decides whether a given word is a code word and �ii� computes the decoding function�

Let us �x such a universal Turing machine U �

De�nition ����	 �Kolmogorov Complexity Sets� ���� A time�bounded Kolmogorov complexity set

KT g�n�� t�n�! is the set of strings x such that� for some string y of length at most g�jxj�� U on input y

outputs x in time t�jxj�� For a �xed string z� a time�bounded conditional Kolmogorov complexity set relative

to z� KT g�n�� t�n�jz!� is similarly de�ned but using U �hy� zi� � x instead of U �y� � x in the above de�nition�

Lemma ����� For any functions g� t and any string z	 KT g�n�� t�n�jz! 	 DTIME�O�t�n� � �g�n	���
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Proof� For an output string x� we need to check at most all machines Mi coded by strings i of length

g�jxj�� and� at each i� we simulate the machine Mi within t�jxj� steps� �

For more discussion about Kolmogorov complexity� the reader may refer to  ��!�

��
�� Resource�Bounded Measure

In ����� Lutz  ��! developed resource�bounded measure theory� The following terms mainly follow  ��!�

A function d from $� to R� is a martingale if

d�w� �
d�w�� ( d�w��

�

for all strings w� For every martingale d� we always have d�w� � �jwj � d��� for all w� Recall that si is

the ith string in $�� A martingale d succeeds on a set A if limk
� supn�k d�A ����n!� � �� where A ����n!

denotes the string x � x�x� � � �xn satisfying xi � 
A�si�� Let S� d! be a collection of all sets on which the

martingale d succeeds�

The notion of p�measure captures in a way the �topological� size of a class�

De�nition ����� �P�measure� cf� �	�� �
� A complexity class C has p�measure � if there exists a

martingale d which is computable by a deterministic polynomial�time Turing machine such that C 	 S� d!�

A complexity class C has p�measure � if the complement co�C has p�measure ��

The class E has p�measure �� but P has p�measure �� We sometimes informally call a class small if it has

p�measure �� According to this terminology� the class P is small� while E is not small� One of the intriguing

open question is whether NP is small� If P � NP� then obviously NP is small� hence� smallness of NP

would follow from a collapse of NP down to P�

A ��dimensional martingale system ���MS� for short� d is a function from N� $� to R� such that dk is

a martingale for each k � N� where dk�w� � d�k�w�� A set X is a p�union of the p�measure � sets fXigi�N
if �i� X �

S
j�NXj � and �ii� there exists a polynomial�time computable ��MS d such that Xj 	 S� dj! for

every j � N�

Lemma ����� �	�� If X is a p�union of the p�measure � sets	 then X has p�measure ��

We further say that C has measure � in E �measure � in E� resp�� if C �E has p�measure � �p�measure

�� resp��� It is clear from the de�nition that if C has p�measure � and �� then C has measure � and � in E�

respectively� As an example� we note that� for a �xed positive constant c� the class DTIME�O��c�n�� has

measure � in E  ��!� Another typical example of a class which has measure � in E is the collection of all

p�m�complete sets for E �see  ��!��

We shall give an important example of p�measure � sets� immune sets and bi�immune sets�

De�nition �����
 �Immune Sets and Bi�Immune Sets� Let C be any complexity class� A set S
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is called C�immune if S is in�nite and S has no in�nite subsets in C� A set S is C�bi�immune if S and its

complement S are both C�immune�

Proposition ����		 �	�� Let c � �� The class of all DTIME�O��c�n���bi�immune sets has p�measure ��

Hence	 any class which contains no DTIME�O��c�n���bi�immune sets has p�measure ��

Proof� Let C be the class of non DTIME�O��c�n���bi�immune sets� and to obtain the desired result� we shall

show that C has p�measure �� because this obviously implies that the class of all DTIME�O��c�n���immune

sets has p�measure ��

Take a universal set A in E for DTIME�O��c�n��� namely� DTIME�O��c�n�� � fAi j i � Ng� where

Ai � fx j hx� ii � Ag for each i� We decompose C into in�nitely�many subclasses fYmgm�Nas follows�

Y�i�� �

�	

 fL j Ai 	 Lg if kAik � ��

' otherwise�

Y�i �

�	

 fL j Ai 	 Lg if kAik � ��

' otherwise�

We de�ne the ��MS d as follows�

d�m� z� �

������	
�����


� if z � ��

�d�m�w� if sjwj � Ab�m��	��c� and b �� m �mod ���

� if sjwj � Ab�m��	��c and b � m �mod ���

d�m�w� otherwise�

where w is the string satisfying z � wb for some b � f�� �g�
To compute d�m� z�� we should check if sjwj � Ab�m��	��c� however� since sjwj is of length llog�jwj�

�� blog�jwj ( ��c�� the computation time for checking if sjwj � Ab�m��	��c takes at most c� � �c�llog�jwj	 �
c� � �jwj( ��c� where c� is a constant� Thus� d is P�computable�

It su�ces to show by Lemma ����� that C is a p�union of the p�measure � sets fYmgm�N� Let us see that

Ym 	 S� dm! for each m � N� where dm�w� � d�m�w�� First consider m � N such that m is odd� If Am

is �nite� then we clearly have Ym 	 S�  dm!� We then assume that Am is in�nite� Take any set B � Ym�

Note that Ab�m��	��c 	 B since B � Ym� By our de�nition� we have dm�B ���n!� � �dm�B ���n � �!� if

sn � Ab�m��	��c� and otherwise� dm�B ���n!� � dm�B ���n � �!�� Since fn j sn � Ab�m��	��cg is in�nite�

limsupn
� dm�B ���n!� � �� Thus� we have B � S� dm!� A similar argument works for the case where m

is even� �



Chapter �

General Theory of Average Case

Complexity

��� Introduction

Average�case analyses have been performed to measure the complexity of algorithms and to obtain a better

understanding of the behavior of algorithms when input instances are given with some probability� In this

type of analysis� we should take into consideration that instances of a particular algorithm occur with some

probability� In contrast to the approach of from worst�case analysis� a �problem� here is a pair consisting of a

set of instances and an input distribution which designates the probability of each instance� These problems

are called distributional problems� randomized problems� or random problem�

Classical average�case analysis uses the expected running time or tape squares in use over all input

instances of the same length� Although the notion is simple and intuitive� it is not a basis for a consistent

and coherent theory of average�case complexity� Levin
s theory of average NP�completeness uses instead the

notion of polynomial on the average and also polynomial�time many�one reducibility among distributional

decision problems with crucial conditions� the so�called domination conditions for reduction functions� This

constraint is essential in the theory to make the reducibility transitive and to make the average polynomial�

time computable class closed under the reductions� In this chapter� we shall review Levin
s theory and further

cultivate a general framework of average�case complexity theory� we shall focus mainly on the notions of

polynomial on ��average and polynomial domination relations on which �domination conditions� rely�

Levin
s notion of functions being polynomial on ��average has been expanded into random functions to

cope with the average�case analysis of randomized algorithms�

Section ��� will begin with the formal de�nition of distributions �or distribution functions� and �prob�

ability� density functions �or probability distributions�� For practical reasons� we shall introduce semi�

distributions by eliminating the condition that distributions converge to � as input strings get larger� Of

particular importance is the standard distribution that assigns to each string the probability of the string

	�
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being chosen at random�

In Section ���� we shall introduce the notion of t on ��average which generalizes Levin
s original notion

of �polynomial on ��average�� Brie
y� a function g is called polynomial on ��average if� for some positive

number k� the expected value of jxj�� � g�x���k over all input strings x under distribution � converges� The

reader may notice that the functions which are polynomial on ��average are in general not time�constructible�

or even computable�

Section ��	 will introduce of the notions of domination relations and equivalence relations among dis�

tributions� These relations are the essential ingredients of Levin
s domination conditions for average�case

reductions�

Section ��� will introduce two types of average�case complexity classes� �randomized� version of worst�case

complexity classes and �average time�space bounded� version of worst�case complexity classes to describe

the classes which consist of distributional decision problems� We shall introduce two types of notations�

Dist�C�F� for the randomized complexity classes� and Aver�C�F� for average complexity classes� From the

algorithmic point of view� we can consider sets of distributional decision problems �D��� whose underlying

problemD is solved in time polynomial on ��average� In particular� we shall introduce average�case analogues

of important complexity classes� such as P� NP� BPP� and PSPACE� However� the reader should note

that our average running time and tape space are not measured by time�constructible functions� and as a

result� fundamental relationships among the average complexity classes are essentially di�erent from those

among worst�case complexity classes�

Major Contributions� This chapter extends Schapire
s characterization of �polynomial on ��average�

to a more general notion of �t on ��average�� The reader who is familiar with Levin
s original de�nition

may �nd it interesting that the arguments used in this thesis to show that a given function is polynomial on

��average are very di�erent from those used in the literature� The basis of this chapter comes from Schuler

and Yamakami  ��!�

Lemma ������ gives a simple but su�cient condition for proving a given function g to be polynomial on

��average� The lemma actually shows that if g�x� � c � nk ( �c�n�"��An
i ��k for all i with � � i � n and for

all x � An
i � then g is polynomial on ��average� where fAn

i g��i�n is a partition of $n�

Lemma ��	��� shows that� for a random function h with its random�input domain +� if � �avrp
� � and

"��f�x� s� j h�x� s� � q�r � jxj�g� � ��r� then h becomes polynomial on ��average�

A generalization of Schapire
s result is presented as in Proposition ������� The proposition actually shows

that� for a good set T of strictly increasing functions� g is T on ��average if and only if the expectation of

the values jxj�� � t���g�x��� over all input strings x� converges for some function t in T �

Lemmas ������ and ������ are new results� Lemma ������ shows a su�cient condition for a random

function g to be polynomial on ��average� while Lemma ������ gives a necessary condition for g�

Lemma ������ shows that� provided a function h is polynomial on ��average and a random function g

is polynomial on � � ��average� if h�f�x�� � "��f�x�� � � for all x and �x�jf�x�j is polynomial on ��average�

then the composition �xs�g�x� h�x�� s� is polynomial on ��average�
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Proposition ������ shows that� for example� Aver�BPP�F� is weakly PP�descriptive�

Lemma ������ shows that Aver�P�F� and Aver�PSPACE�F� are closed under weak description� and

this lemma combined with Proposition ������ leads to Corollary ������� The corollary shows that P �� BPP

implies the separation of Aver�BPP� �� from Aver�P� ��� whereas the two average�case complexity classes

collapse if P � PP� �These results follow Proposition ������� which shows an extensive generalization of a

result given by Karg and Schuler  	�!��

Our notion of nondeterministic average polynomial�time is clearly distinct from what has been discussed

elsewhere� In particular� whereas P �#NP is a lon�standing open question� Theorem �����	 makes the

interesting observations that Aver�P� �� �� Aver�NP� ���
The new characterizations of Aver�NP�F� and Aver�BPP�F� are presented in Proposition ������ and

Proposition ������� In particular� the Ampli�cation Lemma �Lemma ������� in our average�case setting� fol�

lowed by Proposition ������� is fundamental and �nds many applications in later chapters� The Ampli�cation

Lemma ampli�es the success probability of randomized algorithms which make bounded�errors�

��� Distributions and Density Functions

Average�case complexity theory handles problems whose input instances occur with speci�ed probabilities�

This section will introduce the basic concepts of distribution �or distribution functions� and �probability�

density functions� Using the terminology in Section ���� our sample space ) consists of all �nite strings over

f�� �g� and the ���eld is �)�F�� where F is the power set of )� We consider a discrete probability measure

on �)�F� and call it a �probability� density function� Intuitively� a density function provides a probability

that instance x occurs� A distribution� on the other hand� indicates the total probability over all instances

smaller than or equal to a give instance� For practical reasons� we also use the notion of semi�distributions�

De�nition ����� �Distributions� A semi�distribution �or semi�distribution function� � is an increasing

function from $� to the unit real interval  �� �!� A distribution �or distribution function� is a semi�distribution

which converges to �� i�e�� limx
� ��x� � ��

We do not avoid the possibility that the semi�distribution � always takes the value �� i�e�� "��x� � � for

all x� we call such � trivial� We remark that there is no feasible way to determine in general whether a given

semi�distribution � is trivial� Nevertheless� we are primarily interested in non�trivial semi�distributions�

Ben�David� Chor� Goldreich� and Luby  �!� among others� often use semi�distributions in their arguments

instead of full distributions because their semi�distributions can be normalized to full distributions without

changing the complexity� However� this normalization is not always possible� See Section 	�� for more

discussion�

Next we shall de�ne �probability� density functions which are probability measures on the ���eld

�$��P�$����
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De�nition ����� �Density Functions� For a distribution �� its associated �probability� density function

"� is de�ned by the probability "��x� on input string x as follows�

"��x� �

�	

 ���� if x � ��

��x�� ��x�� otherwise�

�Note that a density function is often called a probability distribution in much of the literature �see�

e�g��  ��!� and should not be confused with a �distribution���

The reader must keep in mind that if � is a distribution� then "���� � ���� by our de�nition� Also note

that ��x� �
P

z�z�x "��z� holds for all strings x�

We have already seen the notation Pr E ! for event E based on a sample space ) which consists of �nite

or in�nite sequences over f�� �g� We reserve this notation for events where each bit of a sequence is chosen

at random� that is� for any property Q on $� and any subset E of )�

Prs Q�s� j s � E! �
X
s�E

��jsj �  Q�s�!�

For convenience� we use the notation �"��x� � g�x�� to mean that the probability "��x� on input string

x is proportional to the value g�x� for every x� more precisely� there exists a constant c � � such that

"��x� � c � g�x� for all x� This c is called the normalizing constant for g�

For a distribution � and a set S� let "��S� denote the sum
P

x�S "��x�� For example� "��$�n� � ���n� and

"��$�� � limx
� ��x��

Recall that distributions are mappings from the in�nite set $� to the unit real interval  �� �!� We also

cope with ensembles of 
nite input distributions instead of �in�nite� distributions� Given a distribution �

and a natural number n� the conditional distribution of � on $n� denoted by �n� is the function from $n to

 �� �! that is de�ned by its density function "�n as follows� for each x � $n�

"�n�x� �
"��x�

"��$n�

whenever "��$n� �� �� otherwise� "�n�x� is unde�ned� Similarly� let ��n be the conditional distribution of �

on $�n that is de�ned by its density function "��n as follows� for each x in $�n�

"��n�x� �
"��x�

"��$�n�

if "��$�n� �� �� otherwise� let ��n be unde�ned� In general� it holds that "��x� � "��n�x� for all x � $�n and

"��n�x� � "�n�x� for all x � $n if �n and ��n are both de�ned�

Similarly� we denote by ��n the conditional distribution of � on $�n�

For a nonempty �nite domain D� the uniform distribution on D is de�ned to have the probability ��kDk
for every x in D� that is� "��x� � Prs x � s j s � D! � �

kDk � For example� �n is the uniform distribution on

$n if "��x� � ��jxj for all x � $n�

For a set S� � is called positive on S if "��x� � � for all x � S� in particular� if S � $�� then we say that

� is positive�

Another important class of distributions� called �at distributions� was introduced by Gurevich  ��!�
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De�nition ����� �Flat Distributions� ��	� A distribution � is called �at if there exists a real number

� � � such that "��x� � ��jxj
�

holds for almost all x� Notationally� FLAT denotes the collection of all 
at

distributions�

For a function f on $�� we write �f�� to denote the distribution de�ned by its probability "�f���x� �

"��fz j f�z� � xg��
Recall that distributions de�ned in De�nition ����� are unary functions� We can also consider multi�

dimensional distributions� For a k�dimensional vector �x�� x�� � � � � xk� over $�� if a density function "� is

de�ned� then let

��x�� x�� � � � � xk� � "��f�z�� z�� � � � � zk� j z� � x�� z� � x�� � � � � zk � xkg��

Using an e�ective encoding of k�dimensional vectors into strings �discussed in Section ����� however� we can

always identify probability "��x�� x�� � � � � xk� with probability "��hx�� x�� � � � � xki� de�ned on $�� In this sense�

we do not need to consider all multi�dimensional distributions�

To simplify the descriptions of distributions� we use "��x� y� and "��x� y� z� to denote "��hx� yi� and

"��hx� y� zi�� respectively� We also use a simpli�ed de�nition of distributions� For example� the following

schematic de�nition �"��si� x� �n� � "��si� � "��x� � ���llog�n	��� really means that

"��u� �

�	

 "��si� � "��x� � ���llog�n	�� if u � hsi� x� �ni for some i� x� n�

� otherwise�

One of the most important distributions is the positive distribution where each string is chosen �uni�

formly� at random� This distribution is called standard � In this thesis� we use the standard distribution

�stand� whose values are dyadic rational numbers� that are easily sampled by the following randomized

algorithm� pick a natural number n randomly and then pick a string of length n randomly� To pick a

natural number �uniformly� at random� we �rst de�ne the translation Tr by Tr��� � �� Tr���s� � �Tr�s��

Tr���s� � �Tr�s�� and Tr���s� � Tr���s� � � for a string s� where � is the terminal symbol di�erent

from � and �� We then generate a string of the form s�� or s�� such that Tr�s� is the nth string with

respect to the standard order in $�� By a simple estimation� we have "�stand�x� � ��jxj��llog�jxj	��� where

llog�n� � blog�n( ��c�

De�nition ����� �Standard Distribution on $�� The standard distribution on $� is denoted by "�stand

and de�ned as "�stand�x� � ��jxj��llog�jxj	���

From this de�nition� it follows that� for every x�

�

��jxj( ��� � �jxj � "�stand�x� � �

��jxj( ��� � �jxj
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since log�n( ��� � � llog�n� � log�n( ��� Moreover� �stand��n� � �� � � ��llog�n	�� ( �n( �� � ���llog�n	���
This is seen as follows�

�stand��n� �
nX
i��

���llog�i	�i�� � �i �
�

�
�
�
��llog�n���X

i��

��llog�i	 (
nX

i��llog�n�

��llog�i	

�
A

�
�

�
�
�

�� �

�llog�n	

�
(

�

�
�
�

n( �

��llog�n	��
� �

�llog�n	

�

� �� �

�llog�n	��
(

n( �

��llog�n	��
�

Lemma ����� For every string x	

�stand�x� � �� �

�llog�jxj��	��
(

jxj( �

��llog�jxj��	��
(

k ( �

��llog�jxj	�jxj��
�

where x is the kth string of $jxj� �N�B� �jxj is the �th string of $jxj��

Proof� Let n � jxj� Notice that �stand�x� � �stand��n��� (
Pk

i�� "�stand�sni �� The �rst term is equal

to � � � � ��llog�n��	�� ( �n ( �� � ���llog�n��	��� The last term is equal to �k ( �� � "�stand��n�� and thus

�k ( �� � ���llog�n	�n��� �

In particular� �stand��p�i	� � �� ��i� where p�i� � �i�� � �� and thus we get

j�stand��p�i	�� �stand��p�j	�j � ��i ( ��j

for all i� j � N� This inequality will be used later�

As the reader can see� we can generalize �stand to the default distribution �kstand de�ned on the set of

k�tuples� fhx�� x�� � � � � xki j x�� x�� � � � � xk � $�g by

"�kstand�x�� x�� � � � � xk� � "�stand�x�� � "�stand�x�� � � � "�stand�xk��

In some papers� the standard distribution is de�ned as "�stand�x� � �
	� � �jxj( ���� � ��jxj or "�stand�x� �

��jxj��jxj( ���jxj( ��� these de�nitions are not essentially di�erent from the one used here� Levin  ��! uses

jxj�� � ��jxj for "�stand�x� for notational convenience �with the normalizing constant �
	�

��

Although the standard distribution is sometimes called �uniform� �e�g�� in  �!�� actually only its condi�

tional distribution is uniform for all lengths n� We note that there are other ways to de�ne a �standard�

distribution �see Gurevich  ��! for more discussion��

We also use the standard distribution �tally that takes positive values only on f�g� �or sometimes f�g���

De�nition ����	 �Standard Distribution on f�g�� The standard distribution on f�g� is denoted by

�tally and is de�ned as

"�tally�x� �

���	
��


��� if x � ��

���llog�n	�� if x � �n for some n � ��

� otherwise�
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For the sake of convenience� we sometimes use the same notation �tally to mean the standard distribution

on f�g��

De�nition ����� �Default Distribution� For a random�input domain + and a semi�distribution �� we

de�ne the default semi�distribution �� induced from � and + as

"���x� s� �

�	

 U��x� � "��x� � ��jsj if s � +�x��

� otherwise�

where U� is the rarity function of +�

In the special case that + is almost total� for every subset S 	 +� it holds that

"���S� �
X
x

"��x� �Prs �x� s� � S j s � +�x�!�

A function g from $� to R� is called degenerative under � if "��fx j g�x� � �g� � ��

A set F of distributions is closed under k�addition if� for any k semi�distributions� ��� ��� � � � � �k� from

F � the distribution � de�ned by "��x� �
Pk

i��
�
k
� "�i�x� belongs to F �

For two distributions � and �� let � � � denote the distribution � such that "��x� � �
� "��u� if x � �u for

some u� "��x� � �
� "��u� if x � �u for some u� and "��x� � �� otherwise� We say that a set F of distributions is

closed under � if� for any two distributions � and � in F � � � � is also in F �

��� A Notion of Easy�on�Average

To establish a consistent and coherent theory of average�case complexity theory� �rst we must examine a

fundamental notion of computational �average complexity� of algorithms� after which we will look at Levin
s

innovative idea of how to amend the naive de�nition�

����� Naive De�nition of Average Polynomial Time

In worst�case complexity theory� a problem has t�n��time complexity if there is an algorithm M computing

the problem which satis�es the inequality TimeM �x� � t�n� for almost all natural numbers n and all inputs

x � $n� A naive notion of average�case complexity� however� is given by the expected running time �or space�

of an algorithm over all instances of the same length under a certain conditional distribution� More precisely�

an algorithm M which works in time t requires the inequality that
P

x�jxj�n TimeM �x� � "�n�x� � t�n� for

almost all n� This natural formulation of an average�case complexity might seem to be a start on a general

theory of average�case complexity� Unfortunately� this de�nition has several de�ciencies� We will see several

examples below� For brevity� we say that a function g �expected polynomial on ��average� if there exists a

constant k � � such that� for all n � N�
P

x�jxj�n g�x� � "�n�x� � nk ( k  ���!�

The �rst example is related to the multiplicationof functions which are expected polynomial on ��average�
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Example ����� ��� Consider a function g which is de�ned on strings of length n as follows� let g�x� be

�n on n inputs x� but let g�x� be n on the other inputs� Now take a conditional distribution �n� "�n�x� � ��n

for all x of length n� It is easy to see that the expectation of g�
P

x�jxj�n g�x� � "�n�x�� is at most �n� but the

expectation of g��
P

x�jxj�n�g�x��� � "�n�x�� exceeds n � �n�

Even if g is expected polynomial on ��average� g� is no longer expected polynomial on ��average�

The second example deals with the composition of functions which are expected polynomial on ��average�

Example ����� ��� For simplicity� let n be of the form 	m for some integer m � �� Consider the following

machine M � M is computed in �n�� steps on �n�� strings of length n and outputs a string of length
p

�n���

and� for the rest of the inputs� M requires n� steps to output a string of length n� The expected running time

of this machine M is at most � ( n� � ��n��� and hence� M runs in expected polynomial time on ��average�

Now consider another machine N which needs n
 steps� Clearly N runs in polynomial time� However� the

composition of two machines� N �M �x��� needs �n�� ( n
 � ��n�� steps on the average�

Hence� this naive notion of �expected polynomial on the average� is not closed under composition�

Example ����� ��� Consider a problem on directed graph G � G�V�E�� where V is a set of vertices and

E is a set of edges� Let kV k � n and kEk � m� Assume that there is an algorithm M which works on this

graph G in time t�G�� where t�G� � �n if m � n
��� otherwise� t�G� � n�� Suppose the graph G is given

by its �incident� matrix representation� Since encodings of graphs are presented by n vertices� the average

is taken over all graphs G with n nodes� The expected running time
P

G t�G� � "�n�G� is at most

X
G�m�n���

���
n
� 	 � �n (

X
G�m�n���

���
n
� 	 � n� � � ( n��

On the other hand� suppose the graph is given by its adjacency list� Then� the expected running time is not

expected polynomial on ��average�

The naive de�nition is dependent on the particular encoding of instances of a given problem�

����� Levin
s De�nition

As we have seen� the naive de�nition is not suitable for a coherent theory� In ���	� Levin  ��! instead

proposed a new measure of �average polynomial�time�� To understand his measure� we again take a close

look at the de�nition of worst�case complexity measure� Recall that an algorithm M needs polynomial time

if TimeM�x� � jxjk for almost all x� Here we transform this inequality into another form of inequality�

jxj�� �TimeM �x���k � �� A natural idea then is that the expectation of jxj�� �TimeM�x���k over all strings

of length n� is bounded by �� namely�
P

x�jxj�n jxj�� �TimeM �x���k � "�n�x� � �� Levin was motivated by this

inequality� but he went one step further and took this average over all 
nite strings� He de�ned his average�

case complexity measure �polynomial on ��average� by requiring that
P

x�x��
 jxj�� �Time�x���k � "��x� ���
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Since his �rst paper appeared in ���	 at the ��th STOC conference� several criticisms of Levin
s com�

plexity measure have arisen� One of them is that his formulation does not seem to re
ect the polynomiality

of the running time on the average� In ����� E� Schapire  ��! wrote a technical report in which he exhibited

an emerging theory of Levin
s average�case NP�completeness and gave an interesting insight into Levin
s

central notion of �polynomial on ��average�� He gave an equivalent formulation of this notion�

This thesis modi�es Schapire
s characterization of polynomial on ��average and introduces a more general

notion of t on ��average for an arbitrary function t�

De�nition ����� �t on ��Average� ���� Let t be a function on R� and let � be a distribution� Let g

be a function from $� to R���

�� The function g is t on ��average if "��fx j g�x� � t�jxj � r�g� � ��r for any positive real number r�

�� The function g is T on ��average if there exists a function t � T such that g is t on ��average�

Schapire actually used a function with two variables� t�n� r�� instead of the form t�n � r� in the above

de�nition� In most cases� however� there is no practical di�erence between these two functions� For this

reason� we use the above de�nition throughout this thesis� �This issue has been thoroughly studied by Karg

and Schuler  	�!� and the interested reader may refer to it��

Notice� from De�nition ����	� that if g is t on ��average� then g is degenerative under �� Moreover� it

immediately follows from De�nition ����	 that increasing the value of r also increases the probability weight

of the set of strings x with the property that g�x� � t�jxj � r�� which is �� ��r�

De�nition ����� �Polynomial�Logarithmic on ��Average� A function g from $� to R�� is poly�

nomial on ��average if there exists a polynomial p such that g is p on ��average� Similarly� g is logarithmic

on ��average if g is q on ��average for some logarithmic function q �i�e�� q�z� � c log z(d for some constants

c� d � R��

The notion of polynomial on ��average was �rst introduced in  ��! and used in  ��� ��� ��� �� ���!� while

the notion of logarithmic on ��average was de�ned by  �! and also used in  ��!�

Lemma ����� Let � be a distribution� For any function g from $� to R��	 if g is logarithmic on ��average	

then the function �x��g�x	 is polynomial on ��average�

Proof� Let us assume that g is q on ��average for some logarithmic function q� Suppose without loss of

generality that q�z� � c log z ( d for constants c� d � �� Notice that q is strictly increasing� Using this fact�

we have

"��fx j g�x� � c log�jxj � r� ( dg� � "��fx j �g�x	 � �c log�jxj�r	�dg�
� "��fx j �g�x	 � �d � �jxj � r�cg��
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Since g is q on ��average� we obtain "��fx j �g�x	 � �d � �jxj � r�cg� � ��r� Since the function �z���dzc� is a

polynomial� �x��g�x	 becomes polynomial on ��average� �

Our de�nition measures the probability of the event in which g�x� exceeds p�jxj � r� over all strings x

under distribution �� Instead of this distribution� we can consider two ensembles of conditional distributions�

f��ngn�Nand f��ngn�N�

De�nition ����� �t on Average w�r�t an Input Ensemble� cf� ���� Let g be a function from $� to

R�� and let t be a function on R�� We say that g is t on average with respect to f��ngn�Nif "��n�fx �
$�n j g�x� � t�jxj � r�g� � ��r holds for all real numbers r � � for which ��n is de�ned� Similarly� we de�ne

the notion that g is t on average with respect to f��ngn�Nby replacing ��n with ��n�

Lemma ����� Let � be a distribution	 g a function from $ to R��	 and t a function on R��

�� If g is t on ��average	 then g is �z�t�dz� on average w�r�t� f��ngn�Nfor some positive integer d�

�� If g is t on average with respect to f��ngn�N	 then g is �z�t��z� on ��average�

Proof� Let � be a distribution� We can assume without loss of generality that g�x� � � for all x� Take

the minimal integer k� � N such that "��$�k�� � �� This k� is the minimal number for which ��k� is de�ned�

��� First notice that "��$�n� equals ���n�� and thus �n�"��$�n� is increasing� �This is not true for

�n�"��$n��� Then� de�ne d � minfd� � N j "��$�k�� � �
d�
g� Note that� for any set B� if ��n is de�ned� then

we have

"��n�B�n� �
"��B�n�

"��$�n�
� "��B�

"��$�k��
� d � "��B��

Now assume that g is t on ��average� This assumption implies that� for any integer n � k��

"��n�fx � $�n j g�x� � t�d � jxj � r�g� � d � "��fx j g�x� � t�jxj � dr�g� � d � �

dr
�

�

r
�

Therefore� g is �z�t�dz� on average w�r�t� f��ngn�N�
��� Assume that g is t on average with respect to f��ngn�N� that is� "��n�fx � $�n j g�x� � t�jxj � r�g��

��r for all r � �� We �x r � � arbitrarily� From the fact that "��B� � "��$�n� � "��n�B� for any set B 	 $�n�

it immediately follows that� for n � k��

"��fx � $�n j g�x� � t�jxj � �r�g� � "��$�n� � "��n�fx � $�n j g�x� � t�jxj � �r�g� � "��$�n�

�r
�

Taking the limit� it follows that

"��fx j g�x� � t�jxj � �r�g� � lim
n
� "��fx � $�n j g�x� � t�jxj � �r�g� � lim

n
�
"��$�n�

�r
�

�

�r
�

�

r
�

�

We note that we can replace "��n by "�n in statement ��� of Lemma ������ but not in statement ���

because �n�"��$n� may not be increasing in general�



���� A NOTION OF EASY�ON�AVERAGE ��

Let � be a distribution� In analogy with the terminology of �polynomial on ��average�� we say that a

function g is f��ngn�N�f��ngn�N� resp�� if there exists a polynomial p such that g is p on average with

respect to f��ngn�N�f��ngn�N� resp��� The above lemma immediately implies the following proposition�

Proposition ����� For a function g from $� to R��	 g is polynomial on ��average if and only if g is

polynomial on average with respect to f��ngn�N�

Proof� The proposition follows from Lemma ����� together with the fact that if t is a polynomial� then

�z�t�dz� and �z�t��z
� are both polynomials� �

Under some reasonable constraints� we can further replace an input ensemble f��ngn�Nin the above

proposition by f��ngn�N� Cai and Selman  ��! �rst proposed an idea of restricting Levin
s notion of poly�

nomial on ��average to obtain a better time�hierarchy theorem� The following proposition takes a di�erent

formulation but shows an essential part of a theorem by Cai and Selman�

Proposition ����	
 Let g be a function from $� to R�� and let � be a distribution� If �n�"��$�n� �
)�n�k� for some integer k � �	 then the following statements are equivalent�

�� g is polynomial on ��average�

�� g is polynomial on average with respect to f��ngn�N�

Proof� Let g be a function from $� to R�� Assume that �n�"��$�n� � )�n�k� for some k � ��

We �rst show that ��� implies ���� Assume that there exists a polynomial p such that� for every n � N
and every r � �� "��n�fx � $�n j g�x� � p�jxj � r�g� � ��r� Set n � �� and then we obtain

"��fx j g�x� � p�jxj � r�g� � �

r
�

Thus� g is polynomial on ��average�

Next we shall show the other implication� Assume that g is polynomial on ��average� namely� for some

appropriate polynomial p� "��fx j g�x� � p�r � jxj�g� � ��r holds for all real numbers r � �� Without loss of

generality� we may assume that p is increasing�

By the assumption for �� we can assume that� for some constant c � �� "��$�n� � �
cnk

holds for all

positive integers n� For simplicity� assume that c is an integer�

Let us de�ne q as q�z� � p��c�zk�
� for all z� Clearly q is a polynomial� In particular� by the monotonicity

of p�

q�r �m� � p�m � �crmk���

for all numbers r�m � ��

Now let S be the set of all natural numbers n for which �n is de�ned�

"��n�fx � $�n j g�x� � q�r � jxj�g�
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�
�

"��$�n�
� "��fx � $�n j g�x� � p�jxj � �crjxjk���g�

�
X

m�m�S
m�n

�

"��$�n�
� "��fx � $m j g�x� � p�jxj � �crmk���g�

�
X

m�m�S
m�n

�

"��$�m�
� �

�crmk��

�
X
m�n

cmk � �

�crmk��

�
�X

m��

�

�rm�
�

��

��r
�

�

r
�

Therefore� g is polynomial on average with respect to f��ngn�N� and this completes the proof� �

����� Basic Properties

The notion of �t on ��average�� which we have introduced in the previous section� is essential in our average�

case complexity theory� In this section� we shall discuss its fundamental properties which will be used freely

in the later chapters�

The lemma below is the starting point�

Lemma ����		 Let k be a function on N such that k�n� � �� For each n � �	 let fAn
i j � � i � k�n�g be

a partition of $n	 i�e�	 $n �
Sk�n	
i�� An

i � Let g be a function from $� to R�	 t be a function on R�	 and let

� be a distribution�

�� If t is increasing	 then �x�t�jxj� is t on ��average	 where x runs over all strings�

�� If g is t on ��average	 then g�x� � t�jxj�"��x�� for all x with "��x� � ��

�� Assume that t is increasing� If g��� � t��� and g�x� � t���k�n��n( ��"��An
i �� for all strings x � An

i if

"��An
i � � � for each n � � and each i with � � i � k�n�	 then g is t on ��average�

Proof� ��� If � � r � �� then "��fx j t�jxj� � t�jxj � r�g� � � � �
r � Assume r � �� In this case� the set

fx j t�jxj� � t�jxj � r�g is empty since t is increasing� Hence� "��fx j t�jxj� � t�jxj � r�g� � � � �
r
� Therefore�

�x�t�jxj� is t on ��average�

��� Assuming the contrary� suppose that there exists an x� such that g�x�� � t�jx�j�"��x��� and "��x�� � ��

Let r � ��"��x��� Then� "��x�� � "��fx j g�x� � t�jxj � r�g� � ��r � "��x��� a contradiction�

��� Assume that g��� � t��� and g�x� � t���k�n��n ( ��"��An
i �� for all x � An

i if "��An
i � � �� Since t is

increasing� t�x� � t�y� implies x � y� We show that "��fx j g�x� � t�jxj � r�g� � ��r� For each r � ��

"��fx j g�x� � t�jxj � r�g� �
�X
n��

k�n	X
i��

"��fx � An
i j t���k�n��n( ��"��An

i �� � t�n � r�g�
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�
�X
n��

k�n	X
i��

"�

��
x � An

i

���� �

k�n��n( ��"��An
i �

� n � r
��

�
�X
n��

k�n	X
i��

"�

��
x � An

i

����"��An
i � �

�

k�n�n�n( ��r

��
�

Notice that "��fx � An
i j "��An

i � � �g� � �� Thus� we conclude that

"��fx j g�x� � t�jxj � r�g� �
�X
n��

k�n	X
i��

�

k�n�n�n ( ��r
�

�X
n��

�

n�n( ��r
�

�

r

since
P�

n��
�

n�n��	
� �� �

Lemma ���������� for example� enables us to see that if g is polynomial on �stand�average� then g is

exp�bounded� From the fact that "�stand�x� � �
��jxj��	� � ��jxj� it follows that

g�x� � c �
� jxj

"�stand�x�

�k
( c � c �



�jxj�jxj( ����jxj

�k
( c

for some constant c � ��

Let us recall from Chapter � that f majorizes g� denoted by f � g� if and only if f�x� � g�x� for all x�

Lemma ����	� Let f and g be any functions from $� to R��	 t any function on R�	 and � any distri�

bution� Assume that f majorizes g� If f is t on ��average	 then g is also t on ��average�

Proof� Assume that f is t on ��average� Since f�x� � g�x� for all x� it follows that fx j f�x� � cg 	 fx j
g�x� � cg for an arbitrary c� Then�

"��fx j g�x� � t�jxj � r�g� � "��fx j f�x� � t�jxj � r�g� � �

r
�

Thus� g is t on ��average� �

As we have seen in Subsection ������ Levin
s notion of �polynomial on ��average� is superior to the naive

notion of �average polynomial� because the set of functions which are polynomial on ��average is closed

under algebraic operations� such as (� �� max� and min� Here we show a more general claim that the set of

functions which are T on ��average is closed under such operations�

We say that T is adequate if� for any functions t�� t� � T and a constant r � �� there exist functions

s�� s�� s
 � T such that s��x� � t���x� ( t���x�� s��x� � �t��x��r � and s
�x� � r � t��x� for all x�

Proposition ����	� ��	� Let T be an adequate set of functions	 let � be a distribution	 let f� g be func�

tions from $� to R�	 and let r be a positive real number� If f� g are T on ��average	 then so are maxff� gg	
minff� gg	 fr 	 r � f 	 f � g	 and f ( g	 where fr�x� � �f�x��r �

Proof� Assume that "��fx j f�x� � p�jxj � r�g� � ��r and "��fx j g�x� � q�jxj � r�g� � ��r� For the case
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f � g� take a function s � T such that s�z� � p��z� ( q��z� for all z� Then� we have

"��fx j f�x�g�x� � s�jxj � r�g�
� "��fx j f�x� � p�jxj � �r�g� ( "��fx j f�x� � p�jxj � �r� � f�x�g�x� � s�jxj � r�g�
�

�

�r
( "��fx j g�x� � q�jxj � �r�g�

�
�

�r
(

�

�r
�

�

r
�

Similarly� for the case fr � take a function s such that s�z� � �p�z��r � for the case r � f � take s such that

s�z� � r � p�z�� and for the case f ( g� take a function s such that s�z� � p��z� ( q��z�� The case maxff� gg
is derived from the case f (g since f ( g majorizes maxff� gg� Similarly� minff� gg becomes T on ��average

because maxff� gg majorizes minff� gg� �

As for �polynomial on ��average�� we shall show in the following lemma that this notion is invariant to

any application of polynomials� This lemma is valuable in later chapters�

We call an n�ary function f increasing �or monotone� if f�x�� � � � � xn� � f�y�� � � � � yn� whenever xi � yi

for all i� � � i � n�

Lemma ����	� cf� ��	� Let k � � and let g�� � � � � gk be functions from $� to R� and let p be a k�

ary increasing polynomial� If all g�� � � � � gk are polynomial on ��average	 then �x�p�g��x�� � � � � gk�x�� is also

polynomial on ��average�

Proof� Assume that� for each i with � � i � k� the function gi is qi on ��average for some polynomial

qi� By de�nition� it follows that "��fx j gi�x� � qi�jxj � r�g� � �
r

for all positive real numbers r� Now let

s�z� � p�q��kz�� � � � � qk�kz�� for all z� Since p is increasing� p�x�� � � � � xk� � p�y�� � � � � yk� implies that there

exists a number i such that xi � yi� So� we have

"��fx j p�g��x�� � � � � gk�x�� � s�jxj � r�g� � "��fx j p�g�x�� � p�q��jxj � kr�� � � � � qk�jxj � kr��g�
� "��fx j �i � � i � k � gi�x� � qi�jxj � kr�!g�

�
kX
i��

"��fx j gi�x� � qi�jxj � kr�g�

�

kX
i��

�

k � r �
�

r
�

Therefore� �x�p�g��x�� � � � � gk�x�� is polynomial on ��average� �

The following lemma is of a rather simpler form than Lemma ���������� but it is helpful to show elsewhere

that a given function is polynomial on ��average�

Lemma ����	� Let c� d� k be positive constants� Let fAn
i j n � �� � � i � ng be a partition of $� such that

$n �
Sn
i��A

n
i for each n � �� Assume that	 for almost all n	 for all i with � � i � n and for all strings
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x � An
i 	 g�x� � c � nd ( �c�n�"��An

i ��k� Then	 g is polynomial on ��average�

Proof� Let us assume that g satis�es the above condition� For every x� let g��x� � minfg�x�� c � jxjdg and

g���x� � g�x� � g��x�� Since �x�cjxjd majorizes g�� by Lemma ������� g� can be shown to be polynomial on

��average�

We next show that g�� is also polynomial on ��average� Let n� be the minimal integer such that� for all

n � n�� for all i with � � i � k�n� and for all x in An
i � g���x� � �c�n�"��An

i ��k� Also let b � maxfg���x� j
jxj � n�g� Note that �

c

n�"��An
i �

�k
�

�
�c

�n�"��An
i �

�k
�
�

�c

n�n( ��"��An
i �

�k
�

Now consider the polynomial p such that p�z� � ��c �z�k (b� It is obvious by our de�nition that g����� � p���

and g���x� � p���n�n( ��"��An
i �� for all x � An

i � By Lemma ���������� g�� is polynomial on ��average�

By Lemma ������� g� ( g�� is also polynomial on ��average� Since g � g� ( g��� the proof is completed� �

We call a set T suitable if� for every t � T � every c � N� and every polynomial p� there are functions

s�� s�� s
 � T such that s��z� � t�cz�� s��z� � t�p�z��� and s
�x� � t�z� ( c for all x�

Lemma ����	� Let f be a p�bounded	 p�honest function on $�	 and let g be a function from $� to R��

Let T be a suitable set of increasing functions on R�� The function g � f is T on ��average if and only if g

is T on �f�� �average�

Proof� �If - part� Assume that g is t on �f���average for some t � T � Take an increasing polynomial p

such that jf�x�j � p�jxj� for all x� and an integer c� such that g��� � c�� Moreover� we let function t� � T be

such that t��z� � t��p�z�
z� ( c� for all z� Such a function exists because of the closure property of T � Note

that� for x � $� and r � �� t��p�jxj � r�
 � jxjr� � t��jf�x�j
r�� We can show that g � f is t� on ��average�

For the sake of convenience� let A
 � fx j f�x� �� �g�
For each r � ��

"��fx j g � f�x� � t��jxj � r�g� � "��fx � A
 j �y f�x� � y � g�y� � t��p�jxj � r�
jxjr�!g�

� "��
��
n��

�
y�jyj�n

fx � A
 j f�x� � y � g�y� � t��jyj
r�g�

�
�X
n��

X
y�jyj�n

"��fx j f�x� � y � g�y� � t�jyj � �n�r�g��

By the de�nition of �f�� � "��fx j f�x� � y �Q�y�g� � "�f�� �fy j Q�y�g� for any property Q� Thus� we get

"��fx j g � f�x� � t��jxj � r�g� �
�X
n��

"�f���fy � $n j g�y� � t�jyj � �n�r�g�

�
�X
n��

�

�n� � r �
��

��r
�

�

r
�
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�Only if - part� Assume that g � f is t on ��average for some t � T � Take an increasing polynomial p

such that jxj � p�jf�x�j� for all x because of the p�honesty of f � Let us take a function t� � T such that

t��z� � t�p�z�z� ( c� for all z� where c� is the same constant as de�ned above� We also take A
 as above�

Note that� for x � A
 and r � ��

t�p�jf�x�j � r�jf�x�j � r� � t�p�jf�x�j� � r� � t�jxj � r��

We show below that g is t� on �f���average�

"�f���fy j g�y� � t��jxj � r�g� � "��fx � A
 j �y f�x� � y � g�y� � t�p�jyj � r�jyj � r�!g�
� "��fx � A
 j g�f�x�� � t�p�jf�x�j � r�jf�x�j � r�g�
� "��fx j g � f�x� � t�jxj � r�g� �

�

r
�

�

����� Di�erent Characterization

As stated before� our de�nition of �polynomial on ��average� is motivated by Schapire
s de�nition� and at

�rst glance� it appears to be di�erent from Levin
s de�nition� In the �rst part of this section� we shall prove

by a slightly more general argument that both de�nitions are equivalent� For this purpose� we introduce a

�good� set of functions below�

For a set T of functions on R�� we call T good if� for every s � T and every constant c � N� there exist

functions s�� s�� � T such that s�cx� � s��x� and s�x�� � s���x� for all x� For example� the set of increasing

polynomials is a good set of convex functions�

Proposition ����	� Let g be a function from $� to R� and let T be a good set of strictly increasing

functions on R�� The function g is T on ��average if and only if the expectation
P

x�jxj�� jxj�� � t���g�x�� �
"��x� converges for some function t � T �

Proof� �Only if - part� Without loss of generality� assume that g��� � � and that g is t on ��average

for some t � T � Then it follows that� for any real number r � �� "��fx j g�x� � t�r� � jxj�g� � ��r�� By

our assumption of T � we can de�ne a strictly increasing function t� � T such that t�z�� � t��z� for all z� In

particular� t�r� � jxj� � t��r � jxj��� � t��r � jxj�� Hence� this implies that "��fx j g�x� � t��jxj � r�g� � ��r��

Without loss of generality� we may let this t� be t in the rest of the proof�

This indicates that� for every integer k � �� "��fx � $� j jxj��t���g�x�� � kg� � ��k�� Using this

inequality� we bound
P

x�jxj��
t���g�x		

jxj "��x� above by

X
x�jxj��

t���g�x��

jxj "��x� �
�X
k��

k � "��fx � $� j k � � �
t���g�x��

jxj � kg�

�
�X
k��

�X
i�k

"��fx � $� j i� � �
t���g�x��

jxj � ig�
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�
�X
k��

"�

� ��
i�k

�
x � $� j i � � �

t���g�x��

jxj � i

��
�

The last term is further bounded above by

"�

��
x � $�

���� t���g�x��

jxj � �

��
(

�X
k��

"��fx � $� j t
���g�x��

jxj � kg�

� � (
�X
k��

�

k�
� � (

��

�
�

�If - part� Conversely� assume that
P

x�jxj�� t
���g�x��jxj��"��x� � N for some number N � � and some

strictly increasing function t � T � Markov
s Inequality �Lemma A��� enables us to get the inequality that

"��fx j jxj��t���g�x�� � r �Ng� � ��r for any real number r � �� This yields "��fx j g�x� � t�rN jxj�g� � ��r�

Hence� g is �x�t�Nx� on ��average� Since there is a function t� � T such that t��z� � t�Nz� for all z� we get

the desired result that g is T on ��average� �

For example� the set of polynomials� T � f�z��zk ( d� j k� d � �g� and the set of logarithms� T �

f�z��k log z ( d� j k� d � �g� are both good sets of strictly increasing functions on R� �recall our convention�

log z is de�ned to be � whenever � � z � ���

In ����� Impagliazzo  	�! pointed out that Levin
s de�nition is equivalent to the statement that the

expectation of a function over all strings of length � n� is bounded above by a polynomial in n�

In the following theorem� we see Schapire
s  ��! and Impagliazzo
s characterization  	�!�

Theorem ����	� ���� ��� Let � be a distribution and let g be a function from $� to R��� Let S be the

set of all natural numbers n for which ��n is de
ned� The following statements are equivalent�

�� g is polynomial on ��average�

��
P

x�jxj��
g�x	�

jxj � "��x� �� for some real number � � ��

�� For all n � S	
P

x�jxj�n g�x�� � "��n�x� � c � n( d	 where � is a positive real number and c� d � N�

Proof� Note that if there exists a string x such that g�x� � �� then we can rede�ne g�x� � � without

changing the three conditions above� Hence� we may assume that g�x� �� for all x in the following proof�

The equivalence between ��� and ��� comes from Proposition ������� We next show that ��� and ��� are

equivalent�

We �rst prove that ��� implies ���� Assume that
P

x�jxj��
g�x	�

jxj "��x� � � for some real number � � ��

Consider a large integer c � � such that
P

x�jxj��
g�x	�

jxj "��x� � c� Let n� be the minimal number in S� and

assume that an integer d � � satis�es that "��n��$�n�� � �
d
� Then� for each n � S�

X
x���jxj�n

g�x�� "��n�x� �
X

x���jxj�n

n

jxj � g�x�� � "��x�

"��n�$�n�

� n

"��n�$�n�

X
x�jxj��

g�x��

jxj � "��x�
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� c � n

"��n��$�n��
� cd � n�

Conversely� assume ���� namely�
P

x�jxj�n g�x�� � "��n�x� � c � n( d for all n � S� Notice that

X
x�jxj�n

g�x�� � "��x� � c � n ( d

since X
x�jxj�n

g�x�� � "��x� �
X

x���jxj�n
g�x�� � "��n�x� � c � n( d�

To simplify the description� set E� � fx � $� j g�x���
 � jxjg and E� � fx � $� j g�x���
 � jxjg� It is

important to note that if x � E�� then g�x����
 � jxj�� Thus� we have

X
x�jxj��

g�x���


jxj � "��x� �
X
x�E�

g�x���


jxj � "��x� (
X
x�E�

g�x���


jxj � "��x�

�
X
x�E�

"��x� (
X
x�E�

g�x��

jxj � g�x����

� "��x��

The �rst term
P

x�E�
"��x� is obviously at most �� Let T be the last term� and we shall focus on it below�

T �
X
x�E�

g�x��

jxj
 � "��x�

�
�X
n��

�

n


X
x���

g�x�� � "��x�

�
�X
n��

c � n( d

n

�

�X
n��

�
c

n�
(

d

n


�
� ��

�

����� Random Functions

Randomized algorithms are a simple tool for solving problems �fast� on the average� To cope with the running

time�space of randomized algorithms� we need a notion of polynomial on ��average for random functions

because the running time�space forms a random function which depends on random seeds produced by the

inner coin 
ipping process of the randomized algorithm�

Gurevich  ��! and Blass and Gurevich  ��! formulated a notion of polynomial on ��average for random

functions from a random�input domain + by requiring the convergence of the expectation of the value

jxj��g�x� s�� � over all pairs �x� s� in +� with respect to its probability "��x� and conditional probability

U��x� � ��jsj� Our formulation is a modi�cation of their de�nition� and it will be shown to be equivalent to

theirs at the end of this section�

De�nition ������ �t on ��Average� Let t be a function on R� and let T be a set of functions on R��

Let � be a distribution and let + be a random�input domain� Let g be a random function from + to R���
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�� A random function g is t on ��average if "���f�x� s� j f�x� s� � t�jxj � r�g� � ��r for all real numbers

r � ��

�� A random function f is T on ��average if there exists a function t � T such that f is t on ��average�

The above de�nition implies that if a random function f with a random�input domain + is polynomial on

��average� then the same function f � viewed as a �regular� function with two arguments� is polynomial on

���average� i�e�� "���f�x� s� j f�x� s� � p�jhx� sij � r�g� � ��r for some polynomial p� The converse� however�

does not hold in general�

A simple observation shows that h��� s� � t��� for all random seeds s � +��� unless "���� � �� This is

seen as follows� For any positive real number r�

"���� �Prs h��� s� � t��� j s � +���! � "���f��� s� j h��� s� � t���g� � �

r
�

As r approaches �� the probability Prs h��� s� � t��� j s � +���! goes to �� Therefore� this probability must

be ��

The lemma below provides us with a simple and su�cient method for proving a random function to be

T on ��average� For the lemma� we must recall the de�nition of a conditional expectation of a random

function�

Fix a random�input domain +� For a random function f from + to R�� the conditional expectation

Es g�x� s� j s � +�x�! for each x is de�ned by

Es g�x� s� j s � +�x�! �
X

s���x	
g�x� s� � U��x� � ��jsj�

Lemma �����
 Let T be a good set of strictly increasing convex functions and let � be a distribution� Let

+ be a random�input domain and let g be a random function from + to R�� If �x�Es g�x� s� j s � +�x�! is T
on ��average	 then g is T on ��average�

Proof� Let t � T and assume that �x�Es g�x� s� j s � +�x�! is t on ��average� namely� "��fx j Es g�x� s� j
s � +�x�! � t�jxj � r�g� � ��r for all r � �� We shall show that "���f�x� s� j g�x� s� � t��jxj � r�g� � ��r for

some t� � T �

Fix r � �� Since t is strictly increasing� "��fx j t���Es g�x� s� j s � +�x�!� � jxj � 	r�g� � ��	r� � ��r� By

Jensen
s inequality� since t�� is a strictly increasing concave function� it follows that

Es t
���g�x� s�� j s � +�x�! � t���Es g�x� s� j s � +�x�!��

Hence� "��fx j Es t
���g�x� s�� j s � +�x�! � jxj � 	r�g� � ��r� Notice that Es t

���g�x� s�� j s � +�x�! does not

depend on s� Then� clearly we have

"���f�x� s�� j Es t
���g�x� s�� j s � +�x�! � jxj � �rg�

� "��fx j Es t
���g�x� s�� j s � +�x�! � jxj � �rg� � �

�r
�
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Now let Dr � fx j Es t
���g�x� s�� j s � +�x�! � jxj � �rg� We then obtain

"���f�x� s� j t���g�x� s�� � jxj � 	r�g�
� "���f�x� s�� j Es t

���g�x� s�� j s � +�x�! � jxj � �rg�
("���f�x� s� j x � Dr � t���g�x� s�� � jxj � 	r�g��

Let us consider the last two terms in the above inequality� The �rst term is bounded above by ���r� The

second� however� is bounded above by

"���f�x� s� j t���g�x� s�� � �r �Es t
���g�x� s�� j s � +�x�!g�

because of the assumption x � Dr� Markov
s Inequality �Lemma A��� ensures that this term is bounded

above by ���r� Thus� "���f�x� s� j t���g�x� s�� � jxj � 	r�g� � ��r�

Using the fact that t is strictly increasing� we obtain the conclusion that "���f�x� s� j g�x� s� � t�jxj �
	r��g� � ��r� Now consider another function t� � T such that t�	x�� � t��x� for all x� and as a result� we

obtain the inequality "���f�x� s� j g�x� s� � t��jxj � r�g� � ��r� Therefore� g is T on ��average� �

Note that the lemma shows only a su�cient condition� and the converse of the lemma may not hold in

general� However� if we instead use Gill
s measure �in Section ��	�� then we can obtain a necessary condition�

For a random function f from + to R��� let f� be de�ned as

f��x� �

�	

 minfn j Prs f�x� s� � n j s � +�x�! � �

�g if one exists�

� otherwise�

Lemma �����	 Let f be a random function with a random�input domain +� If f is t on ��average	 then

f� is �z�t��z� on ��average�

Proof� For each x� if f��x� � t�jxj � �r�� then Prs f�x� s� � t�jxj � �r� j s � +�x�! � ���� because f��x� is

the minimal value k satisfying that Prs f�x� s� � k j s � +�x�! � ���� Hence� it follows that

� �Prs f�x� s� � t�jxj � �r� j s � +�x�! � ��

Using this fact� we can estimate the value "��fx j f��x� � t�jxj � �r�g� as follows�

"��fx j f��x� � t�jxj � �r�g� � � �
X
x

"��x� �Prs f�x� s� � t�jxj � �r� j s � +�x�!

� � � "���f�x� s� j f�x� s� � t�jxj � �r�g�
� � � �

�r
�

�

r
�

�

As a particular case� if a random function f is polynomial on ��average� then its associated function f�

is also polynomial on ��average�
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When f�x� s� is given as of the form TimeM �x� s� for some bounded�error probabilistic Turing machine

M � we can also replace +�x� by )�x� in the above de�nition of f� and the lemma�

Lemma ������ Let + be any random�input domain whose elements are of the form �x� y� s�	 and let � and

� be any two distributions� Let h be a function from $� to R� which is polynomial on ��average	 g a random

function from + to R� which is polynomial on ����average	 and f a function on $�� If h�f�x�� � "��f�x�� � �

for all x and �x�jf�x�j is polynomial on ��average	 then �xs�g�x� f�x�� s� is polynomial on ��average�

Proof� For simplicity� write � for � � �� Let us assume that a random function g is polynomial on

��average� This implies the existence of an increasing polynomial pg such that "���f�x� y� s� j g�x� y� s� �

pg�r � �jxj( jyj��g� � ��r for any positive real number r� Similarly� from the assumption that �x�jf�x�j is

polynomial on ��average� there exists an increasing polynomial pf such that �x�jf�x�j is pf on ��average�

Let us also assume that h is q on ��average for some increasing polynomial q�

We then de�ne the new random�input domain +� as +� � f�x� s� j �x� f�x�� s� � +g� To reach the desired

result� it su�ces to show that� for some polynomial p� "����f�x� s� j g�x� f�x�� s� � p�jxj � r�g� � ��r� This

polynomial p is of the following form�

pg��z ( pf ��z�� � �z � pf ��z�� � q�pf ��z� � �z���

Let us �x r� r � �� and de�ne Dr � fx � $� j h�f�x�� � q�jf�x�j � �r� � jf�x�j � pf �jxj � �r�g� Notice

that� by the monotonicity of pf � pg� and q� if x � Dr � then

p�jxj � r� � pg��jxj( pf �jxj � �r�� � �r � pf �jxj � �r�� � q�pf �jxj � �r� � �r��
� pg��jxj( jf�x�j� � �r � jf�x�j� � q�jf�x�j � �r���

It is not di�cult to see that

"����f�x� s� j x �� Drg�
� "��fx j h�f�x�� � q�jf�x��j � �r�g� ( "��fx j jf�x�j � pf �x � �r�g�
�

�

�r
�

In the rest of the proof� we shall show that "����f�x� s� j x � Dr � g�x� f�x�� s� � p�jxj � r�g� � ���r�

"����f�x� s� j x � Dr � g�x� f�x�� s� � p�jxj � r�g�

� "����
��
n��

�
y�jyj�n

f�x� s� j x � Dr � f�x� � y � g�x� y� s� � p�jxj � r�g�

�
�X
n��

X
y�jyj�n

"����f�x� s� j x � Dr � f�x� � y

� g�x� y� s� � pg��jxj( jyj� � �rjyj�q��rjyj��g��

Using the assumptions q��rjf�x�j� � h�f�x�� and h�f�x�� � "���x� f�x�� s� � "���x� s�� we obtain

"����f�x� s� j x � Dr � g�x� f�x�� s� � p�jxj � r�g�
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�
�X
n��

X
y�jyj�n

q�jyj � �r� � "���f�x� y� s� j x � Dr � f�x� � y

� g�x� y� s� � pg��jxj( jyj� � �rn�q��rn��g�

�
�X
n��

q��rn� � "���f�x� y� s� j x � Dr � g�x� y� s� � pg��jxj( jyj� � �rn�q��rn��g�

�
�X
n��

q��rn�

�n� � q��rn�
�

��

��
�

�

�r
�

�

At the beginning of this subsection� we mentioned the equivalence between our de�nition of polynomial

on ��average and the de�nition given by Gurevich  ��!� and by Blass and Gurevich  ��!� We now present

this equivalence in the following proposition�

Proposition ������ Let + be a random�input domain and let g be a random function from + to R�� The

following statements are equivalent�

�� g is polynomial on ��average�

��
P

�x�s	�jxj��
g�x�s	�

jxj � U��x� � "��x� � ��jsj �� for some constant � � ��

Proof� Similar to Theorem ������� �

��� A Notion of Domination

Another crucial notion introduced by Levin  ��! is the the notion of polynomial domination among distri�

butions� The domination relation will be used as a part of the domination condition which is an important

ingredient of the polynomial�time reducibility among distributional decision problems in Chapter �� Intu�

itively speaking� it ensures that if an algorithm is �fast on the average� for some distribution �� then this

algorithm is also �fast on the average� for all distributions which are dominated by �� This section will de�ne

the polynomial domination relation and the polynomial equivalence relation and explore some fundamental

properties as preparation for Chapter ��

����� Domination Relations and Equivalence Relations

First we shall give a general de�nition of domination relations�

De�nition ����� �Domination Relations� Let � and � be semi�distributions�

�� Let t and T be a function and a set of functions from $� to R�� respectively� The semi�distribution �

t�dominates � if t�x� � "��x� � "��x� for all x � $�� and � T �dominates � if there exists a function t� � T
such that � t��dominates ��
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�� Let t and T be a function and a set of functions on R�� respectively� The distribution � average t�

dominates � if there exists a function t�� from $� toR�� such that t� is t on ��average and � t��dominates

�� and � average T �dominates � if there exists a function t in T such that � average t�dominates ��

This de�nition enables us to consider polynomial domination relations and average�polynomial domina�

tion relations�

De�nition ����� �Polynomial Domination� Let � and � be any two semi�distributions�

�� The semi�distribution � polynomially dominates �p�dominates� for short� � if there exists a p�bounded

function t such that � t�dominates �� For brevity� the notation � �p � expresses that � p�dominates

��

�� The semi�distribution � average�polynomially dominates �avp�dominates� for short� � if there exists a

polynomial t such that � average t�dominates �� The notation � �avp � means that � avp�dominates

��

In  ��!� polynomial domination and average�polynomial domination are called domination and weak

domination� respectively�

As previously mentioned� polynomial domination relations were explicitly introduced by Levin  ��! on his

theory of average�case complexity as a certain type of reducibility between two distributions which measures

the complexity of these distributions� In this sense� two distributions which dominate each other can be

considered to have almost the same degree of complexity� We call them equivalent� Equivalence relations

capture the closeness of two distributions and also give rise to an appropriate �approximation� between

them�

We begin by giving a general de�nition of equivalence relations�

De�nition ����� �Equivalence Relations� Let � and � be any distributions� Let T be a set of functions

on R��

�� The distribution � is T �equivalent to � if � T �dominates � and � T �dominates ��

�� The distribution � is average T �equivalent to � if � averageT �dominates � and � averageT �dominates

��

De�nition ����� �Polynomial Equivalence� A semi�distribution � is polynomially equivalent

�p�equivalent� for short� to another semi�distribution � if � is t�equivalent to � for some p�bounded function

t� and � is average�polynomially equivalent �avp�equivalent� for short� to � if � is average t�equivalent to �

for some polynomial t� We use the notation � �p � to mean that � is p�equivalent to �� and the notation

� �avp � to mean that � is avp�equivalent to ��
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As an example� let us consider FLAT� the set of 
at distributions� This set is invariant with respect to

p�equivalence relations� This is seen as follows� Since � is p�equivalent to �� it holds that ���x	
p�x	 � "��x� �

p�x�"��x� for some p�bounded p� Then� we have

j"��x� � "��x�j � max

�
jp�x�"��x�� "��x�j�

����"��x�

p�x�
� "��x�

����
�
� p�x�� �

�jxj�
�

Hence� j"��x� � "��x�j � ��jxj
��

for some �� � �� and in consequence� � is 
at�

Domination and equivalence relations are transitive�

Lemma ����� Let ��� �� and �
 be distributions	 and let T be a set of functions on R��

�� If �
 T �dominates �� and �� T �dominates ��	 then �
 T �dominates ���

�� If �
 is T �equivalent to �� and �� is T �equivalent to ��	 then �
 is T �equivalent to ���

Proof� ��� Assume that there are functions p� and p� in T such that p��x� � "���x� � "���x� and p��x� �
"�
�x� � "���x� for all x� To obtain the desired result� we set p�x� � p��x� � p��x�� Then� we have

p�x� � "�
�x� � p��x� � �p��x� � "�
�x�� � p��x� � "���x� � "���x��

��� Immediate from ���� �

As an immediate consequence of Lemma �����	� we have seen that if f majorizes g and f is polynomial

on ��average� then g is also polynomial on ��average� Below we shall show that if � avp�dominates � and f

is polynomial on ��average� then f becomes polynomial on ��average�

A class T of functions is said to be closed under composition with polynomials if� for any function t and

any polynomial p with integer coe�cients� t � T implies �x�t�p�x�� � T �

Lemma ����� Let � and � be distributions	 T a set of functions on R� which is closed under composition

with polynomials	 and h a function from $� to R��

�� If � avp�dominates � and h is T on ��average	 then h is T on ��average�

�� Provided that � is avp�equivalent to �	 h is T on ��average if and only if h is T on ��average�

Proof� ��� Assume that � �avp �� and h is t on ��average for some function t � T � Choose a function

q which is polynomial on ��average such that� for all x � $�� "��x� � q�x� � "��x�� First notice that if h is

degenerative under �� then h is also degenerative under � since "��x� � � implies "��x� � � for any string x� By

our assumption� "��fx j h�x� � t�jxj�r�g�� ��r for all r � �� Since the set T is closed under composition with

polynomials� we assume without loss of generality that h��� � t���� and therefore "��fxjh��� � t���g� � ��

Since q is polynomial on ��average� there exists a polynomial p such that "��fx j q�x� � p�jxj � r�g� � ��r for

all r � ��
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Let �n and �n denote the conditional probability of strings of length n of � and �� respectively� Note

that if q�x� � p�jxj � r� for a string x of length n� then "��x� � p�n � r� � "��x� for all n � N and r � �� Now

de�ne g as g�x� � t�	x
 � p��x��� Since T is closed under composition with polynomials� g is in T � We note

that� for all n � N and all r � R�� g�n � r� � t�n � r
 � 	n� � p�n � �r��� To complete the proof� we should show

that h is g on ��average� This is seen as follows� for every real number r � ��

"��fx j h�x� � g�jxj � r�g�
� "��fx j q�x� � p�jxj � �r�g� ( "��fx j q�x� � p�jxj � �r� � h�x� � g�jxj � r�g�

�
�

�r
(

�X
n��

p��nr� � "��fx � $n j q�x� � p��nr� � h�x� � g�nr�g�

� �

�r
(

�X
n��

p��nr� � "��fx j h�x� � t�jxj � 	n�r
 � p��nr��g�

�
�

�r
(

�X
n��

p��nr�

	n�r
 � p��nr� �
�

�r
(

��

�	r

�

�

r
�

��� Let us recall that � is avp�equivalent to � if and only if � avp�dominates � and � avp�dominates ��

The result thus follows immediately from ���� �

Corollary ����� Let h be any function from $� to R��� For distributions � and �	 if � avp�dominates �

and h is polynomial on ��average	 then h is also polynomial on ��average�

Corollary ��	�� implies that the avp�equivalence relations preserve the notion of polynomial on average�

This fact motivates us to introduce the two new notions of inclusions and equality among sets of distributions�

These notions will be used in later chapters�

De�nition ����� Let F� and F� be two sets of distributions�

�� F� polynomially includes �p�includes� for short� F�� symbolicallyF� 	p F�� if every distribution inF� is

p�equivalent to some distribution in F�� Similarly�F� average polynomially includes �avp�includes� for

short� F�� symbolically F� 	avp F�� if every distribution in F� is avp�equivalent to some distribution

in F��

�� F� is polynomially equal �p�equal� for short� to F�� symbolically F�
��p F�� if F� 	p F� and F� 	p F��

Similarly� F� is average polynomially equal �avp�equal� for short� to F�� symbolically F�
��avp F�� if

F� 	avp F� and F� 	avp F��

Lemma ����� The relations 	p	 	avp	 ��p	 and ��avp are re�exive and transitive� The relations ��p and

��avp are symmetrical�
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Proof� By Lemma ��	�� and the de�nitions� �

����� Fundamental Properties

The domination relations are of importance in average polynomial�time computation� This subsection will

explore properties of domination relations in relation to functional composition� and prepare the ground for

domination conditions which will be introduced and cultivated in Chapter ��

Let us begin with several important properties� Recall that� for a function f and a distribution �� the

notation �f�� denotes the default distribution de�ned by its probability "�f���x� � "��f���x���

Lemma ����	
 Let � and � be two distributions and let f be a p�honest	 p�bounded function on $��

�� If � �p �	 then �f�� �p �f�� �

�� If f is one�one	 then �f�� �p � if and only if � �p � �f � Moreover	 �f�� �p � if and only if � �p � �f �

Proof� ��� Assume that � �p �� There is a p�bounded function s from $� to R� such that "��x� � s�x� �
"��x�� Without loss of generality� we assume that s�x� � � for all x� Consider an increasing polynomial p such

that s�x� � p�jxj� for all x� Since f is p�honest� there is an increasing polynomial q such that jxj � q�jf�x�j�
for all x� Now we let t�y� � maxfs�x� j f�x� � yg� It is clear from the de�nition that� for every y� there is

an element xy � f���y� such that t�y� � s�xy�� For this xy� we have

t�y� � s�xy� � p�jxyj� � p�q�jf�xy�j�� � p�q�jyj�� � p � q�jyj��

Since p � q is again a polynomial� t should be p�bounded� Hence�

"�f�� �y� � t�y� �
X

x�f�x	�y

"��x� � t�y� �
X

x�f�x	�y

"��x� � s�x�

�
X

x�f�x	�y

"��x� � "�f�� �y��

��� Let f be a one�one� p�honest� p�bounded function on $�� Assume that �f�� �p �� Take a p�bounded

function p from $� to R� such that "��f���y�� � "��y� � p�jyj� for all y� Write x � f���y�� Then� since

y � f�x�� we have "��x� � "��f�x�� � p�f�x��� Let q�x� � p�f�x��� Notice that q is p�bounded because f is

p�bounded� Thus� we get � �p � � f �

Conversely� assume that � �p � �f � There is an increasing polynomial p such that "��x� � "��f�x�� �p�jxj�
for all x� Since f is p�honest� jxj � s�jf�x�j� for some polynomial s� Write y � f�x�� Then� x � f���y�

because f is one�one� Let q�z� � p � f���z�� and then q is p�bounded� because

q�y� � p�jf���y�j� � p�jxj� � p�s�jf�x�j�� � p�s�jyj���

Hence� "��f���y�� � "��y� � q�y� for all y� This yields the desired result �f�� �p ��

The �nal claim can be proved in a similar fashion� �
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Lemma ����		 Let f be a function on $� and let � and � be distributions� The following statements are

equivalent�

�� There exists a p�bounded �polynomial on ��average	 resp�� function from $� to R� such that "��y� �P
x�f���y	

���x	
p�x	 for all y�

�� There exists a semi�distribution � such that � �p � �� �avp �	 resp�� and "� � "�f�� �

Proof� We shall show the implication from ��� to ���� Assume that � �p � and "��y� � "�f���y� for all

y� Choose a function p such that p�x� � "��x� � "��x� for all x� Without loss of generality� we assume that

p�x� � �� Since "��x� � ���x	
p�x	 �

"��y� � "�f���y� � "��fx j x � f���y�g� �
X

x�f���y	

"��x�

p�x�
�

Conversely� we shall show that ��� implies ���� Let us assume that "��y� � Px�f���y	
���x	
p�x	 for all y�

where p is a p�bounded function� We may assume p�x� � � for all x� Let "��x� � ���x	
p�x	 � Obviously� � is a

semi�distribution� We then have

"��y� �
X

x�f���y	

"��x�

p�x�
�

X
x�f���y	

"��y� � "�f���y��

�

Lemma ����	� Let f be a p�honest	 p�bounded function on $��

�� There exists a distribution � such that � �p � and "� � "�f�� if and only if there exists a p�bounded

function p from $� to R� such that "��y� �Px�f���y	
���x	
p�x	 for all y�

�� Assume that f is one�one� There exists a distribution � such that � �avp � and "� � "�f�� if and only if

there exists a function p which is polynomial on ��average such that "��y� �Px�f�� �y	
���x	
p�x	 for all y�

Proof� �Only if - part� Assume that � �p � and "��y� � "�f���y� for all y� As we have seen� the last

inequality can be replaced by the corresponding equality�

We note that the inequality "� � "�f�� in �iii� can be replaced by the equation "� � "�f�� � since if "��y�� �

"�f���y�� for some y�� then
P

y "��y� �
P

y�y ��y� "��y�( "��y�� �
P

y�y ��y� "�f���y�( "�f�� �y�� � �� a contradiction�

Hence� we may assume that "��y� � "�f���y� for all y�

There is a p�bounded function p such that p�x� � "��x� � "��x� for all x� In particular� if p�x� � �� then

reset p�x� to be � without changing the equation since "��x� � �� So� we can assume that p�x� � � for all x�

Then�

"��y� �
X

x�f���y	

"��x� �
X

x�f�� �y	

"��x�

p�x�
�



�	 CHAPTER �� GENERAL THEORY OF AVERAGE CASE COMPLEXITY

�If - part� Assume that "��y� � P
x�f�� �y	

���x	
p�x	 for all x� where p is a p�bounded function from $�

to R�� By Lemma ��	���� this is equivalent to p��y� � "��y� � "�f�� �y� for some p�� Consider p�� such that

p���y��"��y� � "�f���y� for all y� As above� we can assume that p���x� � � for all x� Let pf �x� � p���f�x��� Then�

we have "��y� �
P

x�f���y	
���x	
pf �x	

� Now de�ne � as "��x� � ���x	
pf �x	

for each x� Clearly we have pf �y� � "��y� � "��y�

and "��y� �
P

x�f���y	 "��x� � "�f���y�� �

Lemma ����	� ��	� Let f be a p�honest	 p�bounded function on $�	 and let � and � be distributions�

�� �f�� �p � if and only if there exists a p�bounded function p from $� to R� such that "��y� �P
x�f���y	

���x	
p�x	 for all y�

�� Assume that f is one�one� Then	 �f�� �avp � if and only if there exists a function p which is polynomial

on ��average such that "��y� �Px�f���y	
���x	
p�x	 for all y�

Proof� We shall prove both claims simultaneously because the main di�erence is the condition on p�

�Only if - part�� Assume that p�y� � "��y� � "�f���y� for all y� We can assume without loss of generality

that p�y� � � for all y� De�ne p��x� � p�f�x�� for each x� If p is p�bounded� then p� is also p�bounded since

f is p�bounded and jp��x�j � jp�f�x��j � q�jf�x�j� for some polynomial q� If p is polynomial on �f���average�

