Average Case Computational Complexity Theory

Tomoyuki Yamakami

A thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

©Copyright by Tomoyuki Yamakami 1997

Average Case Computational Complexity Theory
Doctor of Philosophy, 1997
Tomoyuki Yamakami
Graduate Department of Computer Science

University of Toronto

Abstract

The hardest problems in the complexity class NP are called NP-complete. However, not all NP-complete
problems are equally hard to solve from the average point of view. For example, the Hamiltonian circuit
problem has been shown to be solvable deterministically in polynomial time on the average, whereas the
bounded tiling problem still remains hard to solve even on the average. We therefore need a thorough
analysis of the average behavior of algorithms.

In response to this need, L. Levin initiated in 1984 a theory of average-case NP-completeness. Levin’s
theory deals with average-case NP-complete problems using polynomial-time many-one reductions. The
reducibility is a method by which we can classify the distributional NP problems.

In this thesis, we develop a more general theory of average-case complexity to determine the relative
complexity of all natural average-case intractable problems. We investigate structure of reducibilities, in-
cluding a bounded-error probabilistic truth-table reducibility. We introduce a variety of relativizations of
fundamental average-case complexity classes of distributional decision problems. These relativizations are
essential when we attempt to expand our notion of average polynomial-time computability to develop a
hierarchy above average NP problems.

Average-case analyses are very sensitive to the choice of probability distributions. We have observed that
if the input probability distribution decays exponentially with size, for instance, all NP-complete problems
are solved “fast” on the average. This phenomenon does not reflect a significant feature of average-case
analysis. This thesis includes a thorough analysis of structural properties of feasibly computable distributions
and feasibly samplable distributions.

In addition, one may ask how we can extract the essential average behavior of algorithms independent
of the choice of probability distributions. To answer this question, this thesis introduces the new notion
of quintessential computability, which expands the boundary of worst-case feasible computability (such as
polynomial-time computability), and asserts the invariance of average-case complexity of algorithms regard-
less of which feasibly computable distributions are chosen. This thesis examines the hardness of this real

computability and its structural properties.

i

Preface

The theory of average-case NP-completeness came forcibly to my attention while I was a visiting scholar
at the Universitat Ulm from April to August of 1991. In June of 1991, the annual meeting of complexity
theorists from the Universitat Ulm and the Universitat Politécnica de Catalunya was held in Barcelona. Uwe
Schoning, the director of the Abteilung Theoretische Informatik of the Universitat Ulm, assigned to young
researchers the topics that would be extensively studied at that year’s meeting: average-case NP-complete
problems and local search problems. Six years before, L. Levin had presented his idea of average-case
NP-completeness, and several important studies were done along these lines.

I started reading these papers and technical reports and enjoyed discussing Levin’s definition of “poly-
nomial on average” with Rainer Schuler, who was finishing his thesis on probabilistic computations. The
foundations of this thesis were established during this time, and the results were presented at a conference
in New Delhi in December, 1992.

In June of 1994, I met Rainer Schuler again at a conference held in Amsterdam. He had with him a paper
which solved a problem we had left open in our 1992 paper. We soon started working together, refining his
key algorithm to construct hard sets which cannot be computable in feasible time. These results were later
presented at a conference in Xi’an, China, in August of 1995 and are also included in this thesis.

This thesis demands of little preparatory knowledge in the theory of computational complexity. Most
concepts are thoroughly defined in each section of this thesis or are self-explanatory.

I am extremely grateful to Stephen A. Cook for his hospitality and expert supervision. I thank him
also for his direction and support, without which T could not have come to Canada to pursue my Ph.D.
degree. My thanks also go to my friend Rainer Schuler who has been my collaborator since I visited the
Abteilung Theoretische Informatik of the Universitat Ulm in 1991. T would like to thank Jie Wang and
Osamu Watanabe for helpful comments and fruitful criticism. Special thanks go to Yuri Gurevich and Alan
Selman for his kindness and support. I am also indebted to Leonid Levin and Oded Goldreich for helpful
comments. | greatly appreciate the input of my thesis committee members, Steve Cook, Allan Borodin,
Alasdair Urquhart, Charlie Rackoff, Yuri Gurevich, Anthony J. Bonner, Rudolf Mathon, and Radford Neal.

I thank my friends Brian Nixon and Luis Dissett at the University of Toronto for their kind advice and
encouragement. My special thanks also go to Eric Harley and Debby Repka for pointing out typos and
grammatical errors in an early manuscript.

My parents, Fujio and Yoshiko, have supported me emotionally and financially during my studies in
Toronto. I also thank my grandmother, Nawo, from the bottom of my heart for spiritual guidance. My great

appreciation should go to my fiancée Mitsue Nomura who has helped me write this thesis.

Tomoyuki Yamakami

Toronto, Canada

May 7, 1997

11

v

Contents

1 Introduction 1
2 Foundations of Computational Complexity Theory 9
2.1 Introduction 9
2.2 Fundamental Notions and Notation 10
221 Logic 10
2.2.2 Setsand Numbers 11
2.2.3 Graphs 13
2.2.4 Finite and Infinite Stringso o 14
2.2.5 Functions 15
2.2.6 Asymptotic Notation L 17
2.2.7 Probability Measure L 17

2.3 Models of Computation 18
2.3.1 Deterministic Turing Machines o oo oo 19
2.3.2 Nondeterministic Turing machines L L. 20
2.3.3 Oracle Turing Machines L o 22
2.3.4 Alternating Turing Machines L 0 o 23
2.3.5 Worst-Case Time/Space Complexity 24

2.4 Randomized Algorithms L 25
2.4.1 Random-Input Domains L 26
2.4.2 Probabilistic Turing Machines L oo Lo 27

2.5 Worst-Case Complexity Classes 29
2.5.1 Computable Functions L 29
2.5.2 Complexity Classes e 30
2.5.3 Worst-Case Hierarchies 33
2.5.4 Polynomial-Time Reducibilities 35
2.5.5 Complexity Cores 36

2.6 One-Way Functions e 37
2.6.1 Hash Functions 37

2.6.2 One-Way Functions 38

2.7 Relevant Theories 42
2.7.1 Feasible Real Numbers 42
2.7.2 Kolmogorov Complexity 44
2.7.3 Resource-Bounded Measure 45

General Theory of Average Case Complexity 47

3.1 Introduction 47

3.2 Distributions and Density Functions oo 49

3.3 A Notion of Easy-on-Average e 53
3.3.1 Naive Definition of Average Polynomial Time 53
3.3.2 Levin’s Definition 54
3.3.3 Basic Properties 58
3.3.4 Different Characterizationo 62
3.3.5 Random Functions 64

3.4 A Notion of Domination 68
3.4.1 Domination Relations and Equivalence Relations 68
3.4.2 Fundamental Properties L 72
3.4.3 Randomized Domination 75

3.5 Distributional Decision Problemso 77
3.5.1 Average-Case Complexity Classes 77
3.5.2 Inclusions and Separations Lo 83
3.5.3 Another Characterization 90

3.6 Further Topics 97

Feasible Distributions 99

4.1 Introduction L 99

4.2 Computable Distributions L 101
4.2.1 Definition of Computable Distributions 101
4.2.2 Rare Strings and Rare Sets L L 108
4.2.3 Fault-Tolerance of Distributions 114

4.3 Normalization of Semi-Distributions L0 117

4.4 Samplable Distributions oL 120
4.4.1 Definition of Samplable Distributions 0oL 120
4.4.2 Invertibly Samplable Distributions 123
4.4.3 Closure Properties of Samplable Distributions 127

4.5 The P-comp = P-samp Question 130

4.6 Universal Distributions oL 133

vi

4.7 Domination Relations and Equivalence Relations 136
471 Condition I 136
4.7.2 Condition I e 139
4.7.3 #P-comp versus P-samp 140
4.7.4 Condition II' e 143
475 Condition IT. o 144

4.8 Other Topics 147

Average Polynomial Time Reducibilities 149

5.1 Imtroduction 149

5.2 Deterministic Reducibilityo 151
5.2.1 Many-One Reducibility L 151
5.2.2 Polynomial Time Isomorphism 155
5.2.3 Deterministic Turing Reducibility o oo oo 158

5.3 Many-One Complete Problems 160
5.3.1 Randomized Bounded Halting problem 0oL 161
5.3.2 Randomized Bounded Tiling problem 0oL 162
5.3.3 Other Complete Problems 165
5.3.4 Hard Problems under Samplable Distributions 166
5.3.5 Discussion of Complete Problems for Aver(NP,P-comp) 167

5.4 Incompleteness Results 169
5.4.1 Flat Distributions L 169
5.4.2 Sparse Distributions L 172
5.4.3 Unreasonable Distributions o 174

5.5 Bounded-Error Probabilistic Reducibility 000 175
5.5.1 Skew Bounded-Error Probabilistic Reducibility 176
5.5.2 More Structural Properties Lo 179
5.5.3 Bounded Error Probabilistic Truth Table Reducibility 184
5.5.4 Application of Probabilistic Reducibility 188

5.6 Structure of Reducibility 190

5.7 Recent Topics e 195

Average Case Hierarchies 197

6.1 Introduction 197

6.2 Distributional Polynomial-Time Hierarchy 199
6.2.1 Definition of Hierarchy 199
6.2.2 Self-Reducibility 200

6.3 Relativization of Average Complexity Classes 205

vil

6.3.1 Relativized Aver(P,F)
6.3.2 Relativized Aver(BPP,F)
6.3.3 Relativized Aver(NP,F) e
6.3.4 Relativized Aver(PSPACE, F) e
6.4 Average Polynomial-Time Hierarchy
6.4.1 Average Polynomial Time Hierarchy
6.4.2 Sparse Interpolation Property L
6.5 Average Polynomial-Time Alternation Hierarchy
6.6 Average Low Hierarchy
Quintessential Computability
7.1 Introduction
7.2 Real Polynomial-Time Hierarchy
7.2.1 The Notion of “Real C under 77
7.2.2 Real Polynomial-Time Hierarchy
7.2.3 Nearly-3} and Nearly-AP Sets oL
7.2.4 Collapsing Classes e
7.3 Fundamental Separations
7.3.1 Construction of Hard Instances
7.3.2 Separation from “Quasi” Linear Exponential Time
7.3.3 Separation from Advice Hierarchy 0.
7.4 Immunity and Bi-Immunity
7.4.1 Immune Sets and Complexity Cores
7.4.2 Bi-Immune Sets and Resource-Bounded Measure
7.5 Closure Properties
7.5.1 Polynomial Time Reducibilities
7.5.2 Polynomially Bounded Existential Operator
7.6 Bounded Error Probabilistic Polynomial Time
7.7 Random Oracle Separations
Conclusion

Small Lemmas

References

List of Notation

Index

viil

233
233
235
236
238
241
242
245
245
249
252
255
255
257
259
260
264
266
275

281

283

289

297

300

Chapter 1

Introduction

The new concept of the “automatic computing system” (a term coined by von Neumann) was proposed that
gave rise to computers in the mid 1940°s. After five decades, computers have come to permeate our society;
their presence spans the range from wrist watches to weather forecasting satellites orbiting the earth.

The theory of computational complexity has emerged as computer technology has advanced, and now we
face more difficulties than ever. When a problem is given, we must write a program or construct a circuit
to solve it. To minimize the cost of solving the problem, we must presumably determine its complexity.
“Complexity” can be measured in various ways, such as “the running time spent by an algorithm,” “the
memory space used for an algorithm,” “the number of basic operations made by an algorithm,” “the number
of processors used for a circuit,” and so on. Here we focus on an algorithmic model of computation: worst-
case complexity theory deals with the worst behaviors of algorithms, that is, the maximal complexity of
algorithms when an adversary chooses “bad” instances. On the contrary, average-case complexity theory
analyzes algorithms by measuring their complexity on the average over all instances.

Traditional average-case analysis of problems has been performed to determine the expected running
time or expected tape space of algorithms to solve given problems under circumstances in which each input
instance occurs with a certain probability. We have seen that many important problems, such as the traveling
salesperson problem and the Hamiltonian circuit problem, are categorized as the hardest to solve among NP
problems. The hardest problems in NP are called NP-complete. All NP-complete problems share the same
worst-case complexity, but they are not of the same average-case complexity. For example, relatively fast-
on-average deterministic algorithms have been found for some famous NP-complete problems, such as the
graph 3-colorability problem, and the Hamiltonian circuit problem, under naturally selected distributions.
Although the notion of expected running time/space is simple and intuitive, it has limitations when used as
a base of a consistent and coherent theory and does not address the better understanding of the nature of
intractability of problems in both a theoretical and practical sense.

In 1984, Leonid Levin [60] presented a one page paper at the Symposium on Theory of Computing,
STOC, proposing the novel idea of defining an average-case complexity measure. Levin demonstrated that

a randomized version of an NP-complete problem, the randomized bounded tiling problem, is complete for a

2 CHAPTER 1. INTRODUCTION

randomized version of NP. This terse paper shed light on what average-case analysis should be. Early works
of Gurevich [36] and Ben-David, Chor, Goldreich, and Luby [9] expanded Levin’s original idea to establish
a coherent framework for average-case complexity theory. Since then, numerous investigations have been
made.

This thesis tries to establish a general, consistent, and coherent theory of computational average-case
complexity and to contribute to its advancement. In particular, this thesis makes an important addition
to Levin’s theory of average-case NP-completeness by defining average-case hierarchies founded on average
polynomial-time computable problems, analogous to the polynomial-time hierarchy. In this thesis, we study
the structure and properties of those newly defined hierarchies. We also emphasize the investigation of
distributions, which is a recent undertaking. The thesis carries out a thorough analysis of computable
distributions and samplable distributions. The most innovative part of this thesis 1s the introduction in
Chapter 7 of quintessential computability under a given set of distributions and its investigations. This
new concept enables us to discuss a wide range of subjects in average-case complexity theory. We use
Kolmogorov complexity, resource-bounded measure, and random oracles to understand the true nature of
average behaviors of algorithms.

The thesis consists of eight chapters, each of which addresses a separate issue. Specifically, Chapter 2
provides the reader with the foundations of the theory of computational complexity, the fundamental notions
and notation, necessary to read the thesis. Most results come from the author’s work (in collaboration with
R. Schuler) on average-case complexity theory [97, 98, 119], while some new results are appended elsewhere
in the thesis. To avoid confusion, results (theorems, lemmas, etc.) with which the author was involved are
listed under Major Conlributions at the beginning of each chapter with careful attribution. More detailed

explanations will be found below.

Easy on the Average. A naive idea of capturing the average behavior of a function f is given as fol-
lows. For a distribution p, let us denote by ji the associated (probability) density function. The func-
tion f is “expected polynomial on p-average” if there is a positive integer k such that, for almost all n,
inlflIﬂ f(z)fin(z) < n*, where p, is the conditional distribution of y defined on the strings of length n.
However, as discussed in Section 3.3, this definition has serious deficiencies, such as lacking the closure prop-
erty under composition and lacking the property of machine-independence. It therefore cannot be the basis
for a consistent, fruitful theory. In the average-case setting, we view a decision problem as a pair consisting
of a set of instances and an input distribution, called a distributional (decision) problem or randomized
(decision) problems. The intended interpretation is that, for an algorithm which determines whether z € A,
each instance x is given to the algorithm with a probability specified by the distribution.

In contrast, Levin [60] called a function f polynomial on p-average if there exists a positive real number &
such that the expectation 3 .15 ||~ f (%) ju(x) converges. This expectation is taken over the infinite set
of all nonempty strings. Later Impagliazzo [43] pointed out that we can replace Levin’s infinite expectation
with a series of finite expectations, on an input ensemble {i<y, }nem, Zx10<|xlsn f(x)éﬂyl(x) being bounded

by O(n), where p<y is the conditional distribution of y on the strings of length at most n. In other words,

it 1s sufficient to check the expectation over all strings of length at most n.

An intuitive characterization of Levin’s notion of “polynomial on p-average” is given by Schapire [88] as
follows: there exists a polynomial p such that, for every positive real number 7, g({z | f(z) > p(r-|z])}) < 1/r.
Here we remark that i can be replaced by ji<,. Based on Schapire’s formulation, we are able to extend
Levin’s polynomial on p-average to t on p-average for an arbitrary function ¢. Naturally, a distributional
decision problem (A, u) is identified as “easy” on average if the problem A is computed by a deterministic
Turing machine which halts in polynomial time on p-average. The collection of all such easy-on-average
problems is considered an average-case version of P by many researchers and is denoted in this thesis by
Aver(P,«) (by AP, AvP, AverP, Aver-P, or Average-P, elsewhere). This class is fundamental to Levin’s
theory of average-case NP-completeness. More generally, we can restrict ourselves to an arbitrary set F
of distributions, and the notation Aver(P,F) denotes the collection of all easy-on-average distributional
problems (A, i), where g is taken from F. Under some natural distributions, several NP-complete problems

are solvable “fast on the average.”

For example, the “satisfiability problem” [25], the “graph 3-colorability
problem” [117], and the “Hamiltonian circuit problem” with edge probability % [13] are found to be in
Aver(P, #) under some reasonable distributions.

On the other hand, an average-case counterpart of the class NP is the collection of all distributional
problems which are pairs of an NP set and a feasibly computable distribution. This collection is denoted
in this thesis by Dist(NP, P-comp) (by Dist-NP, RNP, or Random-NP elsewhere). Levin raised an intrigu-
ing question: “ Can all problems in Dist(NP, P-comp) really be “easy” on the average ?” Ben-David,
Chor, Goldreich, and Luby [9] gave the following answer: this is the case unless the nondeterministic lin-
ear exponential-time class equals i1ts deterministic counterpart. This thesis is motivated by Levin’s open
question. Chapter 3 1s devoted exclusively to introducing Levin’s theory of average-case complexity and its
generalization.

To deal with the complexity issue, we generalize the above two classes and introduce the notion Dist(C, F),

which is the collection of all pairs (A,), where A € C and u € F, and the other four fundamental notions
Aver(NP, F), Aver(BPP,F), Aver(RP,F), and Aver(PSPACE, F).

Input Distributions. Here we would like to remind the reader that average-case analyses are sensitive
to the choice of distributions, because “average polynomial-time computability” is founded on the behavior
of the distributions in question. The study of distributions is therefore crucial in average-case complexity
theory. In Chapter 4, we discuss the complexity of feasible distributions. In particular, we shall focus on two
types of distributions: polynomial-time computable distributions and polynomial-time samplable distribu-
tions. Gurevich [36] called a distribution p polynomial-time computable if there exists a deterministic Turing
machine M such that |u(z) — M (z,0%)] < 27 for all nonnegative integers i. Ben-David et al. introduced
polynomial-time samplable distributions which are generated by randomized algorithms (called sampling al-
gorithms [9] or generators [96]) which run in time polynomial in the length of “outputs.” By P-comp and
P-samp, we denote the sets of polynomial-time computable and samplable distributions, respectively. In

Section 4.5, we shall show that polynomial-time samplable distributions are precisely as hard as PP sets to

4 CHAPTER 1. INTRODUCTION

compute deterministically in polynomial time.

Another important notion in Levin’s theory of average-case NP-completeness 1s domination relations
among distributions. When a distribution g majorizes another distribution v within a polynomial factor, we
say that pu polynomially dominates v. More precisely, p polynomially dominates v if there exists a polynomial
p such that p(|z|) - pi(x) > 0(x) for all strings #. Polynomial-domination of polynomial-time samplable
distributions is closely related to the existence of cryptographic one-way functions. A (cryptographic uniform)
one-way function is a function which is easy to compute but hard to invert on most instances and is believed
to exist by many researchers. Ben-David et al. [9] first found this connection and showed that if such
one-way functions exist, then there is a polynomial-time samplable distribution which is not polynomially
dominated by any polynomial-time computable distribution. In Section 4.7, we shall show that a much
weaker assumption, the existence of NP sets that are not nearly-RP, is enough to get the same conclusion.
Here, a set A is said to be nearly-RP if some randomized algorithm computes A on most instances, and it
behaves like a one-sided bounded-error probabilistic machine on most instances.

Moreover, if two distributions polynomially dominate each other, we say that both are polynomially
equivalent. For example, every distribution samplable relative to BPP sets in time polynomial in the size of
output is polynomially equivalent to some polynomial-time samplable distribution. Under the assumption
P = NP, every polynomial-time computable distribution is polynomially-equivalent to some polynomial-

time samplable distribution.

Average-Case Reducibility. Chapter 5 focuses on a variety of average-case reducibilities. For decades,
researchers have made great efforts to achieve a better understanding of the structure and properties of
wntractable problems. The term NP-complete was coined to describe the most intractable NP problems,
and many interesting NP-problems are declared to be NP-complete, that is, the hardest problems to solve
in polynomial time.

Levin’s innovation is the invention of an average-case version of such a completeness notion among
distributional decision problems. His notion of completeness is based on worst-case polynomial-time many-
one reducibility with an extra condition, the so-called domination condition for the reduction function,
which guarantees that the reduction maps more likely instances to more likely instances. He showed that
the “randomized bounded tiling problem” is complete for Dist(NP, P-comp) under this type of reduction.
Since his proof of completeness, only a dozen distributional problems have been found to be complete for
Dist(NP, P-comp). Typical examples are: the “randomized bounded halting problem” [36], the “randomized
bounded Post correspondence problem” [36], and the “randomized word problem for Thue systems” [112]
under polynomial-time many-one reductions. We shall discuss the issue of deterministic reductions in Section
5.2.

In Section 5.2, we shall formally introduce the (average) polynomial-time many-one reductions and cul-
tivate their structural properties. Wang and Belanger [112] defined polynomial-time isomorphism between
two distributional decision problems and showed that all known complete problems for Dist(NP, P-comp)

are indeed polynomially isomorphic. Section 5.3 will show that several typical distributional problems are

complete for Dist(NP, P-comp) and also polynomially isomorphic to each other.

Incompleteness results have been achieved by Gurevich [36] and by Wang and Belanger [112]. Gurevich
[36] first drew attention to distributions of exponentially-small probability, so-called flat distributions, and
demonstrated that no flat distribution makes a distributional problem complete for Dist(NP, P-comp) unless
NEXP collapses to EXP. We notice that the distribution used for the randomized bounded tiling problem,
for example, is not flat. As Wang and Belanger pointed out, if we restrict ourselves to one-one, polynomially
honest reductions, we can drop the assumption EXP # NEXP. We shall show that distributions of
another type, so-called sparse distributions, which were introduced by Gurevich [36], also do not make any
distributional problem complete for Dist(NP, P-comp) unless NP collapses to P. This incompleteness issue
will be discussed in Section 5.4.

Another type of important reduction is “probabilistic” or “randomized” reduction. In 1988, Venkate-
san and Levin [106] used “random reductions” to demonstrate the intractability of the randomized graph
colorability problem. Later Ben-David, Chor, Goldreich, and Luby [9] introduced two more notions: “ran-
domized many-one reductions” and “randomized Turing reductions.” In Section 5.5, we shall introduce an
average-case version of bounded-error probabilistic truth-table reducibility. Despite the incompleteness re-
sult of flat distributions, we are able to prove that the randomized bounded halting problem with a natural

flat distribution is also complete for Dist(NP, P-comp) under these reductions.

Average-Case Hierarchies. In worst-case complexity theory, Meyer-Stockmeyer’s polynomial-time hier-
archy, {A}, X7 II} | k > 0}, has played a central role in capturing the magnitude of intractability of given
problems. Chapter 6 will discuss a hierarchical issue from the average-case complexity point of view.

The distributional polynomial-time hierarchy under F 1s an extension of the polynomial-time hierarchy
in which Al and 2} are replaced with Dist(AL, F) and Dist(X}, F), respectively. We shall show that each
Y-level of the hierarchy under P-comp, Dist(2}, P-comp), has complete problems under polynomial-time
many-one reductions.

The notion will be introduced of (polynomial-time Turing) self-reducibility among distributional decision
problems. To determine the membership © €7A, we recursively produce other instances y which are of
smaller size than z, and reduce the question © €7A to y €7A. Since the size of instances becomes smaller,
these reductions terminate in polynomially-many steps. In worst-case complexity theory, the satisfiability
problem, SAT, is a typical example of self-reducible problems. We shall show that most known distributional
problems complete for Dist(Z}, P-comp), k > 1, are self-reducible. Whether all complete problems for
Dist(NP, P-comp) are self-reducible, however, is an open question. As an application of self-reducibility, we
shall show that Dist(NP, P-comp) C Aver(BPP, %) if and only if Dist(NP, P-comp) C Aver(RP,).

In Section 6.4, we shall introduce another average-case analogue of the polynomial-time hierarchy, called
theaverage polynomial-time hierarchy under a certain set of distribution, to classify distributional decision
problems which are hard for Dist(NP, P-comp). The hierarchy is built above Aver(P, F) and Aver(NP, F)
using relativized Turing computation.

The model of alternating Turing machines gives another characterization for the polynomial-time hi-

6 CHAPTER 1. INTRODUCTION

erarchy. Inspired by this characterization, we shall introduce in Section 6.5 an average polynomial-time
alternation hierarchy under a set F of distributions using a model of alternating Turing machines. Interest-
ingly, each level of the average polynomial-time alternating hierarchy is characterized by relativized Turing
computability relative to classes in the distributional polynomial-time hierarchy. As a result, in contrast
to the worst-case situation, the alternating hierarchy is unlikely to coincide with the average hierarchy in
general (of course, depending on the underlying set of distributions).

As an example, we shall locate the probabilistic complexity class Aver(BPP, F) in the average polynomial-

time alternation hierarchy.

Quintessential Computability. In Chapter 7, we shall shed light on the collective behavior of distribu-
tional decision problems under a certain set of distributions, such as P-comp or P-samp. This approach is
new in average-case complexity theory and helps us investigate average-case complexity classes in terms of
worst-case complexity classes. More precisely, we shall focus on a class of sets S, called “real P under a set
F of distributions,” which extracts the essentials of average-case complexity class Aver(P, %) in the sense
that, for every distribution g in F, the distributional problem (S, 1) belongs to Aver(P,). In other words,
S is computable by some deterministic Turing machine whose running time is polynomial on pu-average.
We are particularly interested in feasible distributions, such as P-comp. Let us denote by Pp_comp the
class “P under P-comp.” We return to Levin’s original question, Dist(NP, P-comp) C7?Aver(P,*). Now
his question can simply be rephrased in terms of worst-case complexity classes as: “Is NP included in
Pp-comp 77 Based on the average polynomial-time hierarchy, we further define real polynomial-time classes,
{AY 7,30 7 IIV 7 | k > 0}, called the real polynomial-time hierarchy under F. This hierarchy enables us to
generalize Levin’s question to any level of the real polynomial-time hierarchy under P-comp: “Is £} included
in Al pcomp 77

We will show that, for every integer k > 0, A} C APz C Af and B! C 2V C X¢ for any set F of
distributions, where Af is the k-th level of the linear-exponential-time hierarchy; in particular, P C P CE
if £k = 1. Specifically, let us denote by Pg-comp the collection of sets computable in polynomial time on
average under every exponential-time computable distribution. Using a notion of complexity cores, we are
able to show that Pg-comp collapses to P. More generally, we are able to prove that AEREC—comp = Ag and
EZREC—Comp = Eg for all k£ > 0.

Section 5.6 will discuss hardness results of the average polynomial-time hierarchy under a set of polynomial-
time computable distributions. We have already seen the inclusions P C Pp-comp C E. In 1995, Schuler
[92] showed that both inclusions are truly proper using a diagonalization over polynomial-time computable
“semi-distributions.” (Later he gave an alternative proof based on Kolmogorov complexity.) We extend his
technique and show in Section 7.3.1 an even more provocative consequence: Pp_comp € DTIME(2°7) for
each fixed constant ¢ > 0. This result will be extended to any level of the real polynomial-time hierarchy
under P-comp.

A similar technique again enables us to show that AZP_Comp has a hard set that is not 1n Ag/cn for each

constant ¢ > 0, where A}/ f(n) in general is the collection of all sets, each of which can be computed by

some AP-type machine with some advice function of length f(n). We note that the class of sets computed by
non-uniform polynomial-size circuits is exactly the union of all classes P /n*, k > 0. It does not appear to be
simple to improve our result to answer the open question of whether all sets in Pp_comp have polynomial-size
circuits. However, Schuler [93] recently proved that if all sets in Pp_comp have polynomial-size circuits, then
EXP collapses to the second level of the polynomial-time hierarchy. Hence, based on the common belief
that EXP is different from the polynomial-time hierarchy, it seems unlikely that all sets in Pp_comp have
polynomial-size circuits. These issues will be discussed in Section 7.3.2.

Another typical example of intractable sets, discussed in Section 7.4, is P-immune and P-bi-immune
sets. P-immune sets are sets that do not contain any infinite P-subsets in them, and P-bi-immune sets are
P-immune sets whose complements are also P-immune. We show that there are some non-sparse P-immune
sets in Pp-comp, but Pp-comp has no P-bi-immune sets. This fact exhibits the structural difference between
Pp-comp and the class E, which has both P-immune and P-bi-immune sets. Using the fact regarding
P-bi-immunity, Pp-comp 15 shown to be small with respect to Lutz’s resource-bounded measure, where a
complexity class is often called smallif it has p-measure 0. (Note that E has p-measure 1.) As an immediate
consequence, if NP is included in Pp-comp, then NP has p-measure 0, and this consequence again contradicts
the popular belief that NP is not small. Along the same lines, Schuler [94] showed that the truth-table closure
of Pp-comp and the Turing closure of Pp-comp have different measures.

Section 7.5 will show that Alp_.omp is not closed under polynomial-time many-one reductions, the ex-
istential operators, or the probabilistic operators. Hence, the class Pp-comp, for example, is structurally
different from most of the well-known complexity classes, such as P, NP, BPP, and PP. However, it is not
known whether Pp_comp 1s closed under p-honest many-one reductions. Notice that the class Agp_samp, real
AP under P-samp, is closed under p-honest polynomial-time many-one distributions. We shall show that if
Pp-comp 1s not closed under p-honest polynomial-time many-one reductions, then there is a polynomial-time
samplable distribution which is not polynomially dominated by any polynomial-time computable distribu-
tion. Under p-honest many-one reductions, we are able to show that there exists a pair of sets in Pp-comp
which are not reducible to each other, a so-called incomparable pair.

The quintessential complexity class BPPx exhibits another structure. Due to Ben-David, Chor, Gol-
dreich, and Luby [9], the assumption NP C BPPp_comp implies the conclusion ®) C BPPp_comp, where
©! is the class of sets computable in polynomial time with nonadaptive queries to NP oracles. On the
other hand, Schuler and Watanabe [96] extended a result of Venkatesan and Levin [106] and showed that
the NP C7BPPp_gamp question is equivalent to the NP CTBPPp_comp.

As shown by Ben-David et al. [9], NP C Pp_comp leads to the conclusion E = NE. On the other
hand, NP ¢ Pp comp yields the consequence P # NP. Hence, the NP C?Pp comp question cannot be
easily solved in the non-relativized world. At this point, we have no prospect for answering Levin’s question
either affirmatively or negatively. Now let us turn our interest to a relativization of this question. In 1981,
Bennett and Gill [8] introduced a notion of random oracles to show that P is different from NP in “most”
relativized worlds. More precisely, if an oracle set is chosen at random, the probability that P differs from

NP relative to this oracle is 1. In Section 7.7, we shall show that NP and Pp-comp are mutually exclusive

8 CHAPTER 1. INTRODUCTION

(i.e., NP € Pp_comp and Pp_comp € NP) in “most” relativized worlds. To be more precise, let us denote

by ng_comp a “natural” relativization of the class Pp_comp relative to oracle X. We will show that, with
probability 1, NP* ¢z ng_comp and ng_comp ¢z NP?, relative to random oracle X.

Chapter 2

Foundations of Computational

Complexity Theory

2.1 Introduction

The theory of computational complexity first drew attention from mathematicians as a weak notion of
recursive functions. To measure the complexity of a given problem, we use particular models of computation,
such as Turing machines, circuits, or PRAM’s to solve the problem.

In this chapter, we shall define and explain most of the fundamental notions and notations in (worst-case)
computational complexity theory so that the uninitiated reader can read through this thesis without the help
of supplementary textbooks.

In Section 2.2, we shall cover the elementary notions of graphs, numbers, sets, and functions. The
basic terminology in probability theory and logic will be also introduced. The thesis follows the standard
terminology often used in mathematics and theoretical computer science.

We use Turing machines as a model of computation. In general, deterministic Turing machines compute
partial recursive functions, but our interests lie only in resource-bounded computations, and we need the
notions of running time and tape space of the Turing machines. The reader should pay careful attention
to the models we shall use in this thesis because different models lead to different consequences. Several
variations of Turing machines will be introduced in Section 2.3, and many popular complexity classes, such
as P and NP, will be defined in Section 2.5.

The field of randomized algorithms has grown tremendously in the last decade and has found many
applications because of their simplicity and speed. We shall introduce the basic notions of randomized
Turing machines, probabilistic Turing machines, and random functions in Section 2.4.

In Section 2.6, universal hash functions will be introduced. Hash functions are a useful tool in designing
randomized algorithms.