Lemma ������ infers that p� is polynomial on ��average� For y � ran�f��

"��y� � �

p�y�
"��fx j f�x� � yg� �

X
x�f���y	

"��x�

p�y�
�

X
x�f���y	

"��x�

p�f�x��
�

X
x�f���y	

"��x�

p��x�
�

�If - part�� Assume that "��y� �Px�f���y	
���x	
p�x	 for some p�bounded function p� Let p��y� � maxfp�x� j

x � f���y�g� If p is p�bounded� then p� is also p�bounded� since f is p�honest� If p is polynomial on ��average�

then using the fact that f is one�one� Lemma ������ again shows that p� is polynomial on �f���average� Then�

p��y� � "��y� �
X

x�f���y	

p��y�"��x�

p�x�
�

X
x�f���y	

"��x� � "�f�� �y��

�

The following lemma is a polynomial�equivalence version of Lemma ��	����

Lemma ����	� Let f be a p�honest	 p�bounded function on $�	 and let � and � be distributions�

�� �f�� �p � if and only if there exist two p�bounded functions p and q from $� to R� such thatP
x�f���y	 q�x�"��x� � "��y� �Px�f���y	

���x	
p�x	 for all y�

�� Assume that f is one�one� Then	 �f�� �avp � if and only if there exist two functions p and q which are

polynomial on ��average such thatP
x�f���y	 q�x�"��x� � "��y� �Px�f���y	

���x	
p�x	 for all y�
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Proof� We shall show both claims at once� We assume that q�x� � "�f���x� � "��x� and p�x� � "��x� � "�f���x�

for all x� Let p��x� � p�f�x�� and let q��x� � q�f�x��� By the proof of Lemma ��	���� we have "��y� �P
x�f���y	

���x	
p��x	 for all y� The other direction follows similarly�

"��y� � q�y� � "�f���y� �
X

x�f���y	

q�y�"��x� �
X

x�f�� �y	

q�f�x��"��x� �
X

x�f���y	

q��x�"��x��

If q is p�bounded� then q� is also p�bounded since f is p�bounded� We show that q� is polynomial on

��average if q is polynomial on ��average� Assume that q is s� on ��average for some increasing polynomial

s�� By our assumption� p is polynomial on �f���average� Take a polynomial s� witnessing the average�

polynomiality of p� Since f is p�bounded� there exists an increasing polynomial t such that jf�x�j � t�jxj�
for all x� Let Dr � fy j p�y� � s��jyj � �r�g� Let s�z� � s��t�z� � s���t�z� � z� � �t�z�� � z� for all z� Note that�

for x � $� and r � ��

s�jf�x�j � r� � s��t�jxj � r� � s���t�jxj � r� � 	t�jxj � r�� � jxj � r� � s��jyj � s���jyj � r� � 	jyj� � r��

where y � f�x�� For r � ��

"��fx j q��x� � s�jxj � r�g�
� "��fx j �y f�x� � y � q�y� � s�jxj � r�!g�
� "�f���fy j q�y� � s��jyj � s���jyj � r� � 	jyj� � r�g�
� "�f���fy j p�y� � s��jyj � �r�g� ( "�f���fy � Dr j q�y� � s��jyj � s���jyj � r� � 	jyj� � r�g�

� �

�r
(

�X
n��

"�f���fy � Dr �$n j q�y� � s��jyj � s���nr� � 	n�r�g��

By domination s���nr� � "��y� � "�f���y�� therefore the last term of the above inequalities is bounded by

�X
n��

s���nr� � "��fy j q�y� � s��jyj � s���nr� � 	n�r�g�

� �

�r
(

�X
n��

s���nr�

s���nr� � 	n�r �
�

�r
(

��

�	r
�

�

r
�

�

����� Randomized Domination

We also introduce a randomized version of p�domination relations and avp�domination relations�

De�nition ������ �Randomized domination� Let � and � be any two semi�distributions�

�� The semi�distribution � is said to randomly p�dominate � �rp�dominate� for short�� symbolically � �rp

�� if there exist a random�input domain + and a random function p from + to N such that

�i� the random function p is p�bounded� and
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�ii� p�x� s� � "��x� s� � "���x� s� for all pairs �x� s� � +�

�� The semi�distribution � is said to randomly average p�dominate � �avrp�dominate� for short�� symbol�

ically � �rp �� if there exist a random�input domain + and a random function p from + to N such

that

�i� the random function p is polynomial on ��average� and

�ii� p�x� s� � "��x� s� � "���x� s� for all pairs �x� s� � +�

To emphasize the random�input domain 
� we use the notations � �rp
� � and � �avrp

� ��

By de�nition� it is immediate that if + is almost total� then � �p � �� �avp �� resp�� implies � �rp
� ��

�� �avrp
� ��� resp��� We have shown as in Corollary ��	�� that if � �avp � and h is polynomial on ��average�

then h is also polynomial on ��average� In the following lemma� we shall show an analogous result for

avrp�domination relation�

Lemma ����	� Let � and � be two distributions� Let h be a random function from + to R��	 where + is

a random�input domain� Assume that	 for some polynomial q	 "��f�x� s� j h�x� s� � q�r � jxj�g� � ��r holds

for any real number r � �� If � �avrp
� �	 then h is polynomial on ��average�

Proof� The proof is similar to that of Lemma ��	������ Assume that h is q on ��average� Since � �avrp
� ��

there exists a random function p being polynomial on ��average such that p�x� s� � "��x� s� � "���x� s� for all

pairs �x� s� � +� Let us consider an increasing polynomial q� such that p is q� on ��average�

We now �x a positive real number r � �� Let us de�ne the set Dr � f�x� s� � + j x � $� � p�x� s� �
q��jxj � �r�g� Let c� be an integer such that c� � maxfh��� s� j s � +���g� Such an integer exists �see the

observation made after De�nition �������� As the desired polynomial .q� we set .q�z� � q�	z� � q���z�� ( c� for

all z� The probability "���f�x� s� j h�x� s� � .q�jxj � r�g� is bounded by

"���f�x� s� j p�x� s� � q��jxj � �r�g� ( "���f�x� s� � Dr j h�x� s� � .q�jxj � r�g��

The �rst term is obviously bounded above by ���r� Let Tr be the second term� To compute Tr � we note

that if �x� s� � Dr� then q�jxj � r� � "��x� s� � "���x� s�� Thus� Tr is calculated as follows�

Tr �
�X
n��

"���f�x� s� � Dr j x � $n � h�x� s� � q�jxj � 	rn�q���rn��g�

�
�X
n��

q���rn� � "��f�x� s� j h�x� s� � q�jxj � 	rn�q���rn��g�

�
�X
n��

q���rn�

	rn� � q���rn�
�

�X
n��

�

	rn�
�

��

�	r
�

�

�r
�

�
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��� Distributional Decision Problems

In contrast to worst�case complexity theory� average�case complexity theory deals with not only a problem

D but also a distribution � of instances� Such a pair �D��� is called by many researchers a distributional

problem  ���� ���!� randomized problem  ��!� or random problem  ��!� The distribution � assigns to an

instance the probability of its occurrence as an input to the problem D�

De�nition ����� �Distributional Decision Problems� A distributional �decision� problem �D��� is

a pair of a set D of strings and a distribution �� A set of distributional problems is called an average�case

complexity class�

This section will focus on �natural� average�case complexity classes and give their formal de�nitions�

Of particular interest are two types of average�case complexity classes� Following their de�nitions� we shall

discuss general separation and collapse results among these average�case complexity classes�

����� Average�Case Complexity Classes

Similar to worst�case complexity theory� we can consider �complexity classes� of distributional decision

problems� One natural type of those classes is the combination of existing worst�case complexity classes C
and sets F of distributions� Such a class was �rst introduced by Levin  ��! as an average�case version of

NP� and later Ben�David� Chor� Goldreich� and Luby  �! invented a general notation hC�Fi to describe such

classes� Here we slightly modify their notation and introduce an average�case complexity class Dist�C�F��

De�nition ����� �Average�Case Complexity Classes� cf� ��� Let C be a complexity class and F be

a class of distributions� Let Dist�C�F� be the set f�D��� j D � C� � � Fg�

To simplify the notation� we devise the following convention� whenever the set of all distributions is

discussed� we use the symbol � �asterisk� as the distribution parameter� For example� Dist�NP� �� denotes

the collection of all pairs �D��� such that D is an NP set and � is any distribution�

Here we see two examples of distributional decision problems in Dist�NP� ���

Example ����� A graph G � �V�E� is called ��colorable if there exists a coloring c of G �i�e�� a map

c � V 
 f�� �� �g� such that� for any two distinct vertices u and v� if �u� v� � E� then c�u� �� c�v�� The

randomized ��colorability problem ��COL� �
COL� is de�ned as follows� let

�COL � fhGi j G is a graph which is ��colorable g�

and let

"�
COL�hGi� � "�tally��kV k� � ���n� 	�
where hGi is an appropriate encoding of G� The distribution �
COL is best described by the following

experiment� randomly choose the number of vertices and then randomly choose edges between pairs of
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distinct vertices� Since �COL belongs to NP� the problem ��COL� �
COL� belongs to Dist�NP� ���

Example ����� The randomized � satis
ability problem ��SAT� �SAT� is de�ned as follows�

�SAT � fh"p�� "q�� "r�i� � � � � h"pn� "qn� "rni j formula
n�
i��

�pi � qi � ri� is satis�able g�

where all "pi� "qi� and "ri are strings which are reasonable codes of Boolean variables pi� qi� and ri� respectively�

and let �SAT be de�ned by its probability

"�SAT�h"p�� "q�� "r�i� � � � � h"pn� "qn� "rni� � "�tally��
n� �

nX
i��

���j�pij�j�qij�j�rij	�

It is clear that ��SAT� �SAT� belongs to Dist�NP� ���

Another type of average�case complexity classes is more involved with algorithmic computability in feasible

time on average� First of all� we shall give a general de�nition of time� and space�bounded on average for

Turing machines� Notice that deterministic and nondeterministic Turing machines are special cases of

alternating Turing machines� We de�ne the time and space complexity of alternating Turing machines in an

average�case setting�

De�nition ����� �Time�Space Bounded on Average� Let M be an alternating oracle Turing ma�

chine and � a distribution� Let A and S be any sets� Also let t and T be a function and a set of functions

on R�� respectively�

�� The machine M with oracle A is t�time bounded on ��average if the function �x�TimeAM �x� is t on

��average� and it is T �time bounded on ��average if it is t�time bounded on ��average for some t � T �

The machine M is said to recognize S in t�time �T �time	 resp�� on ��average if M is t�time �or T �time�

resp�� bounded on ��average� and S � L�M�A��

�� The machine M with oracle A is t�space bounded on ��average if the function �x�SpaceAM �x� is t on

��average� and it is T �space bounded on ��average if it is t on ��average for some t � T � The machine

M is said to recognize S in t�space �T �space	 resp�� on ��average if M is t�space �or T �space� resp��

bounded on ��average� and S � L�M�A��

We note that� in the case that "��x� � �� the machine M does not necessarily halt on this particular input

x because� according to our interpretation� the instance x does not occur� Nevertheless� this is not crucial

in our theory� Schuler and Yamakami  ��!� for example� have considered only machines which always halt�

For a randomized Turing machine M � we must demand that the random function �xs�TimeM �x� s� be t

on ��average�

De�nition ����	 �Time Bounded on Average� Let M be a randomized oracle Turing machine and

� a distribution� Let A and S be any two sets� Also let t and T be a function and a set of functions on R��
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respectively� The machine M with oracle A is called t�time bounded on ��average if the random function

�xs�TimeAM�x� s� is t on ��average� and it is T �time bounded on ��average if it is t�time bounded on ��average

for some t � T � The machine M is said to recognize S in t�time �T �time	 resp�� on ��average if M is t�time

�or T �time� resp�� bounded on ��average� and S � L�M�A��

We are especially interested in machines which are polynomial�time�space bounded on ��average�

De�nition ����� �Polynomial�Time�Space Bounded on Average� Let M be an oracle Turing

machine with output tapes� Let A be a set and let f be a function� We say that M with oracle A is

polynomial�time �polynomial�space	 resp�� bounded on ��average if MA is T �time �T �space� respectively�

bounded on ��average for T being the set of all polynomials �i�e�� any functions of the form of
Pk

i�� ai � xi�
ai �Z�� The machine M is said to compute f in polynomial�time �polynomial�space	 resp�� on ��average if

M is t�time �or T �time� resp�� bounded on ��average� and f�x� � MA�x� for all x�

Now we are ready to introduce the second type of average�case complexity complexity classes Aver�C�F��

De�nition ����� �Average�Case Complexity Classes� cf� ���� Let t� s be functions on N and let T
and S be sets of functions on N� Also let F be a class of distributions� Time� and space�bounded average�case

complexity classes are de�ned as follows�

�� Aver�DTIME�t��F� is the collection of distributional decision problems �D��� such that � � F and D is

computable by some deterministic Turing machine in t�time on ��average� Let Aver�DTIME�T ��F� �S
t�T Aver�DTIME�t��F��

�� Aver�NTIME�t��F� is the collection of distributional decision problems �D��� such that � � F and D is

recognized by some nondeterministic Turing machine in t�time on ��average� Let Aver�NTIME�T ��F� �S
t�T Aver�NTIME�t��F��

�� Aver�BPTIME�t��F� is the collection of �D��� such that � � F and D is recognizable by some

bounded�error probabilistic Turing machine in t�time on ��average� Let Aver�BPTIME�T ��F� �S
t�T Aver�BPTIME�t��F�� Similarly� Aver�RTIME�t��F� is the collection of �D��� such that � � F

and D is recognizable by some one�sided error� probabilistic Turing machine in t�time on ��average�

Let Aver�RTIME�T ��F� �
S
t�T Aver�RTIME�t��F��

	� Aver�ATIME�t��F� is the collection of �D��� such that � � F and D � L�M � for an alternating Turing

machine M which is t�time bounded on ��average� The class Aver�ATIME��t� s��F� is the collection

of �D��� such that � � F and D � L�M � for an alternating Turing machine M in s�time on ��average

which is t�alternation bounded� starting with an existential state� Similarly� Aver�ATIME��t� s��F� is

de�ned by semi�deterministic alternating Turing machines� Let Aver�ATIME�T ��F� �S
t�T Aver�ATIME�t��F�� and similarly Aver�ATIME��T �S��F� and Aver�ATIME��T �S��F� are

de�ned�
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�� Aver�DSPACE�s��F� is the collection of �D��� such that � � F and D is computable by some deter�

ministic Turing machine M in s�space on ��average� Let Aver�DSPACE�S��F� �S
s�S Aver�DSPACE�s��F��

Ben�David� Chor� Goldreich� and Luby  �! use the notation AverDTime�t�n�� instead to denote our

Aver�DTIME�t�� �� �also denoted by AvDTime�t�n�� in  �	!��

In what follows� we use abbreviations commonly used in worst�case complexity theory� such as P ��

DTIME�nO��	��� PSPACE �� DSPACE�nO��	��� RP �� RTIME�nO��	��� etc� �see Section �����

Recall the randomized ��colorability problem ��COL� �
COL�� It is well known that �COL is NP�complete

�see e�g��  ��!�� However� Wilf  ���! showed that the randomized ��colorability problem can be solved by some

deterministic algorithm in time polynomial on �
COL�average� Thus� ��COL� �
COL� belongs to Aver�P� ���
We have introduced �ve categories of fundamental average�case complexity classes Aver�C�F�� We can

extend our de�nition to classes which do not fall into those categories� One such extension is the complement

of an average complexity class Aver�C�F��

De�nition ����� �Complement Classes� For a complexity class C and a set F of distributions� the

complement of Aver�C�F� is denoted by Aver�co�C�F� and is de�ned by the collection of all distributional

decision problems �D��� such that �D��� belongs to Aver�C�F�� where D � $� �D�

Another extension is the intersection of two average�case complexity classes Aver�C��F� and Aver�C��F��

De�nition �����
 �Intersection Classes� For two complexity classes C� and C�� and a set F of dis�

tributions� the intersection of Aver�C��F� and Aver�C��F� is denoted by Aver�C� � C��F� and is de�ned by

the collection of all distributional problems �D��� such that �D��� � Aver�C��F� and �D��� � Aver�C��F��

For example� we can de�ne the followingaverage�case complexity classes� Aver�co�RP�F�� Aver�co�NP�F��

Aver�ZPP�F�� and Aver�NP � co�NP�F��

Remark ������ The notation �Aver��� ��� in which we use parentheses referring to functions might be

misleading� The reader should resist the temptation to replace a class C in the notation �Aver�C�F�� with

another equivalent class C� because the equality C � C� in worst�case complexity theory does not always

imply the equality Aver�C�F� � Aver�C��F� in average�case complexity theory�

We shall introduce a counterpart of the function class FP in worst�case complexity theory� the average

polynomial�time computable functions� Recall that a transducer is a Turing machine equipped with an extra

output tape for the purpose of computing a function on $��

De�nition ������ �Average Time Computable Functions� If a function f on $� is computed by

a deterministic transducer which is polynomial�time bounded on ��average� we say that f is computable



���� DISTRIBUTIONAL DECISION PROBLEMS ��

in time polynomial on ��average� Let Aver�FP�F� denote the collection of all pairs �f� ��� where � is a

distribution in F � and f is a function computable in time polynomial on ��average�

We shall take a quick glance at some fundamental relationships among average complexity classes� By

the de�nition of t on ��average� the class Dist�DTIME�t��F� is clearly included in Aver�DTIME�t��F��

Similar inclusions obviously hold for other fundamental average complexity classes�

Proposition ����	� Let C � fDTIME�t��NTIME�t��BPTIME�t��RTIME�t��DSPACE�t�g for some in�

creasing function t on N	 and let F be a set of distributions� Then	 Dist�C�F� 	 Aver�C�F��

The next lemma follows immediately from Lemmas ��	����� and Corollary ��	���

Lemma ����	� Let F be any set of distributions and assume that �� � � F � Let C be any of the following

classes� L	 P	 co�NP	 NP	 RP	 BPP	 and EXP� If �D� �� � Aver�C�F� and � avp�dominates �	 then

�D��� � Aver�C�F��

Proof� Since the sets of polynomials� logarithms� and exponentials are all closed under composition with

polynomials� the lemma immediately follows from Lemma ��	��� �

Similar simulation techniques show basic inclusion relationships among average complexity classes�

Theorem ����	� Let t be a function on R��

�� Aver�DTIME�t��F� 	 Aver�RTIME�t��F��

�� Aver�RTIME�t��F� 	 Aver�NTIME�t��F��

�� Aver�RTIME�t��F� 	 Aver�BPTIME�O�t���F��

�� Aver�BPTIME�t��F� 	 Aver�DSPACE�O��x�t��x����F��

�� Aver�DSPACE�t��F� 	 Aver�DTIME�O��t���F�	 where �t means �x��t�x	�

Proof� We use a standard simulation technique to show the above inclusions of average�case complexity

classes�

��� Obviously� deterministic Turing machines are viewed as a special case of one�sided error probabilistic

Turing machines�

��� It su�ces to note that one�sided error probabilistic Turing machines are nondeterministic Turing

machines because of one�sided error probability� �This is not true for two�sided error probabilistic machines��

��� Suppose �D��� is in Aver�RTIME�t��F�� Take a one�sided error� probabilistic Turing machine M

recognizing D in time t on ��average� Let us consider the simulation machine N de�ned as follows�
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begin randomized algorithm for N

input x

simulate M on input x

if M accepts x then accept

simulate M on input x

if M accepts x then accept else reject

end�

Assume that x � D� The error occurs if both simulations of M on x fail to reach any accepting

con�guration� Hence� the error probability of N on input x is at most ��	� Assume to the contrary that

x �� D� Because of one�sided error probability� there is no error occurring in the computation of N on x�

Therefore� N has bounded�error probability�

By de�nition� the running time of N on x� TimeN �x�� is bounded by a linear function in TimeM �x��

Since M is t�time bounded on ��average� the function �x�TimeN �x� is �x�c�t�x� ( �� on ��average for some

positive constant c�

�	� First we observe that any bounded�error probabilistic Turing machine M can be simulated deter�

ministically using at most O�Time�M �x�� tape squares� This is seen as follows� We simulate M on x by

choosing its con�gurations one by one �i�e�� using breadth��rst search� and simulating the corresponding

steps� Assume that we visit enough leaves of the computation tree so that we can determine whether M

accepts or rejects x� We then quit the simulation and go into an accepting state if M accepts x� or else go

into a rejecting state� This simulation needs tape space at most c � �Time�M�x� ( �� for some �xed constant

c � ��

Now suppose that �D��� is in Aver�BPTIME�t��F�� There exists a bounded�error probabilistic Turing

machine M which recognizes D in time t on ��average� Since �x�TimeM �x� is t on ��average� Lemma ������

implies that �x�Time�M �x� is �x�t��x� on ��average� The claim follows from the observation above�

��� Given a deterministic Turing machine M � which on input x runs using space p�x�� the number of

possible con�gurations given by M on x is O��p�x	�� Hence� the simulation of M on x takes O��p�x	� time�

�

Generally speaking� the function �x�TimeM �x� for a nondeterministic Turing machine M is not time�

constructible� therefore� even if t is time�constructible� the inclusion Aver�NTIME�t��F� 	
Aver�DSPACE�O�t���F� may not hold� This sheds light on the crucial di�erence between worst�case com�

plexity and average�case complexity�

As an example� we shall demonstrate a closure property of average�case complexity class under disjoint

union� It is easy to see in worst�case complexity theory that if A and B are in P� then A � B is also in P�

In the average�case setting� we must consider the distributions as well as the sets of strings�

Lemma ����	� Let C � fP�NP�RP�BPP�PSPACEg� Let F be a set of distributions which is closed

under �� If two distributional problems �A� �A� and �B� �B� are in Aver�C�F�	 then so is �A�B� �A��B��
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Proof� We prove the lemma for the case C � P� The other cases follow similarly� Assume that �A� �A� and

�B� �B� are in Aver�P�F�� There are two deterministic Turing machines MA and MB � and two polynomials

pA and pB such that L�MA� � A� L�MB� � B� �x�TimeMA�x� is pA on �A�average� and �x�TimeMB�x� is

pB on pB�average� We assume without loss of generality that both pA and pB are increasing� Consider the

following algorithm N �

begin simulation algorithm N

input x

if x � � then reject x

�nd u such that either x � �u or x � �u

if x � �u then simulate MA on input u

else simulate MB on input u

end�

Assume that x � �u for some u� It is easy to see that there is an absolute constant c � � which does not

depend on the choice of x such that TimeN �x� � c � �jxj( TimeMA�u� ( ��� If we take a su�ciently large

constant c� a similar inequality holds for MB if x � �$��

To complete the proof� we show that �x�TimeN �x� is polynomial on �A � �B�average� First set s�n� �

c � �n( pA�n� ( pB�n� ( ��� Note that s is a polynomial� For every r � ��

��A � �B�fx j TimeN �x� � s�jxj � r�g�
�

�

�
� "�A�fu j TimeN ��u� � s�j�uj � r�g� (

�

�
� "�B�fu j TimeN ��u� � s�j�uj � r�g�

� �

�
� "�A�fu j TimeMA�u� � pA�j�uj � r�g� (

�

�
� "�B�fu j TimeMB�u� � pB�j�uj � r�g�

� �

�
� "�A�fu j TimeMA�u� � pA�juj � r�g� (

�

�
� "�B�fu j TimeMB�u� � pB�juj � r�g�

�
�

�
� �

r
(

�

�
� �

r
�

�

r
�

Hence� N runs in polynomial time on ��average� �

����� Inclusions and Separations

We shall discuss general separation and collapse results among average�case complexity classes introduced

in the previous subsection�

The following proposition shows a basic separation between average�case complexity classes Dist�D�F�

and Aver�C� ���
Let us recall from Chapter � that a tally set is a subset of f�g� and from Section ��� that �tally is the

standard distribution that is positive only on f�g�� We say a �worst�case� complexity class C is closed under

disjoint union � if� for any sets A and B in C� A �B is also in C�

Proposition ����	� Let C and D be two complexity classes	 and let F be a set of distributions with �tally �
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F � Assume that D contains the set f�g� and is closed under disjoint union� If REC � D �� ' and

DTIME�O�n�� 	 C	 then Aver�C�F� �	 Dist�D� ���

Proof� Consider a set A in REC � D� De�ne B � f�g� � A� Thus� �B� �tally� �� Dist�D� �� since�

otherwise� A � D by the closure property of D under �� We now show that �B� �tally� � Aver�C�F�� Let M

be a deterministic Turing machine which computes A� This machine exists since A is recursive� Consider

the following algorithm N for B�

begin simulation algorithm N for B

input x

if x � f�g� then accept

�nd y such that x � �y

simulate M on input y and halt

end�

Since TimeN ��n� � cn( c for some absolute constant c � �� we have

"�tally�fx j TimeN �x� � cjxj � r ( cg� � "�tally�f�n j TimeN ��n� � cn ( cg� � "�tally�'� � � �
�

r

for all r � �� Hence� �B� �tally� � Aver�DTIME�cn( c��F� 	 Aver�C�F�� �

As a corollary� we get a result shown by Wang and Belanger  ���! regarding the separation between

Dist�NP� �� and Aver�P� ���

Corollary ����	� ����� Aver�P�F� �	 Dist�NP� �� for any set F of distributions with �tally � F �

Next we shall introduce a notion ofweakly C�descriptiveness for average�case complexity classes Aver�C�F��

De�nition ������ �Weakly Descriptiveness� Assume that D is a T �time or T �space bounded com�

plexity class and C is any �worst�case� complexity class� We call the average complexity class Aver�D�F�

weakly C�descriptive if� for every problem �D��� � Aver�D�F�� there exist a set C � C and a deterministic

oracle Turing machine M such that M with oracle C recognizes D in time T on ��average�

Proposition �����
 Let F be a set of distributions�

�� Aver�P�F� is weakly P�descriptive�

�� Aver�NP � co�NP�F� is weakly NP�descriptive�

�� Aver�BPP�F� is weakly PP�descriptive�

�� Aver�PSPACE�F� is weakly PSPACE�descriptive�
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Proof� We shall show only the case ���� Let �D��� be a distributional problem in Aver�BPP�F�� Take

a probabilistic Turing machine M which computes D in time polynomial on ��average�

We de�ne two sets C� and C� as follows� let C� be the set of strings h�� x� �ni such that more than half

of the computation paths of M on input x terminate in accepting con�gurations in less than n steps� and

let C� be the set of strings h�� x� �ni such that more than half the paths of M on x terminate in less than n

steps� It is not hard to see that C� and C� are PP sets� Set C � C� �C��

Let us consider the following deterministic algorithm N with oracle C�

begin deterministic oracle Turing machine N with oracle C

input x

for n � � to � do

query h�� x� �ni to oracle C

if h�� x� �ni � C then accept and halt

query h�� x� �ni to oracle C

if h�� x� �ni �� C then reject and halt

end�for

end�

Recall the de�nition of Time�M �x� in Section ��	� By our de�nition � the algorithm N with oracle C

above repeats the for�loop Time�M �x� ( � times before accepting or rejecting x� because Time�M �x� is the

minimal number of steps needed to check if M accepts or rejects x� Note that �x�Time�M �x� is polynomial on

��average due to Lemma ������� Furthermore� when the algorithm terminates� its output is always correct�

Hence�

TimeCN �x� � d � �Time�M �x� ( ��

for some constant d � �� Since �x�Time�M �x� is polynomial on ��average� obviously N with C computes D

in polynomial time on ��average� �

Provided that C is a T �time or T �space bounded complexity class� we say that Aver�C�F� is closed

under weak description if� for every �C� �� � Dist�C�F� and every deterministic oracle Turing machine M

with oracle C which is T �time bounded on ��average� the distributional problem �L�M�C�� �� belongs to

Aver�C�F�� For example� Aver�P�F� and Aver�PSPACE�F� are closed under weak description�

Lemma �����	 For C � fP�PSPACEg	 Aver�C�F� is closed under weak description�

Proof� Here we shall show that Aver�PSPACE�F� is closed under weak description� Let us �rst assume

that �C� �� is in Dist�PSPACE�F�� There exists a deterministic Turing machine M� computing C using

polynomial space� Suppose SpaceM �z� � p�jzj� for all z� where p is an appropriate increasing polynomial�

Consider any deterministic oracle Turing machine M which� with oracle C� is polynomial�time bounded

on ��average� We must construct a deterministic Turing machine which computes C using space polynomial
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on ��average without any help from oracles� The idea is to combine two Turing machines M� and M �

begin deterministic algorithm for N

input x

simulate M on input x

while simulation do

if M queries z then simulate M� on input z

if M reaches a halting con�guration then outputM �x� and halt

end�while

end�

It is obvious that N computes C correctly without any oracles� The tape space used by N on input x�

SpaceN �x�� is clearly bounded by

c �
�
�TimeCM �x� (

X
z�Q�M�C�x	

SpaceM�
�z� ( �

�
A �

To see that �x�SpaceN �x� is polynomial on ��average� we must check �x�
P

z�Q�M�C�x	 SpaceM�
�z� is poly�

nomial on ��average� This is seen as follows�

X
z�Q�M�C�x	

SpaceM�
�z� � maxfp�jzj� j z � Q�M�C� x�g

� p�TimeCM�x���

Apply Lemma �����	 to p�TimeCM �x��� and we conclude that �x�SpaceN �x� is polynomial on ��average� This

implies that �L�M�C�� �� belongs to Aver�PSPACE�F�� �

Let us now see general separation and collapse results among average complexity classes� For the propo�

sition below� we �rst introduce the supplementary notion of safe sets� given a set T of functions� we call T
safe if �i� for any functions t�� t�� t
 � T and any constant c � N� there exists a function s in T such that

c�t��x� ( t� � t
�x� ( �� � s�x� for all x� and �ii� for each function t � T � t�x� � t�y� implies x � y for all x

and y�

Proposition ������ Let C be of the form DTIME�T �	 NTIME�T �	 RTIME�T �	 BPTIME�T �	 ATIME�T �	

or DSPACE�T � for some safe set T of functions on R��

�� If C 	 REC	 then D � C �� ' implies Aver�D� ���Aver�C� �� �� '�

�� Assume that Aver�D�F� is weakly D��descriptive and Aver�C�F� is closed under weak description�

Then	 D� 	 C implies Aver�D�F� 	 Aver�C�F��

Proof� ��� The following proof is chie
y due to Karg and Schuler  	�!� Assume that D � D � C� Let us

recall from Chapter � the notion of proper complexity cores� Since C 	 REC� by Lemma ������� there exists



���� DISTRIBUTIONAL DECISION PROBLEMS ��

a proper complexity core C for D with respect to C� Note that C 	 D� De�ne the distribution � as follows�

"��x� �

�	



�
�n��kC��nk if x � C and jxj � n�

d
�jxj� � ��jxj otherwise

for some adequate normalizing constant d� Since D � D� we have �D��� � Dist�D� �� 	 Aver�D� ���
We next show that �D��� �� Aver�C� ��� Assume that �D��� � Aver�C� �� via machine M � Suppose that C

is a time�bounded complexity class and assume that �x�TimeM �x� is t on ��average for some t � T � Since C

is a complexity core� there exists an integer k � � such that� for all x � C with jxj � k� TimeM �x� � t��jxj
�
because� otherwise� the set fx � C j TimeM �x� � t��jxj
�g is an in�nite subset of C� Using this fact� we

bound the probability of the event that TimeM�x� � t�jxj � r� by

"��fx j TimeM �x� � t�jxj � �k��g�
� "��fx � C j TimeM �x� � t�jxj � �k��g� � "��C � $�k�

�
X

x�C���k

�

jxj� � kC �$jxjk

� kC �$kk
�k� � kC �$kk �

�

�k�
�

This contradicts the assumption �D��� � Aver�C� ���
Note that if C is a space�bounded complexity class� use SpaceM �x� instead of TimeM �x� in the above

argument�

��� Assume D� 	 C� Let �D��� be any distributional problem in Aver�D�F�� Since Aver�D�F� is weakly

D��descriptive� we can take a set D� in D and a deterministic oracle Turing machine M such that M is T
on ��average and computes D with oracle D��

Notice that D� belongs to C� The closure property of Aver�C�F� under weak description leads to the

conclusion that �L�M�D���� is in Aver�C�F�� This implies the desired result that �D��� � Aver�C�F�� �

As a corollary� we obtain the following result�

Corollary ������ Let F be any set of distributions�

�� P �� BPP implies Aver�P� �� �� Aver�BPP� ���

�� P � PP implies Aver�P�F� � Aver�BPP�F��

Interestingly� the class Aver�NP�F� cannot be characterized by the notion of weak NP�descriptiveness�

Moreover� we are able to show that Aver�NP� �� is indeed di�erent from Aver�P� ��� The theorem below

shows the separation between Aver�P� �� and Aver�NP� �� �see also  	�!��

Theorem ������ ���� Aver�P� �� �� Aver�NP� ���

Proof� We shall construct a distributional decision problem �A� �� which belongs to Aver�NP� �� but
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not to Aver�P� ��� First we choose a nonrecursive� recursively enumerable� tally set A whose elements are

enumerated as A � fM �s���M �s���M �s
�� � � �g by some deterministic transducer M which always halts and

outputs some strings� For simplicity� we assume without loss of generality that if M on input w produces x�

then TimeM �w� � jxj( jwj� We also choose the distribution � de�ned as

"��x� �
�	

 ��
TimeM �sk	 if x � A� where k � minfi � N jM �si� � xg�

���jxj otherwise�

Clearly the distribution � is positive� We claim that the distributional problem �A� �� belongs to Aver�NP� ��
but not to Aver�P� ��� We note that if �B� �� � Aver�P� �� and � is positive� then B is recursive� Since A is

not recursive� it is immediate that �A� �� �� Aver�P� ���
We next show that �A� �� � Aver�NP� ��� Let us consider the nondeterministic Turing machineN de�ned

by the following simple nondeterministic algorithm� Remember that A is a tally set�

begin nondeterministic algorithm for N

input x

if x �� f�g� then reject
guess a natural number i �actually guess si�

simulate M on input si

if x � M �si� then accept else reject

end�

Obviously N recognizes A� Now �x x and let k � minfi � N j M �si� � xg� In the case where x �� A�

TimeN �x� is set to the shortest length of a rejecting path by our de�nition� thus� it is bounded by a constant

independent of x� Let c� be such a constant� Hence�

"��fx �� A j TimeN �x� � c�g� � ��

Suppose x � A� Write Dx for the set fi jM �si� � xg� On input x� the above algorithm takes at most

TimeN �x� � d � �� ( jxj( minfjsij( TimeM �si� j i � Dxg� � d � �� ( jxj( jskj( TimeM �sk��

steps for some positive constant d which is independent of x� Since A is a tally set�

"��$n� � "��x� � c � ��
TimeM �sk	�

where c is the normalizing constant for �� We then have

TimeN �x� � d � �� �TimeM �sk� ( �� � �d � �TimeM �sk	

� �d

jxj� � �

TimeM �sk	 � �cd

jxj� � "��$n�
�

By Lemma ������� we conclude that �x�TimeN �x� is polynomial on ��average� �

Theorem �����	 showed in the average�case setting a distinction between deterministic computation time

and nondeterministic computation time� The distribution � constructed in the proof of the theorem is



���� DISTRIBUTIONAL DECISION PROBLEMS ��

not e�ectively calculated and often takes extremely small probability� Nonetheless� most distributions we

encounter in practice do not have any resemblance to this �� When we discuss practical distributions� we

may restrict our interest to such distributions that give relatively high probability for almost all input strings�

Here we call such distributions supportive�

De�nition ������ �Supportive Distributions� A distribution � is called supportive if there exists a

polynomialp such that either "��x� � ��p�jxj	 or "��x� � � for every x� A set of distributions is called supportive

if all of its distributions are supportive� Let SUPP be the collection of all supportive distributions�

For example� the standard distribution �stand is supportive since "�stand�x� � �
��jxj��	� � ��jxj � ���jxj��

for all x�

For any supportive set F � the average complexity class Aver�NP�F� is not a large class� The following

proposition is a consequence of Lemma ����������

Proposition ������ Let F be a set of distributions� If F is supportive	 then Aver�NP�F� 	 Dist�NEXP�F��

Proof� The result follows from the simple observation that� for a machine M which is t�time bounded on

��average� TimeM �x� � t�jxj�"��x�� � t�jxj � �p�jxj	� if "��x� � ��p�jxj	� �

Regarding the Dist�NP�F� 	#Aver�P� �� question� it is enough to focus on supportive distributions in

F � We introduce an additional terminology� a set F of distributions is called tame if there exists a positive

and supportive distribution�

Lemma ������ Let F be a tame set of distributions and assume that F is closed under ��addition� Then	

Dist�NP�F� 	 Aver�P� �� if and only if Dist�NP� SUPP � F� 	 Aver�P� ���

Proof� �Only if - part� Note that Dist�NP� SUPP � F� 	 Dist�NP�F�� This inclusion obviously yields

the claim�

�If - part� Let us assume that Dist�NP� SUPP � F� 	 Aver�P� ��� Moreover� we assume that �A� �� is

any distributional problem in Dist�NP�F�� We shall show that �A� �� belongs to Aver�P� ���
Since SUPP � F �� '� let us take a supportive distribution �� from F � and then de�ne the default

distribution � as

"��x� �
�

�
� "���x� (

�

�
� "��x��

By the assumption that F is closed under ��addition� this distribution � becomes a member of F � It is also

easy to see that � is supportive� and consequently� we obtain � � SUPP � F �

From Dist�NP� SUPP � F� 	 Aver�P� ��� it follows that �A� �� belongs to Aver�P� ��� Notice that �

p�dominates � because � � "��x� � "��x�� Corollary ��	�� helps us conclude that �A� �� is also in Aver�P� ���
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�

In the above lemma� we require F to be closed under ��addition� Later we shall see several tame sets of

distributions which contain the standard distribution and satisfy this requirement�

����� Another Characterization

Let us consider another characterization of basic average�case complexity classes� Aver�P�F�� Aver�NP�F��

and Aver�BPP�F��

The following de�nition was proposed by Impagliazzo  	�!� Let f be a function on $� and S be a set�

We say that an algorithmA computes f with benign faults if �i� it outputs either an element of ran�f� or �#�

and �ii� on input x� if it outputs z which is not �#�� then z � f�x�� An algorithmA computes S with benign

faults if A computes 
S with benign faults� We write TimeA�x� �� to denote the running time of A�x� ���

De�nition ������ �Benign Algorithm Scheme� ���� Let � be a distribution and f be a function on

$�� A polynomial�time benign algorithm scheme for f on input ensemble f��ngn�Nis an algorithm A�x� ��

such that

�i� there exists a polynomial p such that TimeA�x� �� � p�jxj� �����

�ii� A computes f with benign faults� and

�iii� for all � �� � � � �� and all n � N� if ��n is de�ned� then "��n�fx � $�n j A�x� �� �#g� � ��

Lemma ������ ���� Let F be a set of distributions� For a distributional problem �D��� with � � F 	 the
following statements are equivalent�

�� �D��� � Aver�P�F��

�� There is a polynomial�time deterministic benign algorithm scheme for D on f��ngn�N�

Proof� First we shall see that ��� implies ���� Assume that �D��� is in Aver�P�F�� There exists a

deterministic Turing machine M such that L�M � � D and TimeM is polynomial on ��average� By Lemma

������ there is a polynomial p such that "��n�fx � $�n j TimeM �x� � p�jxj � r�g� � �
r

for all n � N and all

r � �� We de�ne the desired algorithm A�x� �� as follows� on input �x� ��� A simulates M on input x for

p�jxj��� steps and outputs �#� if M fails to halt� This algorithm is a benign algorithm for D on f��ngn�N
since

"��n�fx � $�n j A�x� �� �#g� � "��n�fx � $�n j TimeM �x� � p�jxj���g�
�

�

���
� ��

To see that ��� implies ���� we assume that A�x� �� is a benign algorithm for D on input ensemble

f��ngn�N� We also assume that A runs in time p�jxj� ���� for some �xed polynomial p� We may take a
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unary polynomial q instead of p� because we can assume that p is increasing �i�e�� �n�p�n� �� and �z�p�m� z�

are increasing for each �xed � and m�� then setting q�z� � p�z� z�� we have p�jxj� ����� q�jxj���� Moreover�

we specify the form of q�z� as zk ( d by taking su�ciently large k and d� We then assume that the benign

algorithm scheme A�x� �� runs in time �jxj���k ( d�

Now let us consider the following algorithm M that computes D�

begin deterministic algorithm M for D

input x

for i � � to �
simulate A�x� ��i�

if A�x� ��i� outputs �#� then go to ���
output A�x� ��i� and halt

��� end�for

end�

This algorithm M actually computes D� Let us de�ne s�z� � zk�� ( dz for all z� For any string x of length

� n� if the algorithm M halts within the �rst r iterations of the for�loop� then

TimeM �x� �
rX
i��

��i � jxj�k ( d� �
�

rX
i��

ik

�
� jxjk ( r � d � �rjxj�k�� ( d � rjxj � s�jxj � r��

In other words� if TimeM �x� � s�jxj � r�� then A�x� ��r� �#� Hence� we have

"��n�fx � $�n j TimeM �x� � s�jxj � r�g� � "��n�fx � $�n j A�x� ��r� �#g� � �

r
�

By Corollary ������ �x�TimeM �x� is polynomial on ��average� �

We observe that the quanti�er characterization of nondeterministic and probabilistic Turing machines

holds also in the average�case setting� Recall that� for instance� all sets in NP can be characterized in terms

of an existential quanti�er and sets in P as follows� a set A is in NP if and only if there exist a polynomial

p and a set B � P such that A � fx j �y jyj � p�jxj� � hx� yi � B!g  ���!�

In the following� we shall give a logical characterization of the class Aver�NP�F��

Proposition �����
 Let F be a set of distributions� For every set A and every distribution � in F 	 the
following statements are equivalent�

�� �A� �� � Aver�NP�F��

�� There exists a function p from $� to N and a set B in P such that

�i� p is polynomial on ��average� and

�ii� A � fx j �y jyj � p�x� � hx� yi � B!g�
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Proof� The proof is straightforward and follows from the standard technique of encoding nondeterministic

computation paths into strings and from the fact that �x�TimeM �x� is polynomial on ��average� �

First we need an ampli�cation lemma�

Lemma �����	 �Ampli�cation Lemma� Let � be any distribution	 A a set	 and d a positive func�

tion computable in polynomial time on ��average� Assume that a randomized Turing machine M satis
es

PrM  M �x� � A�x�! � �
� ( �

d�x	 for all strings x� Then	 there exists another randomized Turing machine N

such that

�i� �xys�TimeN �x� y� s� is polynomial on �� �tally�average� and

�ii� for each x and m � N	 Prs N �x� �m� s� � A�x� j s � )N �x� �m�! � �� ��jxj�m	

where �� �tally denotes the distribution �� de
ned by "���x� y� � "��x� � "�tally�y� for all pairs �x� y��

Proof� Let us assume that �xs�TimeM �x� s� is t on ��average for some increasing polynomial t� Assume

also that d is computable in time polynomial on ��average� For simplicity� we assume that d�x� � � for all

x� We set h�x� y� � maxf�� jxj( jyjg and let p�x� y� � �d�x�
h�x� y� for all pairs �x� y�� First we show that

p is polynomial on �� �tally�average� For simplicity� we write �� for �� �tally in the following argument�

Claim 	 p is polynomial on ���average�

Proof of Claim� Remember that d is polynomial on ��average� Suppose that d is q on ��average for some

polynomial q� and de�ne q� as q��z� � �q�z�
z� Obviously q� is a polynomial� Fix r arbitrarily such that

r � �� Let Er � f�x� y� j d�x� � q�r � jxj�g�

"���f�x� y� j p�x� y� � q��r � �jxj( jyj��g�
� "���f�x� y� j d�x� � q�r � jxj�g�

("���f�x� y� � Er j �d�x�
h�x� y� � q��r � �jxj( jyj��g�
� �

r
( "���f�x� y� � Er j jxj( jyj � r � �jxj( jyj�g�

�
�

r
�

Hence� p is polynomial on ���average�

Since p is polynomial on ���average� we can take a polynomial q such that p is q on ���average� The

desired randomized machine N is de�ned by the following algorithm�

begin randomized algorithm for N

input �x� y�

if y �� f�g� then reject
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let Acc �� � and Rej �� �

for i � � to p�x� y� do

simulate M on input x

if M halts in an accepting state

then let Acc �� Acc( � else let Rej �� Rej ( �

end for

if Acc � Rej then accept else reject

end�

Notice that the random�input domain for N is

+N � f�x� y� s� j �fsig��i�p�x�y	 s � s�s� � � �sp�x�y	 � �i�� � i � p�x� y� 
 �x� si� � +M �!g�

The running time of the machine N on input �x� y� with random input r� TimeN �x� y� s�� is at most

c �
�
�p�x�y	X

i��

TimeM �x� si� ( �

�
A

for some absolute constant c � ��

We �rst show that the random function �xys�
Pp�x�y	

i�� TimeM �x� si� is polynomial on ���average� To show

this� we set ti�z� � �q�z� � i� � t�z� for each number i � N� and we also set t��z� � c � q�z� � t�z� ( �� Notice

that t��z� � t��z�� Let r � � be �xed� Let Dr � f�x� y� s� � +N j y � f�g� � p�x� y� � q�r � h�x� y��g� By our

assumption� it is obvious that "���Dr� �
�
�r � It is enough to show that "���N �f�x� y� s� � Dr j TimeN �x� y� s� �

t���r � �jxj( jyj��g� � ��r for some polynomial t���

Let x be �xed and set n � jxj� For this x� write Px�
 for Prs TimeM �x� s� � t�� � n� j s � +M �x�!� Also

let y be �m� Set t��u�w� � c � �t�u� � q�w� ( ��� Obviously t� is a polynomial�

Claim � If p�x� y� � q�r � �n(m��	 then

Prs TimeN �x� y� s� � t���n� r�n( m�� j s � +N �x� y�! � q�r�n( m�� � Px�
�

Proof of Claim� The estimation is carried out as follows�

Prs TimeN �x� y� s� � t���n� r�n(m�� j s � +N �x� y�!

� Prs

�
�p�x�y	X

i��

TimeM �x� si� �

p�x�y	X
i��

t��n�

������ s � +N �x� y�

�
�

� Prs TimeM �x� s�� � t��n� j s � +N �x� y�!

(Prs

�
�p�x�y	X

i��

TimeM �x� si� �

p�x�y	X
i��

t��n�

������ s � +N �x� y�

�
�

� Px�
 ( Prs

�
�p�x�y	X

i��

TimeM �x� si� �

p�x�y	X
i��

t��n�

������ s � +N �x� y�

�
�
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Repeating this estimation� we reach the conclusion that

Prs TimeN �x� y� s� � t���n� r�n(m�� j s � +N �x� y�! �
p�x�y	X
i��

Px�
 � q�r�n (m�� � Px�
�

The last inequality comes from the assumption that p�x� y� � q�r�n(m���

We now de�ne t���z� � c � �t�	z
 � q�z�� � q�z� ( �� for all z� Notice that

t���r�n( m�� � t��	n
m�r � q�r�n( m��� r�n( m�� � t��	n
r � q�r�n( m��� r�n(m���

Hence� the rest of the calculation is carried out as follows� For any real number r � ��

"���N �f�x� y� s� � Dr j TimeN �x� y� s� � t���r�jxj( jyj��g�
� "���N �f�x� �m� s� � Dr j TimeN �x� �m� s� � t��jxj � 	rjxj� � q�r�jxj(m��� r�jxj( m��g�

�
�X
m��

�X
n��

X
x�jxj�n

"���x� �m�

�Prs p�x� �m� � q�r�jxj( m�� �TimeN �x� �m� s� � t��jxj � 	rn�q�r�n (m���!

�
�X
m��

�X
n��

X
x�jxj�n

"��x� � "�tally��
m� � q�r�n( m�� �Px��rn�q�r�n�m		

�
�X
m��

�X
n��

"�tally��m� � q�r�n (m�� � "��M �f�x� s� j TimeM �x� s� � t�jxj � 	rn�q�r�n(m���g�

�
�X
m��

�X
n��

q�r�n( m�� � "�tally��m�

	r � n� � q�r�n(m��
�

�

	r

�X
m��

�X
n��

"�tally��m�

n�

�
�

�	r
�

�

�r
�

Therefore� �xys�TimeN �x� y� s� is polynomial on � � �tally�average�

Next we examine the error probability �x thatN on input x outputs a wrong answer� that is�PrN  N �x� �m� ��
A�x�!� Write �x for PrM  M �x� �� A�x�!� for comparison� The error probability �x does not exceed the prob�

ability that M on input x does not compute A�x� correctly in more than p�x�y	
� �� d�x�
h�x� y�� independent

trials� Hence�

�x �
p�x�y	��X
k��

�
� p�x� y�

k

�
A �kx � ��� �x�p�x�y	�k �

�
p�x� y�

�
( �

��� p�x� y�
p�x�y	

�

�
A �d�x	

�h�x�y	
x � ��� �x�d�x	

�h�x�y	�

Set �x � �
� � �x � �

d�x	 � By Lemma A���

�x � �d�x�
h�x� y� � �p�x�y	��p
�p�x� y�

�
�

�
( �x

�d�x	�h�x�y	
�
�

�

�
� �x

�d�x	�h�x�y	

�

p
�d�x�
h�x� y�p

�
� �p�x�y	�� �

�
�

	
� ��x

�d�x	�h�x�y	
�

p
d�x�
h�x� y� � �p�x�y	�� � ��p�x�y	����� 	��x�d�x	

�h�x�y	



���� DISTRIBUTIONAL DECISION PROBLEMS ��

� 	 � �d�x�h�x� y��� � ��� 	��x�d�x	
�h�x�y	

� ed�x	h�x�y	 �
�

�� 	

d�x�


�d�x	�h�x�y	
� ed�x	h�x�y	 � e��d�x	h�x�y	 � ��
d�x	h�x�y	 � e�h�x�y	

since ��� �
n�n � e�� and 	n� � en for any number n greater than 	� Therefore� we obtain Prs N �x� �m� s� �

A�x� j s � +N �x� �m�! � �� ��jxj�m� �

Corollary ������ Let � be a distribution and let d be a non�zero valued function computable in polynomial

time on ��average� Assume that	 for a given set A	 a randomized Turing machine M satis
es PrM  M �x� �

A�x�! � �
� ( �

d�x	 for all strings x� For every function t which is computable in polynomial time on ��

average	 there exists a randomized Turing machine N which runs in polynomial time on ��average such that

PrN  N �x� � A�x�! � �� ��t�x	 for all strings x�

Proof� Assume that M satis�es PrM  M �x� � A�x�! � �
� ( �

d�x	 for all x� Apply the Ampli�cation

Lemma� and we construct a randomized Turing machine N such that �xs�TimeM �x� y� s� is polynomial on

�� �tally�average and Prs N �x� �m� s� � A�x�! � �� ��jxj�m�

Given a function t computable in polynomial time on ��average� we de�ne another randomized Turing

machine N � that takes input x and then simulates N on input �x� �t�x	�� By the de�nition of N �� the success

probability PrN  N �x� � A�x�! is at least �� ��jxj�t�x	 � �� ��t�x	�

To complete the proof� it su�ces to show that �xs�TimeN � �x� s� is polynomial on ��average� Notice that

"�tally��t�x	� � ���llog�t�x		�� � �

��t�x� ( ���

for all x� As a result� by Lemma ������� �xs�TimeN � �x� s� is polynomial on ��average� �

Proposition ������ Let F be a set of distributions� For every set D and every distribution � in F 	 the
following statements are equivalent�

�� �D��� � Aver�BPP�F��

�� For every function q that is computable in polynomial time on ��average	 there exists a probabilistic

Turing machine M such that

�i� M is polynomial�time bounded on ��average� and

�ii� PrM  M �x� � D�x�! � �� ��q�x	 for all x�

�� There exist two functions h and d on $�	 and two randomized Turing machines �M��M�� such that

�i� �x�jh�x�j is logarithmic on ��average	 and h�x� � +M��x� for all x�

�ii� d is computable in polynomial time on ��average�
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�iii� M� and �xs�M��hx� h�x�i� s� are polynomial�time bounded on ��average� and

�iv� for each s� � +M��x�	 Prs M��hx�M��x� s��i� s� � D�x�! � �
� ( �

d�x	 �

Proof� By applying Corollary ������ to ���� we immediately obtain ���� To see the implication from ���

to ���� set q � �x�� and take M satisfying conditions �i���ii� in ���� Let us de�ne M� as the randomized

Turing machine that works as follows� on input x� it outputs � without 
ipping any coins� Moreover� let M�

works as follows� on input hx� yi� simulate M on input x� Let d�x� � 	 and h�x� � � �the empty string�� It

easy to check conditions �i���iv� in ����

Now it remains only to show that ��� implies ���� Assume that ��� holds� There are two randomized

Turing machines �M��M�� satisfying conditions �i���iv� in ���� By the Ampli�cation Lemma� we can modify

M� to another randomized Turing machine Mamp so that Prs Mamp�x� �
k� s�� s� � A�x� s��! � ����k� where

A is the set accepted by M��hx�M��x� s��i��

begin round robin algorithm for N

input x �say� n � jxj�
let s �� � �empty string�

for k � � to � do

for j � � to k do

call subroutine CHECK�x� s� j� k�

end for

end for

end�

Here is the subroutine CHECK�x� s� j� k��

begin subroutine CHECK�x� s� j� k�

for all s� such that js�j � j

if either M��x� s� does not halt or it halts

without using up all random bits in s� then go to ���
�Assume that M��x� s�� halts after using up all random bits in s��

let y be the output of M��x� s�

compute e �� �j ( �

simulate the kth step of Mamp on input �y� �e� using random seed s

�If this step consists of a coin�
ipping state� then 
ip a coin and let s �� sb�

where b is the outcome �� or �� of the coin toss��

if Mamp reaches a halting state then output Mamp�hx� yi� �e� s� and halt

��� end for

return�

Notice that random seed s is shared commonly by all computations of Mamp in the subroutine CHECK�
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We shall perform worst�case analysis on the running time of the above algorithm� On input x along with

random seed r� N takes steps at most

TimeN �x� r� � c � �jh�x	j � �TimeM��h�x�� r�� ( ����

where r� is an initial segment of r� Notice that the function �x��jh�x	j is polynomial on ��average by Lemma

������ Hence� �xr�TimeN �x� r� turns out to be polynomial on ��average�

Next we shall show that PrN  N �x� � A�x�! � �
� ( �� For each random seed� the success probability does

not decline below ���� Thus� the probability that N �x� coincides with A�x� is at least ���� Therefore� �D���

belongs to Aver�BPP�F�� �

We give a remark to the above proposition� if M� makes one�sided errors �i�e�� �D��� � Aver�RP� ����
then we can replace the term �

� ( �
d�x	 by �

d�x	 �

��	 Further Topics

This section discusses several topics which we have not covered in the previous sections�

Running Time of Nondeterministic Machines� Let us consider the running time of nondeterministic

Turing machines� Wang and Belanger  ���!� Schuler and Yamakami  ��!� and Karg and Schuler  	�! discussed

a close connection between the P �#NP question and the Aver�P�F� �#Aver�NP�F� question based on

the model of clocked nondeterministic Turing machines� As we have seen� this model guarantees that all

computation paths in a computation tree of the clocked machines are of the same length�

Here we consider the model for which the running time of a nondeterministic Turing machine is de�ned

to be the length of the shortest accepting computation paths when it accepts an input� or else the length

of the longest rejecting computation paths� We call this restriction the strict running time criterion for the

machine�

To avoid confusion� we use the notation Aver�NP��F� to denote the average�case complexity class de�ned

in terms of nondeterministic Turing machines� with the strict running time criteria� which run in polynomial

time on average�

For this new class Aver�NP��F�� we are able to prove that Aver�NP��F� is weakly NP�descriptive� and

thus� P � NP implies Aver�P�F� � Aver�NP��F� for any set F of distributions�

Claim � The class Aver�NP��F� is weakly NP�descriptive�

Proof of Claim� Let �D��� be a distributional problem in Aver�NP��F�� Let us consider a nondeterministic

Turing machine M which computes D in polynomial time on ��average�

Let C� be the set of strings of the form h�� x� �ni such that M accepts x in less than n steps� and let C�

be the set of strings of the form h�� x� �ni such that there exist computation paths of M on input x which are
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longer than or equal to n� Now write C for C� � C�� Let us consider the following deterministic algorithm

N with oracle C�

begin deterministic oracle Turing machine N with oracle C

input x

for n � � to � do

query h�� x� �ni to oracle C

if h�� x� �ni � C then accept and halt

query h�� x� �ni to oracle C

if h�� x� �ni �� C then reject and halt

end�for

end�

On any input x� this algorithm N with oracle C goes through the for�loop TimeM �x� ( � times until it

terminates� Notice that when the algorithm terminates� its output is always correct� Hence�

TimeCN �x� � d � �TimeM �x� ( ��

for some constant d � �� Since �x�TimeM �x� is polynomial on ��average� obviously N with C computes D

in time polynomial on ��average�

Heuristic Polynomial Time� Impagliazzo  	�! introduced a new notion of �heuristic polynomial�time�

class� We rephrase his de�nition in our setting� We de�ne the heuristic polynomial�time class Heur�P�F�

as follows�

An algorithm scheme for �D��� is an algorithm A�x� �� such that "��n�fx � $�n j A�x� �� �� D�x�g� � �

for all � � � and all n � N� We say that a distributional decision problem �D��� is in Heur�P�F� if there

exists a polynomial�time deterministic algorithm scheme for �D����

Obviously Aver�P�F� 	 Heur�P�F�� It is an open problem whether Dist�NP�F� 	 Heur�P�F��
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Feasible Distributions

��� Introduction

Average�case analysis in general is sensitive to the choice of distributions� so that we need a careful study of

the behaviors and properties of individual distributions� For example� to construct a better algorithm which

runs fast on average� instances which occur with high probability should be solved quickly�

In statistics� Poisson distributions� for example� are commonly used for the analysis of events� This type

of distribution is approximable by some appropriate polynomial�time algorithms�

In this chapter� we shall focus on feasible distributions which are either �feasibly computable� or �feasibly

producible�� This chapter will introduce two di�erent categories of feasible distributions� polynomial�time

computable distributions and polynomial�time samplable distributions� The former category was considered

by Levin  ��! and formulated by Gurevich  ��!� the latter was introduced by Ben�David� Chor� Goldreich�

and Luby  �! and has been studied in cryptography�

Following Ko and Friedman
s  ��! de�nition of polynomial�time computable real functions� Gurevich  ��!

took a similar step toward distributions� He called a distribution �computable in polynomial�time� if there

is a polynomial�time approximation algorithm whose outputs asymptotically approach the values of a distri�

bution within an exponentially small factor� Section 	�� will discuss such distributions which are computable

�or more accurately �approximable�� in polynomial time by deterministic Turing machines�

In practice� rather than specifying full distributions� researchers often loosely de�ne distributions by sim�

ply specifying associated semi�distributions� We note that all polynomial�time computable semi�distributions

are e�ectively enumerated� while associated full distributions are not� Remember that our theory is based

on full distributions� and therefore� whenever we use semi�distributions for the purpose of de�ning full

distributions� we must guarantee the existence of such full distributions that are proportional to the semi�

distributions almost everywhere� This process is called a normalization of semi�distributions� Unfortunately�

not all computable semi�distributions are normalized to full distributions of the same complexity� Section

	�� will show this negative result�

��



��� CHAPTER �� FEASIBLE DISTRIBUTIONS

As Gurevich  ��! pointed out� the reader may be cautious of the fact that the P�computability of a

density function does not imply that of its associated distribution unless P � NP�

One of the most important results in Section 	�� is the Distribution Controlling Lemma proven by

Gurevich  ��! and by Belanger and Wang  �!� This lemma enables us in Chapter � to prove the existence of

complete distributional decision problems for Dist�NP�P�comp��

We shall turn our interest to instances which occur with low probability under most distributions com�

putable in polynomial time� These instances are called rare strings� A set S is called polynomial ��rare if�

for any polynomial�time computable distribution �� the set fx � S j "��x� � ��
�jxj	g is �nite�

Another category of feasible distributions is samplable distributions which were �rst introduced by Ben�

David� Chor� Goldreich� and Luby  �! in their ���� conference paper� Samplability� which is often found in

statistical physics� is essentially a form of pseudo�randomness� For example� Ben�David et al�  �! showed that

if pseudo�random generators exist� then polynomial�time samplable distributions are hard to approximate

in polynomial time� This result will be extended in Section 	��� In Section 	�	� sampling algorithms and

samplable distributions will be de�ned�

Major Contributions� Most of the material in this chapter comes from Yamakami  ���!�

The formulation of P�samplable distributions given in this chapter is di�erent from what has been de�ned

by Ben�David� Chor� Goldreich� and Luby  �! and by Schuler and Watanabe  ��!� and therefore all the proofs

are altered�

Given any P�computable distribution �� Lemma 	���� presents a su�cient condition of a function f so

that the composition �f�� becomes P�computable�

Theorem 	����	 shows the existence of polynomially ��rare sets of distributions� This theorem relates to

Kolmogorov complexity� The theorem actually proves that� for any increasing� unbounded function s� if �

satis�es � logn � ��n� � n� then the set whose elements are not in KT ���n�� �
�n	�s�n	�logn! is polynomially

��rare�

Proposition 	���� shows that there exists a P�computable semi�distribution which cannot be normalized

by a standard method to a full distribution computable in polynomial time� In addition� Corollary 	����

gives a su�cient condition for P�computable semi�distributions to be normalized by a standard method to

full distributions of the same complexity�

Proposition 	����� shows that there exists a positive P�computable distribution � and an increasing�

exp�honest function f in FP such that �f�� is not p�dominated by any P�computable distribution�

In Proposition 	�	��� IP�samp is shown to be included in P�samp�

Theorem 	�	��� asserts that PBPP�samp p�equal P�samp� This result is a counterpart of the result

BPPBPP � BPP in worst�case complexity theory�

One of the most important theorems in this chapter is Theorem 	���	� which shows that P � PP if and

only if P�comp � P�samp� Not all P�samplable distributions are therefore computable in polynomial time

unless P � PP�

Proposition 	���� shows that there is no p�universal distribution for P�comp if P � NP�
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Theorem 	���� shows that if every P�samplable distribution is p�dominated by some P�computable dis�

tribution� then every NP set is nearly�RP�

Corollary 	���� shows �P�comp p�equals P�samp if NP 	 BPP� This result follows Proposition 	�����

a careful modi�cation of a result proven by Schuler and Watanabe  ��!�

Proposition 	���� shows that IP��samp is not avp�included in P�comp unless P � RP� Moreover�

Theorem 	����� shows that P�samp is not p�included in P�comp unless P � NP�

��� Computable Distributions

It seems natural to consider the sets of all feasibly �computable� distributions� Gurevich  ��! �rst adapted the

idea of the P�computable real numbers used by Ko and Friedman  ��! to de�ne polynomial�time computability

of distributions� This section will further explore distributions computable in polynomial time�

����� De�nition of Computable Distributions

Any distribution treated in this thesis is actually a real�valued function with $� as its domain� Gurevich

has applied the notion of polynomial�time computability of real�valued functions �introduced in Section ����

to distributions� Here we shall give a more general notion of t�time computability and t�space computability

of semi�distributions for a function t� which is based on Gurevich
s approximation scheme�

Let us recall how a deterministic Turing machine M equipped with an output tape computes a real

number� the machine actually outputs a binary string w� which is interpreted as the dyadic rational numberPjwj
i��wi � ��i� where w � w�w� � � �wjwj and each wi is a bit �in f�� �g�� We say that M approximates

real�value ��x� if j��x��M �x� �i�j � ��i for all natural numbers i�

De�nition ����� �Computable Distributions� ���� �	� Let t be a function on N and T be a set of

functions on N�

�� A semi�distribution � is recursive �or computable� if there exists a deterministic Turing machine M

equipped with two input tapes and one output tape� which computes �� namely� on input �x� �i��

j��x��M �x� �i�j � ��i for all strings x � $� and all numbers i � N�

�� A semi�distribution � is t�time computable �t�space computable� resp�� if there exists a deterministic

Turing machine equipped with two input tapes and one output tape which� on input �x� �i�� computes

��x� in time �using space� resp�� t�jxj� i��

�� A semi�distribution is T �time computable �T �space computable� resp�� if it is t�time �t�space� resp��

computable for some t � T �

Note that� by Lemma A�	� the Turing machine M in De�nition 	���� uniquely determines the distribution

��

Figure 	�� illustrates an asymptotic approach of the value M �x� �k� to the value of a distribution�
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Figure 	��� A distribution and its approximation

The reader should note that if we relax our de�nition of computability by requesting only the condition

that j��x� �M �x� �i�j � ��i for �almost all� x and i� then semi�distributions are always normalized to full

distributions of the same complexity� Here we mean by �normalization� the existence of the full distribution

�� satisfying that "���x� � "��x� for almost all strings x� �Another way to normalize a semi�distribution to a

distribution is to multiply by a constant c so that c � ��x� converges to ��� This subject will be discussed

again in Section 	���

Note that� for each x� ��x� is a t�time computable real number� Thus� if � is t�time computable� then

f��x�gx��� is an increasing sequence of t�time computable real numbers which converges to �� But the

converse may not be true in general�

We next introduce sets of distributions which are feasibly computable�

De�nition ����� �Computable Distributions�

�� The notation REC�comp denotes the set of all recursive distributions�

�� A semi�distribution � is called polynomial�time computable �P�computable� for short� if there exists

a polynomial p such that � is p�time computable� The notation P�comp denotes the collection of all

P�computable distributions�

�� Similarly� a semi�distribution � is called linear�exponential�time computable �E�computable� for short��

exponential�time computable �EXP�computable� for short�� logarithmic�space computable �L�computable��

respectively� if � is computable in linear�exponential time� in exponential time� and using logarithmic�

space� We use the notations E�comp� EXP�comp� and L�comp� respectively� to denote the sets of
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distributions which are E�computable� EXP�computable� and L�computable�

A simple example is the standard distribution �stand� It is easy to see from its de�nition that �stand is

L�computable�

We can always assume that M on input �x� �i� outputs at most i ( � bits� To see this� let M � be the

machine that works as follows� it trims the binary fraction of M �x� �i��� by rounding it down to i ( �

bits� if the last bit is �� then it adds ��i�� to make the number of bits at most i ( �� This implies

jM �x� �i� �M ��x� �i�j � ��i��� and thus� we get

j��x��M ��x� �i�j � j��x��M �x� �i���j( jM �x� �i����M ��x� �i�j � ��i�� ( ��i�� � ��i�

We shall exhibit several examples of P�computable distributions�

Example ����� The uniform distribution over a �nite set of integers is P�computable� where we identify

integers with strings� For two distinct natural numbers a and b� we de�ne ��a�b� as follows�

"��a�b��x� �

�	



�
a�b if sa � x � sb�

� otherwise�

Example ����� Another common discrete distribution is the Poisson distribution with parameter � � �

that is de�ned on f�g� by

"���n� � e�

�n

n&

for every number n � N� We here consider the case that � is a positive rational number� Notice that

the kth approximation of the value 
n

n� can be computed by a Turing machine in time polynomial in n

and k� Similarly� by considering the power series for e�
� the number e�
 is P�computable� Hence� � is

P�computable�

Ben�David� Chor� Goldreich� and Luby  �!� on the other hand� de�ne polynomial�time computability of

a distribution � in such a way that� for all x� the value of ��x� is exactly expressed in binary by some

polynomial�time bounded transducer� To distinguish this concept from ours� let us call such distributions

strictly P�computable and denote by strict�P�comp the class of all strictly P�computable distributions� By

this de�nition� if � is strictly P�computable� then each value ��x� is either � or at least ��p�jxj	 for some

polynomial p� thus� � is supportive� This implies that the set strict�P�comp is supportive� Similarly� we

use the notation strict�REC�comp to denote the set of all distributions which are strictly computable by

deterministic Turing machines�

It is worth remarking that if a distribution is T �time computable� then the density function is also T �time

computable� The converse� however� may not always hold since it is shown below that if P �� NP� then

there is a P�computable density function whose associated distribution cannot be computed in polynomial

time� This result is due to Gurevich  ��!�
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Lemma ����� ��	� Assuming P �� NP	 there exists a density function which is computable in polynomial

time	 but its associated distribution is not P�computable�

Proof� Assume that P �� NP� Take a set A in NP�P such that A � fx j �y jyj � jxj � hx� yi � B!g for

some set B � P�

Let "��x� � � if jxj is odd� otherwise� "��x� � ���n

�n��	�n��	
� where jxj � �n� Clearly � is in P�comp� Now

de�ne the desired distribution � as follows�

"��z� �

���	
��


"��xy� if z � x�y� jxj � jyj� and hx� yi � B�

"��xy� � "��x�y� if z � x�y and jxj � jyj�
� otherwise�

The following summation shows that this � is truly a distribution�

X
z

"��z� �
X

�x�y	�jxj�jyj
�"��x�y� ( "��x�y�� �

X
�x�y	�jxj�jyj

"��xy� � ��

Note that� by de�nition� x � A if and only if ��x��jxj� � ��x�jxj��� �� �� If � � P�comp� then we have

A � P� a contradiction� Therefore� � is not in P�comp� �

Another observation given by Gurevich  ��! is�

Lemma ����� ��	� For every P�computable distribution �	 there exists a polynomial�time deterministic

Turing machine M such that�

�i� j��x��M �x� �i�j � ��i for all x and i� and

�ii� �x�M �x� �i� is increasing �i�e�	 x � y implies M �x� �i� �M �y� �i�� for every i � N�

Proof� Let � be a distribution in P�comp� By de�nition� there is a polynomial�time Turing machine N

such that j��x�� N �x� �i�j � ��i� We de�ne the deterministic Turing machine M as follows�

begin deterministic algorithm for M

input �x� �k�

if x � � then output N ��� �k�

for all s �� � s � jxj( �� do

let A��s� �� maxfN ��r� �k� j r � sg
end�for

set a �� �jxj and b �� �jxj��

repeat �binary search part�

if A�a� � A�b� then output N �a� �k�

take the minimal c such that kfz j a � z � cgk � kfz j c � z � bgk
if N �c� �k� � A�a� then set A�c� �� A�a�



���� COMPUTABLE DISTRIBUTIONS ���

else if N �c� �k� � A�b� then set A�c� �� A�b�

else set A�c� �� N �c� �k�

if x � c then set b �� c else set a �� c

end�repeat

end�

To verify that M satis�es the required conditions is easy� �

Our approximation scheme is obviously di�erent from the �oating point model� another popular approxi�

mation scheme given by a precision �oating�point representation� because� even if � is P�computable� the kth

bit of ��x� may not be computable in time polynomial in jxj and k� Nonetheless� the numbers represented

in a �nite precision model does not satisfy the law of associativity� Although we cannot know any exact pre�

cision of the value ��x� in polynomial time in general� it is su�cient to know an approximate value M �x� �i�

within an exponential factor of its true value ��x� when we consider the average behavior of algorithms

under the distribution ��

Part of the following useful observation was made by Gurevich  ��! and by Wang and Belanger  ���!�

This lemma is the basis of the proofs of average NP�completeness shown in Chapter ��

Lemma ����� �Distribution Controlling Lemma� ��	� ���� Let � be a distribution in P�comp�

�� There exists a positive distribution � in strict�P�comp such that	 for every x	 the value "��x� has at

most �jxj( 	 binary digits	 and 	 � "��x� � "��x� holds�

�� There exists a total	 one�one	 p�invertible function g � FP such that "��x� � ��jg�x	j�� for all x�

�� If � is supportive	 then there exists a total	 one�one	 p�invertible function f � FP such that 	���jf�x	j �
"��x� � �� � ��jf�x	j for all x�

Proof� ��� Assume � � P�comp� If there is an x such that ��x� � �� then� since the set fy j y � xg is

�nite� we can easily de�ne � which satis�es the claim� In the rest of the proof� we thus assume that ��x� � �

for all x�

There exists a polynomial�time Turing machine M such that j��x��M �x� �i�j � ��i for all x and i� For

each string x� take i � �jx�j( � and let N �x� � M �x� ��jx
�j���� Clearly we have j��x��N �x�j � ���jx

�j���

We trim the binary output of N �x� by rounding it down to �jx�j( � digits� if the last bit is �� then cross it

out� otherwise� add ���jx
�j�� and then cross out the last bit in order to make the number of bits at most

�jx�j( �� Now let N ��x� be the result obtained by this process� If x � �� then N ��x� outputs the �rst two

bits of the binary fraction of N �x�� Note that jN �x��N ��x�j � ���jx
�j� By the de�nition of N �� we have

j��x��N ��x�j � j��x��N �x�j( jN �x��N ��x�j � ���jx
�j�� ( ���jx

�j�� � ���jx
�j

for all x �� �� Hence� j�����N ����j � � and j��x��N ��x�j � ���jx
�j for all nonempty strings x� Note that

N ��x� is expressed in binary with at most �jx�j( � � �jxj( 	 digits since jx�j � jxj( ��
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To get the desired distribution� we de�ne

"��x� �

�	



�
��N ���� ( �� if x � ��

�
��N ��x�� N ��x�� ( ���jxj��� otherwise�

Note that "��x� � � for all x since N ��x�� has at most �jxj bits� From our de�nition� it is easy to obtain

that 	��x� � � ( N ��x� ( �
P


�z�x ���jzj for all nonempty strings z� Hence�

lim
x
� ��x� �

�

	

�
� ( lim

x
�N ��x� ( �
�X
n��

�n � ���n
�

� ��

For the empty string �� 	"���� � N ���� ( � � "���� � � ( � � "����� For the other strings x�

	"��x� � N ��x�� N ��x�� ( ���jxj

� ���x�� ���jx
�j�� ���x�� ( ���jxj� ( ���jxj��

� ��x�� ��x�� � "��x��

��� Assume that � � P�comp and "��x� � ��p�jxj	� Consider the distribution � which is constructed in

���� Let g�x� � minfy j ��x�� � ��y� � ��x�g� This g is total� one�one� P�computable� and p�invertible�

Moreover� we have "��x� � ��jg�x	j for all x� This is seen as follows� By the minimality of g�x�� we have

��w � ��x�� and ��x� � ��w�� where w � g�x�� Hence� "��x� � ��x� � ��x�� � ��w� � ��w � ��jwj�

Therefore� ���x	
� � ��jg�x	j�

��� Assume that "��x� � ��p�jxj	 for some polynomial p� Take the function g in ���� Since �x� ���x	� is P�

computable� take a deterministic Turing machine M such that j ���x	� �M �x� �i�j � ��i� Since "��x� � ��p�jxj	�

we have ���x	
� � ��p�jxj	��� Let N �x� � M �x� �p�jxj	���� Let d�x� be the position of the leftmost digit � in

the binary fraction of N �x�� that is� ��d�x	 � N �x� � � ���d�x	� Now de�ne f�x� � g�x���d�x	�jg�x	j� Clearly

f is a P�computable� one�one� p�invertible function�

We next show that � ���jf�x	j � ���x	
� � ��jf�x	j� First we claim that d�x� � p�jxj�(�� Assume otherwise�

By de�nition� N �x� � ��d�x	�� � ��p�jxj	�
� and then ���x	
� � N �x� ( ��p�jxj	�� � ��p�jxj	��� This is a

contradiction� Hence� we have

"��x�

	
� N �x� ( ��p�jxj	�� � ��d�x	�� ( ��d�x	�� � � � ��d�x	�� � � � ��jf�x	j�

To show that ���x	
� � ��jf�x	j� let d��x� be the position of the leftmost digit � in the binary fraction of ���x	

� �

That is� ��d
��x	 � ���x	

� � � ���d��x	� We claim that d��x� � d�x�(�� Assume otherwise� Since N �x� � ��d�x	

and ���x	
� � ��d

��x	��� we have N �x�� ���x	
� � ��d�x	���d

��x	�� � ��d�x	��� Then� N �x�� ���x	
� � ��p�jxj	���

a contradiction� Using the fact that d��x� � d�x� ( �� we conclude that ���x	
� � ��d

��x	 � ��d�x	�� � ��jf�x	j�

�

The following lemma is easy to prove�

Lemma ����� For any P�computable distribution � and any P�computable function f on $�	 if f is

increasing	 then the default distribution �f�� is also P�computable�
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Proof� We assume that � is a P�computable distribution witnessed by a deterministic polynomial�time

Turing machine M � Assume also that a function f is P�computable�

Let us de�ne another function g as g�x� � maxfz j f�z� � xg for each x�

Claim � The function g is P�computable�

Proof of Claim� Take an appropriate polynomial such that jf�x�j � p�jxj� for all strings x� Using this upper

bound of f � we compute g as follows�

begin deterministic algorithm for g

input x

compute the minimal n such that jxj � p�n�

let a �� � and let b �� �n

repeat �binary search part�

if a � b then output a

take the minimal c such that kfz j a � z � cgk � kfz j c � z � bgk
if f�c� � x then set a �� c else set b �� c

end�repeat

end�

The binary search part of the above algorithm takes at most O�n� steps� and as a result� the algorithm needs

polynomially�many steps to compute g�x��

Write � for the distribution �x���g�x��� We then have�

�f���x� �
X
z�x

"�f���z� �
X
z�x

"��fw j f�w� � zg�

� "��fw j f�z� � xg� � ��maxfw j f�w� � xg�
� ��g�x�� � ��x��

Let us de�ne the deterministic Turing machine N as follows� on input �x� �k�� simulateM on input �g�x�� �k��

Since g is P�computable� the machine N is also P�computable� To complete the proof� we must check the

approximability of �� This is seen as follows�

j��x�� N �x� �k�j � j��g�x�� �M �g�x�� �k�j � ��k�

�

In complexity theory� a diagonalization argument is one of the most powerful and popular tools for

discussing a separation of two complexity classes� Note that such an argument is based on the existence of

an e�ective �i�e�� recursive� enumeration of all elements in question� We already know that� for example� it

is possible to enumerate all P�computable sets in an e�ective way�
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The reader may wonder if one can e�ectively enumerate all distributions� Since P�computable distri�

butions are characterized by Turing machines� we must enumerate Turing machines which compute such

distributions� It seems� however� di�cult to construct such an enumeration� because there are two objec�

tives� ��� we must check whether the chosen Turing machine� say M � guarantees the convergence of its value

to � �i�e�� limx
�M �x� �i� � �� ��� we must e�ectively check whether the machine satis�es the convergence

scheme� jM �x� �i��M �x� �j�j � ��i ( ��j�

To avoid checking the convergence scheme� let us turn our attention to strictly P�computable distri�

butions� By Lemma 	�������� we can bound an arbitrary P�computable distribution by another strictly

P�computable distribution with a constant factor� For most applications� we therefore consider strictly P�

computable distributions� Can we now enumerate all strictly P�computable distributions # We still have to

resolve the problem of checking the convergence of a machine� Actually we do not need to restrict attention

to full distributions� Schuler  ��! �rst pointed out the existence of an e�ective enumeration of all strictly

P�computable semi�distributions�

Theorem ����� ���� There exists an e
ective enumeration of all strictlyP�computable semi�distributions�

Proof� The method of proving this lemma is basically the same as in Lemma 	����� Take any e�ective

enumeration of polynomial�time deterministic Turing machines� say fMigi�N� We modify each machine

Mi into another machine M �
i which is increasing by an algorithm similar to that presented in the proof of

Lemma 	���� �by replacing N by Mi and M by M �
i�� The sequence fM �

igi�Nobtained by this modi�cation

also becomes an e�ective enumeration of deterministic Turing machines� and each M �
i computes some semi�

distribution in polynomial time� �

From the above theorem� we remark that we cannot exclude the trivial semi�distribution from the enu�

meration�

����� Rare Strings and Rare Sets

This section will consider input strings which occur rarely for most P�computable distributions� These

strings need special attention because the set of such strings consists of the most di�cult instances for most

algorithms to work on in polynomial time�

De�nition �����
 �Rare Strings� Let F be an enumeration of semi�distributions� say F � f��� ��� � � �g�
and let k� s be functions from N to R�� A string x is rare with respect to �k� s�F� if "�i�x� � ��s�jxj	 holds

for all i � k�jxj�� Let RARE�k� s�F� be the collection of all rare strings with respect to �k� s�F��

Note that the rareness of a string depends on the enumeration F �
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Lemma ����		 Let F be an enumeration of all P�computable semi�distributions� Let k be any increasing

function on N such that � � k�n� � n
� for all n� Assume s�n� � n(logn�� log k��n�� For all n� � �	 there

exists an n with n� � n � �n� such that kRARE�k� s�F� �$nk � �n � �s�n	�logn�� log k��n	�

Proof� We �rst show that� for any integer n� � �� there exists an n with n� � n � �n� ( �k�n�� such

that� for each i � k�n��� kfx � $n j "�i�x� � ��s�n	gk � k�n	��s�n�
n

� Assume otherwise� Let r�n� � �n( �k�n�

and de�ne Ai
n � fx � $n j "�i�x� � ��s�n	g� Take n� such that� for all n with n� � n � r�n��� there exists

an i � k�n�� satisfying kAi
nk � k�n� � �s�n	�n� Hence� at least b r�n�	�n���k�n�	

c many n
s satisfy the condition

kAj
nk � k�n� � �s�n	�n for some j � k�n��� Let c � �k�n�	��	�r�n�	��	�n�

k�n�	
� Since r�n�� � n���k�n�	��

e���k�n� �
� we have


r�n�	
c��

�k�n�	 � e� Then�

X
x

"�j�x� �
r�n�	X
n�dce

X
x�Ain

"�i�x� �
r�n�	X
n�dce

k�n� � �s�n	
n

� ��s�n	 �

r�n�	X
n�dce

k�n�

n
�

Z r�n�	

c��

k�n�

x
dx � ��

The lemma immediately follows from the following inequality�

kfx � $n j �i � k�n� "�i�x� � ��s�n	!gk �
X

i�k�n	

kfx � $n j "�i�x� � ��s�n	gk

� k�n� � k��n� � �s�n	
n

� �s�n	�logn�� logk��n	�

�

We can construct a P�computable distribution � and an exp�honest� P�computable function f such that

no distributions in P�comp p�dominate �f�� � Recall from Chapter � that � p�dominates � if and only if

there is a p�bounded function p from $� to R� such that p�x� � "��x� � "��x� for all x�

Proposition ����	� ����� There exists a positive P�computable distribution � and an increasing	 exp�

honest function f in FP such that �f�� is not p�dominated by any P�computable distributions�

Proof� We �rst de�ne � as follows�

"��x� �

�	

 ���llog�n��	�� if x � f�g� and jxj � n� for some n � ��

� otherwise�

Let "��x� � �
� "�stand�x� ( �

� "��x�� The distribution � is positive and obviously P�computable� For every n � �

and for x � �n
�
� we have

"��x� �
�

�
"��x� �

�

� � ��llog�n��	 �
�

�n�
� �

n

�

�

�n�����
�

�

jxj���

since �llog�n��	 � n� Hence� "��x� � ��jxj��� holds for all x � �n
�

with n � ��

To de�ne the desired function f � we need an e�ective enumeration of all strictly P�computable semi�

distributions� Let F � f�i j i � Ng be such an enumeration by Theorem 	����� Let f�x� be the minimum
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y such that logn � jyj � � logn and jyjk�� � "�i�y� � "���n� for all i � logn and all integers k with

� � k � logn
��� log logn � where n � minfr j r� � jxj � �r ( ���g if n � ��
� otherwise� let f�x� � x�

Function f is well�de�ned� To see this� consider the case jxj � n� for some n � ��
� By choosing logn

as k�n� and n( logn � � log logn� 	 as s�n� in Lemma 	������ we know that there exists at least one rare

string y with respect to �k� s�F� with logn � jyj � � logn� i�e�� "�i�y� � ��s�n	 � �� log� jyj
jyj��jyj for all i � logn�

For such a string y� we have

jyjk�� � "�i�y� � ��jyjk�� log� jyj
�jyj

� �� � �k�� logk�� n � log��� logn�

n
� �k logk n

n
� �

n���
� "���n�

since logn � jyj � � logn� �� log��� logn� � �� logn�� if n � 	� and �k logk n � p
n if k � logn

��� log logn � Hence�

f�x� exists� It is easy to see that f is exp�honest and also polynomial�time computable�

By de�nition� for all k and i� jyjk�� � "�i�y� � "�f���y� for some y� since "�f���y� � "���n�� �

Inspired by the notion of complexity cores� we shall introduce sets which consist of instances which occur

rarely under most distributions in question�

De�nition ������ �Polynomially ��Rare Sets� Let � be a function on N and let F be a set of distribu�

tions� A set S is called ��rare with respect to F if� for any distribution � in F � the set fx � S j "��x� � ��
�jxj	g
is �nite� If F is P�comp� then we simply call this set S polynomially ��rare�

In what follows� we shall show the existence of a polynomially ��rare set for increasing� unbounded l with

the extra condition � logn � ��n� � n� The proof uses Kolmogorov complexity�

Theorem ����	� Let � be any function on N which satis
es � logn � ��n� � n for all n � N� For any

increasing	 unbounded function s on N	 the set fx j x �� KT ���n�� �
�n	�s�n	�logn!g is polynomially ��rare�

Proof� Assume that s is increasing and unbounded� In what follows� we show a general statement� for

every distribution � � P�comp� there exists a positive integer n� such that� for all strings x of length � n��

if x �� KT ���n�� �
�n	�s�n	logn!� then "��x� � ��
�jxj	� This clearly implies the theorem�

For a distribution � � P�comp� using Lemma 	����� we can take a deterministic polynomial�time Turing

machine M such that� for all i � N� j��x��M �x� �i�j � ��i and �x�M �x� �i� is increasing� We let T ��� �

M ��� �� and T �x� � M �x� �jxj�
� �M �x�� �jxj�
� for x � $�� For any set A� write T �A� for
P

x�A T �x��

Notice that T may not be a distribution� but T �x� � � holds for all x� Moreover� T approximates "� since it

follows that

j"��x�� T �x�j � j��x��M �x� �jxj�
�j( j��x��M �x� �jxj�
�j
� ��n�
 ( ��n�
 � ��n���

From the fact that T is P�computable� we now suppose that T on input x is computable in jxjd ( d steps

for some positive integer d independent of x�
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Consider an integer n� large enough so that the following inequalities always hold� logn� � � log i� ( ��

n� � 	c� and n� � d( 	� where i� and c are constants given later �not depending on the choice of n��� For

any integer n not smaller than n�� let

An � fx � $n j T �x� ( ��n�� � ��
�n	g�

As for the cardinality� we can claim that kAnk � �
�n	���

Claim � kAnk � �
�n	�� for all integers n � n��

Proof of Claim� Assume otherwise� Note that� for each x � An� T �x� � ��
�n	 � ��n��� Hence� we haveX
x�An

"��x� �
X
x�An

�T �x� � ��n��� � kAnk � ���
�n	 � � � ��n���

� �
�n	�� � ���
�n	 � ��n���

� �� �
�n	�n

Since ��n� � n�
P

x�An "��x� � �� � � �� This is obviously a contradiction� Therefore� kAnk � �
�n	���

We note that� for each x � $n� if "��x� � ��
�n	� then x � An� To get the desired consequence� we shall

show that An 	 KT ���n�� �
�n	�s�n	 logn!� Fix an integer e with � � e � �
�n	��� Let us take the eth element

of An in the standard order on $� and consider the following deterministic algorithm�

begin deterministic algorithm

input hsl� sn� sei
let j �� �

for all strings y in $l do

compute the value T �y� �let this term to be t�

if t( ��n�� � ��l then go to ���
let j �� j ( �

if j � e then output y

��� end�for

output �

end�

Let i� be an index of the Turing machine that runs the above algorithm� Note that the description of this

algorithm needs only the index of T �

Recall the de�nition of the universal Turing machine U in Section ���� On each input hsi� � s
�n	� sn� sei�
the machine U outputs we� Let n � n�� From the fact that jhx�� x�� x
� x�ij �

P

j�� jxjj( jx�j(�� it follows

that� for k � fi�� ��n�� n� eg� jskj � llog�k� � � ( log k� In particular�

jsej � � ( log e � � ( ���n� ( �� � ��n� ( ��
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Thus� the size of input string hsi� � s
�n	� sn� sei is bounded above by

�jsi� j( �js
�n	j( �jsnj( jsej( �

� � log i� ( � log ��n� ( � logn( ��n� ( �

� � logn ( � log ��n� ( ��n� � � logn( ��n�

� ��n� ( ��n� � ���n�

since logn � � log i� ( �� and � logn � ��n� � n for all integers n � n��

Finally� we shall analyze the running time of U � Notice that� in the original algorithm as de�ned above�

there are �l iterations of the for�loop� and on each of such iterations� for y � $l� the algorithm needs steps

as many as O�TimeT �y� ( logn( l( log e( ��� Therefore� the running time of U on input hsi� � s
�n	� sn� sei
is at most� for some constant c � � �not depending on the choice of n��

c � �
�n	 ��nd ( d� ( n( ��n� ( ���n� ( ��
�

� c � �
�n	 � ����n� ( �nd ( d( �� � �
�n	 � c � ��n( �nd�

� �
�n	 � �c � nd � �
�n	 � nd��

� �
�n	 � ��d��	 logn � �
�n	�s�n	 logn

since �c � n� ��n� � n� and d( � � nd� Therefore� we conclude that we � KT ���n�� �
�n	�s�n	 logn!� This

completes the proof� �

Note that� by Lemma ������ the set we have used in the above theorem belongs to the class

DTIME�O��

�n	�s�n	 logn���

The following lemma of Schuler  ��! has the same 
avor as Theorem 	����	 and will be used in Section ����

Let k� s and � be functions on N� Assume that � and s are unbounded and increasing� Moreover� assume

that k�n� � ��n� � n� ��n� � �� logn� and k�n� � � for almost all n� For each integer n � �� we de�ne k�n�

strings zn� � � � � � z
n
k�n	 as follows�

zni �

�	

 minfz � $
�n	 j z �� KT n� �s�i	�n!g if i � ��

minfz � $
�n	 j z �� KT n� �s�i	�njzn� � � �zni��!g if � � i � k�n��

Set Zn
i � zn� � � � zni $n�i�
�n	 for all i with � � i � k�n��

Lemma ����	� ���� For every distribution � in P�comp	 there exist integers c�� n� � � such that

"��Zn
i � � ���i�c�	
�n	�� for all n � n� and all i with � � i � k�n��

Proof� The proof below is similar to that of Theorem 	����	� For a distribution � � P�comp� take T as

in the proof of Theorem 	����	� This T also satis�es the inequality that j"��Zn
i � � T �Zn

i �j � ��n for all i

with � � i � k�n�� Assume that the value of T �x$m�� where jxj � n� is computed in time �n ( m�d ( d

for some positive integer d� We shall de�ne c� and c� later� Choose n� large enough that the self�delimiting

description of T is su�ciently small� and n� � 	c�� and d( � � s�n���
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The lemma is obviously true for each n � n� and each i with � � i � c� since ��n� � � and

"��Zn
i � � "��$n� � � � ���i�c�	
�n	���

We shall show that the lemma also holds for all i with k�n� � i � c�� Assume that the claim fails for some i

and n� Now take the minimal integer i such that "��Zn
i � � ���i�c�	
�n	�� for some n � n�� and then take the

minimal such n� De�ne a set Ai as

Ai � fw � $
�n	 j T �zn� � � �zni��w$n�i�
�n	� ( ��n � ��d�i�c�	
�n	��eg�

It is clear that zni � Ai since T �Zn
i � ( ��n � "��Zn

i � � ��d�i�c�	
�n	��e�

We claim that kAik � ��
�n	��	��� Assume otherwise� If n � �� then

�i � �� c����n� ( � � �k�n�� ����n� ( � � n� �� logn( � � n�

and hence� ���i���c�	
�n	�� � ���n��	��� Then� since ��n� � n�

"��Zn
i��� � T �Zn

i��� � ��n � kAik � ���d�i�c�	
�n	��e � ��n� � ��n

� ��
�n	��	�������i�c�	
�n	��	�� � ��n�� ��n

� ���i���c�	
�n	���� � ��n��
�n	�
	�� � �
� ���i���c�	
�n	���� � ��n��n�
	����

� � � ���i���c�	
�n	�� � ���n��	�� � ���i���c�	
�n	���

This contradicts the minimality of i� Hence� we have kAik � ��
�n	��	���

To reach a contradiction� it is su�ces to show that Ai 	 KT n� �s�i	�njzn� � � � zni��!� Now suppose Ai �

fw�� w�� � � � � wmg� where w� � w� � � � � � wm� m � ��
�n	��	��� Consider the eth element we of Ai� where

� � e � ��
�n	��	��� Consider the following algorithm N which computes we�

begin deterministic algorithm for N

input hc� l� n� e� zi
�nd i such that jzj � �i� �� � l
let j � �

for all string y � $l do

compute the value T �zy$n�i�l� �let this term to be t�

if t( ��n � ��d�i�c	l��e then go to ���
let j �� j ( �

if j � e then output y

��� end�for

output �

end�

Let i� be an index of this machine N � The description of this algorithm needs only the index of T � Take

c� large enough so that the length of this description i� satis�es log c� � � log i� ( ��� By our assumption�

c� � k�n��
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The universal Turing machine U takes an input of the form hi�� c�� ��n�� n� e� zn� � � �zni��i and outputs we�

The size of hi�� c�� ��n�� n� ei is bounded by

�ji�j( �jc�j( �j��n�j( �jnj( jej( �

� � log i� ( � log c� ( � log ��n� ( � logn(
��n� ( 	

�
( ��

� � log c� ( � log ��n� ( � logn(
��n�

�

� � logk�n���n� ( � logn (
��n�

�
� � logn(

��n�

�

� ��n�

�
(
��n�

�
� ��n��

since c� � k�n� and ��n� � �� logn for all n � n��

The running time of U on input hi�� c�� ��n�� n� e� zn� � � � zni��i is at most� for some constant c� � ��

c� � �
�n	
�
��n� ( 	

�
( �nd ( d� ( �n( �� (

�i � c����n�

�
( �

�

� c� � �
�n	
�
k�n���n�

�
( �nd ( �� ( d�

�
� �
�n	 � 	c� � nd � �n � nd��

� �
�n	 � ��d��	 logn � ��d��	
�n	

� �s�i	�
�n	

since i ( � � c� � k�n�� 	c� � n� ��n� � logn� and 	 ( d � nd� Therefore� we conclude that we �
KT n� �s�i	�njzni � � �zni��!� �

����� Fault�Tolerance of Distributions

Suppose that we are going to solve a problem in reasonably short time with the help of communication with

another supplementary source of information� Clearly our computation depends on the accuracy of incoming

data from the source� Unless we can guarantee its accuracy �e�g�� no cable breakdown or interference� etc���

it becomes important to make our computation robust and to make it tolerate any faults in data� The

computation may of course require more time in case there is faulty information from the source�

In ����� Sch�oning  ��! introduced the notion of robust machines to model fault�tolerant computation and

the notion of oracles helping such computation� We shall adapt his concept to our distribution setting and

introduce a new concept� fault�tolerance of distributions� into average�case complexity theory�

For our purpose� we �rst introduce the concept of distributions computable relative to oracles�

De�nition �����	 �Relativized Computable Distributions� Let A be an oracle and let C be a

complexity class�

�� A semi�distribution � is polynomial�time computable relative to A �PA�computable� for short� if there

exist a polynomial p and a deterministic oracle Turing machine M such that� on input �x� �i�� MA
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works in polynomial time and satis�es j��x��MA�x� �i�j � ��i for all strings x � $� and all numbers

i � N� Let PA�comp denote the set of all PA�computable distributions�

�� A semi�distribution � is polynomial�time computable relative to C �PC�computable� for short� if � is

PA�computable for some set A in C� The notation PC�comp denotes the union of all PA�comp for any

A in C�

We note� similar to the remark following De�nition 	����� that PE�comp � E�comp and PEXP�comp �

EXP�comp�

De�nition ������ �Fault Tolerance� Let A be a set and C be a complexity class� A distribution � is

in PA
help�comp if there exists a deterministic Turing machine M such that

�i� for every oracle O� j��x��MO�x� �i�j � ��i holds for all i � N� and

�ii� there exists a polynomial p satisfying TimeAM �x� �i� � p�jxj� i� for all x and i�

The set A is said to help M � Let P C
help�comp denote the collection of all distributions in PA

help�comp for

some A � C�

It is obvious that P�comp 	 PA
help�comp 	 PA�comp for every oracle A�

Lemma ����	� P�	
�

help�comp 	 P�
p
� �comp�

Proof� Assume that � is in PA
help�comp for some A� There exist a deterministic oracle Turing machine

M and a polynomial q which witness � being in PA
help�comp� We shall de�ne another machine M � that tries

to exhaust all possible computation paths of M within time q� Here is the description of the machine�

begin nondeterministic algorithm for M �

input hx� �ii
start the simulation of M on input x

while the simulation do

if M queries y then �nondeterministically� guess the oracle answer

exit the loop when q�jxj� i� steps are consumed

end�while

if M halts then outputM �x� else output �

end�

Note that M � is polynomial�time bounded�

For each x� let pathx be the minimal �code of� path p of the computation tree given by M � on input x

such that p does not lead to the output �� Let us consider the output of M � on input x along path pathx�

say dx� We get j��x�� dxj � ��i because� otherwise� it violates the condition j��x��MC�x� �i�j � ��i if C

is chosen so that MC�x� �i� � dx� Next de�ne the desired set B as follows�
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B � fhx� �ni j the ith bit of the binary output dx of M � on input x on path pathx is � g�

The set B belongs to 
p
� because we must choose the minimal paths �rst� and this needs two alternations

of the existential state and the universal state� With the help of B as an oracle� we can compute the value

MA�x� �i� in time polynomial in jxj and i� Thus� � is in P�
p
� �comp� �

It is unknown whether P�	
�

help�comp 	 PNP�comp� However� oracle sets in UP � co�UP do not increase

the computational power of the robust machine�

Lemma ����	� PUP�co�UPhelp �comp � PUP�co�UP�comp�

Proof� It su�ces to show that PUP�co�UP�comp 	 PUP�co�UPhelp �comp� Let � be any distribution in

PA�comp for some A � UP � co�UP� There are two polynomial�time unambiguous Turing machines N�

and N� computing A and A� respectively� Let M be a deterministic polynomial�time oracle Turing machine

computing � relative to A�

We use a set called a witness of the accepting computation of N� and N�� Set

Witness�A� � fhx� sii j �w � $jxj and N� accepts x on path w whose ith bit is � !g�

We wish to modify the machine M in order to compute the same distribution� Let O � O� �O�� and let us

de�ne the deterministic Turing machine that computes � as follows�

begin deterministic algorithm for N with oracle O �� O� �O��

input x

start the simulation of M on input x

while the simulation do

exit the loop when p�jxj� steps are consumed

halt the algorithm when an accepting or rejecting state is reached

if y is queried then do the following�

�i� query fhy� s�i� hy� s�i� � � � � hy� sjxjig to oracles O� and O�

�ii� let w� �� O��hy� s�i� � � �O��hy� sjxji� and w� �� O��hy� s�i� � � �O��hy� sjxji�
�iii� if N� accepts y on path u� then let an oracle answer be �yes�

�iv� if N� accepts y on path u� then let an oracle answer be �no�

else go to ���
end�while

��� simulate M on input x using N� and N� as oracles

end�

It is clear that N computes the distribution �� and if the set Witness�A� �Witness�A� is given as an

oracle� then the running time of N with this oracle on input x is O�TimeM �x��� �
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��� Normalization of Semi�Distributions

In this section� we shall show how to normalize a semi�distribution to a full distribution� As the reader

can see� there are several way to normalize semi�distributions� Here are two simple methods� for a given

non�trivial semi�distribution �� let

�i� "���x� �

�	

 "��x� if x �� ��

��Pz�z ��
 "��z� if x � ��

�ii� "����x� � �
c
� "��x�� where c � limx
� ��x��

Both distributions �� and ��� need the computability of the limit limx
� ��x�� This is seen as follows�

Assume that � is P�computable �for simplicity� assume "���� � ��� Assume that �� � P�comp� Let c �P
z�z ��
 "��z�� Since c � limx
� ��x�� c is P�computable� Thus� by Lemma ����	� the inverse �

c
is also

P�computable� Since ����x� � �
c � ��x�� ��� becomes P�computable� Conversely� assume that ��� � P�comp�

Then� c is P�computable since c � "��x��"����x� for some x for which "����x� � �� Note that c � limx
� ��x� �P
z�z ��
 "��z�� Thus� �� � P�comp�

One may raise the question� can allP�computable semi�distributions be normalized to someP�computable

distributions by method �i� or �ii� #� The answer is unfortunately negative�

Proposition ����	 There exists a P�computable semi�distribution � such that neither �� nor ��� is P�

computable�

Proof� Take a tally set A 	 $� which is recursive but not P�printable� Since A is recursive� we choose

a deterministic Turing machine M which� on input �� produces a list of all strings of A �possibly with

repetition��

Now we de�ne the desired semi�distribution � as

"��x� �

�	

 ���i if x � f�g� and M produces �i within jxj steps�

� otherwise�

We �rst claim that � is a P�computable semi�distribution�

X
x

"��x� �
X
k�N

"���k� �
�X
i��

���i �
�

�
�

Set c � limx
� ��x� and let ��r be its binary representation� Notice that this representation is unique

because� for every i� the ��i( ��th bit of r must be �� Moreover�

A � f�i j the �i�th bit of r is � g�

Assume that c is a P�computable real number� There exists a polynomial�time Turing machine N such

that jN ��k�� cj � ��k for all k � N� Let N ���k� � N ���k���� Machine N � is still polynomial�time bounded�

and N ���k� is an initial segment of r� Hence� for any su�ciently large n�

A �$�n � f�i j the �ith bit of N ����n��� is � g�



��� CHAPTER �� FEASIBLE DISTRIBUTIONS

Thus� A is P�printable� This is a contradiction� �

We now know that we no longer guarantee the existence of normalized distributions� The reader may

ask under what conditions can P�computable semi�distributions normalized� In the rest of this section� we

shall discuss a su�cient condition for the normalization of computable semi�distributions�

First we consider a general case�

Lemma ����� Let ��� � � � � �m be semi�distributions such that limx
�
Pm

i�� �i�x� � �	 and let S�� � � � � Sm

be m disjoint sets with $� �
Sm
i�� Si� Let h and p be increasing functions on N	 and p is time�constructible�

Let

"��x� �

�	

 "�i�x� if x � Si for some i �� � i � m�	

��Pz�z ��
 "��z� if x � ��

Let N�� � � � � Nm be O�h�n���time bounded deterministic Turing machines� Assume that	 for all x � $� and

k � N	 the following two conditions �i� and �ii� hold�

�i� For all i with � � i � m	 jNi�x� �k�� "�i�fz � Si j z � xg�j � ��k�

�ii� For all i with � � i � m	 "�i�Si � $�p�k	� � ��k�

Then	 � is O�h��n���time computable	 where h��n� � h�p�n( ilog�m� ( �� ( n( ilog�m� ( ���

Proof� Take ��� � � � � �m and S�� � � � � Sm� and assume all the conditions of the lemma� For the sake of

convenience� let q�n� � n( ilog�m� ( �� Consider the following algorithm N �

begin deterministic Turing machine N

input �x� �k�

set Result �� �

if x � � then go to ���
for i � � to m do

simulate Ni on input �x� �q�k	�

set Result �� Result( Ni�x� �q�k	�

end�for

output Result and halt

��� for i � � to m do

simulate Ni on input ��p�q�k		� �q�k	�

set Result �� Result( Ni��
p�q�k		� �q�k	�

end�for

output ��Result and halt

end�

Take a constant c � � such that� for all appropriate i� TimeNi �x� �
k� � c � h�jxj( k� and TimeN �

i
��k� �

c �h�k�� Then the running time of N on input �x� �k� is calculated as follows� for some appropriate constants
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c�� and d�

TimeN �x� �k� � c��
�

mX
i��

TimeNi�x� �
q�k	� (

mX
i��

TimeNi ��
p�q�k		� �q�k	� ( �

�

� c�� �m � c � �h�jxj( q�k�� ( h�p�q�k�� ( q�k���

� d � h�p�jxj( k ( ilog�m� ( �� ( n ( ilog�m� ( ��

since p and h are increasing� Hence� N is O�h��n���time bounded�

Next we show that N actually computes �� Assume that x �� ��������M �x� �k��
X
z�z�x

"��z�

������ �

������
mX
i��

Ni�x� �
q�k	��

mX
i��

X
z�z�x

"�i�z� �  z � Si!

������
�

mX
i��

jNi�x� �
q�k	�� "��fz � Si j z � xg�j

� m � ��k�ilog�m	�� � ��k�

For the case x � �� we have

jM ��� �k�� "����j

�

������
X
z�z ��


"��z� �
mX
i��

Ni��
p�q�k		� �q�k	�

������
�
������
X
z�z ��


"��z� �
X

z���jzj�p�q�k		
"��z�

������(
������

X
z���jzj�p�q�k		

"��z��
mX
i��

Ni��
p�q�k		� �q�k	�

������
�

mX
i��

X
z�jzj�p�q�k		

"�i�z� �  z � Si! (

������
mX
i��

X
z�jzj�p�q�k		

"�i�z� �  z � Si!�
mX
i��

Ni��
p�q�k		� �q�k	�

������
�

mX
i��

"�i�Si � $�p�q�k		� (
mX
i��

j"�i�Si � $�p�q�k		��N �
i ��

p�q�k		�j

� m � ��k�ilog�m	�� (m � ��k�ilog�m	�� � � � ��k��

� ��k�

Therefore� � is O�h��n���time computable� �

Consider� for example� the standard distribution �stand� When we set p�n� � �n�� � �� the distribution

�stand satis�es the convergence scheme j�stand��p�i	�� �stand��p�j	�j � ��i ( ��j for all i� j � N�

Corollary ����� Let � be a semi�distribution and let p�n� be an increasing function on N bounded above

by a polynomial in n� Let �� and ��� be the normalized distributions de
ned at the beginning of this section�

If � is P�computable and j���p�i	� � ���p�j	�j � ��i ( ��j for almost all i� j � N	 then �� and ��� are both

P�computable�
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Proof� Assume that � is a P�computable semi�distribution� Let M be a q�time bounded deterministic

Turing machine computes �� where q is an appropriate polynomial� To use Lemma 	����� we set S � $�

and let N �x� �k� � M �x� �k��� � M ��� �k��� for all k � N� It su�cient to check conditions �i� and �ii�

in the lemma� If both conditions are ful�lled� then Lemma 	���� ensures the existence of the normalized

distribution �� that is O�q�p�n ( �� ( n ( ����time computable� Since p�n� is bounded by some polynomial

in n� clearly �� is P�computable�

For �i�� we have

jN �x� �k� � "��fz � S j z � xg�j � jM �x� �k����M ��� �k��� ( ��x�� ����j
� jM �x� �k���� ��x�j( jM ��� �k���� ����j
� ��k�� ( ��k�� � ��k�

For �ii�� by our assumption� j���p�i	�� ���p�j	�j � ��i ( ��j for almost all i� j � N� By Lemma A�	� this

is equivalent to the condition j limx
� ��x� � ���p�i	�j � ��i� Hence� "��S �$�p�k	� � ��k� �

��� Samplable Distributions

Let us consider as a simple example the generation of an �occupied territory� on a �nite square board

�e�g�� cf�  ��!�� First we randomly choose a nonnegative integer n� and de�ne the �occupied territory� at

stage � to be the center square of the n � n board� At stage i� a walker randomly chooses a starting point

which is on the boundary of the board and walks to neighboring points at random� If the walker successfully

reaches an adjacent point si of the occupied territory at stage i��� then the territory is expanded to include

the point si� We continue to the next stage� Allowing in�nitely�many stages� we are able to consider the

probability that a certain region becomes the occupied territory at some stage�

This type of �probability� distribution is called samplable� and the algorithm which produces instances

under this distribution is called a sampling algorithm  �!� Instances of samplable distributions have often

been observed in statistical physics� Samplable distributions are also of importance in cryptography� It

is known that the existence of complex samplable distributions leads to the existence of pseudo�random

generators �see  �� 	�!��

����� De�nition of Samplable Distributions

In ����� Ben�David� Chor� Goldreich� and Luby  �! �rst formulated a notion of distributions which are

sampled �or generated� by randomized algorithms in time polynomial in the length of their output on dyadic

rational numbers� They coined the term� polynomial samplable distributions for such distributions�

In a recent work on pseudo�random number generators� H,astad et al�  	�! also use an ensemble of �polyno�

mial samplable� probability distributions� To cope with real�valued distributions� we use an approximation

scheme and give a generalized de�nition of t�time samplability�
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Figure 	��� A computation tree of a sampling algorithm

De�nition ����� �Samplable Distributions� Let t be a function on R�� A semi�distribution � is

t�time samplable if there exists a randomized Turing machine M �which does not necessarily halt on all

computation paths�� called a sampling machine or generator� such that

��"��x�� PrM  M on input �i produces x and halts within time t�jxj� i�!
��� ��i ���

for all x and i � N� We say that M samples � if M satis�es ���� For a set T of functions� � is T �time

samplable if � is t�time samplable for some t � T �

Similarly� we can de�ne � to be t�space samplable �T �space samplable� resp�� by requiring M to be t�space

bounded �T �space bounded� resp���

An algorithm used for a sampling machine is called a sampling algorithm�

De�nition ����� ��� A semi�distribution � is polynomial�time samplable �P�samplable� for short� if there

exists a polynomial q such that � is q�time samplable� Denote by P�samp the set of all P�samplable

distributions�

Figure 	�� illustrates a computation tree of a sampling algorithm�

To distinguish our de�nition from Ben�David� Chor� Goldreich� and Luby
s  �!� we call their P�samplable

distributions strictly P�samplable� We use the notation strict�P�samp to denote the collection of all strictly

P�samplable distributions� Notice that all strictly P�samplable distributions are supportive�
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Lemma ����� For every P�samplable distribution �	 there exists a distribution � in strict�P�samp which

p�dominates ��

Proof� Take an arbitrary P�samplable distribution �� By de�nition� there exists a sampling machine M

and a polynomial p such that� for all x and i�

"��x��PrM  M ��i� � x within time p�jxj� i� !j � ��i�

Replace i by jxj in the above inequality� then we have

"� � ��jxj (PrM  M ��i� � x within time p�jxj� jxj� !�

To simplify the description� write Px for PrM  M ��jxj� � x within time p�jxj� jxj� !� We then have "��x� �
��jxj ( Px�

Since the standard distribution is P�samplable� it has a its sampling machine� say M�� We then de�ne

the desired semi�distribution � to be sampled by the following sampling machine N �

begin sampling algorithm for N

input � �the empty string�

choose a bit b at random

if b � � then simulate M� on � and halt

generate a natural number n �actually generate sn�

simulate M on input �n

if M enters a halting con�guration then let x be its output and

let t be the running time of M

if t � p�jxj� jxj� then output x else output �
end�

Suppose that M outputs string x in time p�jxj� jxj�� In the case where b � � and n � jxj are chosen�

for some appropriate positive constant c� N can output x requiring its computation time to be at most

c � �jxj( p�jxj� jxj�( ��� because N needs O�jxj� steps to generate b and n and needs O�p�jxj� jxj�� steps for

the simulation of N �

Now let q�z� � c � �z ( p�z� z� ( �� and de�ne � as "��x� � PrN  N ��� � x within q�jxj� steps! for all x�

Obviously this � is a semi�distribution and also P�samplable�

We �x a nonempty string x arbitrarily� Note that the probability of generating n at random is exactly

���llog�n	��� Then the probability that n � jxj holds and N outputs x within time q�jxj�� is at least

���llog�n	�� �PrM  M ��jxj� � x within p�jxj� jxj� steps! � ���llog�jxj	�� � Px�

Hence� it follows that

"��x� � PrN  N ��� � x within q�jxj� steps!

� �

�
� "�stand�x� (

�

�
� ���llog�jxj	�� � Px
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� ���llog�jxj	�� � ��jxj ( ���llog�jxj	�� � Px
� �

���jxj( ���
� ���jxj ( Px�

� "��x�

���jxj( ���
�

Therefore� we conclude that � �p �� �

Theorem ����� ��� There exists an e
ective enumeration of all strictly P�samplable semi�distributions�

In particular	 for each k � �	 there is an e
ective enumeration of all strictly O�nk��time samplable semi�

distributions�

Proof� First we e�ectively enumerate all randomized Turing machines �which may not halt on some com�

putation paths�� Let fMigi�Nbe such an enumeration� Also take an e�ective enumeration of all polynomials

with positive integer coe�cients� say fpigi�N� such that each pi�z� � z for all z�

For each pair �i� j� of natural numbers� we shall consider the ith machine Mi and the jth polynomial pj�

We modify the machine as follows�

begin sampling algorithm for M �
hi�ji

input �

simulate Mi on input �

let x be the output of the machine Mi and

let t be the running time of Mi

if t � pj�jxj� then output x else output x�t�jxj

end�

Note that a random seed generated by M �
i is exactly the same as that generated by Mi� Suppose that Mi

outputs x� The running time of M �
hi�ji is O�jxj( t ( ��� In the case where t � pj�jxj�� the running time of

M �
hi�ji is O�pj�jxj�� because pj�n� � n� otherwise� it is O�t�� Overall� the running time of M �

hi�ji is at most

c � n steps in the length of its output�

It is easy to check that all P�samplable distributions appear in this enumeration� �

The reader will �nd an application of Theorem 	�	�	 in Section ����

����� Invertibly Samplable Distributions

From a di�erent point of view� Impagliazzo and Levin  		! de�ned �polynomial�time samplable� distributions

to be of the form �f�� for some � � P�comp and some f � FP� Following this de�nition� we can actually

construct such a distribution that cannot belong to P�comp�

Although there is no proof separating the two notions of �polynomial�time samplability�� in this thesis�

we require f to be p�honest� and take the following weaker de�nition�
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De�nition ����� �Invertibly Samplable Distributions� ����

�� A distribution � is invertibly polynomial�time samplable �invertibly P�samplable� for short� if there

exists a distribution � � P�comp and a p�honest function f � FP such that � � �f�� � Denote by

IP�samp the set of all invertibly P�samplable distributions�

�� Let IP��samp be the collection of all distributions of the form �f�� for a distribution � � P�comp and

a p�honest� one�one function f in FP�

Proposition ����� ����� P�comp 	 IP��samp 	 IP�samp�

Proof� For the �rst inclusion� use the identity function f � Obviously f is p�honest and one�one� Then�

we have � � �f�� for all distributions �� The last inclusion is trivial� �

As shown in  ���!� in general� the feasible computability of �f�� does not imply that of �� namely� there

are distributions � which are not in P�comp� but �f�� is in P�comp for the function f�x� � �jxj� Moreover�

Wang and Belanger showed that� for every � � P�comp and every increasing� p�honest function f � FP�

�f�� belongs to P�comp  ���!�

We shall show the inclusion between IP�samp and P�samp�

Proposition ����� ����� IP�samp 	 P�samp�

Proof� To establish the proposition� we shall generalize the proof of Theorem � in  �!�

Assume that � is in IP�samp� By de�nition� there exist a p�honest function f � FP and a deterministic

polynomial�time Turing machine M such that � � �f�� and j��x� �M �x� �i�j � ��i for all x and i� By

Lemma 	����� we can assume that �x�M �x� �k� is nondecreasing for each �xed k� We also assume that� for

some polynomial p� jxj � p�jf�x�j� and jf�x�j � p�jxj� for all x�

For simplicity� write "M�x� �k� �
P

z�f�� �x	M
��z� �p�jxj	�k���� where M ��x� �k� � M �x� �k��M �x�� �k��

Note that j"��x��M ��x� �k�j � ��k��� Since jf�x�j � p�jxj�� we have

j"��x�� "M �x� �k�j �
X

z�f�� �x	

j"��z� �M ��z� �p�jxj	�k���j � �p�jxj	 � ��p�jxj	�k � ��k�

To complete the proof� we need to show that "M�x� �k� can be computed by some sampling algorithm on

input �k� Let us de�ne the sampling algorithm N as follows�

begin sampling algorithm N

input �k

for i � � to �
choose one bit bi randomly

let �i be the real number identi�ed with string b�b� � � �bi
�nd the minimal string x by binary search such that
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M �x�� �p�jxj	�k��� � �i �M �x� �p�jxj	�k���

if there is such an x then output f�x� and halt

end�for

end�

It is not di�cult to see that "M �x� �k� is equal to the probability Pr N ��k� � x in time q�jyj� k�! for some

polynomial q� �

The converse of Proposition 	�	�� is unlikely to hold� however� we can prove that every P�samplable

distribution is p�dominated by some invertibly P�samplable distribution�

Lemma ����� ����� For every � � P�samp	 there exists a distribution � � IP�samp such that � �p ��

Proof� Let � be a P�samplable distribution� and let M be a randomized Turing machine witnessing � with

a time�bound polynomial p� We modify the original machine M so that� at every con�guration of M � there

are exactly two nondeterministic choices� Hence� the length of a code which expresses a nondeterministic

path of M on each input is at least the size of its output� Moreover� we assume without loss of generality

that p is increasing�

We de�ne a function f as

f�z� �

���	
��


output x of M on ��jxj on path z� in time p��jxj� if z � z�� and x exists�

� if z � z�� but no such x exists�

z� if z � z���

To see that f is P�computable� consider the following deterministic algorithm�

begin deterministic algorithm for f

input z

if z � z�� then output z� else compute z� such that z � z��

for n � � to jz�j
simulate M on input ��n on path z�

if M halts in time p��n� then let x be its output else go to ���
if jxj � n then output x and halt

��� end�for

output �

end�

For each x� let Ax be the collection of all strings w such that� on input ��jxj on the computation path

encoded by w� M halts in time p��jxj� and produces x� By our assumption� if w � Ax� then jwj � p��jxj��
Hence�

PrM  M on ��jxj produces x in time p��jxj�! �
X
w

 w � Ax!

�jwj
�



��� CHAPTER �� FEASIBLE DISTRIBUTIONS

On the other hand� since M approximates "�� we then have "��x� � ���jxj (
P

w
�w�Ax �
�jwj �

Let "��x� � "�stand�fw j f�w� � xg�� Notice that "���� � �� Let c� be the minimal positive integer such

that c� � "���� � "����� Then� it follows that

"��x� �
X
w

"�stand�w� �  f�w�� � x! (
X
w

"�stand�w� �  f�w�� � x!

�
X
w

��jwj��llog�jwj	�� �  w � Ax! ( "�stand�x��

Let q�z� � ��p��z�(��� (c�� In the following� we show that q�jxj� � "��x� � "��x�� For x � �� this is obviously

the case� For the other strings x � $��

q�jxj� � "��x� � q�jxj� �
X
w

��jwj��llog�jwj	�� �  w � Ax! ( q�jxj� � "�stand�x�

�
X

w�jwj�p�
jxj	

q�jxj�
��jwj( ���

�  w � Ax!

�jwj
(

q�jxj�
��jxj( ���

� �

�jxj

�
X
w

 w � Ax!

�jwj
(

�

�jxj
� "��x��

�

Unfortunately� we do not know whether P�samp 	p IP�samp� or whether we can replace IP�samp in

Lemma 	�	�� by IP��samp�

Schuler and Watanabe  ��! introduced an average version of P�samplable distributions� We give a brief

de�nition here�

De�nition ����� �Average Polynomial�Time Samplable Distributions� ��	� A distribution � is

average polynomial�time samplable �average P�samplable� for short� if there exists a randomized Turing

machine M and a polynomial p such that

�i� j"��x� �PrM  M ��i� � x! � ��i for any x and i � N� and

�ii� for every number r � � and every n � N�

"�tally��
n� �Prs M ��i� s� � $n �TimeM ��i� s� � p��n� i� � r� j s � +M ��i�! � ��r�

Let avP�samp denote the set of all average P�samplable distributions�

We shall show below that average P�samplability is a natural extension of P�samplability�

Proposition ����	
 P�samp 	 avP�samp�

Proof� Let � be any P�samplable distribution� Consider a polynomial p and a randomized Turing machine

M which� on input �i� samples ��x� in p�jxj� i� steps� that is�

j"��x� �PrM  M ��i� � x in time p�jxj� i� !j � ��i
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for all i � N and x � $��

To show the average P�samplability of �� we must de�ne another sampling machine that samples � in

polynomial time on ��average with respect to the length of its output� Such a sampling machine is de�ned

as follows�

begin sampling algorithm for N

input �i

simulate M on input �i

if M reaches a halting state then do the following�

let x be its output

let s be the random seed generated so far

if TimeM��i� s� � p�jxj� i� then output x and halt

for i � � to � do


ip a fair coin

end�for

end�

By the simulation� it follows that

PrM  M ��i� � x in time p�jxj� i� ! � Prs N ��i� s� � x j s � +N ��i�!�

The running time of N on input �i along with random seed s� is the same as that of M on �i with s with

a constant factor�Thus� for an appropriate constant c � �� it holds that

Prs N ��i � s� � $n �TimeN ��i� s� � c � p�n� i� j s � +M ��i�! � ��

which implies that � is average P�samplable� �

����� Closure Properties of Samplable Distributions

This subsection will discuss several properties of P�samplable and invertibly P�samplable distributions�

Lemma ����		 For every distribution � and every function f in FP	 if � � IP�samp and f is p�honest	

then �f�� also belongs to IP�samp�

Proof� Let f be p�honest and in FP� Assume that � � �g�� for some � � P�comp and p�honest g � FP�

Then�

"�f���x� � "��fz j f�z� � xg� � "��fw j �z g�w� � z � f�z� � x!g�
� "��fw j f � g�w� � xg� � "��f�g	���x��

Since f � g is p�honest and in FP� �f�� belongs to IP�samp� �
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Corollary ����	� For every � � P�samp and every p�honest function f � FP	 there exists a � � P�samp

such that �f�� �p ��

Proof� Assume that � � P�samp� By Lemma 	�	��� we can take a distribution �� from IP�samp such

that � �p ��� By Lemma ��	���� � �p �� implies �f�� �p ��
f�� � Now let � � ��

f�� � By Lemma 	�	���� we

conclude that � belongs to IP�samp� �

This corollary will be used to prove Proposition �������

The following theorem is similar to the fact that BPPBPP � BPP �see� e�g��  ���!�� It states that

PBPP�samp is p�equal to P�samp� However� the proof requires complex analysis of a randomized algorithm�

Theorem ����	� PBPP�samp ��p P�samp�

Proof� Since clearly P�samp 	 PBPP�samp� it su�ces to show that PBPP�samp 	p P�samp� Consider

a distribution � and assume that � is in PBPP�samp� There exists a Turing machine M and an oracle

A � BPP such that j"��x� � PrM  MA��k� � x in time q�jxj� k�!j � ��k for all k � N� where q is an

appropriate polynomial� We de�ne another set A� as follows� Let A� � fx��m j x � A�m � Ng� It is easy to

see that A� � BPP� Let N be a polynomial�time probabilistic Turing machine such that

PrN  N �x��m� � A��x��m�! � �� ��jxj�m��

�by the Ampli�cation Lemma�� Let p�n� � �n( 	 for all n � N�

Let us consider the following randomized Turing machine M ��

begin randomized algorithm for M �

input �i

generate a natural number n� at random

let count �� �

for n � n� to � do

while the simulation of M on input �i�p�n	

if M queries y then simulate N on input y��q�n�i�p�n		�jyj�p�n	

and let count �� count( �

end�while

�assume that M halts and writes down a string x�

if count � q�n� i( p�n�� then 
ip a fair coin m times�

where m � �q�n� i( p�n�� ( i( p�n���q�n� i( p�n��� count�

if jxj � n then output x and halt

��� end�for

end�
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Let �x
i be the overall probability that x is generated by the algorithm when input �i is given� For

simplicity� write �ix � PrM  MA��i� � x in time q�jxj� i�!� Remember that "��x� � limi
� �ix holds for all x�

It follows that j�ix � �jxj � ��i ( ��j�

Our goal is to show that� for any string x�

�i� ����i�p�n�
��n��	� � �i�p�n	x � �x

i � � � �i�p�n	x for almost all i � N� and

�ii� j�xi � �x
jj � ��i ( ��j for almost all i� j � N�

By Lemma A�	� �ii� implies the existence of the limit limi
� �x
i� We then set "��x� � limi
� �x

i� The

condition �i� implies that

"��x�

��n ( ���
� lim

i
�
�� ��i�p�n	

��n( ���
� �i�p�n	x � "��x� � � � lim

i
�
�i�p�n	x � � � "��x��

Therefore� � is p�equivalent to ��

Fix x and let n � jxj� Let �ix denote the probability that the algorithm outputs x after integer n is

already generated� This probability �ix is the product of the probabilities that N correctly computes all the

query strings made by M � and thus is at least

q�n�i�p�n		Y
j��



�� ��q�n�i�p�n		�i�p�n	

�
�



�� ��q�n�i�p�n		�i�p�n	
�q�n�i�p�n		

� �� ��i�p�n	���

where the last inequality holds by Lemma A��� Then� we have

�i�p�n	x � ��� ��i�p�n	� � �ix � �i�p�n	x �

Now we show that j�ix � �jxj � ��p�n	�����i ( ��j�� Note that �
i�p�n	
x � ��

j�ix � �jxj � maxfj�i�p�n	x � �j�p�n	x � ��� ��i�p�n	�j� j�j�p�n	x � �i�p�n	x � �� � ��j�p�n	�jg
� j�i�p�n	x � �j�p�n	x j( maxf�i�p�n	x � ��i�p�n	� �j�p�n	x � ��j�p�n	g
� ��i�p�n	 ( ��j�p�n	 ( maxf��i�p�n	� ��j�p�n	g
� ��p�n	�� � ���i ( ��j��

Let � in �
P

x�jxj�n �
i
x� The probability /�ix is equivalent to the probability that� for every k � n� k is

�rst generated� and the algorithm fails to halt until it reaches stage n of the for�loop and �nally writes

x� For each k� � � k � n� with probability ���llog�k	��� the algorithm generates k� it eventually reaches

n and with probability �ix� it outputs x� Hence� if � � k � n� then the probability that x is an output is

���llog�k	�� � �ix �
Qn��

j�k �� � � ij�� and if k � n� then this probability is exactly ���llog�n	�� � �ix� Overall� we

have

�x
i �

n��X
k��

�
� �ix

��llog�k	��

n��Y
j�k

��� � ij �

�
A (

�ix
��llog�n	��

�

Using the fact that
Qn��

j�k ��� � ij � � �� we have

�� ��i�p�n	

��n( ���
� �i�p�n	x � �ix

��llog�n	��
� �x

i � �ix �
nX

k��

�

��llog�k	��
�

��

�
�ix � � � �i�p�n	x �
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The absolute value of the di�erence between � ix and � jx is now easy to calculate� as shown below�

j� in � � jnj �

������
X

x�jxj�n
�ix �

X
x�jxj�n

�jx

������ �
X

x�jxj�n

���ix � �jx
��

� �n � ��p�n	�� � ���i ( ��j� � ��p�n	�n�� � ���i ( ��j��

Finally we shall show that j�xi � �x
jj � ��i ( ��j� We start with the following fragment� Note that���Qn��

l�k ��� � il � �
Qn��

l�k ��� � jl �
��� � Pn��

l�k j� il � � jl j by Lemma A��� Using �ix � � and
Qn��

j�k ��� � ij � � �� we

have ������ix
n��Y
l�k

��� � il � � �jx

n��Y
l�k

�� � � jn�

����� � �ix �
�����
n��Y
l�k

��� � il ��
n��Y
l�k

��� � jl �

����� ( j�ix � �jxj �
n��Y
l�k

��� � jl �

�
n��X
l�k

j� il � � jl j( j�ix � �jxj

� ��p�n	�n�� � ���i ( ��j� ( ��p�n	�� � ���i ( ��j�

� �n� k� � ��p�n	�� � ��n ( �� � ���i ( ��j��

Using this inequality� we obtain

j�xi � �x
j j �

n��X
k��

�

��llog�k	��

������ix
n��Y
l�k

��� � il �� �jx

n��Y
l�k

��� � jn�

����� ( j�ix � �jxj
��llog�n	��

�
n��X
k��

n� k

��k ( ���



��p�n	�� � ��n ( �� � ���i ( ��j�

�
(

�

��n( ���
� ��p�n	�� � ���i ( ��j�

� ���i ( ��j� � ��p�n	�� �
�
n��X
k��

n� k

��k ( ���
� ��n ( �� (

�

��n( ���

�

� ���i ( ��j� � ��p�n	��
�
n�n� ����n ( �� (

�

�n( ���

�
� ���i ( ��j� � ��p�n	�� � �n� � �n�� ( �� � ���i ( ��j� � ��p�n	�� � �n� � �n��

� ���i ( ��j� � ��n�
 � ��p�n	�� � ��i ( ��j

since � � n� � �n�� for all n � N� �

��� The P�comp � P�samp Question

We have seen two categories of feasible distributions� P�computable and P�samplable distributions� both of

which have very di�erent characteristics� It is natural to raise the question of whether these notions are

truly di�erent� The �rst answer was given by Ben�David� Chor� Goldreich� and Luby  �! who showed that

P�samp �� P�comp unless NP collapses to P� Later Milterson  �	! pointed out that P � PP is a su�cient

and necessary condition for P�comp � P�samp� and its proof appeared in Yamakami  ���!� This section

shows that P�samplable distributions are P�computable if and only if P � PP� Based on the common belief

that P �� PP� it seems unlikely that P�comp equals P�samp�



���� THE P �COMP � P �SAMP QUESTION ���

We shall introduce another category of distributions� the so�called �P�computable distributions intro�

duced by Schuler and Watanabe  ��!� which seem to have more computational power than P�samplable

distributions� Again we modify their de�nition to �t our approximation scheme�

De�nition ����� ��P�Computable Distributions� cf� ��	� A distribution � is �P�computable if

there exist a function f � �P and a polynomial p such that
���"��x�� f�x��i	

�p�jxj�i�

��� � ��i for all x � $� and i � N�

Denote by �P�comp the set of all �P�computable distributions�

We �rst show that the density function "� in the above de�nition can be replaced by its distribution ��

Lemma ����� For a distribution � � �P�comp	 there exist a function f � �P and a polynomial q such

that
�����x�� f�x��i	

�q�jxj�i�

��� � ��i for all x and i�

Proof� Assume that � is �P�computable� By the de�nition of �P�computability� there are a set A � P
and two polynomials p and q such that

���"��x�� f�x��i	
�q�jxj�i�

��� � ��i and f�x� �i� � kfy j jyj � p�jxj� i��hx� �i� yi �
Agk� Without loss of generality� we assume that p and q are increasing�

We �rst show that the function g de�ned as g�x� �i� � �q�jxj�i	 �Pz�x
f�z��i	
�q�jzj�i�

is in �P� To see this� we

de�ne another set A� as follows�

A� � fhx� z��n�jzjyi j jxj � n� z � x� �fy�� � � � � yq�n�i	g y � y� � � �yq�n�i	
� �j � � j � q�n� i� 
 �.yj  yj � .yj��p�n�i	�j�yjj � j.yj j � p�jzj� i� � hx� �i� .yji � A!!!g�

Let p��n� i� � n( � ( �p�n� i� ( ��q�n� i�� It is not di�cult to prove that g can be characterized as

g�x� �i� � kfu j juj � p��jxj� i�� hx� ui � A�gk�

and thus g is in �P�

Now let g��x� �i� � g�x� �jxj�i��� and q��n� i� � q�n� n ( i ( ��� Then� for any string x of length n� we

have� ������x�� g��x� �i�
�q��n�i	

���� �

������
X
z�x

"��z� �
X
z�x

f�x� �n�i���

�q��jzj�n�i��	

������
�

X
z�x

����"��z� � f�z� �n�i���

�q�jzj�n�i��	

����
� �n�� � ���n�i��	 � ��i�

�

Proposition ����� �P�comp 	 P�P�comp � PPP�comp�

Proof� Let � be a distribution in �P�comp� Using Lemma 	����� take a function f � �P and a

polynomial q such that
�����x�� f�x��i	

�q�jxj�i�

��� � ��i� Since f is computable in polynomial time relative to f itself�
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� is P�computable relative to f � Hence� �P�comp 	 P�P�comp� Since FP�P � FPPP by Lemma ������ it

follows that P�P�comp � PPP�comp� �

The main theorem of this section is�

Theorem ����� ���� ���� The following 
ve statements are equivalent�

�� P � PP�

�� P�comp � �P�comp�

�� P�comp � P�samp�

�� P�comp � IP�samp�

�� P�comp � IP��samp�

The theorem immediately follows from the proposition and two lemmas below�

Proposition ����� ����� P�samp 	 �P�comp�

Proof� Assume that � is P�samplable and is witnessed by a sampling algorithm M and a polynomial p�

Without loss of generality� we assume that every path of M on �i which outputs x halts in exactly p�jxj� i�
steps� Let f�x� �i� be the number of computation paths y such that M on �i outputs x and halts on path y

in time p�jxj� i�� Clearly f � �P since each path of M on �i is bounded by p�jxj� i�� It is easy to see that

the probability that M ��i� outputs x and halts in time p�jxj� i� equals f�x� �i���p�jxj�i	� Hence� � turns out

to be �P�computable� �

The converse inclusion� �P�comp 	 P�samp� is an open question� The best known result is due to

Schuler and Watanabe  ��! that every �P�computable conditional distribution can be approximated within

a polynomial factor by some sampling algorithm in time polynomial in the length of outputs with nonadaptive

queries to an NP oracle� This will be shown as Proposition 	�����

The next lemma establishes a basic relationship between �P and �P�comp�

Lemma ����� P � PP implies P�comp � �P�comp�

Proof� This lemma is an immediate consequence of Proposition 	����� However� we here show this lemma

in a more direct way�

Let us assume that P � PP� This is equivalent to the assumption FP � �P by Lemma ������ For

an arbitrary distribution � in �P�comp� assume that there exists a function f � �P and a nondecreasing

polynomial p such that
���"��x� � f�x��i	

�p�jxj�i�

��� � ��i for all x and i � N� Now we show that � is computable by

some deterministic Turing machine in polynomial time�
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De�ne g�x� �i� �
P

z�x h�z� x� �i�� where h�z� x� �i� � f�z� �jxj�i� � �p�jxj�jxj�i	�p�jzj�jxj�i	� Since g � �P�

it follows from our assumption that g � FP� We then de�ne the deterministic Turing machine M such that

M �x� �i� outputs g�x� �i���q�jxj�i	� where q�n� i� � p�n� n( i�� Thus� M satis�es�

j��x��M �x� �i�j �

������x�� g�x� �i�

�q�jxj�i	

���� �

��������x��
X
z�x

h�z� x� �i�

�q�jxj�i	

������
�

X
z�x

����"��z�� f�z� �jxj�i�
�p�jzj�jxj�i	

���� � �jxj � ��jxj�i

� ��i�

Hence� � � P�comp� This completes the proof� �

In the following lemma� we prove that IP��samp � P�comp implies P � PP�

Lemma ����� ����� If IP��samp � P�comp	 then P � PP�

Proof� Let us assume that IP��samp � P�comp� namely� for any � � P�comp and any one�one� p�honest�

P�computable function f � the distribution �f�� is P�computable� We shall show that FP � �P� which is

equivalent to P � PP�

Given a set A in P and a polynomial p� we set g�x� � kfy � $p�jxj	 j xy � Agk� We can assume without

loss of generality that p is strictly increasing� We want to show that g � FP�

Now take the standard distribution �stand and de�ne the one�one� P�computable function f as follows�

f�xy� �

���	
��


�xy if xy � A and jyj � p�jxj��
�xy if xy �� A and jyj � p�jxj��
xy otherwise�

We also de�ne the invertibly P�samplable distribution � by "� � �x�"�stand�f���x��� By our assumption� � is

P�computable� For the function g� we have the following simple equation�

��r�jxj	��llog�r�jxj		�� � g�x� �
X

y�jyj�p�jxj	
"�stand�f����xy�� � ���x�p�jxj	� � ���x��p�jxj	��

where r�n� � n( p�n� ( �� Therefore� g is P�computable� �

We combine the above lemmas and propositions to complete the main theorem�

��	 Universal Distributions

A distribution � is called universal if� for every recursive distribution �� there exists a constant c � � such

that c � "��x� � "��x� holds for all strings x �see e�g��  ��� �	!�� These universal distributions are known to be

malign� that is� average�case complexity equals worst�case complexity  ��!� It is also known that there is no

recursive universal distribution �see e�g��  ��!��
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This section will introduce a slightly weaker notion of universal distributions� called p�universal distri�

butions� and shows that there is no p�universal distribution in P�comp� which is due to Schuler  ��!� This

result is di�cult to extend to the even weaker notion of O�f��universal distributions�

We begin with the formal de�nition�

De�nition ��	�� �T �universal distributions� Let F be a set of distributions and T a set of functions

from $� to R�� A distribution � is called T �universal for F if

�i� � � F � and

�ii� for every � � F � there exists a function t � T such that t�x� � "��x� � "��x� for all strings x�

In particular� if T is the set of p�bounded functions� then � is called p�universal�

The following theorem of Schuler  ��! is a negative reply to the question of whether p�universal P�

computable distributions exist for P�comp�

Theorem ����� ���� There is no single P�computable distribution which avp�dominates all P�computable

distributions� Hence	 no p�universal distributions exist in P�comp�

Proof� We shall show the contrapositive of the theorem� First we assume that � is P�computable and

dominates all other P�computable distributions� By Lemma 	�������� we can assume that � is further strictly

P�computable�

Using this �� we shall construct a P�computable set which contains one string on each interval $n� n � N�

We de�ne the function f from f�g� to $� by the following procedure�

begin deterministic algorithm for f

input �n

if n � � then output �

for k � � to n do

�Assume that a� � ���

let L �� fa�a� � � �ak���$n�kg and R � fa�a� � � �ak���$n�kg
��� if "��L� � "��R� then let ak �� � else let ak �� �

end�for

output a�a� � � �an
end�

To check that f is P�computable is easy� By the above algorithm� f satis�es that jf��n�j � n for all numbers

n � N� Moreover by line ���� the probability "��f��n�� is at most ��n because at each iteration of the for�loop�

the probability of the set� either R or L� is reduced by half� To get the desired set� we set D � f�f�g���
Fix an arbitrary P�bi�immune set B in E� and let A � D�B� This set A is in�nite because� otherwise� the

di�erence D�B �D becomes an in�nite subset of B� this implies that B is not P�immune� a contradiction�
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We next show that �A� �� � Aver�P� ���

Claim � �A� �� � Aver�P� ���

Proof of Claim� Since B � E� there exists a deterministic Turing machine M� which computes B in time

�cn ( c for some positive constant c� To compute A� let us de�ne another machine N as follows�

begin deterministic algorithm for N

input x �say� n � jxj�
compute f��n� in polynomial time

if x �� f��n� then reject and halt

simulate M� on input x and halt

end�

The machine N actually computes A� Now we must discuss the running time of N on input x� Suppose

that x �� D� In this case� N needs polynomial time� Next suppose x � D� In this case�

TimeN �x� � c� � �p�jxj� ( �cjxj ( c� � c�� � ��c��	jxj�� log jxj �
�

c��

jxj� � "��x�

�c��
�

Hence� �x�TimeN �x� is polynomial on ��average�

Let us de�ne the distribution � as

"��x� �

�	

 "�tally��jxj� if x � D�

� otherwise�

Because � avp�dominates �� Claim � implies �A� �� � Aver�P� ��� To get a contradiction� we must show that

�A� �� �� Aver�P� ���
Assume that �A� �� � Aver�P� ��� and we shall derive a contradiction� There exist a deterministic Turing

machine M and a polynomial q such that A is computable by M in time q on ��average� For every string x

in A�

TimeM�x� � q�jxj�"�tally��
jxj�� � q��jxj�jxj( �����

Next we set p�z� � q��z�z ( ���� for all z� Using this time bound q� the set A is rewritten as

A � fx j M accepts A in time p�jxj� g�

This yields the P�computability of A� Since A 	 B� B is not P�immune� a contradiction�

This completes the proof� �

Under the assumption P � NP� Theorem 	���� can be further extended to O�f��universal distributions�

where f is any function in the set o��n�� by a modi�cation of the proof of Lemma 	�� in  ��!�

Proposition ����� ����� Assume that P � NP� For every function f � o��n�	 P�comp has no O�f��

universal distribution�
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Proof� Assume that P � NP� Assume that f � o��n�� and �� is O�f��universal for P�comp� We note

that g�x� � "���x� � "�stand�x� for some g � O�f� since �� is O�f��universal� Hence� "���x� � ��stand�x	
g�x	 � ��
jxj

for almost all x� Let x�� be the minimal string x� such that "���x� � ��
jxj for all x � x��

By de�nition� there is a polynomial�time Turing machine M which computes ��� For each x � $�� set

��x� � M �x� �
jxj��� and let "��x� � ��x����x��� In general� � is not a distribution since "� does not always

take a nonnegative value� However� we have "��x� � � for all x � x��� This is seen as follows� for all x�

j"���x�� "��x�j � j���x� � ��x�j( j���x��� ��x��j � ��
jxj�� ( ��
jx
�j�� � ��
jxj�

and thus� "��x� � "���x�� ��
jxj � � if x � x���

Now we de�ne a series of strings fxi j i � Ng as follows� For convenience� write R�x� y� if y � �jxj and

��y�� ��x� � �jyj � "��y�� Let xi�� be the minimal string such that R�xi� xi��� holds� This xi�� exists since

otherwise� "��x�i � � ��y� � ��xi� � �jyj � "��y� for all y of length � �jxij� and thus "��y� � �
c��jyj for some

constant c � �� For each integer n � jxij�
P

jyj�n "��y� � �n � �
c��n � �

c � a contradiction�

The set fxi j i � Ng is expressed by fy j �m � jyj�x�� � � � � xm � y�i � m x� � x�� and xi�� is the

minimal string such that R�xi� xi���!g� and hence it belongs to NP� Since NP collapses to P� fxi j i � Ng
is in P� Note that �X

i��

�jxij � "��xi� �
�X
i��

���xi��� � ��xi�� � lim
i
�

��xi� � ��

Let "��x� � c � �jxj�"��x� ( ��
jxj� if x � fxiji � Ng� otherwise it is �� where c is an appropriate positive

constant� The distribution � is obviously computable in polynomial time� and thus� � � P�comp�

By our de�nition� for any constant d � �� there exists an i such that

"��xi� � �jxij � �"��xi� ( ��
jxij� � �jxij � "���xi� � d � f�xi� � "���xi��

This is a contradiction� �

��
 Domination Relations and Equivalence Relations

As seen in Section ��	� domination relations can be viewed as an �approximation� or a �reducibility� between

two distributions in average�case complexity theory� If two distributions dominate each other� in this paper�

we call them �equivalent� since they are close to each other and have almost the same degree of complexity�

Equivalence relations were �rst discussed in  ��! using the terminology �approximation within constant

factor� to show the closeness of two conditional distributions�

In this section� we shall focus on �average� polynomial�domination and equivalence relations and study

their properties�

��
�� Condition I

Let us �rst recall that � p�dominates �� denoted by � �p �� if p�x� � "��x� � "��x�� where p is some p�bounded

function� Polynomial�domination relations are useful in average�case complexity theory since they do not
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change the degree of average running time� namely� provided that � p�dominates �� if an algorithm requires

polynomial time on ��average� then this algorithm also runs in polynomial time on ��average �see Lemma

��	����

Let us consider the following condition�

Condition I� Every distribution in P�samp is p�dominated by some distribution in P�comp�

The next proposition lists several di�erent conditions which are equivalent to Condition I�

Proposition ����	 The following conditions are equivalent�

�� For every � � P�samp	 there exists a distribution � in P�comp such that � �p ��

�� For every � � IP�samp	 there exists a distribution � in P�comp such that � �p ��

�� For every p�honest function f � FP and every � � P�comp	 there exists a distribution � in P�comp

and a p�bounded function p from $� to R� such that "��y� �Px�f���y	
���x	
p�x	

for all strings y�

Proof� Since IP�samp 	 P�samp� ��� implies ���� By Lemma ��	������� ��� is equivalent to ���� We show

that ��� implies ���� Assume ���� For every � � P�samp� take a �� � IP�samp which p�dominates � by

Lemma 	�	��� Use our assumption to obtain a distribution � � P�comp which p�dominates ��� By Lemma

��	������ we have � �p �� �

By Theorem 	���	� Condition I is derived from the assumption P � PP� Ben�David� Chor� Goldreich�

and Luby  �! further show that if Condition I holds� then no strong one�way function exists� The following

is an important fragment of their proof�

Lemma ����� ��� ���� Assume Condition I� Let f be any function in FP	 let k be a positive number	

and let q be any polynomial with q�n� � �� Assume that jxj � jf�x�j ( k log jf�x�j for almost all x� There

exist a set S and a deterministic Turing machine M such that

�i� S 	 ran�f��

�ii� kS � $nk � �n

q�n	 for each n � N� and

�iii� M on input x correctly lists all elements of f���x� �whenever f���x� � '	 M outputs �� in polynomial

time unless x � S�

Proof� Now let h�hw� xi� be hy� zi if w � f�g�� jzj � jwj� z v x� and f�x� � y� Note that h is well�de�ned

and p�honest� Take a distribution � de�ned as follows� "��hw� xi� � "�stand�x� � ���llog�jwj	�� if w � f�g�� or

else �� Clearly� �h�� � IP�samp 	 P�samp� Note that "�stand�x� � ��jxj

��jxj��	� �

By our assumption Condition I �as well as Proposition 	��������� there are an � � P�comp and a polyno�

mial r such that r�jyj� � "��y� z� � "�h���y� z� for all y and z� So� for each y � ran�f�� we have "��y� z� � ��jyj

s�jyj	
for some z� where s�n� � 	r�n�nk�n(nk (���� For each y� let Cy � fz j "��y� z� � ��jyj

s�jyj	 � jzj � jyj(k log jyjg�
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De�ne S � fy j kCyk � q�jyj�s�jyj�� y � ran�f�g� Clearly we have S 	 ran�f�� We show that� for almost

all n� kSnk � �n

q�n	 � Assume otherwise� and let y� be an element of S� Let n � jy�j� Then we have

X
y�Sn

X
z�Cy

"��hy� zi� � kSnk � kCy�k � ��n
s�n�

� ��

a contradiction� De�ne a Turing machine M as follows� on input y� by a depth��rst search� M computes all

elements of Cy if kCyk � q�jyj�s�jyj� and lists all elements z of Cy which satisfy f�z� � y� or else M outputs

�� Since f���y� 	 Cy� all elements of f���y� are printable in polynomial time if y � S� This completes the

proof� �

Using the hash�function technique of  	�! and the ampli�cation technique of probabilistic Turing machines�

we can show that Condition I leads to the consequence that every NP set is nearly�RP�

Theorem ����� ����� Assume Condition I� Let A be any set in NP� For every polynomial p with

p�n� � � for all n � N	 there exist a set D and a polynomial�time randomized Turing machine M such that

D 	 A	 and	 for each x	 x � A�D implies PrM  M �x� �� A�x�! � �
� 	 x �� A implies PrM  M �x� �� A�x�! � �	

and Prn x � D! � �
p�n	 for almost all n� Hence	 Condition I implies that every NP set is nearly�RP�

Proof� Assume Condition I� Take any set A in NP and any polynomial q� and we will show that A

satis�es the claim� There exists a set B � P such that A � fx j �z � $jxj xz � B!g� Let Bx � fz j xz � Bg
for each x� Assume that there exists an increasing polynomial p such that Prn x � A! � �

p�n	 for almost all

n since� otherwise� the theorem is trivial by choosing D � '�

We take the set Hn�n�c of hash functions� Let snk be the kth string in the set $ilog�n	 with respect to

the standard order� De�ne f�x�� � �xsnkhh�y�	n�c�n�k if x� � xysnkh and y � Bx� otherwise �x�� where

x � $n� h � Hn�n�c� and c � ilog�n�� Notice that jx�j � jf�x��j for all x�� For each x� let g�x� � kf���x�k�
For brevity� write t�n� � � ( n( ilog�n� ( �n ( ���n( ilog�n�� ( n( ilog�n��

For �xed k� and x of length n� let �k�x � Prhw g��xsnkhw	n�c�n�k� � � j h � Hn�n�c� w � $n�c!� We

�rst show that �k�x � �
�n�
 for almost all n� Now we �x k and x� and assume that n � jxj is su�ciently

large and ilog�g�x�� � k � n� Consider the case kBxk � �� The probability �k�x is larger than or equal to

the probability over all hw that� for each y in Bx� h�y�	k�c � w	k�c� and h k�distinguishes y on Bx� Thus�

we have

�k�x � kBxk � ���k�c	 � ��� ��c� � ��� ��c� � ��c � n� �

�n�
� �

�n( �

since logn � c � logn( �� For the case kBxk � �� clearly �k�x � � since g��xsnkhw	n�c�
n�k� � � for all k�

h� and w� This yields the desired result�

By Lemma 	����� there are a set S and a polynomial�time deterministic Turing machine N which rec�

ognizes S such that S 	 ran�f� and kS � $t�n	k � �t�n�

���n�
	�q�n	� We de�ne a randomized polynomial�time

algorithm M as follows�

begin randomized algorithm M

input x �say� n � jxj�
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choose w and h at random �w � $n�c� h � Hn�n�c� c � ilog�n��

let Result �� �

for all k �� � k � n�

run N on x�k � �xsnkhw	k�c�n�k

let Result �� OR of Result and N �x�k�

end�for

output Result and halt

end�

Let �k�x � Prhw �xsnkhw	k�c�n�k � S j w � $n�c� h � Hn�n�c!� where c � ilog�n�� Using this �k�x�

we de�ne D � fx � $� � A j �k ilog�kBxk� � k � n � �k�x � �
���n�
	 � jxj � n!g� We will show that

Prn x � D! � �
q�n	 � Assume otherwise� So� we have �k�x � �

���n�
	 for some k �ilog�kBxk� � k � n� and

x � Dn� Since

maxf�k�x j ilog�kBxk� � k � n� x � $ng �Prn x � D! � kSt�n	k
�t�n	

�
�

���n( ��q�n�
�

we have maxf�k�x j ilog�kBxk� � k � n� x � $ng � �
���n�
	 � This is a contradiction� Therefore� Prn x �

D! � �
q�n	 �

Now our goal is to prove that �i� PrM  M �x� � A�x�! � �
���n�
	 for all x in A�D� and �ii� PrM  M �x� ��

A�x�! � � for all x �� A� This is enough to establish the theorem because of the worst�case version of

the Ampli�cation Lemma� Take any input x of length n� Let �x � Prhw A�x� � ORn
k��N �x�k�� j h �

Hn�n�c� w � $n�c!� Note that the probability PrM  M �x� � A�x�! is at least �x� Assume A�x� � � for a

string x � D� Note that if x�k� � S and g�x�k�� � � for some k�� then ORn
k��N �x�k� � �� Hence�

�x � maxf�k�x � �k�x j ilog�kBxk� � k � ng � �

���n( ��
�

For the other case A�x� � �� N �xsnkhw	n�c�
n�k� � � for all h� w� and k� and thus� �x � �� This completes

the proof� �

��
�� Condition I�

Polynomial�domination relations are useful but too tight to be considered an e�ective measure of �approx�

imation� or �reducibility� between distributions in average�case complexity theory� Gurevich  ��! later

introduced a weaker form of domination relations by requiring a function to be p�bounded �on the average��

Following his de�nition� we also relax Condition I to allow the domination to be� instead� �polynomially�

bounded on the average��

Condition I�� Every distribution in P�samp is avp�dominated by some distribution in P�comp�

Obviously Condition I implies Condition I�� but we suspect that the the converse implication may not be

provable a�rmatively�
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In the case of avp�dominations� we no longer prove a similar equivalence as in Proposition 	����� The

following claim is the best possible so far�

Lemma ����� The following conditions are equivalent�

�� For every � � IP��samp	 there exists a distribution � � P�comp such that � �avp ��

�� For every p�honest function f � FP and every � � P�comp	 there exists a � � P�comp and a function

p which is polynomial on ��average such that "��y� �Px�f���y	
���x	
p�x	 for all y�

Proof� By Lemma ��	������� �

To see a consequence of Condition I�� we need a notion of PP�comp and its structural properties� These

will appear in Section ����

��
�� �P�comp versus P�samp

We �rst see the gap between the two notions� �P�computability and P�samplability� The next proposition

was shown by Schuler and Watanabe  ��! for conditional distributions� We modify their proof to accommo�

date in�nite distributions� To describe the proposition� we need the notion of truth�table samplability of

distributions�

De�nition ����� �Truth�Table Samplable Distributions�

�� A distribution � is PA
tt�samplable if there exist a randomized oracle Turing machine M � a deterministic

Turing machine N � and a polynomial p such that

�i� M with oracle A generates � in time polynomial in the length of outputs� and

�ii� on input ��i� s�� N lists all query strings ofQ�M�A� �i� s� in polynomial�time �without any queries�

if s is a code of a computation path given by M with oracle A on input �i�

�� The notation PA
tt�samp denotes the collection of all PA

tt�samplable distributions� and PC
tt�samp denotes

the union of all distributions in PA
tt�samp for any A � C�

Proposition ����� ��	� �P�comp 	p PNPtt �samp�

Proof� Take an arbitrary �P�computable distribution �� There exist a function f � �P and a polynomial

q such that
���"��x�� f�x��i	

�q�jxj�i�

��� � ��i for all x and i � N� Without loss of generality� we can assume that this q

is increasing� For simplicity� let �ix � f�x��i	
�q�n�i�

for each i � N� Since f � �P� there exists a set A � P such that

f�x� �i� � kfw � $q�jxj�i	 j h�i� x� wi � Agk for all x� For brevity� let Ai � fhw� xi j w � $q�jxj�i	 � h�i� x� wi �
Ag� Let Sin � fxw j hx�wi � Ai � jxj � n � jwj � q�n� i�g� Note by Lemma A�	 that j�ix � �jxj � ��i ( ��j

for all integers i� j � ��
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We use universal hash functions to approximate the value of f�x��i	
�q�n�i�

� Let us consider the set

Hn�q�n�i	�n�q�n�i	�� of hash functions� We de�ne the following three sets that will be used as oracles�

X� � fh�i� �ni j �x � $n�w � $q�n�i	 hx�wi � Ai!g�

X� � fh�i� �n� h� yi j �xw� x�w� � Sin xw �� x�w� � h�xw�	q�n�i	 � h�x�w��	q�n�i	 � y	q�n�i	!g� and

X� � fh�i� �n� h� y� �ji j �xw � Sin h�xw�	q�n�i	 � y	q�n�i	 � �xw�j � �!g�

It is easy to see that all sets X�� X� and X� are in NP�

If there exists a string x such that ��x� � �� then � falls into P�comp� and thus� the claim is trivial�

We therefore assume that there is no such x� Let p�n� � �n ( 	� We consider the following randomized

algorithm M �

begin randomized algorithm M

input �i

generate a natural number n� at random

for n � n� to � do

if h�i�p�n	� �ni �� X� then go to ����
repeat i ( p�n� times

generate h in Hm�m�� at random� where m � n ( q�n� i( p�n��

generate y in $m�� at random

if h�i�p�n	� �n� h� yi � X� then go to ���
�nd the strings x � $n and w � $q�n�i�p�n		 using X� s�t�

h�xw�	r � y	r and hx�wi � Ai� where r � q�n� i( p�n��

output x and halt

��� end�repeat

���� end�for

end�

For each x� we de�ne �x
i as the probability that the randomized algorithmM outputs x� As in the proof

of Theorem 	�	���� it su�ces to show that

�i� ����i�p�n�
��n��	� � �i�p�n	x � �x

i � � � �i�p�n	x � where n � jxj� and

�ii� j�xi � �x
jj � ��i ( ��j for all i� j � ��

To get the desired distribution �� we set "��x� � limi
� �x
i� and consequently� � is p�equivalent to ��

In the following� we shall prove claims �i� and �ii� above� Fix i and n� Let m � n ( q�n� i� and

r � q�n� i ( p�n��� Moreover� let Six � fw j hx�wi � Ai�p�n	g� First we de�ne �i��x as the probability� over

all h � Hm�m�� and all y � $m��� that the algorithm M �nds x in a single iteration of the repeat�loop�

namely�

Prhy  h�i�p�n	� �n� h� yi �� X� � �w�h�xw�	r � y	r � xw � Six� j y � $m��� h � Hm�m��!�
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This is equivalent to the following�

�i��x �
X
w�Six

Prhy  h�xw�	r � y	r �

��z � Six � fxwg�h�z�	r �� h�xw�	r� j y � $m��� h � Hm�m��!

�
X
w�Six

Prhy  h�xw�	r � y	r � h m�distinguishes xw on Sin j y � $m��� h � Hm�m��!�

Hence� by Proposition ��������� we have �letting c � � in the proposition�

�

�
�
X
w�Six

��q�n�i�p�n		 �
X
w�Six

��q�n�i�p�n		 � �� � ���� � �i��x �
X
w�Six

��q�n�i�p�n		�

Since kSixk � f�x� �i�p�n	�� we have

�

�
� �i�p�n	x �

�

�
� f�x� �i�p�n	�

�q�n�i�p�n		
� �i��x � f�x� �i�p�n	�

�q�n�i�p�n		
� �i�p�n	x �

Next we de�ne �ix as the probability� over all h � Hm�m�� and all y � $m��� that the algorithm M �nds x

during i ( p�n� iterations of the repeat�loop� We �st estimate the error probability� The error probability

is at most ��i�p�n	� As a consequence� we have�
�� �

�i�p�n	

�
� �i�p�n	x � �ix � �i�p�n	x �

As in Theorem 	�	���� we can show that j�ix � �jxj � ��p�n	�����i ( ��j��

The following analysis of the algorithm is similar to the proof of Theorem 	�	����

Let � in �
P

x�jxj�n �
i
x� The probability �x

i is equivalent to the probability that� for every k � n� k is

�rst generated� and the algorithm fails to halt until it reaches stage n of the for�loop and �nds x� For each

k� with probability �
��llog�k���

� we generate integer k� Following the algorithm� we eventually reach n and

with probability �ix� we output x� Hence� if � � k � n� then the probability that x is actually output is

���llog�k	�� � �ix �
Qn��

j�k ��� � ij�� and if k � n� then this probability is exactly ���llog�n	�� � �ix� Thus�

�x
i �

n��X
k��

�
� �ix

��llog�k	��

n��Y
j�k

��� � ij �

�
A (

�ix
��llog�n	��

�

Hence� we have

�� ��i�p�n	

��n( ���
� �i�p�n	x � �

��llog�n	��
�ix � �x

i � �ix �
nX

k��

�

��llog�k	��
�

��

�
�ix � � � �i�p�n	x �

For the condition �ii�� we follow the proof of Proposition 	�	���� �

There may be possible to replace the symbol �	p� in the above proposition by �	�� However� because

our algorithm needs to know the length of output strings x before the actual simulation of "��x�� we cannot

conclude that �P�comp 	 PNPtt �samp�

Here is a corollary of Proposition 	����� We note that NP 	 BPP if and only if NP � RP  ��!�
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Corollary ����� NP 	 BPP implies �P�comp ��p P�samp�

Proof� We note that P�samp 	 �P�comp� It su�ces to show that �P�comp 	p P�samp under the

assumption NP 	 BPP� Let us assume NP 	 BPP� Take an arbitrary distribution � in �P�comp� By

Proposition 	����� there is a � � PNPtt �samp such that � is p�equivalent to �� Under our assumption� �

belongs to PBPP�samp� Using Proposition 	�	���� there is a distribution � in P�samp such that � �p ��

Hence� � �p �� �

��
�� Condition II�

In this subsection� we study the following condition on equivalence relations�

Condition II�� P�samp 	avp P�comp�

Clearly Condition II� implies Condition I��

As in the previous subsection� we can show the following proposition�

Proposition ����� The following two conditions are equivalent�

�� IP��samp 	avp P�comp�

�� For every p�honest f � FP and every � � P�comp	 there exists � � P�comp and functions p� q which

are polynomial on ��average such that
P

x�f���y	 q�x�"��x� � "��y� �Px�f���y	
���x	
p�x	 for all y�

Proof� By Lemma ��	��	���� �

In what follows� we shall show that IP��samp 	avp P�comp implies P � RP� and thus if Condition

II� is true� then RP collapses to P� In the following proof� the worst�case version of the Ampli�cation

Lemma to one�sided bounded�error probabilistic algorithms is e�ectively used to make its error probability

exponentially small�

Proposition ����� ����� IP��samp 	avp P�comp implies P � RP�

Proof� Consider an arbitrary A � RP� We prove that A belongs to P� By the ampli�cation lemma  ��!�

there is a strictly increasing polynomial p and a set B � P such that� for every x � $n� Pry hx� yi �� B j y �
$p�n	! � ��n if x � A� and otherwise� Pry hx� yi � B j y � $p�n	! � ��

Let � be the distribution de�ned by "��xy� � "�stand�x� � ��p�jxj	 if jyj � p�jxj�� or else "��xy� � �� Clearly

� is P�computable� Let

f�xy� �

���	
��


x�p�jxj	 if jyj � p�jxj� and hx� yi � B�

x�p�jxj	 if jyj � p�jxj� and hx� yi �� B�

xy otherwise�
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By our assumption and Proposition 	����� we have a distribution � � P�comp and a function q which is poly�

nomial on ��average such that
P

x�f���y	 q�x�"��x� � "��y� �Px�f���y	
���x	
q�x	 for all y� Since

P
x ��


q�x	��k

jxj "��x� �
c for some constants k� c � �� we have q�x� �



c�jxj
���x	

�k
for all nonempty strings x with "��x� � �� Thus� for

almost all x and all y of length p�jxj��

q�xy� �
�
c � jxyj
"��xy�

�k
�


c�jxj( p�jxj���jxj( ����jxj�p�jxj	

�k
�



�jxj � �jxj�p�jxj	
�k

� �r�jxj	�

where r�n� � ��n( p�n��k� Since � � P�comp� there exists a deterministic polynomial�time Turing machine

M such that j"��x� � M �x� �i�j � ��i� Let M ��x� � M �x� �r�jxj	��jxj�� By de�nition� j"��x� �M ��x�j �
��r�jxj	��jxj for all x�

Let x � $n� Assume that x � A� Then� we have

"��x�p�n	� �
X

z�f���x�p�n�	

"��z�

q�z�
� kf���x�p�n	�k

�r�n	
� "�stand�x�

�p�n	
� �n � �

�r�n	��n

since "�stand�x� � �
�n���n � �

��n if n � �� Hence� M ��x� � "��x�p�n	� � ��r�n	��n � ��r�n	��n��n � ��� In

the case that x �� A� "��x�p�n	� � Pz�f���x�p�n�	 q�z� � "��z� � �� Hence� M ��x� � "��x�p�n	� ( ��r�n	��n �

��r�n	��n� Now we have a complete characterization of A in terms of M �� namely� A � $n � fx � $n j
M ��x� � ��r�n	��n��n � ��g for almost all n� Since M � halts in polynomial time� A is also computable in

polynomial time� �

The above proposition does not su�ce to imply that P � PP� since the worst�case version of the

Ampli�cation Lemma may not hold for PP sets�

��
�� Condition II

In contrast to Condition II�� we shall consider its polynomial version� which leads to the conclusion that

P � NP� Formally we de�ne Condition II as follows�

Condition II� P�samp 	p P�comp�

Note that Condition II implies Condition II� as well as Condition I and that� by Theorem 	���	� Condition

II is true if FP � �P�

We start with the following proposition�

Proposition ����	
 ����� The following three conditions are equivalent�

�� P�samp 	p P�comp�

�� IP�samp 	p P�comp�

�� For every p�honest f � FP and every � � P�comp	 there exist a distribution � in P�comp and p�

bounded functions p and q from $� to R� such that
P

x�f���y	 q�x�"��x� � "��y� �Px�f���y	
���x	
p�x	 for

all y�
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Proof� By Lemma ��	��	���� �

By Proposition 	������ we can replace P�samp in Condition II by a smaller set IP�samp� At the end of

this section� we shall see that we also can replace P�samp by a larger set �P�comp�

Next we shall prove that Condition II yields the consequence that NP collapses to P� We �rst strengthen

Lemma 	���� under the assumption that P�samp is p�included in P�comp�

Lemma ����		 ����� Assume that P�samp 	p P�comp� For any set B � P and any polynomial p	 let

SB � fx j kBxk � p�jxj�g	 where Bx � fz � $jxj j xz � Bg� There exists a deterministic Turing machine M

such that	 for each n � N	 M on input x in SB �$n lists all elements of Bx �whenever Bx � '	 M outputs

�� in polynomial time�

Proof� Assume that P�samp 	p P�comp� We de�ne a p�honest function f as follows� f�hw� yxi� � h�y� zi
if w � s

jxyj
k for some k� jxj � jyj� jzj � k� z v x� and yx � B� otherwise� h�y� xi� Let "��hw� xi� �

"�stand�x� � ���llog��jxj	�� if w � $llog�jxj	� or else �� where llog��n� � llog � llog�n��

Since �f�� � P�samp� our assumption ensures that there are an � � P�comp and a polynomial r such that

r�jyj(jzj��"�f���hy� zi� � "��hy� zi� � "�f���hy� zi��r�jyj(jzj� for all y and z� Denote by Dy�z the collection of x

such that z v x and x � By� If y � SB � then kDy�zk � p�jyj�� Note that "�f���hy� zi� � kDy�zk
��llog��jyj���

� ���jyj

��llog��jyj���
�

For simplicity� let q�n� be �llog��n� ( �llog��n� ( �� Hence� "��h�y� zi� � ���jyj

r�jyj	��q�jyj� if Dy�z �� '�

Let N be a polynomial�time Turing machine which computes "�� Let d be the minimal positive in�

teger such that � � r��n� � �q�n	 � �d�llog�n	 for almost all n� We de�ne a new machine N � as N ��hy� zi� �

N �hy� zi� ��jyj�d�llog�jyj	���� Hence� N ��h�y� zi� � "��h�y� zi�����jyj�d�llog�jyj	�� � �����jyj

�d�llog�jyj�
� For each y � $n�

let Cy � fz j N ��h�y� zi� � �����n

�d�llog�n�
� jzj � ng�

We note that if z � Cy� then "��h�y� zi� � ���jyj

�d�llog�n�
� For each n � � and any y � SB �$n�

r��n�� � ���n
�q�n	

�
X
z

kDy�zk �
X
z

r�jyj( jzj��f�� �h�y� zi� �
X
z

"��h�y� zi� � ���n

�d�llog�n	
kCyk�

Therefore� kCyk � �d�llog�n	�q�n	 � r��n�� �Pz kDy�zk � �dr��n��p�n�
n�

Note that By 	 Cy if y � SB � Since Cy is printable in polynomial time� all elements of By are printable

in polynomial time� This completes the proof� �

Theorem ����	� ����� P�samp 	p P�comp implies P � NP�

Proof� Let us assume that P�samp 	p P�comp� Let A be an arbitrary set in NP� We shall show that

A � RP since P � RP by Proposition 	����� It su�ces to consider a set A of the form A � fx j �z �
$jxj xz � B!g for some B � P� Let Bx � fz � $jxj j xz � Bg�

Let us de�ne

"B � fx�z� j �khxz x� z � $n � x� � xsnkhh�z�	k�c�n�k
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�z� � z��jx
�j�jzj � xz � B � h � Hn�n�c � c � ilog�n�!g�

Since B � P� "B is also in P� Let S �B � fx� j k "Bx�k � �g� where "Bx� � fz� � $jx�j j x�z� � "Bg�
We de�ne �k�x � Prhw xsnkhw	k�c�n

�k � S �B � � j h � Hn�n�c � w � $n�c!� We �rst show that� for

almost all n and all x with kBxk � �� �k�x �
�

�n�
 � Now �x k and x and assume that n � jxj is su�ciently

large� and ilog�kBxk� � k � n� The probability �k�x is at most the sum of the probabilities over all strings

hw that� for each z � Bx� h�z�	k�c � w	k�c� and h k�distinguishes z on Bx� Thus� we have

�k�x � kBxk � ��� ��c� � ���k�c	 � ��� ��c���c �
n� �

�n�
� �

�n( �
�

We apply Lemma 	����� to the set S �B � and we obtain a polynomial�time deterministic Turing machine

N which recognizes S �B � We de�ne a randomized polynomial�time algorithm M as follows�

begin randomized algorithm M

input x �say� n � jxj�
choose w� h at random �w � $n� h � Hn�n�c� c � ilog�n��

let Result � �

for all k �� � k � n�

run N on x�k � xsnkhjw

let Result � OR of Result and N �x�k�

end�for

output Result

end�

Our goal is to prove that PrM  M �x� � A�x�! � �
���n�
	 for almost all x� Take any input x of length n�

Let �x � Prhw A�x� � ORn
k��N �x�k�� j h � Hn�n�c� w � $n!� Note that the probability PrM  M �x� � A�x�!

is at least �x�

Assume A�x� � �� Note that if � � g �B�x�k�� � � for some k�� then ORn
k��N �x�k� � �� The probability

�x � Prhw  A�x� � ORn
k��N �x�k� j h � Hn�n�c� w � $n! is at least the sum of the probability over all hw

that� for each z � Bx and for some k with ilog�gB�x�� � k � n� h�z�	k�c � w	k�c and h k�distinguishes

z on Bx� Hence� �x � gB�x� � �� � ��c� � ���k�c	 � �� � ��c���c � �
�n�� � For the other case A�x� � ��

N �xsnkhw	k�c�n�k� � � for all h� w� and k� thus �x � �� This completes the proof� �

Corollary ����	� ����� P�samp 	p P�comp if and only if �P�comp 	p P�comp�

Proof� �If - part� This is obvious since �P�comp � P�samp by Proposition 	�����

�Only if - part� Assume Condition II� By Theorem 	������ we have P � NP� In particular� NP 	 BPP�

By Corollary 	����� every �P�computable distribution is p�equivalent to some distribution which can be

sampled by a randomized Turing machine in time polynomial in its output� �
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��� Other Topics

There are several intriguing distributional issues which are not discussed in this chapter� Here we present

two di�erent approaches�

Ranking Distributions� Reischuk and Schindelhauer  �	! introduced a new type of distributions that

allows precise complexity classi�cation of distributional problems� They called such distributions rankable

distributions�

Given a distribution �� its ranking function rank��x� is de�ned as rank��x� � kfz j "��z� � "��x�gk�
A distribution � is polynomially rankable �P�rankable� for short� if the function rank� is one�one and P�

computable  �	!� Let P�rank denote the collection of all P�rankable distributions� Note that� for every x�

rank��x� � "��x� � Pz "��z� � �� This implies that rank��x� � �
���x	 unless "��x� � �� In particular� if � is

positive and supportive� log�rank��x�� � p�jxj� holds for some polynomial p�

For simplicity� let t be a strictly increasing function on R�� A function f from $� to N is called t�average

with respect to rank� if
P

x�rank��x	�m
t���f�x		

jxj � m for any number m � �� We say that a distribution

�D� rank�� is solvable in average polynomial time with respect to rankability if there exist a polynomial p and

a deterministic Turing machine M computing D such that �x�TimeM �x� is p�average with respect to rank��

Watanabe  ��	! pointed out the following relationship between P�computable distributions and P�

rankable distributions� Take a distribution � satisfying log�rank��x�� � jxjd for some constant d � ��

Let us then de�ne

"���x� �
c�

rank��x� � log��rank��x��
�

where c� is the normalizing constant and log� z � �log z���

Proposition ����	 ����� Let � be a distribution and assume that log�rank��x�� � jxjk for some k � ��

For any function f from $� to N	 if f is polynomial on ���average	 then f is polynomial�average with respect

to rank��

Proof Sketch� Assume that f is polynomial on ���average� Then we can take constants c� k � � such

that� for all m � �� X
x�rank��x	��m

f�x���k

jxj � c �m� � �m�

For any m� let Xm be the set of strings x such that �m�� � rank��x� � �m� Now we can claim that

there exists a constant e � � such that� for any su�ciently large m�X
x�Xm

f�x�����dk

jxj � �m���

To show the claim� let X�
m � fx � Xm j f�x���k�jxj � m�g and X ��

m � fx � Xm j f�x���k�jxj � m�g� For

the set X�
m� it holds that X

x�X�
m

f�x�����dk

jxj � �m

m���t����dt� � �m�
�
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On the other hand� the set X��
m satis�es that

X
x�X���

m

f�x�����dk

jxj � cm��m

m��������t	 � �m�
�

Combining the above two sums� we obtain the desired result�

Therefore� for any su�ciently large number m�
P

x�rank��x	��m
f�x	����dk

jxj � �m� which implies that f is

p�average with respect to rank��

We note that Belanger and Wang  �! show that if RBTP is in Aver�P� ��� then any problem in Dist�NP�P�rank�

is solvable in average polynomial time with respect to rankability�

Indistinguishability of Distributions� Another topic is the complexity of distributions� We shall

follow Meyer
s terminology  ��!� Two distributions � and � are called �statistically indistinguishable� if

limn
� nk
P

x�jxj�n j"�n�x� � "�n�x�j � � for all k � N� Similarly� � and � are �circuit indistinguishable� if�

for all families of polynomial�size circuits C � fCngnN� limn
� nkjPx�jxj�nCn�x��"�n�x� � "�n�x��j � � for

all k � N� and �algorithmically indistinguishable� if� for all polynomial�time probabilistic Turing machines

M � limn
� nkjPx�jxj�nPrM  M �x� � �! � �"�n�x�� "�n�x��j � � for all k � N�

Meyer  ��! show the following separation result�

Theorem ����� ���� Let f be a space�constructible function on N such that limn
� nk

f�n	 � � for all

k � N� There exist two O�f���space samplable distributions � and � such that � and � are algorithmically

indistinguishable but circuit distinguishable�

We do not intend to include any proof of this theorem� The interested reader may refer to  ��!�



Chapter �

Average Polynomial Time

Reducibilities

��� Introduction

In the early ����
s� Cook  ��!� Karp  	�!� and Levin  ��! took a pioneering step towards the classi�cation

of the hardest problems in NP� They introduced notions of resource�bounded reducibilities among NP

problems� The idea of these reducibilities is as follows� a problem T is recognized to be at least as hard

as another problem S if the problem S can be transformed into the problem T in polynomial time so that

if T is solved easily� then so is S� The problems �hardest� in this sense among NP problems are called

NP�complete� Typical NP�complete problems are the satis
ability problem� Hamiltonian circuit problem�

and traveling salesman problem� For more NP�complete problems� see  ��!�

In average�case complexity theory� Levin has introduced a similar notion of polynomial�time many�one

reducibility among distributional decision problems and showed that the randomized bounded tiling problem

is one of the hardest problems in Dist�NP�P�comp�� His reduction from a distributional problem �A� �� to

another distributional problem �B� �� requires a polynomial�time many�one reduction that maps set A to set

B and employs a so�called domination condition between � and �� This domination condition guarantees

that instances occurring with high probability are mapped by the reduction to instances occurring with

high probability� This requirement is essential in Levin
s theory of average�case NP�completeness in order

to ensure the closure property of a class under these reductions� At the same time� it makes completeness

proofs of given distributional problems di�cult to achieve�

Since Levin
s discovery of average�case NP�completeness� researchers have introduced several interesting

notions of reducibilities into the theory of average�case NP�completeness� We will review these reducibilities

in this chapter�

Section ��� will introduce two of the most important reducibilities among distributional decision problems�

deterministic many�one reducibility and Turing reducibility� Levin  ��! introduced a notion of many�one

�	�
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reducibility� and the notions of deterministic Turing reducibility and random many�one reducibility were

introduced and studied in  ��� �� 		� ��� ��!� Other reductions of interest are logspace many�one reductions

 �! and logspace many�one reductions which are p�honest  ��!�

Section ��� will introduce deterministic many�one reducibility and polynomial�time isomorphism among

distributional decision problems� and then the notion of deterministic Turing reducibility will be introduced�

The Turing reducibility will be particularly used to build the average polynomial�time hierarchy in Chapter ��

In Section ���� we shall exhibit several many�one complete problems for Dist�NP�P�comp�� We �rst

show that the randomized bounded halting problem is complete for Dist�NP�P�comp�� and then the other

distributional problems are shown to be polynomially isomorphic to this problem�

In Section ��	� we shall discuss several incompleteness results� The choice of distributions is important

when one attempts to prove that some distributional problem is complete for Dist�NP�P�comp�� Some

distributions are such that their associated distributional problems cannot complete for Dist�NP�P�comp��

For example� 
at distributions and sparse distributions have this characteristic�

Flat distributions are often arise in graph�related decision problems� however� no distributional problems

with 
at distributions become complete for Dist�NP�P�comp� unless EXP � NEXP� Venkatesan and

Levin  ���! proposed new reduction which uses random coin tosses� In Section ���� we shall introduce

probabilistic reducibility� called bounded�error probabilistic truth�table reducibility�

In Section ���� some structural results are shown�

Major Contributions� Some results in Section ��� are from Schuler and Yamakami  ��!� and Section ���

provides a series of new results� More precisely� the following are the major contributions to this chapter�

Theorem ��	�� shows that sparse distributions fail to make the corresponding distributional problems

p�m�complete for Dist�NP�P�comp� unless P � NP�

Lemma ����� is a relativized version of the Ampli�cation Lemma �Lemma ��������

Lemma ����	 shows that skew avbpp�tt�reducibility is closed under p�m�reductions� namely� if �A� �� is

p�m�reducible to some distributional problem which is skew avbpp�tt�reducible to �B� ��� then �A� �� is skew

avbpp�tt�reducible to �B� ���

Lemma ����� shows that� if �A� �� is skew avbpp�tt�reducible to �B� ��� then there exists a problem �B�� ���

which is p�m�reducible to �B� �� such that �A� �� is skew avbpp�tt�reducible to �B�� ��� via a reduction machine

which queries strings of length greater than the input size�

Proposition ����� shows that� for every recursive set D not in P� there exists an incomparable pairs with

respect to �p
T �

Theorem ����� shows that the distributional bounded halting problem with a 
at distribution is bpp�tt�

complete for Dist�NP�P�comp��

Proposition ����� introduces a new result regarding the transitivity of avbpp�tt� and bpp�tt�reducibilities�
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��� Deterministic Reducibility

Reducibility is one of the most important tools in computational complexity theory for assessing the rel�

ative complexity of two given problems� This section will present the formal de�nitions of deterministic

reducibilities among distributional decision problems and develop their basic structural properties�

����� Many�One Reducibility

In this section� we shall formally introduce two notions of many�one reducibilities� polynomial�time many�one

and average polynomial�time many�one reducibilities�

A many�one reducibility among distributional decision problems requires mappings among sets and con�

straints among distributions� Let us consider the worst�case polynomial�time many�one reduction f between

two sets A and B� The reduction ensures the relationship A � fx j f�x� � Bg� If B is computed by a

machine M in polynomial time� then a simple algorithm N which �rst computes f�x� and then simulates

machine M on input f�x� actually witnesses the P�computability of A� Now we switch from sets A and B

to two distributional decision problems �A� �� and �B� ��� Suppose that �B� �� is computed by a machine M

in polynomial time on ��average� that is� �x�TimeM �x� is polynomial on ��average� The above algorithm N

needs at most O�Timef �x� ( TimeM �f�x��� steps� where Timef �x� denotes the time required to compute

f�x�� To guarantee the average polynomial�time computability of �A� ��� the values "��x� and "��f�x�� must

be closely related� This last requirement is called a �domination condition� for f �

First recall that the notation �f�� denotes the default distribution de�ned from � and f by its probability

"�f���x� � "��fz j f�z� � xg� for each x�

There are several possibilities for domination conditions� Here is a list of popular conditions�

�i� �f�� �p �  �!�

�ii� "��z� �Px�f���y	
���x	
p�x	 for some p�bounded function p�

�iii� � �p � and "� � "�f�� for some distribution �  ��� ���!�

By Lemma ��	���� condition �ii� is equivalent to the condition that � �p � and � � �f�� for some semi�

distribution �� and thus� �iii� implies �ii�� By the proof of Lemma ��	���� �i� implies �ii� if f is p�bounded�

Assume that f is p�honest and p�bounded� By Lemma ��	���� �ii� implies �iii�� and by Lemma ��	���� �ii�

implies �i��

In most cases� the choice of domination condition is relatively harmless when one proves average NP�

completeness of a given distributional decision problem� because most known complete problems are isomor�

phic� In this thesis� however� we shall use the weakest domination condition �ii��

De�nition ����� �Polynomial�TimeMany�One Reductions� �	
� Given two distributional decision

problems �A� �� and �B� ��� �A� �� is called polynomial�time many�one reducible �p�m�reducible� for short�

to �B� ��� denoted by �A� �� �p
m �B� ��� if there exists a function f such that
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�i� �E�ciency� f � FP�

�ii� �Validity� A � fx j f�x� � Bg� and

�iii� �Domination� � �p �� and "� � "�f�� for some semi�distribution ��

The function f is called a polynomial�time many�one reduction �p�m�reduction� for short� function and is

said to reduce �A� �� to �B� ���

Gurevich  ��! expanded many�one reducibility by allowing a many�one reduction to be polynomial on the

average� This reduction is known as average polynomial�time many�one reducibility�

De�nition ����� �Average Polynomial�Time Many�One Reductions� ��	� Let �A� �� and �B� ��

be two distributional decision problems� �A� �� is average polynomial�time many�one reducible �avp�m�

reducible� for short� to �B� ��� denoted by �A� �� �avp
m �B� ��� if there exists a function f such that

�i� �E�ciency� �f� �� � Aver�FP� ���

�ii� �Validity� A � fx j f�x� � Bg� and

�iii� �Domination� � �avp �� and "� � "�f�� for some semi�distribution ��

The condition �iii� on the distributions in the above de�nition is simply called the domination condition

for the reduction function f �

Our de�nition basically follows Gurevich
s domination condition� Gurevich  ��! de�ned his many�one

reducibility as follows� �A� �� polynomially many�one reducible to �B� �� if and only if there exists a P�

computable function f and a distribution � and a set C 	 fx j "��x� � �g such that f reduces A�fx j "��x� �

�g to B� � �p �� and "�dC�y� � "�f���y� for all y� where �dC is the distribution satisfying that

"�dC�x� �
�	

 "��x� if x � C�

� otherwise�

The following lemma is straightforward�

Lemma ����� Let D be any set� Given distributions � and �	 � �p � implies �D��� �p
m �D� ���

Proof� Let us consider the identity function f � i�e�� f�x� � x for all x� The assumption � �p � is

equivalent to �f�� �p �� Hence� �D��� is p�m�reducible to �D� �� via f � �

The following lemma is a useful tool for proving that the composition of functions is polynomial on

��average�

Lemma ����� Let � be a distribution and let g be a function on $� such that �x�jg�x�j is polynomial

on ��average� Also let f be a function from $� to R� such that f is polynomial on ��average� If there
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exists a semi�distribution � which avp�dominates � such that "� majorizes "�g�� 	 then the composition f � g is

polynomial on ��average�

Proof� Assume that � �avp � and "� � "�g�� for some semi�distribution �� Assume that f is pf on

��average� and �x�jg�x�j is pg on ��average� where pf and pg are appropriate increasing polynomials� Since

� �avp �� there exists a function p that is q on ��average� where q is an increasing polynomial� satisfying

p�x� � "��x� � "��x� for all x�

Fix r � �� Let us de�ne

s�z� � pf �pg��z� � �q��z� � z�� ( c��

where c� � f � g���� Obviously s is a polynomial� and it follows that

s�jxj � r� � pf �pg�jxj � �r� � �q�jxj � �r� � rjxj�� ( c��

for all strings x� Let Dr � fx � $� j p�x� � q�jxj � �r� � jg�x�j � pg�jxj � �r�g� We then have

"��fx j f � g�x� � s�jxj � r�g� � "��fx j p�x� � q�jxj � �r�g� ( "��fx j jg�x�j � pg�jxj � �r�g�
("��fx � Dr j �z g�x� � z � f�z� � s�jxj � r�g��

By our assumption� the �rst two terms are bounded above by ���r� For simplicity� let Tr represent the third

term� It su�ces to show that Tr � ���r in the rest of the proof�

Take an arbitrary x � Dr� say jxj � n� and let z � g�x�� If f�g�x�� � s�jxj � r�� then f�z� � pf �pg��rn� �
�q��rn� � rn��� Since jzj � pg��rn�� we have f�z� � pf �jzj � �q��rn� � rn��� Moreover� it holds that "��x� �
q��rn� � "��x�� Hence� Tr is estimated as follows�

Tr �
�X
n��

"��fx � Dr � $n j �z g�x� � z � f�z� � pf �jzj � �q��rn� � rn��!g�

�
�X
n��

q��rn� � "��fx � Dr �$n j �z g�x� � z � f�z� � pf �jzj � �q��rn� � rn��!g�

�
�X
n��

q��rn� � "�g���fz j f�z� � pf �jzj � �q��rn� � rn��g��

Since "�g���z� � "��z�� we conclude�

T �
�X
n��

q��rn� � "��fz j f�z� � pf �jzj � �q��rn� � rn��g� �
�X
n��

q��rn�

�q��rn� � rn� �
��

��r
�

�

�r
�

�

In the following� we demonstrate some of the basic properties of many�one reducibilities�

Proposition ����� Let �A� ��	 �B� ��	 and �Ai� �i�	 i � �� �� �	 be distributional decision problems�

�� The �p
m and �avp

m are re�exive� i�e�	 � � fp� avpg	 �A� �� ��
m �A� ���
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�� The �p
m implies �avp

m � i�e�	 �A� �� �p
m �B� �� implies �A� �� �avp

m �B� ���

�� The �p
m and �avp

m are transitive� i�e�	 for � � fp� avpg	 if �A�� ��� ��
m �A�� ��� and �A�� ��� ��

m

�A
� �
�	 then �A�� ��� ��
m �A
� �
��

Proof� ������� Clear from the de�nitions�

��� We shall show the transitivity of �avp
m � First we assume that �A�� ��� �p

m �A�� ��� via f� and

�A�� ��� �avp
m �A
� �
� via f�� The domination conditions for f� and f� ensure the existence of two semi�

distributions �� and �� such that �� �avp ��� �� �avp ��� "�� � �z�"���f
��
� �z��� and "�
 � �z�"���f

��
� �z���

Since f� and f� are many�one reductions� we de�ne f as f�x� � f� � f��x�� Then function f reduces A�

to A
� In the rest of the proof� we shall check the domination condition for f �

From �� �p ��� it follows that there exists a function p�� which is polynomial on ���average� satisfying

that p��x� � "���x� � "���x� for all x� Similarly� there is another function p� that is polynomial on ���average

such that p��x� � "���x� � "���x� for all x� We assume without loss of generality that p��x� � � and p��x� � �

for all x�

Let us de�ne p�x� � p��f��x�� � p��x� for all x� Notice that p is polynomial on ���average� To see this�

we �rst note that p� � f� is polynomial on ��average by Lemma ����	 because �x�jf��x�j is polynomial on

���average and p� is polynomial on ���average� Since p� is also polynomial on ���average� p turns out to be

polynomial on ���average� Set "��x� � "���x��p�x� for all x� Clearly � is a semi�distribution�

For any string y in ran�f�� letting Dy � f��� �y� � ran�f��� it follows that

"�
�y� � "���f
��
� �y�� � "���f

��
� �y� � ran�f��� �

X
w�Dy

"���w��

For each string w in ran�f���

"���w� � "���w�

p��w�
� "���f

��
� �w��

p��w�
�

X
x�f��� �w	

"���x�

p��x� � p��f��x��
�

X
x�f��� �w	

"���x�

p�x�
� "��f��� �w���

and thus� we obtain that "��w� � "��f��� �w��� Hence�

"�
�y� �
X
w�Dy

"��f��� �w�� � "�

�
� �
w�Dy

f��� �w�

�
A � "��f���y���

�

Theorem ����� Let C � fP�NP�RP�BPP�PSPACEg� The average complexity class Aver�C� �� is closed
downward under �avp

m �reductions�

Proof� We begin with the closure property of Aver�P� �� under �avp
m �reductions� Let us assume that

�A� �� �avp
m �B� �� via f and �B� �� � Aver�P� ��� Note that f is computable in time polynomial on ��

average� Let M be a deterministic Turing machine which computes B in polynomial time on ��average�
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We can construct another deterministic Turing machine N which� on input x� computes f�x� �rst and

then simulates M on input f�x�� This machine N actually computes A� and its running time on input x

needs at most

c � �Timef �x� ( TimeM�f�x�� ( ���

where Timef �x� denotes the time required to compute the value f�x�� and c denotes some appropriate

constant independent of x�

Notice that �x�jf�x�j is polynomial on ��average� Since �x�TimeM �x� is polynomial on ��average� the

domination condition for f implies� by Lemma ����	� that �x�TimeM �f�x�� is also polynomial on ��average�

Therefore� N is polynomial�time bounded on ��average�

The proofs for the classes C � fNP�RP�BPP�PSPACEg are similar� �

����� Polynomial Time Isomorphism

A polynomial�time Isomorphism in worst�case complexity theory is a P�computable� p�invertible bijection

which p�m�reduces a set A to another set B� If such an isomorphism exists� then we say thatA is p�isomorphic

to B� Interestingly� most NP�complete sets are known to be p�isomorphic�

Wang and Belanger  ���! introduced a polynomial�time isomorphism between two distributional problems�

This subsection will introduce the notion of polynomial�time isomorphism�

We �rst introduce a notion of one�one reducibility�

De�nition ����� �Polynomial�TimeOne�OneReductions� For two distributional decision problems

�A� �� and �B� ��� the problem �A� �� is polynomial�time one�one reducible �p���reducible� for short� to �B� ���

denoted by �A� �� �p
� �B� ��� if there exists a one�one� P�computable reduction f which p�m�reduces �A� ��

to �B� ���

Since the reduction f is one�one� the domination condition for f is simply expressed as �f�� �p �� or

equivalently � �p � � f by Lemma ��	�������

We then introduce a polynomial�time isomorphism among distributional decision problems�

De�nition ����� �Polynomially Isomorphic� ����� For two distributional decision problems �A� ��

and �B� ��� �A� �� is polynomially isomorphic �p�isomorphic� for short� to �B� �� if there exists aP�computable�

p�invertible bijection f on $� such that �A� �� �p
� �B� �� via f and �B� �� �p

� �A� �� via f��� This f is called

a polynomial�time isomorphism �p�isomorphism� for short��

Berman and Hartmanis  ��! show by an analogy of Myhill
s isomorphism theorem in recursion theory

that� for two functions which are one�one� length�increasing� P�computable� and p�invertible� if A �p
� B via

f and B �p
� A via g� then A and B are p�isomorphic� In fact� however� we need only the condition that f �g

and g � f are length�increasing instead of both f and g being length�increasing� Wang and Belanger  ���!
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give an analogous result in average�case setting�

Proposition ����� ����� Let �A� �� and �B� �� be two distributional decision problems� Let f� g be one�

one	 P�computable	 and p�invertible	 and assume that f �g and g�f are length�increasing� Moreover	 assume

that � �p � � f and � �p � � g� If �A� �� �p
� �B� �� via f and �B� �� �p

� �A� �� via g	 then �A� �� and �B� ��

are p�isomorphic�

Proof� Assume that f � g� �� and � satisfy the conditions of the proposition� Let p be a polynomial

which is a time�bound of P�computable functions� f � g� f��� and g��� We �rst de�ne two sets R� and R�

as follows�

R� � f�g � f�k�x� j k � �� x �� g�$��g� and

R� � fg � �f � g�k�x� j k � �� x �� f�$��g�

where �g � f�k�x� means k applications of the function g � f to x� and in particular� �g � f���x� � x�

We claim that R� �R� � $� and R� �R� � '�

Claim � R� �R� � '�

Proof of Claim� Assume that there is an element x in R� � R�� We take two strings y and z such that

x � �g � f�k�y� � g � �f � g�m�z�� y �� g�$��� and z �� f�$�� for some k�m � �� Notice that x � g�$���

Obviously k � �� since otherwise� y � x and x �� g�$��� a contradiction� Hence� we have k � �� In the case

where m � k� we have x � g � �f �g�m�z� � �g �f�m �g�z�� As x � �g �f�m�y� and g �f is one�one� it follows

that y � �g � f�m�k � g�z� � g � �f � g�m�k�z�� Clearly the last term belongs to g�$��� so y is in g�$��� a

contradiction� Hence� m � k� Using g � �f � g�m�z� � x� we have x � �g � f�k�y� � g � �f � g�k�� � f�y�� and

thus �f � g�m�z� � �f � g�k���f�y��� Thus� z � �f � g�k�m���f�y�� � f � �g � f�k�m���y�� This implies that

z � f�$m�� a contradiction� Therefore� R� �R� � '�

Claim � R� �R� � $��

Proof of Claim� Take an arbitrary x in $�� Assume that x � �g � f�k�y� and x � g � �f � g�m�z� for

some y� z� m� and k� We also assume that k�m are maximal� If either y �� g�$�� or z �� f�$��� then x

is in R� � R�� Now we assume to the contrary that y � g�wy� and z � f�wz� for some appropriate wy

and wz� From y � g�wy�� it follows that �g � f�k�y� � g � �f � g�k�wy�� From z � f�wz�� it follows that

g � �f � g�m�z� � �g � f�m���wz�� Both imply the same x� and thus we have �g � f�k�y� � �g � f�m���wz�

and g � �f � g�k�wy� � g � �f � g�m�z�� By the maximality of k and m� we conclude both that k � m( � and

k � m� This is a contradiction�

It is possible to check whether z � R� or z � R� within O��jzj ( ��p�jzj�� steps� This is shown as
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follows� Notice that f�� � g�� is P�computable because ran�f� and ran�f� are both P�computable� and�

more important� it is length�decreasing �i�e�� jzj � jf�� � g��j� because g � f is length�increasing� Let us

consider the strictly descending chain

jzj � jf�� � g���z�j � j�f�� � g�����z�j � � � �

until f�� � g�� can no longer be applied� This chain consists of at most jzj( � elements� Let .z be the last

element of this descending chain� Hence� z � �g � f�k�.z� for some k � �� Notice that if .z � R�� then all

other elements are in R� by the de�nition of R�� In particular� z � R� if and only if z� � R�� To check

whether z � R�� we would check whether g�� cannot be applied to z� and thus we need O��jzj ( ��p�jzj��
steps� Similarly� we can determine whether z � R� in O��jzj( ��p�jzj�� steps� As a consequence� R� and R�

are both P�computable�

Similarly� we de�ne S� and S� as follows�

S� � f�f � g�k�x� j k � �� x �� f�$��g� and

S� � ff � �g � f�k�x� j k � �� x �� g�$��g�

We also have S� � S� � ' and S� � S� � $�� Moreover� S� and S� are P�computable�

Let us de�ne the desired p�isomorphism h as follows�

h�z� �

�	

 f�z� if z � R��

g���z� if z � R��

This function h is total because R� � R� � $�� Also h is one�one because f and g�� are one�one� and h is

also onto because h�R�� � S� and h�R�� � S�� It is not hard to show that

h���z� �

�	

 f���z� if z � S��

g�z� if z � S��

Hence� h is total and thus a bijection on $��

We can easily see that h reduces A to B because h�x� � f�x� for all x � R�� and h�x� � g���x� for all

x � R�� Similarly� h�� reduces B to A�

What remains is to check the domination conditions for h and h��� It is su�cient to prove that � �p ��h
and � �p � � h��� We shall show that � �p � � h� Since � �p � � f � let s� be a polynomial such

that "��z� � s��jzj� � "��f�z�� for all z� Similarly� since � � g �p �� there is a polynomial s� such that

"��g�z�� � s��jzj� � "��z� for all z� Recall that g is p�honest� and thus we can take a polynomial q such that

jzj � q�jg�z�j� for all z� Let s�n� � s��n�(s��q�n��� If z � R�� then "��z� � s��jzj� � "��f�z�� � s�jzj� � "��h�z���

If z � R�� then let z � g�w�� so we have "��g�w�� � s��jwj� � "��w� � s��q�jg�w�j�� � "��w�� This implies that

"��z� � s�jzj� � "��h�z��� Therefore� � �p �h� Similarly� we can show that � �p � � h���
This completes the proof� �

The reader who is interested in other types of many�one reducibilities may refer to  ��� �� ��� ��� 		� ���

���!�
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����� Deterministic Turing Reducibility

We turn our attention to Turing reducibility� In worst�case complexity theory� Cook  ��! �rst formulated

deterministic polynomial�time Turing reductions to show that SAT� the satis�ability problem� is one of the

hardest problems that is in NP� A Turing reduction from a set A to another set B is a deterministic oracle

Turing machine that computes set A with the help of set B as an oracle�

In average�case complexity theory� Ben�David� Chor� Goldreich� and Luby  �! introduced a similar notion

of deterministic Turing reducibility among distributional decision problems� We begin with this deterministic

Turing reducibility� Let us recall that the notation Q�M�B� x� denotes the set of strings queried by an oracle

Turing machine M with oracle B on input x�

De�nition �����
 �Deterministic Turing Reductions� ��� Let �A� �� and �B� �� be distributional

decision problems�

�� �A� �� is polynomial�time Turing reducible �p�T�reducible� for short� to �B� ��� denoted by �A� �� �p
T

�B� ��� if there exist a deterministic oracle Turing machine M and a semi�distribution � such that

�i� �E�ciency� M with oracle B is polynomial�time bounded�

�ii� �Validity� A � L�M�B�� and

�iii� �Domination� � �p � and "� � �z�"��fx j z � Q�M�B� x�g��

�� �A� �� is average polynomial�time Turing reducible �avp�T�reducible� for short� to �B� ��� symbolically

�A� �� �avp
T �B� ��� if there exist a deterministic oracle Turing machine M and a semi�distribution �

such that

�i� �E�ciency� M with oracle B is polynomial�time bounded on ��average�

�ii� �Validity� A � L�M�B�� and

�iii� �Domination� � �avp � and "� � �z�"��fx j z � Q�M�B� x�g��

The condition �iii� is called the domination condition for the reduction M �

Originally Ben�David et al�  �! used a stronger domination condition�

"��fx j z � Q�M�B� x�g� � "��z� � p�z�

for some polynomial p�

Proposition ����		 �� The relation �p
m implies �p

T 	 and �avp
m implies �avp

T �

�� The relation �p
T and �avp

T are re�exive�

�� The relation �p
T implies �avp

T �

�� The relation �p
T and �avp

T are transitive�
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Proof� ������� Clear from the de�nitions�

�	� Here we show that �avp
T is transitive� The proofs for the transitivity of the other reducibilities are

analogous� Now we assume that �D�� ��� is avp�T�reducible to �D�� ��� via a reduction M� and a semi�

distribution ��� and also assume that �D�� ��� is avp�T�reducible to �D
� �
� via a reduction M� and a

semi�distribution ��� We assume that Q�M�� D�� x� �� ' for in�nitely many x since� otherwise� �D�� ��� �
Aver�P� �� and� thus trivially �D�� ��� is avp�T�reducible to �D
� �
�� In what follows� we shall show that

�D�� ��� �avp
T �D
� �
��

By de�nition� there exist two functions f� and f� which are polynomial on ���average and on ���average�

respectively� such that f��x� � "���x� � "���x� and f��x� � "���x� � "���x� for all x� Without loss of generality�

we assume that f��x� � � and f��x� � � for all strings x�

We de�ne a new machineM as follows� on input x� M deterministically simulatesM� on x� and whenever

M� queries a string y� M deterministically simulates M� on input y� In the case where x is the empty string

�� M must be designed not to query any strings �if M� queries some strings to oracle D
� then their oracle

answers are encoded into a program of M �� Clearly D� � L�M�D
��� Note that

TimeD�
M �x� � c �

�
�TimeD�

M�
�x� (

X
y�Q�M��D��x	

TimeD�
M�

�y� ( �

�
A

for some constant c � ��

Let f�x� � f��x� �maxy�Q�M��D��x	 f��y�� Obviously� for each x� f�x� � �� and thus "���x� � f�x�� Now

we choose a distribution ��

"��x� �

�	



����x	
f�x	 if x �� ��

��Py�y ��
 "��y� if x � ��

In particular� "���� � �� Let c� � ���
	
���
	 � Then� we have �f�x� ( c��"��x� � "���x� for all x �� �� For each

pair �x� y�� it follows that z � Q�M�� D
� y� and y � Q�M�� D�� x� if and only if z � Q�M�D
� x� and

y � Q�M�� D�� x�� Note also that

"���y� � "���fx j y � Q�M�� D�� x�g� �
X

x�y�Q�M��D��x	

"���x�

f��x�
�

Then� for all z � SxQ�M�D
� x��

"�
�z� � "���fy j z � Q�M�� D
� y�g� �
X

y�z�Q�M� �D��y	

"���y�

f��y�

�
X

y�z�Q�M��D��y	

�

f��y�

X
x�y�Q�M� �D��x	

"���x�

f��x�
�

X
x�z�Q�M�D� �x	

X
y�Q�M��D��x	

�

f��y�
� "���x�

f��x�

�
X

x�z�Q�M�D��x	

"���x�

f��x� �maxy�Q�M� �D��x	 f��y�
�

X
x�z�Q�M�D��x	

"���x�

f�x�

� "��fx j z � Q�M�D
� x�g��

Next we shall show that M and f are both polynomial on ���average� We �rst see that M is polynomial�

time bounded on ���average� Let h�x� �
P

y�Q�M��D��x	
TimeD�

M�
�y� for each x� To complete the proof� by



��� CHAPTER �� AVERAGE POLYNOMIAL TIME REDUCIBILITIES

Lemmas ������ and ������� it is su�cient to show that h is polynomial on ���average since �x�TimeD�
M�

�x� is

polynomial on ���average� however� this is not di�cult to see�

The proof that f is polynomial on ���average is similar� and thus the claim is established� �

The transitivity of avp�T�reducibility implies the closure property of Aver�P� �� under avp�T�reductions�

Theorem ����	� ��� The class Aver�P� �� is closed downward under avp�T�reductions�

Proof� Assume that �A� �� �avp
T �B� �� for some �B� �� � Aver�P� ��� Note that

Aver�P� �� � f�A� �� j �A� �� �avp
T �'� �stand�g�

Since �B� �� �avp
T �'� �stand�� by Proposition �������	�� we obtain �A� �� �avp

T �'� �stand�� Thus� �A� �� �
Aver�P�F�� �

��� Many�One Complete Problems

We have introduced two di�erent types of reducibilities in the previous section which play a signi�cant role

in measuring the relative complexity of any two distributional decision problems� If a distributional problem

�A� �� is reducible to another distributional problem �B� ��� then �B� �� is considered at least as hard as

�A� �� to solve� We wish to see the hardest problems in Dist�NP�P�comp� in this sense�

The notion of complete problems was introduced into computational complexity theory in the early ����
s�

and subsequently many problems have been found to be complete for NP� We generalize the de�nition of

�completeness� to our setting below�

De�nition ����� �Complete Problems� Let�� be any reducibility and let C be a class of distributional

decision problems�

�� A distributional problem �D��� is ���hard for C if every problem �E� �� in C is ���reducible to �D����

�� A distributional problem �D��� is ���complete for C if it is in C and is ���hard for C�

This section will show that several important distributional decision problems are p�m�complete for

Dist�NP�P�comp�� and hence that they are among the hardest problems to solve�

Intriguingly� Belanger and Wang  �! pointed out that most known p�m�complete problems for Dist�NP�P�comp�

are actually p�isomorphic� They proposed an average�case version of a conjecture given by Berman and Hart�

manis  ��!� known as �Berman�Hartmanis� isomorphism conjecture� that asserts that all p�m�complete distri�

butional problems for Dist�NP�P�comp� are p�isomorphic� We refer to this conjecture as the Isomorphism

Conjecture�
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����� Randomized Bounded Halting problem

One of the most useful distributional decision problems is the randomized bounded halting problem� To

describe it� we assume an e�ective enumeration of all nondeterministic Turing machines� say fMigi�N� The

randomized bounded halting problem �RBHP� is the distributional problem �BHP� �BHP� that is based on

the bounded halting problem

BHP � fhsi� x� �ni j Mi accepts x in less than n steps g�

where si is the string corresponding to i and based on the default probability

"�BHP�si� x� �
n� � "�stand�si� � "�stand�x� � "�tally��n��

Intuitively� we independently pick up a string si� a string x� and a unary string �n at random� Clearly �BHP

is supportive and P�computable� We remark here that the choice of "�tally��n� is essential�

In the following theorem� we shall prove that RBHP is �p
m�complete for Dist�NP�P�comp�� This theorem

has been proven in numerous ways �see e�g��  �� ��� ��� ���!�� The proof below follows the argument given

by Wang and Belanger  ���!�

Theorem ����� ��	� RBHP is �p
m�complete for Dist�NP�P�comp��

Proof� We �rst note that RBHP is in Dist�NP�P�comp� because BHP belongs to NP and �BHP is

P�computable�

Consider any distributional decision problem �D��� from Aver�NP�P�comp�� There exists a polynomial�

time nondeterministic Turing machine M which accepts D� For every set D � NP and every distribution

� � P�comp� we next show that �D��� �p
m �BHPk� �BHP�� Let g be the one�one� p�invertible� P�computable

function of Lemma 	�������� Note that jg�x�j � q�jxj� for some absolute polynomial q� and that "��x� �

��jg�x	j�� for all x� Now let us consider the machine N that simulates M in the following fashion�

begin nondeterministic Turing machine N

input y

compute a string x such that y � g�x� by binary search

�this is done in time polynomial in jxj�
if such an x exists then nondeterministically simulate M on input x

else reject

end�

Since N is a polynomial�time nondeterministic Turing machine� we take an index i such that L�Mi� �

L�N �� Let p be a polynomial time�bound of Mi� The desired reduction f is now de�ned as f�x� �

hsi� g�x�� �p�jxj	i� It is not di�cult to see that f is one�one and reduces D to BHP� It is su�cient to

check that f satis�es the domination condition� Let s be any polynomial such that "�stand�si� � s�n� �
����q�n� ( ����p�n� ( ��� for all n � N� Note that i is a constant and does not depend on n� Then� we have�

s�jxj� � "�BHP�f�x�� � s�jxj� � "�BHP�hsi� g�x�� �p�jxj	i�
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� s�jxj� � "�stand�si� � "�stand�g�x�� � ���llog�p�jxj		��

� s�jxj� � "�stand�si�

����p�jxj� ( ����jg�x�j( ���
� ��jg�x	j��

� ��jg�x	j�� � "��x��

Hence� �D��� �p
m �BHP� �BHP�� �

In Section ���� we shall generalize the problem RBHP in order to show that the generalized RBHP is

also complete for Dist�
p
k�P�comp� for each k � ��

����� Randomized Bounded Tiling problem

The randomized bounded tiling problem �RBTP� is the �rst problem discovered by Levin  ��! to be �p
m�

complete for Dist�NP�P�comp�� RBTP is the distributional problem �BTP� �BTP� that is de�ned as follows�

A tile is a quadruple  u� v� x� w! of strings� where u is called �left�� v �top�� x �right�� and w �bottom�� We

use the notation left u� v� x� w! to denote the left element u� Similar notations are used for �top�� �right��

and �bottom�� Let Sn be the n�n square f�� � � � � ng�f�� � � � � ng� Let T be a set of tiles� A function f from

Sn to T is called a T�tiling of Sn if left f�i ( �� j�! � right f�i� j�! and bottom f�i� j ( ��! � top f�i� j�! for

all i� j with � � i � n and � � j � n� A sequence ht�� � � � � tki is a T�row of length k if ti � T for all i with

� � i � n and left sj��! � right sj ! for all j with � � j � n� Let

BTP � fhT� �n� �k� ht�� � � � � tkii j ht�� � � � � tki is a T �row of length k� � � k � n�

�f  f is a T �tiling of Sn and �i � � i � k
 f��� �� � ti!!g�

Fix a positive P�computable distribution � for a set T of tiles and let

"�BTP�T� �n� �k� ht�� � � � � tki� �

���	
��


"��T � � "�tally��n� � �n �
Qk

i��
�

kTik if � � k � n and

Ti �� ' for all i with � � i � k�

� otherwise�

where Ti � ft � T j left t! � right ti!g� We remark here that the choice of a default distribution � for tiles

is not important because it does not a�ect the proof of Theorem ������

It is shown that RBTP is p�m�reducible to RBHP  ��� ��!�

Theorem ����� ����� RBTP is p�isomorphic to RBHP�

Proof� It is known that BTP is NP�complete� Thus� RBTP is in Dist�NP�P�comp�� In the following� we

shall construct two one�one� length�increasing� p�invertible� P�computable reductions f and g from RBHP

to RBTP and from RBTP to RBHP� respectively� with the condition that �BHP �p �BTP � f and �BTP �p

�BHP � g� This is su�cient to show the theorem� because Proposition ����� yields the existence of a p�

isomorphism between RBHP and RBTP�

Since BHP � NP� there is a nondeterministic Turing machine M accepting BHP in polynomial time�

From the Distribution Controlling Lemma �Lemma 	������ there exists a total� one�one� p�invertible� P�
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computable function h such that 	 � ��jh�x	j � "�BHP�x� � �� � ��jh�x	j for all input x� Take a polynomial q

such that jh�x�j � q�jxj� for all x�

For each string w� let wL � �m�sjwjw� where m � jsjwjj� Notice that if a string z is given� then we can

uniquely determine wL such that wL v z if one exists� Let M � be the following algorithm�

begin algorithm M �

input z

if there is no w such that wL v z then reject

�Assume that there is the unique w such that wL v z��

check if w � h�x� for some x by a binary search

�This is done in time polynomial in jxj��
if no such x exists then reject

simulate M on input x

end�

Now write .x instead of h�x� for brevity� We then have .xL � �m�sjh�x	jh�x�� where m � jsjh�x	jj� Note

that

j.xLj � j�m�sjh�x	jh�x�j � �jsjh�x	jj( jh�x�j( � � �llog�jh�x�j� ( jh�x�j( � � �llog�q�jxj�� ( jh�x�j( ��

where m � jsjh�x	j� Moreover� it is clear that x � L�M � if and only if .xLz � L�M �� for any string z�

Recall the �formal� de�nition of Turing machines given in Section ���� Let hQ� q�� acc� rej� �� Bi de�ne

the machine M � where Q is the set of states� q� the initial state� acc the accepting state� rej the rejecting

state� � the transition function� and B the blank symbol� Let M be any nondeterministic Turing machine

which runs in polynomial time� Let TM � contain the following tiles �T����T���

�T��  0� hq�� ai��� 0!� where q� is the initial state of M � and a � f�� �g�
�T��  �� a��� 0!� where a � f�� �g�
�T��  1� c�1� c!�  1� c�1� c!�  1� hacc� ci�1� hacc� ci!� where c � f�� �� Bg�
�T	� For each instruction ��p� a� � �q� b� R� of M ��  1� b� �p� hp� ai!�  �p� hq� ci�1� c!� where c � f�� �� Bg�
�T�� For each instruction ��p� a� � �q� b� L� of M ��  1� hq� ci� �p� c!�  �p� b�1� hp� ai!� where c � f�� �� Bg�

Clearly the number of tiles in TM � does not depend on x�

Let us de�ne the reduction f from BHP to BTP by f�x� � hTM � � �p�jxj	� �k� Sxi� where .xL � u�u� � � �uk�

ui � f�� �g� and

Sx � f 0� hq�� u�i��� 0!�  0� u���� 0!�  0� u
��� 0! � � � �  �� uk��� 0!g�

The function f is one�one and p�invertible because so is h� We remark that� for each i with � � i � k� the

number of tiles t which matches  0� ui��� 0! to the right �i�e�� left t! � right 0� ui��� 0!� is exactly �� and

consequently� the probability that the ith tile of Sx is chosen is ����

Claim � The function f is a reduction from BHP to BTP�
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Proof of Claim� Assume thatM � accepts a string .xL� By the choice of the initial row of length k� the sequence

of the top of the tiles set in the bottom row of the square is exactly .xLz� where z satis�es j.xLzj � p�jxj�� This

is an initial ID �i�e�� instantaneous description� of the machine M � on input .xLz� The second row of tiles

that match the bottom row represents the ID of M � on .xLz obtained by a single application of the transition

function � �i�e�� after one step� because a pair of tiles in �T	� �corresponding to ��p�� a� � �q� b� R�� are the

only tiles that are di�erent from the symbols on the top of the bottom row� Recursively we can continue

this argument� and then� when we rebuild the history of the ID
s of M � on input .xLz� we see that the tiles

�ll the square� Recall that M � reaches the accepting state in less than p�jxj� steps� Conversely� if the tiles

�ll the square� the sequence of the top of each row describes an ID of M � on input .xLz� This implies that

M � accepts .xL� Hence� f becomes a reduction from BHP to BTP�

We should check the domination condition for f � Let s�z� be a polynomial such that

s�z� � ���� � p�z��p�z� ( ����q�z� ( ��� � kTM �k
"��TM ��

for all z� Then� we have�

s�jxj� � "�BTP�f�x�� � s�jxj� � "�BTP�TM � � �p�jxj	� Sx�

� s�jxj� � "��TM �� � ���llog�p�jxj		�� � �

p�jxj� �
�

kTM �k �
�

�

�

�j�xLj��

� s�jxj� � "��TM ��

kTM �k � �

�p�jxj��p�jxj� ( ���
� �

�j�xLj
�

By the de�nition of s� the last term is bounded by�

��� � q�jxj( ��� � �

��llog�q�jxj		�jh�x	j��
� � � q�jxj( ��� � ��

��q�jxj� ( ���
� ��jh�x	j

� �� � ��jh�x	j

� "�BHP�x��

Thus� "�BTP�f�x�� � ��BHP�x	
s�jxj	 for all x� It follows that �BHP �p �BTP �f � The other direction �BTP �p �BHP

is shown similarly using the inequality "�BHP�x� � 	 � ��jh�x	j� Therefore� �BHP �p �BTP � f �

Next we de�ne a reduction g from RBTP to RBHP� This part is simpler than the above argument� Again

by the Distribution Controlling Lemma� there exists a total� one�one� p�invertible� P�computable function

h� such that 	 � ��jh
��x	j � "�BTP�x� � �� � ��jh

���x	j for all x� Take a nondeterministic Turing machine M

which computes BTP in polynomial time� Let us de�ne another Turing machine M � as follows�

begin algorithm M �

input x

compute w such that x � h��w�

if no such w exists then reject

simulate M on input w

end�
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Let p be a polynomial which is a time bound of M �� It is obvious that x � L�M � if and only if

h��x� � L�M �� for all strings x� Let i be an index such that L�Mi� � L�M ��� Let p be a polynomial such

that TimeMi�h�x�� � p�jxj� for all x� De�ne g�x� � hsi� h��x�� �p�jxj	i� Clearly g is one�one� length�increasing�

P�computable� and p�invertible� Assume that jh��x�j � q�jxj� for some polynomial q� Take a polynomial s�

so that

s��z� � ���� � �p�z� ( ��� � �q�z� ( ����"�stand�si��

The following calculation is similar to the one above�

s��jxj� � "�BHP�g�x�� � "�BHP�si� h
��x�� �p�jxj	�

� s��jxj� � "�stand�si� � "�stand�h��x�� � "�tally��
p�jxj	�

� s��jxj� � "�stand�si� � �

��q�jxj� ( ���
� �

��p�jxj� ( ���
� ��jh��x	j

� �� � ��jh��x	j

� "�BTP�x��

Hence� we have �BTP �p �BHP � g� It is also easy to show that �BHP � g �p �BTP� Therefore� �BHP � g �p

�BHP� This completes the proof� �

Knijnenburg  ��! considered complete problems for Dist�PSPACE�P�comp� and pointed out that an

extension of randomized bounded tiling problem becomes �p
m�complete for Dist�PSPACE�P�comp��

����� Other Complete Problems

Gurevich  ��! showed that the following randomized bounded Post correspondence problem is also �p
m�

complete for Dist�NP�P�comp�� The randomized bounded Post correspondence problem �RBPCP� is the dis�

tributional problem �BPCP� �BPCP� de�ned as follows� Given a nonempty list L �

��u�� v��� �u�� v��� � � � � �um� vm�� of pairs of binary strings� the sequence �i�� i�� � � � � ik�� � � k � m� is called a

solution of length k if ui�ui� � � �uik � vi�vi� � � �vik � The set BPCP is de�ned by

BPCP � fhhLi� �ni j L � ��u�� v��� � � � � �um� vm�� � �k � n there exists a solution of length k for L !g�

where hLi is the encoding hhu�� v�i� � � � � hum� vmii� and the distribution �BPCP is de�ned by

"�BPCP�hhu�� v�i� � � � � hum� vmi� �ni� � "�tally��n� � "�tally��m� �
sY
i��

�"�stand�ui� � "�stand�vi���

This default probability is experimentally given by picking up independently and randomly two natural

numbers n and m� and �m strings u�� � � � � um� v�� � � � � vm�

This problem RBHP is p�m�reducible to the randomized bounded Post correspondence problem RBPCP�

We omit the proof� the interested reader may refer to  ��!�

By a slight modi�cation of RBPCP� Gurevich  ��! introduced the Randomized Bounded String Corre�

spondence Problem and showed that this problem is also p�m�complete for Dist�NP�P�comp��
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Another problem known to be complete is the Randomized Palindrome Problem� which was de�ned by

Gurevich  ��!� Wang and Belanger  ���! introduced the Randomized Word Problem for Thue System and

showed that this problem is p�m�complete for Dist�NP�P�comp��

����� Hard Problems under Samplable Distributions

We have seen several intriguing complete problems for Dist�NP�P�comp�� A natural question is� does

the class Dist�NP�P�samp� have any p�m�complete problems # Ben�David� Chor� Goldreich� and Luby  �!

constructed such a distributional problem�

First of all� we shall de�ne a �universal� P�samplable distribution �U � Take an e�ective enumeration

f�igi�Nof all O�n��time samplable distributions� Let us de�ne �U as follows�

"�U �x� �
�X
i��

���llog�i	�� � "�i�x��

Experimentally� we choose a number i at random� then sample a string under the distribution �i� Clearly

�U is a P�samplable distribution�

Theorem ����� ��� The distributional decision problem �BHP� �U� is p�m�complete for Dist�NP�P�samp��

Proof� WE must reduce an arbitrary distributional problem �D��� in Aver�NP�P�samp� to �BHP� �U��

By Lemma 	�	��� we can take a strictly P�samplable distribution � such that � �p �� By its samplability�

there exists a randomized Turing machine M sampling � in time q in the length of its output� where q is

an appropriate polynomial� For each x� let g�x� be x�q�jxj	�jxj� Let us de�ne �� by �g�� � We show that

this distribution �� becomes O�n��samplable� To sample ��� we consider the following procedure M �� on

input �� simulate M � and if x is an output of M � then output x�q�jxj	�jxj� We �x any random seed s which

leads to the output x� The running time TimeM ���� s� is O�TimeM ��� s� ( q�jxj�� 	 O�q�jxj�� because

TimeM ��� s� � q�jxj�� As a result� it is bounded above by O�n� in the length n of output�

We then de�ne the set D� by

D� � fy j �x�w y � xw � x � D � q�jxj � �� � jyj � q�jxj�!g�

Obviously� D� is in NP since D is so� By the de�nition of g� it follows that x � D if and only if g�x� � D��

and thus �D��� �p
m �D�� � �� via g�

Now we must show that �D�� ��� is p�m�reducible to �BHP� �U�� Because D is an NP set� it is recogniz�

able by some nondeterministic Turing machine� say M � in polynomial time� Let p be a strictly increasing

polynomial which bounds the running time of M � Let i be an index so that L�Mi� � L�M � in the list

fMigi�N� We take the standard reduction function f discussed before� f�x� � hsi� x� �p�jxj	i for all x�

Let Timef �x� be the computation time needed to compute f�x� deterministically� Since f isP�computable�

for some constants c� c� � �� Timef �x� is bounded by

Timef �x� � c � �jxj( p�jxj� ( �� � c� � �hsi� x� �p�jxj	i ( �� � c� � jf�x�j( c��
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Thus� f is computable in O�n� steps in the length n of its output�

Now de�ne "��x� � "���f���x�� for all x� This � is O�n��time samplable� and thus there exists an index i

such that � � �i� By the de�nition of �U � "�U �x� � ���llog�x	�� � "�i�x�� Then� we have�

"�U�x� � �

��i( ���
� "���x��

Therefore� �A� �� is p�m�reducible to �BHP� �U�� �

����� Discussion of Complete Problems for Aver�NP�P�comp�

We have seen several complete problems for Dist�NP�P�comp� and Dist�NP�P�samp�� In this subsection�

we shall discuss complete problems for the average�case complexity class Aver�NP�P�comp��

Unfortunately� it is not known whether Aver�NP�P�comp� has any �p
m�complete problems� This is

because of our de�nition of nondeterministic Turing machines and their accepting criteria� In this section�

we shall see what happens when we take other models of nondeterministic Turing machines and accepting

criteria�

However� by Wang and Belanger  ���!� if we use a �clocked� model of nondeterministic Turing machines

�thus� all computation paths are assumed to be of the same length�� then any p�m�complete problem for

Dist�NP�P�comp� is �avp
m �complete for Aver�NP��P�comp�� Recall the notation Aver�NP��F� used in

Section ���� We shall see a complete problem for Aver�NP��P�comp��

We begin with a general result� Let us expand a notion of �weak C�descriptive� to ����descriptive� using

any ���reducibility�

De�nition ����� ����Descriptive� Let �� be any reducibility� An average complexity class Aver�D�F�

is ���descriptive if� for every problem �D��� in Aver�D�F�� there exists a problem �E� �� in Dist�D�F� such

that �D��� �� �E� ���

Proposition ����� Let C be a complexity class and let F be a set of distributions� Assume that Aver�C�F�

is de
ned and ���descriptive for reducibility ��� Moreover	 assume that �p
m implies ��	 and �� is tran�

sitive� If a distributional problem �A� �� is �p
m�complete for Dist�C�F�	 then �A� �� is also ���complete for