Section 2.7.1 will explain the theory of polynomial analysis initiated by Ko and Friedman [55] in the early

10 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

1980’s. The theory of Kolmogorov complexity also provides us with a succinct description of information.
We also cover the notion of resource-bounded Kolmogorov complexity measure and Lutz’s resource-bounded
measure theory, which are popular in structural complexity theory.

For complete references, the reader may refer to [42, 91, 4, 45, 80].

Major Contributions. Although this chapter is introductory, a few results are included.

Lemma 2.5.7 offers a new characterization of all A-level classes in the polynomial-time hierarchy by
the model of semi-deterministic alternating Turing machines which run in polynomial time with constant
alternation.

Proposition 2.6.4 shows the existence of an NP set which is not nearly-RP, provided that strong one-way

functions exist.

2.2 Fundamental Notions and Notation

We shall begin with terminology from mathematical logic and then explain mathematical notions and nota-
tions: graphs, sets, numbers, strings, and functions. This section will include a preliminary introduction to

probability theory.

2.2.1 Logic

In propositional logic, we deal only with Boolean variables which take values 1 (truth) and 0 (falsehood).
(Note that traditionally, in mathematical logic, 0 represents “falsehood” and 1 represents “truth.”) The
terms are Boolean variables and the logical constants 0 and 1. As logical connectives, we use the symbols
= (negation), A (conjunction), and V (disjunction). The set of (propositional) formulas is defined by the

following clauses:

(i) every term is a formula;

(i1) if o and f are formulas, then =(a), (a A §), and (a V 3) are formulas; and
(iii) formulas are defined only by clauses (i)-(ii).

Unless there may be confusion, we freely omit parentheses from formulas: e.g., =—a and a A (8 V —).
The negation of a Boolean variable v is sometimes denoted by T for simplicity. A Boolean variable and its
negation are called literals.

Let o = (21, a, ..., &y) be aformulawith all distinct variables being explicitly exhibited as z1, 2, ..., z,.
We write Var(a) for the set {@1,29,...,2,}. A truth assignment for o is a function ¢ : Var(a) = {T, F'}.

Given a truth assignment o, we define an evaluation [@], of & on ¢ in the following recursive way:
(i) in the case that « is a variable v, [a], = T if and only if o(v) = T

(i1) in the case that « is of the form —(3), [a], = T if and only if [5], = F;

2.2, FUNDAMENTAL NOTIONS AND NOTATION 11

(iii) in the case that o is of the form (8y A 81), [a]s = T if and only if [Gs], = T and [B1]s = T'; and
(iv) in the case that « is of the form (5 V £1), [o]e = T if and only if [y], =T or [f1]e =T

A propositional formula « is satisfiable if there exists a truth assignment o for a such that [o¢], =T In
this case, o is said to satisfy «. For example, the formula ==(z V y) A (-2 V y) is satisfiable, witnessed by
the assignment o such that o(z) = o(y) = T and o(z) = F. A formula « is valid (or a tautology) if [a], =T
for any truth assignment o for «.

For a property Q, the notation VxQ(#) means that Q(z) holds for all elements z, and the notation
JxQ(x) means that there exists an element z satisfying Q(#). The notation Iz Q(x) means that there exists
the unique element # satisfying Q(x). For a property Q defined on an infinite set S, we say that Q(x) holds
for almost all (or almost every) x in S if the set {o € S| Q(x) does not hold } is finite. In this case, we also
say that Q holds almost everywhere. The notation OVO zQ(z) means that Q(x) holds for almost all #, and
OET 2Q(z) means that Q(x) holds for infinitely many z. Clearly OVO and OET are dual concepts.

Generally, for a property Q, we write [Q] = 1 if @ is true, and [Q] = 0 otherwise. For a set S, yg denotes
the characteristic function for S that is defined as xg(x) = [¢ € S]. (Note that “characteristic functions”

here are different from those used in probability theory.) For brevity, we also use the notation S(z) to mean

xs(x).

2.2.2 Sets and Numbers

Sets. Intuitively, a set is a collection of objects, called its members or elements. The notation © € A
expresses that z is an element of A, and € is called the membership relation. The symbol @ denotes the
emply set that contains no elements. We use the standard set notation {- | -}. For example, the notation
{x | Q(x)} represents the set whose elements z satisfy a property Q(x). For two sets A and B, we say A is
a subset of B, symbolically A C B, if every element of A is an element of B.

For two sets A and B, the intersection of A and B is denoted AN B and is defined by ANB ={a|a€
A A b€ B}. The union of A and B is denoted AU B and is defined by AUB={a|a€ A V be B}. The
set A — B denotes the of A and B that is defined by A—B={a|a€ A A b¢g B}.

The of A and B, denoted A x B, is the set of all ordered pairs (a, b) such that @ € A and b € B, where an
ordered pairis the set {a, {a,b}}. In contrast, the set {a, b} is sometimes referred to as an unordered pair. The
power set of S is denoted by P(S) and is defined as the collection of all subsets of S, i.e., P(S) ={A| A C S}.

For a set S, ||S|| denotes the cardinality of S that intuitively expresses the number of elements in S. If

S is not finite, then let ||S|| = oc.

Binary Relations. A binary relation on a set S is a subset of the Cartesian product S x S, i.e., {(a,b) |
a,b € S}. Conventionally, we write aRb when (a,b) € R. For a binary relation R on S, we say that R
is reflexive if aRa holds for all elements a € S, and that it is transitive if aRb and bRe imply aRe for all
a,b,c € S. Moreover, a relation R on S is symmetric if aRb implies bRa for all a,b € S; on the other hand,
R is antisymmetric if aRb and bRa imply a = b for all a,b € 5.

12 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

A binary operator @ on aset S is called associative if a® (b®c) = (a®b)Pc for all a,b, ¢ € S; commutative
fadb=>bPpaforalabes.

Numbers. Let Z be the set of all integers {---,—2,—1,0,1,2,---}, and let NN denote the set of all nonnega-
tive integers, called natural numbers. The set of all rational numbers {7+ | m,n € Z,n # 0} is simply denoted
by @, and Q¥ denotes the set of all nonnegative rational numbers. Similarly, the notation R denotes the set
of all real numbers, and in particular, we denote by R* the set of all nonnegative real numbers. (Remember
that the superscript + does not mean “positive.”) We use the notation oo to mean the infinity, and let
Rt® =R+t U{cc} and R® = RU {oo, —co}. For the arithmetical operations + (addition) and - (multipli-
cation), we follow the standard convention: for any numbers r € R and s € R* — {0}, r + 0o = co +r = o0,
§ 0 =008 =00, —§-00 =00 (—s) = —00,and 000 = oo 0 = 0. Moreover, we assume that —oo < r
and r < oo for any real number r € R.

The absolute value of a real number is denoted |r|.

For any two real numbers a and b (a < b), let (a,b) denote an open (real) interval defined by (a,b) =
{r € R | a <z <b};let [a,b) and (a,b] be half-open intervals which are defined by [a,b) = (a,b) U{a} and
(a,b] = (a,b) U {b}, respectively; and let [a, b] be an closed interval defined by [a,b] = (a,b) U {a,b}.

For a real number #, let |z] (floor of @) be the maximal integer not exceeding x, and let [z] (ceiling of

z) be the minimal integer not smaller than x.

Lebesgue Measure. For a closed interval I = [a,b] of the line R, let |I| = b —a. Let S = {Iy}ren be
a countable collection of closed intervals on R. For a subset E of R, we say that S is a covering of E if

E C U2k Ix. The Lebesgue outer measure of a set F, denoted m*(E), is defined by

m*(E) :inf{Z|[k|

{Ix}ken is a covering of E } ,

where the infimum is taken over all coverings of E. If no such covering exists, then take m*(E) = oo.

A set F is called (Lebesgue) measurable if, for every set S C R,
m*(SNE)+m”*(S—F) =m"(S).

If F is measurable, its Lebesgue outer measure is called its Lebesgue measure (or simply measure) and is
denoted by m(F%). Note that m([0,1]) = 1. (Thus, m is a probability measure on the sample space [0, 1].)

It is well known that, assuming the aziom of choice, there exists a non-measurable set (see, e.g., [115]).

Polynomials and Logarithms. We are interested only in polynomials and logarithms with integer coef-

ficients. For a positive integer d, a polynomial (in n) of degree d is a function p(n) of the form:

d
p(n) => an’,
i=0

2.2, FUNDAMENTAL NOTIONS AND NOTATION 13

where each a; € Z and ag # 0. The constants ap, a1, ...,aq are called the coefficients of the polynomial.
Ezponentials are functions of the form 2°(") where p is some polynomial. In particular, we call a function a
linear-exponential if it is of the form 2°"+¢ for some constants ¢, d € Q.

This thesis uses mainly logarithms to base 2, and for the sake of convenience, we often omit the base and
simply write logx for log, x. Whenever we deal with logarithms of rational numbers, we follow a special
convention: we define log z to be 0 whenever 0 < z < 1 to simplify the case-by-case description. For brevity,
we also write llog(n) for |[log,(n + 1)| and write ilog(n) for [log, n] for all n € I.

The notation log(k) n denotes k iterations of logarithms, namely, define log(o) n = n, and log(k) n =
log(log(k_l) n) for k > 1. Also let log™ n = min{k € IV | log™ n < 1}. The function log* n grows extremely
slowly. For example, log* 16 = 3 and log* 65536 = 4.

The kth Harmonic number, Hy, 1s defined by Zle Zl

The binomuial coefficients are defined as follows: for n, &k > 0, if n > k, then,

and if k > n, then (}) = 0.

2.2.3 Graphs

A directed graph G is a pair (V| E), where V is a finite set and F is a binary relation on V' (i.e., a subset
of V. x V). The set V is called a verter set or node set, and its element is called a node or vertex. The set
E is called an edge set, and its element is called an edge. An undirected graph G = (V, E) is a variation of
directed graph whose edge set is a symmetric relation. For an undirected graph, we identify two edges (a, b)
and (b, a) and often write {a, b} as an unordered pair.

We say that a node t is adjacent to a node s if (s,t) is an edge in a graph.

A (finite) path of length k from a node s to a node ¢ in a graph G = (V, E) is a (finite) sequence
(vg, v1,...,) of nodes in N such that s = vy, t = vy, and (a;, a;41) € F for all ¢ with 0 < ¢ < k. In this case,
we say that the path p contains the nodes vg, v1, ..., vy and also the edges (vg, v1), (v1,v2), ..., (Vs—1,v). A
node t is reachable from a node s if there exists a path p from s to ¢.

A path i1s simple if all nodes in the path are distinct.

Given a path p = (vo,v1,...,v), a subpath p' is a subsequence of p; that is, for some 7, j with 0 < i <
J<k, p=(vi,vig1,...,05).

We can naturally extend the definition of graphs and paths to infinite graphs and infinite paths. For
example, an infinite path from a node s in a graph is an infinite sequence, rather than a finite one, starting
from s.

A graph G/ = (V', E') is a subgraph of G = (V,E) if V! C V and E' C E. Given a set V/ C V, the
subgraph of G = (V, F) induced by V' is the graph G’ = (V', E'), where E' = {(u,v) € E |u,v € V'}.

An undirected graph is connected if every two nodes are reachable from each other.

14 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

In a graph, a path p = (vg,v1,...,v;) forms a cycle if (i) vo = v and (ii) vo # v; for some ¢ with
0 <2< k. A graph with no cycle is said to be acyclic.

A forestis an acyclic, undirected graph, and a ¢reeis a connected, acyclic, undirected graph. In particular,
the tree that contains no nodes is called the empty tree or null tree.

A rooted tree 1s a tree in which one of the nodes is distinguished from the others; this distinguished node
is called the root of the tree.

Let # and y be any nodes in a rooted tree T' = (V, E') with root r. The node y is called an ancestor of
x if there exists a path from r to x which contains y. If y is an ancestor of x, then x is a descendant of y.
(Note that x is an ancestor and descendant of z itself.) The node y is called a parent of x if (y,z) is an
edge on the path from r to z. If y is a parent of z, then # is a child of y. Any two nodes which have the
same parent are siblings. A node with no children is called a leaf (or external node), while the other non-leaf
nodes are called wnternal nodes.

A subtree rooted at x is the tree induced by the set of all descendants of x.

The degree of a node x in a rooted tree 7' is the number of children of x in T'. The depth of a node x is

the length of the path from the root of T to . The height of T' is the largest depth of any node in T'.

2.2.4 Finite and Infinite Strings

An alphabet % is a nonempty, finite set. Given an alphabet X, a word or string over X is a finite sequence of
symbols from Y. The empty string is the unique string consisting of no symbols and is denoted by A. Let
us denote by X* the set of all strings over ¥ (of course, ¥* contains A), and for the sake of convenience, set
¥F to be ¥* — {A}, the set of all nonempty strings.

In this thesis, however, we consider only the binary alphabet ¥ = {0,1} (a string over {0, 1} is often
called a binary string) because this restriction does not affect any of our arguments.

The length of a string « is the number of symbols in ¢ and is denoted by |z|. For example, [01100| = 5,
and in particular, |A| = 0. For every n € IN, let X" (X7 %27 respectively) denote all strings of length n
(length < n, length > n, respectively). We note that a subset of ¥* is sometimes called a language over X.
For two strings @ and y, the concatenation of x and y is the string consisting of the symbols of z followed by
the symbols of y, and is denoted by zy (or sometimes # - y). For example, if + = 0110 and y = 11011, then
zy = 011011011. Given a string s, s¥.” denotes the set {sy | y € ¥"}. For a string « and a natural number
n, the notation z” is recursively defined by: 2% = A, and z"t! = z - 2" for n € N.

We assume the standard order on X*:
A<0<1<00<01l<10<11<000<001 <010<011<100< 101 <110< 111 <0000< ...

(Sort length-wise and then sort lexicographically.) With respect to this order, £~ denotes the predecessor
of x if one exists, and T denotes the successor of z. For example, 01107 = 0111 and 0110~ = 0101. This
ordering enables us to identify strings with natural numbers in the following fashion: let so = A, 51 = 0,
sz = 1, s3 = 00, and so forth. In general, let s, be the n-th string (N.B. A is the 0th string) of ¥* in the
order. Tt is easy to see that |s,| = llog(n).

2.2, FUNDAMENTAL NOTIONS AND NOTATION 15

It is convenient to define infinite strings as infinite sequences of symbols from X. We sometimes call a
string in X* a finite string to stress the finiteness of strings. For simplicity, X°° denotes the set of all infinite
strings.

We say that « is a prefiz of y, symbolically z C y, if zs = y for some string s. For a string « and a
natural number ¢ with ¢ < |z|, the notation z.; denotes the first ¢ bits of «, i.e., the string s such that
|s] = ¢ and s C 2. For the sake of convenience, whenever i > |z|, set ; = «. Furthermore, by x_,; we
mean the string s such that x = z_;_1s. Hence, v = z;_12_;.

Let f be a function on N. For a set S C ¥*, S is of density f(n) if ||S N X¥|| = f(k) for all k € N.

The complement of a set A, symbolically A, is ©* — A, and the symmetric difference of two sets A and
B, symbolically AAB, is (A — B)U (B — A). The disjoint union of A and B, symbolically A & B, is the set
{0z |z € AU {lz | z € B}.

Any subset of {0} or {1}* is called a tally set, and TALLY denotes the collection of all tally sets. A
set S is (polynomially) sparse if there exists a polynomial p such that ||S N X"*|| < p(n) for all n € N. By
SPARSE, we denote the collection of all sparse sets. By definition, TALLY C SPARSE.

Dyadic Rational Numbers. A real number r in the unit interval [0, 1] is uniquely identified with its
shortest binary representation, i.e., of the form

m o0
D a2+ b2,
i=0 j=1
where all a;’s and b;’s are in {0,1} (the term “shortest” is necessary because, for example, the binary
representation of the number 0.21s 0.1 as well as 0.0111---1---). We use the notation (@, - - -ag.by - b -)2
to denote this (finite or infinite) binary representation. This expression helps us identify a real number with
a pair of (finite or infinite) strings d@n, ---ag and by ---by - - - separated by “.”, the delimiter symbol. By
padding 0’s if necessary, we can view r as an infinite string in .

Let us define dyadic rational numbers as rational numbers with finite binary representations. Here are

examples: 9.25 1s a dyadic rational number and is identified with the string 1001.01, but 2.3 is not a dyadic

rational number because its binary representation is of the form (10.01001 - - -)2 and is infinite.

2.2.5 Functions

In general, we will be using n-ary (partial) functions. For a function f, dom(f) (domain of f) denotes the
set of elements from which f maps, and ran(f) (range of f) denotes the set of elements to which f maps.
We say that f is a (partial) function from A to B (or f maps from A to B), symbolically f : A — B, if
A = dom(f) and ran(f) C B, and that f is a (partial) function on A if f maps from A to A. A function f is
one-one (or injective) if, for any two elements z,y € dom(f), f(x) = f(y) implies = y, and [is called onto
(or surjective) if, for every element y € ran(f), there exists an element x such that f(#) = y. If a function
f is one-one and onto, then we call f a bijection (or bijective).

For a function f and an element y, in general, the notation f=1(y) (inverse image of y by f) denotes the

16 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

set {x € dom(f) | f(x) = y}; however, if this set is a singleton (i.e., ||[{z € dom(f) | f(x) = y}|| = 1), then
by convention f~1(y) denotes the element x such that f(z) = y.

The lambda notation in A calculus is a useful tool for describing functions by their values. Based on each
value f(z) of a function f, the lambda notation “Az.f(x)” denotes the function f itself. Here we shall see
some examples. The notation Ax.(clogz + d) expresses the function f defined as f(z) = clog z + d for all z,
and \z.26%"+d expresses the function f defined as f(z) = 267" +d for all 2.

For two functions f and g, provided that ran(g) € dom(f), the composition f o g expresses the function
h such that h(z) = f(g(x)) for all # € dom(g).

We say that f majorizes g, denoted by f > g, if dom(g) C dom(f) and f(z) > g(z) for all z € dom(g).
A function f is (weakly) increasing (or monotone) if, for every pair of elements z,y € dom(f), = < y
implies f(z) < f(y), and a strictly increasing function f is obtained simply by replacing the above condition
f(z) < fy) with f(z) < f(y). Similarly, we can define (weakly) decreasing functions and strictly decreasing
functions. A function f is unbounded if, for every x, there exists an element y > x such that f(y) > f(z).
A function f on ¥* is called length-increasing if |f(x)| > || for all € ¥*, and f is length-preserving if
|f(z)| = |=| for all z € T*.

A function f from dom(f) to R is conver if, for any z,y € dom(f) and any real number v € [0, 1],

fye+ (=) y <y fla)+ 1 =7)- f),

and f is concave if we replace the symbol < by > in the above inequality.

A function f on X* is polynomially honest (p-honest, for short) if there is a polynomial p such that
|z] < p(]f(x)]) for all z. Similarly, a function f on X* is exponentially honest (exp-honest, for short) if there
is a constant ¢ > 0 such that |z| < 2¢1/@)+¢ for all .

Traditionally, a function f on X* is called polynomially bounded (p-bounded, for short) if there exists a
polynomial p such that |f(z)| < p(|z|) for all strings . A function f from X* to R™ is called polynomially
bounded (p-bounded, for short) if there exists a polynomial p such that f(z) < p(|z|) for all = [36]. Note
that any composition of two p-bounded functions is also p-bounded. Similarly, ezponentially bounded (exp-
bounded, for short) functions are defined by replacing p(n) as above by an exponential or(n),

A function f from dom(f) to R is positive if f(x) > 0 for all x € dom(f). Given a subset S of dom(f),
we say that f is positive on S if f(z) > 0 for all z € S.

For any functions f and g mapping to R we denote by f x g, f + g, min{f, ¢}, and max{f, g} the
functions defined, respectively, as follows: for all #, (f x ¢)(x) = f(z) - 9(x), (f + 9)(x) = f(x) + g(z),
min{f, gH(z) = min{f(z), g(2)}, and max{,g}() = max{f(z), g()}.

For a function f from N to R¥, f is negligible if, for every positive polynomial p, it holds that f(n) < ol
for almost all natural numbers n.

For two integers a and b, the notation a|b means that there exists an integer ¢ satisfying b = ¢ - a. The
equivalence relation of congruence modulo n, is defined as follows: two integers a and b are congruent modulo
n if n|(a — b), and this is denoted by a = b (mod n).

Let f be a function from N (or R) to R, and let € R. If, for every real number € > 0, there exists a number

2.2, FUNDAMENTAL NOTIONS AND NOTATION 17

g €N (or #g € R) such that |f(y) — r| < e for all y in IV (or R) larger than zg, we write limy_ o f(2) = r.

Analogously, for an increasing function f from X* to R¥, the notation “lim;_ .. f(z) = r” means that
(i) f(z) <rforall z € ¥*; and

(i1) for every real number s with s < r, there exists a string « such that s < f(z).

2.2.6 Asymptotic Notation

We often use O(-) (big oh), o(-) (little oh), ©(-) (big omega), w(-) (little omega), and O(-) (theta) as sets
of functions. Let f be a function from IN to R*. We formally define five sets, O(f), o(f), Q(f), w(f), and
o(f):

1. O([) is the set of functions & such that, for some constant ¢ > 0, h(n) < ¢- f(n) for almost all n.
2. o(f) is the set of functions h such that, for every constant ¢ > 0, h(n) < ¢- f(n) for almost all n.
3. Q(f) is the set of functions k such that, for some constant ¢ > 0, ¢ - f(n) < h(n) for almost all n.

4. w(f) is the set of functions h such that, for every constant ¢ > 0, ¢ - f(n) < h(n) for almost all n.

5. 6(f) = 0() NQU).

To emphasize the variable n used for the function f, we also write O(f(n)) for O(f) and similarly for the

other four sets.

For example, An.2n € o(n?) but An.2n? ¢ o(n?); An.n?/2 € w(n) but An.n?/2 ¢ w(n?).

Definition 2.2.1 We define the following three notations:
1. noM = Usso O(n*).

2. 2000 = 5, O(28).

(1)

3. 277" = U 0(271).

Traditionally, the notations O(f(n)), etc. , are defined as “pseudo”-functions: the notation “g(n) =
O(f(n)),” for example, means that g is in O(f(n)). In this thesis, we follow this convention and loosely use
the notations O(-), etc. , as if they are “functions.” As an example, when we write that n! = O(\/ﬂ(%)”),
we actually mean that the function An.n! belongs to O(\/ﬁ(%)”)

2.2.7 Probability Measure

We begin with the formal definitions of probability theory.
A sample space €2 is an underlying set. This thesis uses a subset of X*° as a sample space Q. A o-field

(2,TF) consists of a sample space © and a subset [F of P(2) satisfying the following conditions:

18 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

(i) O e
(ii) & € F implies £ € F, where £ = Q — &; and
(i) {&}ien CTF implies J;cn & € T

Any set in IF is referred to as an event.

A probability measure Pr is a function from F to [0, 1] that satisfies the following conditions:
(i) forallset ACQ, 0<Pr[A] <1
(it) Pr[Q] =1; and
(iii) (Countable Additivity) for mutually disjoint events {&;}ien, Pr{U;cn & = 2 icn PrI&]

For an event £, the notation Pr[£] denotes the probability of £. A support of Pr is any F-set A for which

Pr[A] = 1.
The conditional probability of £ given & is denoted by Pr[&; | &] and is given by:
Pr[& N &)
Pr[&s)

assuming that Pr[&;] > 0.

A probability space is a triplet (2, F, Pr), where (Q,TF) is a o-field and Pr is a probability measure defined
on the sample space Q2. When € is clear from the context, Q may be omitted.

A collection of events {&;};cr, where I is an index set, is independent if, for all subsets S C I,
Pr[Nics &l = [lics Pri&i]; or equivalently, Pr&; | ;s & = Pr[&;] for all j € I Similarly, {&;}ier
is pairwise independent if, for any pair {i,j} C I, Pr[&; N E;] = Pr[&] - Pr[&;].

A (discrete) random variable X is a function over the sample space € whose range D is either a finite or
countable infinite subset of R such that, for all # € D, {w € Q| X(w) < «} € F. By identifying ¥* with IV,
we can introduce discrete random variables whose ranges are particular subsets of X*.

The expected value or expectation of a random variable X is denoted by F[X] and is defined by " . -
Pr[X = z].

In this thesis, we deal mainly with discrete probability measure on a o-field with a sample space 2 C X,
and the notation Pr[] will be reserved to denote the “uniform” probability measure. For more details on

probability theory, the reader may refer to a text devoted to the subject, for example [11].

2.3 Models of Computation

As a model of “computation,” we focus on Turing machines which were introduced by A. Turing and E. Post
in the 1930’s. This thesis uses the standard models of Turing machines with a finite number of semi-infinite
tapes (i.e., the tape has a leftmost square but is infinite to the right).

We shall informally use the terms “algorithms” and “algorithmically computable” in this thesis. Although
there is no precise definition for these terms, we stand on the common belief, known as Church’s Thesis,

that algorithms are described by Turing machines.

2.3. MODELS OF COMPUTATION 19

finite
control
head
input tape
01/0[0] |
head
1st work tape
head [| [0 |
2nd work tape
[T[] |
head
kth work tape
_lof faf | |

Figure 2.1: The hardware of a Turing machine

2.3.1 Deterministic Turing Machines

A k-tape off-line deterministic Turing machine is formally a sextuple (Q, X, g0, ACC, REJ,6) which consists
of (), a finite set of states; X, a tape alphabet with a special symbol for the blank; ¢q, an initial state;
ACC, a set of accepting states; REJ, a set of rejecting states; and J, a transition function from Q x ¥ to
Yl x QUACCUREJ x {R, N, LY. Figure 2.1 illustrates the hardware of a Turing machine.

Turing machines are casually called just machines. The function § is considered a program (or an
algorithm) for the machine, and we often identify a Turing machine with its program (or algorithm).

A configuration (or instantaneous description) of a machine M is a description which contains the contents
of each tape, the position of each tape head, and the state of the machine. The initial configuration is a
configuration in which the input tape contains an input, other tapes are blank, the internal state of the
machine is the initial state, and all head positions on tapes are the leftmost squares. An accepting (rejecting,
resp.) configuration of M on z is a configuration of M on x whose state is an accepting (rejecting, resp.)
state. A halting configuration of M is either an accepting or a rejecting configuration, i.e., a configuration
from which no other configurations can be reached by the transition function.

To describe how the machine works, we need a concept of “computation.”

Definition 2.3.1 (Computation) A computation of M on input z is a (finite or infinite) sequence of

configurations of M such that:

(1) it starts with the initial configuration of M on x;

20 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY
(ii) each step from a configuration to another configuration is made by the transition function; and

(iii) if finite, it ends in a halting configuration of M on x.

An accepting (rejecting, resp.) computation is a computation which terminates in an accepting (rejecting,
resp.) configuration.

A deterministic Turing machine M accepts an input « if there is an accepting computation of M on input
z; otherwise, M rejects x. Denote by L(M) the set of all strings which are accepted by M.

Let M (z) denote the output of a machine M on input z if it exists. The running time of M on input »
is the length of the computation of M on z, and we denote by Timeps(x) the running time of M on z. In

the case where the computation is not finite, we set Timeps(2) = oo.

Definition 2.3.2 (Time/Space Constructible) A function f on N is called time-constructible if there
exists a deterministic Turing machine M which, on input 1", terminates after exactly f(n) steps are made.
A function f on N is space-constructibility if there exists a deterministic Turing machine which, on input 17,

it marks the f(n)th square of the first work tape (among a finite number of work tapes).

2.3.2 Nondeterministic Turing machines

Another important model of computation is “nondeterministic” Turing machines. A nondeterministic Turing
machine is a variant of deterministic Turing machines with the exception that the transition function ¢ is a
map from @ x ¥¥ to P(X*~! x QU ACCUREJ x {R, N, L}*).

As for nondeterministic Turing machines, we alter the definition of “computation” to a set of “compu-
tations,” a so-called “computation tree.” A computation tree of M on input x is a tree whose nodes are
configurations of M on z, in which the root of the tree is the initial configuration, and the children of each
node are such configurations that are reachable from the node in one step by the transition function. All
configurations following each configuration by a single application of the transition function is called non-
deterministic choices if the number of such configurations is more than 1. An accepting (rejecting, resp.)
computation is a path from the root to a leaf which ends with an accepting (rejecting, resp.) configuration.

The accepting criteria of nondeterministic Turing machines is similar to that of deterministic machines
and is determined by the existence of an accepting computation. More precisely, the machine M accepts «
if there exists an accepting computation of M on input z; otherwise, the machine rejects x.

A nondeterministic Turing machine for which the number of accepting paths on each input is at most
one is called unambiguous [103].

In general, average-case complexity measure is sensitive to the definition of time-complexity of nonde-
terministic Turing machines (see [97]), and we should pay careful attention to the definition of the running
time of the machine when dealing with nondeterministic computations.

In worst-case complexity theory, the running time of a nondeterministic Turing machine is often defined

to be the minimal length of all accepting computation paths if one exists; otherwise, it is defined to be

2.3. MODELS OF COMPUTATION 21

1. For time/space constructible complexity bounds (such as “polynomial-time” or “logarithmic-time”), we
may assume that all computation paths on each input are of the same length, and by convention let the
running time be the maximal length of any computation path, since time-constructible complexity bounds
t guarantee that we can modify any machine having this bound to a machine for which the length of any
computation path is exactly . This i1s explained as follows: every time-bounded Turing machine is designed
in such a way that each has an internal clock (which does not access oracles), and this clock adjusts the
running time of the machine no matter what computation path it follows. We call the machines equipped
with internal clocks clocked Turing machines.

Summing up, there are three models of nondeterministic Turing machines together with their running-

time criteria:

(i) A model of nondeterministic Turing machines with traditional measurement of running time, namely,

the shortest accepting path if one exists, or else 1 (or equivalently, taking the shortest rejecting path);

(i1) A model of nondeterministic Turing machines with strict measurement of running time, that is, the

shortest accepting path if one exists, or else, the longest rejecting path;

(iii) A model of elocked nondeterministic Turing machines.

As long as the running time of a machine on an accepting computation path is bounded above by some
time-constructible function (most time-bounded complexity classes in worst-case complexity theory satisfy
this condition), all these definitions are essentially equivalent (neglecting constant slowdown). Since average-
case complexity theory does not require this condition, the choice of a model is very important and often
leads us to different consequences. In later chapters, we shall discuss the choice of models and possible
consequences.

Historically, Goldreich [30] first discussed the average running time of nondeterministic Turing machines
and used a model of nondeterministic Turing machines, the lengths of whose computation paths are measured
by some time-bounded deterministic Turing machines. His definition is actually equivalent to choosing model
(iii) as described above. Later Wang and Belanger [111], and also Schuler and Yamakami [97] presented
interesting results based on model (iii). In particular, Schuler and Yamakami [97] constructed an average-
case version of the (worst-case) polynomial-time hierarchy based on model (i), but the average-case hierarchy
obtained here does not seem to be a proper analogue of the worst-case hierarchy (it lacks some properties like
NPF = NP). In this thesis, we choose the most general model (i), even though the model does not seem to
provide the property that time-bounded nondeterministic computations can be simulated by space-bounded

deterministic machines of the same complexity.

Definition 2.3.3 (Running Time of Nondeterministic Turing Machines) For a nondeterministic
Turing machine M, the running time of M on input x, Timeys (), is defined to be the length of the shortest

accepting computation path of M on z if one exists; otherwise, it is defined to be 1.

22 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

2.3.3 Oracle Turing Machines

To speed up the computation of an algorithm or to make i1t as accurate as possible, we need a supplementary
source of information which the algorithm can retrieve and use. Such a source is called an oracle, and a
Turing machine equipped with a system retrieving information from an oracle is called an oracle Turing
machine. An oracle Turing machine makes a query to an oracle and receives its answer in a single step. We
start by describing those notions formally.

An oracle Turing machine is a Turing machine with the following additional devices: a distinguished tape,
a so-called oracle tape or query tape, and three distinguished states , QUERY, YES, and NO. A computation
(tree) of an oracle machine M with an oracle (set) on input x is defined in a way similar way to that for
“non-oracle” Turing machine except that it incorporates oracle queries. Initially the query tape is blank.
If the machine M enters the QUERY state, then in a single step, M queries a string to the oracle which
appears on the query tape; if this string belongs to the oracle set, then M enters the YES state; otherwise,
M enters the NO state. Immediately after each oracle query, the query tape becomes blank.

We can easily extend the definition of oracle Turing machines with set oracles (or oracle sets) into those
equipped with function oracles f. The oracle machine has the QUERY state and the YES state; if it makes
a query z to an oracle, then the oracle returns the value f(z) of the function f in a single step and the
machine enters the YES state; at the same time, the head of the query tape is moved to the leftmost square
of the tape.

Since oracle Turing machines with the empty oracle (i.e., the empty set) can be easily translated into
non-oracle Turing machines (because we know the oracle answers), we often identify such oracle machines
with non-oracle ones. In this sense, without loss of generality, we can view non-oracle Turing machines as
a special case of oracle Turing machines. Therefore, subsequent definitions will be stated only for oracle

machines without repeating similar definitions for non-oracle machines.