Aver�C�F��

Proof� Assume that �A� �� is �p
m�complete for Dist�C�F�� Let �B� �� be an arbitrary distributional

problem in Aver�C�F�� We shall show that �B� �� is ���reducible to �A� ��� Since Aver�C�F� is ���

descriptive� there is a problem �B�� ��� � Dist�C�F� such that �B� �� is ���reducible to �B�� ���� From the

assumption that �A� �� is �p
m�complete for Dist�C�F�� it follows that �B�� ��� �� �A� ��� The transitivity of

�� implies that �B� �� �� �A� ��� �

Claim 	
 RBHP and RBTP are avp�m�complete for Aver�NP��P�comp��
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Proof of Claim� It su�ces to show that Aver�NP��P�comp� is �avp
m �descriptive� Assume that �A� �� �

Aver�NP��P�comp�� Let M be a nondeterministic Turing machine which computes A in time polynomial

on ��average� Let us take g as in Lemma 	�������� Note that g is P�computable and p�invertible� Then� we

have "��x� � ��jg�x	j�� for all strings x� We de�ne � as

"��z� �

�	

 "�stand�g�x�� � "�tally��n� if z � hx� �ni�

� otherwise�

It is not di�cult to see that � is a P�computable distribution and does not depend on ��

To get the desired result� we would de�ne a many�one reduction f and a set B in NP� Let f�x� �

hg�x�� �TimeM �x	i for every x� We claim that �f� �� � Aver�FP�P�comp�� Note that the function �x�TimeM �x�

is computable in time polynomial on ��average� Since g � FP� f�x� is computable in time polynomial on

��average� Note that f is one�one� Let B � f�A�� It follows that B � NP since B is computed by the

following Turing machine M ��

begin nondeterministic algorithm for M �

input hx� �ni
compute u for which f�u� � x

simulate M on input u for time n

if M fails to halt then reject

outputM �x� and halt

end�

This implies that �B� �� � Dist�NP�P�comp�� Now we set q�x� � ����jg�x�j( ����TimeM �x� ( ���� Then�

by Lemma �����	� q turns out to be polynomial on ��average�

We next show that "��f�x�� � q�x� � "��x�� For all x� we have

q�x� � "��f�x�� � q�x� � "�stand�g�x�� � ���llog�TimeM �x		��

� q�x�

�	�jg�x�j( ����TimeM �x� ( ���
� ��jg�x	j

�
q�x�

����jg�x�j( ����TimeM �x� ( ���
� ��jg�x	j��

� ��jg�x	j�� � "��x��

Therefore� �f�� �p ��

If we use the length of the longest computation path whenever the machine rejects an input as the running

time� then any p�m�complete problem for Dist�NP�P�comp� is avp�T�complete for Aver�NP��P�comp��

Claim 		 RBHP and RBTP are avp�T�complete for Aver�NP��P�comp�	 where Aver�NP��P�comp� is

de
ned based on the model of nondeterministic Turing machines with running time measured by the longest

rejecting path whenever it rejects an input�
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Proof of Claim� For this claim� it su�ces to show that Aver�NP��P�comp� is �avp
T �descriptive� Assume

that �A� �� � Aver�NP��P�comp�� Let M be a nondeterministic Turing machine which computes A in time

polynomial on ��average� Assume that g is de�ned as in Lemma 	�������� Note that g is P�computable and

p�invertible� Then� we have "��x� � ��jg�x	j�� for all strings x�

Recall the proof of Claim � in Section ���� and consider the same set C and the deterministic oracle

Turing machine N that computes D with oracle C in polynomial time on ��average� Remember that� for

each query string hb� x� �ni� x is the only input string that N on input x can query hb� x� �ni to oracle C� Let

us de�ne � as

"��z� �

�	



�
� � "�stand�x� � "�tally��n� if z � hb� x� �ni�
� otherwise�

It is not di�cult to see that � is a P�computable distribution and does not depend on � or C�

We modify the Turing machine N into N � in the following fashion�

begin algorithm N �

input x

compute u for which g�u� � x

simulate N with oracle C on input u

output N ��x� and halt

end�

This implies that �B� �� � Dist�NP�P�comp�� Now we set q�x� � ����jg�x�j( ����TimeCN ��x� ( ���� Then

by Lemma �����	� q turns out to be polynomial on ��average�

For all x� we have the simple estimation� where n � TimeCN � �x��

q�x� � "��b� g�x�� �n� � q�x� � �

�
� "�stand�g�x�� � "�tally��n�

� q�x�

����jg�x�j( ����TimeCN ��x� ( ���
� ��jg�x	j��

� ��jg�x	j�� � "��x��

Therefore� �D��� �avp
T �C� �� via N ��

��� Incompleteness Results

We shall discuss two important distributions� 
at distributions and sparse distributions� both of which

possibly make associated distributional problems incomplete for Dist�NP�P�comp��

����� Flat Distributions

Let us recall the de�nition of 
at distributions� A distribution � is called �at if there exists a real number

� � � such that "��x� � ��jxj
�

for almost all x�
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We shall observe the distributions of some p�m�complete problems discussed in the previous section�

Neither �BHP� �BTP� nor �BPCP� for example� is a 
at distribution� Here a distribution � is 
at if there

exists a real number � � � such that "��x� � ��jxj
�

for all x� This is seen as follows� For example� assuming

that �BHP is 
at �i�e�� "�BHP�x� � ��jxj
�

for some � � ��� let us consider su�ciently large n� i� and x satisfying

n � �llog�i� ( jxj����� Then we have

"�BHP�si� x� �
n� � ���llog�jsij	�jsij�� � ���llog�jxj	�jxj�� � ���llog�n	��

� ��llog�i	�jxj � �

��llog�i� ( ���
� �

��jxj( ���
� �

��n( ���

� ��llog�i	�jxj

���
� �

	llog�i�� � 	jxj� � 	n�

�
��llog�i	�jxj

n
 � llog�i�� � jxj� �

On the other hand� we have

jhsi� x� �nij � ��llog�i� ( jxj� ( n

� n��� � �llog�i� ( jxj����
�

��llog�i� ( jxj�
�llog�i� ( jxj���� � n��� (

n

n��� � �llog�i� ( jxj����
�

� n��� � �llog�i� ( jxj���� � ��llog�i� ( jxj� ( n

n���n���

� n��� � �llog�i� ( jxj�����

Hence� using the assumption that �BHP is 
at�

"�BHP�si� x� �
n� � ��jhsi�x��

nij� � ��n
����llog�i	�jxj	� � ��n

�����llog�i	��jxj�

Now we have ��llog�i��jxj

n�llog�i	�jxj� � ��n
�����llog�i	��jxj� and thus �llog�i	�jxj�n

���

� n
 � llog�i�� � jxj�� This is clearly

a contradiction� Hence� �BHP is not 
at�

One might suspect that there is no �p
m�complete problem with a 
at distribution� Gurevich  ��!� and

Wang and Belanger  ���! indeed showed that distributional problems with 
at distributions are not complete

for Dist�NP�P�comp��

Using the same argument as above� we can show the following result� Under p�honest� P�computable�

one�one reductions� there are no complete problems with 
at distributions in Dist�NP�P�comp��

Proposition ����	 ����� For any set D � NP and any �at distribution �	 the distributional problem

�D��� cannot be �p
��complete for Dist�NP�P�comp� under one�one	 p�honest reductions�

Proof� We shall prove the contrapositive� Assume that �A� �� is �p
��complete for Dist�NP�P�comp�

under one�one� p�honest reductions� As RBHP is in Dist�NP�P�comp�� there is a p�honest� P�computable�

one�one reduction f that reduces RBHP to �A� ��� The domination condition for f � by Lemma ��	�������

implies that �BHP �p ��f since f is one�one� Since �BHP is not a 
at distribution� then ��f is also non�
at�
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As f is p�honest� � cannot be 
at� To see this� assume that "��x� � ��jxj
�

and jf�x�jk � jxj for �� k � ��

Thus� �� � f �x� � ��jf�x	j
� � ��jxj

��k

� �

Proposition ����� ��	� Assume that EXP �� NEXP� For any �at distribution � and any EXP set D	

the distributional problem �D��� is not avp�m�hard for Dist�NP�P�comp��

Proof� Assume that �D��� is �avp
m �hard for Dist�NP�P�comp� and show that any set in NEXP is

deterministically solvable in exponential time�

Let A be an arbitrary set in NEXP� There is a nondeterministic Turing machine M which computes A

in time �p�jxj	� where p is a �xed polynomial� We may assume that p�n� � n ( �llog�n� ( � for all n � N�

For each x� set x� � x���
p�jxj��jxj��� We note that if jxj � n� then jx�j � �p�n	� We set A� � fx� j x � Ag�

This A� belongs to NP and consequently it is in EXP� Let MA� be a deterministic Turing machine which

computes A� in exponential time�

We de�ne �� as follows�

"���z� �

�	

 "�stand�x� if z � x� for some x�

� otherwise�

To see that � � is P�computable� notice that ���z� � �stand�maxfu j u���
p�juj��juj�� � zg�� and thus

limz
� ��z� � limu
� �stand�u� � ��

Since �A�� ��� � Dist�NP�P�comp�� our assumption implies that �A�� � �� is avp�m�reducible to �D����

Take a reduction f witnessing �A�� ��� �avp
m �D���� Note that f is computable in time polynomial on ���

average� and �� �avp � and "� � "�f�� for some semi�distribution �� We note that� by the de�nition of ��� f is

actually computable in exponential time�

First we show that jf�x��j is bounded by a polynomial in jxj� The domination condition yields the

existence of a function s being polynomial on ���average such that "��y� � Px�f���y	
����x	
s�x	 for all y� In

particular� we have "��f�x��� � ����x�	
s�x�	 � Assume that s is q on ���average for some polynomial q� Then� for

almost all x�

s�x�� � q�jx�j�"���x��� � q��p�jxj	 � ��llog�jxj	�jxj���
� q���p�jxj	� � �k�p�jxj	

for some �xed constant k � �� Thus� s�x�� � �k�p�jxj	� Using this inequality� we have

"��f�x��� � "� ��x��
s�x��

� ��k�p�jxj	 � ���llog�jxj	�jxj�� � ���k��	p�jxj	

for almost all x� Since � is 
at� for some constant m � �� we have

��jf�x
�	j��m � "��f�x��� � ���k��	p�jxj	�

This yields the desired consequence that jf�x��j � �k ( ��m � p�jxj�m�

Let us consider the following deterministic algorithm M which computes A�
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begin deterministic algorithm M

input x �say� n � jxj�
compute x� �� x���

p�n��n���

compute f�x��

��� simulate MA� on input f�x�� and halt

end�

The running time of line ��� is at most exponential in jxj since jf�x��j is bounded by a polynomial in jxj�
Hence� the total running time of algorithm M is exponential in the length of input� This implies that A is

in EXP� �

����� Sparse Distributions

Gurevich  ��! called a distributional problem �D��� �sparse� if the set fx j "��x� � �g is sparse� where a set

S is �polynomially� sparse if there is a polynomial p such that kS �$nk � p�n� for all n � N� In this section�

we instead call the distribution � �polynomially� sparse if the set fx j "��x� � �g is sparse� In other words�

� is positive only on a sparse set� For instance� the standard distribution on f�g� is sparse�

De�nition ����� �Sparse Distributions� A distribution � is called �polynomially� sparse if the set

fx j "��x� � �g is sparse�

We shall see that any distributional problems having a 
at distribution cannot be p�isomorphic to the

standard complete problem RBHP�

Lemma ����� For any set D in NP and any P�computable distribution �	 if � is sparse	 then �D��� is

not p�isomorphic to RBHP�

Proof� Assume that �D��� is p�isomorphic to RBHP via a bijection f � The domination condition by

Lemma ��	������ implies that there exists a p�bounded function p such that p�x� � "��f�x�� � "�BHP�x�� For

the sake of convenience� we set S � fhsi� x� �ni j i� n � N� x � $�g�
Since �BHP is positive on S� the distribution � � f is also positive on S� that is�

f�S� � ff�x� j x � Sg 	 fz j "��z� � �g�

By the sparseness of the set fz j "��z� � �g� the set f�S� is also sparse� In particular� f�BHP� is sparse�

Therefore� since f is one�one� BHP should be sparse� This contradicts the fact that BHP is not sparse� �

It is known that� under the isomorphism conjecture� no sparse sets can be NP�complete� In �����

Mahaney  ��! proved that� without assuming the isomorphism conjecture� there is no sparse NP�complete

set unless P � NP� Notice that the isomorphism conjecture con
icts with the assumption P �� NP� A
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similar result also holds in our average�case environment�

Theorem ����� Assume that P �� NP� For any set D and any sparse distribution �	 the distributional

problem �D��� is not p�m�hard for Dist�NP�P�comp��

Proof� Assuming that �D��� is p�m�hard for Dist�NP�P�comp� and � is sparse� we shall show that

NP collapses to P� In particular� �BHP� �BHP� �p
m �D��� via some reduction f � By an argument similar

to that in the proof of Lemma ��	�	� the domination condition by Lemma ��	������ implies that there

exists a p�bounded function p such that "��z� �Px�f���z	
��BHP�x	
p�x	 for all z� Thus� in particular� it holds that

p�x��"��f�x�� � "�BHP�x�� As in Lemma ��	�	� the set f�S� is sparse� where S � fhsi� x� �ni j i� n � N� x� $�g�
We shall use the fact that BHP is �self�reducible�� that is� to determine whether hsi� x� �ni � BHP� we

can check whether hsj� � x� �n��i � BHP or hsj� � x� �n��i � BHP� where j� is an index of the machine that

deterministically chooses the �rst nondeterministic branch and then simulates Mi� and j� is similarly de�ned

by choosing � instead of �� We view this process as a tree� Since we can determine whether hsi� x� �ni � BHP

within n steps� the height of the tree is n� Now let us consider such a self�reduction tree� This tree may contain

exponentially�many nodes� but when they are mapped by f � there are at most polynomially�many distinct

values taken by f � Hence� many nodes of the tree merge� This motivates us to construct a polynomial�time

algorithm which computes BHP in the following fashion�

Let us �rst describe the main body of the algorithm M below�

begin deterministic algorithm M for BHP

input hsi� x� �ni
set V isit �� ' and set Dead �� '

call Marking�hsi� x� �ni� V isit�Dead�

reject and halt

end�

Marking�w� V isit�Dead� is the following subroutine that recursively kills nodes which do not lead to an

accepting con�guration in a depth��rst search�

subroutineMarking�w� V isit�Dead�

if w is a leaf and true then accept and halt

set V isit �� V isit � fwg
compute f�w�

for all nodes u � V ist until neither V isit nor Dead changes

if f�w� � f�u� and u � Dead then set Dead �� Dead � fwg
if both children u�� u� of u are in Dead

then Dead �� Dead � fug and V isit �� V isit � fu�� u�g
if u is a leaf and false then Dead �� Dead � fug

end�for
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construct a left child of w� say w�

call Marking�w�� V isit�Dead�

construct a right child of w� say w�

call Marking�w�� V isit�Dead�

return�

The algorithm M requires at most polynomially�bounded running time and also computes BHP� There�

fore� BHP belongs to P� The conclusion P � NP follows immediately from the fact that BHP is p�m�

complete for NP� �

����� Unreasonable Distributions

In ����� Paven and Selman  ��! presented another type of incompleteness result� They called a distribution

� reasonable if �n�"��$�n� � )�n�k� for some number k � �� Any distributional decision problem with an

unreasonable distribution fails to be hard for Dist�NP�P�comp� unless NP is small �i�e�� NP has p�measure

��� Since many researchers believe that NP is not small� this result shows another limitation of distributions

in distributional complete problems�

Theorem ����� ���� Assume thatNP has p�measure �� LetD be a set and let � be such that �n�"��$�n� �
)�n�k� for any positive integer k� Then	 the distributional problem �D��� is not p�m�hard for

Dist�NP�P�comp��

Proof� Assume that �n�"��$�n� � )�n�k� for any positive integer k� We also assume that �D��� is

p�m�hard for Dist�NP�P�comp�� In particular� for any NP set A� the distributional problem �A� �stand� is

p�m�reducible to �D���� Since D � EXP� there exist two positive integers k� and c such that D belongs

to DTIME�c � �nk
�

( c�� For brevity� we can assume k� � k� Note that this assumption does not essentially

a�ect the following argument�

Let ffigi�Nbe an e�ective enumeration of all polynomial�time computable functions� Take any set A in

NP and assume that �A� �stand� �p
m �D��� via fm� We claim the following�

Claim 	� There exist in
nitely�many strings x such that jfm�x�jk � jxj�

Proof of Claim� Assume to the contrary that there exist positive integers k and n� such that jfm�x�jk � jxj
for all strings x of length � n�� We shall show that � satis�es �n�"��$�n� � )�n�d� for some d � �� This

clearly leads to a contradiction�

By the domination condition for the reduction function fm� there exists a semi�distribution � such that

�stand �p � and "� � "�f�� � Take a positive polynomial q such that q�jxj� � "��x� � "�stand�x� for all x� This
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implies that "��$n� � "�stand�$n��q�n� for any integer n�

"��$�n� �
X
i�n

"�stand�$i�

q�i�
�
X
i�n

�

�q�i��i ( ���
� �

�q�n� � 	n� �
�

n
q�n�
� �

nd�


for any number n � ���

Fix n arbitrarily but greater than n
��k
� � Then�

"��$�n� � "�fz � fm�$�� j jzj � ng� � "�f���fz � fm�$�� j jzj � ng�
� "��fw j �z � ran�fm� �$�n fm�w� � z!g�
� "��$�n��k� � �

n�d�
	�k
�

Now let s � �d( ���k ( �� The above inequality implies that �n�"��$�n� � )�n�s��

Recall that D � DTIME�c � �nk ( c�� We de�ne the ��MS d as follows�

d�m� z� �

������	
�����


� if z � ��

d�m�w� if jfm�sjzj�jk � jsjzjj�
�d�m�w� if jfm�sjzj�jk � jsjzjj and b �  fm�sjzj� � D!�

� if jfm�sjzj�jk � jsjzjj and b ��  fm�sjzj� � D!�

where b � f�� �g and z � wb� It is easy to check that d is P�computable� Let us check if d succeeds on

D� By the de�nition of d� dm�D ���n!� � �dm�D ���n � �!�� where dm�w� � d�m�w�� Thus� we obtain

limsupn
� dm�D ���n!� � �� and consequently d succeeds on D�

For each i � N� we de�ne the set Ai to be the set on which di succeeds� Notice that the collection fAigi�N
is a p�union of all NP sets� We thus conclude by Lemma����� that NP has p�measure �� This contradicts

our assumption� �

��� Bounded�Error Probabilistic Reducibility

As seen in Section ��	� deterministic many�one reductions are so restricted that� under the common belief

that EXP �� NEXP� no distributional problems with 
at distributions are complete for Dist�NP�P�comp��

Many �natural� distributions for graph�related problems are actually 
at� Is there any hope that we can prove

such problems to be �hard� to compute # Venkatesan and Levin  ���! presented a solution by introducing

another reducibility� called �random many�one reducibility�� to measure the complexity of distributional

problems� Their notion of �random many�one reducibility� was further studied by Impagliazzo and Levin

 		! and extended by Blass and Gurevich  ��! �see Section �����

From a di�erent point of view� Ben�David� Chor� Goldreich� and Luby  �! introduced a new notion of

�random truth�table �and Turing� reducibility�� This section will follow the idea of Ben�David et al� and

introduce probabilistic truth�table reducibility among distributional decision problems� �This name seems

more appropriate than �random reducibility� because of its similarity to worst�case probabilistic Turing

reductions��
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����� Skew Bounded�Error Probabilistic Reducibility

Ben�David� Chor� Goldreich� and Luby  �! introduced a notion of random reducibility for which reduction

machines are probabilistic rather than deterministic� Here we use the phrase skew bounded�error probabilistic

truth�table reducibility to describe this type of reductions�

De�nition ����� �Skew Bounded�Error Probabilistic Truth�Table Reductions� ��� Let �A� ��

and �B� �� be any distributional decision problems�

�� �A� �� is skew bounded�error probabilistic polynomial�time truth�table reducible �skew bpp�tt�reducible�

for short� to �B� �� if there exist a randomized oracle Turing machine M � a positive real number �� and

a semi�distribution � such that

�i� �Query Type� M makes nonadaptive queries�

�ii� �E�ciency� M with oracle B is polynomial�time bounded�

�iii� �Validity� PrM  MB�x� � A�x�! � �
� ( � for all x� and

�iv� �Domination� � �rp
�
MB

� and "� � �z�"��f�x� s� j z � Q�M�B� x� s�g��

�� �A� �� is skew bounded�error probabilistic average polynomial�time truth�table reducible �skew avbpp�

tt�reducible� for short� to �B� �� if there exist a randomized oracle Turing machine M � a positive real

number �� and a semi�distribution � such that

�i� �Query Type� M makes nonadaptive queries�

�ii� �E�ciency� M with oracle B is polynomial�time bounded on ��average�

�iii� �Validity� PrM  MB�x� � A�x�! � �
� ( � for all x� and

�iv� �Domination� � �avrp
�
MB

� and "� � �z�"��f�x� s� j z � Q�M�B� x� s�g��

Condition �iii� is also called the domination condition for the reduction M �

Ben�David� Chor� Goldreich� and Luby  �! instead used the following domination condition�

"��
MB

�f�x� s� j z � Q�M�B� x� s�g� � p�jzj� � "��z�

for some polynomial p� Our condition �iv� is obviously weaker�

In worst�case complexity theory� we often assume that an oracle Turing machine queries only strings

whose length is larger than that of the input� The motivation is that we can always construct another oracle

machine which satis�es this condition without changing the complexity of computations� and also we can �nd

another oracle set which is very close to the original oracle set� For example� assume that polynomial�time

oracle Turing machine M with oracle set B computes a set A� We let B� � fhz� xi j x � Bg and let M �

simulate M with the following change to oracle queries� if M queries a string z� then M � queries a pair

hz� xi� Then� clearly A is computed by M � with oracle B� and also B� �p
m B holds�

We can obtain a result similar to one in worst�case complexity theory� however� its proof is more involved�
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Lemma ����� Assume that �A� �� is skew avbpp�tt�reducible to �B� �� with B �� $�� There exists a bounded�

error probabilistic oracle Turing machine M � and a distributional problem �B�� � �� such that

�i� �B�� � �� �p
m �B� ���

�ii� �A� �� is skew avbpp�tt�reducible to �B�� � �� via M �� and

�iii� all strings queried by M � with oracle B� on input x are of length greater than jxj�

Proof� Let us assume that �A� �� is skew avbpp�tt�reducible to �B� �� via a bounded�error probabilistic

oracle Turing machineM with nonadaptive queries which runs in time p on ��average� where p is an increasing

polynomial� For simplicity� let + be the random�input domain associated with MB� There exist a semi�

distribution � and a random function q which is polynomial on ��average such that q�x� s� � "��x� s� � "���x� s�

and "��z� � "��f�x� s� j z � Q�M�B� x� s�g� for all x and z� We can assume without loss of generality that

TimeBM�x� � � for all strings x� and that on the empty input �� M does not make any queries�

For brevity� we write ��z� n� � "��f�x� s� j x � $n � z � Q�M�B� x� s�g� and ��z� �
P�

n�� ��z� n�� Notice

that the sum
P

z ��z� does not exceed � because

X
z

��z� �
X
z

"��f�x� s� j z � Q�M�B� x� s�g� �
X
z

"��z� � ��

Moreover� we write Q�M�B� �
S
�x�s	��Q�M�B� x� s�� To obtain the desired results� we let B� � fz��n j

z � B� n � Ng and de�ne �� as follows�

"���w� �

���	
��


"��z� � ��z�n	��z	 if w � z��n and ��z� � � for some n � N
and some z � Q�M�B��

� otherwise�

Since
P�

n�� "���z��n� � "��z�� we have

X
w

"���w� �
X
z

�X
n��

"��z��n� �
X
z

"��z� � ��

Thus� �� becomes a distribution�

First we shall show that �B�� � �� �p
m �B� ��� Fix an element z� in B �because of B �� $��� De�ne a

function f as follows�

f�w� �

�	

 z if w � z��n�

z� otherwise�

It is clear that f is P�computable� and f reduces B� to B� �Note that this f is not p�honest�� For the string

z�� "��
f���z�� � "���fw j f�w� � z�g� � � by the de�nition of f � and thus we have "��z�� � "��

f���z��� For other

strings z�

"��z� �
�X
n��

"� ��z��n� � "���fw j �z�n w � z��n!g� � "���fw j f�w� � zg� � "��
f���z��

Hence� �B�� � �� �p
m �B� �� via f �
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We next show �ii� and �iii� of the lemma� We de�ne a new randomized oracle Turing machine M � which

works as follows� on input x� M � simulates M on input x� and whenever M queries a string z� M � queries

z��jxj to the oracle� This simulation is carried out on each computation path� Note that the random�input

domain associated with �M �� B�� is the same as that with �M�B�� By de�nition� z��jxj � Q�M �� B�� x� s�

if and only if z � Q�M�B� x� s�� Clearly M � with oracle B� computes A with bounded�error probability�

Moreover� the length of a queried string is longer than that of the input� The rest of the proof will be

devoted to showing the domination condition for �M �� B���

Now we introduce a random function g� De�ne

g�x� s� �

�	

 min

n
��z�jxj	
��z	

��� ��z� jxj� � � � z � Q�M�B� x� s�
o

if such a z exists�

� otherwise�

Note that � � g�x� s� � � for all x� In particular� g��� s� � � because M does not have any query strings�

Using this function g� we also de�ne �� as follows�

"���x� s� � "��x� s� � g�x� s��

We shall show that "���z��n� � "���f�x� s� j z��n � Q�M �� B�� x� s�g��

Claim 	� "���z��n� � "���f�x� s� j z��n � Q�M �� B�� x� s�g��

Proof of Claim� For every z in Q�M�B� x� s�� it follows that "���x� s� � "��x� s� � ��z�n	��z	 � Hence� for every z

and n� we have

"���f�x� s� j z��n � Q�M �� B�� x� s�g�
� "���f�x� s� j x � $n � z � Q�M�B� x� s�g�
� "��f�x� s� j z � Q�M�B� x� s�g� � ��z� n�

��z�

� "��z� � ��z� n�

��z�
� "���z��n��

We next show that �� �avrp
� ��� By the de�nition of ��� it follows that

"��x� � q�x� s� � "��x� s� �
q�x� s�

g�x� s�
� g�x� s� � "��x� �

q�x� s�

g�x� s�
� "���x� s��

To show the desired result� we should show that the random function ��g is polynomial on ��average since�

if so� Lemma ������ ensures that the function q�g is also polynomial on ��average� Let us assume that q is

p� on ��average� where p� is an increasing polynomial� For simplicity� write Qx�s for Q�M�B� x� s� and let

.p�z� � �z� �p���z�� We shall show that ��g is .p on ��average� Assume r � �� Let Er � f�x� s� � + j x � $��
TimeBM �x� s� � p�jxj ��r�g� Note that� for every �x� s� � Er� if "��x� � �� then jsj � TimeBM �x� s� � p�jxj ��r��
Moreover� in this case� we have jhx� sij � �jxj( jsj( � � �jxj�p�jxj � �r� ( ���
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This is seen as follows�

"��

��
x

���� �

g�x� s�
� .p�jxj � r�

��
� "���f�x� s� j g�x� s� � .p�jxj � r� � �g�
� "���f�x� s� j TimeBM �x� s� � p�jxj � �r�g� ( "���f�x� s� j q�x� s� � p��jxj � �r�g�

("���f�x� s� � Er j g�x� s� � .p�jxj � r� � �g��

It is clear that the �rst two terms are bounded above by ���r� Let Tr be the third term� and we shall show

this term is also bounded by ���r� It holds that

Tr �
�X
n��

"���f�x� s� � Er j g�x� s� � �n�r � p���nr� � �g��

Notice that g�x� s� � �� and thus� ��z� jxj� � � for some z � Qx�s� Then� g�x� s� � ��z�jxj	
��z	 for some z�

Tr � "���f�x� s� � Er j g�x� s� � �jxj�r � p��jxj � �r� � �g�
� "���f�x� s� � Er j �z � Qx�s ��z� jxj� � �jxj�r � p��jxj � �r� � ��z�!g�

�
�X
n��

p���nr� � "�

��
�x� s� � Er

���� x � $n � �z � Qx�s

�
��z� n� �

��z�

�rn� � p���nr�
���

�
�X
n��

X
z

p���nr� � "�

��
�x� s�

���� x � $n � z � Qx�y � ��z� n� �
��z�

�rn� � p���nr�
��

�
�X
n��

X
z

p���nr� � ��z�

�rn� � p���nr� �
�X
n��

�

�rn�

� ��

��r
�

�

�r
�

�

����� More Structural Properties

We shall show another important lemma below� Before stating the lemma� we prepare some notation�

Let M be a randomized oracle Turing machine� and let N be a randomized Turing machine� We de�ne

another randomized Turing machine MN which� on input x� does the following� it simulates M on input

x� whenever M queries z� simulates N on input z� and halts if M does� Let .+ be the the random�input

domain of this composite machine MN � Let x be �xed� For each random seed r � .+�x�� rx denotes the

associated random seed generated by M with some oracle on input x� and rz denotes the associated random

seed generated by N on input z�

Using this notation� the lemma is stated as follows�

Lemma ����� Let � and � be distributions and let A be a set� Let M be a randomized oracle Turing

machine and let N be a randomized Turing machine� Let g be a random function with random�input domain
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+ which is almost total� Assume that there exists a semi�distribution � satisfying the following condition�

� �avrp
�
MA

� and "� � �z�"��f�x� s� j z � Q�M�A� x� s�g�� De
ne the random function h from .+ to N as

h�x� r� �
P

z�Q�M�A�x�rx	
g�z� rz�� If g is polynomial on ��average	 then h is polynomial on ��average�

Proof� For brevity� we write +� in place of +MA� We choose an increasing polynomial pA such that g

is pA on ��average� Since � �avrp
�� �� take an increasing polynomial p and a random function q such that

q�x� s� � "��x� s� � "����x� s� for all pairs �x� s� � +�� and q is p on ��average�

Set

.p�z� � pA��z� � pA�pA��z� � �z�p��z�� ( c��

where c� � maxr����x	 h��� r�� We shall show that h is .p on ��average� Fix d � �� Let Ed and .Ed be the sets

de�ned by

Ed � f�x� s� � +� j x � $� � q�x� s� � p�jxj � �d� �TimeAM �x� s� � pA�jxj � �d�g� and

.Ed � f�x� r� � .+ j �x� sx� � Edg�

Let Qx�s denote Q�M�A� x� s�� We estimate the term "����f�x� r� j h�x� r� � .p�jxj � r�g� as follows�

"����f�x� r� j h�x� r� � .p�jxj � d�g�
� "����f�x� r� j q�x� rx� � p�jxj � �d�g� ( "����f�x� r� j TimeAM �x� rx� � pA�jxj � �d�g�g�

("���

�
�
�	

�x� r� � .Ed

������
X

z�Qx�rx
g�z� rz� � .p�jxj � d�

 !
"
�
A �

Clearly the �rst term is

"����f�x� r� j q�x� rx� � p�jxj � �d�g� � "����f�x� s� j q�x� s� � p�jxj � �d�g� � �

�d
�

Similarly� the second term is also bounded above by ���d� Let us denote the last term by Td and calculate

its upper bound�

Fix �x� r� � .Ed and let jxj � n �n � ��� Assume that
P

z�Qx�rx g�z� rz� � .p�dn�� Then� for some

z � Qx�rx we get kQx�rxk � g�z� rz� � .p�dn�� Fix such a string z� Since kQx�rxk � TimeAM�x� rx� � pA��dn��

we have g�z� rz� � pA�pA��dn� � �n�d � p��dn��� Moreover� jzj � TimeAM �x� rx� � pA��dn�� Thus� it follows

that g�z� rz� � pA�jzj � �n�d � p��dn��� Using this fact� the term Td is estimated as follows�

Td �
�X
n��

"����f�x� r� � .Ed j x � $n � �z � Qx�rx  g�z� rz� � pA�jzj � �dn� � p��dn��!g�

�
�X
n��

���� � 
�f�x� s� s�� j �x� s� � Ed � x � $n

� �z � Qx�s s
� � +�z� � g�z� s�� � pA�jzj � �dn� � p��dn��!g��

where ���� � 
�x� s� s�� � "��� � ��js�j�
Write ��
 to denote the distribution � de�ned as "��x� s� s�� � "��x� s����js�j for all �x� s� s��� From the fact

that p��dn� � "��x� s� � "��M� �x� s� for each �x� s� � Ed� it follows that p��dn� ��� � 
�x� s� s�� � ���� � 
�x� s� s���
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Thus� Tr is bounded above by the term
�X
n��

p��dn� ��� � 
�f�x� s� s�� j �x� s� � Ed � x � $n

� �z � Qx�s s
� � +�z� � g�z� s�� � pA�jzj � �dn� � p��dn��!g��

Since "��B� � "��f�x� s� j �z � Qx�s z � B!g� for any set B�

"���f�z� s�� j g�z� s�� � pA�jzj � p��dn� � �dn��g�
� �� � 
�f�x� s� s�� j �z � Qx�s g�z� s

�� � pA�jzj � p��dn� � �dn��!g��

As a conclusion�

Td �
�X
n��

p��dn� � "���f�z� s�� j g�z� s�� � pA�jzj � p��dn� � �dn��g�

�
�X
n��

p��dn�

p��dn� � �dn� �
��

��d
�

�

�d
�

�

Skew avbpp�tt�reducibility turns out to be closed under p�m�reducibility�

Lemma ����� Assume that �A� �� �p
m �B� �� and �B� �� is skew avbpp�tt�reducible to �C� ��� Then	 �A� ��

is skew avbpp�tt�reducible to �C� ���

Proof� For simplicity� let us assume that �A�� ��� �p
m �A�� ��� and that �A�� ��� is skew avbpp�tt�reducible

to �A
� �
�� Let f be an appropriate reduction which reduces �A�� ��� to �A�� ��� with the domination

condition for f � Further� let M be a bounded�error probabilistic oracle Turing reduction which reduces

�A�� ��� to �A
� �
��

We shall consider the randomized algorithm N de�ned as follows� on input x� �rst compute f�x� and

then simulate M on input f�x�� For each �xed x� since A��x� � A��f�x���

PrN  NA��x� � A��x�! � PrM  MA��f�x�� � A��f�x��! � �

�
�

This shows that N is a bounded�error probabilistic oracle Turing machine with oracle A
�

The estimation of the running time of N with oracle A
 on input x with random input s� TimeA�
N �x� s��

is given by

TimeA�
N �x� s� � c � �Timef �x� ( TimeA�

M �f�x�� ( ��

for some constant c � �� Notice that �x�Timef �x� is polynomial on ���average� and �xs�TimeA�
M �f�x��� as

a random function� is also polynomial on ���average by Lemma ����	� In consequence� �xs�TimeA�
N �x� s� is

polynomial on ���average�

To see the domination condition for N � write ��� for the default distribution induced from �� and +NA� �

Then�

"�
�z� � "����f�w� s� j z � Q�M�A
� w� s�g� �
X

�w�s	��
MA�

"���w� � ��jsj �
X

�w�s	��
MA�

"���w�

pM�w� s�
� ��jsj�
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For w� it holds that

"���w�

pM�w� s�
� "���f���w��

pM �w� s�
�

X
x�f���w	

"���x�

pM �w� s� � pf �x�
�

X
x�f���w	

"���x�

pM �f�x�� s� � pf �x�
�

Thus�

"�
�z� �
X

�w�s	��
MA�

X
x�f���w	

"���x�

pM�f�x�� s�pf �x�
� ��jsj�

This sum is taken over all pairs �x� s� � +NA� such that

�w � ran�f� f�x� � w � z � Q�M�A
� w� s�!�

This condition is equivalent to the condition z � Q�N�A
� x� s�� Now let us de�ne p�z� s� � pM �f�x�� s��pf �z�

and "��x� s� � "���x� � ��jsj�p�x� s� if s � +NA� �x�� and � otherwise� Notice that �x�jf�x�j is polynomial on

���average� and consequently� �xs�pM �f�x�� s� is polynomial on ���average� Thus� p becomes polynomial on

���average� Then it follows that

"�
�z� �
X

�x�s	��
NA�

"���x�

p�x� s�
�

X
�x�s	��

NA�

"��x� s� � "��f�x� s� j z � Q�N�A
� x� s�g��

This completes the proof� �

We need a relativized version of the Ampli�cation Lemma �Lemma ��������

Lemma ����� Assume that �A� �� is skew avbpp�tt�reducible to �B� �� with B �� $�� Then	 there exist a

semi�distribution ��	 a randomized Turing machine N 	 and a distributional decision problem �B�� ��� such

that

�i� �B�� ��� �p
m �B� ���

�ii� Prs N
B�

�x� �m� s� � A�x� j s � +NB� �x� �m�! � �� ��jxj�m for all x � $� and m � N� and

�iii� �� �tally �avrp
�
NB

�
�� and "� � � �z�"���f�x� y� s� j z � Q�N�B�� x� y� s�g��

Proof� Let us assume that �A� �� is skew avbpp�tt�reducible to �B� �� via a randomized Turing machineM

and a semi�distribution �� Let + be the random�input domain associated with M with oracle B� We suppose

that PrM  MB�x� � A�x�! � �
�

( �� Since � �avrp
� �� there is a random function q which is polynomial on

��average such that q�x� s� � "��x� s� � "���x� s� for all pairs �x� s� � +� Let z� be the minimal string that is

not in B� We can assume that M does not query any strings of length smaller than or equal to jz�j�
For the desired problem �B�� � ��� we set B� � fz��n j z � B � n � Ng and set

"� ��w� �

�	

 "�tally��n� � "��z� if w � z��n for some n � N�

� otherwise�

Obviously �� becomes a distribution because
P�

n�� "���z��n� � "��z� for all strings z�
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We then show �i�� Let f be

f�w� �

�	

 z if w � z��n for some n � N�

z� otherwise�

The function f becomes a reduction function which reduces B� to B� To show that �B�� ��� �p
m �B� ��� we

should check if the domination condition for f holds� This is shown as follows�

"���f���z�� �
�X
n��

"� ��z��n� �
�X
n��

"�tally��n� � "��z� � "��z� � "�tally�f�g�� � "��z��

Next we show �ii�� Let us recall the randomized algorithm in the proof of the Ampli�cation Lemma that

boosts the success probability up to ����jxj�m on input pair �x� �m�� Here we slightly modify its algorithm

to allow the algorithm to make queries� Take an integer c satisfying c � ��� and let p�x� y� � �c
�jxj( jyj� for

all pairs �x� y�� Then� we let N be the randomized oracle Turing machine de�ned by the following algorithm�

begin randomized algorithm for N

input �x� y�

if y �� f�g� then reject
for i � � to p�x� y� do

simulate M on input x without queries until M produces a query list

end for

list all possible query strings

for i � � to p�x� y� do

while simulation do

if M makes a query z then query z��i

end while

end for

if the majority of the outcomes is � then accept else reject

end�

By a similar argument to that in the proof of the Ampli�cation Lemma� we can prove �ii��

Notice that� for any strings x and y and any random seed s� the relation z��n � Q�N�B�� x� y� s� implies

that y � �m and � � n � p�x� �m� for some number m � N� Moreover� provided that � � n � p�x� �m�� we

have the close relationship

z��n � Q�N�B�� x� �m� s� �� z � Q�M�B� x� sn��

where each si is in +�x� and is associated with s�

We shall show �iii�� Let +� be the random�input domain associated with N with oracle B�� Then� we

de�ne �� as follows� For �x� y� s� � +�� let us de�ne q��x� y� s� to be ��p�x� y� ( ��� �Pp�x�y	
i�� q�x� sk� and let

"���x� y� s� � "��x� � "�tally�y� � ��jsj � �

q��x� y� s�
�
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It is not di�cult to see that q� is polynomial on �� �tally�average and also �� �tally �avrp
�� ���

By the de�nition of ��� it follows that� for any �x� y� s� � +��

"���x� y� s� �
"��x� � "�tally�y� � ��jsj

q��x� y� s�
�

"��x� � "�tally�y� � ��jsj
��p�x� y� ( ���

Pp�x�y	
i�� q�x� si�

� "�tally��
p�x�y	� � "�tally�y� �

p�x�y	X
i��

"���x�

q�x� si�

� "�tally��
p�x�y	� � "�tally�y� �

p�x�y	X
i��

"��x� si� � ��jsj�jsij�

Now we must check the domination condition for N � that is� "���f�x� y� s� j z��n � Q�N�B�� x� y� s�g� �
"���z��n� for any z and n� Using the previous calculation� for each string of the form z��m�

"���f�x� y� s� j z��n � Q�N�B�� x� y� s�g�

�
�X

m��

X
�x�s	���

"���x� �m� s� �  z��n � Q�N�B�� x� �m� s�!

�
�X

m��

X
�x�s	���

"�tally��p�x��
m	� � "�tally��m� �

p�x��m	X
i��

"��x� si� � ��jsj�jsij �  z��n � Q�N�B�� x� �m� s�!�

The last term is equivalent to the following term�

�X
m��

X
�x�sn	��

"�tally��n� � "�tally��
m� � "��x� sn� �  z � Q�M�B� x� sn�!�

Therefore�

"���f�x� y� s� j z��n � Q�N�B�� x� y� s�g�

� "�tally��n� �
�X

m��

�
� X
�x�s�	��

"��x� s�� �  z � Q�M�B� x� s��!

�
A � "�tally��m�

� "�tally��n� � "���f�x� s�� j z � Q�M�B� x� s��g� �
�X

m��

"�tally��m�

� "�tally��n� � "��z� � "���z��n��

This completes the proof� �

����� Bounded Error Probabilistic Truth Table Reducibility

An ordinary bounded�error probabilistic oracle Turing machine can diminish the error probability signif�

icantly by repeating the same computation and taking a majority vote to determine the outcomes of the

machine� Our skew reduction does not seem to enjoy this property because of tight domination conditions for

the reduction machines� To guarantee it� we need a many�one transformation as well as the skew reduction�

Now we introduce our bounded�error probabilistic truth�table reducibility�
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De�nition ����	 �Bounded�Error Probabilistic Truth�Table Reductions� Let �A� �� and �B� ��

be distributional decision problems�

�� �A� �� is bounded�error probabilistic polynomial�time truth�table reducible �bpp�tt�reducible� for short�

to �B� ��� denoted by �A� �� �bpp
tt �B� ��� if there exists a distributional decision problem �B�� � �� such

that �A� �� is skew bpp�tt�reducible to �B�� ���� and �B�� ��� is p�m�reducible to �B� ���

�� �A� �� is bounded�error probabilistic average polynomial�time truth�table reducible �avbpp�tt�reducible�

for short� to �B� ��� denoted by �A� �� �avbpp
tt �B� ��� if there exist a distributional decision problem

�B�� ��� such that �A� �� is skew avbpp�tt�reducible to �B�� � ��� and �B�� � �� is p�m�reducible to �B� ���

In the following� we show basic properties of the reducibilities�

Proposition ����� Let � � fbpp� avbppg�

�� The relation �p
m implies �bpp

tt 	 and �avp
m implies �avbpp

tt �

�� The relation ��
tt is re�exive�

�� The relation �bpp
tt implies �avbpp

tt �

�� The relations �bpp
tt and �avbpp

tt are transitive�

Proof� ��� By de�nition� deterministic Turing machines are a special case of probabilistic Turing machines�

��� The claim of re
exivity is obvious by choosing the identity reduction� i�e�� f�x� � x�

��� Clear from the de�nitions�

�	� Here we show that �avbpp
tt is transitive� Assuming that �A�� ��� �avbpp

tt �A�� ��� and �A�� ��� �avbpp
tt

�A
� �
�� we shall show that �A�� ��� �avbpp
tt �A
� �
��

Let �A��� ���� be a distributional problem such that �A�� ��� is skew avbpp�tt�reducible to �A��� ���� � and

�A��� ���� is p�m�reducible to �A�� ���� Suppose that �A�� ��� is skew avbpp�tt�reducible to some distributional

problem� say �A�
� ��
�� which is p�m�reducible to �A
� �
�� By Lemma ����	� �A��� ���� is skew avbpp�tt�

reducible to �A�
� �
�

�� Apply Lemma ����� to this skew avbpp�tt�reduction to obtain another randomized

oracle Turing machine N � another semi�distribution �� and another distributional problem �A��
 � ���
� which

satis�es conditions �i���iii� of the lemma as well as �A��
 � ���
� �p
m �A
� �
��

For readability and simplicity� in what follows� we can assume that �A�� ��� is skew avbpp�tt�reducible

to �A�� ��� via a semi�distribution �� and a bounded�error probabilistic oracle Turing machine M� which�

with oracle A�� is polynomial�time bounded on ���average� Moreover� Prs M
A�
� �x� �m� s� � A��x� j s �

+
M

A�
�

�x� �m�! � � � ��jxj�m� �� � �tally �avrp
�
M
A�
�

��� and "�
 � �z�"���f�x� y� s� j z � Q�M�� A
� x� y� s�g� for

some semi�distribution �� and some randomized oracle Turing machine M� which� with oracle A
� runs in

polynomial time on ���average�

By the domination conditions� there are random functions p� and p� which are polynomial on ���average

and polynomial on �� � �tally�average� respectively� such that p��x� s� � "���x� s� � "���x� � ��jsj� p��x� y� s� �
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"���x� y� s� � "���x� � "�tally�y� � ��jsj� "���z� � "���f�x� s� j z � Q�M�� A�� x� s�g�� and "�
�z� � "���f�x� y� s� j z �
Q�M�� A
� x� y� s�g� for all x and z�

Now we de�ne a randomized Turing machine N which computes A� using oracle A
�

begin randomized algorithm for N

input x �say� n � jxj�
simulate M� on input x until the �rst query is made

complete a list of query strings

let mrx be the number of query strings

resume the simulation

while simulation do

if M� queries z then simulate M� on input �z� �mrx�
�

if M� reaches a halting con�guration then output M��x� and halt

end while

end�

Let r be the random seed generated by N with oracle A
 on input x� Clearly random seed r is associated

with all random seeds generated by M� with oracle A� on input strings which M� with oracle A� queries�

For such random seeds� we write rx to designate the random seed that is used for the computation of M�

with oracle A� on input x� and write rz for the random seed for the computation of M� with oracle A
 on

input z provided that z is in Q�M�� A�� x� rx��

Given a pair �x� r� � +NA� � the running time of N with A
 as an oracle on input x with random input r

is bounded by

c �
�
�TimeA�

M�
�x� rx� (

X
z�Q�M��A��x�rx	

TimeA�
M�

�z� �mrx�
� rz� ( �

�
A

for some constant c � �� where mrx is the number of strings in the query list produced by N on input x along

with random seed Rx� Clearly TimeA�
M�

�x� rx� � mrx � kQ�M�� A�� rx�k� It is immediate from Lemma �����

that the random function �xr�
P

z�Q�M��A��x�rx	
TimeA�

M�
�z� �mrx�
� rz� is polynomial on ���average� thus� N

with oracle A
 is polynomial�time bounded on ���average�

To see the validity of this algorithm� let us consider the success probability of the new machine N � Fix

an input x and a random seed r in +NA� �x�� Write Qx�s for Q�M�� A�� x� s�� The success probability that

NA��x� r� � A��x� is at least

Y
z�Q�M��A��x�rx	

Prs M
A�
� �z� �mrx��� s� � A
�z� j s � +A�

M�
�x� �mrx�
�!

�
Y

z�Qx�rx
��� ��mrx�
�

�
Y

z�Qx�rx



�� ��kQx�rxk��

�

�



�� ��kQx�rxk�

�kQx�rxk � �� ��kQx�rxk���kQx�rxk��
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� �� ��� �
�

	
�

It remains to establish the domination condition for N � For each z�

"�
�z� �
X

�w�y�s�	

"���w� � "�tally�y�

p��w� y� s��
� ��jsj �  z � Q�M�� A
� w� y� s

��!�

Write p���w� y� s�� for p��w� y� s
�� � ��jyj( ���� Using the fact that ��jyj( ��� � "�tally�y� � ��

"�
�z� �
X

�w�y�s�	

"���w�

p���w� y� s��
� ��jsj �  z � Q�M�� A
� w� y� s

��!�

Also we have

"���w� �
X
�x�s	

"���x�

p��x� s�
� ��jsj �  w � Q�M�� A�� x� s�!�

Combining both inequalities� we can calculate the lower bound of "�
�z� as follows�

"�
�z� �
X

�w�y�s�	

X
�x�s	

"���x�

p��x� s� � p���w� y� s��
� ��jsj�js�j w � Q�M�� A�� x� s�! �  z � Q�M�� A
� w� y� s

��!

�
X
�x�r	

"���x�

p��x� rx�
� ��jrxj �

X
w�Qx�rx

�

p���w� �mrx�
� rw�
� ��jrwj

�
X
�x�r	

"���x�

p��x� rx�
� ��jrj �

X
w�Qx�rx

�

p���w� �mrx�
� rw�
� �jrj�jrxj�jrwj�

Since jrj � jrxj( jrwj� we further calculate the lower bound as follows�

"�
�z� �
X
�x�r	

��� � 
�x� r�

p��x� rx�
�
X

w�Qx�rx

�

p���w� �mrx�
� rw�

�
X
�x�r	

��� � 
�x� r�

p��x� rx� �
P

w�Qx�rx p
�
��w� �

mrx�
� rw�
�

where Qx�s � Q�M�� A�� x� s� and ��� � 
�x� r� � "���x� � ��jrj if r � +
M

A�
�

�x�� and � otherwise�

Now we set p�x� r� � p��x� rx� �Pw�Q�M��A��x�rx	
p���w� �mrx�
� rw� and "��x� r� � ��� � 
�x� r��p�x� r�� By

Lemma ������ p turns out to be polynomial on ���average� It then follows that

"�
�z� � "��f�x� r� j z � Q�N�A
� x� r�g��

Thus� the claim is established� �

Finally we can show the closure property of the class Aver�BPP� �� under avbpp�reductions� This is a

direct consequence of Proposition ������	��

Theorem ����� ��� The class Aver�BPP� �� is closed downward under avbpp�tt�reductions�

Proof� Similar to that of Theorem ������� �
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����� Application of Probabilistic Reducibility

The motivation in having introduced the bounded�error probabilistic reducibility is to show that distribu�

tional problems in Dist�NP�P�comp� with natural 
at distributions become complete� As a simple example�

we shall demonstrate that a 
at version of the randomized bounded halting problem is truly complete for

Dist�NP�P�comp� with respect to bpp�tt�reducibility�

Let us introduce a 
at version of the randomized bounded halting problem �RBHPflat�� �BHPflat� �BHPflat ��

in the following fashion�

BHPflat � fhsi� x� ti jMi accepts x in jtj time g� and

"�BHPflat �hsi� x� ti� � "�stand�si� � "�stand�x� � "�stand�t��

Theorem ����� RBHPflat is bpp�tt�complete for Dist�NP�P�comp��

Proof� It is enough for us to show that �BHP� �BHP� �bpp
tt �BHPflat� �BHPflat�� Let us consider the

following randomized Turing machine N �

begin randomized algorithm for N

input hsi� x� �mi
generate a random seed w of length m

query hsi� x� wi to oracle

if hsi� x� wi is in oracle then accept else reject

end�

Notice that there is no error if BHPflat is chosen as an oracle� that is� Prs N
BHPflat�hsi� x� �mi� s� � A�x�! �

�� Also N makes nonadaptive queries and runs in polynomial time for any oracle�

Let c be an integer such that c � ��"�stand�si�� Let us de�ne the semi�distribution � as "��z� s� �

"�BHP�z� � ��jsj for all pairs �z� s� � +NBHP � otherwise� �� We then have

"��f�z� s� j hsi� x� wi � Q�N�BHPflat� z� s�g� � "��hsi� x� �jwji�
� "�BHPflat�hsi� x� wi��

Therefore� we have �BHP� �BHP� �bpp
tt �BHPflat� �BHPflat�� �

Another signi�cant application of the bpp�tt�reducibility given by Ben�David et al�  �! is that �distri�

butional NP search problems� with P�computable distributions are actually reducible to distributional

decision problems in Dist�NP�P�comp�� Nonetheless� since we have not de�ned �distributional NP search

problems� and the main subject of this thesis is decision problems� we state the result below without proof�

The interested reader may refer to  �! for the de�nition of search problems and the proof of the theorem�

Theorem ����	
 ��� Let �R��� be be a distributional NP search problem with P�computable distribution
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�� Then there is a distributional decision problem �D� �� in Aver�NP�P�comp� such that �R��� is bpp�tt�

reducible to �B� ���

In worst�case complexity theory� it is easy to see that if A �p
T C and B �p

T C� then A � B �p
T C� The

same is true in average�case complexity� In the next lemma� we prove this claim�

Recall from Section ��� the de�nition of �� � for two distributions � and ��

Lemma ����		 Let ��� f�p
m��avp

m ��p
T ��avp

T ��bpp
T ��avbpp

T g� If �A� �A� �� �C� �� and �B� �B� �� �C� ��	

then �A �B� �A � �B� �� �C� ���

Proof� We demonstrate only the case �avbpp
T � The other cases are somewhat similar� Let us assume

that �A� �A� �avbpp
T �C� �� via MA and �B� �B� �avbpp

T �C� �� via MB � De�ne a new algorithm N � on input

x� if x � �u for some u� then simulate MA on input u� if x � �u for some u� then simulate MB on u�

otherwise� reject the input� For the sake of convenience� write � for �A � �B � Take a computational path y

of the computation tree given by N on input x� Since N basically follows either MA
s computation or MB
s�

we can determine the unique computation path� which is made by either MA or MB � corresponding to the

computation path speci�ed by random input s� We denote this computation path by .y�

We show that �A�B� �� �avbpp
T �C� �� via N � By our assumption� there exist semi�distributions �A and

�B such that �A �avp �A� �B �avp �B� "��z� � "��A�f�u� s� j z � Q�MA� C� u� s�g�� and "��z� � "��B�f�u� s� j z �
Q�MB � C� u� s�g� for all z� where ��A and ��B are the induced distributions from �A and +MC

A
� and from �B

and +MC
B

� respectively� Let � be de�ned as

"��x� �

���	
��


�
� � "�A�u� if x � �u for some u�

�
� � "�B�u� if x � �u for some u�

� otherwise�

It is obvious that � is a distribution� We also let � � �A � �B� Let

p�x� �

���	
��


pA�u� if x � �u�

pB�u� if x � �u�

� otherwise�

We next show that p�x� � "��x� � "��x�� This is seen as follows� Assume that x is of the form �u� The

other case is similar�

p�x� � "��x� � pA�u� � �

�
"�A�u� �

�

�
pA�x� � "�A�u�

� �

�
"�A�u� � "��x��

Finally� we show that "��z� � "���f�x� y� j z � Q�N�C� x� y�g� for all z� For each string z� we have

"��z� � �

�
"��A�f�u� s� j z � Q�MA� C� u� s�g� (

�

�
"��B�f�u� s� j z � Q�MB � C� u� s�g�

� "���f��u� s� j z � Q�N�C� �u� s�g� ( "���f��u� s� j z � Q�N�C� �u� s�g�
� "���fx� s� j z � Q�N�C� x� s�g��
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This completes the proof� �

��	 Structure of Reducibility

In this section� we shall take a close look at the structure of the randomized complexity class Dist�NP�P�comp�

in the light of reducibility� First we shall review the results of Ben�David� Chor� Goldreich� and Luby  �!�

They proved that if there is a hard distributional problem in Dist�NP�P�comp�� there is also a problem

which is in Dist�NP�P�comp� but not p�m�complete for Dist�NP�P�comp��

Proposition ����	 ��� Let � � strict�REC�comp and D � REC� Assume that there exists a time�

constructible function p such that p�n� � nO��	 and j���p�i	�����p�j	�j � ��i(��j for almost all i� j � N� If
�D��� �� Aver�P� ��	 then there exists a semi�distribution � such that �i� �D� �� �� Aver�P� ��	 �ii� �D��� ��p

T

�D� ��	 �iii� �D� �� �p
m �D���	 and �iv� � is computed by an oracle log�space deterministic Turing machine

relative to the function oracle ��

Proof� The proof proceeds by a so�called slow diagonalization technique� We �rst enumerate all quadruples

hMi� Ni� ci� dii of a deterministic Turing machine Mi� a deterministic oracle Turing machine Ni� and natural

numbers ci and di� Write also Di for L�Mi� for brevity� Note that by our assumption� there exists a

deterministic Turing machine which exactly computes "��

For a �nite sequence � and an integer k � �� let ��k� denote its kth element of �� For a �nite sequence

� of �
s and �
s� let

��x� � ��jxj� � ���x� � ���jxj���� (
X
i�jxj

��i� � ����i�� ���i���

It is easy to see that� for each x� "��x� � � if ��jxj� � �� and "��x� � "��x� otherwise� Note that the condition

on � that j���p�i	� � ���p�j	�j � ��i ( ��j will be used later to guarantee the existence of a �normalized�

distribution of ��

Let us consider the following subprogram Cond�i� �� t��

subroutine Cond�i� �� t�

if t steps are consumed during the following computation then return �no�

if i � �even� then let io �� bi��c and go to ���
let i� � b�i � ����c �since i � �odd��

check the following two conditions�

�i� Di� �$�j�j �� D �$�j�j� and

�ii�
P

x���jxj�j�jTimeMi�
�x���di� � jxj�� � "��x� � ci�

if either �i� or �ii� is true then return �yes� else return �no�

��� check the following three conditions�

�i� L�Ni� � Di�� � $�j�j �� D � $�j�j�
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�ii�
P

x���jxj�j�j Time
Di�
Ni�

�x���di� � jxj�� � "��x� � ci� � and

�iii� there exist two x� y of length � j�j such that "��x� � "��y� � �� and y � Q�Ni� � Di� � x�

if either �i�� �ii�� or �iii� is true then return �yes� else return �no�

return�

Notice that if Cond�i� �� t� answers �yes�� then so does Cond�i� �� t� for all extensions � of � �i�e�� � w ���

The following is the main body of the algorithm which computes ��

begin deterministic algorithm for �

input k

let t �� blog kc
for i � � to t do

exit the for�loop when t individual steps are executed in this for�loop

compute ���i�

if ���i� � �
� then go to ���

end�for

output ��k� �� � and halt

��� for j � � to t do

exit the for�loop when t individual steps are executed in this for�loop

re�compute ��j� �by a recursive call�

end�for

let J be the largest index j for which ��j� has been recomputed in the above for�loop

if no such J exists then output ��k� �� � and halt

set �J �� �������� � � ���J�

for i � � to J do

exit the for�loop when t individual steps are executed in this for�loop

call Cond�i� �J � t�

if Cond�i� �J � t� � �no� then exit the for�loop

end�for

let I be the smallest index i for which Cond�i� �J � t� answers �no�

output ��k� �� I mod � and halt

end�

The exit�statement enforce a time bound t �� blog kc� on each each for�loop� thus� this algorithm

requires at most O�logk� steps� Hence� � is computed by using O�log k��space� By de�nition� � is correctly

computable using log�space with the help of � as an oracle�

We shall show that this algorithm correctly computes ��k� on input k� We assume that there is no

extension � of � such that Cond�i� �� t� answers �yes�� Assume that i is odd� Then � is of the form ��m

for some m � N because ��j�� j � k� is always set to be �� We then have Di� � $�j�j � D � �$�j� j� This

implies L�Mi�� � D� Also we have
P

x���jxj�j�j TimeMi�
�x���di� � jxj�� � "��x� � ci� � We remark that the
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value "��x� equals "��x� if jxj � j�j� Hence� for some constant c � �� we have

X
x�jxj��

TimeMi�
�x���di� � jxj�� � "��x� � c (

X
x�jxj��

TimeMi�
�x���di� � jxj�� � "��x� � c( ci� ���

This implies that �D��� belongs to Aver�P� ��� a contradiction�

Now let us consider the other case that i is even� Notice that any extension � of � is of the form ��m for

somem � N� Then L�Ni� � Di���$j�j � D�$�j�j for all extensions � of �� Thus� L�Ni� � Di�� � D� Moreover�

there are no pairs �x� y� such that "��x� � �� "��y� � �� and y � Q�Ni� � Di� � x�� Recall the de�nition of �� Since

� � ��m� m � N� it follows that� for any y of length greater than j�j� "��y� � �� This means that there is no

x �jxj � j�j� on which Ni� queries strings of length greater than j�j� In other words� kSxQ�Ni� � Di� � x�k is

�nite� Let us de�ne another Turing machineN � which simulatesNi� on the same input with all oracle answers

from Di� being encoded into its program� Clearly L�Ni� � Di�� � L�N �� and TimeN �x� � c�Time
Di�
Ni�

�x� ( ��

for some absolute constant c � �� Notice that
P

x���jxj�j�j jxj���Time
Di�
Ni�

�x���di� �"��x� � ci� for all extensions

� � Hence� we have

X
x�jxj��

TimeN �x���di�

jxj � "��x� � c� ( c �
X

x�jxj��

Time
Di�
Ni�

�x���di�

jxj � "��x� � c� ( c � ci� �

This again concludes that �D��� is in Aver�P� ��� a contradiction� Therefore� the algorithm for � works

properly�

By Corollary 	����� we can normalize � to a �full� distribution �� such that "���x� � "��x� for all nonempty

strings x� �

In a similar fashion� we can demonstrate the existence of a distributional problem that is not p�T�harder

than a given problem� but can be p�m�reduced to the given problem�

Proposition ����� ��� Let � � strict�REC�comp and D � REC� If �D��� �� Aver�P� ��	 then there

exists a set E such that �i� �E� �� �� Aver�P� ��	 �ii� �D��� ��p
T �E� ��	 �iii� �E� �� �p

m �D���	 and �iv�

E � LD�

Proof� Similar to Theorem ������ �

Theorem ����� ��� Assume that Dist�NP�P�comp� �	 Aver�P� ��� Then	 there exists a distributional

problem �D��� in the di
erence Dist�NP�P�comp� � Aver�P� �� which is not �p
m�complete for

Dist�NP�P�comp��

Proof� Assume that Dist�NP�P�comp� �	 Aver�P� ��� Then� no p�m�complete problem for

Dist�NP�P�comp� belongs to Aver�P� ��� Let �D��� be any distributional problem which is p�m�complete

for Dist�NP�P�comp�� Since �D��� �� Aver�P� ��� Proposition ����� guarantees the existence of a set E such
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that �E� �� �� Aver�P� ��� �D��� ��p
T �E� ��� and �E� �� �p

m �D���� As �E� �� �p
m �D���� the problem �E� ��

is in Dist�NP�P�comp��

Clearly �E� �� is not p�m�complete for Dist�NP�P�comp�� �Otherwise� �E� �� �p
m �D���� and thus

�E� �� �p
T �D���� a contradiction�� �

We say that two distributional problems �D��� and �E� �� are incomparable with respect to �p
T if

�D��� ��p
T �E� �� and �E� �� ��p

T �D����

The following theorem leads to the existence of incomparable pairs in Dist�NP�P�comp� with respect to

p�T�reductions�

Proposition ����� ���� For every recursive set D not in P	 there exist two P�computable distributions

� and � such that �D��� ��p
T �D� �� and �D� �� ��p

T �D����

Proof� We use the slow diagonalization technique again� Let fMigi�Nbe a standard enumeration of

all deterministic polynomial�time oracle Turing machines� We recall that si denotes the ith string in the

standard order on $�� Let �� � be in�nite sequences of �
s and �
s� Let "��x� � ���jxj�� for all x� This

distribution is P�computable� We next de�ne a semi�distribution � as

��x� � ��jxj� � ���x�� ���jxj��� (
X
i�jxj

��i� � ����i�� ���i��

for any nonempty string x� Similarly� � is de�ned by replacing � with � � Note that ��jxj� � � �jxj� if and

only if "��x� � "��x��

The in�nite sequences � and � are computed by the following recursive procedure�

begin deterministic algorithm for ���n�� � �n��

input n

if n � � then output ���n�� � �n�� �� ��� ��

let t � blognc �t does not change during n � f�m� �m ( �� � � � � �m�� � �g�
for j � � to t do

exit the for�loop when t steps have been executed

recompute a pair ���j�� � �j�� �by a recursive call�

end�for

let J be the largest index j for which ���j�� � �j�� has been recomputed

if no such J exists then output ���n�� � �n�� �� ��� ��

for i � � to J do

call Cond�i� J� t�

if Cond�i� J� t� � �no� then exit

end�for

let I be the smallest index i for which Cond�i� J� t� � �no�

�for the sake of convenience below� write r�n� � I�
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if no such I exists then output ���n�� � �n�� �� ��� ��

output ���n�� � �n�� �� ��I ( �� mod�� Imod��

end�

The subroutine Cond�i� J� t� is as follows�

subroutine Cond�i� J� t�

if i � �odd� then let i� � b�i � ����c and go to ���
let i� � bi��c �because i � �even��

check the following two conditions�

�i� L�Mi� � D� � $�j�j �� D � $�j�j or

�ii� there are x� y � j�j s�t� "��x� � "��y� � � and y � Q�Mi� � D� x�

if either �i� or �ii� is true then return �yes� else return �no�

��� check the following two conditions�

�i� L�Mi� � D� � $�j�j �� D � $�j�j or

�ii� there are x� y � j�j s�t� "��x� � "��y� � � and y � Q�Mi� � D� x�

if either �i� or �ii� is true then return �yes� else return �no�

return�

Claim 	� range�r� � N	 where range�r� � fr�z�jz � Ng�

Proof of Claim� Assume range�r� �� N� Take the minimal integer I such that r�n� � I for all n � �� Since

I does not change� the algorithm always takes the same index I�

First consider the case that I is even� Let i� � I�� and let n be su�ciently large� Notice that� for every

x of length at least n� "��x� � � and "��x� � �� Moreover� for every x� we have MD
i�

�x� � D�x�� and MD
i�

�x�

does not query any string y� where "��x� � "��y� � �� Hence� MD
i� computes D on all inputs� and it queries

only strings of length smaller than n� This implies that D is in P� which contradicts our assumption� The

same argument also holds for the case where I is odd�

Therefore� � and � are well�de�ned�

Finally� we must normalize these two semi�distributions to obtain the desired distributions� It is not hard

to see that � and � are log�space computable since� in each stage n� we quit the simulations after logn steps

are made� From Corollary 	����� it su�ces to show that� for p�n� � n( �� j���p�i	� � ���p�j	�j � ��i ( ��j

holds for almost all i� j � N� Assume that i � j� Then�

j���p�i	�� ���p�j	�j �

p�i	X
k�p�j	��

"��$k� �
i��X

k�j��

"��$k�

� ���p�i	�� ���p�j	� � ��� ��i� � ��� ��j�

� ��i ( ��j
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because either "��$k� � "��$k� or "��$k� � �� By Corollary 	����� � can be normalized by �� such that "���x� �

"��x� for all nonempty strings x� Thus� �� is P�computable� In a similar way� we can show the existence of

the P�computable distribution �� which normalizes �� Distributions �� and �� satisfy the conditions of the

theorem� Thus� we complete the proof� �

Corollary ����� ���� If Dist�NP�P�comp� �	 Aver�P� ��	 then there is an incomparable pair in

Dist�NP�P�comp��

Proof� Assume that Dist�NP�P�comp� �	 Aver�P� ��� Let D be a set in NP � P� This set D exists

because P � NP implies Dist�NP�P�comp� 	 Aver�P� ��� By Proposition ����	� there exist two distribu�

tions �� � � P�comp such that �D��� and �D� �� are incomparable� Notice that �D��� and �D� �� are in

Dist�NP�P�comp�� �

��
 Recent Topics

In this section� we shall discuss some issues which have emerged recently�

Randomized Many�One Reductions� The search for a better de�nition of �reductions� is an exciting

�eld in average�case complexity theory� because the di�erent choices of reducibility can lead to di�erent

worlds�

For example� we have seen that there is no 
at distribution for which a distributional problem is p�m�

complete for Dist�NP�P�comp� if EXP �� NEXP� However� Gurevich introduced a random version of

many�one reductions under which some 
at distributions make their distributional problems �complete�� A

similar phenomenon occurs in the case of random reductions� Impagliazzo and Levin  		! demonstrated that

distributional NP�search problems can be randomly reduced to distributional decision problems�

Here is the de�nition of random reductions� Recall the de�nition of dilations from Section ����

De�nition ����� ���� For two distributional problems �D��� and �E� ��� �D��� is polynomial�time ran�

domly �or randomizing� reducible to �E� �� if there exists a function f which is computable by a randomized

algorithm in polynomial time on ��average� and a dilation + such that �i� for any �x� s� � +� x � A if and

only if f�x� s� � B� and �ii� f satis�es the domination condition� �N�B� f takes inputs of the form �x� s���

Using this type of reduction� the following interesting claim can be proved�

Proposition ����� ��	� �
�� There exits a �at distribution � such that �BHP� �� is complete for

Dist�NP�P�comp� under polynomial�time random reducibility�
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AlternativeDe�nition of Polynomial on the Average� Let us take a quick look at Levin
s de�nition of

�polynomial on the average�� Recall that a function g is polynomial on ��average if and only if
P

x�x��

g�x	�

jxj �
"��x� ��� One of the observations is that it allows us to deal with distributions that put too much weight

on the �rst few strings� J� Cai and A� Selman  ��! considered such distributions inappropriate for a coherent�

general theory of average�case complexity� As an alternative� they propose a di�erent notion of �polynomial

on the average� which counts on the convergence rate of the expectation�

De�nition ����� ���� A function g is �t on the ��average� �in the sense of Cai and Selman� if� for all

n � �� X
x�jxj�n

t���g�x��

jxj "��x� � "��$� � $�n��

As long as � satis�es �n�"��fz j jzj � ng� � )�n�k� for some constant k � �� Levin
s de�nition of

�polynomial on ��average� coincides with that of Cai and Selman  ��!� Moreover� this notion of Cai and

Selman is equivalent to the notion of �polynomial on average with respect to f��ngn�N� in De�nition ������

C� Racko� also suggests �reported in  ��!� the following de�nition�

De�nition ����� ���� A function g is �t on the ��average� �in the sense of Racko�� if� for all n � ��

X
x�jxj�n

t���g�x��

jxj "��x� � "��$n��

Racko�
s de�nition also provides the same notion of �polynomial on ��average� given by Levin if �

satis�es �n�"��fz j jzj � ng� � )�n�k� for some constant k � ��

However� Cai and Selman
s de�nition seems inappropriate when we consider the polynomial�time many�

one reductions introduced in Section ���� Let us denote by CS�Aver�P�F� the collection of all distributional

decision problems �A� �� such that � � F � and A is computed by a deterministic Turing machine M which

satis�es the condition that� for all n � ��
P

x�jxj�n
TimeM �x	��k

jxj "��x� � "��fz j jzj � ng� for some constant

k � ��

Belanger and Wang  �! showed that CS�Aver�P� �� is not closed under �p
m�reductions or �avp

m �reductions

with one�one reduction functions� Hence� CS�Aver�P� �� is properly included in Aver�P� ���

Theorem ����� ��� CS�Aver�P� �� is not closed downward under �p
m�reductions or �avp

m �reductions with

one�one reduction functions�
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Average Case Hierarchies

	�� Introduction

One of the most novel contributions to worst�case complexity theory is the introduction of the polynomial�

time hierarchy �or polynomial hierarchy� by Meyer and Stockmeyer in ����� This worst�case hierarchy is

built fromP and NP in a way similar to how Kleene constructed his arithmetical hierarchy above recursively

enumerable sets� Notably� the classes of the hierarchy lies between P and PSPACE� The construction is

such that the kth level of the polynomial�time hierarchy is de�ned to be the collection of all sets� each of

which can be recognized by a polynomial�time deterministic�nondeterministic oracle Turing machine relative

to some sets in the �k � ��th level of the hierarchy�

The polynomial�time hierarchy has been studied extensively for over two decades with many intriguing

results� For example� if the Boolean hierarchy over NP collapses� then so does the polynomial�time hierarchy

 	�!� and if the polynomial�time hierarchy collapses� then the low and high hierarchies in NP collapse  ��!�

Many NP�hard problems are classi�ed into various levels in the polynomial�time hierarchy�

This chapter will build average�case analogues of the polynomial�time hierarchy among distributional

decision problems� To introduce an average polynomial�time hierarchy� we shall begin with the relativization

of the fundamental average�case complexity classes Aver�P�F� and Aver�NP�F�� relative to a distributional

problem �E� ���

A relativization of the class Aver�P�F� to an oracle problem �E� �� is naturally induced from the average

polynomial�time deterministic Turing reducibility de�ned in Section ���� A similar approach toward a rela�

tivized Aver�NP�F� is taken by Schuler and Yamakami  ��! based on the model of clocked nondeterministic

Turing machines� Here we shall de�ne a relativized Aver�NP�F� in a slightly di�erent way� In Section ����

the relativization of Aver�P�F�� Aver�BPP�F�� Aver�NP�F�� and Aver�PSPACE�F� will be formulated

in terms of various restrictions on average polynomial�time oracle Turing machines together with weaker

domination conditions for those machines�

In relativized worlds� we can see a desirable separation of Aver�NP�P�comp� and Aver�P�P�comp�� and

���



��� CHAPTER 	� AVERAGE CASE HIERARCHIES

a collapse between Aver�P�P�comp� and Aver�PSPACE�P�comp��

In Section ��	� using Turing reducibility� we shall introduce an average�case version of the polynomial�

time hierarchy� average polynomial�time hierarchy under a set F of distributions fAver��p
k�F��Aver�
p

k�F��

Aver��p
k�F� j k � �g�

Another e�ective way of characterizing the kth level of the polynomial�time hierarchy is to use polynomial�

time alternating Turing machines with k�alternation� This worst�case characterization is very suggestive

and enables us to build another type of average polynomial�time hierarchy using �average� polynomial�

time alternating Turing machines with constant�alternation� We call this average�case hierarchy the average

polynomial�time alternating hierarchy� Section ��� will formally introduce an average�case alternation hi�

erarchy based on average polynomial�time alternating Turing machines with constant�alternation� As the

reader may perceive� however� these two types of average�case hierarchies are unlikely to coincide�

We have seen in the previous chapter that if Dist�NP�P�comp� is not included in Aver�P�P�comp�� then

there are distributional problems which are in Dist�NP�P�comp� but which are not p�m�complete� This

indicates the possibility of a large gap between Aver�P�P�comp� and Aver�NP�P�comp�� One approach of

re�ning this gap involves constructing a hierarchical structure within Aver�NP�P�comp� and sorting out all

distributional problems in Aver�NP�P�comp� into various levels of this hierarchy� This approach was taken

by Sch�oning in worst�case complexity theory in ����� and the hierarchies within NP are called the high and

low hierarchies� A natural average�case version of the low hierarchy� called the average low hierarchy within

Aver�NP�F�� will be introduced�

Major Contributions� In this chapter� we introduce several new hierarchies�

In Proposition ������ it follows by the self�reducibility of RBHP that Dist�NP�P�comp� 	 Aver�BPP� ��
implies Dist�NP�P�comp� 	 Aver�RP� ���

The notion of relativization originally comes from Schuler and Yamakami  ��!� however� the relativizations

of the classes Aver�NP�F� and Aver�BPP�F� treated in this chapter are di�erent from those in  ��!�

Proposition ����� shows that Aver�BPP�F� relative to Aver�BPP� �� collapses to Aver�BPP� �� for any

set F of distributions�

Proposition ������ shows basic properties of relativized Aver�NP�F�� such as re
exivity and transi�

tivity� In particular� if �A� �� is in Aver�P� ���B��	� then all problems in Aver�NP�F��A��	 belong to

Aver�NP�F��B��	�

Theorem ������ demonstrates an oracle separation between Aver�P�P�comp� based on a tally oracle con�

struction given by Baker� Gill� and Solovay  �!� whereas Theorem ������ shows a collapse of

Aver�PSPACE�P�comp� to Aver�P�P�comp� in a relativized world� The proof uses a relativized version

of the randomized bounded halting problem�

Proposition ������ shows that Aver�PSPACE�F� relative to Aver�PSPACE� �� collapses to

Aver�PSPACE�F� for any set F of distributions�

Basic inclusion relationships� such as Aver��p
k�F� 	 Aver�
p

k�F� 	 Aver��p
k���F�� among classes in

the average polynomial�time hierarchy are shown in Proposition ��	�	�
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Proposition ��	�� shows that a collapse of two levels of the average polynomial�time hierarchy causes any

higher level of the hierarchy to collapse�

An important new idea is the use of of alternating machines to build another average�case version of

the polynomial�time hierarchy� Theorem ����� gives an oracle characterization of the average polynomial�

time alternating hierarchy� for example� Aver�A�p
k���F� is equivalent to the class Aver�P�F� relative to

Dist�
p
k� ��� A similar characterization holds for Aver�A
p

k���F��

In Proposition ����	� it is shown that the class Aver�BPP�F� is included in the second level of the

average polynomial�time alternation hierarchy�

Proposition ��	�� and Theorem ��	��� show that many basic average complexity classes� such as Aver�P� ��
and Aver�NP� ��� have the sparse interpolation property�

	�� Distributional Polynomial�Time Hierarchy

In the previous chapter� we showed that several important distributional decision problems� such as the

bounded halting problem RBHP� are p�m�complete for Dist�NP�P�comp�� This section will extend these

completeness results to the class Dist�
p
k�P�comp�� the kth level of the �distributional polynomial�time

hierarchy under P�comp��

	���� De�nition of Hierarchy

Randomized complexity classes are the simplest randomization of existing worst�case complexity classes� As

with the polynomial�time hierarchy� we can consider its natural counterpart of the polynomial�time hierarchy�

the distributional polynomial�time hierarchy� under a given set of distributions�

We begin with its formal de�nition�

De�nition 	���� Let F be a set of distributions� A distributional polynomial�time hierarchy under F
consists of the following classes� Dist��p

k�F�� Dist�
p
k�F�� and Dist��p

k�F� for all k � ��

We next demonstrate the existence of p�m�complete problems for each class Dist�
p
k�P�comp�� We

generalize the randomized bounded halting problem RBHP� seen earlier� to the kth level randomized bounded

halting problem RBHPk� The kth level randomized bounded halting problem RBHPk is the distributional

problem �BHPk� �BHP� de�ned in the following fashion� Let �BHP be the same distribution as in Section

���� Assuming that fMigi�Nis an e�ective enumeration of all nondeterministic oracle Turing machines� we

de�ne

BHP�A� � fhi� x� �ni jMA
i accepts x in less than n steps g�

and then set BHP� � BHP�'� and BHPk�� � BHP�BHPk� for k � ��

Next theorem proves that� for each k� the problem RBHPk is p�m�complete for Dist�
p
k�P�comp�� Note

that the case k � � has been already shown as in Theorem ������



��� CHAPTER 	� AVERAGE CASE HIERARCHIES

Theorem ����� ���� For any k � �	 RBHPk is �p
m�complete for Dist�
p

k�P�comp��

Proof� The general case k � � is very similar to the base case k � � of Theorem ������ We note that

BHPk is 
p
k�complete�

For every set D � 
p
k and every distribution � � P�comp� we shall show that �D��� �p

m �BHPk� �BHP��

Notice that BHPk�� is p�m�complete for 
p
k��� and as a consequence� there exists a polynomial�time non�

deterministic oracle Turing machine M computing D with oracle BHPk���

Let g be the function g de�ned in Lemma 	�������� The function g satis�es "��x� � ��jg�x	j��� Now let i

be an index such that L�Mi� � L�M �� Let p be a polynomial time bound of Mi� For the reduction f from

D to BHPk� we set f�x� � hsi� g�x�� �p�jxj	i� Clearly f is one�one and witnesses the reduction D �p
m BHPk

because x � D holds exactly when Mi with oracle BHPk�� accepts x within p�jxj� steps� To check the

domination condition for f � we simply follow a argument similar to that used in the proof of Theorem ������

Thus� we obtain �D��� �p
m �BHPk� �BHP�� �

	���� Self�Reducibility

Meyer and Paterson  ��! have introduced the notion of �polynomial�time Turing� self�reducibility into worst�

case complexity theory�

All known NP�complete problems are self�reducible� and every self�reducible set belongs to PSPACE� It

is natural to ask whether the notion of self�reducibility has a counterpart in distributional decision problems�

We shall indeed give in this section the formal de�nition of an average�case version of self�reducibility and

show the existence of self�reducible sets in each level of the average polynomial�time hierarchy�

We begin by de�ning the important concept of a P�computable� OK partial order on the set $��

De�nition 	���� �OK Partial Order� Let � be a partial order�

�� A partial order � is polynomial�time computable �P�computable� for short� if there exists a polynomial�

time deterministic Turing machine M such that� for every pair �x� y�� x � y if and only if M �x� y� � ��

�� A partial order � is OK if there exists a polynomial p such that

�i� every strictly descending chain is �nite and is polynomial in the length of its maximum element�

i�e�� if x� � x� � � � � � xk�� � xk is a strictly descending chain starting from x�� then k � p�jx�j��
and

�ii� for every pair �x� y�� x � y implies jxj � p�jyj��

For example� let us write x � y to mean jxj � jyj for any pair �x� y�� Then the relation � becomes a

P�computable� OK total order on $��

The notion of self�reducibility is now stated as follows�
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De�nition 	���� �Self�Reducibility� ���� A distributional decision problem �D��� is �polynomial�time

Turing� self�reducible if there exist an OK partial order and a deterministic oracle Turing machine M such

that �D��� �p
T �D��� via M � and for every input x� all query strings in the computation of M on input x

are smaller than x with respect to the partial order� The machine M is called a self�reducing machine for

�D����

Lemma ����� �� Every distributional decision problem in Dist�P� �� is self�reducible�

�� Every self�reducible distributional decision problem is in Dist�PSPACE� ���

Proof� ��� For any distributional problem �D��� in Dist�P� ��� there exists a deterministic Turing machine

M which computes �D��� without any queries� This machine reduces �D��� to �D���� By the de�nition of

self�reducibility� �D��� turns out to be self�reducible�

��� Assume that �D��� is self�reducible� Let us take a self�reducing machine M for �D���� We shall

de�ne a Turing machine N which computes D using polynomial space� Below we describe an algorithm for

N using a recursive call�

begin deterministic algorithm for N

input x

simulate M on input x

while simulation do

��� if M makes a query z then simulate N on input z

if M reaches a halting con�guration then outputM �x� and halt

end�while

end�

We must prove that N uses only polynomial space� Let us analyze the query process of N on input x�

Notice that the space used by the machine M is p�bounded� and thus there are at most exponentially�many

di�erent con�gurations� Remember that this number is independent of the choice of oracle� Let us assume

that in the �rst round of the simulation of M � M queries at most exponentially�many strings� which are in

Q�M�D� x�� The recursive protocol in the line ��� brings another round of the simulation of M on each input

taken from the set Q�M�D� x�� Fix an arbitrary string z��	 in Q�M�D� x�� In the second round� M makes

another set of queries� Q�M�D� z��	�� To go into the third round� we �x a query string z��	 in Q�M�D� z��	�

and then consider the set Q�M�D� z��	� of query strings� Recursively� we keep �xing a query string z�i	 and

then start another round of the simulation of M on the input z�i	� This process proceeds until M does not

query any strings�

Now let us consider an arbitrary sequence z��	� z��	� � � � � z�i	� � � � taken by the above procedure� Since M

is a self�reducing machine� this sequence makes a strictly descending chain with respect to the given OK

partial order� This implies that the length of the chain is bounded above by a polynomial in jxj� and the

length of each string z�i	 is also bounded by a polynomial in jxj� Let p be such a polynomial� As a result� N
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can simulate M using p�jxj� blocks on a working tape� each of which is used to store one of the strings z�i	

being queried in each ith round� Therefore� N needs only polynomial space� �

Moreover� the set of all self�reducible problems is closed under p�isomorphism� i�e�� if �D��� is p�

isomorphic to some distributional problem which is self�reducible� then �D��� is self�reducible�

Lemma ����� Let �D��� and �E� �� be any distributional problems� If �D��� is p�isomorphic to �E� ��

and �E� �� is self�reducible	 then �D��� is self�reducible�

Proof� Let f be a p�isomorphism from �D��� to �E� ��� and let M be a self�reducing machine for �E� ���

By the de�nition of p�isomorphism� f is P�computable and p�invertible� that is� f�� is also P�computable�

Since �D��� �p
� �E� �� via f � there exists a polynomial p such that p�jxj� � "��f�x�� � "��x� for all x�

Similarly� f�� reduces �E� �� to �D���� and thus there is a positive� strictly increasing polynomial q such

that q�jf�x�j� � "��x� � "��f�x�� for all x�

We wish to construct another self�reducing machine N for �D���� Let us de�ne the machineN as follows�

begin deterministic algorithm for N with oracle

input x

start the simulation of M on input f�x�

while simulation do

if M queries z then query f���z� to oracle

if M reaches an accepting con�guration then accept

end�while

accept

end�

Recall that D�x� � E�f�x�� and D�f���z�� � E�z� for all strings x and z� From these equations� N can

reduce D to D in polynomial time� Furthermore� there exists a strictly increasing polynomial q� such that

if z is a query string made by N on input x� then jf�z�j � q��jxj�� since f and f�� are both p�honest and

p�bounded�

Next we shall check the domination condition for N � By the domination condition for M � we can �nd a

semi�distribution � and a polynomial p� such that p��jxj� � "��x� � "��x� and "��z� � "��fx j z � Q�M�E� x�g�
for all x and z� We de�ne the semi�distribution � by "��x� � "��f�x���s�jxj�� where s � q � q�� We �rst show

that � �p �� This is seen as follows� For each x� we have�

"��x� � p�jxj� � "��f�x�� � p�jxj�p��jf�x�j� � "��f�x�� � p�jxj�p��jf�x�j�s�jxj� � "��x��

From these inequalities� we set t�z� � p�z�p��f�z��s�x�� and thus t�x� � "��x� � "��x��
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To see that "��z� � "��fx j z � Q�N�D� x�g�� we notice that

"��fx j z � Q�N�D� x�g� �
X

x�z�Q�N�D�x	

"��f�x��

s�jxj� �
X

x�z�Q�N�D�x	

"��f�x��

q�f�z��
� �

q�f�z��
�

X
x�z�Q�N�D�x	

"��f�x���

The term
P

x�z�Q�N�D�x	 "��f�x�� is equivalent to the term "��fy j f�z� � Q�M�E� y�g� which is bounded by

"��f�z��� Therefore� it follows that

"��fx j z � Q�N�D� x�g� � "��f�z��

q�f�z��
� "��z��

This completes the proof� �

One of the classical self�reducible NP�complete problems is the satis
ability problem� SAT� However�

we do not know a simple distribution � such that �SAT� �� is Dist�NP�P�comp��complete� Moreover� as

shown by Franco and Paull  ��!� SAT is deterministically computable in polynomial�time on the average

under some natural distribution� Instead� we consider a skew version of the kth level randomized bounded

halting problem� skewRBHPk� which is p�isomorphic to RBHPk� We want to show that skewRBHPk is

self�reducible� By Lemma ������ this implies the self�reducibility of RBHPk�

First we de�ne the kth level randomized skew bounded halting problem skewRBHPk as the distributional

decision problem �BHPskew� �BHPskew �� Assuming that all nondeterministic Turing machines take at most

two nondeterministic choices at every step� BHPskew is the collection of strings of the form hsi� x� y� �ti�
jyj � t� such that� on input x� Mi with oracle BHPk�� deterministically follows the computation path

speci�ed by y during the �rst jyj nondeterministic choices and then halts in an accepting state within t

steps� The distribution �BHPskew is de�ned by�

"�BHPskew�si� x� y� t� � "�BHP�si� x� t� � "�stand�y��

Theorem ����� ���� For each k � �	 RBHPk is self�reducible�

Proof� As mentioned above� our strategy is to show that �i� skewRBHPk is p�isomorphic to RBHPk� and

�ii� skewRBHPk is self�reducible�

We �rst sketch the proof of statement �i�� The proof that skewRBHPk �p
� RBHPk via a P�computable�

p�invertible reduction function is similar to the proof of Theorem ������ The other direction RBHPk �p
�

skewRBHPk is shown by considering the reduction function f de�ned by

f�si� x� t� � hsi� x� �� ti

for all triplets �si� x� t�� The function f is one�one� P�computable� and p�invertible�

Next we prove statement �ii�� that is� skewRBHPk is self�reducible� Let us de�ne the binary relation �

as follows�

�si� x� y� t� � �sj � x
�� y�� t�� �� i � j � x � x� � y� v y � t � t� � jyj � jt�j�

It is easy to see that the relation � is P�computable and that it is an OK partial order because of the upper

bound jt�j on the size of y�
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Next let us consider the following oracle Turing machine N �

begin deterministic algorithm for N

input hi� x� y� ti
if t is not of the form �m then reject

if jyj � jtj then reject
decode the code si and recover the machine Mi

simulate Mi on input x deterministically following the computation path

encoded by y until the machine either exhausts jtj steps or

makes the �jyj( ��th nondeterministic choice

if either Mi reaches a halting state or it does not halt within jtj steps then go to ���
query hi� x� y�� ti and hi� x� y�� ti to oracle

if one of the strings belongs to oracle then accept else reject

��� if Mi accepts x within jtj steps then accept else reject

end�

We wish to show that N is self�reducing machine� Clearly N reduces BHPk
skew to BHPk

skew by querying

only strings which are smaller than input with respect to �� To complete the proof� we must check the

domination condition for N � Notice that two query strings hsi� x� y�� ti and hsi� x� y�� ti uniquely correspond

to input hsi� x� y� ti� Let us consider the query string hsi� x� y�� ti� The probability "�BHPskew�si� x� y�� t� is

bounded by�

� � "�BHPskew �si� x� y�� t� � � � "�BHP�si� x� t� � "�stand�y��

� � � "�BHP�si� x� t� � ���llog�jy�j	�jy�j��

� � � "�BHP�si� x� t� � ��
 � ���llog�jyj	�jyj��

� "�BHPskew�si� x� y� t�

� "�BHPskew�fw j �si� x� y�� t� � Q�N�BHPk
skew� w�g�

since llog�n( �� � llog�n� ( � for all n � N� A similar inequality holds for "�BHPskew �si� x� y�� t�� Therefore�

N is a self�reducing machine� �

As stated before� Wang and Belanger  ���! show that most known distributional problems complete for

Dist�NP�P�comp� are p�isomorphic to each other� From Theorem ������ we immediately conclude that

most known p�m�complete problems for Dist�NP�P�comp� are self�reducible� Nevertheless� we do not know

whether all p�m�complete problems for Dist�NP�P�comp� are self�reducible� If the Isomorphism Conjecture

�in Section ���� is true� then all distributional problems in Dist�NP�P�comp� obviously become self�reducible�

Finally in this section� we shall demonstrate an application of self�reducibility� In worst�case complexity

theory� Ko  ��! and Zachos  ���! use self�reducible sets to show that NP 	 BPP implies NP � RP� A

similar argument can be carried out in the average�case setting�
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Proposition ����� Dist�NP�P�comp� 	 Aver�BPP� �� if and only if Dist�NP�P�comp� 	 Aver�RP� ���

Proof� Let us assume that Dist�NP�P�comp� is included in Aver�BPP� ��� We have seen that skewRBHP

is self�reducible and complete for Dist�NP�P�comp�� It is thus enough to show that skewRBHP belongs to

Aver�RP� �� because the class Aver�RP� �� is closed under p�m�reductions�

Let M be a self�reducing machine for skewRBHP which runs in polynomial time� and a P�computable�

partial OK order � for self�reducibility� Let p be a polynomial such that TimeM �x� � p�jxj� for all x� Let us

consider the self�reducing tree of skewRBHP� By our assumption� there is a bounded�error probabilistic Tur�

ing machine M� which recognizes BHP in polynomial time on �BHP�average� Bene�ted by the Ampli�cation

Lemma� we can assume that PrM�  M��z� � BHP�z�! � �� ��p�z	�
 for all z�

On input hsi� x� y� �mi� each node of the self�reducing tree starting from the root hsi� x� �mi describes

a nondeterministic choice made by the machine Mi on input x� To determine the correct outcome of the

machine� we probabilistically trace the self�reducing tree along each path as a series of nondeterministic

choices� when we reach a leaf� we check whether the machine reaches an accepting con�guration� This last

step is done without any error� and thus we have a one�sided error randomized algorithm�

Therefore� RBHP is in Aver�RP� ��� �

	�� Relativization of Average Complexity Classes

In ����� Baker� Gill� and Solovay  �! initiated a study of relativized complexity classes� Early studies

revealed possible worlds in which P � NP � co�NP� P �� NP � co�NP� or P �� NP �� co�NP holds�

This appalling phenomenon clearly re
ects the di�erence in computational power between determinism and

nondeterminism�

In Chapter �� we have already seen �relativized computation� in terms of average�case versions of

Turing reducibility� Naturally we can expand our boundary to relativized worlds� This section will in�

troduce four relativized average�case complexity classes� Aver�P�F�� Aver�BPP�F�� Aver�NP�F�� and

Aver�PSPACE�F��

	���� Relativized Aver�P�F�

The concept of relativization is another way of viewing Turing reducibility� We have already seen two types of

Turing reducibilities� deterministic Turing reducibility and bounded�error probabilistic Turing reducibility�

Here we shall introduce the notation Aver�P�F��B��	 to denote the collection of distributional problems which

are avp�T�reducible to a given distributional problem �B� ��� analogous to the notation PB in worst�case

complexity theory�

Now let us introduce a relativization of the fundamental average classes Aver�P�F� and Aver�BPP�F��

De�nition 	���� �Relativized Aver�P�F�� ���� Let �B� �� be a distributional decision problem� For
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a set F of distributions� denote by Aver�P�F��B��	 the collection of all distributional decision problems

�A� �� such that there exist a deterministic oracle Turing machine M and a semi�distribution � satisfying

the following conditions�

�i� �E�ciency� M with oracle B is polynomial�time bounded on ��average�

�ii� �Validity� A � L�M�B�� and

�iii� �Domination� � �avp � and "� � �z�"��fx j z � Q�M�B� x�g��

To improve readability� we simply say that the oracle machine M computes A with oracle �B� �� in

polynomial time on ��average if Conditions �i���iii� are witnessed by M with some semi�distribution ��

We remark that it is possible to introduce a weaker type of relativization using p�T�reductions �see�

e�g��  ��!�� However� we believe that average polynomial�time Turing reductions are a better choice when

discussing average�case complexity� because the class Aver�P� �� is closed under avp�T�reductions�

Proposition ����� ���� Let �A� �� and �B� �� be any distributional decision problems	 and let F be any

set of distributions�

�� �B� �� � Aver�P�F��B��	�

�� If �A� �� � Aver�P� ���B��		 then Aver�P�F��A��	 	 Aver�P�F��B��	�

Proof� ��� Consider the oracle Turing machine that queries the input string to oracle and then accepts

it exactly when it is in the oracle� ��� This is another interpretation of the transitivity property of avp�T�

reducibility� �

Finally we shall extend De�nition ����� from a single oracle problem to a class of oracle problems�

De�nition 	���� Let C be a class C of distributional decision problems� For a set F of distributions� set

Aver�P�F�C � f�D��� j ��E� �� � C  �D��� � Aver�P�F��E��	!g�

Propositions ������ and ����� immediately yield the following closure properties�

Proposition ����� ���� Aver�P�F�Aver�P��	 � Aver�P�F� for any set F of distributions�

Proof� Clearly Aver�P�F� 	 Aver�P�F�Aver�P��	 since �A� �� � Aver�P�F��A��	� For the other direction�

consider any problem �A� �� in Aver�P�F�Aver�P��	� There exists a problem �B� �� � Aver�P� �� to which

�A� �� is avp�T�reducible� Using Theorem ������� we conclude that �A� �� belongs to Aver�P� ��� Since

� � F � we get �A� �� � Aver�P�F�� �



	��� RELATIVIZATION OF AVERAGE COMPLEXITY CLASSES ���

	���� Relativized Aver�BPP�F�

We have seen the average�case version of bounded�error probabilistic reducibility in Section ���� Although

the reducibility de�ned there is truth�table reducibility� we can easily extend it to Turing reducibility which

will provide a relativization of the average�case complexity class Aver�BPP�F� in this subsection�

De�nition 	���� �Relativization of Aver�BPP�F�� Let �B� �� be a distributional decision problem�

For a set F of distributions� denote by Aver�BPP�F��B��	 the collection of problems �A� �� such that there

exist a probabilistic oracle Turing machine M � a real number � in the interval ��� ����� a distributional

decision problem �B�� ���� and a semi�distribution � satisfying the following conditions�

�i� �E�ciency� M with oracle B� is polynomial�time bounded on ��average�

�ii� �Validity� PrM  MB�

�x� � A�x�! � �
� ( � for all x�

�iii� �Domination� � �avrp
�
MB�

� and "� � �z�"��f�x� s� j z � Q�M�B�� x� s�g�� and

�iv� �Transformation� �B�� � �� �p
m �B� ���

If conditions �i���iii� are satis�ed� we simply say that M recognizes A with oracle �B�� ��� in polynomial

time on ��average�

The reader may pay attention to the fact that our relativization of Aver�BPP�F� is a Turing extension

of avbpp�tt�reducibility� Since avbpp�tt�reducibility is transitive �Proposition ������� �A� �� �avbpp
tt �B� ��

implies �A� �� � Aver�BPP� ���B��	�
We �rst discuss some of the basic properties of the relativized Aver�BPP�F��

Proposition ����� Let �A� �� and �B� �� be any distributional decision problems	 and let F be any set of

distributions�

�� �B� �� � Aver�BPP�F��B��	�

�� The class Aver�BPP�F��B��	 is closed under avbpp�tt�reductions�

�� If �A� �� � Aver�P� ���B��		 then Aver�BPP�F��A��	 	 Aver�BPP�F��B��	�

Proof� ��� By an argument similar to that of Proposition ��������� ��� The claim follows from Proposition

������ ��� The claim follows by a an argument similar to Proposition ������ �

As in the de�nition of Aver�P�F�C� we extend De�nition ����� from a single oracle problem to a class C
of oracle problems�

De�nition 	���� If C is a class of distributional decision problems and if F is a set of distributions� let

Aver�BPP�F�C � f�D��� j ��E� �� � C  �D��� � Aver�BPP�F��E��	!g�
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Next we show a collapse of Aver�BPP�F� relative to Aver�BPP� �� down to Aver�BPP�F��

Proposition ����� Aver�BPP�F�Aver�BPP��	 � Aver�BPP�F� for any set F of distributions�

Proof� To prove this proposition� we assume that �A� �� is in Aver�BPP�F��B��	 for some �B� �� �
Aver�BPP� ��� In what follows� we shall prove that �A� �� belongs to Aver�BPP�F��

Let M be a bounded�error probabilistic Turing machine which recognizes A with oracle �B� �� in polyno�

mial time on ��average� We can assume without loss of generality that the error probability of the machine

M with oracle B on input x is bounded above by ��	�

Let B� � fz��k j z � Bg and let

"� ��w� �

�	

 "��z� � "�tally��k� if w � z��k�

� otherwise�

Note that �B���� is p�m�reducible to �B� ��� Since Aver�BPP� �� is closed under p�m�reductions� �B�� ��� is

in Aver�BPP� ��� Using Corollary ������� let Mamp be a bounded�error probabilistic Turing machine which

recognizes B� in polynomial time on ���average with the error probability Prs Mamp�z��k� s� �� B��z��k�! �
��k�

Let us de�ne the randomized Turing machine M� as follows�

begin randomized algorithm for M� with an oracle

input x

simulate M on input x until the �rst query is made

if there is no query then output M �x� and halt

for k � � to � do

resume the simulation of M on input x

until the next query is made

��� if M queries z then query z��k�
 instead and

receive an answer from oracle

if M reaches a halting con�guration then outputM �x� and halt

end�for

end�

Note that the probability Prs M
B�

� �x� s� � A�x�! is equal to the probability Prsk  MB�x� sk� � A�x�!� which

is is at least ��	� Thus� it is easy to show that A is recognized by M� with oracle �B�� ��� by an argument

similar to that for Lemma ������

Next we change the line ��� from making a query z��k�
 to simulatingMamp on input z��k�
� Let N be

the randomized Turing machine obtained by this modi�cation� By Lemma ������ it follows that the running

time of the machine N is polynomial on ��average�

Consider the error probability eN �x� of the machine N on input x� On each computation path generated

by M� with oracle B� on input x� the error probability that N draws an erroneous conclusion is at most the
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sum of all error probabilities which are made by the machine Mamp� which does not exceed�

��� ( ��� ( � � � �
�X
k��

��k�
 � ���
�X
k��

��k �
�

�
�

Thus� we have�

eM �x� � Prs M
B�

� �x� s� �� A�x�! (
�

	
� �

	
(

�

�
�

�

�
�

Hence� eN �x� � ����

Therefore� �A� �� is in Aver�BPP�F�� �

	���� Relativized Aver�NP�F�

This section introduces a relativization of Aver�NP�F� which will be used to build an �average polynomial�

time hierarchy� in Section ��	�

Schuler and Yamakami  ��! �rst studied an average�case version of nondeterministic Turing reducibility

and introduced a relativized class Aver�NP�F��B��	 requiring that all computation paths be pruned to

the same length� using a model of clocked nondeterministic oracle Turing machines� Based on this model�

they introduced a �biased� domination condition in such a way that it puts equal weight on all accepting

computation paths if one exists� or else puts equal weight on all rejecting computation paths� Our model

of nondeterministic Turing machines is more general� and we cannot take the same approach towards the

relativization of Aver�NP�F�� How can we de�ne a relativization of Aver�NP�F� # Steve Cook is credited

with the following idea�

Let us recall the model of nondeterministic Turing machines� Our de�nition of the running time of

nondeterministic Turing machines depends only on a shortest accepting computation path whenever it exists�

When we look at a computation tree of a nondeterministic Turing machine on a particular input� we are

interested only in one shortest accepting computation path� provided that one exists� Our domination

condition for the oracle machine needs a constraint only on the computation paths of interest�

Let M be a nondeterministic oracle Turing machine and letA be an oracle� Let us recall that Acc�M�A� x�

�Rej�M�A� x�� resp�� denotes the set of �codes of� all accepting �rejecting� resp�� computation paths of M

with oracle A on input x� We introduce a �
ip�
op� set Flip�M�A� x� as follows�

Flip�M�A� x� �

�	

 Acc�M�A� x� if Acc�M�A� x� �� '�

Rej�M�A� x� otherwise�

By �AM�x�� we denote the �code of the� minimal computation path of M with oracle A on input x if

one exists� and otherwise� the �code of the� minimal rejecting computation path� Obviously �AM�x� is the

minimal computation path in Flip�M�A� x��

De�nition 	���� �Relativized Aver�NP�F�� Let �B� �� be a distributional decision problem� A dis�

tributional problem �A� �� is in Aver�NP�F��B��	 if there exist a nondeterministic oracle Turing machine

M and a semi�distribution � such that
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�i� �E�ciency� M with oracle B is polynomial�time bounded on ��average�

�ii� �Validity� A � L�M�B�� and

�iii� �Domination� � �avp �� and "� � �z�"��fx j z � Q�M�B� x� �BM�x��g��

As in Turing reducibility� we call condition �iii� the domination condition for M �

We begin with a technical lemma�

Lemma ����	
 Let M be a nondeterministic oracle Turing machine	 g a function from $� to R�	 and let

�	 � be two distributions� Assume that M witnesses �D��� � Aver�NP�F��E��	 and let

h�x� � min
y�Flip�M�E�x	

X
z�Q�M�E�x�y	

g�z��

If g is polynomial on ��average	 then h is polynomial on ��average�

Proof� Assume that �D��� � Aver�NP�F��E��	 via a nondeterministic oracle Turing machine M � There

exist a semi�distribution � and a polynomial pD such that D � L�M�E�� � �avp �� �x�TimeEM �x� is pD on

��average� and "��z� � "��fx j z � Q�M�E� x� �EM�x��g� for all z� Without loss of generality� we assume that

TimeEM �x� � jxj for all x�

Choose a polynomial pE such that g is pE on ��average� Moreover� let p be a polynomial and q a function

such that q is p on ��average and q�x� � "��x� � "��x� for all x� We can assume that all polynomials� pD� pE

and p� are increasing�

Now de�ne a polynomial s as

s�z� � pD��z� � pE
�
pD��z� � �z� � p��z��( c��

where c� � h����

We shall show that h is s on ��average� For simplicity� let Ax and Rx denote Acc�M�E� x� and

Rej�M�E� x�� respectively� Also let Qx�y denote Q�M�E� x� y�� Let Br � fx � $� j TimeEM �x� �
pD�jxj � �r� � q�x� � p�jxj � �r�g� For any real number r � ��

"��fx j h�x� � s�jxj � r�g�
� "��fx j TimeEM �x� � pD�jxj � �r�g� ( "��fx j q�x� � p�jxj � �r�g�

("��fx � Br j h�x� � s�jxj � r�g��

Clearly the �rst two terms are bounded above by ���r� To complete the proof� we should show that the last

term �say� Tr� is also bounded by ���r�

Fix x � Br and assume that h�x� � s�jxj � r��

Claim 	� For every x � Br	 �z � Qx��EM�x	 g�z� � pE�jzj � �rjxj� � p�jxj � �r��!�
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Proof of Claim� First we consider the case that x � D� From the minimality of h� it follows that �y �
Ax 
P

z�Qx�y g�z� � s�jxj � r�!� and in consequence� �y � Ax�z � Qx�y kQx�yk � g�z� � s�jxj � r�!� Now take

the minimal accepting computation path �EM�x� of M with E on input x� Then� for some z in Qx��EM�x	�

kQx��EM�x	k � g�z� � s�jxj � r�� For such a z�

jzj � kQx��EM�x	k � TimeEM �x� � pD�jxj � �r��

and as a result� g�z� � pE�jzj���rjxj�� �p�jxj��r�� � pE�jzj��rjxj��p�jxj�r��� since pE is increasing� Therefore�

�z � Qx��AM�x	 g�z� � pE�jzj � �rjxj� � p�jxj � �r��!�
The other case x � D follows in a similar fashion�

Note that� for any set A� "��fz j z � Ag� � "��fx j �z � Qx��EM�x	 z � A!g�� Hence� the bound on Tr is

calculated further as follows�

Tr �
�X
n��

"��fx � Br �$n j �z � Qx��EM�x	 g�z� � pE�jzj � �rn� � p��rn��!g�

�
�X
n��

p��rn� � "��fx � $n j �z � Qx��EM�x	 g�z� � pE�jzj � �rn� � p��rn��!g�

�
�X
n��

p��rn� � "��fz j g�z� � pE�jzj � �rn� � p��rn��g�

�
�X
n��

p��rn� � �

�rn� � p��rn�
�

��

��r
�

�

�r
�

Hence� we obtain the inequality "��fx j h�x� � s�r � jxj�g� � ��r� and this implies that h is s on ��average�

�

The following is a list of basic properties which Aver�NP�F��B��	 satis�es�

Proposition ����		 Let �A� �� and �B� �� be distributional decision problems	 and let F be any set of

distributions�

�� �B� �� � Aver�NP�F��B��	�

�� Aver�P�F��B��	 	 Aver�NP�F��B��	�

�� The class Aver�NP� ���B��	 is closed downward under avp�m�reductions�

�� If �A� �� � Aver�P� ���B��		 then Aver�NP�F��A��	 	 Aver�NP�F��B��	�

Proof� ������� Clear from the de�nitions�

��� The idea of the proof is similar to that of Proposition ��������� Assume that �A�� ��� �avp
m �A�� ���

via a reduction f such that �f� ��� � Aver�FP� ��� Assume that a nondeterministic Turing machine M

computes A� with oracle �A
� �
� in time pM on ���average� where pM is a polynomial� Let Mf be a
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deterministic transducer which computes f in time pf on ���average for some polynomial pf � We note that

jf�x�j � TimeMf �x� for all x�

To improve the readability� we write ��x� instead of �A�
M �x�� By the domination condition for �M�A
��

there exist a semi�distribution �� and a function pM which is polynomial on ���average such that pM �w� �
"���w� � "���w� and "�
�z� � "���fw j z � Q�M�A
� w� ��w��g�� Similarly� there are a semi�distribution ��

and a function pf which is q on ���average� where q is a polynomial� such that pf �x� � "���x� � "���x� and

"���w� � "���fx j f�x� � wg�� Without loss of generality� we assume that pM �x� � � and pf �x� � � for all

strings x� Notice that

"���w� � "���fx j f�x� � wg� �
X

x�f�x	�w

"���x�

pf �x�
�

Next we consider the most conservative algorithm N which computes A� using oracle A
� namely� on

input x� simulate Mf �x� �rst and then simulate M nondeterministically on input f�x�� Clearly

TimeA�
N �x� � c � �TimeMf �x� ( TimeA�

M �f�x�� ( ��

for some positive constant c independent of x�

To simplify the description� denote by Qz the set fw j z � Q�M�A
� w� ��w��g� Then�

"�
�z� � "���fw j w � Qzg� � "���Qz � ran�f�� �
X

w�Qz�ran�f	

"���w�

pM�w�
�

Now �x w in Qz � ran�f�� For this w�

"���w�

pM �w�
� "���fx j f�x� � wg�

pM �w�
�

X
x�f�x	�w

"���x�

pM�w� � pf �x�
�

X
x�f�x	�w

"���x�

pM �f�x�� � pf �x�
�

Thus�

"�
�z� �
X
w�Qz

X
x�f���w	

"���x�

pM �f�x�� � pf �x�
�

This sum is taken over all x such that �w � ran�f� x � f���w� � z � Q�M�A
� w� ��w��!� This condition is

logically equivalent to the condition z � Q�N�A
� x� ��x��� We de�ne p�x� � pM �f�x�� � pf �x�� and then�

"�
�z� �
X

x�z�Q�N�A��x���x		

"���x�

pM�f�x�� � pf �x�
�

X
x�z�Q�N�A� �x���x		

"���x�

p�x�
�

To complete the proof� we should show that �x�TimeA�
N �x� and p are polynomial on ���average since� by

Lemma ����	� �x�TimeA�
M �f�x�� turns out to be polynomial on ���average� However� by Lemmas ������ and

������� we can conclude that �x�TimeA�
N �x� is polynomial on ���average� Since the case for p is similar� we

omit its proof�

�	� To show the claim� we assume that �A� �� � Dist�P� ���B��	� and take an arbitrary distributional

problem �D� �� in Aver�NP�F��A��	� There exists a nondeterministic oracle Turing machine MD which

computes D with oracle �E� �� in polynomial time on ��average� We shall show that �D� �� belongs to

Aver�NP� ���B��	� Since �A� �� � Aver�P� ���B��	� we can �nd a deterministic oracle Turing machine MA

which computes A with oracle �B� �� in polynomial time on ��average�
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Now we consider a machine M which nondeterministically simulates the computation of MD� and when�

ever MD makes a query z� M deterministically simulates MA on input z� By de�nition� M computes D with

the help of oracle B� and the running time of M with oracle B on input x is bounded above by

c �
�
�TimeAMD

�x� ( min
y�Flip�MD�A�x	

X
z�Q�MD�A�x�y	

TimeBMA
�z� ( �

�
A �

where c is a constant� Note that �x�TimeAMD
�x� is polynomial on ��average� and the function

�x�miny�Flip�MD �A�x	

P
z�Q�MD�E�x�y	

TimeBME
�x� is also polynomial on ��average by Lemma ������� As

a result� �x�TimeM �x� is polynomial on ��average�

The proof of the domination condition for M is similar to that of Proposition �������	�� This yields the

desired consequence that �D� �� � Aver�NP�F��B��	� �

We can conjecture that Aver�P�P�comp� di�ers from Aver�NP�P�comp�� As yet it remains an open

question whether this is the case in the unrelativized world� In some relativized world� however� we can see

a clear distinction between Aver�P�P�comp� and Aver�NP�P�comp�� Here we observe a relativized world

in which the two classes di�er�

Theorem ����	� There exists a problem �B� �B� such that

Aver�P�P�comp��B��B	 �� Aver�NP�P�comp��B��B	�

Proof� We shall use the oracle set constructed by Baker� Gill� and Solovay  �! to separate P from NP�

In the following proof� we �rst review their construction and then de�ne the desired distributional decision

problem �B� �B��

Also let fMign�Nbe an e�ective enumeration of all polynomial�time deterministic oracle Turing machines�

Let also fpngn�Nbe an enumeration of polynomials such that each pn satis�es TimeOMn
�x� � pn�jxj� for any

choice of oracle O and any input x� In particular� the number of query strings of Mn on input x with oracle

O is also bounded above by pn�jxj��
Let us de�ne the strictly increasing function � from N to N as follows� let ����� � � for the sake of

convenience� and let ��n� be the minimal integer k such that k � ��n � �� and pn�k� � �k� It is easy to see

that such a k exists for any n�

We use the test language T �B� de�ned as T �B� � f�n j �y � $n y � B!g� This T �B� is a tally set and

belongs to NPB � We shall construct a set B in the following such that T �B� �� PB � First we construct a

series of �nite sets� fBngn�N� and then let B be the union of all sets Bn� Now let B�� � ' for the sake of

convenience� For each n � N� let yn be the minimal string �in the standard order on $�� such that

jynj � ��n� and yn �� Q�Mn� Bn��� �
�n	��

Such a string exists because kQ�Mn� Bn���
�n	�k � pn���n�� � �
�n	 by the de�nition of ��n�� Then� Bn is
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de�ned as

Bn �

�	

 Bn�� � fyng if M

Bn��
n ��
�n	� � ��

Bn�� otherwise�

Notice that the outcome of Mn on �
�n	 is irrelevant to oracle Bn� i�e�� M
Bn��
n ��
�n	� � MBn

n ��
�n	�� because

yn is not queried by Mn on �
�n	� Hence� we get

�
�n	 � T �B� �� yn � Bn ��MBn
n ��
�n	� � � ��MB

n ��
�n	� � � �� �
�n	 �� L�Mn� B��

This shows that T �B� �� L�Mn� B� for all numbers n� and thus T �B� �� PB�

We then de�ne the distribution �B for the set B� Let

"�B�x� �
�	

 �jxj( ���� if x � B�

�jxj( ���� � ��jxj otherwise�

Consider the distributional decision problem �T �B�� �tally�� Clearly �T �B�� �tally� is in Aver�NP�P�comp��B��B 	�

Now assume to the contrary that �T �B�� �tally� belongs to Aver�P�P�comp��B��B	� There exists a determin�

istic Turing machine M which computes T �B� with oracle �B� �B� in polynomial time on �tally�average�

Recall that T �B� is a tally set� Since M is polynomial�time bounded on �tally�average� we conclude that

T �B� � PB� This contradicts the fact that T �B� �� PB� �

Finally we extend De�nition ����� from a single oracle problem to a class of oracle problems�

De�nition 	����� �Relativization� Let C be a class of distributional decision problems and let F be

a set of distributions� Let Aver�NP�F�C denote the union of Aver�NP�F��E��	 for any oracle �E� �� chosen

from C�

As an immediate consequence of Proposition ������� the relativized Aver�NP� �� relative to Aver�P� ��
collapses to Aver�NP� ��� Note that whether Aver�NP� �� relative to Aver�NP� �� collapses to Aver�NP� ��
is an open question�

Proposition ����	� Aver�NP� �� � Aver�NP�F�Aver�P��	�

Proposition �����	 will be extended to any level of the average polynomial�time hierarchy in Section ��	�

	���� Relativized Aver�PSPACE�F�

Another important average complexity class is the collection of deterministic average polynomial�space com�

putable sets� Aver�PSPACE�F�� This class contains Aver�P�F� and Aver�BPP�F� as subclasses� In this

section� we shall introduce a relativization of Aver�PSPACE�F��
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De�nition 	����� �Relativized Aver�PSPACE�F�� Let �B� �� be a distributional decision problem�

A distributional problem �A� �� is in Aver�PSPACE�F��B��	 if there exist a deterministic oracle Turing

machine M and a semi�distribution � such that

�i� �E�ciency� M with oracle B is polynomial�space bounded on ��average�

�ii� �Validity� A � L�M�B�� and

�iii� �Domination� � �avp �� and "� � �z�"��fx j z � Q�M�B� x�g��

We also call the condition �iii� the domination condition for M �

Since our relativization is similar to that of Aver�P�F�� the following proposition is straightforward�

Proposition ����	� Let �A� �� and �B� �� be distributional decision problems�

�� �A� �� � Aver�PSPACE�F��A��	�

�� Aver�BPP�F��A��	 	 Aver�PSPACE�F��A��	�

�� If �A� �� � Aver�PSPACE�F��B��		 then Aver�PSPACE�F��A��	 	 Aver�PSPACE�F��B��	�

Theorem ����	� There exists a problem �A� �A� such that

Aver�P�P�comp��A��A	 � Aver�PSPACE�P�comp��A��A	�

Proof� For the proof� we need a relativized version of the randomized bounded halting problem

�BHP��A�� �BHP��� Assume that fMigi�Nis an e�ective enumeration of all deterministic oracle Turing

machines� For a set A� let

BHP��A� � fh�� si� x� �ni j Mi with oracle A accepts x using less than n squares g

�fh�� si� x� �ni j Mi with oracle A on x uses at least n squares g�

and� for b � f�� �g� let

"�BHP� �b� si� x� �
n� �

�

�
� "�stand�si� � "�stand�x� � "�tally��n��

Notice that the distribution �BHP� is not dependent on oracle A�

Take the desired set A so that A � BHP��A�� We remark that this set A exists because Mi cannot query

any strings of length more than n� and thus� it makes only queries to oracle A that are lexicographically

smaller than hb� si� x� �ni� Now let �A � �BHP� � We shall show that any distributional problem �D���

in Aver�PSPACE�P�comp��A��A	 belongs to Aver�P�P�comp��A��A	� For this pair �D���� there exists a

deterministic Turing machine M computing D with oracle A in polynomial time on ��average�

Let g be the function of Lemma 	������� such that "��x� � ��jg�x	j�� for all x� and de�ne the machine

M � as follows� on input x� it computes g�x� and then simulates M on input g�x�� Let i be an index such

that Mi � M � since M � is also deterministic� Let us consider the following deterministic procedure N �
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begin deterministic algorithm N

input x

compute g���x� and set u �� g���x�

for n � � to � do

query h�� si� u� �ni to oracle A

if h�� si� u� �ni � A then accept and halt

query h�� si� u� �ni to oracle A

if h�� si� u� �ni �� A then reject and halt

end�for

end�

Notice that the machine N makes queries only of the form hb� si� g���x�� �ni� where b � f�� �g and � � n �
TimeAMi

�x� ( ��

It is not di�cult to check that� with oracle A� N computes D correctly� We next check the domination

condition for N � Remember that� for each query string hb� si� u� �ni� the string g�u� is the only input on

which N queries it� Since g is one�one� this correspondence from query strings to inputs is also one�one�

Thus� the rest of the proof is analogous to the proof of Claim �� in Section ������

Let q�x� � ��� � �jg�x�j(��� � �TimeAMi
�x�(����"�stand�si�� It is obvious that q is polynomial on ��average

because �x�TimeAMi
�x� is polynomial on ��average� As in Theorem ������ we have

q�x� � "�A�b� si� g�x�� �n� � q�x� � �

�
� "�stand�si� � "�stand�x� � "�tally��n�

� q�x� � "�stand�si�

��� � �jg�x�j( ��� � �TimeAMi
�x� ( ���

� ��jg�x	j��

� ��jg�x	j�� � "��x��

This indicates that �D��� belongs to Aver�P�P�comp��D��	� �

We then introduce a relativized class Aver�PSPACE�F�C for a class C of distributional decision prob�

lems�

De�nition 	����� �Relativization� Let C be a class of distributional decision problems� For a set

F of distributions� Aver�PSPACE�F�C �Aver�PSPACE�F� relative to C� denotes the collection of all

distributional problems in Aver�PSPACE�F��B��	 for some �B� �� � C�

The class Aver�PSPACE�F� relative to Aver�PSPACE� �� collapses to Aver�PSPACE�F��

Proposition ����	� For any set F of distributions	

Aver�PSPACE�F� � Aver�PSPACE�F�Aver�PSPACE��	�
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Proof� It is clear that Aver�PSPACE�F� 	 Aver�PSPACE�F�Aver�PSPACE��	� We shall show the

other inclusion� Assume that �A� �� � Aver�PSPACE�F��B��	 for some �B� �� � Aver�PSPACE� ��� Let

M be a deterministic oracle Turing machine which computes A with oracle �B� �� using polynomial space

on ��average� Since �B� �� � Aver�PSPACE� ��� there exists a deterministic Turing machine MB which

computes B using polynomial space on ��average� The algorithm we would like to consider here is the

conservative one� on input x� simulate M on x except for oracle queries� instead of querying a string z�

simulate MB on z� On each input x� this algorithm uses space at most

c �
�

SpaceBM �x� ( max
z�Q�M�B�x	

SpaceMB
�z� ( �

�

for some �xed constant c � ��

We can conclude that this bound is polynomial on ��average since �x�maxz�Q�M�B�x	 SpaceBM�z� is poly�

nomial on ��average as in Lemma ������� Therefore� �A� �� belongs to Aver�PSPACE�F�� �

	�� Average Polynomial�Time Hierarchy

This section will formally introduce an average�case version of the polynomial�time hierarchy� In previous

sections� we introduced relativized Aver�P�F� and relativized Aver�NP�F�� These relativized classes will

be the basis for constructing an average�case version of the polynomial�time hierarchy�

	���� Average Polynomial Time Hierarchy

We now give a formal de�nition of an average polynomial�time hierarchy under a particular set of distribu�

tions� This hierarchy is an average�case analogue of the polynomial�time hierarchy in worst�case complexity

theory�

De�nition 	���� �Average Polynomial�Time Hierarchy� ���� Let k � � and let F be a set of

distributions�

�� Aver��p
� �F� � Aver�
p

� �F� � Aver�P�F��

�� Aver��p
k�F� � Aver�P�F�Aver��

p
k����	�

�� Aver�
p
k�F� � Aver�NP�F�Aver��

p
k�� ��	�

	� Aver��p
k�F� � Aver�co�
p

k�F��

�� Aver�PH�F� �
S
k�� Aver�
p

k �F��

In what follows� we shall show several fundamental properties of the average polynomial�time hierarchy�
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Lemma ����� ���� Let k � � and let F be a set of distributions�

�� The classes Aver�
p
k�F� and Aver��p

k�F� are closed under avp�m�reductions�

�� The class Aver��p
k�F� is closed under avp�T�reductions�

Proof� ��� In the case k � �� the claim for Aver�NP�F� follows from Proposition ������ Now let

k � � and assume that �A� �� �avp
m �B� �� and �B� �� � Aver�
p

k�F�� By de�nition� there exists a problem

�C� �� � Aver�
p
k��� �� such that �B� �� � Aver�NP�F��C��	� Proposition ��������� implies that �A� �� �

Aver�NP�F��C��	� Using the de�nition again� we obtain �A� �� � Aver�
p
k�F��

For the class Aver��p
k�F�� assume that �A� �� �avp

m �B� �� and also �B� �� is in Aver��p
k�F�� Note that

�A� �� �avp
m �B� �� if and only if �A� �� �avp

m �B� ��� From this fact� it follows that �A� �� � Aver�
p
k�F��

This is equivalent to �A� �� � Aver��p
k�F��

��� Similar to ���� If k � �� then the claim is based on Proposition ������ For the other case� we use

Proposition ��������� �

In what follows� we shall see the basic inclusions among the classes of the average polynomial�time

hierarchy� First we want to see the lemma that characterizes the relationship between Dist�
p
k�F� and

Aver�
p
k�F��

Lemma ����� Let k � � and let F be a set of distributions�

�� Dist��p
k���F� 	 Aver�P�F�Dist��

p
k��	�

�� Dist�
p
k���F� 	 Aver�NP�F�Dist��

p
k��	�

Proof� We shall show only case ��� because case ��� follows by a similar argument� Let us assume that

�A� �� is in Dist�
p
k���F�� Since A � 
p

k��� there exists a nondeterministic oracle Turing machine M which

computes A in polynomial time with oracle B in 
p
k� By a simple modi�cation of M and B� we can assume

the following property� on each input x� the machine makes a query once of the form hx� yi� where y is the

�code of the� computation path� Note that� for every query string� there is the unique pair of an input and

a path�

We shall show that �A� �� � Aver�NP�F��B��	 for some �� Let us �rst de�ne such a distribution� Let �

be de�ned as�

"��z� �

�	

 "��x� if z � hx� �BM�x�i�

� otherwise�

Our de�nition of � obviously guarantees the domination condition for M � Hence� M recognizes A with oracle

B in polynomial time� Since �B� �� � Dist�
p
k� ��� we obtain�

�A� �� � Aver�NP�F��B��	 	 Aver�NP�F�Dist��
p
k��	�
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�

Using Lemma ��	��� we can prove the following proposition�

Proposition ����� ���� Let k � � and let F be any set of distributions�

�� Dist��p
k�F� 	 Aver��p

k�F��

�� Dist�
p
k�F� 	 Aver�
p

k�F��

�� Aver��p
k�F� 	 Aver�
p

k�F� 	 Aver��p
k���F��

Proof� ������� The claims follow from Lemma ��	��� ��� This claim follows from De�nition ��	�� and from

the facts that Aver�P�F�C 	 Aver�NP�F�C and �D��� � Aver�P�F��D��	� �

The above proposition may be taken as evidence that our average polynomial�time hierarchy has a

structure similar to that of the worst�case polynomial�time hierarchy�

Figure ��� illustrates the structure of the average polynomial�time hierarchy under F �

Lemma ����� Let k � �� For a set F of distributions	 Aver�NP�F�Aver��
p
k�� ��	 � Aver�
p

k���F��

Proof� Assume that �A� �� is in Aver�NP�F�Aver��
p
k����	� By de�nition� we then have a chain of

membership relations �A� �� � Aver�NP�F��B��	 and �B� �� � Aver�P� ���C��	� where �C� �� � Aver�
p
k� ���

By Proposition �������	�� we can shorten this chain to �A� �� � Aver�NP�F��C��	� This shows that �A� �� is

in Aver�
p
k���F��

The converse is even simpler to prove� Since Aver�
p
k� �� 	 Aver��p

k��� ��� it follows that

Aver�
p
k���F� 	 Aver�NP�F�Aver��

p
k��	 	 Aver�NP�F�Aver��

p
k�� ��	�

�

Theorem �����	 shows the separation between Aver�P� �� and Aver�NP� ��� Although these basic average�

case complexity classes are di�erent� we do not conclude that similar separations occur in the higher levels

of the average polynomial�time hierarchy� The reason is that domination conditions restrict the complexity

of oracles� especially distributions�

The worst�case polynomial�time hierarchy entails the �downward collapse� property� that is� if any two

levels of the hierarchy collapse� then the upper levels collapse down to those levels� More precisely� if


p
k � 
p

k��� then PH � 
p
k� Now we show that the assumption Aver�
p

k� �� � Aver�
p
k��� �� leads to the

collapse of the average polynomial�time hierarchy�

Proposition ����� Let k � � and let F be a set of distributions�

�� If Aver�
p
k� �� � Aver�
p

k��� ��	 then Aver�PH�F� � Aver�
p
k�F��
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Figure ���� The average polynomial�time hierarchy under F

�� If Aver��p
k� �� � Aver�
p

k� ��	 then Aver�PH�F� � Aver��p
k�F��

Proof� ��� Let us assume that Aver�
p
k��� �� collapses to Aver�
p

k� ��� We want to show by induction on

integer i � k that Aver�
p
i���F� 	 Aver�
p

i �F� for all sets F of distributions�

The base case i � k is trivial from our assumption� For the induction step i � k� we have

Aver�
p
i���F� � Aver�NP�F�Aver��

p
i����	

	 Aver�NP�F�Aver��
p
i ��	

� Aver�
p
i���F��

Hence� Aver�
p
k�i�F� � Aver�
p

k�F� for all i � �� Therefore� Aver�PH�F� � Aver�
p
k�F��

��� Similarly� we have�

Aver�
p
k���F� � Aver�NP�F�Aver��

p
k�� ��	

� Aver�NP�F�Aver��
p
k�� ��	

� Aver�
p
k���F��

The last equality follows from Lemma ��	��� �

The following lemma is an extension of Lemma �������
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Lemma ����� Let C � f�p
k�


p
k��

p
k j k � �g� Assume that F is closed under �� If �A� �A� and �B� �B�

are both in Aver�C�F�	 then so is �A� B� �A � �B��

Proof� Assume that �A� �A� and �B� �B� are in Aver�C�F�� The proof is by induction on k � �� For

the base case k � �� the claim for C � fP�NPg is immediate from Lemma ������� Now let us consider

the case C � co�NP� Assume that �A� �A� and �B� �B� are in Aver�co�NP�F�� In other words� �A� �A�

and �B� �B� are in Aver�NP�F�� Again by Lemma ������� we have �A � B� �A � �B� � Aver�NP�F��

Notice that A � B � A� B � f�g� where � is the empty string� Since ��A � �B��� � �� we may ignore ��

and thus �A� B� �A � �B� � Aver�NP�F�� This yields the desired conclusion that �A � B� �A � �B� �
Aver�co�NP�F��

For the induction step k � �� �rst let C � 
p
k� By our assumption� there exist distributional problems

�C�� ��� and �C�� ���� both of which belongs to Aver�
p
k���F�� such that �A� �A� � Aver�NP�F��C����	

and �B� �B� � Aver�NP�F��C����	� It is relatively easy to see that �C�� ��� �p
m �C� � C�� �� � ��� and

�C�� ��� �p
m �C��C�� ������� For simplicity� write �C� �� for �C��C�� ������� By our induction hypothesis�

we obtain �C� �� � Aver�
p
k���F�� Using Lemma ������� we get �A � B� �A � �B� � Aver�NP�F��C��	� As

�C� �� is in Aver�
p
k���F�� the problem �A � B� �A � �B� is in Aver�
p

k�F�� The case C � �p
k is similar�

and the other case C � �p
k is obtained with the same idea used for the base case C � co�NP� �

At last� we may conjecture that� for a naturally selected set F of distributions� the average polynomial�

time hierarchy under F is truly an in�nite hierarchy�

	���� Sparse Interpolation Property

We shall show a basic relationship between worst�case complexity and average�case complexity on strings

with high probability� We �rst introduce an interpolation property of an average�case complexity class

Aver�C�F�� Intuitively� the property says that if we compute a set A fast on average under a distribution

which assigns high probability to instances in a sparse set S� then there is an �interpolant� set B between

A�S and A which is computable fast in worst�case� This set B is a collection of �easy� instances in A� and

it becomes a good worst�case approximation of the set A�

Here is the formal de�nition of the sparse interpolation property�

De�nition 	���� �Sparse Interpolation Property� ���� For a sparse set S and a polynomial q� let

�S�q denote a distribution such that

"�S�q�x� � �

q�jxj�

for all x � S provided that
P

x�S
�

q�jxj	 � �� A class Aver�C�F� has the sparse interpolation property if� for

any set A� any in�nite sparse set S� and any polynomial q such that �A� �S�q� � Aver�C�F�� there exists a

set B � C such that A � S 	 B 	 A� The set B is called an interpolant of A and S�
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Proposition ����� For a class C � fP�NP�RP�BPP�PSPACEg	 Aver�C� �� has the sparse interpolation
property�

Proof� We �rst show the case C � NP� Take any sparse set S and a polynomial q and assume that

�A� �S�q� � Aver�NP� ��� There exists a nondeterministic Turing machine M which computes A such that

�x�TimeM �x� is p on �S�q�average for some polynomial p� Note that TimeM �x� � p�jxj�"�S�q�x�� for all x with

"�S�q�x� � �� Let N simulate M on input x in p�jxj � q�jxj�� steps� If the simulation of M does not terminate

within p�jxj � q�jxj�� steps� then N rejects x� Let B � L�N �� Clearly B 	 A� Since q�jxj� � ��"�S�q�x� for all

x � S� N completely simulates M on all inputs x in S� Thus� A�S � B � S� Clearly N is polynomial�time

bounded� Therefore� B � NP�

The other cases are treated similarly� but speci�cally for the case C � fRP�BPPg� we must use Time�M �x�

instead of TimeM �x� s�� �

Proposition ��	�� can be extended to an arbitrary level of the average polynomial�timehierarchy� However�

its proof is not as simple as that of Proposition ��	��� We �rst present a key lemma�

Lemma ����	
 ���� Let k � � and let �A� �� be a distributional problem�

�� Assume that �A� �� � Aver��p
k� ��� For any set S and any polynomial q	 there exist sets C�� C� ��p

k

and S� such that S� 	 S	 A � S� 	 C� 	 A	 A � S� 	 C� 	 A and "��Sn � S�n� � ��q�n� for all n � N�

�� Assume that �A� �� � Aver�
p
k� ��� For any set S and any polynomial q	 there exist sets C� � 
p

k	

C� � �p
k and S� such that S� 	 S	 A � S� 	 C� 	 A	 A � S� 	 C� 	 A and "��Sn � S�n� � ��q�n� for all

n � N�

Proof� ��� The proof proceeds by induction on k� The base case k � � essentially follows from Proposition

��	��� Assume that �A� �� � Aver�NP� �� and let S 	 $� and let q be any polynomial� There are a

nondeterministic Turing machine M and a polynomial p such that A � L�M � and "��fx j TimeM �x� �

p�jxj � r�g� � ��r for all r � ��

Let r � q�n�� and then "��fx j TimeM �x� � p�jxj � q�n��g� � ��q�n�� Let M� simulate M on the same

input in time p�n � q�n��� if M accepts x� then M� accepts it� or else M� rejects x� Similarly� let M� simulate

M in time p�n � q�n��� if M rejects x� then M� accepts it� or else M� rejects it� De�ne C� � L�M�� and

C� � L�M��� and let S� � S � �C� �C��� Clearly A � S� 	 C� 	 A and A � S� 	 C� 	 A� Moreover�

"��Sn � S�n� � "��fx j TimeM �x� � p�jxj � q�n��g� � �

q�n�
�

The induction step is carried out as follows� Let k � � and assume that �A� �� � Aver�
p
k� ��� By

de�nition� there exists a distributional problem �B� �� � Aver�
p
k��� �� such that �A� �� � Aver�NP�F��B��	�

Let M be a nondeterministic oracle Turing machine which computes A with oracle �B� �� in polynomial

time on ��average� We assume that �x�TimeBM �x� is p on ��average for some increasing polynomial p�

The domination condition for M implies the existence of a semi�distribution � and a function d which is
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polynomial on ��average such that d�x� � "��x� � "��x� and "��z� � "��fx j z � Q�M�B� x� �BM�x��g� for all x

and z� Assume also that t is a polynomial witnessing that d is polynomial on ��average�

Consider any set S and any polynomial q� We de�ne T as

T � fx � S j TimeBM�x� � p�jxj � �q�jxj��� d�x� � t�jxj � �q�jxj��g�

For each n � N� let us consider the subset Tn of T � Notice that

Sn � Tn 	 fx � $n j TimeBM �x� � p�jxj � �q�n�� � d�x� � t�jxj � �q�n��g�

Then� it follows that

"��Sn� � "��Tn� � "��Sn � Tn� � "��fx j TimeBM �x� � p�jxj � �q�n��g� ( "��fx j d�x� � t�jxj � �q�n��g � �

�q�n�
�

In the rest of the proof� we use s�n� for t�n � �q�n���

To use the induction hypothesis� we let Z � fz j �x � T �z � Q�M�B� x� �BM�x���g� and we also let

l�n� � �q�n� � s�n� � p�n � �q�n���

Applying the induction hypothesis to Z and l�n�� it follows that there exist sets Z� 	 Z� C�
� � 
p

k��� and

C�
� ��p

k�� such that� for every n � N� "��Zn�� "��Z�n� � ��l�n��

Now recall that M queries strings whose length is at least the same as that of the input and at most the size

of its running time� In other words� for every x in Tn� if z � Q�M�B� x� �BM�x��� then n � jzj � p�n � �q�n���

Based on this fact� we prepare sets .Zn � fz � Z j n � jzj � p�n � �q�n��g and .Z�n � fz � Z � j n � jzj �
p�n � �q�n��g� Since

.Zn � .Z�n 	 �Z � Z�� � fz j n � jzj � p�n � �q�n��g�

it follows that

"�� .Zn� � "�� .Z�n� �
p�n�
q�n		X

i�n

�"��Zi� � "��Z�i�� �
p�n�
q�n		X

i�n

�

l�i�
� p�n � �q�n��

l�n�
�

�

�q�n� � s�n�
�

The desired set S� is de�ned as follows�

S� � fx � T j Q�M�B� x� �BM�x�� 	 Z�g�

Clearly S� 	 S� Using the fact that

Tn � S�n 	 fx � Tn j Q�M�B� x� �BM�x�� � � .Zn � .Z�n� �� 'g�

by the domination condition� we obtain "�� .Zn � .Z�n� � "��Tn � S�n�� Then�

"��Tn�� "��S�n� � "��Tn � S�n� � s�n� � "��Tn � S�n� � s�n� � "�� .Zn � .Z�n� � �

�q�n�
�

Since "��Sn�� "��Tn� � �

q�n	 � we get "��Sn�� "��S�n� � �

q�n	 �

Let M� be an oracle Turing machine with oracle X de�ned as follows� On input x� M� simulates M on

x in time p�jxj � �q�jxj��� and whenever M queries a string z� M� queries both �z and �z to its oracle X� If
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�z � X and �z �� X� M� continues the simulation with the assumption that the oracle answer is �yes�� if

�z �� X and �z � X� then it continues the simulation with the oracle answer �no�� otherwise� it immediately

rejects the input x� The machine M� accepts x exactly when M halts and accepts it� Similarly� we de�ne

a machine M� by interchanging the oracle answers and requiring that M� accept the input x if M halts in

time p�jxj � �q�jxj�� and otherwise M� rejects x� Now let C� � L�M�� C
�
� � C�

�� and C� � L�M�� C
�
� � C �

���

By the de�nitions of the oracle machines M� and M�� it follows that A�S� 	 C� 	 A and A�S� 	 C� 	 A�

��� The proof is similar to ���� �

Theorem ����		 ���� For k � �	 Aver��p
k� �� and Aver�
p

k� �� have the sparse interpolation property�

Proof� We show only the case Aver�
p
k� �� here� The case k � � follows from Proposition ��	��� Let

k � � and assume that �A� �S�q� � Aver�
p
k� �� for a sparse set S and a polynomial q� It follows from

Lemma ��	��� that there exist a set C � 
p
k and a subset S� of S such that A � S� 	 C 	 A and

"�S�q�Sn� � "�S�q�S�n� � ���q�n� for all n � N� It su�ces to show that S� � S� Assume that there exists a

string x � S � S�� Let n � jxj� Since "�S�q�x� � ��q�jxj�� it follows that

�

q�n�
� "�S�q�S

n�� "�S�q�S
�n� � �

�q�n�
�

This is a contradiction� Hence� S� � S� �

The following proposition is another consequence of Lemma ��	���� and it will be used in the next chapter�

Proposition ����	� Let k � �� For any polynomial p and any set A such that �A� �stand� � Aver�
p
k� ��	

there are two sets C� in 
p
k and C� in �p

k such that C� 	 A	 C� 	 A	 kCn
� � Cn

� k � �� � ��p�n�� � �n for

almost all n�

Proof� Let p be any polynomial� Assume �A� �stand� � Aver�
p
k� ��� Take q�n� � ��n ( ��� � p�n�� Note

that
��llog�n	��

q�n�
� ��n( ���

��n( ��� � p�n�
�

�

p�n�
�

We apply Lemma ��	��� to q� A� and $n� Then� we have sets C� � $k� C� � �p
k� and S� such that

A � S� 	 C� 	 A� A � S� 	 C� 	 A� and "�stand�$n � S�n� � ��q�n� for all n � N� Obviously� S� 	 C� �C��

Hence� kCn
� �Cn

� k � kS�nk� It su�ces to show that kS�nk � ��� �
p�n	 � � �n� Note that

"�stand�$n � S�� � "�stand�$n�� "�stand�S�n� � ���llog�n	�� � kS�nk � ��n��llog�n	���

Since "�stand�$n � S�n� � ��q�n��

kS�nk �
�

���llog�n	�� � �

q�n�

�
� �n��llog�n	��

�
�

�� ��llog�n	��

q�n�

�
� �n �

�
�� �

p�n�

�
� �n�
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�

	�� Average Polynomial�Time Alternation Hierarchy

In worst�case complexity theory� alternation plays a variety of roles� Recall that A
p
k � ATIME��k� nO��	�

and A�p
k � ATIME��k� nO��	�� Then� we have A
p

k � 
p
k and A�p

k � �p
k for all k � �� namely�

the polynomial�time alternation hierarchy is exactly the polynomial�time hierarchy �see Lemma ������� In

what follows� we introduce an average version of this polynomial�time alternation hierarchy� an average

polynomial�time alternation hierarchy under a set of distributions� and study its relationship to the average

polynomial�time hierarchy de�ned in Section ��	�

De�nition 	���� �Average Polynomial Time Alternation Hierarchy under F� Let k � � and

let F be a set of distributions� The average polynomial�time alternating hierarchy under F consists of the

following average classes�

�� Aver�A�p
k�F� �

S
c�� Aver�ATIME��k� nc ( c��F��

�� Aver�A
p
k �F� �

S
c�� Aver�ATIME��k� nc ( c��F��

�� Aver�A�p
k�F� � Aver�co�A
p

k�F��

Let Aver�APH�F� �
S
k�� Aver�A
p

k�F��

Recall that ��alternation bounded alternating Turing machines with existential states are exactly the

nondeterministic Turing machines� Similarly� semi�deterministic ��alternation bounded alternating Turing

machines are deterministic Turing machines� Hence� it is clear that Aver�A�p
� �F� � Aver�P�F� and

Aver�A
p
� �F� � Aver�NP�F� for all set F �

Nevertheless� two classes Aver�A
p
k�F� and Aver�
p

k�F� are unlikely to be the same even for the set F of

feasibly computable distributions� The following proposition helps us understand the gap between these two

classes� Recall that Aver��p
k���F� � Aver�P�F�Aver��

p
k��	 and Aver�
p

k���F� � Aver�NP�F�Aver��
p
k��	�

Theorem ����� Let k � � and F be a set of distributions�

�� Aver�A�p
k���F� � Aver�P�F�Dist��

p
k��	�

�� Aver�A
p
k���F� � Aver�NP�F�Dist��

p
k��	�

Proof� We prove ��� here� First we assume that �A� �� � Aver�A
p
k���F�� There exists a �k ( ���

alternation bounded Turing machine M such that A � L�M � and �x�TimeM �x� is p on ��average� where p

is a polynomial� We shall show that A is computable by a nondeterministic oracle Turing machine N with

oracle �B� �� in polynomial time on ��average�
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The main idea here is to query su�ciently long strings to the oracle so that the complexity of the oracle

set can be substantially diminished� We begin by de�ning the oracle Turing machine N as follows�

begin nondeterministic algorithm for N

input x �assuming that x �� ��

simulate M on input x during the �rst series of existential states

until M reaches the universal states

�let y be the code of such a computation path�

choose a path starting from y nondeterministically �ignoring the states of con�gurations�

and follow this path until M reaches a halting con�guration

�let n be the length of the path from the initial con�guration�

query the pair hx� y��ni to the oracle

if oracle answers �yes� then reject else accept

end�

Clearly N is a nondeterministic Turing machine whose running time is O�TimeM �x���

Let B be the set that is accepted by the following algorithm� On input hx� y��ni� check if y encodes a

computation of the �rst series of existential states of M on input x� and if so� then simulate this path until

M goes into universal states� Simulate the rest of the computation of M within n steps� If a path does not

halt within n steps� then go into an accepting con�guration immediately� It is not di�cult to see that B is in

ATIME��k�O�n��� and thus B � 
p
k� By de�nition� A � L�N�B�� To see that �A� �� � Aver�NP�F��B��	

for some �� we remark �rst that Q�N�B� x� �BM�x�� � fhx� y��nig for some y and n� Next we de�ne

"��z� �

�	

 "��fx j z � Q�N�B� x� �BN�x��g� if z �� ��

��Pw�w ��
 "��w� if z � ��

It is easy to check that �A� �� � Aver�NP� ���B��	 via N � Since �B� �� is in Dist�
p
k� ��� we have �A� �� �

Aver�NP�F�Dist��
p
k��	�

Conversely� assume that �A� �� � Aver�NP�F�Dist��
p
k��	� There exists a problem �B� �� � Dist�
p

k� ��
such that �A� �� � Aver�NP�F��B��	 via an appropriate nondeterministic oracle Turing machine M � Assume

that B is in ATIME��k� p�n�� for some polynomial p� We can assume that p is strictly increasing�

Next we de�ne an alternating Turing machine N as follows� On input x� N simulates M on input

x starting with an existential state� During this existential state� if M queries z� then N stores z �in a

work tape� and guesses its oracle answer ans�z� and continue the simulation until M terminates� On each

computation path� if M reaches an accepting con�guration� then N existentially checks if zi � B for all zi

with ans�zi� � �� Then N universally checks if zi �� B for all zi which satisfy ans�zi� � � at once using B�

If 
B�zi� � � for all such zi� then accept x� otherwise� reject x�

It is easy to check that A � L�N �� The running time of N on input x is at most

TimeN �x� � c � �TimeM �x� � p�TimeM �x�� ( ��
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for some constant c � �� Since �x�TimeM �x� is polynomial on ��average� by Lemma �����	� �x�TimeN �x� is

also polynomial on ��average� We then have �A� �� � Aver�ATIME��k ( �� nO��	��F� � Aver�A
p
k���F��

�

Corollary ����� Let k � � and F be a set of distributions�

�� Dist��p
k�F� 	 Aver�A�p

k�F� 	 Aver��p
k�F��

�� Dist�
p
k�F� 	 Aver�A
p

k�F� 	 Aver�
p
k�F��

In worst�case complexity theory� there is a nice characterization of the class PSPACE by polynomial�

time alternating Turing machines� that is� PSPACE � ATIME�nO��	�� Interestingly� we do not know

whether Aver�PSPACE�F� equals Aver�ATIME�nO��	��F� because of the de�nition of the running time of

alternating Turing machines�

In what follows� we shall show that Aver�BPP�F� for a supportive set F of distributions is located

within the average polynomial�time alternation hierarchy under F �

Proposition ����� For any supportive set F of distributions	 Aver�BPP�F� 	 Aver�A
p
� �A�p

� �F��

Proof� Assume that F is supportive and let �D��� be an arbitrary problem in Aver�BPP�F�� Since � is

supportive� we can de�ne a strictly increasing� positive polynomial p such that "��x� � ��p�jxj	 for all x� By

Proposition ������� there exists a randomized Turing machine M which recognizes D in polynomial time on

��average with error probability ��p�jxj	
�
� i�e�� PrM  M �x� �� D�x�! � ��p�jxj	

�
�

Now let us de�ne

Time�M �x� �

�	

 minfn j Prs TimeM �x� s� � n j s � )M �x�! � �

�g if one exists�

� otherwise�

Apply Lemma ������ to �x�Time�M �x�� and we conclude that �x�Time�M�x� is polynomial on ��average� Let

q be a polynomial such that �x�Time�M�x� is q on ��average� For this q� we have Time�M �x� � q�jxj�"��x��

unless "��x� � �� Let S � fx j "��x� � �g� Then� for almost all x in S� Time�M �x� � q�jxj ��p�jxj	� � �p�jxj	
����

We take a positive integer n� satisfying log�Time�M�x�� � p�jxj�� � � for all x � S with jxj � n��

We next claim that the probability �x � Prs M �x� s� � D�x� j TimeM �x� s� � Time�M�x� � s � )M�x�!

is at least �� �p�jxj	
���� First we have�

Prs M �x� s� � D�x� �TimeM �x� s� � Time�M�x� j s � )M �x�!