Definition 2.3.4 (Adaptive/Nonadaptive Query) An oracle Turing machine M is said to make
nonadaptive queries if, on each computation path, M produces a list (called a guery list) of all strings which

are possibly queried before the first query is made. Otherwise, M is said to make adaptive queries.

A query list provides us with sufficient information about which strings will possibly be queried in future
computations. We remark that it is not necessary for an oracle machine to query all the strings in the query
list.

Let Acc(M, A, z) denote the set of (codes of) accepting computation paths of M on input # with oracle
A, and similarly Rej(M, A,) denotes that of rejecting computation paths. Let Q(M, A, z,y) be the set of
strings queried by M with oracle A on input on computation path y. If M is deterministic, then we simply
denote by Q(M, A,) the set of all strings queried by M on input « with oracle A.

By L(M, A) we denote the set of strings accepted by M with oracle A, and we simply say that M with
oracle A recognizes (or accepts) a set B if B = L(M, A). For a machine M, M#(z) denotes the output of

a computation of M on input #. For a deterministic Turing machine M with an output tape (also called a

2.3. MODELS OF COMPUTATION 23

transducer), we say that M computes a function f if f(z) = M4 (z) for all z € ©*.

By Timef/[(x), we denote the running time of machine M with oracle A on input «. Similarly, SpaceAM(x)
denotes the tape space used by M with oracle A on input z. Technically speaking, there are two possible
definitions for SpaceAM (z) depending on whether the space of the query tape is counted. This possibly changes
the power of relativized space-bounded complexity classes, such as PSPACE. In this thesis, we take all
tapes including query tapes into consideration in order to measure the tape space used by the machine M

with oracle A.

2.3.4 Alternating Turing Machines

The notion of alternating Turing machines was introduced by Chandra, Kozen, and Stockmeyer [21] as an
extension of nondeterministic Turing machines.

Each machine is equipped with extra states, called V (universal) and 3 (existential). Each configuration in
a finite tree of computation for an alternating Turing machine is labeled as either universal (V) or existential
(3), according to the states of the machine. Next we define an accepting computation tree. First we

recursively determine the yes-configurations:

(i) a halting configuration is a yes-configuration if it is an accepting configuration;

(ii) a non-halting 3-configuration is yes-configuration if at least one of its children is so; and
(iii) a non-halting V-configuration is a yes-configuration if all of its children are so.

For convenience, configurations which are not yes-configurations are called no-configurations. An accepting
computation tree T" of M on input z is a subtree of a computation tree T' of M on z satisfying the following

conditions:

(i) all configurations in 7" are yes-configurations;

(ii) an existential configuration in 7" has one child node in 7'; and
(iii) a universal configuration in 7" has all of its children in T

The machine accepts an input if there exists an accepting computation tree (equivalently, the root of the
computation tree has a yes-configuration); otherwise, the machine rejects the input.

Alternation is the maximum over, all computation paths from the root to a leaf, of the number of times
in which different labels of configurations (i.e., 3- or V-configurations) change. Note that, by convention,
the initial configuration is assumed to contribute the first alternation. For example, nondeterministic Turing
machines have 1-alternation because all configurations are 3-configurations.

Here we shall introduce a new variant of alternating Turing machines, so-called “semi-deterministic”
alternating Turing machines, which embodies deterministic computations relative to some alternating Turing
machines. This notion is useful for describing the A-level of the polynomial-time hierarchy, for example (see

Section 2.5). A semi-deterministic alternating Turing machine is, roughly speaking, an alternating Turing

24 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

machine which puts an additional restriction on its computation tree. For simplicity, we assume that the
number of nondeterministic choices is 2. Then, any computation path can be encoded as a binary string.
We label each computation path with this code to distinguish individual computation paths. For brevity,
write s7* to denote the jth string of the set ¥ in the standard order (N.B. 0™ is the Oth string of ¥).

Definition 2.3.5 (Semi-Deterministic Alternating Turing Machines) A semi-deterministic Tur-
ing machine is an alternating Turing machine with the following constraints for the first three series of V-
and J-configurations of the computation trees 7; of the machine on each input z.

On input z, the machine starts with an 3-state, and during this state the machine produces computation
subpaths. Let p; be any such computation subpath and suppose that the machine makes k queries. By
the above coding scheme, the subpath p; is labeled by b = byby - -bg, where b; € {0,1}, 1 < i < k. Next
the machine enters an V-state in which it produces exactly 2™ branches for some m > log k, each of which
is labeled by an m bit string ¢ = ¢i¢a - ¢, where ¢; € {0,1}, 1 < i < m. Let ps be any such a branch
following p;. Consider the current configuration, called critical, and denote it by d;, where [is the label b¢
attached to the subpath p1ps. At the next step, the machine chooses either an 3-state or V-state, depending
on the label { (= b1 - -bgeq - - - ¢). The machine enters an I-state if b; = 1 and ¢ = 5}” for some j; otherwise,
it enters an V-state.

All critical configurations of the computation tree 7T, satisfy the following two conditions on their la-
bels with respect to yes- or no-configurations: for any two critical configurations d; and dj, where | =
by bgey-em and I = by - bjc) - e, assuming that ¢ = s and d = 55»”1 for some j with 0 < j <
min{k, &'},

(1) ifby---bjpr =07 ~b}+1, then configurations d; and d; have the same label: and
(i) ifby---b; =01 ~b"7 but by ---bjp1 £ b - ~b"7+1 then configurations d; and d;r have different labels.

A semi-deterministic Turing machine M is said to have k-alternations if the maximal alternation of all
computation trees of M is at most k + 2 (because the first two alternations are fixed and should not be

counted).
We define the running time of an alternating Turing machine as follows.

Definition 2.3.6 (Running Time of Alternating Turing Machines) The running time of an alter-
nating Turing machine on input z is the minimal height of accepting computation trees of M on z if M

accepts x; otherwise, the running time is defined to be 1.

2.3.5 Worst-Case Time/Space Complexity

In worst-case complexity theory, the time (or space) complexity of an algorithm is often considered as a
function defined on the natural numbers N because we are interested only in the instances of each length

which are hard to compute.

2.4. RANDOMIZED ALGORITHMS 25

Definition 2.3.7 Let M be an oracle Turing machine and A a set. Let ¢ be a function on N, and let 7 be

a set of functions on N.

1. The Turing machine M with oracle A is called ¢-time bounded (or a t-time Turing machine, for short)
if Timeﬁ(r) < t(|z]) for all . Similarly, M with oracle A is t-space bounded (or a t-space Turing
machine) if Spaceq; () < t(|z|) for all z.

2. The oracle machine M is T -time bounded (or a T-time Turing machine) if M with oracle A is t-time

bounded for some ¢ in 7. The notion of a T -space Turing machine is defined analogously.

Here we use conventional abbreviations: if 7 is the set of polynomials, we say that M is polynomial-time
(or polynomial-space) bounded, and similarly, if 7 is the set of exponentials (linear-exponentials, logarithms,

resp.), M is called exponential-time (linear-exponential-time, logarithmic-space, resp.) bounded.

2.4 Randomized Algorithms

In this thesis, we would like to use two different terms, randomized Turing machines and probabilistic Turing
machines, to cope with randomized algorithms.

A randomized Turing machine 1s a model of randomized computation and a variant of a nondeterministic
Turing machine with no accepting criteria. Intuitively, we equip a machine with a special mechanism for
generating an unbiased coin flip in one step which determines the choice of the next configurations. More
precisely, a randomized Turing machine is a Turing machine with a distinguished state, called coin-tossing
state, in which the finite control unit specifies two possible next states. The (finite or infinite) computation
of a randomized Turing machine is determined by its input as well as by the outcomes of the coin tosses
performed by the machine.

We can view randomized Turing machines as partial functions with two variables, one of which is a
“usual” input initially written on the input tape, and the other of which is a random input (or random seed),
that is a binary sequence representing the outcomes of the coin tosses. Following Blass and Gurevich [12],
we shall formalize this model below.

A randomized Turing machine M is equipped with an auxiliary semi-infinite read-only tape, called a
random tape which may consist of an infinite sequence r of “random” bits (i.e., r € X°). The head on
the random tape can move only to the right and cannot stay at the same square after the machine reads a
symbol on the tape. The machine’s access to the random tape corresponds to a coin-flip, and we may say
that the machine flips a (fair) coin when it accesses the random tape. For each infinite random sequence r,
let Readps o (r) be the initial segment of » that is read by M on input x during its computation. Note that

if a computation is finite, then Readps o (r) is also finite, but not conversely. Let the sample space Qar(z) be
Qur(x) = {Readpr () | 7 € 2},

Recall that m is the Lebesgue measure on the line R. We define the probability measure Pr on the sample

26 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

space Q7 (x) as follows: for any event F C Qpr(x),
Pr[E]=m({r € % | Readn . (r) € E})

by identifying [0, 1] with £°°. Throughout this thesis, we use Pr[-] to denote this probability measure. In

particular, if event £ consists only of finite strings, then

Prig] =Y 27"l
seE

Abusing notation, we let Q3 denote the set {(x,s) | s € Qar(x)}. (Note that Qpr is not a sample space.)

We shall define the running time of the machine M on input # as follows. For any input (z,r) € ¥* x £,
let Ths(x,r) denote the time taken by M on input z and random input ». Whenever M does not halts, let
Ty (z,7) = 0co. Next let Timeps(z;-) to be the (partial) function from Qs (z) to N such that Tyr(z,r) =
Timens (2; Readpr (1)) for all » € ¥°°. For convenience, if (z,7') & Qar, then Timeps(x;) is undefined.
Unless stated otherwise, the notation Azs.Timeps(x;s) is used to mean the total function defined as above
from I'py to NU4.

For each input z to a randomized Turing machine, let us denote by M (z) a random variable over the
sample space Qur(x). Let @ be a property on {0,1}. Then we denote by Pry[Q(M (z))] the probability
that Q(M(x)) holds. For the sake of convenience, we also use the notation M(x;r) to mean the output
of a computation by M on input # with random seed r when r is in Qur(2). In the case where r ¢
Qar (), let M(z;7) be undefined. Thus, M (z;r) is a partial function. The notation Pr;[Q(M (z; s))] and
Pr,[Q(M(x;s)) | s € Qar(x)] are also used to denote Prp[Q(M (z))].

2.4.1 Random-Input Domains

Blass and Gurevich [12] created a general framework for the average analysis of randomized algorithms based

on the notion of “dilations.” Here we take a simplified approach.

Definition 2.4.1 (Random-Input Domain) A subset T' of ¥* x X* is called a random-input domain
if, for all z,s,¢ € ¥, (z,s) € T, s C s, and s # s imply (z,s') € T. For each string z, we set
Pe) = {s | (x,5) € T},

It is important to note that I'(x) consists only of finite strings and that it may not be a sample space

with respect to Pr because Pr[I'(z)] < 1.

Definition 2.4.2 (Rarity Functions) [12] Let T' be a random-input domain. The rarity function of T

is denoted by Ur and defined by
1

B ZsEF(@') 2—|s|

for all . If the rarity function Ut satisfies Up(z) = 1 for all #, then we call T almost total.

Ur(x)

2.4. RANDOMIZED ALGORITHMS 27

In other words, 1/Ur(z) = Pr[['(2)].
For a randomized Turing machine M, let Tay = {(z,s) € Qpr | s is finite}. In particular, when T'ps is
almost total, there is no need to differentiate between I'pr(2) and the sample space Qs () since Pr[['y ()] =

Pr[Qu(z)] = 1.

Definition 2.4.3 (Random Functions) A random function f is a function from a random-input domain
to RT°. A random function f with its random-input domain I' is called almost total if I' is almost total and
Pr,[f(z,s) < oo | s € Qu(x)] = 1, where the subscript s in this equation emphasizes the random variable
over Qu7(z). For a random function f with its random-input domain T', the (conditional) expectation of f

on input z, symbolically Es[f(z,s) | s € T'(x)], is defined by

> Ur(x) - fla,s) - 2710

sel(x)

For example, the partial function Azs.Timeps(x;s) for a randomized Turing machine M is a random

function from Qs to N.

2.4.2 Probabilistic Turing Machines

The notion of probabilistic Turing machines was proposed by de Leeuw, Moore, Shannon, and Shapiro [23]
in 1955. Pioneer works on probabilistic Turing machines were done by Gill [28] and Santos [86].

A probabilistic Turing machine M is a randomized Turing machine with the following accepting criteria:
for every z, either Px,[M(z;s) = 1| s € Qu(x)] > 5 or Pr,[M(x;5) = 0] s € Qpr(z)] > £ [28]. We say that
M accepts if Pry[M(z;s)=1|s € Qu(x)] > 5, and M rejects x if Pr,[M(z;5) =0]s € Qup(x)] > 1. By
this definition, the rarity function Ur,, of I'ys is bounded above by 2 because

1
Ury, (l‘)

N | —

= Z 2715l = Pr[Iy(2)] > Pry[M(z;s) halts | s € Q(2)] >
s€la(z)
For a probabilistic Turing machine M, let L(M) denote the set of all strings which are accepted by M.
We say that M recognizes D if D = L(M).
Let D be the set recognizable by a probabilistic Turing machine M. The error probability of M for D is
the function eyr defined by

em(x) = Pras[M(z) # xp ()],

where xp is the characteristic function for D. Clearly eps(z) < % We say that M recognizes D with bounded
error probability [28] if there is a constant € with 0 < ¢ < % such that epr(2) < ¢ for every x. We simply call
M a bounded-error probabilistic Turing machine if M recognizes some set with bounded-error probability.
A probabilistic Turing machine M 1s said to make a one-sitded errorif it satisfies the additional condition:
if M rejects z, then all of its finite computation paths terminate in rejecting configurations. Such a machine
is sometimes referred to as a random Turing machine. In contrast, the previous probabilistic Turing machines

are sald to make two-sided errors.

28 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

Another type of measure was given by Gill [28]. For a probabilistic Turing machine M, let D be the set
accepted by M. Set

Timel, (2) min{n | Pr,[M(z;s) = xp(x) within n steps | s € [p(#)] > £} if one exists,
imeys(x) =
M 0o otherwise.

Note that the term T'pr(2) can be replaced by Qar(z) because Pry[M(z) = xp(x)] > 1/2.
A relationship between two measures Azs. Timepys (2; s) and Az. Time” (z) is best described in the following

lemma.

Lemma 2.4.4 [28] Let § be a real number satisfying 0 < § < 1. For every bounded-error probabilistic
Turing machine M, there exists a constant ¢ > 0 such that Time}, (x) < ¢- B [Timeys (x;5)° | s € Tar(x)]H/?

for all strings x. In particular, Timejy; (z) < ¢ - Es[Timeps(z;s) | s € Tar(2)].

Proof. Let ¢ be the error probability bound of M. Hence, 0 < € < % Let ¢ = ﬁ and ¢ = ¢!/?. For

simplicity, write h(z) = E [Timeys (x;5)° | s € Tar(x)].
Let « be an arbitrary string. By Lemma A .1,

Pr,[Timey (x;5)° > ¢-h(x) | s € Tpr(2)] < 1
c

This is equivalent to

Pr,[Timey (z;5) > ¢ - h(z)/? | s € Tpr(2)] < %
Let D be the set accepted by M.
Pr,[M(x;s) # D(x) in time ¢ - h(2)/° | s € Ty (2)] < Pry[M(z;s) # D(z)] < e
The probability that M (x;s) = D(z) in time ¢ - h(x)'/? is estimated by

Pr,[M(z;s) = D(x) in time ¢ - h(2)"/? | s € Ty ()]
= 1—Pr,[M(z;s) # D(z) in time ¢ - h(x)*° | s € Tpr ()]

—Pr,[Timey(2;5) > ¢’ - h(z)*° | s € Ty ()]

1
> 1l—¢e——
C
1— 2¢ 1
= 1— — = —.
‘T 2

By the definition of Time};(2), we conclude that Time}, (x) < ¢ - h(z)'/?, that is:

Time}, (2) < ¢ - Ey[Timeyr (2;5)° | s € Dar(2)]H°.

We finish this section by introducing the following terminology for probabilistic Turing machines.

2.5. WORST-CASE COMPLEXITY CLASSES 29

Definition 2.4.5 (Time Complexity) A probabilistic Turing machine M is called ¢-time bounded (or
a t-time Turing machine) if Time}, (z) < ¢(|z]) for all . For a set 7 of functions, M is T -time bounded (or

a T -time machine) if M is t-time bounded for some t € T.

2.5 Worst-Case Complexity Classes

For years, theoretical computer scientists have been interested in resource-bounded computations and have
studied their complexity and structural properties. In this section, we shall review central concepts in the

theory of worst-case complexity.

2.5.1 Computable Functions

One of the most natural concepts in worst-case complexity theory is “polynomial-time computability.” A
function f on ¥* is polynomial-time computable (P-computable, for short) if there is a deterministic Turing
machine with one input tape and one output tape (i.e., a transducer), which computes f in time polynomial
in terms of length of the input. Denote by FP the collection of all polynomial-time computable functions.

To study algorithms on different objects, such as graphs, sequences, circuits, etc., we use an encoding of
objects into strings; the encoding must be effective and secure. In this thesis, we use Regan’s paring function
[85] as the basis of encoding and extend the function to multi-functions. Formally, a pairing function is a
bijection from X* x ¥* onto X*.

First recall that the notation = denotes the predecessor of string « in the standard order on ¥* unless

z 18 the empty string.

Definition 2.5.1 (Paring Function) The function (-,) from ©* x X* to X* is defined as follows: for
all pairs (z,y) € * x X*,
d(x)y if lyl <1,

(z,y) = d(x)is[(y~)] otherwise,

where d(A) = A, d(0z) = 00d(z), d(1z) = 11d(z), i2[0x] = 01z, and és[1z] = 10 for all .
Below we list without proofs several important properties of this paring function:
(i) (,) is monotone, i.e., z <z’ and y <y imply {x,y) < (&', y').
(i1) () is computable in linear-time in the lengths of # and y.
(i) (0",y) > (0™, z) if and only if n+ |y| = m + |z|, n > m, or y > z.
(iv) 2|z + |y| < [z, y)| < 2|z|+ |y| + 1 for all and y.

(v) For any increasing function f on X*, (f(z),z)” > (f(z7),z~) for all x.

30 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

This paring function is recursively generalized to a bijection from (X*)* onto ¥* as (xy,za, -+, 2) =

(x1,{xa, -, xg)). Tt is clear that:

k=1 k—1
22 il + |on] < K21, .. 20)] < 22 il + |os]+ 1.
i=1 i=1

2.5.2 Complexity Classes

A complexity class is a collection of subsets of X*. For a complexity class C, the complement of C, denoted

by co-C, is the collection of sets S such that ¥* — S isin C.

Definition 2.5.2 For a function ¢ on N, let DTIME(¢), NTIME(¢), and DSPACE(#) denote the class
of all sets recognizable by deterministic ¢-time, nondeterministic ¢-time, and deterministic ¢-space Turing
machines, respectively. Similarly, let BPTIME(?) denote the class of sets recognizable by #-time bounded
probabilistic Turing machines with bounded error probability, and let RTIME(t) denote the collection of
sets computable by one-sided error, probabilistic (i.e., random) ¢-time Turing machines. For a set T of
functions, let DTIME(T) = |J;c7 DTIME(t). In a similar fashion, we define NTIME(7), BPTIME(T), and
DSPACE(T).

Using these notations , we can introduce several important complexity classes. For deterministic classes,
we use the following basic complexity classes:
1. P =DTIME(n®M) (polynomial-time).
2. E = DTIME(2°() (linear-exponential-time).
3. EXP = DTIME(?”O(I)) (exponential-time).

A set Sin P is said to be polynomial-time computable (P-computable, for short). Similarly, we use the ter-
minology exponential-time computable (EXP-computable, for short) and linear-exponential-time computable
(E-computable, for short), respectively, for sets in EXP and in E.

For space-bounded complexity classes, we use:
1. PSPACE = DSPACE(n°™M) (polynomial-space).
2. ESPACE = DSPACE(2°() (linear-exponential-space).

It is worth noting that PSPACE is closed under complement, i.e., PSPACE = co-PSPACE.

For nondeterministic classes, we set:
1. NP = NTIME(n®W),

2. NE = NTIME(2°(),

(1)

3. NEXP = NTIME(2""").

2.5. WORST-CASE COMPLEXITY CLASSES 31

Interestingly, NP-sets have the following characterization by logical terms: a set A is NP if and only if there
exists a set B € P and a polynomial p such that A = {# | Jy[ly| = p(|z|) A {z,y) € B]}.

For probabilistic classes, let:
1. RP = RTIME(n°™M) (random polynomial-time).
2. RE = RTIME(n°W) (random linear-exponential-time).
3. BPP = BPTIME(n°(")) (bounded-error probabilistic polynomial-time).
4. BPE = BPTIME(2°()) (bounded-error probabilistic linear-exponential-time).

The class ZPP (zero-error probabilistic polynomial-time) is defined by RP N co-RP.

It is important to note that DTIME(O(n)) # NTIME(O(n)) [82]. This is the only separation result we
have known until now.

Other important complexity classes are UP and PP. The class UP (unambiguous polynomial time)
is defined by polynomial-time unambiguous Turing machines. The probabilistic class PP (probabilistic
polynomial time) consists of sets which are defined by polynomial-time probabilistic Turing machines whose
error probability is < 1/2. Actually, the value 1/2 can be replaced by any real number ¢ satisfying 0 < ¢ < 1.
By definition, P C UP C NP and P C RP C BPP C PP.

Using the notion of oracle Turing machines, we can introduce relativized complexity classes. For a set
S and a complexity class C, the notation C° (C relative to S) denotes the class naturally obtained from
the definition of C with the help of S as oracle, and C? (C relative to D) denotes the union of all C* for
any S € D. All complexity classes defined above are naturally relativized using the notion of oracle Turing
machines, such as P4, NP4, BPP4, RP4, UP“, ctc.

As mentioned before, the empty oracle set does not change the computational power of the Turing
machines; thus, we have P? = P, NP? = NP, etc. We remember an important result due to Zachos (see,
e.g., [123]) that BPPBFF = BPP.

Let #P (pronounced “sharp P” or “number P”) be the collection of all functions on X* which are
computed by polynomial-time counting Turing machines. It is not difficult to see that f is in #P if and
only if there exist a set A € P and a polynomial p such that f(z) = ||[{y € ZPU=D | (x,y) € A}|| for all .

The counting of solutions is relevant to probabilistic computation. The following result shows a relation-

ship between these two notions.
Lemma 2.5.3 [2] P#P = PPP 4nd FP#F = FPFF.

Proof. First we show the inclusion PP C P#F. This inclusion is easily seen as follows. For a set A € PP,
there is a probabilistic Turing machine M. We modify M so that all computation paths of M on each input
x are of the same length, say p(z). The success probability of M on x is equal to the ratio of ||Acc(M, z)||
to 2°(). Let us define f(x) = ||Acc(M, z)|| for all z. Obviously f € #P. Using this f, we can determine in
polynomial time whether 2 - f(z) > 27(®) which means x € A. Therefore, A belongs to P/ C P#P,

32 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

Next we shall show the other inclusion that #P C FPFF; thus, we have P#F C PPP,

Take a #P-function f. There exists a polynomial-time nondeterministic Turing machine M such that,
for every z, f(z) equals the number of accepting computation paths of M on input . Take a polynomial p
and assume that the number of nondeterministic computation paths of M on input z is exactly 2°(#D (this

is always true if we pad extra nondeterministic, rejecting paths).Clearly 0 < f(x) < 20D for all z.

We then define the set A = {(s;, z) | [|[Acc(M, z)|| > i} so that:
flz) = max{i e N | (s;,2) € A}.

A binary search technique helps us compute the value f(x) deterministically by simply querying polynomially-
many strings of the form (s;, z), 0 < ¢ < 2r(Iel) to oracle A. Therefore, we have f € FP4.
In the rest of the proof, we must show that A is in PP. Let us define the following randomized Turing

machine N:

begin randomized algorithm for N
input (s;, z)
if i = 0 then accept and halt
generate a bit b (b € {0,1}) at random
if b = 0 then simulate M on input # and halt
generate a string y of length p(|#|) at random
(assume that y is the jth string in $2U2D where 022D is the Oth string)
if j < 2°0zD) — then accept else reject

end.

This machine N obviously runs in polynomial time because M does so. It is also easy to see that, for each

(s,),

N | =

(siyx) € A<= Pry[N({(s;,2)) = 1] >

Hence, A € PP. a

A set S isin @P (pronounced “parity P”) if there exist a polynomial p and a set A € P such that, for
each #, x € S if and only if |[{y € (=D | (z,y) € A}|| is odd [81]. We remark that UP C @P. A set
S is near-testable if there exists an f € FP such that, for all nonempty strings #, f(z) = xs(2) + xs(x™)
(mod 2). Let NT denote the collection of all near-testable sets [31]. Tt is known that P C NT C &P and
NT is also included in ENPSPACE [31]. It is also known that P%P = P [18] and NP C RP®F [105].

The class P /poly consists of all sets A such that there exist a p-bounded function f from N to ¥* and
a set B € P satisfying A = {x | (», f(|z])) € B}. This class is also known as the collection of all sets
computable by (non-uniform) families of polynomial-size circuits.

A set S'isin APT (almost polynomial time) [71] if there exists a polynomial p and a deterministic Turing
machine M which accepts S such that the set {« | Timeps(z) > p(|x|)} is sparse.

2.5. WORST-CASE COMPLEXITY CLASSES 33

2.5.3 Worst-Case Hierarchies

We shall define several important hierarchies in worst-case complexity theory.

Definition 2.5.4 (Polynomial Time Hierarchy) [72, 101, 118] The polynomial-time hierarchy con-
sists of the following complexity classes: Al = X = I = P; A} = Pzz—l; = NPEE—l; and

IT! = co-X} for k > 0. We also use the cumulative polynomial-time hierarchy PH = Ukzo AL

Note that £} UTIL C AE_H C EE_H OHE_H for all & > 0 (see [101]). Tt is known that if NP C BPP, then
NP = RP [52] and also PH = BPP [123]. A recent achievement is Toda’s theorem [102] that PH C PFPP.

For a function f on N and a set A, let PACU)] be the collection of sets B which are computed by a
polynomial-time deterministic oracle Turing machine M with oracle A such that the number of queries by
M on input x is bounded above by ¢ - f(n) + d, where ¢ and d are constants depending only on M. For a
class C of sets, set PCLOU ()] to be the union of all PACU)] for every A € C. In particular, we write)%
for PEk-110(ogn)]

Moreover, we define two hierarchies over E and EXP as follows.

Definition 2.5.5 (Exponential-Time Hierarchies) cf. [4]

1. The linear exponential-time hierarchy is defined as follows: Af = 2§ = IIj = E, and for each k& > 0,
A$ =EZ%, B¢ = NE¥i-1 and II§ = co-35. Let EH = |J, ., AS.

2. The exponential-time hierarchy is defined as follows: AFY = X7 = II;"¥ = EXP, and for each
k>0, AP = EXPT £2F = NEXP™ and I = co- 2P, Let EXPH = | J,, APP.

We next consider alternating Turing machines.

Definition 2.5.6 Let ATIME(¢(n)) be the class of all sets which are computed by alternating Turing
machines in time ¢(n). We also define two alternation-bounded classes. Let ATIMEA(k(n),t(n)) be the
class of all sets computed by semi-deterministic alternating Turing machines with at most k(n)-alternations
in time #(n). Similarly, let ATIMEE(k(n),t(n)) be the class of all sets computed by alternating Turing
machines, starting with existential states, with at most k(n) alternations and in time ¢(n). For sets K
and 7 of functions, we define ATIMEE(IC, T) = Urex Uier ATIMEE(k(n),t(n)), and ATIMEA(}", 7) and
ATIME(T) can be defined similarly.

All three hierarchies introduced above are characterized by alternating Turing machines with constant-

alternation.

Lemma 2.5.7 Let k> 0. Then,

1. AR = ATIME® (k, n9(M), =P = ATIME®(k, n°(1)), and PSPACE = ATIME(n®().

34 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

2. A§ = ATIME® (k,2°0") and 25, = ATIME® (k, 2°(")).

(1)

3. AP = ATIME® (k,2°°") and 3P = ATIME® (£, 27"").

Proof. Here we show only the claim for AL. For aset A € A}, take a deterministic oracle Turing machine
M which is p-time bounded and an oracle set B € 3} | (if k = 1, then let B = @) such that A = L(M, B),
where p is an increasing polynomial. Since B € X} |, there are k-alternation bounded polynomial-time
alternating Turing machines Ny and N; which recognize B and B, respectively. Now we construct a semi-
deterministic alternating Turing machine which recognizes A as follows: on input x, simulate M on input
z except for oracle queries; whenever M queries y;, guess its oracle answer ans(y;) and store values y; and
ans(y;); then universally choose [logp(n)] bits ¢, and if ¢ is the ith element of X1°8((?)) then erase all
symbols except y; and ans(y;), and finally simulate Ny on y; if ans(y;) = 0, or else, simulate Ny on y;.
Conversely, take a polynomial-time semi-deterministic alternating Turing machine M. We build a de-
terministic oracle machine M’ and an oracle set B such that L(M) = L(M, B). Step by step, we decide
a computation path of M on input x which leads to an accepting configuration of M on z if one exists.
Assume that by, -, by, are determined, and M’ is at the (m + 1)th node ¢ which has two children ¢g, ¢;.
To decide which child node to choose, we follow the procedure: follow the leftmost path until M enters a
universal state, and then choose the path labeled with the (m+ 1)th string; letting p be a label of this path,
query a string (z, p); if the oracle answers “yes,” then let by, 41 = 1, and otherwise, let by, 11 = 0; then choose

Cp and go into the next node.

m41
Oracle set B is defined by the following algorithm: on input {(z, p), simulate M on x and deterministically
follow a computation path labeled with p and then simulate the rest of the computation tree 7. Since T has

(k — 1)-alternation, B belongs to ATIMEE(k —1,n°M) = 2P _,. Clearly, we have L(M) = L(M’',B). O

The relationship between the polynomial-time hierarchy and the linear exponential-time alternation hi-

erarchy is summarized as the following lemma.
Lemma 2.5.8 For each k >0, TALLY N X} C A} if and only if A = 2¢.

Proof. Use Book’s tally-encoding technique [14]. For a set A, define a tally part of A as Tally(A) =
{0™ | the binary representation of n is of the form lw and w € A}. Tt is not difficult to see that A €
ATIME® (k, 29) if and only if Tally(A) € ATIME®(k, n®(1)). Hence, A € X% if and only if T'ally(A) € T
A similar equivalence relation also holds between Af and A}. The lemma, therefore, follows from these

characterizations. i
Schéning [89] has constructed two hierarchies within NP.

Definition 2.5.9 (Low and High Hierarchies within NP) [89] TLet n > 1.

2.5. WORST-CASE COMPLEXITY CLASSES 35

1. The low hierarchy within NP is defined as follows: LAP = {4 € NP | AL(A) C AP} and LXEP =
{A€NP|Bp(4) C BB},

2. The high hierarchy within NP is defined as follows: HAP = {A € NP | A}, C AF(A)} and HX] =
[AeNP |32, CSR(A)}.

2.5.4 Polynomial-Time Reducibilities

Polynomial-time reducibilities play a very important role in computational complexity theory. We briefly
sketch such reducibilities.

A set D is called polynomial-time many-one reducible (p-m-reducible, for short) to a set £, denoted by
D <t FE, if there exists a function f in FP such that, for all #, x € D if and only if f(x) € E. This
function f is called a (polynomial-time many-one) reduction and is said to reduce D to E. Furthermore,
if f is one-one, then we say that D is polynomial-time 1-1 reducible (p-1-reducible, for short) to F. A set
D is polynomial-time Turing reducible (p-T-reducible, for short) to F, denoted by D <. E| if there exists
a deterministic polynomial-time Turing machine M such that D = L(M, E). A set D is polynomial-time
truth-table reducible (p-tt-reducible, for short) to E, denoted by D <}, E| if there is a polynomial-time oracle
Turing machine M which with oracle F makes nonadaptive queries such that D = L(M, E).

A set D is polynomial-time many-one (Turing, truth-table, resp.} complete, p-m-complete, for short,
(p-T-complete, p-tt-complete, resp., for short) for a class C if D € C and every set in C is p-m-reducible
(p-T-reducible, p-tt-reducible, resp.) to D. For a complexity class C, we simply say that D is C-complete if
D is p-m-complete for C.

One of the most useful NP-complete problems is the bounded halting problem, BHP, defined as follows:
assuming that {M;};cn is an effective enumeration of all nondeterministic polynomial-time Turing machines,

let
BHP = {(s;,#,1") | M; accepts x within time n }.

We quickly sketch the proof that BHP is NP-complete. To see that BHP € NP, it is enough to check the

following algorithm:

begin nondeterministic algorithm for BHP
input y
if y is not of the form (s;, z,1™) then reject
(Now assume that y = (s;, z,1™))
simulate nondeterministically M; on input z for n steps
if M; does not halt then reject

end.

The running time of this algorithm is bounded by a polynomial in n since each simulation of machine M;
does not exceed n steps. Hence, BHP € NP. Next we show that BHP is NP-hard. For any NP set A, take

a nondeterministic Turing machine M which recognizes A in polynomial time. Also take a strictly increasing

36 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

polynomial p such that Timeps(z) < p(Jz]) for all strings «. Let ¢ be an index such that L(M) = L(M;).
Now let us define f as f(z) = (s;,2, 170Dy The function f reduces A to BHP and is clearly one-one,
p-honest, increasing, length-preserving, and P-computable.

Notice from the above proof that every NP set is p-1-reducible to BHP by p-honest, monotone, length-
preserving reductions.

Another typical example of NP-complete sets is the satisfiability problem SAT that is defined as
SAT = {(F) | F' is a satisfiable formula },

where (I} denotes an appropriate binary encoding of a formula F. There is a p-honest, one-one reduction
from BHP to SAT; therefore, SAT 1s also NP-complete.
The Turing closure (many-one closure, truth-table closure, resp.) of a class C is the collection of sets

which are polynomial-time Turing (many-one, truth-table, resp.) reducible to some sets in C.

Lemma 2.5.10 Every set in ALY, k > 0, is p-m-reducible to some set in A%. That is, the many-one

closure of A, is exactly ALY.

Proof. By a padding argument. Assume that A is a set in A}, There exist a polynomial p and a
semi-deterministic alternating Turing machine M which, on input z, recognizes A in time 2°U#D with k-
alternations. Let N be another machine that, on input z of the form z017(*D simulates M on input .
By definition, it follows that N(xOlp(lxl)) = M (x) for all . Tt is important to notice that N is 20()_time
bounded. For the desired reduction, define f(z) = 2017U=D for all z. a

Two sets A and B are called polynomially isomorphic (p-isomorphic, for short) if there exists a P-
computable, p-invertible bijection f which reduces A to B. This reduction f is called a polynomial-time
isomorphism (p-isomorphism, for short). Berman and Hartmanis [10] raised the question of whether NP-
complete sets are all p-isomorphic. This 1s known as the “isomorphism conjecture.”

A set S is P-printable if there is a P-computable function f such that f(0”) outputs the list of all strings
in SNX™. Tt is known that a set A is P-printable if and only if A is p-isomorphic to some tally set [1]. Tt is
easy to see that if P = NP, then all sparse sets in P are P-printable [1].

A set S is (Turing) self-reducible if there exists a deterministic oracle Turing machine M such that:
(i) S=L(M,S); and
(i1) On every input z, M queries only strings whose length is smaller than |z]|.

For example, SAT and BHP are both self-reducible.

2.5.5 Complexity Cores

We shall review a notion of complexity cores and their existence shown by Book and Du [16].

2.6. ONE-WAY FUNCTIONS 37

Definition 2.5.11 (Complexity Cores) Let A be a set and let C be a class of sets. An infinite set H
is a complexity core (or hard core) for A with respect to C if, for every set C'in C, if C' C A, then C N H is
finite. A complexity core H 1is called proper if H C A.

Lemma 2.5.12 [16] Let C be a recursively enumerable class of recursive sets. If C is closed under
finite union and finite variation, then any wnfinite recurswe set A not in C has an infinite recursive, proper

complexity core for A with respect to C.

Proof. Assume that A is an infinite recursive set not in C. Since C is recursively enumerable, all subsets
of A that are in C can be effectively enumerated as {Cy, C1,...}. For each k € N, let Dy = Uf:o C;. Note
that D; C Dj;4q for every j. Now let D = szo D;. If A— D is infinite, then A — D is an infinite proper
complexity core for A since any subset C' of A that is in C is a subset of D, and thus (Ap) N C = . Now
let us assume that A — D is finite. There are infinitely many & satisfying that Dy # Dg41 since, otherwise,
C is closed under finite union, and thus A is in C, a contradiction. For each k with Dy # Dgi1, take the
element ag that is the minimal in Dg1y — Dg. Let H = {ag | Dx # Dgs1}. This H is clearly infinite and

also a proper complexity core for A. a

2.6 One-Way Functions

This section will define one-way functions. A one-way function is a function which is computed easily but
whose inverse is hard to compute. We shall introduce the new notions of nearly-RP and nearly-BPP sets

and show that if one-way functions exist, then all NP sets are nearly-BPP using hash function technique.

2.6.1 Hash Functions

We shall introduce hash functions as a useful tool in the discussion of randomized algorithms.

For n,m € N (n < m), let Hy, ,, denote the family of pairwise independent universal hash functions from
7 to & which is defined as follows: a hash function h in H, ., is of the form h = (M, b), where M is an
m by n bit matrix and b is a bit vector, and takes its value as h(z) = Mz & b. Hence, the set H, ,, can
be identified with the set of all m by n + 1 matrices over {0, 1}, and each hash function h is encoded into a
string of length m(n 4 1). Note that ||H,, || = 2"+,

Lemma 2.6.1 [20] Ifz # y, n < m, and i < m, then Pry[h(z); = h(y)ei | h € Hym] = 270
Moreover Pryp[h(z)ci = wei | h € Hy] = 27 for fived x and w with |w| > i.

Proof. An easy exercise. a

Fix n and ¢ and assume ¢ < n and || X|| > 0. We say that a function h from X" to X"+¢ i-distinguishes

38 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY
zoon X if h(2)ite # (W) ite for all w € X — {a}; otherwise, h i-indistinguishes x on X.

Proposition 2.6.2 Letn € N, z € ¥*, and i € N. Assume that ilog(|| X]]) <i < n.
1. Prplh i-distinguishes x on X | h € Hp pge) > 1—27°.

2. (1-279)2717¢ < Priy[h(2)cite = Yeite A i-distinguishes x on X | h € Hp ppecAy € B¢ < 2-i-¢,

Proof. 1) Fix ¢ and ¢, and let p; , = Pry[h i-distinguishes z on X | h € H,, 4] Then,

pie = 1=Prp[dwe X —{eHh(w)ecite = (@) ite) | B € Hpne]

= 1- Z Pry[h(w)cite = M) ite | B € Hnniel
weX—{z}

_ IX| -1 IIX] =1

= =S 2 1= Seiixnee
IIX] =1 1

= |1l—— > 1 - —.
1XT-2¢ = 2¢

2) Let pgyx = Prpy[h(2)cite = Yite A h i-distinguishes z on X | h € Hy, 1 Ay € B"T¢]. We show the

first inequality of the claim:

p;’yx < Prhy [h(x)<—i+c = Yeite | he Hn,n+ca ye En+c]

S Z 2—(n+c) . Prh [h(x)<—2+c = Yeitec | h S Hn,n+c]
yilyl=n-te

— Z g=(nte) 9=(ite) — 9-(it+e)
yilyl=n-te

The second inequality is shown as follows. In the calculation, we omit the term “h € Hy pyc.”

Pro = > 270D Pryfh(e)cive = yeite]
yilyl=nte
xPrp[h i-distinguishes # on X | h(2)cite = Yeite

= Z 2_(n+6) . 2_(i+c) 1= Z Prh[h(w)ei+c = Yeite | h(l‘)<—i+c = y<—i+c]

y:|ly|=n+c weX—{z}
—n+e) g-Gi+o) (1 IXIN =1
>) 2 2 (1 T
yilyl=n+te
—G+e) (1 Xl —(ite) (1 _ o—c
2 2 (1 geamTe) 2 222,

2.6.2 One-Way Functions

In computational complexity theory, there are several definitions of one-way functions. A function f is

polynomially invertible (p-invertible, for short) if there is a function g in FP such that g o f(z) = « for

2.6. ONE-WAY FUNCTIONS 39

all #, whereas f is weakly p-invertible if there is a P-computable function g such that f o g(x) = z for all
z € ran(f). Note that if f is weakly p-invertible, then we can determine whether x € ran(f) by checking if
fog(e) ==

A (weakly) one-way function is a one-one, p-honest, P-computable function on ¥* whose inverse is not
computable in polynomial-time (cf. [80, 45, 4]). Tt is shown in [33, 53] that one-way functions exist if and
only if P # UP.

In cryptography, slightly different one-way functions are used. We need only uniform one-wayness in
this thesis. A (uniform) strong one-way function is a function f such that f is P-computable and, for all

randomized Turing machines M working in polynomial-time, the function
An.Pry J[f(M(f(z) :s)) = f(z) | € X" As € Qur(x)]

is negligible. Hastad, Impagliazzo, Levin, and Luby [40] showed a close relationship between the existence
of strong one-way functions and that of pseudo-random (number) generators.
Let us introduce RP-like and BPP-like sets, called nearly-RP and nearly-BPP sets, respectively, which

look like one-sided and two-sided, bounded-error probabilistic sets on most instances.

Definition 2.6.3 (Nearly-BPP Sets and Nearly-RP Sets) [119]

1. A set Ais nearly-BPP if, for every polynomial p, there exist a set S and a polynomial-time randomized

Turing machine M such that, for each z,

(i) =€ ¥* — S implies Prys[M(x) # A(z)] < 1; and

(il) Pryplr eS|z eX]< ﬁ for almost all n.

2. A set A is nearly-RP if| for every polynomial p, there exist a set S and a polynomial-time randomized

Turing machine M such that, for each z,

(i) € A— S implies Pry[M () # A(z)] < %;

(ii) =€ A— S implies Pry[M(z) # A(x)]

0; and

(iii) PrylzreS|zel] < ﬁ for almost all n.

We can amplify the success probability of M on string inputs from A — S by repeating its computations
at random. A new Turing machine N is defined as follows: on input « (n = |z|), repeatedly run M on input
z independently p(n) many times, and accept z if and only if M (x) = 1 for some trial. Consider z in A—S.
Then, the error probability that N(z) = 0 is at most (%)p(”). Hence, Pry[N(z) = A(z)] > 1 —272("). On
the other hand, if x € A— S, then Pry[N(x) # A(x)] = 0. Without loss of generality, we can further assume
that the length of all nondeterministic computation paths of N on # is exactly p(|x|) for some polynomial p.

Clearly, from the definition, RP (BPP, resp.) is properly contained in the class of nearly-RP (nearly-
BPP, resp.) sets.

40 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

Here we show that the assumption that every NP set is nearly-RP implies that no strong one-way

functions exist.
Proposition 2.6.4 [119] If cvery NP set is nearly-BPP, then there is no strong one-way function.

Proof. Assume that every NP set is nearly-BPP and a strong one-way function exists. By [9], there
exists a length-preserving strong one-way function which is one-one on at least pz(_;) elements in X" for each
n, where p is an adequate increasing polynomial. Let f be such a function. Let D = {z | [|f~!(2)|| = 1}.
We then have ||[DNX"7|| > pz(_;) for almost all n.

Denote by s? the ith string of X1°8(") (in particular, s§ = 01°8(")). Consider the following sets {7} },:
for each =,

Ty

{es? |3z e XI[f(z) = 2 A the (i + 1)-th bit of zis 1, 0 < i < n]}.

Note that T, N T, = @ unless « = y. Let A = |J, T. Clearly, 4 is in NP. By our assumption, for
the polynomial 4n?p(n), there is a set S and a polynomial-time randomized Turing machine M satisfying

conditions (i)-(ii) of Definition 2.6.3(1) with ||S™|| < 4”22'7;(”) for almost all n. In particular:

2n+ilog(n) I . on 9n
(n +ilog(n))2p(n +ilog(n)) ~ 4n2-p(n) 2n-p(n)’

Sn+ilog(n) <
|| I<:

Hence, we have:

Pr[T, £A-S|2€X”] = Pry[dizsi € AnS]|zeX"]
n—1
< D Prfas! €ANS |z e
=0
n—1 .
n- ||Sn+1log(n)||
< Pr,[zs} €S < —
_;r[mzelxe] < o
n 2n 1
< - = .
27 2n-p(n) 2p(n)
Hence, PI‘x[Tng—SML‘EE”]Zl—Zp%n).Moreover:
1
Prx[xED/\TxQA—S|1‘EE”]ZPI‘x[xED|x€2”]—|—Prx[TxQA—S|1‘EE”]—1Z2().
p(n

We assume that, for # ¢ S, Pry[M(z) = A(x)] > 1 — 2717l We then define the randomized Turing

machine N as follows:

begin randomized algorithm for N
input z (say, n = |z|)
let z:= A
fori=0ton—1
if M(zs?) =1 then let z := z1 else let z := 20

end-for

2.6. ONE-WAY FUNCTIONS 41

nearly-BPP

Figure 2.2: Predicted inclusion relationships

output 2

end.
Assume that © € D and T, € A — S. The success probability Pry[f(N(z)) = z] is bounded by

Pry[f(N(z)) = 2] > Pry[M(zs}?) = A(xs?)] > (1 — 277" 1os(n)yn > 1 _ g-ilog(n)—1 5

N | =

Thus, we obtain Pry[f(N(z)) = x] > 1/2. Using this inequality, the probability that N computes the
inverse of f is bounded by

Pry [f(N(f(x);s)) = f(x) |2 € E" As € Qur ()]
> Pryjjee DANT, CA—S5|zeX"

xPry J[f(N(z;s)) =2z |e e DNE" AT, CA—SAs€Qu(z)

1
> -P N =
> g Pl (e) = 2
1 1 1
> s o= .
2p(n) 2 4p(n)
This contradicts the one-wayness of f. a

Figure 2.2 illustrates the inclusion relationships we predict.

As can be seen, nearly-RP sets and nearly-BPP sets are related to the density of sets.

Definition 2.6.5 A set S is C-f(n)-close if there exists a set B in C such that ||[(AAB) N X"*|| < f(n) for

almost all n.

42 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

Lemma 2.6.6 Let f be a function on N such that f(n) € w(logn). For C € {RP,BPP}, every C-2"~71(7).

close set is nearly-C.

Proof. We shall establish the lemma for C = BPP. Since f(n) € w(logn), we have limy, oo %g)ﬂ =0
for all number ¢ > 0. This implies that lim,,_ % = 0 for every constant ¢ > 0. Hence, 27/(") € o (Z%n))
for any polynomial p.
Let A be BPP-2"~/(")_close. There exist a polynomial-time probabilistic Turing machine M and a set
B such that [|[(AAB)NY?|| < 27=F() for almost all n. Tn other words, Pr,[A(z) # B(x) |« € ¥?] < 2=/(7),
We define S = {x | A(x) # B(x)}. Then, we have Pr,[x € S] < 277"}, By the above calculation, for

any polynomial p, Pr,[z € 5] < ﬁ for almost all n. This yields the desired consequence. a

2.7 Relevant Theories

In this section, we shall discuss several important and relevant branches of computational complexity theory.

2.7.1 Feasible Real Numbers

A real number 1s viewed as an infinite sequence of dyadic rational numbers which converges to it. If the
convergence rate is fast enough and the nth element of the convergence sequence is effectively constructible,
we can obtain a good approximation scheme for the real number in question. Ko and Friedman [55] called
such real numbers computable real numbers and initiated polynomial analysis of the real numbers based on

real numbers computable in polynomial time.

Definition 2.7.1 (Computable Real Numbers) [55] Let ¢ be a function on N. A real number r is
t-time computable (t-space computable, resp.) if there exists a deterministic Turing machine M which, on
input 17, produces dyadic rational number d,, in time ¢(n) (using space t(n), resp.) satisfying the condition

|r —dy| <277 We call the sequence {dy }nen a convergence sequence for r.

Definition 2.7.2 (Computable Sequence) A sequence {z,},en of real numbers is polynomial-time
computable (P-computable, for short) if there exists a polynomial p and a deterministic Turing machine M

which, on input (17, 1%), produces a dyadic rational number d in time p(n + k) satisfying |d — z,| < 27%.

In polynomial analysis, functions map from R to R. Although these real functions are intriguing, functions
we are now interested only in functions that are “discrete” mappings from X* to the unit interval [0, 1]. Here

we modify the regular definition of feasible real functions to suit our setting.

Definition 2.7.3 (Computable Real-Valued Functions) A function f from ¥* to R is called ¢-time

computable (t-space computable, resp.) if there exists a deterministic Turing machine M which works in time

2.7. RELEVANT THEORIES 43
t (using space t, resp.) satisfying that |M (z,1%) — f(z)| < 277 for all i € N and all z € X*.

Lemma 2.7.4 1. If x and y are P-computable real numbers, then so are —x, x +y, « -y, max{z,y},

min{z, y}, and |z| (absolute value of x).

2. Let x be a P-computable real number with x # 0. Then, the inverse % 1s also a P-computable real

number.

Proof. (1) Assume that {, }nen and {y, }yerw are convergence sequences witnessing z and y, respectively.

For —z, max{z,y}, and min{x,y}, consider the sequences {—z,}nen, {max{a,,yn}}nen, and
{min{a@,, yn} }nen, respectively. For x + y, let z, = 2,41 + Yny1; then the sequence {z,},cn represents
z+y. For z-y, assume that the absolute values of z,, and y,, are bounded above by 2% for some fixed natural
number k. Then, we let z,, = Zp1p41 - Ynskt1. The sequence {z, }nen represents z - y.

(2) Assume that {2, }nen is a convergence sequence witnessing . Take an integer & € N such that
|z| > 27%+L. Therefore, |2,| = |2, — 4+ 2| > |2| — |2 — 2p| > 275t =277, So, for all n > k, |z,| > 27%
holds. Let !, = xogint3. We have |2/, — x| < 2727773 Let 2, be the inverse of #/, rounded down to

polynomially-many bits such that |z} — %| < 272k=n=3_ Then, we have

r— — S |x_ l‘“ 4 x;l - <« 2—2k—n—3+ 2—n S 2—21@‘—77,—2.
n n
Also we have
1 1
—| = —a, | 2 e = [a2 27h 27 s R
Zn Zn n
Hence,
1
1 v — -
-l = zln S Qk . 2k+1 . 2—2k—n—2 —9n
@ || - [

Lemma 2.7.5 Let {antnen be an infinite convergence sequence in which each a; is in [0,1]. Let t be a
function on N. Let p be a time-constructible function on N and assume that p is increasing and unbounded.
Also assume that |ayy — apy| < 270 4 277 for almost all i,j € N. If the sequence {an}nen is t-time
computable, then the limit limy_ o an is O(n + t(p(n + 1) + n + 1))-time computable. In particular, if

{an tnen s P-computable and p € nPW | then limy_yoo @y is P-computable.

Proof. Since {a,}new is t-time computable, there is a deterministic Turing machine M satisfying |a, —
M(17,01)] < 2= for all n,i € N. Let N(17) = M (17(»+1) 07+1). More precisely, N is a deterministic Turing
machine defined as below:
begin algorithm N
input 17

compute n + 1

44 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

compute p(n + 1) (needing O(p(n + 1) + n) steps)
(%) simulate M on input (17?41 on+1)

end.

If p(n) < n, then we use the convention that whenever M tries to check the i-th bit of the input, it writes
down 7 in binary on a checking tape, and then it retrieves the answer automatically.

Then, the running time of N on input 17 needs at most
¢ (Timey (1PCFD 07+ 4 n) < e (t(p(n+ 1)+ n+1) +n)

for almost all n, where ¢ is an appropriate positive constant. We next claim that |[r — N(17)] < 27". This

1s seen as follows:

[r=N(")| = [e— MPCFD)
< e— ap(n+1)| + |ap(n+1) _ M(lp(n+1)’ 0n+1)|
S 2—n—1 4 2—n—1 — 2—77,.
Therefore, r is computable in time O(n +¢(p(n + 1) + n+ 1)). a

The interested reader may refer to [54].

2.7.2 Kolmogorov Complexity

In this thesis, we use time-bounded generalized Kolmogorov complexily given by Hartmanis [38]. Intuitively,
the Kolmogorov complexity of a finite string is the length of the shortest program that will generate the
string.

To define Kolmogorov complexity, we need a notion of uniwersal Turing machines that can simulate the
behavior of any other Turing machines. We assume that {M; };cy is an effective enumeration of all Turing
machines. Now consider the following machine U: on input (i,), U simulates the ith machine M; on input
x.

A code is a prefix-code or instantaneous code if the set of code words is prefix-free, i.e., no code word is
a prefix of another code word. A prefix-code is called self-delimiting if there is a Turing machine which (i)
decides whether a given word is a code word and (ii) computes the decoding function.

Let us fix such a universal Turing machine U.

Definition 2.7.6 (Kolmogorov Complexity Sets) [38] A time-bounded Kolmogorov complexity set
KT[g(n),t(n)] is the set of strings # such that, for some string y of length at most g(|z|), U on input y
outputs z in time t(]z|). For a fixed string z, a time-bounded conditional Kolmogorov complezity set relative

to z, KT[g(n),t(n)|z], is similarly defined but using U({y, z)) = # instead of U(y) = # in the above definition.

Lemma 2.7.7 For any functions g,t and any string z, KT[g(n),t(n)|z] € DTIME(O(t(n) - 290"))).

2.7. RELEVANT THEORIES 45

Proof. For an output string =, we need to check at most all machines M; coded by strings ¢ of length

g(|x]), and, at each ¢, we simulate the machine M; within ¢(|z|) steps. a

For more discussion about Kolmogorov complexity, the reader may refer to [62].

2.7.3 Resource-Bounded Measure

In 1990, Lutz [63] developed resource-bounded measure theory. The following terms mainly follow [70].

A function d from ¥* to R¥ is a martingale if

d(w) = d(w0) —;— d(wl)

for all strings w. For every martingale d, we always have d(w) < 21l . d(\) for all w. Recall that s; is
the ith string in X*. A martingale d succeeds on a set A if limy o sup,, 54 d(A[0...n]) = oo, where A0...n]
denotes the string # = zoxy - - - @, satisfying #; = xa(s;). Let S¥[d] be a collection of all sets on which the

martingale d succeeds.

The notion of p-measure captures in a way the “topological” size of a class.

Definition 2.7.8 (P-measure) cf. [64, T0] A complexity class C has p-measure 0 if there exists a
martingale d which is computable by a deterministic polynomial-time Turing machine such that ¢ C S*[d].

A complexity class C has p-measure 1 if the complement co-C has p-measure 0.

The class E has p-measure 1, but P has p-measure 0. We sometimes informally call a class small if it has
p-measure 0. According to this terminology, the class P is small, while E is not small. One of the intriguing
open question is whether NP is small. If P = NP, then obviously NP is small; hence, smallness of NP
would follow from a collapse of NP down to P.

A I-dimensional martingale system (1-MS, for short) d is a function from N x X* to R such that dj is
a martingale for each k € N, where di(w) = d(k,w). A set X is a p-union of the p-measure 0 sets {X;}ien
if (i) X = UjeNXj’ and (ii) there exists a polynomial-time computable 1-MS d such that X; C S*[d;] for
every j € N.

Lemma 2.7.9 [64] If X is a p-union of the p-measure 0 sets, then X has p-measure 0.

We further say that C has measure 0 in E (measure I in E, resp.) if C N E has p-measure 0 (p-measure
1, resp.). Tt is clear from the definition that if C has p-measure 0 and 1, then C has measure 0 and 1 in E,
respectively. As an example, we note that, for a fixed positive constant ¢, the class DTIME(O(2°")) has
measure 0 in E [70]. Another typical example of a class which has measure 0 in E is the collection of all
p-m-complete sets for E (see [70]).

We shall give an important example of p-measure 0 sets: immune sets and bi-immune sets.

Definition 2.7.10 (Immune Sets and Bi-Immune Sets) Let C be any complexity class. A set S

46 CHAPTER 2. FOUNDATIONS OF COMPUTATIONAL COMPLEXITY THEORY

1s called C-immune if S 1s infinite and S has no infinite subsets in C. A set S i1s C-bi-immune if S and its

complement S are both C-immune.

Proposition 2.7.11 [69] Let ¢ > 0. The class of all DTIME(O(2°™))-bi-immune sets has p-measure 1.

Hence, any class which contains no DTIME(O(2°™))-bi-immune sets has p-measure 0.

Proof. Let C be the class of non DTIME(O(2°7))-bi-immune sets, and to obtain the desired result, we shall
show that C has p-measure 0, because this obviously implies that the class of all DTIME(O(2°™))-immune

sets has p-measure 1.
Take a universal set A in E for DTIME(O(2°"™)), namely, DTIME(O(2°")) = {4; | ¢ € N}, where
A; =A{= | (x,i) € A} for each i. We decompose C into infinitely-many subclasses {Vi; }men as follows:

(LA €L} if |4 = oo,

Yoi 1 =)
otherwise;
{L A €L} if[|A]] = oo,
Yo =
otherwise.
We define the 1-MS d as follows:
1 if z= A,

2d(m,w) if s)y| € A|(m41)/2), and b Z m (mod 2),
0 if S|w| € AL(m+1)/2J and b =m (Hlod 2),

d(m,w) otherwise,

where w is the string satisfying z = wb for some b € {0, 1}.

To compute d(m,), we should check if sj,| € A|(m41)/2); however, since s}, is of length llog(|w|)
(= log(|w| + 1)]), the computation time for checking if sj,| € A|(m41)/2) takes at most ¢’ - gcllog(lwl) <
¢ - (Jw] 4+ 1)¢, where ¢ is a constant. Thus, d is P-computable.

It suffices to show by Lemma 2.7.9 that C is a p-union of the p-measure 0 sets {Y,,, }men. Let us see that
Y C S%[dn] for each m € N, where d,,,(w) = d(m, w). First consider m € N such that m is odd. If A,,
is finite, then we clearly have Y, C S*[d,,]. We then assume that A,, is infinite. Take any set B € Y,,.
Note that A|(mt1)/2) € B since B € Yp,. By our definition, we have d,,,(B[0..n]) = 2d,(B[0..n — 1]) if
sn € A|(m41)/2), and otherwise, d,,(B[0..n]) = d,,(B[0..n — 1]). Since {n | s, € A[(n41)/2)} is infinite,
limsup,,_, ., dm(B[0..n]) = co. Thus, we have B € S°[d,,]. A similar argument works for the case where m

1s even. O

Chapter 3

General Theory of Average Case
Complexity

3.1 Introduction

Average-case analyses have been performed to measure the complexity of algorithms and to obtain a better
understanding of the behavior of algorithms when input instances are given with some probability. In this
type of analysis, we should take into consideration that instances of a particular algorithm occur with some
probability. In contrast to the approach of from worst-case analysis, a “problem” here is a pair consisting of a
set of instances and an wnput distribution which designates the probability of each instance. These problems
are called distributional problems, randomized problems, or random problem.

Classical average-case analysis uses the expected running time or tape squares in use over all input
instances of the same length. Although the notion is simple and intuitive, it is not a basis for a consistent
and coherent theory of average-case complexity. Levin’s theory of average NP-completeness uses instead the
notion of polynomial on the average and also polynomial-time many-one reducibility among distributional
decision problems with crucial conditions, the so-called domination conditions for reduction functions. This
constraint 1s essential in the theory to make the reducibility transitive and to make the average polynomial-
time computable class closed under the reductions. In this chapter, we shall review Levin’s theory and further
cultivate a general framework of average-case complexity theory; we shall focus mainly on the notions of
polynomaial on p-average and polynomial domination relations on which “domination conditions” rely.

Levin’s notion of functions being polynomial on p-average has been expanded into random functions to
cope with the average-case analysis of randomized algorithms.

Section 3.2 will begin with the formal definition of distributions (or distribution functions) and (prob-
ability) density functions (or probability distributions). For practical reasons, we shall introduce semi-
distributions by eliminating the condition that distributions converge to 1 as input strings get larger. Of

particular importance is the standard distribution that assigns to each string the probability of the string

47

48 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

being chosen at random.

In Section 3.3, we shall introduce the notion of ¢ on p-average which generalizes Levin’s original notion

” Briefly, a function ¢ 1s called polynomial on p-average if, for some positive

1/k

of “polynomial on p-average.’
number k, the expected value of |z|~1 - g(x)!/* over all input strings under distribution p converges. The
reader may notice that the functions which are polynomial on p-average are in general not time-constructible,
or even computable.

Section 3.4 will introduce of the notions of domination relations and equivalence relations among dis-
tributions. These relations are the essential ingredients of Levin’s domination conditions for average-case
reductions.

Section 3.5 will introduce two types of average-case complexity classes, “randomized” version of worst-case
complexity classes and “average time/space bounded” version of worst-case complexity classes to describe
the classes which consist of distributional decision problems. We shall introduce two types of notations:
Dist(C, F) for the randomized complexity classes, and Aver(C, F) for average complexity classes. From the
algorithmic point of view, we can consider sets of distributional decision problems (D, i) whose underlying
problem D is solved in time polynomial on p-average. In particular, we shall introduce average-case analogues
of important complexity classes, such as P, NP, BPP, and PSPACE. However, the reader should note
that our average running time and tape space are not measured by time-constructible functions, and as a

result, fundamental relationships among the average complexity classes are essentially different from those

among worst-case complexity classes.

Major Contributions. This chapter extends Schapire’s characterization of “polynomial on p-average”
to a more general notion of “t on u-average.” The reader who is familiar with Levin’s original definition
may find 1t interesting that the arguments used in this thesis to show that a given function i1s polynomial on
p-average are very different from those used in the literature. The basis of this chapter comes from Schuler
and Yamakami [97].

Lemma 3.3.15 gives a simple but sufficient condition for proving a given function g to be polynomial on
p-average. The lemma actually shows that if g(z) < ¢-n* + (¢/n?a(A?))* for all i with 1 < i < n and for
all z € A?, then g is polynomial on p-average, where {A7}1<;<, is a partition of X"

Lemma 3.4.16 shows that, for a random function ~ with its random-input domain T, if g <" v and
v({(x,s) | h(x,s) > q(r-|z|)}) < 1/r, then h becomes polynomial on p-average.

A generalization of Schapire’s result is presented as in Proposition 3.3.17. The proposition actually shows
that, for a good set 7 of strictly increasing functions, g is 7 on p-average if and only if the expectation of
the values |z|~1 - ¢=1(g(x)), over all input strings x, converges for some function ¢ in 7.

Lemmas 3.3.20 and 3.3.21 are new results. Lemma 3.3.20 shows a sufficient condition for a random
function g to be polynomial on p-average, while Lemma 3.3.21 gives a necessary condition for g.

Lemma 3.3.22 shows that, provided a function h is polynomial on p-average and a random function g
is polynomial on p x n-average, if h(f(z)) - 5(f(x)) > 1 for all # and Ax.|f(x)| is polynomial on p-average,

then the composition Axs.g(z, h(x), s) is polynomial on p-average.

3.2. DISTRIBUTIONS AND DENSITY FUNCTIONS 49

Proposition 3.5.20 shows that, for example, Aver(BPP, F) is weakly PP-descriptive.

Lemma 3.5.21 shows that Aver(P,F) and Aver(PSPACE, F) are closed under weak description, and
this lemma combined with Proposition 3.5.22 leads to Corollary 3.5.23. The corollary shows that P # BPP
implies the separation of Aver(BPP,) from Aver(P,), whereas the two average-case complexity classes
collapse if P = PP. (These results follow Proposition 3.5.22, which shows an extensive generalization of a
result given by Karg and Schuler [48].)

Our notion of nondeterministic average polynomial-time is clearly distinct from what has been discussed
elsewhere. In particular, whereas P =7NP is a lon-standing open question, Theorem 3.5.24 makes the
interesting observations that Aver(P,) # Aver(NP,).

The new characterizations of Aver(NP,F) and Aver(BPP,F) are presented in Proposition 3.5.30 and
Proposition 3.5.33. In particular, the Amplification Lemma (Lemma 3.5.31) in our average-case setting, fol-
lowed by Proposition 3.5.33, 1s fundamental and finds many applications in later chapters. The Amplification

Lemma amplifies the success probability of randomized algorithms which make bounded-errors.

3.2 Distributions and Density Functions

Average-case complexity theory handles problems whose input instances occur with specified probabilities.
This section will introduce the basic concepts of distribution (or distribution functions) and (probability)
density functions. Using the terminology in Section 2.2, our sample space {2 consists of all finite strings over
{0, 1}, and the o-field is (2, TF), where T is the power set of . We consider a discrete probability measure
on (2,TF) and call it a (probability) density function. Intuitively, a density function provides a probability
that instance x occurs. A distribution, on the other hand, indicates the total probability over all instances

smaller than or equal to a give instance. For practical reasons, we also use the notion of semi-distributions.

Definition 3.2.1 (Distributions) A semi-distribution (or semi-distribution function) p is an increasing
function from X* to the unit real interval [0, 1]. A distribution (or distribution function) is a semi-distribution

which converges to 1, i.e., limg_, oo p(z) = 1.

We do not avoid the possibility that the semi-distribution p always takes the value 0, i.e., fi(z) = 0 for
all z; we call such p trivial. We remark that there is no feasible way to determine in general whether a given
semi-distribution yu is trivial. Nevertheless, we are primarily interested in non-trivial semi-distributions.