� �� Prs M �x� s� �� D�x� j s � )M �x�!�Prs TimeM �x� s� � Time�M �x� j s � )M �x�!

� �� ��p�jxj	
� � �

�
�

�

�
��� ��p�jxj	

�����
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Notice by the de�nition of Time�M �x� that Prs TimeM �x� s� � Time�M �x� j s � )M �x�! � ���� Hence� the

conditional success probability �x is at least

�x �
�
� ��� ��p�jxj	

����
�
�

� �� ��p�jxj	
����

In particular� when m � Time�M �x�� �x � �� ��p�jxj	
��� � �� �� logm�� since logm � p�jxj�� � ��

Let us de�ne another Turing machine M � that simulates M by using an additional input string as a

random seed� Formally� the algorithm is as follows�

begin deterministic algorithm for M �

input �x� y� �say y � y�y� � � �ym� where yi � f�� �g� � � i � m�

let i �� �

start the simulation of M on input x

while the simulation do

if M 
ips a coin and i � m then let its outcome be yi

if M 
ips a coin and i � m then enter an in�nite loop

let i �� i ( �

end�while

end�

Note that we do not require the machine M � to exhaust all bits of y on each computation path of M on x�

thus� M � halts on input �x� y� exactly when s is a pre�x of y for some random seed s � +M �x��

Towards achieving our goal� it su�ces from Proposition �������� to show that �D��� belongs to

Aver�NP�F��E��	 for some distributional problem �E� �� in Dist�NP� ���
We �rst de�ne a nondeterministic oracle Turing machine M� as follows�

begin nondeterministic algorithm M� with an oracle

input x

if jxj � n� then output D�x�

guess a string w

let m � jwj
simulate M � on input �x�w� for m steps

if either M � does not halt within m steps or M � enters a rejecting state

then reject

guess m distinct strings u�� � � � � um of length m

query the string hx� u� � � �um� wi to oracle

if the string is not in the oracle then accept else reject

end�

We now show that� for any oracle� M� is polynomial�time bounded on ��average� To show this� it su�ces

to consider the case where jwj � Time�M �x�� First notice that� for any oracle O� TimeOM�
�x� � c � �m (
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m� ( ��� where c is an appropriate constant� Since �x�Time�M �x� is polynomial on ��average� the function

�x�TimeOM�
�x� is also polynomial on ��average�

Next we shall de�ne the desired oracle E so that D � L�M�� E�� The set E is de�ned as the set computed

by the nondeterministic machine M� below� Let u� v denote the bitwise addition of u and v modulo �� and

let the algorithm for M� be as follows�

begin nondeterministic algorithm for M�

input hx� u� � � �um� wi
if ju� � � �umj �� jwj� then accept
�Now assume that m � jwj��
guess a string v of length m

for i � � to m do

simulate M � on input �x� ui � v� for m steps

if M � does not halt then accept

simulate M � on input �x�w� m steps

if M � does not halt then accept

if M ��x� ui � v� �� M ��x�w� then accept else reject

end�for

end�

Note that M� is polynomial�time bounded� and as a result� E belongs to NP� Still we must prove that

D � L�M�� E�� For simplicity� we �x x and set m � Time�M �x�� Let A � f�w� y� � $m � $m jM ��x�w� �

M ��x� y�g� Moreover� let

B � fw � $m j there are more than �m�logm�� strings y of length m such that �w� y� � Ag�

We now claim that�

Claim 	� w � B if and only if ��u�� � � � � um� � �$m�m�v � $m�i � m �w� ui � v� � A!�

Proof of Claim� �Only if - part� Assume that w is in B� To produce a contradiction� we further assume that

the right side of the above equivalence is false� namely� for every m�tuple �u�� � � � � um� in �$m�m� there exists

a string v � $m such that �w� ui� v� �� A for all i� � � i � m� Let fv�� v�� � � � � v�m��g be an enumeration of

all strings of length m� For each j� we de�ne Uj as the set f�u�� � � � � um� � �$m�m j �i � m �ui � vj� �� A!g�
De�ne U �

S�m��
j�� Uj � Since kUk � k$mkm � �m

�

� there exists a natural number j� such that kUj�k �
kUk��m� This implies that kUj�k � �m

��m�

Let C � fu � $m j �w� u� �� Ag� Towards a contradiction� we must show that kCk � �m�logm��� Notice

that kCk is equal to the cardinality of the set fu � $m j �w� u� vj�� �� Ag because of the operator �� Given

any m�tuple �u�� � � � � um� � Uj� �

kCj�km � kfu � $m j �w� u� vj�� �� Agkm � kUj�k�
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The cardinality of the set Cj� thus is bounded above by

kCj�k � ��m
��m���m � �m�� � �m�logm���

�If - part� Assume that the right side of the equivalence in the claim is true� namely� there exists a

m�tuple �u�� � � � � um� � �$m�m such that� for every v � $m� �w� ui � v� � A holds for some i� Fix such an

m�tuple �u�� � � � � um�� Let C� � fu � $m j �w� u� � Ag� For each y � C�� there exists a number i such that

�ui � v� � A� For each i� let C�
i � fy � $m j �y y � ui � v � �w� y� � A!g� Because of the de�nition of ��

kC�
ik � kC�

jk for all pairs �i� j�� � � i� j � m� Since $m �
Sm
i�� C

�
i� we have kC�

ik � �m�m � �m�logm���

Therefore� w is in B�

Recall that x � D if and only if there exist more than �m�log�m	�� strings y of length m such that

�w� y� � A� This is equivalent to saying that there exists a string w of length m such that w � B and

M ��x�w� � �� By the above claim� it holds that

x � D �� ��u�� � � � � um� � �$m�m �x� u� � � �um� w� �� E!�

This yields the equation D � L�M�� E��

Finally we de�ne the desired distribution � on E as follows� Using the function �EM�
�x�� we set "��z� �

"��fx j z � Q�M�� E� x� �
E
M�

�x��g�� It is straightforward to see that �D��� is in Aver�NP�F��E��	� and

consequently �D��� is in Aver�NP�F��E��	 	 Aver�NP�F�Dist�NP��	 � Aver�A
p
� �F��

The other claim that Aver�BPP�F� 	 Aver�A�p
� �F� follows from the inclusions�

Aver�BPP�F� � co�Aver�BPP�F� 	 co�Aver�A
p
� �F� � Aver�A�p

� �F��

�

	�	 Average Low Hierarchy

The average polynomial�time hierarchy allows us to construct an average�case version of the low hierarchy

in NP to re�ne the structure within Aver�NP�F�� Perhaps some NP�complete problems with natural

distributions which are unknown to be either in Aver�P� �� or p�m�complete for Dist�NP�P�comp� fall into

a low hierarchy in Aver�NP�P�comp��

We �rst de�ne the relativized average polynomial�time hierarchy�

De�nition 	�	�� �Relativized Average Polynomial Time Hierarchy� Let F be a set of distribu�

tions� For a distributional decision problem �B� ��� the relativized average polynomial�time hierarchy under

F relative to �B� �� consists of the following classes�

�� Aver�
p
k�F��B��	 � Aver�NP�F�Aver��

p
k����	�B��� �

�� Aver��p
k�F��B��	 � Aver�P�F�Aver��

p
k����	�B��� �
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�� Aver��p
k�F��B��	 � co�Aver�
p

k�F��B��	�

Based on the relativized hierarchy fAver��p
k�F��E��	�Aver�
p

k �F��E��	 j k � �g� we introduce the low

hierarchy within the class Aver�NP�F��

De�nition 	�	�� �Average Low Hierarchy under F� Let k � N�

�� Aver�L�p
k�F� � f�D��� � Aver�NP�F� j Aver��p

k� ���D��	 	 Aver��p
k� ��g�

�� Aver�L
p
k�F� � f�D��� � Aver�NP�F� j Aver�
p

k� ���D��	 	 Aver�
p
k� ��g�

�� Aver�L�p
k�F� � co�Aver�L
p

k�F��

	� Aver�LPH�F� �
S
i�NAver�L
p

i �F��

Here we remark that it is open whether each class of the average low hierarchy enjoys the sparse inter�

polation property�

Lemma ����� Let k � � and F be a set of distributions�

�� Aver�L�p
��F� � Aver�L
p

� �F� � Aver�P�F��

�� Aver�L
p
k�F� 	 Aver�L�p

k���F� 	 Aver�L
p
k���F��

Proof� ��� Since Aver��p
�� ���D��	 � Aver�
p

� � ���D��	 � Aver�P�F��D��	 by de�nition� we obtain the

equality Aver�L
p
� �F� � Aver�L�p

��F�� It is also clear that Aver�L�p
��F� 	 Aver�P�F� because �D��� �

Aver�P� ���D��	�
The other direction Aver�P�F� 	 Aver�L�p

��F� follows from the fact that Aver�P�F� � Aver�P�F�Aver�P��	�

as shown in Lemma ����	����

��� For the �rst inclusion� let �D��� be any distributional problem in Aver�L
p
k�F�� By de�nition� we

have Aver�
p
k� ���D��	 	 Aver�
p

k� ��� We then obtain�

Aver��p
k��� ���D��	 � Aver�P� ��Aver��p

k��	�D��� 	 Aver�P� ��Aver��p
k��	 � Aver��p

k��� ���

Hence� Aver��p
k��� ���D��	 	 Aver��p

k��� ��� which implies that �D��� belongs to Aver�L�p
k���F��

Similarly� we can prove the other inclusion� �

The assumption Aver�
p
k� �� � Aver�
p

k��� �� is su�cient for the class Aver�NP�F� to collapse to the

kth level of the average low hierarchy�

Proposition ����� Let k � � and F be a set of distributions� If Aver�
p
k� �� � Aver�
p

k��� ��	 then
Aver�L
p

k�F� � Aver�NP�F��
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Proof� Let us assume that Aver�
p
k� �� � Aver�
p

k��� ��� Let �D��� be an arbitrary distributional problem

in Aver�NP�F�� We shall show that �D��� belongs to Aver�L
p
k�F�� Since �D��� � Aver�NP�F�� we have

the following inclusions�

Aver�
p
k� �� 	 Aver�
p

k� ���D��	 	 Aver�
p
k��� ���

By our assumption� it follows that Aver�
p
k� ���D��	 	 Aver�
p

k� ��� This shows that �D��� is in Aver�L
p
k�F��

�

Unfortunately� we do not know any natural examples of distributional decision problems falling in the

average low and high hierarchies� The search for such problems is a challenge�



Chapter �

Quintessential Computability


�� Introduction

The most exciting aspect of this thesis is the attempt to investigate the notion of quintessential computability�

�rst proposed by Schuler and Yamakami  ��!� Throughout this thesis� we have developed the average�case

complexity theory initiated by Levin� We know that average�case complexity theory is very sensitive to the

choice of distributions� For example� if we take a distribution which decreases fast enough to �� then all NP

problems are polynomial time solvable on the average� Nevertheless� this type of extreme analysis does not

capture the signi�cant feature of average�case complexity theory�

Regarding Levin
s question Dist�NP�P�comp� 	#Aver�P� ��� Ben�David� Chor� Goldreich� and Luby  �!

gave a partially negative answer by demonstrating that Dist�NP�P�comp� �	 Aver�P� �� unless E � NE�

This result suggests one approach to open questions posed in average�case complexity theory� embedding

average�case complexity classes into worst�case complexity theory in such a way that the embedding does

not lose the complexity of these classes� The simplest solution is to focus on �rare instances� under �every�

reasonable distribution� This notion was developed by Schuler and Yamakami  ��! �suggested by Uwe

Sch�oning��

In Section ���� we shall formally introduce the notion of �real C under F �� For a �worst�case� complexity

class C� �real C under F� represents the class of sets which can be computable on average no matter

what distributions are chosen from F � The simple notation CF was invented by Schuler and Yamakami

 ��! to denote the class �real C under F �� for example� PP�comp captures �real P under P�comp�� Using

this notation� Levin
s question Dist�NP�P�comp� 	#Aver�P� �� can be simply rephrased by the question

NP 	#PP�comp in the worst�case setting�

Based on this notion� we are able to introduce the real polynomial�time hierarchy under F � f�p
kF �


p
kF �

�p
kF j k � �g� that captures the essentials of the average polynomial�time hierarchy under F � By the

de�nition� quintessentially computable classes have very di�erent structures from their worst�case counter�

parts� For instance� it is unknown whether PF equals
S
k�� DTIME�O�nk��F in general� whereas P is

���
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S
k��DTIME�O�nk��� One of the exciting results here is that the real polynomial�time hierarchy under the

set of recursive distributions indeed coincides with the worst�case polynomial�time hierarchy� In particu�

lar� PE�comp collapses to P� These results support our main focus on feasible distributions in average�case

analysis� Section ��� will formally de�ne the notion of �real C under F� and demonstrate the fundamen�

tal properties and the equivalence between the real polynomial�time hierarchy under REC�comp and the

polynomial�time hierarchy�

Our interests are now in the real polynomial�time hierarchy under P�comp and its alternation counterpart�

the real polynomial�time alternation hierarchy under P�comp� and we shall study its properties from the

perspective of structural behaviors� The �rst question we want to ask ourselves is whether any level of

the real polynomial�time hierarchy under P�comp contains sets which are hard to compute� Schuler  ��!

succeeded in constructing such a hard set within PP�comp which cannot be computed by a deterministic

polynomial�time Turing machines� His method is further extended by Schuler and Yamakami  ��! to the

separation between DTIME�O��c�n�� and PP�comp� In Section ������ we shall see how to construct hard sets

within �p
kP�comp and 
p

kP�comp� k � N� by using resource�bounded Kolmogorov complexity�

Immune sets and bi�immune sets are good examples of hard sets� The class E� for example� contains

P�immune sets and P�bi�immune sets� and thus E is di�erent from P� We shall see that PP�comp contains a

P�immune set of an �arbitrary� density� Nonetheless� the class PP�comp or even its truth�table closure has

no P�bi�immune sets� and as a consequence� the class turns out to be small� i�e�� it has p�measure �� from

measure theoretic point of view� This consequence is intriguing in contrast with the fact that the Turing

closure of PP�comp is equal to the class EXP� which has p�measure ��

In ���	� Book  ��! �rst showed that E is structurally di�erent from NP� He actually proved that NP

enjoys the closure property under p�m�reductions� but E does not� therefore� NP cannot equal E� A similar

structural property characterizes the classes in the real polynomial�time hierarchy under P�comp� We shall

see in Section ��� that neither �p
kP�comp nor 
p

kP�comp is closed under p�m�reductions� and consequently

both �p
kP�comp and 
p

kP�comp are structurally di�erent from all worst�case complexity classes which are

closed under p�m�reductions�

In Section ���� we shall look at the probabilistic classes BPPP�comp and BPPP�samp� which are another

example of well�studied quintessential complexity classes� Due to Impagliazzo and Levin  		! and Schuler

and Watanabe  ��!� the question NP 	#BPPP�comp is known to be equivalent to the question NP 	
#BPPP�samp� This is not known for PP�comp and PP�samp�

The notion of random oracles was introduced by Bennett and Gill  �! in ���� to prove that the probability

of the event of a relativized NP coinciding with a relativized P is � when oracles are chosen at random�

In Section ���� we shall show that neither of the inclusions� NP 	 PP�comp nor PP�comp 	 NP� is possible

relative to a random oracle�

Major Contributions� The author formalizes the notion of substantial computation on the average and

shows the hardness and the structural properties of the classes in the real polynomial�time hierarchy under

P�comp�
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Propositions ����� and ������ show the inclusions among quintessential computable classes� e�g�� �p
k 	

A�p
kF 	�p

kF 	�e
k� A similar inclusion holds for the 
p

k class�

Proposition �����	 shows that� for any class C of the polynomial�time hierarchy� every set in CF is nearly�

C� As a direct consequence� Corollary ������ shows that if strong one�way functions exist� then NP is not

included in BPPF for any set of distributions F which contains at least one supportive distribution�

Lemma ������ shows that if Aver�C�F� has the sparse interpolation property� then TALLY � CF 	 C�

This lemma leads to several interesting consequences including� as in Corollary ������� 
p
k 	 �p

kF unless

�e
k � 
e

k�

Theorem ������ shows that �p
kREC�comp � A�p

kREC�comp � �p
k for any k� Similarly for 
p

kREC�comp

and BPPREC�comp� In particular� as in Corollary �����	� the class PE�comp equals P�

Theorem ����� shows that� for each constant c � �� there exists a sparse set in A�p
kP�comp but not in

ATIME��k�O��cn��� A similar separation result holds for A
p
kP�comp�

Proposition ����	 shows that� assuming PP�samp �� P� either FPE �	 �P or NP �	 BPP holds�

Proposition ����� shows that for each constant c � �� A�p
kP�comp is not included in

ATIME��k�O��c�n���close� This immediately implies that PP�comp �	 P�close�

Theorem ����� shows that� for each constant c � �� �p
kP�comp is not included in �p

k�cn�

Theorem ��	�� shows that there exists a P�immune set in PP�comp� The �nal claim of Proposition ��	���

that there is no P�bi�immune set in PP�comp� comes from Schuler and Yamakami  ��!�

Proposition ������ shows that �p
kP�samp and 
p

kP�comp are closed under hp�m�reductions�

Lemma ����� shows that there exists an incomparable pair of sets A and B in PP�comp with respect to

hp�m�reducibility� namely� A ��hp
m B and B ��hp

m A�

Proposition ����� shows that if every P�samplable distribution is avp�dominated by some P�computable

distribution� then �p
kP�comp is closed downward under hp�m�reductions�

As for polynomially�bounded operators� Theorem ������ shows that the class �p��p
kP�comp is not included

in �p
kP�comp� As its corollary �Corollary �����	�� �p� PP�comp �	 NPP�comp if P � NP� Theorem ������

asserts a similar result about the probabilistic operator Pp that the class Pp� PP�comp is not included in

PP�comp�

There is a series of random oracle separation results taken from Schuler and Yamakami  ��� ��!� Propo�

sition ����	 shows that� relative to a random oracle� PP�comp is di�erent from NPP�comp� In Theorem ������

it is shown that� relative to a random oracle� NP is not included in PP�comp� whereas Theorem ����� shows

that� relative to a random oracle� PP�comp is not included in PSPACE�


�� Real Polynomial�Time Hierarchy

Average�case complexity theory has given us a di�erent perspective from worst�case complexity theory about

what is hard to compute� Some NP�complete problems have been already categorized as relatively �easy�

on the average� This is one of the reasons that Levin asked whether all NP�complete problems are �easy�

on the average�
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As shown by Ben�David� Chor� Goldreich� and Luby  �!� Levin
s question is closely related to the E �#NE

question in worst�case complexity theory� Is there any general way we can discuss other open questions

in average�case complexity theory in terms of worst�case complexity classes # Or more bravely� can we

embed our average�case complexity classes into the world of worst�case complexity classes without losing

any signi�cant feature of their average�case complexity # One answer was presented by Schuler and Yamakami

 ��! in ����� They introduced a new notion� called real C under F � that enables us to treat an average�case

complexity class as a worst�case complexity class�

This section will begin with the notion real C under F and then introduce the real polynomial�time

hierarchy�


���� The Notion of �Real C under F�

At a conference in ����� Schuler and Yamakami  ��! proposed a way that we can bring average�case complex�

ity classes back to the worst�case complexity world� The idea is that rather than argue the average behavior

of an algorithm with respect to each individual distribution� we wish to extract the hardest instances under

every distribution� Let us consider a set A in P� The set A is not only computable in polynomial time� but

also computable in polynomial time on ��average under every distribution �� In other words� A is �easy� to

compute regardless of the probability with which each instance occurs� What kind of instances are �easy� to

compute on average under all reasonable distributions like P�computable distributions # We shall formalize

the collection of such instances in a more general way�

Formally� we introduce the general notion of �real C under F ��

De�nition ����� �Real C underF� ���� Let C be a complexity class and let F be a class of distributions�

Assume that Aver�C�F� is de�ned� The class real C under F � symbolically CF � is the class of sets D such

that �D��� � Aver�C� �� for every � � F �

This new notion formalizes a signi�cant feature of the associated average�case complexity classes� The

next proposition indicates its importance�

Proposition ����� ���� Let Dist�C�F� and Aver�D�F� be any randomized and average�case complexity

classes	 respectively� Then	 C 	 DF if and only if Dist�C�F� 	 Aver�D�F��

Proof� Assume that C 	 DF and �A� �� is in Dist�C�F�� From the fact that A belongs to DF � it follows

that �A� �� � Aver�C�F�� Conversely� assume that Dist�C�F� 	 Aver�D� ��� Let D be any a set in C� For

every � � F � since �D��� � Dist�C�F�� we obtain �D��� � Aver�D�F�� Hence� D belongs to DF � �

For most classes C� we immediately conclude the inclusion C 	 CF � since Dist�C�F� 	 Aver�C�F��

An advantage of Proposition ����� is that Levin
s question Dist�NP�P�comp� 	#Aver�P� �� can be

simply rephrased as follows� �Is NP included in PP�comp #� In an attempt to answer his question� we




��� REAL POLYNOMIAL�TIME HIERARCHY ���

must make a careful study of the quintessential complexity class PP�comp� More generally� the question

Dist�
p
k�P�comp� 	#Aver��p

k� �� is translated into the question 
p
k 	#�p

kP�comp in the worst�case setting�

From De�nition ������ we obtain quintessential complexity classes NPF and 
p
kF � where k � N� Recall

the de�nition of the average�case complexity classes� Aver�co�NP�F� and Aver��p
k�F�� k � N� These classes

are conventionally de�ned to be the complements of the original de�ned�by�machine classes Aver�NP�F�

and Aver�
p
k�F�� Adapting De�nition ������ we are able to �de�ne� the classes �co�NP�F and �p

kF � Nev�

ertheless� do these classes con
ict with the de�nition of the complement class # More speci�cally� do they

equal the complements of NPF and 
p
kF # The following lemma shows that De�nition ����� does not con
ict

with the complement classes Aver�co�C�F� in general�

Lemma ����� Let C and D be complexity classes and F be a set of distributions�

�� If Aver�C�F� is de
ned	 then co�CF � �co�C�F �

�� If Aver�C�F� and Aver�D�F� are de
ned	 then CF �DF � �C � D�F �

Proof� ��� For any set A � co�CF � we have A � CF � For every distribution � � F � �A� �� � Aver�C�F��

By our assumption� this is equivalent to the statement that �A� �� � Aver�co�C�F� for every � � F � Thus�

we have A � �co�C�F �

Conversely� assume that A � �co�C�F � We have �A� �� � Aver�co�C�F� for all distributions � in F � and

thus �A� �� � Aver�C�F�� Hence� A � CF � In other words� A � co�CF �

��� By a similar� simple argument� �

In particular� we have the equalities �p
kF � co�
p

kF and 
p
kF ��p

kF � �
p
k ��p

k�F for all k � � and for

any set F of distributions�

We make the remark here that although we have seen in Corollary ������ that Aver�P�P�comp� �	
Dist�NP� ��� we do not know whether PP�comp �	 NP�

The following inclusion follows immediately from Corollary ��	���

Lemma ����� Let F� and F� be two sets of distributions and let C be any class in the polynomial�time

hierarchy� If every distribution in F� is avp�dominated by some distribution in F�	 then CF� 	 CF� �

We remark here that PHF is not de�ned as the union of all 
p
kF for any k � N� Hence� despite

Proposition ��	��� we cannot simply conclude that 
p
kF � 
p

k��F implies PHF � 
p
kF �

We next locate the newly de�ned classes PF � NPF � BPPF � and PSPACEF in the worst�case world�

Proposition ����� ���� Let F be any set of distributions which contains the standard distribution�

�� P 	 PF 	 E�

�� NP 	 NPF 	 NE�
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�� BPP 	 BPPF 	 BPE�

�� PSPACE 	 PSPACEF 	 ESPACE�

Proof� We give only the proof of ��� since the rest of the claims follow by a similar argument� Since

Dist�P�F� 	 Aver�P�F�� we have P 	 PF � To show that PF 	 E� we let A be any set in PF � Since

�A� �stand� � Aver�P�F�� there exist an increasing polynomial p and a deterministic Turing machine M

which is p�time bounded on �stand�average such that M computes A� Recall that "�stand�x� � �
��jxj��	���jxj �

It clearly holds that� for almost all x�

TimeM �x� � p�jxj�"�stand�x�� � p��jxj � �jxj( ��� � �jxj� � �cjxj

for an appropriate constant c � �� Therefore� A belongs to DTIME�O��cn��� which is a subset of E� �

As a �nal note in this introductory subsection� we wish to demonstrate that the class �real P under

FLAT� is not a large class� where FLAT denotes the collection of all 
at distributions� We note that

whether NP 	 PFLAT is an open question� which is related to the incompleteness of distributional problems

with 
at distributions� We now recall that SUBEXP �
T
��� DTIME�O��n

�

���

Lemma ����� PFLAT 	 SUBEXP�

Proof� Assume that A is in PFLAT� Let � be a distribution such that "��x� � ��jxj
��jxj�

for almost all

x� where ��n� � ��blognc� This distribution is 
at because � is decreasing� By the choice of A� �A� �� �
Aver�P� ��� There is a deterministic Turing machine M computing A in time p on ��average� where p is a

function from $� to R�� Choose constants c� k � � such that p�z� � c � zk for almost all z�

Let m be any positive integer� Then� for any su�ciently large x�

TimeM �x� � p�jxj�"��x�� � p�jxj � �jxj��jxj��
� c � �jxj � �jxj��jxj�� � ��k��	jxj

��jxj�

� �jxj
��m

�

Thus� A � DTIME�O��n
��m

��� Since m is arbitrary� A � SUBEXP follows� �

The converse is unlikely to hold�


���� Real Polynomial�Time Hierarchy

The notion of quintessential computability enables us to translate all average�case complexity classes into

worst�case complexity classes� In particular� we can naturally translate the average polynomial�time hier�

archy into its quintessential counterpart� We call such a hierarchy the real polynomial�time hierarchy� This

subsection will study its structural properties�

The formal de�nition of the real polynomial�time hierarchy is given below�
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De�nition ����� �Real Polynomial�Time Hierarchy under F� ���� Let F be any set of distribu�

tions� The real polynomial�time hierarchy under F consists of �p
kF � 
p

kF � and �p
kF for all natural numbers

k� Let PHF be the collection of all sets A such that �A� �� is in Aver�PH�F� for all distributions � � F �

Immediately from the facts that Aver�
p
k�F� 	 Aver��p

k���F� 	 Aver�
p
k���F� and �p

kF � co�
p
kF �

it follows that�

Lemma ����� For all k � �	 
p
kF ��p

kF 	 �p
k��F 	 
p

k��F ��p
k��F �

Analogous to the real polynomial�time hierarchy� we can de�ne the real polynomial�time alternation

hierarchy using the average polynomial�time alternation hierarchy�

De�nition ����� �Real Polynomial�Time Alternation Hierarchy under F� Let F be any set

of distributions� The real polynomial�time alternation hierarchy under F consists of A�p
kF � A
p

kF � and

A�p
kF for all k � N� Let APHF be the collection of all sets A such that �A� �� is in Aver�APH�F� for all

distributions � � F �

Because of domination conditions imposed on oracle Turing machines� the real polynomial�time hierarchy

forms a sub�hierarchy of the linear exponential�time alternation hierarchy� f�e
k�


e
k��

e
k j k � �g�

Proposition ����	
 Let k � � and let F be any set of distributions which contains the standard distribution

�stand�

�� �p
k 	 A�p

kF 	 �p
kF 	�e

k�

�� 
p
k 	 A
p

kF 	 
p
kF 	 
e

k�

Proof� Recall that Dist��p
k�F� 	 Aver�A�p

k�F� and Dist�
p
k�F� 	 Aver�A
p

k�F� for all k � �� Hence�

�p
k 	 A�p

kF and 
p
k 	 A
p

kF � The inclusions A�p
kF 	 �p

kF and A
p
kF 	 
p

kF come from Corollary

������ In the following� we show the rest of the claim� namely� �p
kF 	�e

k and 
p
kF 	 
e

k�

It su�ces to show that �A� �stand� � Aver�
p
k� �� implies A � 
e

k� This proceeds by induction on k� The

base case k � � follows from Lemma ��������� Let k � �� Let �Ai� �i�� � � i � k� be a distributional problem�

where A� � A and �� � �stand� Assume that �Ai� �i� � Aver�NP� ���Ai����i��	 via an oracle machine Mi for

all i with � � i � k� Assume also that Ak is recognized by a Turing machine N which runs in polynomial

time on �k�average� Let gk�x� � TimeN �x�� gi�x� � miny�Flip�Mi�Ai�� �x	

P
z�Q�Mi�Ai���x�y	

gi���z�� It is not

di�cult by induction on i to show that g� is polynomial on ���average� since gk is polynomial on �k�average�

First we construct alternating Turing machines M �
i � � � i � k� as in the proof that A
p

i � 
p
i � More

precisely� the machineM �
i is de�ned as follows� on input x�M �

i simulates in an existential state Mi on the same

input except for oracle queries� if Mi queries z� then M �
i guesses its oracle answer ans�z� and continue the

simulation� if Mi reaches an accepting con�guration� it sequentially simulates M �
i�� on all z with ans�z� � ��
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then in a universal state� M �
i simulates M �

i�� on all z with ans�z� � �� M �
i enters an accepting con�guration

exactly when M �
i�� reaches a rejecting con�guration� Otherwise� M �

i enters a rejecting con�guration� It is

obvious that each M �
i is an alternating Turing machine with �k � i ( ���alternation� Moreover� assuming

x � L�M �
i �� the length of the minimal subtree of the computation tree of M �

i on x which contains only

�yes��con�gurations is bounded by c � gi�x�� where c is a positive constant not depending on the choice of x�

Second we de�ne a new machine M as follows� on input x� M simulates M �
� on x in time �cjxj�c� on each

computation path� if M �
� does not reach any halting con�guration� then M enters a rejecting con�guration�

Since g� is polynomial on �stand�average� x � A if and only if x � L�M �� Hence� we have A � 
e
k�

The case for �p
kF is shown analogously� �

In worse�case complexity theory� PH is the union of all sets in 
p
k for any k � �� Nevertheless� we have

no proof that PHF �
S
k��


p
kF � On the other hand� can we show that PHF di�ers from

S
k��


p
kF #

Since it is still possible that PF � PHF � the separation between PHF and
S
k��


p
kF seems di�cult to

prove� This situation is similar to the question of ATIME�nO��	� versus
S
k�� ATIME��k� nO��	�� BecauseS

k��ATIME��k� nO��	� coincides with PH while ATIME�nO��	� equals PSPACE� we do not know whether

PH � PSPACE� Therefore� as mentioned before� we cannot conclude that if 
p
kF � 
p

k��F � then PHF �


p
kF �

We have seen that �p
k � 
p

k implies Aver�A�p
k�F� � Aver�A
p

k�F�� Hence�

Lemma ����		 Let k � � and let F be a set of distributions� If �p
k � 
p

k	 then A�
p
kF � A
p

kF �

Last� we shall demonstrate some basic closure properties� under set operators� of classes in the real

polynomial�time hierarchy under P�comp�

Lemma ����	� Let C � f�p
k�


p
k��

p
k j k � �g� If A and B in CP�comp	 then A � B	 A � B	 A � B	 and

A� B are in CP�comp�

Proof� Let k � �� Here we shall show the closure property of 
p
kF under �� Let us assume that A and

B are in 
p
kF � that is� �A� �� � Aver�
p

k�P�comp� and �B� �� � Aver�
p
k�P�comp� for all distributions � in

P�comp� Take an arbitrary distribution � � P�comp� We assume that "���� � � for simplicity� Let c� and

c� be de�ned as

cb �

�	

 � if

P
x "��bx� � �

�
�

� otherwise�

where b � f�� �g� We next de�ne �� as "����� � �� and for each nonempty z�

"���z� �

�	



�
c�
� "��bx� if z � bx for some b � f�� �g and x � $��

�
� �
P

w�w ��
 "���bw� if z � b � f�� �g�

The function �� becomes a distribution and satis�es "����$�� � "����$�� � �
� � It is also easy to see that

� �p �� because "��x� � � � "���x�� Hence� �A �B� �� �p
m �A� B� ����
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De�ne "�A�x� � � � "����x� and "�B�x� � � � "����x� for all x� Notice that �� � �A � �B � By the

de�nition of ��� both �A and �B are P�computable� Thus� we conclude that �A� �A� and �B� �B� are in

Aver�C�P�comp�� Lemma ��	�� yields the conclusion that �A�B� �A��B� � Aver�C�P�comp�� which means

�A�B� ��� � Aver�C�P�comp�� Since Aver�C�P�comp� is closed under �p
m�reductions� then �A�B� �� is in

Aver�C�P�comp��

Since � is arbitrary� we get A �B � CP�comp� �


���� Nearly��p

k
and Nearly��p

k
Sets

In Section 	��� we introduced the notions of �nearly�RP� and �nearly�BPP� sets� In a similar fashion� we

can extend this notion and introduce the new notions of �nearly�
p
k� and �nearly��p

k� sets� Our goal here

is to prove that every set in 
p
kF ��p

kF � resp�� is nearly�
p
k �nearly��p

k� resp���

De�nition ������ �Nearly�
p
k and Nearly��p

k Sets� A set A is nearly�
p
k if� for every polynomial

p� there exist a set S and a polynomial�time alternating Turing machine M whose alternation is at most k

starting with an existential state such that �i� x � A�S implies M �x� � �� �ii� x � A�S implies M �x� � ��

and �iii� Prn x � S! � �
p�n	 for almost all n� Similarly� a notion of �nearly��p

k� is de�ned by using an

alternating Turing machine with a semi�deterministic process�

Proposition ����	� Let F be a set of distributions such that �stand � F � Let C be one of the following

classes	 �p
k	 


p
k	 k � N	 BPP	 and RP� Then	 every set in CF is nearly�C�

Proof� First we shall show the case C � 
p
k� The other case C � �p

k follows similarly� Let A be

an arbitrary set in 
p
kF � Note that �A� �stand� � Aver�
p

k� ��� By Proposition ��	���� we have two sets

C� � 
p
k and C� � �p

k such that C� 	 A� C� 	 A� and kCn
� � Cn

� k � �� � ��p�n�� � �n for all n � N�

Let S � $� � �C� � C��� We then have kSnk
�n � �

p�n	 for almost all n� and also we have C� � A � S and

C� � A� S� Therefore� A is in nearly�
p
k�

Next we shall prove the proposition for C � BPP� Assume that A � BPPF � Since �stand � F � we

have �A� �stand� � Aver�BPP�F�� For convenience� write � for �stand� By the de�nition of Aver�BPP�F��

there is a bounded�error probabilistic Turing machine M computing A in time p on ��average� where p is

an increasing polynomial� In particular� for the random�input domain +M associated to M � "��M �f�x� s� j
TimeM�x� s� � p�jxj � r�g� � ��r for any real number r � �� By Lemma ������� it follows that "��fx j
Time�M�x� � p�jxj � r�g� � ��r� We can assume by the Ampli�cation Lemma that PrM  M �x� � A�x�! � ���

for all x�

Take any polynomial q� and let q��n� � p�n � 	��n( ��� � q�n��� We then de�ne

S �

�
x

���� Prs TimeM �x� s� � q��jxj� j s � +M ! � �

�

�
�

Thus� if x � S� then � �Ps��M�x	 ��jsj �  TimeM �x� s� � q��jxj�! � ��
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First we shall show that the density of S is not so large� Fix n � N�

Prx x � S j x � $n! �
X

x�S��n
��llog�n	�� � "��x� � � �Prs TimeM �x� s� � q��n� j s � +M �x�!

� ��n( ��� � � �
X

x�S��n
"��x� �Prs TimeM �x� s� � q��n� j s � +M �x�!

� 	��n( ��� � "��M �f�x� s� j x � $n �TimeM �x� s� � q��n�g�
� 	��n( ��� � �

	��n( ��� � q�n�
�

�

q�n�
�

Next we de�ne a randomized Turing machine N as follows� on input x� simulate M on x in time q��jxj��
if a computation does not terminate� then simply reject the input� Note that the error probability is less

than ���� We shall show that N correctly computes A on most inputs� For x not in S�

PrN  N �x� � A�x�! � Prs TimeM �x� s� � q��jxj��M �x� s� � A�x� j s � +M �x�!

� Prs TimeM �x� s� � q��jxj� j s � +M �x�! �Prs M �x� s� � A�x� j s � +M �x�!

�
�

�� �

�

�
� �

�
�

�

�
�

Hence� A is nearly�BPP� The case for C � RP is similar� �

Corollary ����	� If strong one�way functions exist	 then NP �	 BPPF for any set F of distributions

which includes �stand�

Proof� Suppose that there is a strong one�way function� Assume also that NP 	 BPPF for some F
with �stand � F � By Proposition �����	� every NP set is nearly�BPP� Proposition ����	 shows that there is

no strong one�way function� This is a contradiction� hence� NP �	 BPPF � �


���� Collapsing Classes

Let us return to Levin
s original question of whether NP 	 PP�comp� As discussed in the previous section�

we can now raise the more general question of whether 
p
k 	 �p

kF holds for some F � Clearly if P � NP�

then NP is included in PF for all F � Ben�David et al�  �! �rst gave a partial answer to this question by

showing that Dist�NP�P�comp� �	 Aver�P� �� if E �� NE� In other words� NP 	 PP�comp implies E � NE�

Note that E � NE if and only if TALLY �NP 	 P  �	!� Hence� Ben�David et al� actually showed that

TALLY �PP�comp 	 P�

We shall generalize this result and show that the tally part of any real average complexity class collapses

to its worst�case counterparts� First we state a technical lemma� Recall the standard distribution �tally� In

the rest of this section� we use this distribution�

Lemma ����	� ���� Let C be a complexity class and let F be a set of distributions which contains �tally�

Assume that Aver�C�F� is de
ned� If Aver�C�F� has the sparse interpolation property	 then TALLY�CF 	 C�
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Proof� Let A be in TALLY � CF � We note that �A� �tally� � Aver�C�F� since �tally � F � By the sparse

interpolation property for Aver�C�F�� there exists a set B in C such that A�f�g� 	 B 	 A� Since A 	 f�g��
we have A � B� Thus� A belongs to C� �

Recall that most average�case complexity classes discussed in this thesis enjoy the sparse interpolation

property� In particular� we have�

Proposition ����	� ���� Let F be a set of distributions with �tally � F � For every C � f�p
k�


p
k�A�

p
k�

A
p
k�BPP�PSPACE j k � �g	 TALLY � CF 	 C�

Several corollaries follow from Proposition �������

Corollary ����	� Let k � �� For any set F of distributions	 �e
k �	�p

kF 	 

e
k �	 
p

kF 	 and �
e
k �	 �p

kF �

Proof� The claim follows from the fact that TALLY ��e
k �	�p

k but TALLY ��p
F 	�p

k� The cases for


p
kF and �p

kF are similar� �

Corollary ����	� Let F be a set of distributions with �tally� For each k � �	 if 
p
k 	�p

kF 	 then �
e
k � 
e

k�

Proof� Assume that 
p
k 	�p

kF � By Proposition ������� TALLY �
p
k 	 TALLY ��p

kF 	�p
k� and thus

TALLY �
p
k 	�p

k� This is equivalent to �e
k � 
e

k� �

Corollary �����
 Let k � � and let F be a set of distributions with �tally� If�
p
kF � 
p

kF 	 then �
e
k � 
e

k�

Proof� The claim is another variant of Corollary ������ because �p
kF � 
p

kF implies 
p
k 	 �p

kF � �

It is unlikely that �e
k � 
e

k� thus we may conjecture that 
p
k �	 �p

kF for all F which contains �tally� In

other words� the sets in 
p
k seem hard to compute even on average�

When we consider the class PP�comp� the claim of Proposition ������ can be strengthened in the following

manner� Recall that a set S is P�printable if and only if there exists a polynomial�time computable function

which� on input �n� lists all strings in S of length n�

Lemma �����	 ���� Let A be an arbitrary set� If A is in PP�comp	 then A�S is in P for any P�printable

set S� If P � NP holds	 then this is also true for all sparse sets S in P�

Proof� Let A be an arbitrary set in PP�comp� Take any P�printable set S� Under our assumption� we

may assume that there exists an integer k � � such that kS � $nk � �n ( ��k for all n � N� since if the

density of S �$n does not reach �n( ��k then we can deterministically add an element� which is not in S�
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to S repeatedly until its density is exactly �n ( ��k�

Let us de�ne "��x� � �jxj ( ���k�� if x � S� else �� Notice that � is P�computable� Take a machine

M which computes A in polynomial time on ��average� There are integers m� c � � such that "��fx j
TimeM �x� � c�jxj � r�g� � ��r for all r � �� For any �xed x � A � S� we have TimeM �x� � c�jxj�"��x��m �
c�jxjm�jxj( ��m�k��	� Hence� A � S � P�

The latter half of the claim follows from the fact that all sparse sets in P are P�printable if P � NP� �

We have seen that the tally part of quintessentially computable class CF is easily computed� and thus

it collapses to its worst�case counterpart C� If we take the set of recursive distributions REC�comp� then

CREC�comp collapses to C� To prove this� we show that if Aver�C�REC�comp� has the sparse interpolation

property� then CREC�comp 	 C� In the proof of the following lemma� we again use in�nite� recursive� proper

hard cores �see De�nition ��������

Lemma ������ ���� Let Aver�C�REC�comp� be an average�case complexity class with C 	 REC� If

Aver�C�REC�comp� has the sparse interpolation property	 then CREC�comp 	 C�

Proof� Suppose that Aver�C�REC�comp� has the sparse interpolation property� The proof is by contra�

diction� Now assume that there exists a set A in CREC�comp �C� By Lemma ������� there exists an in�nite�

recursive� proper hard core H for A with respect to C� We note that if C � P� then H is in the class E �see�

e�g��  	!�� Thus� for any set B � C� if B 	 A� then B �H is �nite� Now let S be a recursive� in�nite� sparse

subset of H� Let q�n� � kS �$nk� Consider the distribution �S�q such that

"�S�q�x� �

���	
��


��tally��
jxj	

q�jxj	 if x � S � f�g�
� if x �� S � f�g�
��Pz�z ��
 "�S�q�z� if x � ��

Clearly �S�q � REC�comp� Since �A� �S�q� � Aver�C�REC�comp�� there exists an interpolant B� � C of A

and S� We then have B� �H � S� and thus B� �H is in�nite� This contradicts the fact that H is a proper

hard core for A� �

Theorem ������ ���� Let k � ��

�� �p
kREC�comp � A�p

kREC�comp � �p
k�

�� 
p
kREC�comp � A
p

kREC�comp � 
p
k�

�� BPPREC�comp � BPP�

�� PSPACEREC�comp � PSPACE�

Proof� By Lemma ������� it su�ces to show that� for C � f�p
k�


p
k�BPP�PSPACEg� Aver�C�REC�comp�
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has the sparse interpolation property� The claim for C � fBPP�PSPACEg follows from Proposition ��	���

and the claim for C � f�p
k�


p
k j k � �g follows from Proposition ��	���� �

Theorem ������ indicates that the de�nition of the average polynomial�time hierarchy in Section ��	 is a

reasonable generalization of the worst�case polynomial�time hierarchy�

Note that� in the proof of Lemma ������� the complexity of the distribution �S�q depends only on the

complexity of the complexity core� Since all sets not in P have complexity cores in E� we get the following

corollary�

Corollary ������ ���� PE�comp � P�

Complex distributions like recursive distributions make quintessential complexity classes lose their average�

case nature� This supports our primary interests in feasible distributions in Chapter 	� In later sections� we

shall focus on quintessential complexity classes under sets of those feasible distributions�


�� Fundamental Separations

We have seen the collapse of the real polynomial�time hierarchy under the set of recursive distributions� This

section shows the separations between the real polynomial�time hierarchy under P�computable distributions

and the polynomial�time hierarchy� The technique cultivated in this section is fundamental and will be used

again in later sections�


���� Construction of Hard Instances

Three years after the notion PP�comp was presented� Schuler  ��! succeeded in showing that PP�comp �� P by

constructing a complex set which lies in the di�erence PP�comp � P� A crucial idea in his proof is to �nd a

string of each length which occurs with low probability by pruning other strings which occur with relatively

high probability� The construction needs an e�ective enumeration of P�computable semi�distributions� Later

Schuler and Yamakami  ��! extended this result to create sets which are hard to compute even byO��c�n��time

bounded Turing machines for a �xed constant c � �� Certainly we cannot extend this result to �O�n	�time

bounded machines because all sets in PP�comp are already in E� Hence� this result seems nearly optimal�

The following lemma will be useful in later subsections� The proof given here uses Lemma 	������ due

to Schuler  ��!� which uses resource�bounded Kolmogorov complexity to avoid any enumeration of semi�

distributions for the construction of a hard set�

For a set A� de�ne Prefix�A� � f�n�v j �w jwj � n � vw � A!g�

Lemma ����	 �Hard Instance Lemma� ���� ��� ��� Let k � �� Let k�n� and s�n� be time�

constructible functions on N� Assume that k�n� and s�n� are unbounded	 increasing	 and � � k�n� � n

and k�n� � )�n�� Then	 there exist a set A � DTIME�ns�n	� and a function h computable in time O�ns�n	�
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such that	 for all integers n � �	

�� jh��n�j � k�n��

�� A �$n � z$n�jzj	 where z � h��n��

�� A �B � A�p
kP�comp for every set B ��e

k�

�� A �B � A
p
kP�comp for every set B � 
e

k� and

�� Prefix�A� � PP�comp�

Proof� Without loss of generality� we may assume that s�n� � logn for all n� Since k�n� � )�n�� we can

take an integer c� � � such that k�n� � n
c�

for all n � N� Let l��� � k���� � �� For n � �� let l�n� � b�� lognc
and let k��n� � maxf�� bk�n���� � logncg� Now consider an integer n� � � such that n � 	�c� � logn for all

n � n�� Obviously� k��n� � l�n� � k�n� for all n � �� Note that� for all n � n�� k��n� � l�n� � �
�k�n� since

k�n� � 	� logn and� in consequence�

k��n�l�n� �
�

k�n�

�� logn
� �

�
��� logn� �� � k�n��

�
k�n�

�� logn
( �� logn

�

� k�n� � �

�
k�n� �

�

�
k�n��

It is also clear that �x�l�jxj�� �x�k�jxj�� and �x�k��jxj� are unbounded and computable in polynomial time

since k�n�� s�n�� and �n�b�� lognc are time�constructible�

To simplify the following analysis� we always disregard the computation time for the values k�n�� l�n��

and k��n� because� as we have seen� �x�k�jxj�� �x�s�jxj�� and �x�l�jxj� are all P�computable and do not a�ect

�average� running time�

As for the desired function h� we de�ne h��n� to be a string zn� � � � znk��n	�k�n	�k
��n	l�n	� where zn� �

minfw � $l�n	 j w �� KT n� �s��	�n!g and zni � minfw � $l�n	 j w �� KT n� �s�i	�njzn� � � �zni��!g for all i

with � � i � k��n�� Obviously� we have jh��n�j � k�n� for all n � �� Now de�ne the desired set A

as A � fzw j �n z � f��n� � w � $n�jzj � n � �!g� Note that A � $n � h��n�$n�jh��n	j� and thus

kA �$nk � �n�k�n	 for all n � �� We next show that A �B � A�p
kP�comp for all sets B in �e

k� Now �x a

set B in �e
k� Consider the following algorithm M �

begin algorithm M for A �B
input x �let n � jxj�
compute k�n�� s�n�� l�n�� and k��n� �in polynomial time�

let y � �

for i � � to k��n� do

compute zni � minfw � $l�n	 j w �� KT n� �s�i	�njy!g
let y � yzni

if y �v x then reject

end�for
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if y�k�n	�k
��n	l�n	 �v x then reject

��� if x � B then accept else reject

end�

It is easy to see that the algorithm M computes A �B� For later convenience� we call a string which goes

into the line ��� a candidate�

Now let � be any P�computable distribution� By Lemma 	������ there exists a constant c�� n� � � such

that� for all i with c� � i � k��n�� "��zn� � � �zni $n�i�l�n	� � ���i�c�	l�n	� Let c� be a large integer so that� in

the following estimation of the time complexity of the algorithm� the inequalities ���� and �� � �� below hold

for any integer n � �� Moreover� we assume that the computation time of the set B on input of length n is

at most �c
��n�c� for each n � N� Let n� be a constant large enough so that n� � maxfn�� n�g� n � �c�� and

n � �c����c� ( �� logn( � for all n � n�� In what follows� we assume that n is any integer larger than n��

Let Zi be the set of strings of length n which are not rejected through the �rst i iterations of the for�loop�

namely� Zi � zn� � � � zni $n�i�l�n	� By de�nition� Z� � $n and A 	 Zk��n	� Recall that "��Zi� � ���i�c�	l�n	�

We then partition $n into k��n�(� subsets� S � fZi���Zi j � � i � k��n�g�fZk��n	�Ag�fAg� Note that

k��n� ( � � n since n � n�� By Lemma ������� it su�ces to show that� for some constant c � � independent

of the choice of n� TimeM �x� � nc ( ���n�"��D��c for all x � D� where D is an arbitrary set in S�

Note that� to compute zni � in the worst case we have to check all strings w in $l�n	 whether w ��
KT n� �s�i	�n j y!� Hence� we need at most �l�n	 � �s�j	l�n	 � ��log j��	l�n	 steps because log j � s�j�� Since

i � l�n� ( � � �l�n	� the running time of M on input x which is in Zi�� � Zi requires

TimeM �x� � c�
iX

j��

���log j��	l�n	 ( j � l�n� ( �� ����

� c� � i � ���log i��	l�n	 ( �l�n	�

� �log c
��log i � ��log i��	l�n	�� � �log c

���log i�� � ��log i��	l�n	

� �� logn � ��log i��	l�n	

� �l�n	��log i��	l�n	 � ��log i��	l�n	

since logn � log c� ( �� logn � log i� and l�n� � � logn�

Let d be the minimal integer satisfying the following condition� i � log i ( c� ( � for all integers i � d�

Note that d does not depend on the value of n� Let c � maxf	c�c�� d��log d( ��eg� We examine below the

running time of M for several cases of input string x�

�i� For the computation on all rejected strings x in $n � Zd� for i � d�

TimeM �x� � ��logd��	l�n	 � ���logd��	 logn � n��logd��	 � nc�

�ii� For the computation on all rejected strings x in Zi�� � Zi with d � i � k��n�� as we have seen�

TimeM�x� � ��log i��	l�n	� Note that� since i � log i( c� ( �� �log i( ��l�n� � �i� c��l�n�� � logn� Then we

have

TimeM �x� � ��log i��	l�n	 � �

n�
� ��i�c�	l�n	 � �

n� � "��Zi�� � Zi�
�
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�iii� For the computation on all rejected strings x in Zk��n	 �A� note that zn� � � �znk��n	 v x� We also note

that k�n�� k��n�l�n� � � � �logk�n	��� Hence� the time spent for x is

TimeM �x� � ��log k
��n	��	l�n	 ( c��k�n� � k��n�l�n� ( �� �� � ��

� ��log k
��n	��	l�n	 ( �log c

� � �logk�n	��

� ��log k
��n	��	l�n	�� logn � ��logk

��n	�
	l�n	

since logn � log c� ( � and l�n� � � logn� Using the fact that "��Zk��n	 � A� � ���k
��n	�c�	l�n	� we have

TimeM �x� � ��logk
��n	�
	l�n	 � ��k

��n	�c�	l�n	�� logn � �

n� � "��Zk��n	 � A�
�

�iv� For the computation on all strings x in A� we remark that the computation of B needs� by our as�

sumption� at most �c
��n�c� time� Hence� TimeM�x� � �c

�n�c� � Note that "��A� � "��Zk��n	� � ���k
��n	�c�	l�n	�

Recall that k��n�l�n� � �
�k�n� and k�n� � n

c�
� We �rst remark that c�n(c� � c��k��n�l�n��c��l�n��� log n��

This is seen as follows� since c � 	c�c� and n � �c����c� ( �� logn( ��

c�n ( c�

c
� �k��n� � c��l�n� � n( �

	c�
� k�n�

�
� c� � l�n�

� n( �

	c�
� n

�c�
( ��c� � logn

� � n

�c�
( ��c� � logn (

�

	c�
� �� logn�

Therefore� we have

TimeM �x� � �c
�n�c� � �c��k

��n	�c�	l�n	�� logn	 �
�

�

n� � "��A�

�c
�

By Lemma ������� we conclude that �x�TimeM �x� is polynomial on ��average� Since � is arbitrary� A�B
belongs to A�p

kP�comp�

The same argument can be carried out for the claim �	��

Next we show that claim ��� also holds� To prove ���� we consider the following algorithm M ��

begin algorithm M � for Prefix�A�

input x

�nd v such that x � �n�jvj�v

if no such v exists then reject

let y � �

for i � � to k��n� do

compute zni � minfw � $l�n	 j w �� KT n� �s�i	�njy!g
let y � yzni

if v v y then accept

if y �v v then reject

end�for

if v v y�k�n	�k
��n	l�n	 then accept
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if y�k�n	�k
��n	l�n	 �v v then reject else accept

end�

Fix n su�ciently large� Let V n
i � f�n�jvj�v j �i � ��l�n� � jvj � i � l�n� � v v zn� � � �zni g for each i�

� � i � k��n�� For the sake of convenience� let V n
� � $n�� �Sk��n	

i�� V n
i � Notice that $n�� �

Sk��n	
i�� V n

i �

Take an arbitrary P�computable distribution �� It su�ces to show that� for each i �� � i � k��n���

TimeM ��x� � nc ( ����n( ���"��V n
i �� holds for all x � V n

i � First we show that "��V n
i � � ���i�c�	�l�n	� where

c� is a constant chosen above�

Claim 	� "��V n
i � � ���i�c�	�l�n	�

Proof of claim� Let us de�ne f as follows� For each x�

f�x� �

�	

 zni � � �zni �n�i�l�n	 if x � �n�jvj�v for some v

�n otherwise�

where i � minfi� j �i����l�n� � jvj � i� �l�n�g� The function f is increasing and P�computable� Furthermore�

we obtain f�V n
i � 	 Zn

i � and as a consequence� V n
i 	 f���Zn

i �� For �� we set � � �f�� � As discussed above�

"��Zn
i � � ���i�c�	l�n	 holds� This yields the estimation of "��V n

i � as follows�

"��V n
i � � "��f���Zn

i �� � "��Zn
i � � ���i�c�	�l�n	�

Therefore� it follows that "��V n
i � � ���i�c�	�l�n	�

Using an argument analogous to the proof for ���� we can prove that TimeN �x� � nc(����n(�� �"��V n
i ��c

for some constant c� This completes the proof� �


���� Separation from �Quasi� Linear Exponential Time

This subsection will apply the Hard Instance Lemma to show that �p
kP�comp and 
p

kP�comp contain sets which

are hard to compute� In particular� we shall show the separation of the classes �p
kP�comp and 
p

kP�comp

from ATIME��k�O��c�n�� and ATIME��k�O��c�n��� respectively�

We have seen that all tally sets in �p
kP�comp �
p

kP�comp� resp�� collapse to �p
k �
p

k� resp��� We �rst show

the existence of sparse sets in �p
kP�comp and in 
p

kP�comp� respectively� which do not collapse to �p
k and 
p

k�

i�e�� SPARSE ��p
kP�comp �	�p

k and SPARSE �
p
kP�comp �	 
p

k�

To help the reader understand the following proofs� we �rst consider a strategy for proving PP�comp �	 P�

The basic idea used in this section is a traditional diagonalization technique� The Hard Instance Lemma

guarantees the existence of a hard set A whose intersection with any set in E falls into PP�comp� Now take a

set D �diagonalized� against all sets in P� Since D is in E� we simply consider the intersection A�D� This

intersection still belongs to PP�comp but does not belong to P�

Now we are ready for a general theorem�
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Theorem ����� Let k � � and let c be any positive real number�

�� SPARSE �A�p
kP�comp �	 ATIME��k�O��c�n���

�� SPARSE �A
p
kP�comp �	 ATIME��k�O��c�n���

Proof� Let c be �xed�

��� Let fMigi�Nbe an e�ective enumeration of all semi�deterministic alternating Turing machines

which work with at most k�alternations in time O��c�n�� with in�nitely many repetitions� Now we de�

�ne the diagonalized set D � fx j x �� L�Mblog jxjc�g� It is not hard to see that the set D belongs to

ATIME��k�O���c��	n��� but not to ATIME��k�O��c�n��� By Lemma ������ we have a set A of density �

such that A �D � A�p
kP�comp� We show that A �D �� ATIME��k�O��c�n��� Assume that there exists the

ith machine Mi which computes A �D� Let x be any string x of length �i� Then�

x � A �D �� x � D �� x �� L�Mi� �� x �� A �D�

This is a contradiction� Thus� A �D �� ATIME��k�O��cn���

��� Consider a set A and a function h as de�ned in Lemma ����� such that A � $n � fh��n�g for all

n � �� Recall that A belongs to DTIME�O�nlog
� n��� By an �alternation� version of a time hierarchy

theorem  ��!� there is a tally set B in the di�erence ATIME��k�O��cn � logn���ATIME��k�O��cn��� De�ne

C � fx j x � A � �jxj � Bg� Clearly C � 
p
kP�comp by Lemma ������ Now we prove that C is not in

ATIME��k�O��cn��� Assume otherwise� Consider the following algorithm that works on f�g��

begin alternating Turing machine

input �n

compute h��n�

if h��n� � C then accept else reject

end�

Since A �$n � fh��n�g for all n� the above algorithm computes A� The running time of the algorithm

on input �n is

TimeB��n� � c� �
X

z�jzj�n
TimeA�z� ( c� �TimeC�xn�

� c� � �n � nlog� n ( c� � �cn � �c� � �cn

for any su�ciently large integer n� where c� is an appropriate positive constant� Therefore� we have B �
ATIME��k�O��cn��� This is a contradiction� �

Corollary ����� ���� For any constant c � �	 PP�comp �	 DTIME�O��c�n���




��� FUNDAMENTAL SEPARATIONS ���

Now recall that �e
k � ATIME��k� �O�n	� and 
e

k � ATIME��k� �O�n	�� Since A�p
kP�comp 	 �e

k and

A
p
kP�comp 	 
e

k� the results of Theorem ����� are nearly optimal� thus the classes �p
kP�comp and 
p

kP�comp

share hard sets with �e
k and 
e

k� As a particular case� the class PP�comp has hard sparse sets in E� In light

of resource�bounded measure theory� however� the class DTIME�O��c�n�� is known to be small within E�

and this suggests that the class PP�comp may not be a large class within E� In the later section� we shall

show that PP�comp is actually small�

Clearly P 	 PP�samp 	 PP�comp since P�comp 	 P�samp� Can we show that PP�samp �� P # In contrast

to Theorem ������ if PP�samp �� P� we can solve some open questions in worst�case complexity theory�

Proposition ����� If PP�samp �� P	 then either FPE �	 �P or NP �	 BPP holds�

Proof� We shall prove the contrapositive� Assume that FPE 	 �P and NP 	 BPP� Since P�samp 	
�P�comp� we have P�P�comp 	 PP�samp� Under the assumptionNP 	 BPP� by Corollary 	�����PP�samp �

P�P�comp� Our assumption FPE 	 �P leads to the conclusion that E�comp 	 �P�comp since

E�comp 	 PE�comp 	 �P�comp�

Hence� we have P�P�comp 	 PE�comp� Recall from Corollary �����	 that PE�comp � P� This yields the

desired conclusion that PP�samp � P� �

Here we show another application of Lemma ������

De�nition ����� �Sparsely Close Sets� For a complexity class C� a set S is called �sparsely� C�close
if there exists a set B � C such that A�B is sparse� For the sake of convenience� we also use the notation

C�close to denote the collection of all C�close sets�

Note that any recursive set whose polynomial complexity core is sparse belongs to P�close�

Proposition ����� Let k � �� For any c � �	 A�p
kP�comp �	 ATIME��k�O��c�n���close� In particular	

PP�comp �	 P�close�

Proof� The proof is by diagonalization� Let C � fx j x �� L�Mblog jxjc�g� where fMigi�Nis an e�ective

enumeration of semi�deterministic k�alternation� O��cn��time bounded alternating Turing machines with

in�nitely many repetitions� We have C � ATIME��O���c��	n��� De�ne A as in the Hard Instance Lemma

by choosing n� dlog� ne as k�n�� It follows from Lemma ����� that A �C ��p
kP�comp�

We next show that A is not sparse� Note that k�A �C��L�Mblognc� �$nk � kA� $nk� The density of

A is� for each n�

kA � $nk � �dlog
� ne � �log

� n � nlogn�
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Hence� �A �C��L�Mi�� i � N� is not sparse since in�nitely many machines coincide with Mi� �

Recall that NT is the collection of all near�testable sets� It is known that P 	 NT 	 E � PSPACE
 ��!� We show that PP�comp contains a non near�testable set�

Proposition ����� ���� PP�comp �	 NT�

Proof� De�ne A as in Theorem �������� with density given by kA � $nk � � for each n � �� so that A

separates PP�comp from DTIME�O��n��� We show that A is not near�testable�

Assume otherwise� Let boundary�A� � fx j x �� �� exactly one of x and x� is in A g� where x� is the

successor of x� Notice that boundary�A� � boundary�A�� We claim that A is near�testable if and only if

boundary�A� is in P� De�ne f by f�x� � 
A�x�(
A�x�� �mod �� for all x� By the de�nition fo f � f�x� � �

if and only if exactly one of x and x� belongs to A� This yields the claim�

Thus� we have boundary�A� � P� Note that the set A�$n contains at most one string� i�e�� A � SPARSE�

Consequently� A is in P� The conclusion that A � P contradicts the fact that A �� DTIME�O��n��� �

However� it is open whether PP�comp 	 �P or not�


���� Separation from Advice Hierarchy

Another immediate consequence of the Hard Instance Lemma below is to show a relationship between

�p
kP�comp and the class �p

k�cn de�ned by linear advice functions �see� e�g��  	� 	�!�� First we introduce an

advise hierarchy in the following general fashion�

De�nition ����� �C with Advice f� For C a complexity class and f a function from N to $�� a set S is

in C�f �C with advice f� if there is a set B � C such that S �$n � fx � $n j hx� f�n�i � Bg for all integers

n � �� For a class F of functions from N to $�� let C�F �
S
f�F C�f �

For example� the class P�poly is known as the class of sets computable by non�uniform families of

polynomial�size circuits� For the general properties of the advice hierarchy f�p
k�poly�
p

k�poly��p
k�poly j

k � Ng� see Yap  ���!� Note that whether 
p
k 	�p

k�poly is an open question�

We want to show that �p
kP�comp is not included in �p

k�cn when c is �xed�

Theorem ����� Let k � �� For each constant c � �	 �p
kP�comp �	�p

k�cn�

Proof� Again we use a diagonalization argument� Let A be the set in ATIME��k�O�nlog
� n�� whose

existence is guaranteed by Lemma ������ such that kAnk � �blogn
�c and A � B � �p

kP�comp for every set

B ��e
k�

Now let fMigi�Nbe an e�ective enumeration of all polynomial�time semi�deterministic k�alternation

bounded alternating Turing machines� each of which� Mi� runs in ni(i steps� We shall de�ne a set which diag�
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onalizes against all such machines� For each machineMi� let ACC�D�x� � fz � D jMblog jxjc accepts hx� zig
and REJ�D�x� � fz � D jMblog jxjc rejects hx� zig� Let us consider the following algorithm�

begin semi�deterministic alternating Turing machine

input x �say� jxj � n�

if x �� A then reject

enumerate all elements in A �$n �say� x�� � � � � xm� where m � �blogn
�c�

�assume that x � xk�

let D� � $cn

if k � � then go to ���
for i � � to k � � do

if Di � ' then reject

if kACC�Di� xi�k � kREJ�Di� xi�k then Di�� � REJ�Di� xi�

else Di�� � ACC�Di� xi�

end�for

��� if kACC�Dk� xk�k � kREJ�Dk� xk�k then reject else accept

end�

Let B be the set accepted by the above Turing machine� Since B � A� it su�ces to show that B ��e
k�

For each input x in A� the machine takes O���c��	n� steps since it needs O��n � nlog� n� steps to enumerate

all elements in A � $n� at most n� iterations of the for�loop and O�nlogn � �cn� steps to compute each

ACC�Di� xi� and REJ�Di� xi� for some constant c � �� Therefore� B belongs to �e
k�

We show that B ���p
k�cn� Let us consider the set fDi j � � i � �blogn

�cg� We remark that the de�nition

of sets Di� � � i � �blogn
�c� does not depend on the choice of strings x in A � $n� Consider the maximal

k such that Dk �� '� i�e�� the algorithm goes into the line ���� Note that k exists and k � cn� By our

de�nition� either ACC�Dk� xk� or REJ�Dk� xk� is empty� By ���� ACC�Dk� xk� �� ' exactly when xk �� B

holds� Hence� there is no advice string z � $cn such that xi � B if and only if hxi� zi � L�Mblognc�� �

Despite of the above theorem� it is still open whether �p
kP�comp 	 �p

k�poly� Schuler  ��! presented

negative evidence by demonstrating that if PP�comp 	 P�poly� then EXP � 
p
� � Here we wish to prove

that �p
kP�comp 	�p

k�poly if and only if �exp
k 	�p

k�poly�

We shall show that every �exp
k �set is reducible to �p

kP�comp via polynomial�size circuits� We �rst describe

these reductions�

De�nition �����
 �P�F�m�reductions� Let h be a function from N to $�� A set A is P�h�m�reducible

to a set B� denoted by A �P�hm B� if there exists a function g � FP such that A � fx j g�hx� h�jxj�i� � Bg�
For a set F � A is P�F�m�reducible to B� denoted by A �P�Fm B� if A �P�hm B for some h � F �
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Note that A �p
m B and B �P�O�n	m C imply A �P�polym C� where poly is� as before� the set of p�bounded

functions from N to $��

Lemma ����		 For each k � N	 the classes �p
k�poly and 
p

k�poly are closed downward under P�poly�m�

reductions�

Proof� We shall prove the lemma only for �p
k�poly� Assume that A �P�polym B and B � �p

k�poly�

Since A �P�polym B� there exists a function g in FP and a p�bounded function h from N to $� such that

A � fx j g�hx� h�jxj�i � Bg� Also by our assumption that B � �p
k�poly� there are a set D � �p

k and a

p�bounded function f from N to $� satisfying that B � fx j hx� f�jxj�i � Dg�
Combining those two set equations� it follows that

A � fx j hg�hx� h�jxj�i�� f�jxj�i � Dg�

To show that A is in �p
k�poly� we de�ne the set E as E � fhx� yi j hg�hx� �y��i�� �y��i � Dg� where �y�� and

�y�� are decodings of y satisfying y � h�y��� �y��i� Let us set q�n� � hh�n�� f�n�i for all natural numbers n�

Clearly q is p�bounded because both h and f are so� The de�nitions of E and q yields the desired conclusion

that A � fx j hx� q�jxj�i � Dg� which implies that A ��p
k�poly� �

The following lemma generalizes the special case �k � �� proven in  ��!�

Lemma ����	� Let k � �� Every set in �exp
k is P�poly�m�reducible to some set in �p

kP�comp� A similar

claim holds for 
exp
k and 
p

kP�comp�

Proof� Let S be a set in �exp
k � Note that every �exp

k set is p�m�reducible to some set in �e
k by Lemma

������� Hence� there exists a set S� in �e
k such that S �p

m S�� Let us de�ne the set L to be the collection of

all strings x such that x � zy for some y � S� and z with jzj � jyj( b� where b � jxj �mod ��� Clearly L is

in �e
k�

Take a set A and a function h de�ned in the Hard Instance Lemma with the condition jh��n�j � dn��e�
Since L ��e

k� the intersection L�A lies in �p
kP�comp� Now let T � L�A� It follows that� for all y of length

n� y � S� if and only if h��n�y � T � Hence� S� �P�O�n	m T � Since S �p
m S�� we have S �P�poly

m T � �

Using the above lemma� we can show the intractability of the classes in the real polynomial�time hierarchy

under P�comp�

Theorem ����	� Let k � �� Let C � f�p
k�


p
k j k � Ng�

�� �p
kP�comp 	 C�poly if and only if �exp

k 	 C�poly�

�� 
p
kP�comp 	 C�poly if and only if 
exp

k 	 C�poly�
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�� Immunity and Bi�Immunity

Immune sets are another typical example of hard sets� In recursion theory� a set is called �immune� if it

is in�nite but contains no in�nite recursive enumerable set� This notion has been adapted to complexity

theory and used in a variety of situations�

Bi�immune sets are de�ned to be immune sets whose complements are also immune� These notions are

fundamental and have already appeared elsewhere in this thesis� In this section� we shall pay more attention

to the existence of such sets in PP�comp�


���� Immune Sets and Complexity Cores

First of all� let us recall the formal de�nition of immunity� For a complexity class C� a set S is C�immune if

S is in�nite and S has no in�nite subsets in C�

A general notion of complexity cores has been introduced in Section ���� but in this subsection� we shall

focus only on complexity cores with respect to P� the so�called polynomial complexity cores� For a recursive

set S� a set C is called a polynomial complexity core for S if� for any deterministic Turing machine M

computing S and any polynomial p� the set fx � C j TimeM �x� � p�jxj�g is �nite�

This section will show that there exist P�immune sets in PP�comp� but PP�comp has no P�bi�immune sets�

Under the assumption that P � NP� all in�nite polynomial complexity cores for sets in PP�comp are shown

to be hard to compute�

We �rst show the existence of a P�immune set in PP�comp of arbitrary density� The proof below uses an

elegant technique developed by Ko and Moore  ��!�

Theorem ����	 ���� Let � be a real number with � � � � �� There exists a P�immune set in PP�comp

of density at least ��n�

Proof� Let fPigi�Nbe an e�ective enumeration of all sets in P� where Pi is deterministically computed

in ni ( i steps�

Let � � �� ( ���� and take the set A de�ned in the Hard Instance Lemma such that kAnk � ��n� Note

that A � DTIME�O�nlog
� n��� Now consider the following algorithm�

begin

input x �say� jxj � n�

if x �� A then reject

for i � � to log� n do

if x �� Pi then go to ����
for all z �i � jzj and z � x� do

if z �� A then go to ���
if z � Pi then go to ����

��� end�for
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accept

���� end�for

reject

end�

Let B denote the set accepted by this algorithm and let C � A� B�

First� we see that C is of density at least ��n� Assume x� y � B and x �� y� Note that x � Pi and y � Pj

are witnessed through the �rst for�loop� then i �� j by the algorithm� Hence� we have kB � $nk � log� n�

Since kA �$nk � ��n� kC �$nk � kAnk � kBnk � ��n � log� n � ��n�

We next show that C has no in�nite P�subset� Assume that an in�nite set in P is a subset of C� Let i�

be any integer that guarantees that Pi� is such a set� Consider the minimal x � Pi� �A� such that jxj � i��

By the minimality of x� we have z �� Pi� for all z with i� � jzj and z � x� Thus� x � B� a contradiction�

Therefore� C is P�immune�

Now we claim that B is in PP�comp since this implies C � PP�comp� Let TimeB�z� be the executing

time of this algorithm on input z� It su�ces to show that TimeB�x� � �c
�n for all x in A� where c� is

an absolute positive constant� Notice that TimeA�x� � cjxj� log� jxj for some constant c � �� Thus� the

algorithm takes time
P

z�jzj�n
#
cjzj� log� jzj ( �jzji ( i�

$
in the second for�loop� and this term is bounded by

O�n� log
� n ��n� 	 O���n�� The total execution time� TimeB�x�� requires log� n iterations of the �rst for�loop�

each of which takes O���n� steps� and therefore� TimeB�x� � �c
�n for some constant c� � �� �

We note that any P�immune set is a polynomial complexity core for itself� Since the P�immune set

constructed in Theorem ��	�� is non�sparse� we immediately get the following corollary�

Corollary ����� ���� There exists an in
nite set in PP�comp which has a non�sparse polynomial com�

plexity core in PP�comp�

Let us recall the complexity class APT introduced by Meyer and Paterson  ��!� A set S is in APT if

and only if the set fx j TimeM�x� � p�jxj�g is sparse for some polynomial p and some deterministic Turing

machine M which computes A�

Corollary ����� ���� PP�comp �	 APT�

Proof� This result follows from Corollary ��	�� and the fact that a recursive set S is in APT if and only

if any polynomial complexity core for S is sparse  ��!� �

We have already seen the existence of polynomially ��rare sets in Section 	��� The particular example

shown there was based on Kolmogorov complexity sets� Here we shall present another example of polyno�

mially ��rare sets based on complexity cores in PP�comp�
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Lemma ����� Let � be any positive function from N to R�� Let A be any set in DTIME��O�
�n	�logn	� �
PP�comp� Any complexity core for A with respect to DTIME��O�
�n	�logn	� is polynomially ��rare�

Proof� Let S be a complexity core for A with respect to DTIME��O�
�n	�logn	� � PP�comp� To arrive at

a contradiction� we assume that S is not polynomially ��rare� From this assumption� it follows that there

exists a P�computable distribution � satisfying the condition that the set B � fx � S�f�g j "��x� � ��
�n	g
is in�nite�

Since A � PP�comp� there exists a deterministic Turing machine M which computes A in polynomial time

on ��average� Let p be a polynomial such that �x�TimeM �x� is p on ��average� For any string x in B �say�

n � jxj��
TimeM �x� � p��
�n	 � n� � ��
�n	�logn�k

for some constant k � � independent of x� Now we set B� � fx j TimeM �x� � ��
�n	�logn�kg� It is clear

that B� belongs to DTIME��O�
�n	�logn	�� Notice that B� � S is in�nite� This obviously contradicts our

assumption that S is a complexity core for A� Therefore� S is polynomially l�rare� �


���� Bi�Immune Sets and Resource�Bounded Measure

We shall turn our interests to bi�immune sets� A set S is called C�bi�immune if S and its complement S are

both C�immune� The class of P�bi�immune sets has a close connection to resource�bounded measure theory�

As seen in Proposition ������� any class which has no P�bi�immune sets has p�measure �� in other words� it

is small�

It is known that the set E has �strongly� P�bi�immune sets  �!� and thus E has P�bi�immune sets� It

is important to remember here that a recursive set S is P�bi�immune if and only if $� is a polynomial

complexity core for S� Hence� E contains a set for which $� is a complexity core� However� we can see in

the following proposition that there are no P�bi�immune sets in PP�comp� This contrast clearly shows the

di�erence between E and PP�comp�

Schuler and Yamakami  ��! �rst showed that PP�comp has no P�bi�immune sets� Later Schuler  �	!

extended their result as follows�

Proposition ����� ���� Let c � �� There are no DTIME�O��cn���bi�immune sets in the truth�table

closure of PP�comp� In particular	 there are no P�bi�immune sets in PP�comp�

Proof� Assume that B is DTIME�O��cn���bi�immune� and B is p�tt�reducible to a set A in PP�comp�

Without loss of generality� we assume that c is a positive integer� Let M be a polynomial�time oracle Turing

machine which reduces B to A with nonadaptive queries� Let p be a polynomial such that TimeM �x� � p�jxj�
for all x� Since A � PP�comp� there is a deterministic Turing machineN which computes A in time polynomial

on ��average for every P�computable distribution �� This shall lead to a contradiction�

We de�ne a set D as follows� For each n � N� let Dn � fy j jyj � n��c � y � Q�M� �n�g� and then



��� CHAPTER 
� QUINTESSENTIAL COMPUTABILITY

let D � f�g� � �
S
n��Dn�� First we show that D is P�printable� This is seen as follows� Consider the

algorithm� on input �n� recursively take a natural number k such that k � �c � n� and list all strings in

fy � $n j y � Q�M� �k�g� Since M makes nonadaptive queries in polynomial time� this algorithm writes

down all query strings of length n in polynomial time�

Now let us consider the set A � D� By Lemma ������� A �D must be in P� The following algorithm

computes B � f�g��

begin algorithm for B � f�g�
input �n

list all queries made by M on input �n

for all query string y

if jyj � n
�c then set ans�y� ��  y � A �D!