Ben-David, Chor, Goldreich, and Luby [9], among others, often use semi-distributions in their arguments
instead of full distributions because their semi-distributions can be normalized to full distributions without
changing the complexity. However, this normalization is not always possible. See Section 4.2 for more
discussion.

Next we shall define (probability) density functions which are probability measures on the o-field
(2%, P(Z)).

50 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

Definition 3.2.2 (Density Functions) For a distribution p, its associated (probability) density function
jt is defined by the probability ji(x) on input string z as follows:

. () ifz = A
pu(x) — p(x™) otherwise.

(Note that a density function is often called a probability distribution in much of the literature (see,
e.g., [11]) and should not be confused with a “distribution.”)

The reader must keep in mind that if x is a distribution, then fi(A) = p(A) by our definition. Also note
that pu(z) = >, «, ft(z) holds for all strings x.

We have alreaay seen the notation Pr[€] for event & based on a sample space € which consists of finite
or infinite sequences over {0, 1}. We reserve this notation for events where each bit of a sequence is chosen
at random; that is, for any property () on X* and any subset F of €,

Pr[Q(s) | s €] =) 2711 [Q(s)].
seE

For convenience, we use the notation “fi(x) o g(x)” to mean that the probability fi(z) on input string
x is proportional to the value g(x) for every x; more precisely, there exists a constant ¢ > 0 such that
j(x) = c-g(x) for all . This ¢ is called the normalizing constant for g.

For a distribution y and a set S, let ji(S) denote the sum 3_ & fi(x). For example, u(X5") = p(1") and
A(E) = limg 00 p(2).

Recall that distributions are mappings from the infinite set ¥* to the unit real interval [0, 1]. We also
cope with ensembles of finite input distributions instead of “infinite” distributions. Given a distribution
and a natural number n, the conditional distribution of ;p on X" denoted by pu,,, is the function from X" to
[0, 1] that is defined by its density function fi, as follows: for each z € X7,

A ()
fin(2) = (=)

whenever i(X") # 0; otherwise, fi,,(x) is undefined. Similarly, let p<, be the conditional distribution of p

on L7 that is defined by its density function ft<n as follows: for each z in rsn

) _ A=)
fi<n(T) = L(2<m)

if 1(X5™) # 0; otherwise, let p<, be undefined. In general, it holds that ji(z) < fic, (2) for all x € <" and
fi<n () < fin(z) for all x € X" if p, and p<, are both defined.

Similarly, we denote by g, the conditional distribution of u on r2n,

For a nonempty finite domain D, the uniform distribution on D is defined to have the probability 1/||D]|
for every # in D; that is, ji(z) = Prs[x = s|s€ D] = ﬁ For example, i, is the uniform distribution on
27 if p(x) = 2717 for all z € X7

For a set S, p is called positive on S if i(x) > 0 for all « € S; in particular, if S = X*, then we say that
1 18 positive.

Another important class of distributions, called flat distributions, was introduced by Gurevich [36].

3.2. DISTRIBUTIONS AND DENSITY FUNCTIONS 51

Definition 3.2.3 (Flat Distributions) [36] A distribution p is called flat if there exists a real number
€ > 0 such that j(z) < 2-1#1° holds for almost all z. Notationally, FLAT denotes the collection of all flat

distributions.

For a function f on X*, we write Py to denote the distribution defined by its probability /lf-l(x) =
al{z | () = 2)).

Recall that distributions defined in Definition 3.2.1 are unary functions. We can also consider multi-
dimensional distributions. For a k-dimensional vector (#1,zsa,...,2;) over ¥ if a density function j is

defined, then let
e, wo, o) = p({(21, 22, zk) | 20 S 20 <@g,z < ®p).

Using an effective encoding of k-dimensional vectors into strings (discussed in Section 2.5), however, we can
always identify probability ji(x1, g, ..., x5) with probability i({x1, z2, ..., 2x)) defined on £*. In this sense,
we do not need to consider all multi-dimensional distributions.

To simplify the descriptions of distributions, we use j(z,y) and f(x,y,z) to denote p({x,y)) and
f({x,y, z)), respectively. We also use a simplified definition of distributions. For example, the following

schematic definition “f(s;, z,17) = 0(s;) - (x) - 272180 =1” yeally means that

(v) v(s;) - n(x) - 272108 =1if o = (5;, 2, 17) for some i, z, n,
fi(u) =
0 otherwise.

One of the most important distributions is the positive distribution where each string is chosen “uni-
formly” at random. This distribution is called standard. In this thesis, we use the standard distribution
Vstand, Whose values are dyadic rational numbers, that are easily sampled by the following randomized
algorithm: pick a natural number n randomly and then pick a string of length n randomly. To pick a
natural number “uniformly” at random, we first define the translation T'r by T'r(A) = A, Tr(00s) = 0T'r(s),
Tr(11s) = 1Tr(s), and Tr(01s) = Tr(10s) = # for a string s, where # is the terminal symbol different
from 0 and 1. We then generate a string of the form s01 or s10 such that Tr(s) is the nth string with
respect to the standard order in ©*. By a simple estimation, we have gtana(z) = 2~ lzl=2log(lz)) =1 " where

llog(n) = [log(n + 1)].

Definition 3.2.4 (Standard Distribution on X*) The standard distribution on ¥* is denoted by Ugtand

and defined as Ustana () = 9~ |zl =2log(lz]) =1,

From this definition, it follows that, for every x,

1 1

S/l 1 139 ol < AS an: < arl 1 139 ol
Sl)7 -2 = Veena®) < Gy o

52 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

since log(n + 1) — 1 < llog(n) < log(n + 1). Moreover, vsana(1™) =1—3- g-llog(n)=1 4 (n+2)- 9~ 2llog(n)~1,

This 1s seen as follows:

n gllog(n)—1 n
Vstand(ln) — Z 2—2110g(z)—z—1 N (- 5 . Z 22110g(z) + Z 22110g(z)
i=0 i=0 j=2llog(n)
1L, 1 [n+t2 1
-9 ’ o 9llog(n) + 2 ’ 92llog(n)+1 o 9llog(n)

n-+2
1- llog(n)+1 + 92llog(n)+1 "

Lemma 3.2.5 For every string «x,

_1 3 lz] + 1 k+1
I/stand(x) - ollog(|e|-1)+1 92log(|z|-1)+1 92llog(|z|)+|z[+1"

where x is the kth string of £1°1. (N.B. 01 is the Oth string of X1*1.)

Proof. Let n = |z|. Notice that vsand() = Vetana(1"71) + Zf:o Ustand (s7'). The first term is equal
to 1 — 3.9 llogn—-1)+1 4 (n+1)- 2-2Mog(n=1)+1 " The last term is equal to (k+ 1) - Ugtana(1™), and thus
(k’ 4 1) . 2—2110g(n)—n—1. O

In particular, Vstana (17()) = 1 — 271, where p(i) = 2°+! — 2, and thus we get
|vstand (17)) = vgrana (1P0))| < 277 4273

for all ¢, 7 € N. This inequality will be used later.
As the reader can see, we can generalize Vgiang to the default distribution I/ftand defined on the set of

k-tuples, {{x1,22,...,25) | ®1,22,..., 25 € X*} by
ﬁftand(xla L2y .., $k) = ﬁstand(xl) : ﬁstand(xZ) ce ﬁstand(xk)~

In some papers, the standard distribution is defined as Dgeana () = 7T6—2 (el +1)72 - 2-lel or Vstand (¥) =
27121 /(|| + 1) (|| 4+ 2); these definitions are not essentially different from the one used here. Levin [60] uses
|z]=2 - 2-1ol for Ustand (%) for notational convenience (with the normalizing constant %)

Although the standard distribution is sometimes called “uniform” (e.g., in [9]), actually only its condi-
tional distribution is uniform for all lengths n. We note that there are other ways to define a “standard”
distribution (see Gurevich [36] for more discussion).

We also use the standard distribution viany that takes positive values only on {0}* (or sometimes {1}*).

Definition 3.2.6 (Standard Distribution on {0}*) The standard distribution on {0}* is denoted by

Vially and is defined as
1/2 if 2 = A,
Drally (€) = 9—2log(n)=1 if » — (" for some n > 0,

0 otherwise.

3.3. A NOTION OF EASY-ON-AVERAGE 53

For the sake of convenience, we sometimes use the same notation viany to mean the standard distribution

on {1}*.

Definition 3.2.7 (Default Distribution) For a random-input domain T' and a semi-distribution p, we

define the default semi-distribution g induced from g and T' as

Ur(x) - pu(z) - 27150 if s € T'(),

fir(x,s) =
0 otherwise,

where Ur is the rarity function of I'.
In the special case that I' is almost total, for every subset .S C T', it holds that
in(S) = 3 ile) - Pr.f(e,5) € 5 | s € D))

A function g from ¥* to R is called degenerative under p if p({z | g(x) = o0}) = 0.

A set F of distributions is closed under k-addition if, for any k semi-distributions, puq, pa, ..., pg, from
F, the distribution v defined by p(x) = Zle £ - ji(x) belongs to F.

_1

For two distributions g and v, let @ v denote the distribution 5 such that 7(z) = 5u(u) if © = Ou for

some u; 7j(x) = %ﬁ(u) if # = lu for some w; and 7j(x) = 0, otherwise. We say that a set F of distributions is

closed under @ if, for any two distributions g and v in F, @ v is also in F.

3.3 A Notion of Easy-on-Average

To establish a consistent and coherent theory of average-case complexity theory, first we must examine a
fundamental notion of computational “average complexity” of algorithms, after which we will look at Levin’s

mnovative idea of how to amend the naive definition.

3.3.1 Naive Definition of Average Polynomial Time

In worst-case complexity theory, a problem has #(n)-time complexity if there is an algorithm M computing
the problem which satisfies the inequality Timeys(z) < t(n) for almost all natural numbers n and all inputs
z € ¥". A naive notion of average-case complexity, however, is given by the expected running time (or space)
of an algorithm over all instances of the same length under a certain conditional distribution. More precisely,
an algorithm M which works in time ¢ requires the inequality that inlflIﬂ Timeps (%) - jtn(x) < t(n) for
almost all n. This natural formulation of an average-case complexity might seem to be a start on a general
theory of average-case complexity. Unfortunately, this definition has several deficiencies. We will see several
examples below. For brevity, we say that a function g “expected polynomial on p-average” if there exists a
constant k > 0 such that, for all n € IV, inlflIﬂ g(x) - fin(x) < n* 4+ k [108].

The first example is related to the multiplication of functions which are expected polynomial on u-average.

54 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

Example 3.3.1 [9] Consider a function g which is defined on strings of length n as follows: let g(x) be
2" on n inputs x, but let g(x) be n on the other inputs. Now take a conditional distribution p,,: fin,(z) = 27"
for all = of length n. It is easy to see that the expectation of g, inlflIﬂ g(x) - fin (), is at most 2n, but the
expectation of g2, inlflIﬂ (g(2))? - fin(z), exceeds n - 27.

Even if ¢ is expected polynomial on u-average, ¢° is no longer expected polynomial on u-average.

The second example deals with the composition of functions which are expected polynomial on u-average.

Example 3.3.2 [9] For simplicity, let n be of the form 4m for some integer m > 0. Consider the following
machine M: M is computed in 2*/2 steps on 2"/? strings of length n and outputs a string of length \/W,
and, for the rest of the inputs, M requires n? steps to output a string of length n. The expected running time
of this machine M is at most 1 4+ n?-27"/2 and hence, M runs in expected polynomial time on p-average.
Now consider another machine N which needs n3 steps. Clearly N runs in polynomial time. However, the

composition of two machines, N (M (x)), needs 27/* 4+ n3 . 277/2 steps on the average.
Hence, this naive notion of “expected polynomial on the average” is not closed under composition.

Example 3.3.3 [9] Consider a problem on directed graph G = G(V, E), where V is a set of vertices and
E is a set of edges. Let ||V|| = n and [|E|| = m. Assume that there is an algorithm M which works on this
graph G in time ¢(G), where t(G) = 2" if m < n%/?; otherwise, ¢(G) = n”. Suppose the graph G is given
by its (incident) matrix representation. Since encodings of graphs are presented by n vertices, the average

is taken over all graphs G with n nodes. The expected running time " . ¢(G) - i, (G) is at most

Y@y M 27?1t
G:m<nd/? G:mZne’/2
On the other hand, suppose the graph is given by its adjacency list. Then, the expected running time is not

expected polynomial on p-average.

The naive definition i1s dependent on the particular encoding of instances of a given problem.

3.3.2 Levin’s Definition

As we have seen, the naive definition is not suitable for a coherent theory. In 1984, Levin [60] instead

>

proposed a new measure of “average polynomial-time.” To understand his measure, we again take a close

look at the definition of worst-case complexity measure. Recall that an algorithm M needs polynomial time

if Timey (z) < |z|* for almost all z. Here we transform this inequality into another form of inequality:

1/k

|| ="' - Timeys (2)'/% < 1. A natural idea then is that the expectation of ||~ - Timeys (2)'/* over all strings

of length n, is bounded by 1; namely, > || =" Timeys (2)*/* - fi,,(2) < 1. Levin was motivated by this

z:|z|=n

inequality, but he went one step further and took this average over all finite strings. He defined his average-

case complexity measure “polynomial on p-average” by requiring that Zx:x;ﬂ || =" - Time(z)* - i(x) < 0.

3.3. A NOTION OF EASY-ON-AVERAGE 55

Since his first paper appeared in 1984 at the 16th STOC conference, several criticisms of Levin’s com-
plexity measure have arisen. One of them is that his formulation does not seem to reflect the polynomiality
of the running time on the average. In 1990, E. Schapire [88] wrote a technical report in which he exhibited
an emerging theory of Levin’s average-case NP-completeness and gave an interesting insight into Levin’s
central notion of “polynomial on p-average.” He gave an equivalent formulation of this notion.

This thesis modifies Schapire’s characterization of polynomeal on p-average and introduces a more general

notion of ¢ on p-average for an arbitrary function ¢.

Definition 3.3.4 (¢ on pu-Average) [88] Let ¢ be a function on Bt and let p be a distribution. Let g

be a function from X* to R*.
1. The function g is t on p-average if p({z | g(x) > t(Jx|-r)}) < 1/r for any positive real number r.

2. The function g is 7 on p-average if there exists a function ¢ € 7 such that g is ¢t on p-average.

Schapire actually used a function with two variables, ¢(n,r), instead of the form ¢(n - r) in the above
definition. In most cases, however, there 1s no practical difference between these two functions. For this
reason, we use the above definition throughout this thesis. (This issue has been thoroughly studied by Karg
and Schuler [48], and the interested reader may refer to it.)

Notice, from Definition 3.3.4, that if ¢ is ¢ on p-average, then ¢ is degenerative under . Moreover, it
immediately follows from Definition 3.3.4 that increasing the value of r also increases the probability weight

of the set of strings # with the property that g(x) < ¢(|#|-r), whichis 1 —1/r.

Definition 3.3.5 (Polynomial/Logarithmic on p-Average) A function g from X* to RT is poly-
nomial on p-average if there exists a polynomial p such that g is p on p-average. Similarly, ¢ is logarithmic
on p-average if g is ¢ on p-average for some logarithmic function ¢ (i.e., ¢(z) = clog z+d for some constants

c,d €R).

The notion of polynomial on p-average was first introduced in [60] and used in [30, 88, 36, 9, 111], while

the notion of logarithmic on p-average was defined by [9] and also used in [32].

Lemma 3.3.6 Let p be a distribution. For any function g from X* to RT°°, if g is logarithmic on p-average,

then the function Ax.29%%) is polynomial on p-average.

Proof. Let us assume that g is ¢ on p-average for some logarithmic function ¢g. Suppose without loss of
generality that ¢(z) = clog z + d for constants ¢,d > 0. Notice that ¢ is strictly increasing. Using this fact,

we have

a({z | 99(e) - chog(|x|~r)+d})
= a({z |29 > 27 (2] - 7)),

p({z | g(z) > clog(|z| - r) + d})

56 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

Since g is ¢ on p-average, we obtain a({x | 29") > 24 . (|z|-#)°}) < 1/7. Since the function Az.(2%2°) is a

polynomial, Az.29(*) becomes polynomial on p-average. a

Our definition measures the probability of the event in which g(z) exceeds p(|z| - r) over all strings

under distribution p. Instead of this distribution, we can consider two ensembles of conditional distributions,

{ﬂﬁn}neN and {ﬂzn}neN

Definition 3.3.7 (¢ on Average w.r.t an Input Ensemble) cf. [43] Let g be a function from X* to
R+ and let ¢ be a function on R*. We say that g is t on average with respect to {p<ntnen if fi<n({z €
Y7 | g(x) > t(|z]-r)}) < 1/r holds for all real numbers r > 0 for which p<, is defined. Similarly, we define

the notion that g is t on average with respect to {p>n }nen by replacing pi<,, with ps,.

Lemma 3.3.8 Let p be a distribution, g a function from ¥ to RT°°, and t a function on RT.
1. Ifg ist on p-average, then g is Az.1(dz) on average w.r.t. {fi<y fnen for some positive integer d.

2. Ifg ist on average with respect to {pt<ptnen, then g is Az.4(2z) on p-average.

Proof. Let u be a distribution. We can assume without loss of generality that g(z) < oo for all z. Take
the minimal integer ko € N such that j(X<*0) > 0. This kg is the minimal number for which H<k, 1s defined.

(1) First notice that u(XS") equals p(17), and thus An.a(XS") is increasing. (This is not true for
An.i(X").) Then, define d = min{d’ € N | g(2Ske) > %} Note that, for any set B, if p<, is defined, then

we have
(B (B)
(S5 S R(EER)

Now assume that g is ¢ on p-average. This assumption implies that, for any integer n > kg,

fien (BE") < <d-ju(B).

pen((z € 557 | gle) > 1(d -] -1)}) < d (x| 9(e) > Hllal -dr))) < d - 1= 1

Therefore, g is Az.1(dz) on average w.r.t. {g<p fnen.
({z €257 [g(x) > t(|e| 1)} <
) - fi<n (B) for any set B C X",

(2) Assume that g is ¢ on average with respect to {y<y }nen; that is, f

<n
1/r for all » > 0. We fix » > 0 arbitrarily. From the fact that g(B) = (X"

it immediately follows that, for n > ko,

~ <n
il € 357 g(a) > U] 20)]) = 1(E5") -ien(o € D7 | gla) > 1(Ja] -20))) < L)
Taking the limit, it follows that
~ <n
il () > t(le]-200)) = lim (e € 5= | gla) > 1(ja] - 20))) < tim L7 L

We note that we can replace fi<, by fi, in statement (2) of Lemma 3.3.8, but not in statement (1)

because An.i(X") may not be increasing in general.

3.3. A NOTION OF EASY-ON-AVERAGE 57

Let p be a distribution. In analogy with the terminology of “polynomial on p-average,” we say that a
function g is {pt<ntnen ({#>n fnen, resp.) if there exists a polynomial p such that g is p on average with

respect to {pi<ntnen ({#>n}tnen, resp.). The above lemma immediately implies the following proposition.

Proposition 3.3.9 For a function g from X* to RT%°, g is polynomial on p-average if and only if g is

polynomial on average with respect to {p<n nen.

Proof. The proposition follows from Lemma 3.3.8 together with the fact that if ¢ is a polynomial, then
Az.t(dz) and Az.t(223) are both polynomials. a

Under some reasonable constraints, we can further replace an input ensemble {zi<, }nen in the above
proposition by {g>y }nen. Cai and Selman [19] first proposed an idea of restricting Levin’s notion of poly-
nomial on p-average to obtain a better time-hierarchy theorem. The following proposition takes a different

formulation but shows an essential part of a theorem by Cai and Selman.

Proposition 3.3.10 Let g be a function from ¥* to RT® and let p be a distribution. If An.a(X2") €

Q(n~k) for some integer k > 0, then the following statements are equivalent:
1. g is polynomial on p-average.

2. g is polynomial on average with respect to {p>p tnen.

Proof. Let g be a function from ¥* to Rt. Assume that An.i(X2") € Q(n=*) for some &k > 0.
We first show that (2) implies (1). Assume that there exists a polynomial p such that, for every n € N
and every r > 0, fi>,({z € £2" | g(z) > p(|z| - r)}) < 1/r. Set n = 0, and then we obtain

(e | 9(x) > plla] 1)) < -

Thus, g 1s polynomial on p-average.

Next we shall show the other implication. Assume that ¢ is polynomial on p-average; namely, for some
appropriate polynomial p, ({2 | g(x) > p(r - |z|)}) < 1/r holds for all real numbers » > 0. Without loss of
generality, we may assume that p is increasing.

By the assumption for p, we can assume that, for some constant ¢ > 0, @(X2") > cn% holds for all
positive integers n. For simplicity, assume that ¢ 1s an integer.

Let us define g as ¢(z) = p(2¢-2%+3) for all z. Clearly ¢ is a polynomial. In particular, by the monotonicity
of p,

q(r-m) > p(m - 2erm™*+?)

for all numbers r,m > 0.

Now let S be the set of all natural numbers n for which p, is defined:

fisn({z € 227 | g(2) > q(r - |2])})

58 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

= ﬂ(EIZn) p({x € n2n | g(z) > p(|z| - 26T|x|k+2)})
= Z 1 p({x € X7 | g(x) > p(|x| - 2erm™ A}

Az

m:meSAM>n

1 1
< .
- Z a(X2m) 2ermkt?
m:meSAM>n
1
k
= Z R y——
m>n
(o]
1 n? 1
< = — < -
- Z 2rm? 12r r
m=1
Therefore, g is polynomial on average with respect to {ft>n }nen, and this completes the proof. a

3.3.3 Basic Properties

The notion of “¢ on p-average,”

which we have introduced in the previous section, is essential in our average-
case complexity theory. In this section, we shall discuss 1ts fundamental properties which will be used freely
in the later chapters.

The lemma below is the starting point.

Lemma 3.3.11 Let k be a function on N such that k(n) > 1. For each n > 0, let {A? |1 < i< k(n)} be
a partition of X", 1.e., X" = Ufiq) A% Let g be a function from ¥* to RT, t be a function on RT, and let

p be a distribution.
1. Ift is increasing, then Ax.t(|x|) ist on p-average, where x runs over all strings.
2. Ifg st on p-average, then g(z) < t(|x|/pu(z)) for all & with g(x) > 0.

3. Assume that t is increasing. If g(A) < (0) and g(z) < t(1/k(n)(n+ 1)a(A})) for all strings x € A} if
P(A?) > 0 for each n > 0 and each i with 1 < i < k(n), then g ist on p-average.

Proof. (1) If 0 < r <1, then g({z | t(|z]) > t(Jz| - r)}) <1 < 1. Assume r > 1. In this case, the set
{@ [t(Jz]) > t(|z| - r)} is empty since ¢ is increasing. Hence, i({z | t(|z|) > ¢(|z|-r)}) = 0 < L. Therefore,
Az.t(|z|) is t on p-average.

(2) Assuming the contrary, suppose that there exists an o such that g(zg) > ¢(|zo|/f(20)) and f(zg) > 0.
Let r = 1/f(x0). Then, p(zo) < a({x | g(z) > t(lz|-7)}) < 1/r = fi(x0), a contradiction.

(3) Assume that g(A) < ¢(0) and g(z) < t(1/k(n)(n + 1)a(A})) for all € A if 4(A?) > 0. Since t is
increasing, t(x) > t(y) implies © > y. We show that p({z | ¢(x) > t(Jx|-r)}) < 1/r. For each r > 0,

oo k(n)
p{a Lg(@) > t(lz]-m)h) < DD a({e € AP [t(1/k(n)(n + 1)a(A})) > t(n - 1)})

n=1i=1

3.3. A NOTION OF EASY-ON-AVERAGE 59

- i(z)“q“ i ")
k(n)

Il
[~]e
]
=
TN
—
X
M
o
=3

X = 1
TEPERTIEREIED 9) pRISE T
n=1i=1 n=1
since Zleﬁzl. m|

Lemma 3.3.11(2), for example, enables us to see that if g is polynomial on vstang-average, then g is

2-11 it follows that

exp-bounded. From the fact that Uganqa(z) < MW . ,

g(x) <c- (%)k +e<e- (2|x|(|x| + 1)22|f|)k +c

Vstand*

for some constant ¢ > 0.

Let us recall from Chapter 2 that f majorizes g, denoted by f > g, if and only if f(z) > g(x) for all «.

Lemma 3.3.12 Let f and g be any functions from X* to RT®, t any function on RT, and u any distri-

bution. Assume that f majorizes g. If f ist on p-average, then g is alsot on p-average.

Proof. Assume that fis ¢ on p-average. Since f(xz) > g(z) for all x, it follows that {z | f(x) > ¢} C {2 |
g(x) > c} for an arbitrary ¢. Then,

e 1 9(e) > tllal 1)) < e | F@) > tllal -)}) < T

Thus, g 1s ¢t on p-average. ad

As we have seen in Subsection 3.3.1, Levin’s notion of “polynomial on p-average” is superior to the naive
notion of “average polynomial” because the set of functions which are polynomial on p-average is closed
under algebraic operations, such as +, x, max, and min. Here we show a more general claim that the set of
functions which are 7 on p-average is closed under such operations.

We say that T is adequate if, for any functions ¢1,f2 € 7 and a constant r > 0, there exist functions

s1, 82,83 € T such that sy (2) > t1(22) + t2(2%), s2(x) > (t1(2))", and sg(x) > r - t1(x) for all .

Proposition 3.3.13 [36] Let T be an adequate sel of functions, let u be a distribution, let f, g be func-

tions from X* to R, and let r be a posilive real number. If f,g are T on p-average, then so are max{f, g},

min{f, g}, f", v f, f x g, and f + g, where f"(x) = (f(z))".

Proof. Assume that g({z | f(z) > p(|z]-7)}) < 1/r and g({z | g(x) > q(|z| - 7)}) < 1/r. For the case

60 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

f x g, take a function s € T such that s(z) > p(2z) + ¢(2z) for all z. Then, we have

p{ | f(e)g(x) > s(|z]-)})
< a{w | f(x) > p(lel-20)}) + a({z | £(x) < p(le|-2r) A fx)g(x) > s(|z] - r)})

< gntal{e o) > alle] -20)
1 1

1
< gty = oo
Similarly, for the case f”, take a function s such that s(z) > (p(2))"; for the case r - f, take s such that
s(z) > r-p(z); and for the case f+ g, take a function s such that s(z) > p(2z) 4+ ¢(2z). The case max{f, g}
is derived from the case f+ g since f+ ¢ majorizes max{f, ¢}. Similarly, min{f, g} becomes 7 on p-average

because max{f, g} majorizes min{f, g}. O

As for “polynomial on p-average,” we shall show in the following lemma that this notion is invariant to
any application of polynomials. This lemma is valuable in later chapters.
We call an n-ary function f increasing (or monotone) if f(x1,...,2n) < f(y1,...,yn) wWhenever z; < y;

forallz, 1 <17 <n.

Lemma 3.3.14 cf. [36] Let k > 1 and let g1,...,gx be functions from X to RY and let p be a k-
ary increasing polynomial. If all g1, ..., gx are polynomial on p-average, then Ax.p(g1(x),...,gx(x)) is also

polynomaal on p-average.

Proof. Assume that, for each ¢ with 1 < ¢ < k, the function g; is ¢; on p-average for some polynomial
gi. By definition, it follows that i({z | gi(x) > ¢i(Jz|-r)}) < I for all positive real numbers r. Now let
s(z) = plgr(kz),. .., qi(kz)) for all z. Since p is increasing, p(z1,...,2x) > p(y1,...,ys) implies that there

exists a number ¢ such that z; > y;. So, we have

p{z [plgr(@), . gu(@)) > s(lz] - r)}) ae | plg(x) > plar(lz] - kr), oo qu(lz] - k7))

(
a{z | F[L < i <kAgi(z) > qi(le]- kr)]})

IN

Mw

a{e | gi(2) > qi(lz| - kr)})

i=1
k
1 1
< - = -
ZZ:; k-r r
Therefore, Az.p(g1(x), ..., gx(2)) is polynomial on p-average. a

The following lemmais of a rather simpler form than Lemma 3.3.11(3), but it is helpful to show elsewhere

that a given function is polynomial on p-average.

Lemma 3.3.15 Let ¢, d, k be positive constants. Let {AT | n > 0,1 < i < n} be a partition of ©F such that
= Ui, AT for each n > 0. Assume that, for almost all n, for all i with 1 < i < n and for all strings

3.3. A NOTION OF EASY-ON-AVERAGE 61
r € A, g(z) < c-n?+ (e/n?a(AP))*. Then, g is polynomial on p-average.

Proof. Let us assume that g satisfies the above condition. For every z, let ¢'(z) = min{g(z),c-|z|¢} and
g"(z) = g(z) — ¢'(x). Since Az.c|z|? majorizes ¢’, by Lemma 3.3.12, ¢’ can be shown to be polynomial on
ji-average.

We next show that ¢"’ is also polynomial on p-average. Let ng be the minimal integer such that, for all

n > no, for all i with 1 < i < k(n) and for all z in A7, ¢"(z) < (¢/n2p(A7))*. Also let b = max{g"(z) |

|z| < no}. Note that
(W) :<2n22@w>) S(<n+§§ <A”>) |

Now consider the polynomial p such that p(z) = (2¢-2)* +b. It is obvious by our definition that ¢"(\) < p(0)

and ¢"(z) < p(1/n(n—+ 1)a(AR)) for all z € A?. By Lemma 3.3.11(3), ¢" is polynomial on p-average.
By Lemma 3.3.13, ¢’ 4+ ¢"’ is also polynomial on p-average. Since ¢ = ¢’ + ¢”, the proof is completed. O

We call a set T suitable if, for every ¢ € T, every ¢ € N, and every polynomial p, there are functions
s1, 82,83 € T such that s1(z) > #(cz), s2(z) > t(p(2)), and sz(x) > t(z) + ¢ for all x.

Lemma 3.3.16 Let f be a p-bounded, p-honest function on ¥*, and let g be a function from X* to RT.
Let T be a suitable set of increasing functions on RY. The function go f is T on u-average if and only if g

s T on pip-1-average.

Proof. (If — part) Assume that g is ¢ on M 4-1-average for some ¢t € 7. Take an increasing polynomial p
such that |f(#)] < p(|z|) for all z, and an integer ¢g such that g(A) < ¢g. Moreover, we let function ¢’ € T be
such that /(z) > ¢(3p(2)z) + ¢ for all z. Such a function exists because of the closure property of 7. Note
that, for z € X% and r > 1, ¢(3p(|z| -)3 - |z|r) > ¢(3]|f(x)[?r). We can show that g o f is ¢’ on p-average.
For the sake of convenience, let Ay = {z | f(x) # A}

For each r > 1,

a{r [go fx) > (]} < afe € Ay | Jlf(x) = y Ag(y) > t3p(Jx] -)|l
< alJ U {zean| fe)=yngy) > tBlyPr))
n—ly'lyl—n
=SS e | S = v Aal) > (] 3%,
n=1y:y|=n

By the definition of fi -1, Az | fle) =yAQy)}) = ﬂf-l({y | Q(y)}) for any property @. Thus, we get

i{z lgo fle) > (lz[- 1)) < D -y eS| g(y) >yl -3n’r)})

oQ

) DI
3nZ.-r 187 r

n=1

IN

62 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

(Only if — part) Assume that g o f is t on p-average for some t € 7. Take an increasing polynomial p
such that |z| < p(|f(x)]) for all # because of the p-honesty of f. Let us take a function ¢ € 7 such that
t'(z) > t(p(#)z) + ¢co for all z, where ¢q is the same constant as defined above. We also take Ay as above.

Note that, for x € Ay and r > 1,

Up(f ()] -)@ -r) = p(f@)]) - 7) = (]x]-r).

We show below that g is ¢’ on M 4-1-average.

Qo) > (el 1Y) < lte € Ax [3lF(@) =y Agle) > (sl - Dl -]
(e € Ay 1 9(7(2) > (@) -] 7))
il g0 f@) > tllel 7)) < T

IN

3.3.4 Different Characterization

As stated before, our definition of “polynomial on p-average” is motivated by Schapire’s definition, and at
first glance, it appears to be different from Levin’s definition. In the first part of this section, we shall prove
by a slightly more general argument that both definitions are equivalent. For this purpose, we introduce a
“good” set of functions below.

For a set T of functions on RY, we call T good if, for every s € 7 and every constant ¢ € N, there exist
functions s’,s” € T such that s(cxr) < s'(x) and s(z?) < s”(x) for all z. For example, the set of increasing

polynomials is a good set of convex functions.

Proposition 3.3.17 Let g be a function from X* to Rt and let T be a good set of strictly increasing
functions on RT. The function g is T on p-average if and only if the expectation Zx:|x|>0 lz|=t -7 (g(x)) -

j(x) converges for some functiont € T.

Proof. (Only if - part) Without loss of generality, assume that g(A) = 0 and that g is ¢ on p-average
for some ¢t € 7. Then it follows that, for any real number r > 0, a({z | g(z) > t(r? - |2|)}) < 1/r?. B
our assumption of 7, we can define a strictly increasing function ¢ € 7 such that #(z?) < #/(z) for all 2. In
particular, ¢(r? - |z|) < ¢((r - [2])?) < ¢(r - |2|). Hence, this implies that p({z | g(z) > t'(|z]-r)}) < 1/r2.
Without loss of generality, we may let this ¢’ be ¢ in the rest of the proof.

This indicates that, for every integer k > 0, g({z € T | 2|71t~ (g(z)) > k}) < 1/k*. Using this

inequality, we bound Zx:|x|>0 t_l(g(x))ﬂ(x) above by

||

Z t_l(g(l‘))ﬂ(x) <

z:|z|>0 |l‘|

i{eeyt |k—1<" |(|())</<;})

||M8

_ {xez+|i_1<w§i})

3.3. A NOTION OF EASY-ON-AVERAGE 63

{x62+|i—l<mgi}).

||

=

|
k=1
The last term is further bounded above by

ﬂ({xEE"’ W>O})+§;ﬂ({x62+|ﬂ%>k})

i=k

71-2

— 1
< 14 ;; ==
(If — part) Conversely, assume that Zx:|x|>0t_l(g(x))|x|_1ﬂ(x) < N for some number N > 1 and some
strictly increasing function ¢ € 7. Markov’s Inequality (Lemma A.1) enables us to get the inequality that
f({z | |z|=*"1(g(x)) > r-N}) < 1/r for any real number » > 0. This yields g({z | g(z) > t(rNl|z|)}) < 1/r.
Hence, ¢ is Az.t(Nx) on p-average. Since there is a function ¢’ € 7 such that ¢'(z) > t(Nz) for all z, we get
the desired result that ¢ is 7 on p-average. ad

For example, the set of polynomials, 7 = {Az.(z* + d) | k,d > 0}, and the set of logarithms, 7 =
{Az.(klogz+d) | k,d > 0}, are both good sets of strictly increasing functions on R* (recall our convention:
log z is defined to be 0 whenever 0 < z < 1).

In 1995, Impagliazzo [43] pointed out that Levin’s definition is equivalent to the statement that the
expectation of a function over all strings of length > n, is bounded above by a polynomial in n.

In the following theorem, we see Schapire’s [88] and Impagliazzo’s characterization [43].

Theorem 3.3.18 [88,43] Let p be a distribution and let g be a function from ¥ to RT®. Let S be the

set of all natural numbers n for which p<, s defined. The following statements are equivalent:
1. g is polynomial on p-average.
3
2. Y eal>0 ﬂI%IL - fi(x) < oo for some real number § > 0.

3. Forallnes, Zx:|x|<ng(x)5 fi<n () < ¢-n+d, where & is a positive real number and ¢, d € IN.

Proof. Note that if there exists a string # such that g(#) = oo, then we can redefine g(#) = 0 without
changing the three conditions above. Hence, we may assume that g(z) < oo for all # in the following proof.
The equivalence between (1) and (2) comes from Proposition 3.3.17. We next show that (2) and (3) are
equivalent.
We first prove that (2) implies (3). Assume that Zx:|x|>0 ﬂlflﬁﬂ(l‘) < oo for some real number 4 > 0.
Consider a large integer ¢ > 0 such that Zx:|x|>0 %ﬂ(r) < ¢. Let ng be the minimal number in S, and

assume that an integer d > 0 satisfies that ﬂSnD(ES”D) > %. Then, for each n € 5,

5 () fi(@)
x:o%gg(x) ficn(z) < <Z|j|< 1@ A e
n g(x)®
RPN ED ERaR

64

Conversely, assume (3); namely, in|x|<n g(x)?

since

> ale) - ple)

z:|z|=n

To simplify the description,

CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

ficn(x) < c-n+dforallm € S. Notice that

ST g(@) ile) Scond

z:|z|=n

> g@)’ e

z:0<|z|<n

n(z) <e-n+d

set By = {x € &t | g(x)®/® < |2|} and By = {& € Tt | g(x)®/ > |2|}. Tt is

important to note that if # € Fy, then g(x)?%/3 > |z|?. Thus, we have

5/3 5/3 §/3
g(z P g(z g9(z) .
eilz|>0 ¢ €Fo €,
))
< Z Z |x| g(x 26/3 ().
r€Fy reE,

The first term ZxEEu fi(x) is obviously at most 1. Let T be the last term, and we shall focus on it below:

§
g\z -
T o< Y |(x|l fu(x)
reE,
o) 1 A
< > =D @))
n=1 rEL*
. ec-n+d > c d
< Z n3 = Z(ﬁ—i_ﬁ) < o0

3.3.5 Random Functions

Randomized algorithms are a simple tool for solving problems “fast” on the average. To cope with the running

time/space of randomized algorithms, we need a notion of polynomial on p-average for random functions

because the running time/space forms a random function which depends on random seeds produced by the

inner coin flipping process of the randomized algorithm.

Gurevich [36] and Blass and Gurevich [12] formulated a notion of polynomial on p-average for random

functions from a random-input domain I' by requiring the convergence of the expectation of the value

|l‘|_1g(x,5)5, over all pairs

(z,s) in T, with respect to its probability fi(z) and conditional probability

Ur(z) - 2-151 Our formulation is a modification of their definition, and it will be shown to be equivalent to

theirs at the end of this section.

Definition 3.3.19 (¢ on u-Average)

Let ¢ be a function on Rt and let 7 be a set of functions on RT.

Let p be a distribution and let I' be a random-input domain. Let g be a random function from I' to R+,

3.3. A NOTION OF EASY-ON-AVERAGE 65

1. A random function g is ¢ on p-average if pr({(z,s) | f(z,s) > t(Jx|-r)}) < 1/r for all real numbers
r > 0.

2. A random function f is 7 on p-average if there exists a function ¢t € 7 such that f is ¢ on p-average.

The above definition implies that if a random function f with a random-input domain I' is polynomial on
p-average, then the same function f, viewed as a “regular” function with two arguments, 1s polynomial on
pr-average, i.e., pgr({(z,s) | f(z,s) > p(|{(x, s)| - r)}) < 1/r for some polynomial p. The converse, however,
does not hold in general.

A simple observation shows that A(A,;s) < ¢(0) for all random seeds s € T'(A) unless ji(A) = 0. This is
seen as follows. For any positive real number r,

f(A) - Prs[A(A, s) > 1(0) [s € TA)] < e ({(A, 8) | (A, 5) > 1(0)}) < o

r

As r approaches oo, the probability Prs[h(A, s) > t(0) | s € T'(A)] goes to 0. Therefore, this probability must
be 0.

The lemma below provides us with a simple and sufficient method for proving a random function to be
T on p-average. For the lemma, we must recall the definition of a conditional expectation of a random
function.

Fix a random-input domain I'. For a random function f from I' to RT, the conditional expectation

Eslg(z,s) | s € T'(x)] for each z is defined by

Eg(,s) | s €T(@)]= Y glx,s)-Ur(z) 27"
sel(x)

Lemma 3.3.20 Let T be a good set of strictly increasing conver functions and let i be a distribution. Let
T be a random-input domain and let g be a random function from T to R*. If Az .E[g(x,s) | s € T(z)] is T

on p-average, then g is 7] on u-average.

Proof. Lett € T and assume that Ax.F[g(x,s) | s € ['(x)] is ¢t on p-average; namely, p({z | Es[g(=, s) |
seT(x)] > t(|z|-r)}) < 1/r for all r > 0. We shall show that ar({(z,s) | g(=,s) > t'(Jx|-r)}) < 1/r for
some t' € T.

Fix r > 1. Since t is strictly increasing, a({z |t~ (Es[g(z,s) | s € [(2)]) > |z] - 4r?}) < 1/4r? < 1/r. By

Jensen’s inequality, since t~! is a strictly increasing concave function, it follows that
Bt~ (g(a,5)) | 5 € T(@)] < 71 (Eulgla,5) | 5 € D).

Hence, u({z | Es[t7'(g(z,s)) | s € ()] > |z| - 4r*}) < 1/r. Notice that E[t='(g(x,s)) | s € ['(x)] does not

depend on s. Then, clearly we have

ar({(z,s") | Bs[t™ (g(x,s)) | s € T(x)] > |=| - 2r})
= a({x | Bt g(x,s)) | s € T(x)] > |=|-2r}) < %

66 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

Now let D, = {z | E5[t71(g(x,s)) | s € I(x)] < |z| - 2r}. We then obtain

par({(z,s) |t (g(x, s)) > |z| - 4r?})
< ar({(z,8) | Bs[t™ (g(x,9)) | s € T(x)] > |2|-2r})

+ar({(z,s) | © € D, At (g(w,5)) > || - 4r%}).

Let us consider the last two terms in the above inequality. The first term is bounded above by 1/2r. The

second, however, is bounded above by

par({(x,s) [t (g(x,5)) > 2r - Bt (g(x,5)) | s € T(2)]})

because of the assumption # € D,. Markov’s Inequality (Lemma A.1) ensures that this term is bounded
above by 1/2r. Thus, ir({(z,s) |t~ (g(z,s)) > || - 4r?}) < 1/r.

Using the fact that ¢ is strictly increasing, we obtain the conclusion that ar({(z,s) | g(z,s) > t(|#| -
4r?)}) < 1/r. Now consider another function ¢ € 7 such that ¢(42?) < /() for all z, and as a result, we

obtain the inequality pir ({(z,s) | g(x,s) > t'(|z| - r)}) < 1/r. Therefore, g is T on p-average. O

Note that the lemma shows only a sufficient condition, and the converse of the lemma may not hold in
general. However, if we instead use Gill’s measure (in Section 2.4), then we can obtain a necessary condition.

For a random function f from I’ to R1°°, let f* be defined as

. min{n | Pr,[f(z,s) <n|s el (x)] > +} if one exists,
[(@) =

00 otherwise.

Lemma 3.3.21 Let f be a random function with a random-input domain U'. If f st on p-average, then

f* s Az.1(2z) on p-average.

Proof. For each #, if f*(x) > t(|x| - 2r), then Pr[f(x,s) < t(|z]-2r) | s € T(x)] < 1/2, because f*(z) is
the minimal value k satisfying that Pr,[f(z,s) < k| s € T'(x)] > 1/2. Hence, it follows that

2. Pry[f(z,s) > t(|e|-20) | s € T()] > L.
Using this fact, we can estimate the value g({z | f*(z) > ¢(|z| - 2r)}) as follows:
i | 7@ > el 20 < 2 S e) - Prlf(e,s) > il -20) | s € T(&)]
= 2 () | Sess) >]2

1 1
< 2.— = -
.

As a particular case, if a random function f i1s polynomial on p-average, then its associated function f*

is also polynomial on p-average.

3.3. A NOTION OF EASY-ON-AVERAGE 67

When f(z,s) is given as of the form Timeys(2;s) for some bounded-error probabilistic Turing machine

M, we can also replace T'(x) by Q(x) in the above definition of f* and the lemma.

Lemma 3.3.22 Let T be any random-input domain whose elements are of the form (x,y, s), and let p and
n be any two distributions. Let h be a function from ¥* to RT which is polynomial on p-average, g a random
function from T to RT which is polynomial on p x n-average, and f a function on X*. If h(f(x)) -n(f(z)) > 1

for all & and Az.|f(x)| is polynomial on p-average, then Axs.g(x, f(x), s) is polynomial on p-average.

Proof. For simplicity, write v for g x 7. Let us assume that a random function g is polynomial on
v-average. This implies the existence of an increasing polynomial p, such that or({(z,y,s) | 9(z,y,s) >
pg(r - (2] + |y]))}) < 1/r for any positive real number r. Similarly, from the assumption that Az.|f(z)| is
polynomial on p-average, there exists an increasing polynomial p; such that Az.|f(z)| is p; on p-average.
Let us also assume that & is ¢ on p-average for some increasing polynomial q.

We then define the new random-input domain I' as TV = {(z, s) | (#, f(x),s) € T'}. To reach the desired
result, it suffices to show that, for some polynomial p, fir/({(x,s) | g(z, f(z),s) > p(|z| - 7)}) < 1/r. This

polynomial p is of the following form:

Pa((2 +ps(32)) 5z - ps (32)” - q(ps (32) - 32)).

Let us fix 7, 7 > 0, and define D, = {z € % | h(f(2)) < q(|f(2)| - 37) A|f(z)] < ps(|z]-3r)}. Notice
that, by the monotonicity of p¢, py, and ¢, if z € D, then

v

po((lx|+ ps(lx] - 3r)) - 5r - py(le| - 3) - q(ps (] - 3r) - 37))
po((Jel + £ ()]) - 57 - [(@) P - a(1f ()] - 3r)).

p(lz]-7)

v

It 1s not difficult to see that

pr({(x,) | = € Dr})

< a({e [A(f(2)) > q(1f@)] - 3r)}) + p{e | [f(2)] > pr(z - 3r)})
2

3_/),,.
In the rest of the proof, we shall show that grs({(z,s) | © € D, Ag(z, f(z),s) > p(Jz|-r)}) < 1/3r.

pr ({(z,s) | x € D Ag(z, f(x),s) > p(|x]-7r)})

= ao(|J U {(@s)lz€ D Af(x) =yAgle,y,s) > p(lz]-7)})

n=1y:|y|=n

ST Y a({(a,s) e € Do A f(a) =y

n=1y:|y|=n

A gz, y,s) > pg((lz]+ [yl) - 5rlyl*a(3r(yl))}).

Using the assumptions ¢(3r|f(z)]) > h(f(z)) and h(f(x)) - or(x, f(x),s) > jr(x, s), we obtain

pr({(z,s) |2 € D Ag(z, f(x),s) > p(lx]-r)})

68 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

S allel-30) - or({(eays) |2 € Do A f(2) = y

<
n=1yiyl=n
Ag(x,y,s) > pg((lz] +yl) - 5rn*q(3rn))})
< Y) im({(x,y,5) | € Do Ag(a,y,5) > pg(([2] + [yl) - 5rnq(3rn))})
= q(3rn) o 1
= 712:31 5n%-¢(3rn) 30 T

At the beginning of this subsection, we mentioned the equivalence between our definition of polynomial
on p-average and the definition given by Gurevich [36], and by Blass and Gurevich [12]. We now present

this equivalence in the following proposition.

Proposition 3.3.28 Let I be a random-input domain and let g be a random function from I' to RT. The

following statements are equivalent:
1. g is polynomual on p-average.

2. E(x,s):|x|>0 ﬂ%ﬁ SUp(x) - ju(x) - 2718l < 0o for some constant § > 0.

Proof. Similar to Theorem 3.3.18. O

3.4 A Notion of Domination

Another crucial notion introduced by Levin [60] is the the notion of polynomial domination among distri-
butions. The domination relation will be used as a part of the domination condition which is an important
ingredient of the polynomial-time reducibility among distributional decision problems in Chapter 5. Intu-
itively speaking, it ensures that if an algorithm i1s “fast on the average” for some distribution g, then this
algorithm is also “fast on the average” for all distributions which are dominated by p. This section will define
the polynomial domination relation and the polynomial equivalence relation and explore some fundamental

properties as preparation for Chapter 5.

3.4.1 Domination Relations and Equivalence Relations

First we shall give a general definition of domination relations.

Definition 3.4.1 (Domination Relations) Let g and v be semi-distributions.

1. Let ¢t and 7 be a function and a set of functions from X* to RT, respectively. The semi-distribution v
t-dominates p if t(x) - v(x) > ji(x) for all @ € ¥* and v T-dominates p if there exists a function ¢’ € T

such that v #-dominates p.

3.4. A NOTION OF DOMINATION 69

2. Let t and 7 be a function and a set of functions on R¥, respectively. The distribution v average t-
dominates i if there exists a function #, from ¥* to RT, such that ¢’ is on p-average and v t'-dominates

p, and v average T -dominates p if there exists a function ¢ in 7 such that v average t-dominates p.

This definition enables us to consider polynomial domination relations and average-polynomial domina-

tion relations.

Definition 3.4.2 (Polynomial Domination) Let p and v be any two semi-distributions.

1. The semi-distribution p polynomially dominates (p-dominates, for short) v if there exists a p-bounded
function ¢ such that g t-dominates v. For brevity, the notation v <P y expresses that p p-dominates

v.

2. The semi-distribution u average-polynomially dominates (avp-dominates, for short) v if there exists a
polynomial ¢ such that p average ¢-dominates v. The notation p <*'P v means that p avp-dominates

v.

In [36], polynomial domination and average-polynomial domination are called domination and weak
domination, respectively.

As previously mentioned, polynomial domination relations were explicitly introduced by Levin [60] on his
theory of average-case complexity as a certain type of reducibility between two distributions which measures
the complexity of these distributions. In this sense, two distributions which dominate each other can be
considered to have almost the same degree of complexity. We call them equivalent. Equivalence relations
capture the closeness of two distributions and also give rise to an appropriate “approximation” between
them.

We begin by giving a general definition of equivalence relations.

Definition 3.4.3 (Equivalence Relations) Let yand v be any distributions. Let 7 be a set of functions
on RT.

1. The distribution p is T -equivalent to v if u T-dominates v and v T-dominates p.

2. The distribution p is average T -equivalent to v if u averageT -dominates v and v average7 -dominates

o

Definition 3.4.4 (Polynomial Equivalence) A semi-distribution g is polynomially equivalent

(p-equivalent, for short) to another semi-distribution v if y is t-equivalent to v for some p-bounded function
t; and p is average-polynomially equivalent (avp-equivalent, for short) to v if y is average t-equivalent to v
for some polynomial ¢. We use the notation g &P v to mean that p is p-equivalent to v, and the notation

1 &Py to mean that p is avp-equivalent to v.

70 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

As an example, let us consider FLAT, the set of flat distributions. This set is invariant with respect to

9 < ji(z) <

p-equivalence relations. This is seen as follows. Since p is p-equivalent to v, it holds that

p(z)0(x) for some p-bounded p. Then, we have

R

i) = o(a)] < s {p(e)o12) -), e

Hence, |i(z) — v(z)| < 27121 for some ¢ > 0, and in consequence, y is flat.

Domination and equivalence relations are transitive.

Lemma 3.4.5 Let py1, ps and pz be distributions, and let T be a set of functions on RT.
1. If pug T-dominates po and pa T-dominates pi1, then ps T-dominates pq.

2. If us 1s T -equivalent to ps and ps 1s T -equivalent to pq, then pg is T-equivalent to .

Proof. (1) Assume that there are functions p; and ps in T such that py(x) - fia(2) > i1 (2) and pa(2) -
fiz(x) > fia(x) for all . To obtain the desired result, we set p(#) = p1(2) - p2(x). Then, we have

p(z) - fiz(2) = p1(x) - (p2(x) - fi3(x)) > p1(x) - po(2) > fra(2).

(2) Tmmediate from (1). m|

As an immediate consequence of Lemma 3.3.14, we have seen that if f majorizes ¢ and f is polynomial
on p-average, then g is also polynomial on p-average. Below we shall show that if v avp-dominates g and f
is polynomial on v-average, then f becomes polynomial on p-average.

A class T of functions is said to be closed under composition with polynomials if, for any function ¢ and

any polynomial p with integer coefficients, ¢t € 7 implies Az.t(p(z)) € T.

Lemma 3.4.6 Let u and v be distributions, T a set of functions on RY which is closed under composition

with polynomials, and h a function from X* to RT.
1. Ifv avp-dominates p and h is T on v-average, then h is T on p-average.

2. Prouided that v is avp-equivalent to p, h 1s T on v-average if and only if h s T on p-average.

Proof. (1) Assume that ;¢ <*P v, and h is t on v-average for some function ¢ € 7. Choose a function
q which is polynomial on p-average such that, for all @ € ¥*, (x) - ¢(#) > pi(x). First notice that if h is
degenerative under v, then h is also degenerative under y since () = 0 implies ji(z) = 0 for any string z. By
our assumption, v({z | A(x) > ¢(|z|-r)}) < 1/r for all » > 0. Since the set T is closed under composition with
polynomials, we assume without loss of generality that h(A) < (0), and therefore p({z|h(A) > t(0)}) = 0.
Since ¢ is polynomial on p-average, there exists a polynomial p such that g({z | ¢(z) > p(|z|-r)}) < 1/r for
all » > 0.

3.4. A NOTION OF DOMINATION 71

Let p, and v, denote the conditional probability of strings of length n of u and v, respectively. Note
that if ¢(x) < p(|z| - r) for a string # of length n, then j(z) < p(n-r) - (z) for all n € N and r > 0. Now
define g as g(x) = t(423 - p(2z)). Since T is closed under composition with polynomials, g is in 7. We note
that, for all n € N and all » € RT, g(n-7) > t(n-r>-4n% p(n - 2r)). To complete the proof, we should show

that h is ¢ on p-average. This is seen as follows: for every real number r > 1,

p({x | h(z) > g(le|-7)})
< p{z [q(@) > plle]-2r)}) + p({z | g(z) < p(le|-27) Ab(z) > g(|] - r)})

< % +Y p(2nr)-o({x € ¥ | q(z) < p(2n7) Ah(x) > g(nr)})

1 (o)

< St oite i) > il 0)
1 °° p(2nr) 1 7

< 2r+nZ::1 4n?r3 - p(2nr) T2r 0 248

(2) Let us recall that v is avp-equivalent to u if and only if v avp-dominates p and p avp-dominates v.

The result thus follows immediately from (1). a

Corollary 3.4.7 Let h be any function from ¥* to Rt For distributions p and v, if v avp-dominates p

and h 1s polynomual on v-average, then h s also polynomial on p-average.

Corollary 3.4.7 implies that the avp-equivalence relations preserve the notion of polynomial on average.
This fact motivates us to introduce the two new notions of inclusions and equality among sets of distributions.

These notions will be used in later chapters.

Definition 3.4.8 Let F; and F> be two sets of distributions.

1. Fy polynomially includes (p-includes, for short) Fy, symbolically Fy CP Fs, if every distribution in F is
p-equivalent to some distribution in Fs. Similarly, 1 average polynomially includes (avp-includes, for
short) Fa, symbolically F; C*P Fy, if every distribution in F; is avp-equivalent to some distribution

n .7:2.

2. F is polynomially equal (p-equal, for short) to Fa, symbolically Fy =P Fy, if Fy CP Fy and Fo CP F.
Similarly, 7y is average polynomially equal (avp-equal, for short) to Fa, symbolically F; =*P Fy if
.7:1 gan .7:2 and .7:2 gan .7:1.

Lemma 3.4.9 The relations CP, C*P =P and =*P qgre reflerive and transitive. The relations =F and

o~

&P are symmetrical.

72 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

Proof. By Lemma 3.4.5 and the definitions. a

3.4.2 Fundamental Properties

The domination relations are of importance in average polynomial-time computation. This subsection will
explore properties of domination relations in relation to functional composition, and prepare the ground for
domination conditions which will be introduced and cultivated in Chapter 5.

Let us begin with several important properties. Recall that, for a function f and a distribution p, the

notation -, denotes the default distribution defined by its probability /lf_l(x) = p(f~1(x)).

Lemma 3.4.10 Let u and v be two distributions and let f be a p-honest, p-bounded function on X*.
1. Ifu <P v, then Py 3P Ve

2. If f 1s one-one, then Py 3P v of and only if p <P vo f. Moreover, Py AP v if and only of p =P vo f.

Proof. (1) Assume that g <P v. There is a p-bounded function s from ¥* to R* such that (z) - s(z) >
fi(x). Without loss of generality, we assume that s(z) > 1 for all z. Consider an increasing polynomial p such
that s(z) < p(|z]) for all . Since f is p-honest, there is an increasing polynomial ¢ such that |z| < ¢(|f(2)])
for all z. Now we let t(y) = max{s(z) | f(x) = y}. Tt is clear from the definition that, for every y, there is
an element z, € f~!(y) such that ¢(y) < s(xy). For this z,, we have

t(y) < s(xy) < p(lzy]) < pla(|f(2y)]) = pla(ly]) = poa(lyl).

Since p o ¢ is again a polynomial, ¢ should be p-bounded. Hence,

ve(y) ty) = D, vw)ty) > v(x) - s(x)

z:f(z)=y z:f(z)=y
> Y a(r) = fp-(y).
vf @)=y

(2) Let f be a one-one, p-honest, p-bounded function on L*. Assume that Py 3P Take a p-bounded
function p from ¥* to RT such that a(f=*(y)) < v(y) - p(ly|) for all y. Write 2 = f=1(y). Then, since
y = f(x), we have ji(z) < v(f(x)) - p(f(x)). Let q(x) = p(f(x)). Notice that ¢ is p-bounded because f is
p-bounded. Thus, we get u <P vo f.

Conversely, assume that g <P vo f. There is an increasing polynomial p such that p(z) < o(f(=)) - p(|=|)
for all . Since f is p-honest, |z| < s(|f(z)|) for some polynomial s. Write y = f(z). Then, z = f~1(y)

because f is one-one. Let ¢(2) = po f~1(z), and then ¢ is p-bounded, because

a(y) = p(IF 7 ()) = p(l2]) < p(s(1f()]) = p(s(lyD)-

Hence, p(f=1(y)) < #(y) - q(y) for all y. This yields the desired result - 2P v

The final claim can be proved in a similar fashion. a

3.4. A NOTION OF DOMINATION 73
Lemma 3.4.11 Let f be a function on X and let p and v be distributions. The following statements are
equivalent:

1. There exists a p-bounded (polynomial on p-average, resp.) function from ¥* to RT such that v(y) >
erf'l(y) Zg; for all y.

2. There exists a semi-distribution n such that y <P n (u <*P n, resp.) and v > Mg

Proof. We shall show the implication from (2) to (1). Assume that g <P 5 and o(y) > f]f_l(y) for all
y. Choose a function p such that p(z) - 7(z) > f(x) for all . Without loss of generality, we assume that

p(z) > 1. Since 7(z) > %(%,

Conversely, we shall show that (1) implies (2). Let us assume that o(y) > erf_l(y) % for all y,
where p is a p-bounded function. We may assume p(x) > 1 for all z. Let #(z) = %(%. Obviously, 7 is a

semi-distribution. We then have
x R R
) _ o 0w =0m()

ply) > > 2

w€fMy) wef M y)

fi(
(

Lemma 3.4.12 Let f be a p-honest, p-bounded function on X*.

1. There exists a distribution n such that u <P n and v > M1 of and only if there exists a p-bounded
function p from X* to RT such that v(y) > erf-l(y) %(%l for all y.

2. Assume that f is one-one. There exists a distribution n such that p <*'P n and v > -1 of and only if
there exists a function p which is polynomial on p-average such that v(y) > erf_l(y) % for all y.

Proof. (Only if — part) Assume that g <P 5 and j(y) > f]f_l(y) for all y. As we have seen, the last
inequality can be replaced by the corresponding equality.

We note that the inequality v > 71 in (iii) can be replaced by the equation v =
N-1(yo) for some yo, then 37, v(y) =3, 20 V(W) +0(y0) > D2, 240 M1 (¥) +70-1 (yo) = 1, a contradiction.
Hence, we may assume that fi(y) = f]f_l(y) for all y.

N1, since if U(yo) >

There is a p-bounded function p such that p(z) - 5(z) = ji(z) for all z. In particular, if p(z) = 0, then
reset p(x) to be 1 without changing the equation since fi(z) = 0. So, we can assume that p(z) > 0 for all «.

Then,

= Y = YA

74 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

(If — part) Assume that o(y) > erf J—)l for all #, where p is a p-bounded function from ¥*
to Rt. By Lemma 3.4.13, this is equivalent to Py) - vly) > fig-1(y) for some p’. Consider p” such that
p"(y) v (y) = fi;-1(y) for all y. As above, we can assume that p"(z) > 0 for all z. Let py(z) = p"(f(z)). Then,
we have (y) = erf_l() #(—L) Now define 5 as f(z) = J—l for each z. Clearly we have py(y)-5(y) = 1(y)

and v(y) = 3 ,ep-1(y) M@) = -1 (y)- .

Lemma 3.4.13 [36] Let f be a p-honest, p-bounded function on ©*, and let p and v be distributions.

Loopyp =P v if and only if there exists a p-bounded function p from T* to RY such that v(y) >

2. Assume that f is one-one. Then, pp-r 32 of and only if there exists a function p which s polynomual

on p-average such that v(y) > erf'l(y) % for all y.

Proof. We shall prove both claims simultaneously because the main difference is the condition on p.
(Only if — part). Assume that p(y) - v(y) > /lf_l(y) for all y. We can assume without loss of generality
that p(y) > 0 for all y. Define p'(2) = p(f(x)) for each . If p is p-bounded, then p’ is also p-bounded since
fis p-bounded and |p/(2)| = [p(f(2))]| < ¢(|f(x)]) for some polynomial ¢q. If p is polynomial on }tp-1-average,
Lemma 3.3.16 infers that p’ is polynomial on p-average. For y € ran(f),
Y0 = ——il{e | f(2) pe) s i =

|
P(y) veri PW fo-1<y>p(()) ()

(If — part). Assume that o(y) > erf J—)l for some p-bounded function p. Let p/(y) = max{p(z) |
x € f~1(y)}. If pis p-bounded, then p' is also p—bounded, since f is p-honest. If p s polynomial on u-average,

then using the fact that f is one-one, Lemma 3.3.16 again shows that p’ is polynomial on Jj-1-average. Then,

P/ Z p) Z _/'Lf()

Teft zeft

The following lemma is a polynomial-equivalence version of Lemma 3.4.13.

Lemma 3.4.14 Let f be a p-honest, p-bounded function on X*, and let p and v be distributions.

1. Pp-1 ~P v if and only if there erist two p-bounded functions p and ¢ from X* to Rt such that
S e pity A@)(E) > 0(y) 2 3 e gy B for all y.

2. Assume that f 1s one-one. Then, P RO Y of and only if there exist two functions p and q which are

polynomial on p-average such that

S e pity A@)(E) > 0(y) 2 3 e gy B for all y.

3.4. A NOTION OF DOMINATION 75

Proof. We shall show both claims at once. We assume that ¢(x) ~/lf_1(x) > v(z) and p(z) -v(x) > fi g (%)
for all . Let p/(x) = p(f(x)) and let ¢’(x) = ¢(f(z)). By the proof of Lemma 3.4.13, we have 0(y) >
erf_l(y) ;)A,(%% for all y. The other direction follows similarly:

p(y) <q))= > awie) = Y. q(f@)a) = Y ¢ @)ie).
v€f~1(y) v€f~1(y) v€f~1(y)

If ¢ is p-bounded, then ¢’ is also p-bounded since f is p-bounded. We show that ¢’ is polynomial on
p-average if ¢ 18 polynomial on v-average. Assume that ¢ is sg on v-average for some increasing polynomial
sp. By our assumption, p is polynomial on M j-1-average. Take a polynomial s; witnessing the average-
polynomiality of p. Since f is p-bounded, there exists an increasing polynomial ¢ such that |f(x)| < #(]z|)
for all z. Let D, = {y | p(y) < s1(|y| - 2r)}. Let s(2) = so(t(2) - s1(2t(2) - 2) - 3t(2)* - 2) for all 2. Note that,
forz e Xt and r > 1,

s(If(@)]) > solt(lz] -) - se(2t(|a| - r) -4t (le] - 7)* - [a]) > so(lyl - s1(2ly] - 7) - 4lyl* -),
where y = f(x). For r > 1,
a{x | q'(x) > s(|x]-r)})
= pa{e | Fylf(x) =y naly) > s(lz]-7)]})

< i ({y Laly) > sollyl - s12lyl -) - 4lyl* - 7)})
= ({y | p y) 1(|y| : 27“)}) + ﬂf—l({y €D, | q(y) > 50(|y| . 51(2|y| ~7°) ,4|y|2 . 7“)})

(
(

IN

ot S i (€ Do 0" | al) > sullyl -1 (20r) - 4n7r))).

By domination sy (2nr) - 0(y) > fp-a (y), therefore the last term of the above inequalities is bounded by

S su(2nr) - o({y [a(y) > sollul - 1(2nr) - 4n*r)})

n=1
%]

1 s1(2nr) 1 ™
< — ey 4 1
- 2r + nz_:l s1(2nr) - 4n?r 2r + 24r <

[3v]
=S| =

3.4.3 Randomized Domination

We also introduce a randomized version of p-domination relations and avp-domination relations.

Definition 3.4.15 (Randomized domination) Let y and v be any two semi-distributions.

1. The semi-distribution v is said to randomly p-dominate p (rp-dominate, for short), symbolically p <P

v, if there exist a random-input domain I' and a random function p from I' to N such that

(i) the random function p is p-bounded; and

76 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

(i1) p(z,s)-v(x,s) > fir(xz, s) for all pairs (z,s) € T.

2. The semi-distribution v is said to randomly average p-dominate p (avrp-dominate, for short), symbol-
ically p <" v, if there exist a random-input domain I' and a random function p from I' to N such

that

(i) the random function p is polynomial on p-average; and
(i1) p(z,s)-v(x,s) > fir(xz, s) for all pairs (z,s) € T.

To emphasize the random-input domain v, we use the notations p < v and p <" v.