��� else simulate N on input y and let ans�y� be its output

end�all

simulate M on �n with oracle fy j ans�y� � �g
output M ��n�

end�

In line ���� the number of steps we need is at most �cjyj � �c�
n
�c � �n��� Hence� the total number of steps of

this algorithm is� for some absolute constant d � ��

d � p�n� � �p�n� ( �n�� ( �� � ��d � p�n�� � �n�� � �n�� � �n�� � �n

for every su�ciently large integer n� Therefore� the set B � f�g� belongs to DTIME�O��n��� A similar

argument shows that B � f�g� is in DTIME�O��n���

Notice that at least one of the sets B � f�g� and B � f�g� is in�nite� This contradicts our assumption

that B is DTIME�O��c�n���bi�immune� �

For each constant c � �� the class of DTIME�O��c�n���bi�immune sets is known to have p�measure �  ��!�

In other words� the class of non�DTIME�O��c�n���bi�immune sets has p�measure �� Hence� by Propositions

��	�� and ������� the class PP�comp cannot have p�measure �� Therefore� we obtain the following corollary

given by Schuler  �	!�

Corollary ����� ���� The truth�table closure of PP�comp has p�measure �	 and thus it has measure � in

E�

We remark here that the weaker statement that PP�comp has p�measure � was proved by Schuler and

Yamakami  ��!� and independently by Cai and Selman  ��!� Notice that� as an immediate consequence of

Corollary ��	��� if NP 	 PP�comp� then NP has p�measure ��

De�nition ����� �Almost Immunity� ���� ��� A set is called almost P�immune if it is a union of a
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P set and a P�immune set� A set whose complement is almost P�immune is called P�levelable�

For a set A� a set S is called a maximal subset of A if any in�nite subset of A in P is a �nite variant

of S� i�e�� kS � Ak is �nite� It is known that� for any in�nite recursive set A� A is almost P�immune if and

only if A has a maximal subset in P  �	� ��!�

Lemma ����� ���� ��� If a set A not in P satis
es A �p
m A via a length�increasing reduction	 then A

is P�levelable� Hence	 most well�known NP�complete sets are P�levelable unless P � NP�

Proof� To arrive at a contradiction� we assume that A is almost P�immune� The almost�P�immunity

ensures that there is a maximal subset of A in P� Let E be such a set�

Now we de�ne B � fx j x �� E � f�x� � Eg� Since f � FP and E � P� we conclude that B is in

P� Moreover� B � E � ' by de�nition� We now show that B is in�nite� Assume that B is �nite� We

choose an element x in A � E such that B 	 $jxj��� The element x exists because A �� P but E � P�

Consider the set Ex � fxg � ff �k	�x� j k � �g� where f ��	�x� � f�x� and f �k��	�x� � f�f �k	�x�� for each

k � �� Since f reduces A to A� Ex 	 A� Moreover� Ex is in�nite and in P since f is length�increasing

�i�e�� jf�x�j � jxj�� Note that Ex �E �� ' since� otherwise� E �Ex is a P�subset of A such that E � Ex is

in�nite� and consequently E is not a maximal subset of A� Since x �� E� there exists a string y in Ex � E�

but f�y� � E� Hence� y � B� Clearly jyj � jxj� This contradicts the �niteness of B�

The latter part of the claim follows from the fact that most known NP�complete sets A� such as SAT�

satisfy the condition A �p
m A via a length�increasing reduction� �

Proposition ����� Assume that P �� NP� If every set in PP�comp �P is almost P�immune	 then NP �	
PP�comp�

Proof� Consider the NP�complete set SAT� If P �� NP� then SAT is in NP � P and is P�levelable by

Lemma ��	��� Hence� if SAT � PP�comp� then PP�comp � P contains a set which is not almost P�immune�

�

To show that all sets in PP�comp � P are almost P�immune seems di�cult� Moreover� we do not know

how to construct a P�levelable set in PP�comp which is not in P�


�� Closure Properties

This section will be devoted to closure properties under several types of polynomial�time reductions� Recall

that� for a reducibility ��� a class C is closed �downward� under ���reductions if� for every two sets A and

B� A �� B and B � C implies A � C� We know that most known complexity classes are closed under

p�m�reductions� such as RP� BPP� NP� PH� PP� �P� etc�
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In Subsection ������ we shall demonstrate that neither �p
kP�comp nor 
p

kP�comp� k � �� is closed under p�

m�reducibility� The lack of this property indicates a structural di�erence between PP�comp and other regular

complexity classes� such as P� NP and BPP� Thus� it presents a partial solution to the NP 	#PP�comp

question� Our result relies on the sets constructed in Section ������

In Subsection ������ we shall show that the class �p
kP�comp is not closed under the polynomially�bounded

existential operator� This result also implies that �p
kP�comp is di�erent from 
p

k�


���� Polynomial Time Reducibilities

In this subsection� we will discuss properties of quintessential complexity classes in relation to various

polynomial�time reducibilities�

We claim that there is a the di�erence between polynomial�time truth�table reducibility and Turing

reducibility within PP�comp� This claim is proved by demonstrating that the Turing closure of PP�comp is

�large�� whereas its truth�table closure is �small��

The following proposition shows that the Turing closure of �p
kP�comp is equal to �exp

k � where k � ��

Proposition ����	 ���� For each k � �	 the Turing closure of �p
kP�comp is equal to �exp

k �

Proof� We shall show that every set in �exp
k is p�T�reducible to some set in �p

kP�comp� Let B be an

arbitrary set in �e
k and assume that B � ATIME��k� �cn� for some constant c � �� Let A be the set de�ned

in the Hard Instance Lemma� We then de�ne the set B� as

B� � fxy j jxj � jyj � xy � A � y � B�g�

Since A is in DTIME�nlogn�� clearly B� is in �e
k� Since B� 	 A� by the Hard Instance Lemma� B� is in

A�p
kP�comp� Hence� B� ��p

kP�comp�

From kA � $�nk � �� it follows that� for all y of length n� y � B if and only if h��n�y � B�� Recall

that h��n� is computed by n adaptive queries to Prefix�A�� This implies that B is p�T�reducible to

B� � Prefix�A�� Let C � B� � Prefix�A�� Since B� ��p
kP�comp and Prefix�A� ��p

kP�comp� C is also in

�p
kP�comp by Lemma ������� �

It is not known whether p�T�reducibility in the above proposition can be replaced by p�m�reducibility�

Note that this is the case if �p
kP�comp has some p�m�complete sets for �e

k�

Corollary ����� ���� The truth�table closure of PP�comp is not equal to EXP�

Proof� Recall that EXP has p�measure �� The corollary then is immediate from Corollary ��	�� since�

otherwise� EXP has p�measure �� a contradiction� �

Assume that there exists a p�m�reduction from a set A to another set B which is in PP�comp� The next

proposition characterizes the reduction when A �� P�




��� CLOSURE PROPERTIES ���

Proposition ����� Assume that a set A is p�m�reducible to B in PP�comp via a reduction function f �

If A is not in P	 then	 for every number c	 there are in
nitely many strings x satisfying the inequality

log jxj � cjf�x�j�

Proof� Assume that A is p�m�reducible to B in PP�comp via a P�computable reduction function f �

Furthermore� assume that there exists a positive constant c satisfying log jxj � cjf�x�j for almost all x� In

the following� we want to show that A belongs to P�

Let MB be a machine which computes B in polynomial time on �stand�average� and consider the following

machine MA� on input x� compute f�x�� and accept the input exactly when MB accepts f�x�� We thus

have�

TimeMA�x� � d � �TimeMf �x� ( TimeMB�f�x�� ( ��

for some positive constant d� Since B � PP�comp� TimeMB �f�x�� � �c
�jf�x	j for some constant c� � �� This

implies that

TimeMB�f�x�� � �c
�jf�x	j � jxjc��c

for almost all x� since �jf�x	j � jxj��c� This shows that A belongs to P� �

The next proposition� due to Wang and Belanger  �! �in a di�erent setting� and Schuler and Yamakami

 ��!� shows the closure property of the class PP�comp under restricted reductions�

Proposition ����� �	� ��� For k � �	 the class PP�comp is closed under increasing hp�m�reductions�

Proof� Let B be any set in �p
kP�comp� For a set A� we assume that A �hp

m B via a P�computable reduction

f which is increasing and p�honest� We shall show that A is also in �p
kP�comp� For each � � P�comp� let

� � �f�� � By the condition on f � we conclude that � � P�comp by Lemma 	����� It is easy to see that if B

is computed by a deterministic Turing machine M in polynomial time on ��average� then A is computable

in polynomial time on ��average by simulating M �f�x��� �

As an example application of this proposition� consider the bounded halting problem BHP� Note that

BHP is p���complete for NP under increasing� p�honest reductions� Therefore� by Proposition ����	� if

BHP � PP�comp� then NP is included in PP�comp�

Next we show that neither �p
kP�comp nor 
p

kP�comp is closed under p�m�reducibility� Note that Wang and

Belanger  ���! have shown a similar result for their classes APP� ANPP and DNP of distributional decision

problems�

Theorem ����� Let k � �� Neither �p
kP�comp nor 
p

kP�comp is closed downward under p�m�reducibility�

Proof� We prove the theorem only for �p
kP�comp� since the proof for 
p

kP�comp is almost identical� Let A

be the set in DTIME�O�nlog
� n�� such that kAnk � � for all n � N and let h be the function h computable in
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time O�nlog
� n� in order to separate �p

kP�comp from ATIME��k�O��n��� both of which are used in Theorem

������

Now we de�ne a reduction function f as follows�

f�x� �

�	

 h��blog jxjc

�

� if x � f��n j n � Ng�
� otherwise�

Note that if f���
n

� � x� then n �
p
jxj� Let T � f��i j i � N� f���

i

� � Ag� Clearly T �p
m A via f � Note

that the function f is not p�honest�

We shall show that f is computable in time O�n�� Assume that x � ��
i

for some i � N� and let y be a

string of length blog jxjc� in A� By our de�nition� the computation time of f�x�� where jxj � n� is at most

c � jyjlog� jyj � c � �log� jyj � c � ��log log� jxj	� � c � ���log logn	� � n

for any su�ciently large n�

We next show that T �� �p
kP�comp� Assume otherwise� Since T is tally� T is in �p

k� Note that �p
k �

ATIME��k� nO��	�� Consider the following algorithm�

begin

input x

if x �� A then reject

take n ��
p
jxj� such that f���

n

� � x

if ��
n � T then accept else reject

end�

This algorithm computes A and is in ATIME��k�O��n��� This clearly gives a contradiction� Therefore�

T ���p
kP�comp� �

Theorem ����� yields the signi�cant consequence that the classes in the real polynomial�time hierarchy

under P�comp are structurally di�erent from most known worst�case complexity classes�

Corollary ����� Let k � � and let C be any complexity class� If C is closed downward under p�m�reductions	

then �p
kP�comp �� C and 
p

kP�comp �� C�

As another application of Theorem ������ we shall present the following corollary� proven as Lemma

��� in  ��!� The corollary demonstrates the necessity of the p�honesty condition in Condition I� de�ned in

Section 	��� The proof presented here is very di�erent from Gurevich
s and is based on Theorem ������

Corollary ����� ��	� There exist a function f � FP and a distribution � � P�comp such that	 for every

� � P�comp and every function p which is polynomial on ��average	 "��y� �
P

x�f���y	
���x	
p�x	 for some y�
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Proof� Assuming the contrary of the corollary� we shall prove that PP�comp is closed under p�m�reductions�

This contradicts Theorem ������

Assume that A is p�m�reducible to B via a reduction f � and also B is in PP�comp� We show that

A � PP�comp� For every distribution � in P�comp� by our assumption� there is a distribution � � P�comp

and a function p which is polynomial on ��average such that "��y� �Px�f���y	
���x	
p�x	 for all y� Note that B is

computable in polynomial time on ��average� Then A is also computable in polynomial time on ��average�

Since � is arbitrary� A belongs to PP�comp� �

Let us recall Condition I�� Condition I� asserts that every P�samplable distribution is avp�dominated by

some P�computable distribution� Assuming Condition I�� PP�comp turns out to be closed under many�one

reducibility with p�honest polynomial�time computable reductions�

Proposition ����� If Condition I � holds	 then �p
kP�comp is closed downward under hp�m�reductions�

Proof� Immediate from Lemma ��	�� and by the same argument in Proposition ������ �

Finally we show the existence of an incomparable pair in PP�comp with respect to the hp�m�reducibility�

Lemma ����� ���� There exists a pair of sets A and B in PP�comp such that A ��hp
m B and B ��hp

m A�

Proof� Recall from Theorem ��	�� that there is a P�immune set in PP�comp� Let A be such a set� and

let B � f�g�� Note that A �� P� If A �hp
m B� then A � P since B � P� a contradiction� If B �hp

m A via a

polynomially honest f � FP� then A should not be P�immune since the in�nite set ff�x� j x � Bg� which

is a subset of A� belongs to P� Both cases induce contradictions� �

Let us next observe the closure property of average complexity classes under hp�m�reductions when

P�samplable distributions are taken instead� The P�samplable distributions show us a di�erent world�

Proposition ����	
 For any k � �	 �p
kP�samp and �p

kIP�samp are both closed under hp�m�reductions� A

similar result holds for 
p
kP�samp and 
p

kIP�samp�

Proof� We only consider the case �p
kP�samp� Assume that A is p�m�reducible to B via a p�honest

reduction f � and B is in �p
kP�samp� We shall show that A is in �p

kP�samp�

Let � be any distribution in P�samp and de�ne � as � � �f�� � Distribution � may not be P�samplable�

but by Corollary 	�	���� we can �nd another distribution �� which p�dominates � and is in P�samp� Since

B � �p
kP�samp� we have �B� � �� � Aver��p

k� ��� Note that �A� �� �p
m �B� ��� via f � Hence� by Lemma

��	������ we have �A� �� � Aver��p
k� ��� Hence� A is in �p

kP�samp� �
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���� Polynomially Bounded Existential Operator

We have already shown the di�erence between PP�comp and other regular complexity classes� such as NP

and BPP� by demonstrating that PP�comp is not closed under p�m�reductions� Here we shall discuss other

properties that elucidate the structural di�erence between PP�comp and NP as well as UP and PP�

We shall introduce the following types of existential operators and show that �p
kP�comp is not closed

under such operators�

De�nition ������ �Polynomially Bounded Operators� Let C be a complexity class�

�� A set S is in �p� C� the closure of C under the existential operator� if there exist a polynomial p and a

set B � C such that S � fx j �y � $p�jxj	 hy� xi � B!g�

�� A set S is in Up� C� the closure of C under the unique existential operator� if there exist a polynomial

p and a set B � C such that if x � S then �&y � $p�jxj	 hy� xi � B!� otherwise �y � $p�jxj	 hy� xi �� B!�

Obviously Up� C 	 �p� C for any complexity class C� It also holds that �p�
p
k 	 
p

k and Up�UP 	UP�

We need the following lemma for subsequent results�

Lemma ����	� Let C � f�p
k�


p
k��

p
k j k � �g and let g be any increasing function on $� which belongs to

FP� If A � CP�comp	 then the set B � fhw� xi j w � g�x� � x � Ag is also in CP�comp�

Proof� Here we prove the lemma for the case C � �p
k� Assume that A ��p

kP�comp and B �� �p
kP�comp�

There exist a polynomial q and a deterministic Turing machine Mg computing g in time q� Since B ��
�p

kP�comp� there exists a distribution � � P�comp such that� for any machine N and any polynomial s�

"��fx j TimeN �x� � s�jxj � r�g� � ��r for some real number r � �� Recall the monotonicity of the pairing

function h� i for any increasing function �see Section ����� For this function g� x � y implies hg�x�� xi �
hg�y�� yi� Moreover� hg�x��� x�i � hg�x�� xi��

De�ne � as ��x� � ��g�x�� x�� This function � is indeed a distribution in P�comp since ��x� � ��x���

Moreover� we have "��x� � "��g�x�� x�� This is seen as follows�

"��x� � ��x�� ��x�� � ��hg�x�� xi� � ��hg�x��� x�i�
� ��hg�x�� xi�� ��hg�x�� xi�� � "��g�x�� x��

Since A � �p
kP�comp� there exist a semi�deterministic alternating Turing machine M computing A with

k�alternation and a polynomial p such that "��fx j TimeM �x� � p�jxj � r�g� � ��r for all r � �� Assume that

p�n� � n for all n�

Now consider a machine N which computes B in the following fashion� on input hw� xi� accept the input

if w � g�x� and M accepts x� and reject the input otherwise� Note that� by our assumption� N does not halt

in polynomial time on ��average� To arrive at a contradiction� however� we show that N runs in polynomial

time on ��average� Note that TimeN �hw� xi� � c�TimeM�x�(TimeMg�x�( jxj( �� for some constant c � ��
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on the other hand� TimeN �hw� xi� � c�p�jxj�(q�jxj�(�� for all w di�erent from �p�jxj	� Let s be a polynomial

such that

s�jhw� xij � r� � c�p�jxj � r� ( q�jxj� ( jxj( ���

For all r � �� we have

"��fy j TimeN �y� � s�jyj � r�g�
� "��fhw� xi j w �� g�x� �TimeN �hw� xi� � s�jhw� xij � r�g�

("��fhw� xi j TimeN �hw� xi� � s�jhw� xij � r�g�
� "��fhw� xi j TimeM �x� � p�jxj � r�g�
� "��fx j TimeM �x� � p�jxj � r�g� �

�

r
�

Hence� N is polynomial�time bounded on ��average� This contradicts our assumption� �

Contrary to the situation for �p
k� it is not known whether �p

kP�comp 	 Up��p
kP�comp� or even whether

�p
kP�comp 	 �p��p

kP�comp� However� we are able to show that the converse does not hold for �p
kP�comp�

Theorem ����	� Let k � �� Up��p
kP�comp �	�p

kP�comp� Hence	 �p��p
kP�comp �	�p

kP�comp�

Proof� Assume that Up��p
kP�comp 	 �p

kP�comp� By Theorem ��������� we can de�ne a set A in �p
kP�comp�

ATIME��k� �n� and take a corresponding function h� as de�ned in the proof of Lemma ������ which has the

following property� for each length n� An 	 fh��n�g and h��n� is computed in time O��n�� Now de�ne

C � f�n j �y jyj � n � y � A!g� To see that C � Up��p
kP�comp� let B � fh�jxj� xi j x � Ag� By Lemma

������� B is also in �p
kP�comp� and let C � f�n j �y jyj � n � hy� xi � B!g�

By our assumption� the set C is also in �p
kP�comp� Since C is tally� by Proposition ������� C is in �p

k�

As a result� we have C � ATIME��k�O��n��� Consider the following procedure that computes A�

begin algorithm for A

input x �say� jxj � n�

if �n �� C then reject

compute h��n�

if x � h��n� then accept else reject

end�

This procedure guarantees that A is in ATIME��k�O��n��� and hence� this contradicts the choice of A� �

As an immediate consequence of Theorem ������� we again have PP�comp �� NP and PP�comp �� UP�

We note that it is not known whether �p��p
kP�comp 	 
p

kP�comp� However� if �p��p
kP�comp 	 
p

kP�comp�

then Theorem ������ implies that PP�comp �� NPP�comp� and thus that P �� NP�

Corollary ����	� �p�PP�comp �	 NPP�comp if P � NP�
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Moreover� we can consider a restricted type of probabilistic operator�

De�nition ������ �Class Pp� C� For a complexity class C� a set S is in Pp� C� the closure under the

probabilistic operator� if there are a polynomial p and a set B � C such that S � fx j kfy � $p�jxj	 j hy� xi �
Bgk � �

� � �p�jxj	g�

The probabilistic class PP is closed under this operator� i�e�� Pp�PP 	 PP�

A proof technique similar to that used for Theorem ������ shows the following theorem�

Theorem ����	� ���� Pp�PP�comp �	 PP�comp�

Proof� Let the set A and the function h be as de�ned in the proof of Theorem ������ but with k � ��

Recall the algorithm described in the proof of Lemma ������ De�ne B to be a set accepted by the following

algorithm�

begin

input x �say� jxj � n�

compute zn� � minfw � $l�n	 j w �� KT n� �s�i	�n!g
if � v zn� then y � � else y � �

if x � y$jxj�� then accept else reject

end�

By the choice of y in the algorithm� A �B � ' and kB �$nk � �
� � �n for all n� Note that B is in P� Now

we let A� � A�B� Then� we have A� � PP�comp� Note that either kA� �$nk � �
� � �n or kA� �$nk � �

� � �n�

Let C � f�n j kfy � $n j y � A�gk � �
� � �ng� We have C � Pp�PP�comp by de�nition� but C �� PP�comp

since if C � PP�comp� then the same algorithm as in the proof of Theorem ������ computes A in time O��n��

�

Theorem ������ directly shows that PP�comp �� PP�


�	 Bounded Error Probabilistic Polynomial Time

We direct our attention now to the bounded�error probabilistic complexity class BPPF � In this section� we

shall discuss the class BPPF under weak reductions� and consider a result of Schuler and Watanabe  ��!

regarding the question NP 	#BPPF �

We begin with the closure property of BPPP�samp under p�honest bpp�tt�reductions�

Proposition ����	 BPPP�samp is closed under p�honest	 bpp�tt�reducibility�

Proof� Assume that A � BPPP�samp and A is bpp�tt�reducible to B via a p�honest reduction� Let
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M be such a reduction� i�e�� a polynomial�time probabilistic Turing machine computing A with bounded

error which accesses oracle B with nonadaptive p�honest queries� For simplicity� assume that the number

of queries on each computation path is of the form �m� where m is dependent only on x� Since M makes

p�honest queries� for any query z by M on x� jxj is bounded above by an absolute polynomial p in jzj�
Choose any distribution � in P�samp� We de�ne a distribution � as follows�

"��z� �
X

x�jxj�p�jzj	
"��x� �PrM  M on x queries z !�

It is not di�cult to con�rm that � is P�samplable� To see this� let M� be a sampling machine which samples

� and consider the following sampling algorithm�

begin sampling algorithm

input �i

simulate M� on �i

let x be an output of M� on �i

list all query strings� say z�� z�� � � � � z�m

generate k �� � k � �m� at random

output zk

end�

Hence� �A� �� � Aver�BPP�P�samp�� We now show that �B� �� �bpp
tt �A� �� via M � It is su�cient to check

the domination condition for M � This is easily veri�ed� however� By Proposition ������	�� �B� �� belongs to

Aver�BPP�P�samp�� �

Ben�David et al�  �! showed that all distributional NP search problems are �randomly� reducible to their

corresponding distributional decision problems� Later Schuler and Watanabe  ��! rephrased this result in

the following fashion�

Corollary ����� ��� �	� NP 	 BPPP�samp if and only if �p
� 	 BPPP�samp�

Proof� Assume that NP 	 BPPP�samp� For any set A � �p
� � there exists a set B � NP such that

A is p�tt�reducible to B� This reduction can be p�honest by choosing an appropriate set B� Hence� A is

bpp�tt�reducible to B via some p�honest reduction� Notice that B belongs to BPPP�samp by our assumption�

By Proposition ������ B � BPPP�samp implies A � BPPP�samp� Therefore� we get A � BPPP�samp� �

Impagliazzo and Levin  		! demonstrated that distributional NP decision problems are �reducible� to

distributional NP decision problems with standard distribution� Schuler and Watanabe  ��! extended their

result in terms of quintessential computability�

Theorem ����� ��	� Given a subset F of avP�samp including �stand	 NP 	 BPPF if and only if

NP 	 BPPavP�samp�
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Proof� We follow the argument given by Schuler and Watanabe  ��!� Let us assume that NP 	
BPPavP�samp�

Let �A� �� be an arbitrary distributional decision problem from Dist�NP� avP�samp�� We shall show

that �A� �� is in Aver�BPP� ��� If "��$n� � ��� for some n � N� then we can eliminate all strings of length

n from the following argument� Hence� we assume without loss of generality that "��$n� � ��� for all n � N�

Since A � NP� there are a set E � P and a polynomial p such that A � fx j �y � $p�jxj	 hx� yi � E!g�
Moreover� from the fact that A � EXP� we can de�ne a deterministic Turing machine MA which recognizes

D in time �q�jxj	� where x is any input� For the sake of convenience� we assume that q�n� � ��n
�n( ��� for

all n � N�

Since � is an average P�samplable distribution� there are a generator M for � and a polynomial p� such

that �i� j"��x�� PrM  M ��i� � x!j � ��i� and �ii� for every r � � and n � N�

���llog�n	�� �Prs M ��i� s� � $n �TimeM ��i� s� � p��r � �n( i�� j s � )M ��i�! � ��r�

Write pj�n� for p���j���n ( q�n���� Let us de�ne the function f as follows� for each j with � � j � q�n��

f �j	n �s� �

������	
�����


M ��q�n	��� s� if TimeM ��q�n	��� s� � pj�n�� jM ��q�n	��� s�j � n� and j � ��

M ��q�n	��� s� if pj���n� � TimeM ��q�n	��� s� � pj�n��

jM ��q�n	��� s�j � n� and � � j � q�n��

� otherwise�

Without loss of generality� we may assume that� for any two random inputs s and s�� if jf �j	n �s�j � jf �j	n �s��j�
then jsj � js�j� and thus� kfs j f �j	n �s� � $ngk � �pj �n	���

Fix any integer j satisfying � � j � q�n� and any string x of length n� Let k�j	x � ilog�k�f �j	n ����x�k��
Since k�f �j	n ����x�k � �pj �n	��� it follows that � � k

�j	
x � pj�n�� As a consequence� we have

PrM  M ��q�n	��� � x! �
q�n	��X
j��

k�f �j	n ����x�k
�pj �n	

(Prs TimeM��q�n	��� s� � pq�n	���n� j s � )M ��q�n	���!

�
q�n	��X
j��

��pj�n	�k
�j�
x ( ���llog�n	�� � ��q�n	

�
q�n	��X
j��

��pj�n	�k
�j�
x ( ��q�n	���

Therefore� we obtain

"��x� � ��q�n	�� ( PrM  M ��q�n	��� � x! � ��q�n	 (
X

��j�q�n	
��pj�n	�k

�j�
x �

For each x� since
P

��j�q�n	 ��pj�n	�k
�j�
x � �� there exists an index j� such that "��x� � ��q�n	 ( �

q�n	 �
��pj� �n	�k

�j��
x � Let jx be the minimum of such an index�
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Note that if q�n� � pjx�n� � k
�jx	
x � ilog�q�n��� then ��q�n	 � ��ilog�q�n		 � ��pjx �n	�k�jx�x � thus�

"��x� � � � ���ilog�q�n		 � ��pjx �n	�k�jx�x � �

q�n�
� ��pjx �n	�k�jx�x �

On the other hand� if q�n� � pjx�n� � k
�jx	
x � ilog�q�n��� then "��x� � � � ��q�n	 � ��q�n	���

Let X
�j	
n � fx � $n j j � jx � q�n� � pjx�n� � k

�jx	
x � ilog�q�n��g� It follows that

"��X�j	
n � � �

q�n�
�
X

x�X�j�
n

��pj�n	�k
�j�
x �

�

q�n�
�
X

x�X�j�
n

k�f �j	n ����x�k
�pj�n	

� �

q�n�
�Prs f �j	n �s� � X�j	

n j s � )M ��q�n	���!

� �

q�n�
�Prs TimeM ��q�n	��� s� � pj���n� � f �j	n �s� �� � j s � )M ��q�n	���!�

�
�

n

� ��j

since q�n� � �n
� Therefore� "��X�j	
n � � �

n�
� ��j for all j with � � j � q�n��

Recall that sn denotes the nth string of $� �N�B� � is the �th string�� and smk represents the kth string

of $ilog�m	 �N�B� sm� � �ilog�m	�� Note that jsnj � llog�n��

We begin with the following NP sets�

B� � fhs�� sn� sn� � smk � h�h�zi j �v � $l h� � f �j	n � h��v� � z! � h� � Hl�m � h� � Hn�l��g�

B� � fhs�� sn� sn� � smk � h�h�zi j �v� w � $l f
�j	
n � h��v� �� f

�j	
n � h��w�

� h� � f �j	n � h��v� � h� � f �j	n � h��w� � z!g�

B
 � fhs
� sn� sni � smk � h�h�zi j �v � $l z � h� � f �j	n � h��v� � the ith bit of f
�j	
n � h��v� is � !g� and

B� � fhs
� sn� sni � smk � h�h�zi j �w�v � $l z � h� � f �j	n � h��v� � hf �j	n � h��v�� wi � E!g�

where l � m � k� h� � Hl�m� and h� � Hn�l��� The notation h�h�z above means the concatenation of three

strings h�� h�� and z� Let B �
S�
i��Bi� Clearly B is in NP� By the assumption� �B� �stand� � Aver�BPP� ���

Let c� be a su�ciently large and �xed constant� First we shall de�ne the randomized Turing machine

M� that �i� chooses j at random from f�� �� � � �� q�n� � �g �by choosing s
q�n	
j �� �ii� chooses k at random

from f�� �� � � � � pj�n� � �g �by choosing s
pj �n	
k �� and �iii� outputs hx� sq�jxj	j s

pj �jxj	
k i� The following is a formal

description of this algorithm�

begin randomized algorithm for M�

input x �say� n � jxj�
compute ilog�q�n��

generate at random a string s of length ilog�q�n�� such that

s � s
q�n	
j for some j with � � j � q�n�

�assume that s � s
q�n	
j �

compute ilog�pj�n��

generate at random a string s� of length ilog�pj�n�� such that
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s� � s
pj �n	
k for some k with � � k � pj�n�

�assume that s� � s
pj �n	
k �

output hx� ss�i
end�

The machine M� runs in polynomial time because the running time is proportional to the length of the

random seeds� The length of each random seed� jsq�n	j s
pj �n	
k j� is at most

ilog�q�n�� ( ilog�pj�n�� � c� � �j ( logn�

for some constant c� � ��

Write d�n� j� k� � s
q�n	
j s

pj �n	
k � Let us de�ne h�x� � d�n� jx� k

�jx	
x � and D � fhx� h�x�i j x � $�g� Note

that� for any x and y� if x� y � X
�j	
n � then jh�x�j � jh�y�j� For all x � X

�j	
n � since jh�x�j � c��j ( logn��

we have jh�x�j � c� � log���n� � "��X
�j	
n ��� By Lemma ���������� we conclude that �x�jh�x�j is logarithmic on

��average�

Next we de�ne another randomized oracle Turing machine N as follows�

begin randomized algorithm for N with oracle B

input hx� d�n� j� k�i �say� n � jxj�
if n � c� then output A�x�

set l � pj�n�� k and m � pj�n�

if q�n� � l � ilog�q�n�� then simulate MA on input x and halt

�assume that q�n� � l � ilog�q�n���

choose at random h� from Hl�pj �n	 and h� from Hn�l��

let z � h��x�

check if the following three statements are true�

�i� hs�� sn� sn� � smk � h�h�zi � B�

�ii� hs�� sn� sn� � smk � h�h�zi �� B� and

�iii� xi �  hs
� sn� sni � smk � h�h�zi � B! for all i with � � i � n

if the three statements as above are not all true

then simulate MA on input x and halt

if hs�� sn� sn� � smk � h�h�zi � B then accept else reject

end�

It is important to note that our algorithm is error�free as it always outputs a correct answer�

First we consider the running time of the machineN on input fromD� Fix a positive integer n not smaller

than c� and a string x of length n� It su�ces to show that �x�Es TimeBN �hx� h�x�i� s� j s � +NB �hx� h�x�i�!
is polynomial on ��average� Note that TimeBN �hx� h�x�i� s� � c � �pj�n� ( n ( ��� for some constant c � �

independent of x and s� thus� N is exponential�time bounded in the worst case�

For each j� consider X
�j	
n � For all x � X

�j	
n � the expected running time of the machine N with oracle B
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on input hx� h�x�i is at most

Es TimeBN �hx� h�x�i� s� j s � +NB �hx� h�x�i�! � c � �pj�n� ( n ( ��� � c� � ��jn�d ( c�

for some appropriate constants c�� d � �� Thus� for each x � X
�j	
n �

Es TimeBN �hx� h�x�i� s� j s � +NB �hx� h�x�i�! � c� � ��jn�d ( c� � c� �
�

�

"��X�j	
n �n�

�d
( c��

By Lemma ������� we conclude that �x�Es TimeBN �hx� h�x�i� s� j s � +NB �hx� h�x�i�! is polynomial on ��

average� Therefore� �xs�NB�hx� h�x�i� s� is polynomial on ��average�

Next we shall discuss the success probability of machine N � Fix x and let n � jxj� Let �x be the

probability that the algorithmN on input hx� h�x�i succeeds in producing the correct answer� We shall show

a lower bound of �x� For this purpose� we introduce a new notion� We say that �h�� h�� z� determines x if

�i� there exists a string v � $l such that f
�j	
n � h��v� � x and h��x� � z� and

�ii� for all w � $l� if h� � f �j	n � h��w� � z� then f
�j	
n � h��w� � x�

Fix j and assume that k�f �j	n ����x�k �� �� Let us choose k
�j	
x and set l � pj�n� � k

�j	
x � Then� �x � ����

follows from the claim below�

Claim 	� Prh�h�  �h�� h�� h��x�� determines x j h� � Hl�pj�n	� h� � Hn�l��! � �
��
�

Proof of Claim� Let � � Prh�h�  �h�� h�� h��x�� determines x j h� � Hl�pj �n	� h� � Hn�l��!� To compute ��

we introduce two probabilities�

�� � Prh�  �v � $l f �j	n � h��v� � x!!� and

���h�� � Prh�  �v� w � $l f �j	n � h��v� �� f �j	n � h��w� � h� � f �j	n � h��v� � h� � f �j	n � h��w�!!�

By the de�nition of �� we have � � �� �maxh��Hn�l�� ���h��� In the following� we shall estimate these two

probabilities �� and ���h���

We �rst calculate the probability ��� Let us de�ne two sets

Gx � f�s� v� j f �j	n �s� � x � v � $lg� and

G�
x � f�s� v� s�� v�� j �s� v� � Gx� �s

�� v�� � Gx� s � s�� v � v�� �s� v� �� �s�� v��g�

Notice that kGxk � k�f �j	n ����x�k � �l and kG�
xk � kGxk�kGxk��	

� � From l � pj�n�� k
�j	
x � it follows that

�pj �n	�� � �k
�j�
x �� � �l � kGxk � �k

�j�
x � �l � �pj�n	�

The probability �� is estimated as follows�

�� � Prh�  ��s� v� � Gx h��v� � s! j h� � Hl�pj�n	!
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�
X

�s�v	�Gx
Prh�  h��v� � s j h� � Hl�pj �n	!

�
X

�s�v�s��v�	�G�
x

Prh�  h��v� � s � h��v�� � s� j h� � Hl�pj �n	!

� kGxk � ��pj�n	 � kG�
xk � ���pj�n	

� ���pj�n	 �
�
kGxk� � kGxk�kGxk � ��

�

�

� ���pj�n	 � kGxk�
�

� ���pj�n	 � ���pj�n	��	��

� ��
 �
�

�
�

Next we shall show that ���h�� � �
�� � Let Fx�h� � ran�f

�j	
n � h��� The cardinality of Fx�h� is at most �l�

���h�� � Prh�  �x�� x� � Fx�h�  x� �� x� � h��x�� � h��x�� � z! j h� � Hn�l��!

�
X

x��x��Fx�h�
x� ��x�
Prh�  h��x�� � h��x�� � z j h� � Hn�l��!

� kFx�h�k� � ����l��	 � ��l � ����l��	

� ��� �
�

��
�

To complete the proof of the claim� we combine the above results�

� � �� � max
h��Hl�pj �n�

���h�� � �

�
� �

��
� �

��
�

This completes the proof�

To use Lemma ������ it su�ces to show that� for each string w� "��f�y� s� j y � D �w � Q�N�B� y� s�g� �
"�stand�w� for some � which avrp�dominates �� Let d�n� � �	cn�n(��q�n��� Then� ��llog�n	��ilog�n	��llog�w	�� �
d�n�� For this semi�distribution �� let us de�ne "��x� s� � �

d�jxj	��pjx �jxj	 � �
�jsj � "��x� for all nonempty strings

x� Notice that Prs he� sn� sni � smk � h�h�zi � Q�N� y� s�! � ��jh�j�jh�j� Let w � he� sn� sni � smk � h�h�zi� and

m � pjx�n�� Then� ��pj�n	�k � ��jzj���

"��f�y� s� j y � D � he� sn� sni � smk � h�h�zi � Q�N�B� y� s�g�
� "��hx� sq�n	j s

pj �n	
k i� h�h��

�
�

d�jxj� � pj�n��
� "��x� � ��jh�j�jh�j

� �

d�jxj� � �
��ilog�pj �n		 � ��pj �n	�k � ��jh�j�jh�j

� ��llog�n	��ilog�n	��llog�w	�� � ����ilog�m	 � ��jzj�� � ��jh�h�j

� �����llog�n	��ilog�n	��ilog�m	�jh�h�zj � ���llog�w	��

� ��jhe�sn�s
n
i �s

m
k �h�h�zij��llog�w	�� � ��jwj��llog�w	��

� "�stand�w��
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since jhe� sn� sni � smk � h�h�zij � ��� ( llog�n� ( ilog�n� ( ilog�m�� ( jh�j( jh�j( jzj( �� Notice that

llog�w� � log�jhe� sn� sni � smk � h�h�zij( �� � c � �log�pj�n�� ( logn( �� � c��j ( logn( �� � c��q�n��

Finally we apply Lemma ������ and thus there exists a randomized Turing machine M� such that

�xs�M��hx� h�x�i� s� is polynomial on ��average with the condition that� for each s� � +M��x��

Prs M��hx�M��x� s��i� s� � A�x�! � �����

By the remark following Proposition ������� we immediately obtain that �A� �� � Aver�BPP� ��� The proof

is completed� �

The class BPPP�comp is closely related to P�samplable distributions� In the following lemma� we see

that an assumption like NP 	 BPPP�comp causes the P�samplable distributions relative to NP oracles to

be average P�samplable�

Proposition ����� ��	�

�� NP 	 BPPP�comp implies PNPtt �samp 	p avP�samp�

�� �p
� 	 BPPP�comp implies PNP�samp 	p avP�samp�

Proof� We shall show only claim ���� Assume that �p
� 	 BPPP�comp� Take an arbitrary PNP�samplable

distribution �� By its de�nition� there exists a sampling algorithm M � a polynomial q� and a set A � NP

such that� for any string x and any number i � N�

j"��x��PrM  MA��i� � x in time q�jxj� i�!j � ��i�

We can assume without loss of generality that if M with oracle A on input �i halts and outputs x� then its

running time does not exceed q�jxj� i��
Let us de�ne the set B as follows�

B � fh�i� �n� s� �j� di j d � f�� �g � s � $�q�n�i	 � jMA��i� s�j � n

� TimeAM ��i� s� � q�n� i� � the j�th bit of MA��i� s� is d g�

Let p�n� � �n(	 for all n � N� Since B ��p
�� our assumption ensures the existence of a probabilistic Turing

machine N which accepts B in polynomial time on �stand�average with error probability ��p�n	�n�i��� where

input is of the form h�i� �n� s� �j� di� Consider the following sampling machine M ��

begin sampling algorithm for M �

input �i

generate a natural number n� randomly

generate a string s of length � q�n�� i( p�n��

for n � n� to �
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generate s� at random so that jss�j � q�n� i( p�n��

set s �� ss�

for j � � to n do

if N �h�i�p�n	� �n� s� �j� �i� � N �h�i�p�n	� �n� s� �j� �i� then go to ���
if N �h�i�p�n	� �n� s� �j� �i� � N �h�i�p�n	� �n� s� �j� �i�

then set dj �� � else set dj �� �

end for

output d�d� � � �dn and halt

��� end for

end�

In the following analysis� we �x i and x� Let jxj � n� Set

Sx�i � fs � +MA��i�p�jxj	� j jsj � q�jxj� i( p�jxj���MA��i�p�n	� s� � x in time q�jxj� i( p�jxj��g�

Write �ix to mean Prs M
A��i�p�n	� � x in time q�jxj� i( p�jxj�� j s � )MA��i�p�n	�!� By the de�nition of

Sx�i� we have �ix �
P

s�Sx�i ��jsj�

Note that the success probability that each iteration of the second for�loop is at least�

PrN  N �h�i�p�n	� �n� s� �j� xji� � h�i�p�n	� �n� s� �j� xji�!
� PrN  N �h�i�p�n	� �n� s� �j� xji� � � �N �h�i�p�n	� �n� s� �j� xji� � �!

� ��� ��p�n	�n�i����

� �� ��p�n	�n�i���

Now let us denote by �ix the probability that the machine M � on input �i�p�n	 with random input s � Sx�i

outputs x� The function �ix clearly does not exceed �ix� The lower bound of �ix is calculated as follows�

�ix �
X
s�Sx�i

��jsj �
nY
j��

PrN  N �h�i�p�n	� �n� s� �j� xji� � N �h�i�p�n	� �n� s� �j� xji�!

�
X
s�Sx�i

��jsj �
nY
j��

�� � ��p�n	�n�i��� � �ix � ��� ��p�n	�n�i���n

� �� � ��p�n	�i� � �ix�

The last inequality follows from Lemma A���

We then have �
�� �

�i�p�n	

�
� �ix � �ix � �ix�

Therefore� we obtain j�ix � �jxj � ��p�n	�����i ( ��j�� a result analogous to Theorem 	�	����

Let � ix be the probability that the machine M � on input �i outputs x� We then have�

�� ��i�p�n	

��n( ���
� �ix � ���llog�n	�� � �ix � � i

x �
nX

k��

���llog�k	�� � �ix � � � �ix�
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As in Theorem 	�	���� we can show that j� ix � � j
x j � ��i ( ��j for all i� j � ��

It is not di�cult to show that N � runs in polynomial time on ��average with respect to the size of its

output� Therefore� � belongs to avP�samp� �

Corollary ����� ��	�

�� NP 	 BPPP�comp implies NP 	 BPP
P
NP

tt �samp�

�� �p
� 	 BPPP�comp implies NP 	 BPPPNP�samp�

Proof� Assume that NP 	 BPPP�comp� Notice that PNPtt �samp 	p avP�samp implies BPPavP�samp 	
BPP

P
NP

tt �samp� By Proposition ����	� it follows that NP 	 BPPavP�samp 	 BPP
P
NP

tt �samp�

A similar argument leads to ���� �


�
 Random Oracle Separations

We return to Levin
s original question of whether NP 	 PP�comp� Since this question is di�cult to answer�

we turn our interest to its relativization�

Bennett and Gill  �! �rst used a notion of �random oracles� and made several important contributions to

computational complexity theory including the result that� relative to a random oracle� three classes P� NP�

and co�NP are di�erent� Intuitively� if we choose an oracle set A at random� PA is di�erent from NPA with

probability �� In other words� �most� oracles can separate P from NP� In the same paper� Bennett and

Gill proposed a �random oracle hypothesis� that states� if a property P holds relative to a random oracle�

then P also holds in the non�relativized world� �However� this hypothesis is now known to be false  ��!��

To approach Levin
s original question� we consider randomly relativized world� We remark that there

is no known inclusion relationship between the class PP�comp and other worst�case complexity classes� such

as NP and PSPACE� This section will discuss� relative to a random oracle� several negative results about

these relationships�

We identify a set A with a binary real number ��r� where r � 
A���
A���
A����
A���� � � ��

De�nition ����� �Random Oracles� Let QX be a property relativized to oracle X� We say that� �with

probability �� QX holds relative to a random oracle X if the Lebesgue measure of the set fX j QXholdsg is

�� denoted by m�fX j QX holds g� � ��

In our setting� the Lebesgue measure behaves like a probability measure if the property QX is �nitely

evaluated� Here is an example� Let

�A�x� � A�x���A�x����A�x����� � � �A�x��jxj��
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Then� clearly j�A�x�j � jxj for all x� Consider the event fA j �A�x� � �jxjg for each �xed string x� The

measure of this event� m�fA j �A�x� � �jxjg�� is ��jxj� Hence� for each n � N� m�fA j �y��A�y� �� �n�g� �

��� ��n��
n

� which approaches ��e as n goes to ��

We shall show that� with probability �� NPP�comp is di�erent from PP�comp relative to a random oracle�

In this section� we choose the following relativization of the classes PF and NPF �

De�nition ����� �Relativization� Let X be a set of strings� and let FX be a set of distributions relative

to X�

�� Let PX
FX be the collection of all sets A such that� for any distribution � in FX � �A� �� belongs to

Aver�P�F��X��	 for some distribution ��

�� Let NPX
FX be the collection of all sets A such that� for any distribution � in FX � �A� �� belongs to

Aver�NP�F��X��	 for some distribution ��

Proposition ����� ��� Relative to a random oracle X	 TALLY �NPX �	 PX �

Proof� We can even show the slightly stronger statement that TALLY �NPX �	 co�NPX relative to a

random oracle X� This clearly yields the desired consequence� In what follows� we shall prove this stronger

statement�

We �rst introduce a test language which lies in TALLY �NPX for any oracle set X� For this purpose�

let us de�ne RANGEA � f�n j �y �A�y� � �n!g� Clearly RANGEA is in TALLY and also in NPA for any

oracle A� Let M be an arbitrary polynomial�time oracle Turing machine� Let C�
n � fA j �y �A�y� �� �n!g

and let C�
n � fA j �A��n� �� �n � �&y��A�y� � �n�g� As seen above� m�C�

n� � �� � ��n��
n

for any natural

number n� and consequently limn
�m�C�
n� � ��e� where e is the base of the natural logarithms�

Let Y be the probability space of $n � f�ng� We introduce a transformation from C�
n � Y to C�

n �Y as

f�A� y� � �Ay� �A�y��� where Ay � A � fy��m j � � m � ng� We now claim that f is surjective� For any

�B� u� � C�
n � Y� there exists a unique y such that �B�y� � �n� Let A � B � fy��m j � � m � ng� Then�

�A�z� �� �n for all z because �A�y� �� �n�

Moreover� for any event E 	 C�
n� we have

m�fA j A � Eg� �
X
y�Y

�

�n � �
�m�fA j A � C�

n �Ay � Eg��

Hence� in particular� it holds that

m�C�
n� �

X
y�Y

�

�n � �
� �C�

n� � m�C�
n�

because the term m�C�
n� does not depend on the choice of y�

Let us de�ne two conditional probabilities� Let

��n �
m�fA j �n � L�M�A� �A � C�

ng�
m�C�

n�
� and
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��n �
m�fA j �n � L�M�A� �A � C�

ng�
m�C�

n�
�

Now we shall claim that ��n � ��
��� � ��n for almost all n�

Claim 	� ��n � ��
��� � ��n holds for almost all n�

Proof of Claim� Let n be large enough that p�n	
�p�n�

� �
��� � For any pair �A� z� � C�

n � Y� with conditional

probability ��� MA accepts �n� Let us �x one of its accepting paths and denote it by p� Let us consider the

oracle set Az� On the path p� the probability that M does not make all queries of the form z��k� � � k � n�

is at least �� p�n	
�n � ��

��� � With this probability� MAz accepts �n� Thus� ��n can be estimated as follows�

��n �
m�fA j �n � L�M�A� �A � C�

ng�
m�C�

n�

�
X
y�Y

�

�n � �
� m�fA j �n � L�M�A� �A � C�

n � �n � L�M�Ay�g�
m�C�

n�

� ��

���
� m�fA j �n � L�M�A� �A � C�

ng�
m�C�

n�

�
��

���
� ��n�

Finally we must calculate the overall error probability � � m�fA jMA��n� �� RANGEA��n�g�� Choose

an integer n large enough that we can guarantee that m�C�
n� � 
�

��� and ��n � ��
����

�
n� For this n�

� � ��� ��n� �m�C�
n� ( ��n �m�C�

n�

� ��� ��n� �m�C�
n� (

��

���
��n �m�C�

n�

�

�
�� ��n (

��

���
���n
�
�m�C�

n�

�
�

�� �

���
��n

�
� ��

���
�
�

�� �

���

�
� ��

���

�
�

�
�

Hence� the error probability � is not �� Thus� the event that MA computes the complement of RANGEA

has measure � by the �� � Law� In other words� RANGEX �� co�NPX relative to a random oracle X� �

Using the above proposition� we can show the following separation result�

Proposition ����� Relative to a random oracle X	 PX
PX�comp �� NPX

PX�comp�

Proof� For any oracle A� PA
PA�comp � NPA

PA�comp clearly implies TALLY �NPA 	 PA� By Proposition

������ relative to a random oracle X� TALLY�NPX �	 PX with probability �� Hence� we obtain the desired

result� �
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Proposition ����� ��� Relative to a random oracle X	 there exists a PX �bi�immune set in NPX �

Proof� For any oracle A� we de�ne RANGEA

 as the set fx j �y �A�y� � xxx!g� Clearly RANGEA


 is in

NPA� In the following� we want to prove that RANGEX

 is PX�bi�immune relative to a random oracle X�

First we claim that RANGEX

 is PX�immune relative to a random oracle X� Let us �x a polynomial�time

deterministic oracle Turing machine M and let p be an increasing polynomial which bounds the running

time of M � If L�M�X� is �nite relative to a random oracle X� then the claim is trivially true� Now we

assume otherwise�

We say that y is examined by M on input w if MA on input w queries a string of the form y��m�

� � m � jyj� Let

EXAMA�w� � fy jMA on w examines y� but there is no v � w such that MA on v examines y g�

Using the set EXAMA�w�� we de�ne EV IDA as follows�

EV IDA �
�

w���

fy j y � EXAMA�w� � �x � w �A�y� � xxx!g�

Now we shall show that� relative to a random oracle X� EV IDX is �nite�

Claim �
 EV IDX is 
nite relative to a random oracle X�

Proof of Claim� Note that� by the polynomial bound on M � kEXAMA�w�k � p�jwj� for any string w� Now

�x any su�ciently large string w satisfying kEXAMA�w�k � �jwj�� for all oracles A� For each y�

m�fA j �x � w �A�y� � xxx!g� � �jwj � ��
jwj � ���jwj�

For simplicity� we write FA�w� to mean that there exist two strings x and y such that x � w� y in

EXAMA�w�� and �A�y� � xxx� The probability that FA�w� holds is at most

m�fA j FA�w�g� � �jwj�� � ���jwj � ��
jwj���

Hence�
P

wm�fA j FA�w� holds g� �Pw ��
jwj�� � �� Thus� by Borel�Cantelli
s Lemma �Lemma A�����

m�fA j�� wFA�w�g� � �� This implies that m�fA j EV IDA is in�nite g� � ��

Let us de�ne D � fA j L�M�A� is an in�nite subset of RANGA

 and EV IDA is �nite g� To lead to a

contradiction� it su�ces to show that m�D� � �� To do so� for each set A� we shall de�ne the series of strings

fxAi gi�Nas follows� initially� set xA� � �� and for each k � �� set

xAk �

�	

 minfx � L�M�A� j x � xAk�� � �y � EV IDA �A�y� �� xxx!g� if one exists�

unde�ned� otherwise�

Note that xAk may not always be de�ned� Using this series� we de�ne

Dk � fA j xAk exists and �i � k xAi � RANGA

 !g
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for k � �� It is not di�cult to see that D� � D� � � � � � D�

We next claim that� for almost all k� the ratio m�Dk����m�Dk� does not exceed some constant c less

than ��

Claim �	 There exists a constant c in the interval  �� �� such that m�Dk��� � c �m�Dk� for almost all

k � N�

Proof of Claim� Take any su�ciently large integer k� such that p�k� � �k�� � ��k holds for all integers

k � k�� Fix any such integer k�

Since kSw�xEXAMA�w�k � p�jxj� � �jxj�� � ��jxj for each x with jxj � k�� it holds that

�y �
�
w�x

EXAMA�w� �A�y� �� xxx!� �y ��
�
w�x

EXAMA�w� �A�y� � xxx!�

Since Dk�� � Dk�� �Dk� the ratio m�Dk����m�Dk� is equal to the conditional probability m�Dk�� j Dk��

This is bounded by the probability that there exists a string x accepted by M with oracle A such that

�A�y� �� xxx for all y in EXAMA�w� for some w � x� but �A�y�� � xxx for some y� which is not inS
w�xEXAMA�w�� provided that xAk exists� Hence�

m�Dk�� j Dk� �m�fA j �x � xAk �y �A�y� � xxx!g��

The last expression tends to �� ��e as k approaches ��

Therefore� for almost all k� m�Dk��� � c �m�Dk�� which implies m�D� � limk
� ck� This yields the

conclusion m�D� � ��

The proof that RANGEX

 is PX�immune relative to a random oracle proceeds similarly� �

The next theorem follows from the previous proposition�

Theorem ����� Relative to a random oracle X	 NPX �	 PX
PX�comp�

Proof� By Proposition ������ there exists a PX �bi�immune set in NPX for a random oracle X� Since

Proposition ��	�� is relativizable� PA
PA�comp has no PA�bi�immune sets for any oracle A� Therefore� NPX

cannot be included in PX
PX�comp relative to a random oracle X� �

Theorem ����� Relative to a random oracle X	 PX
PX�comp �	 PSPACEX �

Proof� The proof presented here is a modi�cation of the proof of the corollary of Theorem � in  �!�

In the proof� we identify strings with natural numbers� that is� if x is sn� then x represents the nat�

ural number n� By this identi�cation� it follows that �jxj�� ( � � x � �jxj ( � for all x � 	� Let

�A � A�x���A�x���� � � �A�x��jxj� and QUERY A � fx j x is a candidate� �A��x� � Ag� It follows that

QUERY A � PA
PA�comp for all oracles A�
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Take any polynomial�space deterministic Turing machine M � For each x� let Cx � fA j �A��x� ��
Q�M�A� x�g and Cx � fA j A �� Cxg� We shall show that m�Cx� is not small�

Claim �� m�Cx� � ��� for almost all strings x�

Proof of Claim� Notice that the tape space used by the machine M on input x is bounded above by a

polynomial in jxj� Let p be such a polynomial� By the space bound� the number of all possible instantaneous

descriptions of M on input x is at most �p�jxj	� and this number is irrelevant to the choice of oracles� This

number is also an upper bound of the number of queries made by M � On the other hand� to determine

�A��x�� we need to check at most �jxj�� bits since

j�A��x�j � x � �jxj�� ( � � �jxj���

The measure of Cx is at most the ratio of the number of query strings to the number of bits to determine

�A��x�� and hence

m�Cx� � kSAQ�M�A� x�k
�minA j�A��x	j

� �p�jxj	

��jxj�� �

Obviously� m�Cx� approaches � when x grows� and therefore limx
�m�Cx� � ��

Next let us consider the error probability � � m�fA j MA�x� �� QUERY �x�g�� We must show that

� � �

 � Note that

� �m�fA � Cx j x � L�M�A� � �A��x� �� Ag� (m�fA � Cx j x �� L�M�A� � �A��x� � Ag��

To obtain the desired lower bound of �� we de�ne two sets�

C�
x � fA � Cx j x � L�M�A� � �A��x� � Ag� and

C�
x � fA � Cx j x � L�M�A� � �A��x� �� Ag�

Next we shall show that m�C�
x� � m�C�

x�� To show this� we de�ne the transformation fx as

fx�A� �

�	

 A� f�A��x�g if �A��x� � A�

A � f�A��x�g otherwise�

It is easy to see that fx is bijective on Cx� Hence� from the fact that m�fA � Cx j x � L�M�A�g� �

m�C�
x �C�

x�� it follows that m�C�
x� � �

� �m�fA � Cx j x � L�M�A�g��
A similar argument shows that m�fA � Cx j x �� L�M�A� � �A��x� � Ag� � �

� �m�fA � Cx j x ��
L�M�A�g�� By combining the two equations� we obtain

� � �

�
�m�fA � Cx j x � L�M�A�g� (

�

�
�m�fA � Cx j x �� L�M�A�g�

�
�

�
�m�Cx��

The last term exceeds �

 for any large string x� Therefore� � � �


 � �
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Conclusion

In the early days of average�case analysis� researchers had great hopes of solving all NP�complete problems

in average polynomial time� The satis�ability problem� for example� can be solved in average polynomial

time with respect to some natural input distribution� and so have the Hamiltonian circuit problem with some

input distribution� As research has progressed� however� the realm of average�case analysis has encountered

the same di�culty as its worst�case counterpart�

L� Levin showed that there are problems intractable even in the average�case setting� Since Levin pre�

sented his approach to average�case complexity theory� much research has been devoted to grasping what

the intractability of problems is� These average�case analyses have attracted signi�cant attention from re�

searchers in the other �elds� such as cryptography and statistical physics� Researchers have continued to

seek for another complete problem for Dist�NP�P�comp�� At the same time� there have been a number of

di�erent approaches developed to gain a better understanding of average�case intractable problems� One of

them is to study the average�case complexity of distributional search problems� For example� NP search

problems have recently been shown not to be harder than NP�problems in the average�case setting�

This thesis tried to contribute to the development of a general and consistent theory of average�case

complexity� Personally� I have been inspired by Levin
s early question of whether all NP�complete problems

are solvable in polynomial time on the average with respect to naturally selected distributions� This question

is deeply related to the E �#NE question as well as the P �#NP question in worst�case complexity theory�

We thus see a tie between average�case complexity theory and worst�case complexity theory�

Reducibilities have played a central role in our study of the structural properties of those classes� One of

the signi�cant features of this thesis is the introduction of two average�case versions of the polynomial�time

hierarchy� one by average�case Turing reducibilities� and the other by a model of alternating Turing machines�

These two hierarchies preserve numerous properties of the worst�case hierarchy� but they are intrinsically

di�erent in character because of their sensitivity to the choice of input distributions� A structural study

of average classes has commenced in recent years� whereas there have already been a number of studies on

worst�case complexity classes�

Another important feature of this thesis is to introduce the notion of quintessential complexity classes�

���
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This notion actually enables us to bridge the gap between average�case complexity theory and its worst�case

counterpart� In particular� the class PP�comp has been thoroughly studied in this thesis� We have seen a

variety of possibilities in this direction that contribute to an understanding of average�case complexity�

We regret that there remain many intriguing topics in average�case complexity theory� and we have left

numerous questions unsolved in this thesis� One important direction is the study of distributional search

problems� There are a number of studies in this area �see e�g��  �� ��� ���� ���!��

Average�case complexity theory is a fruitful �eld to cultivate� However� it is not always easy to seek

the right de�nition of average�case counterparts of well�known concepts in worst�case complexity theory�

For example� we have already seen several possible ways of de�ning the class Aver�NP�F�� Consider

the following example� Suppose that we wish to ask ourselves� �Is it possible to de�ne in a natural way

an average�case version of �P #� Recall that the �P�functions were originally introduced by the model

of polynomial�time counting machines �i�e�� nondeterministic Turing machines which sum the number of

accepting con�gurations�� Our de�nition of nondeterministic Turing machines does not seem to provide

any reasonable model for counting machines because not all accepting computation paths are considered in

measuring the running time of the machines� One possible way to de�ne such a class� say Aver��P�F�� is

given as follows�

De�nition ��
�� �Average �P Functions� A function f on $� is called �P�computable on ��average

if there exists a randomized Turing machine M such that �i� M is polynomial�time bounded on ��average�

and �ii� f�x� is the number of accepting computation paths of M on input x� The class Aver��P�F� is

de�ned to be the collection of all pairs �f� �� such that f is a function which is �P�computable on ��average�

R� Impagliazzo recently expressed the view in  	�! that there are �ve possible worlds we might inhabit� Al�

gorithmica� in which no intractable problems exist �i�e�� P � NP or NP 	 BPP holds�� Heuristica� in which

there are intractable problems� but no problems are hard on the average �i�e�� P �� NP 	 PP�samp�� Pessi�

land� in which there are hard distributional problems� but no �strong� one�way functions exist� Minicrypt� in

which one�way functions exist� but public key cryptography is impossible� and Cryptomania� in which public

key cryptography is possible�

No matter which world we inhabit� researchers will continue to pursue attempts to understand natural

phenomena�



Appendix A

Small Lemmas

This section provides several important lemmas used in this thesis�

The following inequality is known as Markov
s inequality�

Lemma A�	 �Markov�s Inequality� Let � be a distribution and let f be a function from $� to R��

For every positive real number r	 "��fx j f�x� � r � E f�X�!g� � �
r 	 where E f�X�! �

P
x f�x�"��x��

Proof� If E f�X�! � �� then either f�x� � � or "��x� � � for all x � $�� Thus� if f�x� � �� then "��x�

must be �� This yields the consequence that "��fx j f�x� � �g� � � � �
r for all r � ��

Now we assume that E f�X�! � �� Let A � fx j f�x� � r �E f�X�!g� Since the case A � ' is trivial� we

assume otherwise� De�ne tf �x� � � if f�x� � r � E f�X�!� and � otherwise� Since tf �x� � f�x	
r�E�f�X	� for all

x � A� we have

"��A� � E tf �X�! � E

�
f�X�

r � E f�X�!

�
�

E f�X�!

r � E f�X�!
�

�

r
�

�

Lemma A�� �Jensen�s Inequality� Let f be a strictly increasing concave function de
ned on an in�

terval ����� and set f��� � limx
� f�x�� Then	

E f�X�! � f�E X!��

where X is a random variable with values in ����!�

Proof� In the case where E X! � �� we get

f�E X!� � lim
x
� f�x� � E f�X�!�

On the contrary� suppose that E X! ��� Since f is concave�

��� f�v� � f�u�

v � u
� f�w� � f�v�

w � v

���
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for all positive real numbers u� v� and w satisfying u � v � w�

Let us �x v and consider the upper and lower limits�

g��v� � lim
z�v

f�v� � f�z�

v � z
� and

g��v� � lim
z�v

f�z� � f�v�

z � v
�

By the monotonicity of the function f � these limits g��v� and g��v� exist for any v in the interval ������

The de�nition also implies g��v� � g��v��

Claim �� For all x� v � ����� and every c �  g��v�� g��v�!	 f�x� � c�x � v� ( f�v��

Proof of Claim� If x � v� then the claim is trivial� Now suppose x � v� Then� by ���� it follows that

f�x� � f�v�

x� v
� lim

z�v
f�z� � f�v�

z � v
� g��v� � c�

Hence� f�x� � f�v� � c � �x� v��

In the other case where x � v� we get

f�v� � f�x�

v � x
� lim

z�v
f�v� � f�z�

v � z
� g��v� � c�

and thus� we conclude that f�x� � f�v� � c � �x� v��

As a special case of the above claim� for a random variable X� f�X� � c � �X � E X!� ( f�E X!�� By

taking expectations�

E f�X�! � c � �E X! �E E X!!� ( E f�E X!�! � f�E X!��

�

Lemma A�� ��
P�

n��
�
n� � 	�

� �

��
P�

n��
�
n
 � 	


�� �

��
P�

n��
�
n�

� 	�

��� �

Lemma A�� Let g be a function from $� � $� to R�� Let x � $�� The following two statements for g

are equivalent�

�� There exists a function h such that jh�x�� g�x� �i�j � ��i for almost all x and i � N�

�� jg�x� �i�� g�x� �j�j � ��i ( ��j for almost all i� j � N�

Proof� We �rst show that ��� implies ���� This is somewhat straightforward�

jg�x� �i�� g�x� �j�j � jg�x� �i�� h�x� ( h�x�� g�x� �j�j



���

� jg�x� �i�� h�x�j( jh�x�� g�x� �j�j
� ��i ( ��j�

Conversely� we show that ��� implies ���� Assume that jg�x� �i� � g�x� �j�j � ��i ( ��j for almost all

i� j � N� We �rst note that� for each x� there exists the limit limj
� g�x� �j� by a classical argument in

analysis� We then set h�x� � limi
� g�x� �i��

Then�

jh�x�� g�x� �i�j � j lim
k
�

g�x� �k� � g�x� �i�j � lim
k
�

jg�x� �k�� g�x� �i�j � lim
k
�

���k ( ��i� � ��i�

�

Lemma A�� Assume that faig��i�n and fbig��i�n are sequences of real numbers such that	 for each i	

jaij � � and jbij � �� Then	 jQn
k�� ai �

Qn
k�� bij �

Pn
k�� jai � bij�

Proof� By induction on n� we shall show that�����
nY

k��

ai �
nY

k��

bi

����� �
nX

k��

�
��k��Y

i��

jaij
�
jak � bkj

�
� nY
j�k��

jbjj
�
A
�
� �

where
Qk��

i�� jaij � � if k � �� and
Qn

j�k�� jbjj � � if k � n� The lemma immediately follows from this

inequality�

The base case n � � is trivial� Assume that n � �� Since jaA� bBj � jaj � jA�Bj( ja� bj � jBj holds in

general� we have�����
n��Y
k��

ai �
n��Y
i��

bi

����� �

�����an��
nY

k��

ai � bn��

nY
i��

bi

�����
� jan�� � bn��j �

nY
i��

jaij( jbn��j �
�����
nY

k��

ai �
nY

k��

bi

�����
� jan�� � bn��j �

nY
i��

jaij(
nX

k��

�
��k��Y

i��

jaij
�
jak � bkj

�
� nY
j�k��

jbjj
�
A � jbn��j

�
�

�
n��X
k��

�
��k��Y

i��

jaij
�
jak � bkj

�
� n��Y
j�k��

jbjj
�
A
�
� �

�

Lemma A�� ��� ��x�m � �� ��x�m�� for all m � N and all real number x � ��

Proof� The proof proceeds by induction on m� In the base cases that m � f�� �g� the claim is trivial� So�

we assume m � �� The induction hypothesis says that ��� ��x�m�� � �� ��x�m��� Then� we have

�� � ��x�m � ��� ��x�m����� ��x� � ��� ��x�m������ ��x�
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� �� ��x�m�� � ��x ( ���x�m�� � �� � � ��x�m��

� �� ��x�m���

�

Lemma A�� For any natural numbers k and n �� � k � n� and any real number � � ��� ���	 let snk �

�nk ���� ( ��k��� � ��n�k� If ��k ( �� � n	 then snk � snk���

Proof� Suppose ��k ( �� � n� Notice that this assumption implies that �k ( � � n since k and n are

integers�

snk�� � snk �
n&

�k ( ��&�n� k � ��&

�
�

�
( �

�k���
�

�
� �

�n�k��
� n&

k&�n� k�&

�
�

�
( �

�k �
�

�
� �

�n�k

�
n&

�k ( ��&�n� k � ��&

�
�

�
( �

�k ��

�
� �

�n�k�� �
�n � k�

�
�

�
( �

�
� �k ( ��

�
�

�
� �

��
�

Write L for n�
�k��	��n�k��	�

�
�
� ( �

�k ��
� � �

�n�k��
� Then� it follows that

snk�� � snk � L �
�

�

�
�n� �k� �� ( �n( ���

�
� L�n ( ��� � ��

Therefore� we conclude that snk�� � snk � �

Below we shall state Stirling
s formula without proofs�

Lemma A�� �Stirling�s Formula� n& �
p

��n�ne �n��( �
�n (h�n��	 where h � O� �

n� � and e is the base

of the natural logarithm�

Lemma A�� For any su�ciently large natural number n	 � n
bn��c� � �np

	n
�� ( �

�n� � �n��p
	n

�

Proof� Suppose that n is even and is of the form �m� Using Stirling
s formula� for any su�ciently large

integer n� �
� n

bn��c

�
A �

��m�&

�m&��
�

p
	�m��m

e
��m�� ( �

��m�

��m�m
e

��m

� ��mp
��m

�
� (

�

��m

�
�

�np
�n

�
� (

�

�n

�

� �n��p
�n

since � ( �
��m � ��

Next we suppose that n � �m ( ���
� n

bn��c

�
A �

��m ( ��&

m&�m ( ��&
�
p

����m ( ����m��
e

��m���� ( �
����m��	�p

��m�m
e

�m �p���m ( ���m��
e

�m��



���

� �

e
p

��
�
s

�m( �

m�m ( ��
� ��m( ���m��

mm � �m ( ��m��
�
�

� (
�

����m( ��

�

� ��m��

e
p

����m ( ��
�
�

� (
�

�m

�
�
�

� (
�

�m

�m
�
�

� (
�

����m( ��

�

� ��m��p
�e���m ( ��

�
�

� (
�

�m

�m
�
�

� (
�

����m( ��

�
�

The last inequality follows from the fact that � ( �
�m �

p
e� From the fact that �� ( �

�m �m � p
e� it follows

that �
� n

bn��c

�
A � ��m��p

�e���m ( ��
� pe �

�
� (

�

����m( ��

�
� �np

��n
�
�

� (
�

��n

�
� �n��p

��n
�

�

Lemma A�	
 Let I be a 
nite index set� Let fEigi�I be a partition of the sample space )� Then	 for any

event E 	
Pr E ! �

X
i�I

Pr E j Ei! �Pr Ei!�

Proof� For simplicity� assume that I � f�� �� � � �� kg� By the de�nition of the conditional probability�

Pr E j Ei! � Pr E � Ei!�PrEi  ! if Pr Ei! � �� Hence� we get Pr E j Ei! �Pr Ei! � Pr E � Ei!�
Since Ei and Ej are disjoint if i �� j� the sum of all Pr E j Ei! �Pr Ei! is calculated as follows�

kX
i��

Pr E j Ei! �Pr Ei! �
kX
i��

Pr E � Ei! � Pr 
k�
i��

�E � Ei�!

� Pr E � �
k�
i��

Ei�! � Pr E !�

�

Given a series fAigi�Nof sets� the notation limsupnAn denotes the set
T�
n��

S�
k�nAk and is called the

limits superior of fAigi�N� Note that w � limsupnAn if and only if w lies in in�nitely many of the An�

Lemma A�		 �Borel�Cantelli Lemma� Let fAigi�Nbe a sequence of events�

�� If
P�

n��Pr An! converges	 then Pr lim supnAn! � ��

�� Assume that fAngn�Nis independent� If
P�

n��Pr An! diverges	 then Pr lim supnAn! � ��

Proof� ��� Assume that
P�

n��Pr An! converges� Let k be any natural number� From the fact that

limsupnAn 	
S�
i�k Ai� it follows that

Pr limsup
n
An! � Pr

� ��
i�k

Ai

�
�

�X
i�k

Pr Ai!�
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By our assumption� limi
�
P�

i�k Pr Ai! � �� Therefore� Pr limsupnAn! � ��

��� Assume that fAigi�Nis an independent sequence of events� Assume also that
P�

i��Pr Ai! diverges�

It su�ces to prove that Pr 
S�
n��

T�
k�nA

c
k! � �� where Ac

k is the complement of Ak �i�e�� )� Ak�� For this

claim� we want to show that Pr 
T�
k�nA

c
k! � � for all n � N�

Note that Pr  
T�
k�nA

c
k! � limj
�Pr 

Tn�j
k�nA

c
k!� Let e be the base of the natural logarithm� Since

�� z � e�z holds�

Pr

�
n�j%
k�n

Ac
k

�
�

n�jY
k�n

Pr Ac
k! �

Y
k�n

n( j���Pr Ak!� � exp

�
�

n�jX
k�n

Pr Ak!

�
�

where exp z! means ez � Let us consider the last expression and denote it by T jn� Since
P�

i��Pr Ai! diverges�

the value T jn tends to � as j approaches in�nity� Thus� limj
�Pr 
Tn�j
k�nA

c
k! � �� �

Lemma A�	� �H�older�s Inequality� Let I be a 
nite index set� For any two sets of positive real

numbers faigi�I and fbigi�I 	 X
i�I

ai � bi �
�X
i�I

ai

���p

�
�X
i�I

bi

���q

�

where �
p ( �

q � ��
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