By definition, it is immediate that if T' is almost total, then p <P v (u <*'P v, resp.) implies p <" vp
(p 2P vp, resp.). We have shown as in Corollary 3.4.7 that if v <*P y and h is polynomial on v-average,
then h is also polynomial on u-average. In the following lemma, we shall show an analogous result for

avrp-domination relation.

Lemma 3.4.16 Let p and v be two distributions. Let h be a random function from I' to RT*°, where I is
a random-input domain. Assume that, for some polynomial q, v({(z,s) | h(z,s) > q(r - |z|)}) < 1/r holds

for any real number v > 0. If p 2" v, then h is polynomial on p-average.

Proof. The proof is similar to that of Lemma 3.4.6(1). Assume that h is ¢ on v-average. Since p <" v,

there exists a random function p being polynomial on p-average such that p(z,s) - v(z,s) > pr(z,s) for all
pairs (x,s) € T'. Let us consider an increasing polynomial ¢ such that p is ¢’ on p-average.

We now fix a positive real number r > 1. Let us define the set D, = {(z,s) € T | v € ¥t Ap(z,s) <
q'(Jz| - 2r)}. Let ¢p be an integer such that ¢y > max{h(A,s) | s € T(A)}. Such an integer exists (see the
observation made after Definition 3.3.19). As the desired polynomial §, we set §(z) = q(42% - ¢'(2z)) + ¢o for
all z. The probability fir({(z,s) | A(x,s) > §(|#|-r)}) is bounded by

ar({(z,s) [p(e,s) > ¢'(le] - 20)}) + e ({(2, 5) € Dy | h(2,5) > q(lx|-1)}).

The first term is obviously bounded above by 1/2r. Let T, be the second term. To compute T,, we note
that if (z,s) € D,, then q(|z|-r) - v(x,s) > pr(z,s). Thus, T, is calculated as follows:

T. < par({(z,s) € D, | x € X" Ah(x,s) > q(|z| - 4rn?¢’ (2rn))})

Nk

1

3
1

¢'(2rn) - 0({(x,5) | h(x,5) > q(Jz| - 4rn*q’ (2rn))})

[M]¢

3
1
-

oQ

q' (2rn) B I 1
drn? - g/ (2rn) ;47“712 T %4y < 27

[M]¢

n=1

3.5. DISTRIBUTIONAL DECISION PROBLEMS 77

3.5 Distributional Decision Problems

In contrast to worst-case complexity theory, average-case complexity theory deals with not only a problem
D but also a distribution g of instances. Such a pair (D, pt) is called by many researchers a distributional
problem [109, 110], randomized problem [36], or random problem [60]. The distribution p assigns to an

instance the probability of its occurrence as an input to the problem D.

Definition 3.5.1 (Distributional Decision Problems) A distributional (decision) problem (D, p) is
a pair of a set D of strings and a distribution p. A set of distributional problems 1s called an average-case

complexity class.

This section will focus on “natural” average-case complexity classes and give their formal definitions.
Of particular interest are two types of average-case complexity classes. Following their definitions, we shall

discuss general separation and collapse results among these average-case complexity classes.

3.5.1 Average-Case Complexity Classes

Similar to worst-case complexity theory, we can consider “complexity classes” of distributional decision
problems. One natural type of those classes is the combination of existing worst-case complexity classes C
and sets F of distributions. Such a class was first introduced by Levin [60] as an average-case version of
NP, and later Ben-David, Chor, Goldreich, and Luby [9] invented a general notation (C, F) to describe such

classes. Here we slightly modify their notation and introduce an average-case complexity class Dist(C, F).

Definition 3.5.2 (Average-Case Complexity Classes) cf. [9] Let C be a complexity class and F be
a class of distributions. Let Dist(C,F) be the set {(D,p) | D € C,u € F}.

To simplify the notation, we devise the following convention: whenever the set of all distributions is
discussed, we use the symbol # (asterisk) as the distribution parameter. For example, Dist(NP, %) denotes
the collection of all pairs (D, y) such that D is an NP set and g is any distribution.

Here we see two examples of distributional decision problems in Dist(NP, «).

Example 3.5.3 A graph G = (V, E) is called 3-colorable if there exists a coloring ¢ of G (i.e., a map
c¢: V — {0,1,2}) such that, for any two distinct vertices w and v, if (u,v) € E, then ¢(u) # c¢(v). The
randomized 3-colorability problem (3COL, pscor) is defined as follows: let

3COL = {(G) | G is a graph which is 3-colorable };

and let
fizcor((G)) = Drany (11 - 27
where (G is an appropriate encoding of G. The distribution pscor is best described by the following

experiment: randomly choose the number of vertices and then randomly choose edges between pairs of

78 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

distinct vertices. Since 3COL belongs to NP, the problem (3COL, puscor) belongs to Dist(NP, «).

Example 3.5.4 The randomized 3 satisfiability problem (3SAT, pgat) is defined as follows:

n

3SAT = {{(p1,41,71)s - - -, (Pn, Gn,) | formula /\(pZ V ¢g; V ;) is satisfiable },
i=1

where all p;, ¢;, and 7; are strings which are reasonable codes of Boolean variables p;, ¢;, and r;, respectively;

and let pgat be defined by its probability

n

fsar((P1y 1, 71), - (Pry G Pn) = Drany (17) - Y 27 UPeHIGFID,
i=1

It is clear that (3SAT, pgaT) belongs to Dist(NP, «).

Another type of average-case complexity classes is more involved with algorithmic computability in feasible
time on average. First of all, we shall give a general definition of time- and space-bounded on average for
Turing machines. Notice that deterministic and nondeterministic Turing machines are special cases of
alternating Turing machines. We define the time and space complexity of alternating Turing machines in an

average-case setting.

Definition 3.5.5 (Time/Space Bounded on Average) Let M be an alternating oracle Turing ma-
chine and p a distribution. Let A and S be any sets. Also let ¢ and 7 be a function and a set of functions

on Rt respectively.

1. The machine M with oracle A is t-time bounded on p-average if the function /\x.Timef/I(l‘) is ¢ on
p-average, and it is T -time bounded on p-average if it is t-time bounded on p-average for some t € 7.
The machine M is said to recognize S in t-time (T -time, resp.) on p-average if M is t-time (or T-time,

resp.) bounded on p-average, and S = L(M, A).

2. The machine M with oracle A 1s t-space bounded on p-average if the function /\J:.Spaceﬁ(x) is ¢ on
p-average, and it is 7 -space bounded on p-average if it is ¢ on p-average for some ¢ € 7. The machine
M is said to recognize S in t-space (T -space, resp.) on p-average if M is t-space (or 7T -space, resp.)
bounded on p-average, and S = L(M, A).

We note that, in the case that j(x) = 0, the machine M does not necessarily halt on this particular input
z because, according to our interpretation, the instance = does not occur. Nevertheless, this is not crucial
in our theory. Schuler and Yamakami [97], for example, have considered only machines which always halt.

For a randomized Turing machine M, we must demand that the random function Azs.Timeys (x;s) be ¢

on p-average.

Definition 3.5.6 (Time Bounded on Average) Let M be a randomized oracle Turing machine and

it a distribution. Let A and S be any two sets. Also let ¢ and 7 be a function and a set of functions on R T,

3.5. DISTRIBUTIONAL DECISION PROBLEMS 79

respectively. The machine M with oracle A is called ¢-time bounded on p-average if the random function
/\xs.Timeﬁ(l‘; s) is t on p-average, and it is T -time bounded on p-average if it is t-time bounded on p-average
for some t € 7. The machine M is said to recognize S in t-time (T -time, resp.) on p-average if M is t-time

or T-time, resp.) bounded on p-average, and S = L(M, A).
H g
We are especially interested in machines which are polynomial-time/space bounded on p-average.

Definition 3.5.7 (Polynomial-Time/Space Bounded on Average) Let M be an oracle Turing
machine with output tapes. Let A be a set and let f be a function. We say that M with oracle A is
polynomial-time (polynomial-space, resp.) bounded on p-average if M4 is T-time (7 -space, respectively)
bounded on p-average for T being the set of all polynomials (i.e., any functions of the form of Zle a; - &,
a; € Z). The machine M is said to compute f in polynomial-time (polynomial-space, resp.) on p-average if

M is t-time (or T-time, resp.) bounded on p-average, and f(z) = M4 (z) for all z.
Now we are ready to introduce the second type of average-case complexity complexity classes Aver(C, F).

Definition 3.5.8 (Average-Case Complexity Classes) cf. [97] Let ¢, s be functions on N and let T
and & be sets of functions on N. Also let F be a class of distributions. Time- and space-bounded average-case

complexity classes are defined as follows:

1. Aver(DTIME(2), F) is the collection of distributional decision problems (D, y) such that g € F and D is
computable by some deterministic Turing machine in ¢-time on p-average. Let Aver(DTIME(T), F) =
Uier Aver(DTIME(2), F).

2. Aver(NTIME(¢), F) is the collection of distributional decision problems (D, i) such that 4 € F and D is
recognized by some nondeterministic Turing machine in ¢-time on p-average. Let Aver(NTIME(T), F) =

Uier Aver(NTIME(t), F).

3. Aver(BPTIME(t), F) is the collection of (D, u) such that g € F and D is recognizable by some
bounded-error probabilistic Turing machine in ¢-time on p-average. Let Aver(BPTIME(T),F) =
U7 Aver(BPTIME(t),). Similarly, Aver(RTIME(t), F) is the collection of (D, u) such that u € F
and D is recognizable by some one-sided error, probabilistic Turing machine in ¢-time on p-average.

Let Aver(RTIME(T), F) = ;¢ Aver(RTIME(Z), F).

4. Aver(ATIME(t), F) is the collection of (D, y) such that gy € F and D = L(M) for an alternating Turing
machine M which is t-time bounded on p-average. The class Aver(ATIME¥(t, s), F) is the collection
of (D, u) such that g € F and D = L(M) for an alternating Turing machine M in s-time on p-average
which is t-alternation bounded, starting with an existential state. Similarly, Aver(ATIMEA (t,s), F) is
defined by semi-deterministic alternating Turing machines. Let Aver(ATIME(T),F) =
Uier Aver(ATIME(?),), and similarly Aver(ATIMEA (7,8),F) and Aver(ATIMEE(T, S),F) are
defined.

80 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

5. Aver(DSPACE(s), F) is the collection of (D, y) such that g € F and D is computable by some deter-
ministic Turing machine M in s-space on p-average. Let Aver(DSPACE(S),F) =
U,es Aver(DSPACE(s), F).

Ben-David, Chor, Goldreich, and Luby [9] use the notation AverDTime(t(n)) instead to denote our
Aver(DTIME(?), %) (also denoted by AvDTime(t(n)) in [84]).

In what follows, we use abbreviations commonly used in worst-case complexity theory, such as P (=
DTIME(n®())), PSPACE (= DSPACE(n®())), RP (= RTIME(n®(1))), etc. (see Section 2.5).

Recall the randomized 3-colorability problem (3COL, pscor). It is well known that 3COL is NP-complete
(see e.g., [26]). However, Wilf[117] showed that the randomized 3-colorability problem can be solved by some
deterministic algorithm in time polynomial on pzcor-average. Thus, (3COL, uscor) belongs to Aver(P, «).

We have introduced five categories of fundamental average-case complexity classes Aver(C,F). We can
extend our definition to classes which do not fall into those categories. One such extension is the complement

of an average complexity class Aver(C, F).

Definition 3.5.9 (Complement Classes) For a complexity class C and a set F of distributions, the
complement of Aver(C,F) is denoted by Aver(co-C,F) and is defined by the collection of all distributional
decision problems (D, yt) such that (D, u) belongs to Aver(C, F), where D = ¥* — D.

Another extension is the intersection of two average-case complexity classes Aver(Cy, F) and Aver(Cq, F).

Definition 3.5.10 (Intersection Classes) For two complexity classes C; and Cs, and a set F of dis-
tributions, the intersection of Aver(Cy, F) and Aver(Cy, F) is denoted by Aver(Cy NCqe, F) and is defined by
the collection of all distributional problems (D, u) such that (D,) € Aver(Cy, F) and (D,) € Aver(Cs, F).

For example, we can define the following average-case complexity classes: Aver(co-RP, F), Aver(co-NP, F),

Aver(ZPP, F), and Aver(NP Nco-NP, F).

Remark 3.5.11 The notation “Aver(-,-)” in which we use parentheses referring to functions might be
misleading. The reader should resist the temptation to replace a class C in the notation “Aver(C, F)” with
another equivalent class €' because the equality C = €’ in worst-case complexity theory does not always

imply the equality Aver(C, F) = Aver(C’, F) in average-case complexity theory.

We shall introduce a counterpart of the function class FP in worst-case complexity theory: the average
polynomual-time computable functions. Recall that a transduceris a Turing machine equipped with an extra

output tape for the purpose of computing a function on X*.

Definition 3.5.12 (Average Time Computable Functions) If a function f on X* is computed by

a deterministic transducer which is polynomial-time bounded on p-average, we say that f is computable

3.5. DISTRIBUTIONAL DECISION PROBLEMS 81

in time polynomial on p-average. Let Aver(FP,F) denote the collection of all pairs (f,), where p is a

distribution in F, and f is a function computable in time polynomial on p-average.

We shall take a quick glance at some fundamental relationships among average complexity classes. By
the definition of ¢ on p-average, the class Dist(DTIME(t), F) is clearly included in Aver(DTIME(?), F).

Similar inclusions obviously hold for other fundamental average complexity classes.

Proposition 3.5.13 Let C € {DTIME(t), NTIME(?), BPTIME(¢), RTIME(¢), DSPACE(%)} for some in-
creasing function t on N, and let F be a set of distributions. Then, Dist(C, F) C Aver(C,F).

The next lemma follows immediately from Lemmas 3.4.6(1) and Corollary 3.4.7.

Lemma 3.5.14 Let F be any set of distributions and assume that pu,v € F. Let C be any of the following
classes: L, P, co-NP, NP, RP, BPP, and EXP. If (D,v) € Aver(C,F) and v avp-dominates p, then
(D, u) € Aver(C, F).

Proof. Since the sets of polynomials, logarithms, and exponentials are all closed under composition with

polynomials, the lemma immediately follows from Lemma 3.4.6. a
Similar simulation techniques show basic inclusion relationships among average complexity classes.

Theorem 3.5.15 Lett be a function on RT.
1. Aver(DTIME(¢), F) C Aver(RTIME(?), F).
2. Aver(RTIME(t), F) C Aver(NTIME(?), F).
3. Aver(RTIME(t), F) C Aver(BPTIME(O(t)), F).
4. Aver(BPTIME(t), F) C Aver(DSPACE(O(Ax.t(22))), F).

5. Aver(DSPACE(t), F) C Aver(DTIME(O(2Y)), F), where 2 means \x.24(*),

Proof. We use a standard simulation technique to show the above inclusions of average-case complexity
classes.

(1) Obviously, deterministic Turing machines are viewed as a special case of one-sided error probabilistic
Turing machines.

(2) Tt suffices to note that one-sided error probabilistic Turing machines are nondeterministic Turing
machines because of one-sided error probability. (This is not true for two-sided error probabilistic machines.)

(3) Suppose (D, p) is in Aver(RTIME(t), F). Take a one-sided error, probabilistic Turing machine M

recognizing D in time ¢ on p-average. Let us consider the simulation machine N defined as follows:

82 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

begin randomized algorithm for N
input z
simulate M on input x
if M accepts x then accept
simulate M on input x
if M accepts x then accept else reject

end.

Assume that # € D. The error occurs if both simulations of M on « fail to reach any accepting
configuration. Hence, the error probability of N on input x is at most 1/4. Assume to the contrary that
z & D. Because of one-sided error probability, there is no error occurring in the computation of N on z.
Therefore, N has bounded-error probability.

By definition, the running time of N on z, Timey(z), is bounded by a linear function in Timeys(z).
Since M is t-time bounded on p-average, the function Az.Timey () is Ax.c(t(x) + 1) on p-average for some
positive constant c.

(4) First we observe that any bounded-error probabilistic Turing machine M can be simulated deter-
ministically using at most O(Time};(z)) tape squares. This is seen as follows. We simulate M on z by
choosing its configurations one by one (i.e., using breadth-first search) and simulating the corresponding
steps. Assume that we visit enough leaves of the computation tree so that we can determine whether M
accepts or rejects &. We then quit the simulation and go into an accepting state if M accepts z, or else go
into a rejecting state. This simulation needs tape space at most ¢ - (Timej;(z) + 1) for some fixed constant
c>0.

Now suppose that (D, p) is in Aver(BPTIME(¢), F). There exists a bounded-error probabilistic Turing
machine M which recognizes D in time ¢ on p-average. Since Ax.Timeys(z) is t on p-average, Lemma 3.3.22
implies that Az. Time};(z) is Az.t(2¢) on p-average. The claim follows from the observation above.

(5) Given a deterministic Turing machine M, which on input # runs using space p(z), the number of
possible configurations given by M on z is O(2°(%)). Hence, the simulation of M on x takes O(2°(®)) time.
O

Generally speaking, the function Az.Timeps(z) for a nondeterministic Turing machine M is not time-
constructible; therefore, even if ¢ is time-constructible, the inclusion Aver(NTIME(t),F) C
Aver(DSPACE(O(?)), F) may not hold. This sheds light on the crucial difference between worst-case com-
plexity and average-case complexity.

As an example, we shall demonstrate a closure property of average-case complexity class under disjoint
union. It is easy to see in worst-case complexity theory that if A and B are in P, then A @ B is also in P.

In the average-case setting, we must consider the distributions as well as the sets of strings.

Lemma 3.5.16 Let C € {P,NP,RP,BPP PSPACE}. Let F be a set of distributions which is closed
under &. If two distributional problems (A, ppa) and (B, pp) are in Aver(C, F), then so is (A® B, ua @ up).

3.5. DISTRIBUTIONAL DECISION PROBLEMS 83

Proof. We prove the lemma for the case C = P. The other cases follow similarly. Assume that (A, p4) and
(B, pp) are in Aver(P, F). There are two deterministic Turing machines M4 and Mp, and two polynomials
pa and pp such that L(M4) = A, L(Mp) = B, Az.Timey, (x) is pa on pra-average, and Ax.Timeys, (x) is
pp on pp-average. We assume without loss of generality that both p4 and pp are increasing. Consider the

following algorithm N.

begin simulation algorithm N
input z
if x = X then reject z
find u such that either 2 = 0u or z = lu
if # = Ou then simulate M4 on input u
else simulate Mg on input u

end.

Assume that © = Ou for some u. It is easy to see that there is an absolute constant ¢ > 0 which does not
depend on the choice of z such that Timeyn(z) < ¢ (Jz| + Timepr, (u) + 1). If we take a sufficiently large
constant ¢, a similar inequality holds for Mp if € 1X*.

To complete the proof, we show that Az.Timey (z) is polynomial on 4 ® pp-average. First set s(n) =

c¢-(n+pa(n)+pp(n) +1). Note that s is a polynomial. For every r > 1,

pa @ pp({z | Timey(x) > s(lz| - 7)})

1 .) 1 .

= 5 ial{u] Timex (0u) > s(0ul -)}) + 3 - s ({u | Timen(1) > s(|1u]-r)})
1 .) 1 .

< 5 al{u] Timear, () > pa(l0ul - 1)}) + 5 an({u | Timeyr, () > pa (|1l r)})
1 .) 1 .

< 5 ma({u] Timesr, (u) > paful-m)}) + 5 - ({ | Timear, (u) > pp(Jul - 7)})

< 11 11 1
2 r 2 r r

Hence, N runs in polynomial time on v-average. a

3.5.2 Inclusions and Separations

We shall discuss general separation and collapse results among average-case complexity classes introduced
in the previous subsection.

The following proposition shows a basic separation between average-case complexity classes Dist(D, F)
and Aver(C,).

Let us recall from Chapter 2 that a tally set is a subset of {0}* and from Section 3.2 that vi.y is the
standard distribution that is positive only on {0}*. We say a (worst-case) complexity class C is closed under

disjoint union @ if, for any sets A and B in C, A& B is also in C.

Proposition 3.5.17 Let C and D be two complexity classes, and let F be a set of distributions with veay €

84 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

F. Assume that D contains the set {0} and is closed under disjoint union. If REC — D # O and
DTIME(O(n)) C C, then Aver(C,F) € Dist(D, «).

Proof. Consider a set A in REC — D. Define B = {0}* ¢ A. Thus, (B, viany) € Dist(D, *) since,
otherwise, A € D by the closure property of D under . We now show that (B, vtany) € Aver(C, F). Let M
be a deterministic Turing machine which computes A. This machine exists since A is recursive. Consider

the following algorithm N for B:

begin simulation algorithm N for B
input z
if z € {0}* then accept
find y such that x = 1y
simulate M on input y and halt
end.

Since Timeyn (07) < en + ¢ for some absolute constant ¢ > 0, we have

. .) R n) 1
Vratly ({2 | Timen (2) > ¢lz| - 7 + ¢}) < Pranny (0™ | Timen (0%) > en + ¢}) = any (0) = 0 < -

for all » > 1. Hence, (B, Vtany) € Aver(DTIME(cn + ¢), F) C Aver(C, F). a

As a corollary, we get a result shown by Wang and Belanger [111] regarding the separation between

Dist(NP, #) and Aver(P,).
Corollary 3.5.18 [111] Aver(P,F) ¢ Dist(NP «) for any set F of distributions with viany € F.
Next we shall introduce a notion of weakly C-descriptiveness for average-case complexity classes Aver(C, F).

Definition 3.5.19 (Weakly Descriptiveness) Assume that D is a T-time or 7-space bounded com-
plexity class and C is any (worst-case) complexity class. We call the average complexity class Aver(D, F)
weakly C-descriptive if, for every problem (D, p) € Aver(D, F), there exist a set C' € C and a deterministic

oracle Turing machine M such that M with oracle C' recognizes D in time 7 on p-average.
Proposition 3.5.20 Let F be a set of distributions.

1. Aver(P,F) is weakly P-descriptive.

2. Aver(NP Nco-NP, F) is weakly NP-descriptive.

3. Aver(BPP,F) is weakly PP-descriptive.

4. Aver(PSPACE, F) is weakly PSPACE-descriptive.

3.5. DISTRIBUTIONAL DECISION PROBLEMS 85

Proof. We shall show only the case (3). Let (D, i) be a distributional problem in Aver(BPP,F). Take
a probabilistic Turing machine M which computes D in time polynomial on p-average.

We define two sets Cy and € as follows: let Cjy be the set of strings (0, z, 1) such that more than half
of the computation paths of M on input & terminate in accepting configurations in less than n steps; and
let C} be the set of strings (1, x, 17) such that more than half the paths of M on z terminate in less than n
steps. It is not hard to see that Cy and € are PP sets. Set C' = Cy U (.

Let us consider the following deterministic algorithm N with oracle C"

begin deterministic oracle Turing machine N with oracle C
input z
for n =1 to oo do
query (0, x, 1™) to oracle C
if (0,2,1") € C then accept and halt
query (1, 2,1™) to oracle C
if (1,2,1") € C then reject and halt
end-for

end.

Recall the definition of Timej;(z) in Section 2.4. By our definition , the algorithm N with oracle C'
above repeats the for-loop Timej}, (z) + 1 times before accepting or rejecting #, because Timejy,(z) is the
minimal number of steps needed to check if M accepts or rejects . Note that Az. Timej;(z) is polynomial on
p-average due to Lemma 3.3.21. Furthermore, when the algorithm terminates, its output is always correct.

Hence,

Time§ (2) < d - (Timej, () + 1)

for some constant d > 0. Since Az.Time},(z) is polynomial on p-average, obviously N with C' computes D

in polynomial time on p-average. ad

Provided that C is a T-time or T-space bounded complexity class, we say that Aver(C,F) is closed
under weak description if, for every (C, p) € Dist(C,F) and every deterministic oracle Turing machine M
with oracle C' which is T-time bounded on p-average, the distributional problem (L(M,C), i) belongs to
Aver(C,F). For example, Aver(P, F) and Aver(PSPACE, F) are closed under weak description.

Lemma 3.5.21 ForC € {P,PSPACE}, Aver(C, F) is closed under weak description.

Proof. Here we shall show that Aver(PSPACE, F) is closed under weak description. Let us first assume

that (C, p) is in Dist(PSPACE, F). There exists a deterministic Turing machine My computing C' using

polynomial space. Suppose Space,,(z) < p(|z|) for all z, where p is an appropriate increasing polynomial.
Consider any deterministic oracle Turing machine M which, with oracle C| is polynomial-time bounded

on p-average. We must construct a deterministic Turing machine which computes C' using space polynomial

86 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

on p-average without any help from oracles. The idea is to combine two Turing machines My and M:

begin deterministic algorithm for N
input z
simulate M on input x
while simulation do
if M queries z then simulate My on input z
if M reaches a halting configuration then output M (z) and halt
end-while

end.

It is obvious that N computes C' correctly without any oracles. The tape space used by N on input z,

Space (), is clearly bounded by

¢ | Time§; (2) + Z Spaceyy, (2) + 1
2€Q(M,C\2)
To see that Az.Spacey () is polynomial on p-average, we must check Ax. ZzEQ(M o) Spaceyy, (2) is poly-

nomial on p-average. This is seen as follows:

Z Spacey, (2) < max{p(|z]) | 2 € Q(M,C,x)}
2€Q(M,C,z)

< p(TimeJ%(x)).

Apply Lemma 3.3.14 to p(TimeJ%(x)), and we conclude that Az.Spacey (#) is polynomial on p-average. This
implies that (L(M,C), u) belongs to Aver(PSPACE, F). a

Let us now see general separation and collapse results among average complexity classes. For the propo-
sition below, we first introduce the supplementary notion of safe sets: given a set 7 of functions, we call T
safe if (i) for any functions ¢1,%s,t3 € 7 and any constant ¢ € N, there exists a function s in 7 such that
c(ti(z) +t20ts(x) + 1) < s(x) for all z, and (ii) for each function t € T, t(x) > t(y) implies z > y for all
and y.

Proposition 3.5.22 Let C be of the form DTIME(T), NTIME(T), RTIME(7), BPTIME(T), ATIME(T),
or DSPACE(T) for some safe set T of functions on Rt

1. IfC CREC, then D —C # @ implies Aver(D, x) — Aver(C, *) # Q.
2. Assume that Aver(D,F) is weakly D'-descriptive and Aver(C,F) is closed under weak description.

Then, D' C C implies Aver(D,F) C Aver(C, F).

Proof. (1) The following proof is chiefly due to Karg and Schuler [48]. Assume that D € D — C. Let us
recall from Chapter 2 the notion of proper complexity cores. Since C C REC, by Lemma 2.5.12, there exists

3.5. DISTRIBUTIONAL DECISION PROBLEMS 87

a proper complexity core C' for D with respect to C. Note that ¢' C D. Define the distribution p as follows:

1 ~ —
. seeqoasay @ € Cand |z| = n,

ple) =4 7

STel? 27121 otherwise

for some adequate normalizing constant d. Since D € D, we have (D,) € Dist(D, %) C Aver(D,).

We next show that (D,) & Aver(C, #). Assume that (D, u) € Aver(C,) via machine M. Suppose that C
is a time-bounded complexity class and assume that Az.Timeys () is t on p-average for some t € 7. Since C'
is a complexity core, there exists an integer k > 0 such that, for all z € C' with |z| > k, Timey (2) > ¢(2|2]?)
because, otherwise, the set {z € C' | Timeys(z) < ¢(2]|2|?)} is an infinite subset of C'. Using this fact, we
bound the probability of the event that Timeps () > t(|z| - r) by

f({x | Timeys () > t(|2] - 2k%)})
> ji({e € C| Timey(2) > t(]al - 26%)}) = (C —5¥)

1
-2 Edallexapa

zeC-X<k
[cCos* 1
Z W CnxF] 2k

This contradicts the assumption (D, y) € Aver(C, *).

Note that if C is a space-bounded complexity class, use Space,, (x) instead of Timeys(x) in the above
argument.

(2) Assume D’ C C. Let (D, p) be any distributional problem in Aver(D,F). Since Aver(D, F) is weakly
D’-descriptive, we can take a set D’ in D and a deterministic oracle Turing machine M such that M is T
on p-average and computes DD with oracle D’.

Notice that D' belongs to C. The closure property of Aver(C,F) under weak description leads to the
conclusion that (L(M, D')p) is in Aver(C, F). This implies the desired result that (D, u) € Aver(C,F). O

As a corollary, we obtain the following result.

Corollary 3.5.28 Let F be any set of distributions.
1. P # BPP implies Aver(P,) # Aver(BPP,).

2. P = PP implies Aver(P,F) = Aver(BPP, F).

Interestingly, the class Aver(NP,F) cannot be characterized by the notion of weak NP-descriptiveness.
Moreover, we are able to show that Aver(NP,) is indeed different from Aver(P,). The theorem below
shows the separation between Aver(P,) and Aver(INP,) (see also [48]).

Theorem 3.5.24 [97] Aver(P,x*) # Aver(NP,).

Proof. = We shall construct a distributional decision problem (A, g) which belongs to Aver(NP, %) but

88 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

not to Aver(P,). First we choose a nonrecursive, recursively enumerable, tally set A whose elements are
enumerated as A = {M (sg), M (s1), M (s3),...} by some deterministic transducer M which always halts and
outputs some strings. For simplicity, we assume without loss of generality that if M on input w produces z,
then Timeps(w) > || + |w]. We also choose the distribution p defined as

. 9—3Timenr(sk) if 2 € A, where k = min{i € N | M (s;) = x},

i) o

22| otherwise.

Clearly the distribution y is positive. We claim that the distributional problem (A, p) belongs to Aver(INP,)
but not to Aver(P,). We note that if (B,v) € Aver(P, %) and v is positive, then B is recursive. Since A is
not recursive, it is immediate that (A, u) & Aver(P, «).

We next show that (A4, 1) € Aver(NP, x). Let us consider the nondeterministic Turing machine N defined

by the following simple nondeterministic algorithm. Remember that A is a tally set.

begin nondeterministic algorithm for N
input z
if z € {0}* then reject
guess a natural number i (actually guess s;)
simulate M on input s;
if # = M(s;) then accept else reject

end.

Obviously N recognizes A. Now fix # and let & = min{i € N | M(s;) = x}. In the case where z &€ A,
Timey () is set to the shortest length of a rejecting path by our definition; thus, it is bounded by a constant

independent of x. Let ¢g be such a constant. Hence,
a({z ¢ A | Timen(z) > cg}) = 0.
Suppose x € A. Write D, for the set {i | M(s;) = #}. On input z, the above algorithm takes at most
Timey (z) < d- (1 + |z|+ min{|s;| + Timeps(s;) | € Dp}) < d- (14 |2]| + |sx| + Timens (sk))
steps for some positive constant d which is independent of . Since A is a tally set,
BS") =) = o273 Tmen (o),
where ¢ is the normalizing constant for y. We then have

Timey (z) < d-(2-Timep(sp) +1) < 9 . 9Timenr(sk)

< ﬂ . 23TimeM(sk) < Q‘id)
= f=f? = felreaEn)
By Lemma 3.3.15, we conclude that Az.Timey (x) is polynomial on p-average. a

Theorem 3.5.24 showed in the average-case setting a distinction between deterministic computation time

and nondeterministic computation time. The distribution g constructed in the proof of the theorem is

3.5. DISTRIBUTIONAL DECISION PROBLEMS 89

not effectively calculated and often takes extremely small probability. Nonetheless, most distributions we
encounter in practice do not have any resemblance to this g. When we discuss practical distributions, we
may restrict our interest to such distributions that give relatively high probability for almost all input strings.

Here we call such distributions supportive.

Definition 3.5.25 (Supportive Distributions) A distribution p is called supportive if there exists a
polynomial p such that either ji(z) > 272020 or ji(x) = 0 for every x. A set of distributions is called supportive
if all of its distributions are supportive. Let SU PP be the collection of all supportive distributions.

For example, the standard distribution vganq is supportive since Uggana(®) > S(lelw .9-lel 5 9-2lw|-5
for all x.
For any supportive set F, the average complexity class Aver(NP, F) is not a large class. The following

proposition is a consequence of Lemma 3.3.11(2).
Proposition 3.5.26 Let F be a set of distributions. If F is supportive, then Aver(NP, F) C Dist(NEXP, F).

Proof. The result follows from the simple observation that, for a machine M which is ¢-time bounded on

p-average, Timeyr (z) < t(|x|/p(z)) < t(|z] - 200=DY if p(x) > 272z, O

Regarding the Dist(NP, F) C?Aver(P,) question, it is enough to focus on supportive distributions in
F. We introduce an additional terminology: a set F of distributions is called tame if there exists a positive

and supportive distribution.

Lemma 3.5.27 Let F be a tame set of distributions and assume that F is closed under 2-addition. Then,
Dist(NP, F) C Aver(P, *) if and only if Dist(NP,SUPP N F) C Aver(P, «).

Proof. (Only if — part) Note that Dist(NP,SUPP N F) C Dist(NP, F). This inclusion obviously yields
the claim.

(If — part) Let us assume that Dist(NP,SUPP N F) C Aver(P, «). Moreover, we assume that (A, p) is
any distributional problem in Dist(NP, F). We shall show that (A, i) belongs to Aver(P, «).

Since SUPP NF # @, let us take a supportive distribution vy from F, and then define the default

distribution v as

By the assumption that F is closed under 2-addition, this distribution v becomes a member of F. It is also
easy to see that v is supportive, and consequently, we obtain v € SUPP N F.

From Dist(NP,SUPP N F) C Aver(P, «), it follows that (A, v) belongs to Aver(P,). Notice that v
p-dominates p because 2 - (z) > p(x). Corollary 3.4.7 helps us conclude that (A, p) is also in Aver(P, «).

90 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

In the above lemma, we require F to be closed under 2-addition. Later we shall see several tame sets of

distributions which contain the standard distribution and satisfy this requirement.

3.5.3 Another Characterization

Let us consider another characterization of basic average-case complexity classes, Aver(P,F), Aver(NP, F),
and Aver(BPP, F).

The following definition was proposed by Impagliazzo [43]. Let f be a function on X£* and S be a set.
We say that an algorithm A computes [with benign faultsif (i) it outputs either an element of ran(f) or “?”
and (ii) on input #, if it outputs z which is not “?”, then z = f(x). An algorithm A computes S with benign

faults if A computes xg with benign faults. We write Timey (2, d) to denote the running time of A(z,d).

Definition 3.5.28 (Benign Algorithm Scheme) [43] Let p be a distribution and f be a function on
X*. A polynomial-time benign algorithm scheme for f on input ensemble {fi<, }nen is an algorithm A(z,d)

such that
(1) there exists a polynomial p such that Timey(z,d) < p(|z|, 1/4);
(i1) A computes f with benign faults; and

(i) for all § (0 < & < 1) and all n € N, if pic,, is defined, then fic,({z € =" | A(z,8) =?}) < 4.

Lemma 3.5.29 [43] Let F be a set of distributions. For a distributional problem (D, p) with € F, the

following statements are equivalent:
1. (D,p) € Aver(P, F).

2. There is a polynomial-time deterministic benign algorithm scheme for D on {ji<y }nen.

Proof. First we shall see that (1) implies (2). Assume that (D, p) is in Aver(P,F). There exists a
deterministic Turing machine M such that L(M) = D and Timeys is polynomial on p-average. By Lemma
3.3.8, there is a polynomial p such that fi<, ({& € ¥5" | Timey (z) > p(|z|-7)}) < L for all n € N and all
r > 0. We define the desired algorithm A(z,d) as follows: on input (#,d), A simulates M on input = for
p(|z|/d) steps and outputs “?” if M fails to halt. This algorithm is a benign algorithm for D on {pi<p }nen

since

pn({z € 57 | A(2,0) =7}) < jicn({z € X257 | Timeny () > p(|2]/9)})
< L _ J

/6

To see that (2) implies (1), we assume that A(x,d) is a benign algorithm for D on input ensemble

{tt<n}nen. We also assume that A runs in time p(|x],1/) for some fixed polynomial p. We may take a

3.5. DISTRIBUTIONAL DECISION PROBLEMS 91

unary polynomial ¢ instead of p, because we can assume that p is increasing (i.e., An.p(n,d) and Az.p(m, 2)
are increasing for each fixed ¢ and m); then setting ¢(z) = p(z, z), we have p(|z|,1/6) < ¢(|z|/J). Moreover,
we specify the form of ¢(z) as z* + d by taking sufficiently large k and d. We then assume that the benign
algorithm scheme A(z,d) runs in time (|z|/8)* + d.

Now let us consider the following algorithm M that computes D:

begin deterministic algorithm M for D
input z
fori=1to 0
simulate A(x, 1/7)
if A(z,1/i) outputs “?” then go to (x)
output A(z,1/i) and halt
(%) end-for

end.

This algorithm M actually computes D. Let us define s(z) = 25t + dz for all 2. For any string = of length
< n, if the algorithm M halts within the first r iterations of the for-loop, then

Timey (2) < Z((i z))f 4 d) < (Z lk) x|f 4 d < () 4+ d-r|e] = s(|x] 7).

i=1

In other words, if Timeps () > s(|z| - r), then A(x,1/r) =7. Hence, we have
~ n . ~ n 1
ficn ({z € 57 | Timeyr (2) > s(lz] - 1)}) < ficn({x € S5 | Az, 1/r) =7}) < .
By Corollary 3.3.9, Az.Timeps (#) is polynomial on p-average. a

We observe that the quantifier characterization of nondeterministic and probabilistic Turing machines
holds also in the average-case setting. Recall that, for instance, all sets in NP can be characterized in terms
of an existential quantifier and sets in P as follows: a set A is in NP if and only if there exist a polynomial
p and a set B € P such that A = {x | Jy[ly| < p(|z|) A {x,y) € B]} [118].

In the following, we shall give a logical characterization of the class Aver(NP, F).

Proposition 3.5.30 Let F be a set of distributions. For every set A and every distribution p in F, the

following statements are equivalent.
1. (A p) € Aver(NP, F).
2. There exists a function p from ¥* to N and a set B wn P such that

(i) p is polynomial on p-average; and

(i) A={z|3yllyl <ple) A(z,y) € B]}.

92 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

Proof. The proof is straightforward and follows from the standard technique of encoding nondeterministic

computation paths into strings and from the fact that Az. Timeps () is polynomial on p-average. a
First we need an amplification lemma.

Lemma 3.5.31 (Amplification Lemma) Let p be any distribution, A a set, and d a positive func-
tion computable in polynomial time on p-average. Assume that a randomized Turing machine M satisfies
Pry[M(z) = A(z)] > % + ﬁ for all strings x. Then, there exvists another randomized Turing machine N

such that
(i) Azys.Timen(z,y;s) is polynomial on p X veany-average; and
(ii) for each & and m € N, Pr [N (z,1™;s) = A(x) | s € Qn (2, 17)] > 1 = 2-lel=m,

where [X veany denotes the distribution p' defined by ' (z,y) = f(x) - Drany (y) for all pairs (z,y).
Proof. Let us assume that Azs.Timeys(x;s) is ¢ on p-average for some increasing polynomial ¢. Assume
also that d is computable in time polynomial on p-average. For simplicity, we assume that d(z) > 5 for all

z. We set h(z,y) = max{1, ||+ |y|} and let p(z,y) = 2d(x)3h(z,y) for all pairs (x,y). First we show that

p is polynomial on g X viany-average. For simplicity, we write p’ for g X viany in the following argument.
Claim 1 p is polynomial on p'-average.

Proof of Clatm. Remember that d is polynomial on p-average. Suppose that d is ¢ on p-average for some
polynomial ¢, and define ¢’ as ¢'(z) = 2¢(z)32. Obviously ¢’ is a polynomial. Fix r arbitrarily such that
r>1. Let B, = {(z,y) | d(z) > q(r - |z|) }.

i ({(,y) [ple,y) >4 (7 (Jz] + y))})

= /'({(x,y) [d(x) > q(r-|z])})
+i' ({(x,) € By | 2d(2)°h(w,y) > ' (- (Jz] + [y])})
< %Jrﬂ'({(l‘,y) € Er ||+ [yl > r-(lz|+ ¥))})
1
Hence, p is polynomial on p’-average. [|

Since p is polynomial on p'-average, we can take a polynomial ¢ such that p is ¢ on p’-average. The

desired randomized machine N is defined by the following algorithm:

begin randomized algorithm for N

input (z,y)
if y € {1}* then reject

3.5. DISTRIBUTIONAL DECISION PROBLEMS 93

let Acc:= 0 and Rej := 0
for i = 1 to p(x,y) do
simulate M on input x
if M halts in an accepting state
then let Acc:= Acc+ 1 else let Rej := Rej + 1
end for
if Acc > Rej then accept else reject

end.

Notice that the random-input domain for N is
In = {(z,9,8) | Hsibi<i<p(ey)[s = 5152 Spay) AVi(1 <@ < p(x,y) — (x,8:) € L)}

The running time of the machine N on input (z,y) with random input r, Timey (2, y; s), is at most
p(z.y)
c- Z Timeps (;8;) + 1
i=1

for some absolute constant ¢ > 0.

We first show that the random function Azys. fol’y) Timeps (; ;) is polynomial on p'-average. To show
this, we set ¢;(z) = (¢(z) — ©) - t(z) for each number ¢ € N, and we also set ¢/(z) = ¢ - ¢(z) - t(z) + 1. Notice
that ¢'(2) = to(z). Let » > 1 be fixed. Let D, = {(z,y,s) E'n |y € {1}* Ap(z,y) < q(r - h(z,y))}. By our
assumption, it is obvious that fi'(D,) < 5-. It is enough to show that ar,, ({(x,y,5) € D, | Timey (2, y; 5) >
t(r - (Jz| + lyD)}) < 1/r for some polynomial .

Let « be fixed and set n = |z|. For this z, write Py ¢ for Pr,[Timeps(2;s) > t(f-n) | s € Tpr(z)]. Also
let y be 1™. Set t'(u, w) = ¢ - (t(u) - ¢(w) + 1). Obviously ¢ is a polynomial.

Claim 2 Ifp(x,y) <q(r-(n+m)), then

Pr,[Timey(z,y;s) > t'({n,r(n+m)) | s € Tn(z,y)] < g(r(n+ m)) - Py g.

Proof of Claim. The estimation is carried out as follows:

Pr,[Timey (z,y;s) > t'(fn,r(n +m)) | s € Tn(z, y)]

p(z,y) p(z.y)
< Pr, Z Timeps (x; 85) > t(n) | s e Tn(z,y)
i=1

i=1

< Prs[Timep(z;81) > t(fn) | s € Tv(z,y)]

—

p(z,y) p(z.y)
+Pr, Z Timeys (2; s;) > t(n) | s € Tn(z,y)
i=2

1=2

p(z.y) Y)
Py o+ Pr, Z Timeps (x; 85) > t(n) | s e Tn(z,y)
=2 2

IN
=
£

7

94 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

Repeating this estimation, we reach the conclusion that

r(z.y)
Pr,[Timen(z,y;s) > t'(In,r(n+m)) | s € Tn(z,y)] < Z Ppo < q(r(n+m)) - Py
i=1
The last inequality comes from the assumption that p(z,y) < ¢(r(n + m)). []

We now define ¢/(z) = ¢ (¢(42% - q(2)) - q(2) + 1) for all z. Notice that
t(r(n +m)) >t (n’m?r - q(r(n + m)), r(n 4+ m)) > ' (4n’r - q(r(n + m)), r(n + m)).
Hence, the rest of the calculation is carried out as follows. For any real number » > 1,

firy, ({(2,y,5) € Dy | Timey (z, y; 5) > " (r(lz] + y]))})
= jir({(2, 17, 5) € Dy | Timen (a, 17;5) > ([a] - Arf|* - g(r(Je] + m)), r(lz] + m))})

< DD i

xPrg[p(z,1™) < q(r(|z| + m)) A Timey (z,17;5) > t'(|z] - 4rn2q(r(n +m)))]

< ZZ Z /l(x)'ﬁtaHY(lm)'q(r(n"i'm))'Px,4rn2q(r(n+m))
m=1ln=1g |x|—n

= Sy () - g) - vy, ({2 5) | Timen (2:5) > ¢(]2] - 4rnq(r(n + m)))})
N = q(r(n +m)) - Drany (17 1 o= o Zraly (17

: n;T;Q(4£~;~q)<)r<n+llyq(z>>) "L i
T 1

= S %

Therefore, Arys. Timen (2, y; s) is polynomial on p X viayy-average.

Next we examine the error probability p, that N on input outputs a wrong answer; that is, Pry [N (2, 1™) #
A(x)]. Write 7, for Pry[M (2) # A(z)], for comparison. The error probability p, does not exceed the prob-
ability that M on input « does not compute A(z) correctly in more than w (= d(z)3h(z,y)) independent

trials. Hence,

p(w,y)/2
ple,y) o) ple,y p(z,y) o his o) hia
S) e < (%H N8I b (1 gt b,
k=0 2
Set €, = %— Ty > ﬁ. By Lemma A.9,

op(ey)+l /1 d(@)*h(zy) /g d(z)h(z,y)
Pa S Qd(l‘)Sh(l" y) T <_ + Ex) : <— — Ex)
mp(x,y) \2 2

- V2d(@)*h(z, y) cop(zy)+l 1_ &2 e
VT 4 7

[d(x)Ph(x, y) - 0@ g=p@w) (] _ 4e2yd@) ()

IN

3.5. DISTRIBUTIONAL DECISION PROBLEMS 95

< 4 (d(@)h(z,y)? - (1 —4e2))

< A (1 ~ 4)d(x)3h(x,y)

- d(z)3

S ed(x)h(x,y) .e—4d(x)h(x,y) — 2—3d(x)h(x,y) < 6_h(x’y)

since (1— %)” < e~*and 4n? < e” for any number n greater than 4. Therefore, we obtain Prs[N(z,1™;s) =

Ax) | s € Tn(z, 1™)] > 1 — 27 lel=m, .

Corollary 3.5.32 Let pu be a distribution and let d be a non-zero valued function computable in polynomial
time on p-average. Assume that, for a given set A, a randomized Turing machine M satisfies Pry[M (z) =
A(x)] > % + ﬁ for all strings . For every function t which is computable in polynomial time on p-

average, there exists a randomized Turing machine N which runs in polynomual time on p-average such that

Pry[N(x) = A(x)] > 1 =271 for all strings x.

Proof. Assume that M satisfies Pry[M(2) = A(z)] > % + ﬁ for all z. Apply the Amplification

Lemma, and we construct a randomized Turing machine N such that Azs. Timeps(z,y, s) is polynomial on
[X Viany-average and Pr [N (z,17;s) = A(z)] > 1 — 9-lel=m

Given a function ¢ computable in polynomial time on p-average, we define another randomized Turing
machine N’ that takes input 2 and then simulates N on input (2, 1!(®)). By the definition of N’, the success
probability Pry[N(z) = A(x)] is at least 1 — 2~11=t=) > 1 _ 9-t(=),

To complete the proof, it suffices to show that Azs. Timey:(z; s) is polynomial on p-average. Notice that

1
S (qt)y — g-log(t(e)-15 L
Vtally(1) 2 - S(t(l‘) =+ 1)2

for all . As a result, by Lemma 3.3.22, Axs. Timen (2, s) is polynomial on p-average. a

Proposition 3.5.33 Let F be a set of distributions. For every set D and every distribution p in F, the

following statements are equivalent:
1. (D,p) € Aver(BPP, F).

2. For every function q that s computable in polynomial time on p-average, there exists a probabilistic

Turing machine M such that

(i) M is polynomial-time bounded on p-average; and

(ii) Pry[M(z) = D(x)] > 1—2"9%) for all x.
3. There exist two functions h and d on ¥*, and two randomized Turing machines (Mg, M) such that

(i) Az.|h(x)| is logarithmic on p-average, and h(x) € Tpr, (%) for all x;

(ii) d is computable in polynomial time on p-average;

96 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

(iii) My and Aes. My ({x, h(x));s) are polynomial-time bounded on p-average; and

(iv) for each s’ € Tpp (%), Prs[Mi({x, My(x;s"));s) = D(2)] > 5 + ﬁ.

=

Proof. By applying Corollary 3.5.32 to (1), we immediately obtain (2). To see the implication from (2)
to (3), set ¢ = Az.2 and take M satisfying conditions (i)-(ii) in (2). Let us define My as the randomized
Turing machine that works as follows: on input z, it outputs 0 without flipping any coins. Moreover, let M;
works as follows: on input (z,y), simulate M on input #. Let d(z) = 4 and h(z) = A (the empty string). Tt
easy to check conditions (i)-(iv) in (3).

Now it remains only to show that (3) implies (1). Assume that (3) holds. There are two randomized
Turing machines (My, M7) satisfying conditions (i)-(iv) in (3). By the Amplification Lemma, we can modify
M to another randomized Turing machine My, so that Prs[Mam,(z, 1%, s';s) = A(z,s')] > 1—27% where
A is the set accepted by My ({(z, My(z;s'))).

begin round robin algorithm for N
input z (say, n = |z|)
let s := A (empty string)
for £ =1 to oo do
for j =1to k do
call subroutine CHECK (z,s,j, k)
end for
end for

end.
Here is the subroutine CHECK (s, j, k):

begin subroutine CHECK (z,s, j, k)
for all s’ such that |¢'| = j

if either My(z;s) does not halt or it halts
without using up all random bits in s’ then go to (x)

(Assume that Mg(#; s’) halts after using up all random bits in s’)

let y be the output of My(z;s)

compute e 1= 27 + 2

simulate the kth step of Mgy on input (y, 1°) using random seed s

(Tf this step consists of a coin-flipping state, then flip a coin and let s := sb,
where b is the outcome (0 or 1) of the coin toss.)

if Mgpmp reaches a halting state then output My, ((z,y), 1°; s) and halt

(%) end for

return.

Notice that random seed s is shared commonly by all computations of Mgy,,, in the subroutine CHECK.

3.6. FURTHER TOPICS 97

We shall perform worst-case analysis on the running time of the above algorithm. On input z along with

random seed r, N takes steps at most
Timey(z;7) < c- olh@)l . (Timens, (h(z);r') + 1),

where ' is an initial segment of 7. Notice that the function Az.21*®)l is polynomial on j-average by Lemma
3.3.6. Hence, Azr.Timey (z;7) turns out to be polynomial on p-average.

Next we shall show that Pry[N(z) = A(z)] > %—1— ¢. For each random seed, the success probability does
not decline below 2/3. Thus, the probability that N (z) coincides with A(z) is at least 2/3. Therefore, (D, i)
belongs to Aver(BPP, F). O

We give a remark to the above proposition: if M; makes one-sided errors (i.e., (D, u) € Aver(RP, %)),

then we can replace the term % + ﬁ by ﬁ.

3.6 Further Topics

This section discusses several topics which we have not covered in the previous sections.

Running Time of Nondeterministic Machines. Let us consider the running time of nondeterministic
Turing machines. Wang and Belanger [111], Schuler and Yamakami [97], and Karg and Schuler [48] discussed
a close connection between the P =?NP question and the Aver(P,F) =?Aver(NP, F) question based on
the model of clocked nondeterministic Turing machines. As we have seen, this model guarantees that all
computation paths in a computation tree of the clocked machines are of the same length.

Here we consider the model for which the running time of a nondeterministic Turing machine is defined
to be the length of the shortest accepting computation paths when it accepts an input, or else the length
of the longest rejecting computation paths. We call this restriction the strict running time criterion for the
machine.

To avoid confusion, we use the notation Aver(NP™, F) to denote the average-case complexity class defined
in terms of nondeterministic Turing machines, with the strict running time criteria, which run in polynomial
time on average.

For this new class Aver(NP™, F), we are able to prove that Aver(NP”, F) is weakly NP-descriptive, and
thus, P = NP implies Aver(P,F) = Aver(NP~, F) for any set F of distributions.

Claim 8 The class Aver(NP*, F) is weakly NP-descriptive.

Proof of Claim. Let (D, p) be a distributional problem in Aver(NP*, F). Let us consider a nondeterministic
Turing machine M which computes D in polynomial time on p-average.

Let Cy be the set of strings of the form (0, #, 1) such that M accepts # in less than n steps, and let C}
be the set of strings of the form (1, z, 1) such that there exist computation paths of M on input x which are

98 CHAPTER 3. GENERAL THEGCRY OF AVERAGE CASE COMPLEXITY

longer than or equal to n. Now write C' for Cy U (. Let us consider the following deterministic algorithm

N with oracle C'.

begin deterministic oracle Turing machine N with oracle C
input z
for n =1 to oo do
query (0, x, 1™) to oracle C
if (0,2,1") € C then accept and halt
query (1, 2,1™) to oracle C
if (1,2,1") € C then reject and halt
end-for

end.

On any input #, this algorithm N with oracle C' goes through the for-loop Timeys (2) + 1 times until it

terminates. Notice that when the algorithm terminates, its output is always correct. Hence,
Time%(x) < d-(Timep(z)+ 1)

for some constant d > 0. Since Az.Timeps () is polynomial on p-average, obviously N with C' computes D

in time polynomial on p-average. []

Heuristic Polynomial Time. Impagliazzo [43] introduced a new notion of “heuristic polynomial-time”
class. We rephrase his definition in our setting. We define the heuristic polynomial-time class Heur(P, F)
as follows.

An algorithm scheme for (D, p) is an algorithm A(z,§) such that jic,({x € B5" | A(z,d) # D(z)}) <6
for all § > 0 and all n € N. We say that a distributional decision problem (D, y) is in Heur(P, F) if there
exists a polynomial-time deterministic algorithm scheme for (D, p).

Obviously Aver(P,F) C Heur(P, F). It is an open problem whether Dist(NP, F) C Heur(P, F).

Chapter 4

Feasible Distributions

4.1 Introduction

Average-case analysis in general is sensitive to the choice of distributions, so that we need a careful study of
the behaviors and properties of individual distributions. For example, to construct a better algorithm which
runs fast on average, instances which occur with high probability should be solved quickly.

In statistics, Poisson distributions, for example, are commonly used for the analysis of events. This type
of distribution is approximable by some appropriate polynomial-time algorithms.

In this chapter, we shall focus on feasible distributions which are either “feasibly computable” or “feasibly
producible.” This chapter will introduce two different categories of feasible distributions: polynomial-time
computable distributions and polynomial-time samplable distributions. The former category was considered
by Levin [60] and formulated by Gurevich [36]; the latter was introduced by Ben-David, Chor, Goldreich,
and Luby [9] and has been studied in cryptography.

Following Ko and Friedman’s [55] definition of polynomial-time computable real functions, Gurevich [36]
took a similar step toward distributions. He called a distribution “computable in polynomial-time” if there
is a polynomial-time approximation algorithm whose outputs asymptotically approach the values of a distri-
bution within an exponentially small factor. Section 4.2 will discuss such distributions which are computable
(or more accurately “approximable”) in polynomial time by deterministic Turing machines.

In practice, rather than specifying full distributions, researchers often loosely define distributions by sim-
ply specifying associated semi-distributions. We note that all polynomial-time computable semi-distributions
are effectively enumerated, while associated full distributions are not. Remember that our theory is based
on full distributions, and therefore, whenever we use semi-distributions for the purpose of defining full
distributions, we must guarantee the existence of such full distributions that are proportional to the semi-
distributions almost everywhere. This process is called a normalization of semi-distributions. Unfortunately,
not all computable semi-distributions are normalized to full distributions of the same complexity. Section

4.3 will show this negative result.

99

100 CHAPTER 4. FEASIBLE DISTRIBUTIONS

As Gurevich [36] pointed out, the reader may be cautious of the fact that the P-computability of a
density function does not imply that of its associated distribution unless P = NP.

One of the most important results in Section 4.2 is the Distribution Controlling Lemma proven by
Gurevich [36] and by Belanger and Wang [6]. This lemma enables us in Chapter 5 to prove the existence of
complete distributional decision problems for Dist(NP, P-comp).

We shall turn our interest to instances which occur with low probability under most distributions com-
putable in polynomial time. These instances are called rare strings. A set S is called polynomaal £-rare if,
for any polynomial-time computable distribution p, the set {x € S| j(z) > 242D} is finite.

Another category of feasible distributions is samplable distributions which were first introduced by Ben-
David, Chor, Goldreich, and Luby [9] in their 1990 conference paper. Samplability, which is often found in
statistical physics, is essentially a form of pseudo-randomness. For example, Ben-David et al. [9] showed that
if pseudo-random generators exist, then polynomial-time samplable distributions are hard to approximate
in polynomial time. This result will be extended in Section 4.7. In Section 4.4, sampling algorithms and

samplable distributions will be defined.

Major Contributions. Most of the material in this chapter comes from Yamakami [119].

The formulation of P-samplable distributions given in this chapter is different from what has been defined
by Ben-David, Chor, Goldreich, and Luby [9] and by Schuler and Watanabe [96], and therefore all the proofs
are altered.

Given any P-computable distribution p, Lemma 4.2.8 presents a sufficient condition of a function f so
that the composition g becomes P-computable.

Theorem 4.2.14 shows the existence of polynomially ¢-rare sets of distributions. This theorem relates to
Kolmogorov complexity. The theorem actually proves that, for any increasing, unbounded function s, if ¢
satisfies 5logn < £(n) < n, then the set whose elements are not in KT[2¢(n), 2¢(")*s(?)1087] is polynomially
{-rare.

Proposition 4.3.1 shows that there exists a P-computable semi-distribution which cannot be normalized
by a standard method to a full distribution computable in polynomial time. In addition, Corollary 4.3.3
gives a sufficient condition for P-computable semi-distributions to be normalized by a standard method to
full distributions of the same complexity.

Proposition 4.2.12 shows that there exists a positive P-computable distribution p and an increasing,
exp-honest function f in FP such that p -, is not p-dominated by any P-computable distribution.

In Proposition 4.4.7, IP-samp is shown to be included in P-samp.

Theorem 4.4.13 asserts that PBPP_samp p-equal P-samp. This result is a counterpart of the result
BPPBPP — BPP in worst-case complexity theory.

One of the most important theorems in this chapter is Theorem 4.5.4, which shows that P = PP if and
only if P-comp = P-samp. Not all P-samplable distributions are therefore computable in polynomial time
unless P = PP.

Proposition 4.6.3 shows that there is no p-universal distribution for P-comp if P = NP.

4.2. COMPUTABLE DISTRIBUTIONS 101

Theorem 4.7.3 shows that if every P-samplable distribution is p-dominated by some P-computable dis-
tribution, then every NP set is nearly-RP.

Corollary 4.7.7 shows #P-comp p-equals P-samp if NP C BPP. This result follows Proposition 4.7.6,
a careful modification of a result proven by Schuler and Watanabe [96].

Proposition 4.7.9 shows that IPj-samp 1s not avp-included in P-comp unless P = RP. Moreover,

Theorem 4.7.12 shows that P-samp is not p-included in P-comp unless P = NP.

4.2 Computable Distributions

It seems natural to consider the sets of all feasibly “computable” distributions. Gurevich [36] first adapted the
idea of the P-computable real numbers used by Ko and Friedman [55] to define polynomial-time computability

of distributions. This section will further explore distributions computable in polynomial time.

4.2.1 Definition of Computable Distributions

Any distribution treated in this thesis is actually a real-valued function with X* as its domain. Gurevich
has applied the notion of polynomial-time computability of real-valued functions (introduced in Section 2.7)
to distributions. Here we shall give a more general notion of ¢-time computability and t-space computability
of semi-distributions for a function ¢, which is based on Gurevich’s approximation scheme.

Let us recall how a deterministic Turing machine M equipped with an output tape computes a real
number: the machine actually outputs a binary string w, which is interpreted as the dyadic rational number
Zi»ill w; - 2%, where w = wiws - - Wy and each w; is a bit (in {0,1}). We say that M approrimates
real-value p(z) if |p(x) — M(z,0")| < 27 for all natural numbers .

Definition 4.2.1 (Computable Distributions) [55, 36] Let ¢ be a function on N and 7 be a set of

functions on N.

1. A semi-distribution p is recursive (or computable) if there exists a deterministic Turing machine M
equipped with two input tapes and one output tape, which computes y; namely, on input (z,07),

() — M (2,0%)] < 277 for all strings € ¥* and all numbers i € N.

2. A semi-distribution y is t-time computable (t-space computable, resp.) if there exists a deterministic
Turing machine equipped with two input tapes and one output tape which, on input (z,0), computes

p(z) in time (using space, resp.) t(|x|,).

3. A semi-distribution is T -time computable (T -space computable, resp.) if it is ¢-time (f-space, resp.)

computable for some t € T .

Note that, by Lemma A .4, the Turing machine M in Definition 4.2.1 uniquely determines the distribution

Figure 4.1 illustrates an asymptotic approach of the value M (z,0%) to the value of a distribution.

102 CHAPTER 4. FEASIBLE DISTRIBUTIONS

1 ,/ N7
—7
o
+
I 7
| A !
thick dotted line JaeN
\ 4
K ,, A
M(x,0) e
. , I e
I a o /I-'-\ 7 ;'.\l
\ I NN SN
! VAR FRY 2k
” /l \‘ l’ “ ’I ,,-\'l'l” ’ M (X! 0)

AN ;N ! [

4 Ny \ A vl . .
O X thin dotted line
A m(x)

0

Figure 4.1: A distribution and its approximation

The reader should note that if we relax our definition of computability by requesting only the condition
that |p(z) — M(2,0")| < 27¢ for “almost all” = and i, then semi-distributions are always normalized to full
distributions of the same complexity. Here we mean by “normalization” the existence of the full distribution
p' satisfying that zi/(z) = ji(x) for almost all strings #. (Another way to normalize a semi-distribution to a
distribution is to multiply by a constant ¢ so that ¢ - p(x) converges to 1.) This subject will be discussed
again in Section 4.3.

Note that, for each z, p(x) is a t-time computable real number. Thus, if p is t-time computable, then
{p(z)}rex+ is an increasing sequence of ¢-time computable real numbers which converges to 1. But the
converse may not be true in general.

We next introduce sets of distributions which are feasibly computable.

Definition 4.2.2 (Computable Distributions)
1. The notation REC-comp denotes the set of all recursive distributions.

2. A semi-distribution p is called polynomial-time computable (P-computable, for short) if there exists
a polynomial p such that p 18 p-time computable. The notation P-comp denotes the collection of all

P-computable distributions.

3. Similarly, a semi-distribution p is called linear-ezponential-time computable (E-computable, for short),
exponential-time computable (EXP-computable, for short), logarithmic-space computable (L-computable),
respectively, if g 1s computable in linear-exponential time, in exponential time, and using logarithmic-

space. We use the notations E-comp, EXP-comp, and L-comp, respectively, to denote the sets of

4.2. COMPUTABLE DISTRIBUTIONS 103

distributions which are E-computable, EXP-computable, and L-computable.

A simple example is the standard distribution vgtang. It is easy to see from its definition that vgpang 1s
L-computable.

We can always assume that M on input (z,0%) outputs at most i + 1 bits. To see this, let M’ be the
machine that works as follows: it trims the binary fraction of M(z,0'*!) by rounding it down to i + 1
bits; if the last bit is 1, then it adds 27'~! to make the number of bits at most ¢ + 1. This implies
|M (2,0 — M'(z,0%)] < 27! and thus, we get

() — M'(,07)| < |p(x) — M (2, 0FY)| 4+ | M (2, 0'F) — M'(2,0")| < 27171 4 2717 = 977,
We shall exhibit several examples of P-computable distributions.

Example 4.2.3 The uniform distribution over a finite set of integers is P-computable; where we identify

integers with strings. For two distinct natural numbers a and b, we define p[q 3 as follows:

1 .
~ _ if s S L S Sb,
fapy() =4 7° ‘

0 otherwise.

Example 4.2.4 Another common discrete distribution is the Poisson distribution with parameter A > 0

that is defined on {0}* by
An
A1y . —A
plt) = ey

for every number n € IN. We here consider the case that A is a positive rational number. Notice that
the kth approximation of the value 2_7: can be computed by a Turing machine in time polynomial in n
and k. Similarly, by considering the power series for e=*, the number e=* is P-computable. Hence, u is

P-computable.

Ben-David, Chor, Goldreich, and Luby [9], on the other hand, define polynomial-time computability of
a distribution p in such a way that, for all #, the value of u(x) is exactly expressed in binary by some
polynomial-time bounded transducer. To distinguish this concept from ours, let us call such distributions
strictly P-computable and denote by strict-P-comp the class of all strictly P-computable distributions. By
this definition, if yu is strictly P-computable, then each value p(z) is either 0 or at least 272Ul for some
polynomial p; thus, g is supportive. This implies that the set strict-P-comp is supportive. Similarly, we
use the notation strict-REC-comp to denote the set of all distributions which are strictly computable by
deterministic Turing machines.

It is worth remarking that if a distribution is 7-time computable, then the density function is also 7T-time
computable. The converse, however, may not always hold since it is shown below that if P # NP, then
there 13 a P-computable density function whose associated distribution cannot be computed in polynomial

time. This result is due to Gurevich [36].

104 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Lemma 4.2.5 [36] AssumingP # NP, there exists a densily function which is computable in polynomial

time, but its associated distribution is not P-computable.

Proof. Assume that P # NP. Take a set A in NP — P such that A = {«z | 3y[|ly| = |z| A (=, y) € B]} for
some set B € P.

Let o(z) = 0 if |z| is odd; otherwise, v(z) = %, where || = 2n. Clearly v is in P-comp. Now
define the desired distribution p as follows:
v(zy) if 2 =20y, |z| = |y|, and (z,y) € B,

(=) = 3 iay) — ji(zly) if = = 2ly and |2| = |y,

otherwise.

(eI Y

The following summation shows that this g is truly a distribution:

doax) = > (ka0y) + pxly) = Y ey =1L
2 (.y):le|=lyl (@.y)]=|=]yl
Note that, by definition, 2 € A if and only if p(2101%1) — p(20171+1) £ 0. If g € P-comp, then we have

A € P, a contradiction. Therefore, u is not in P-comp. a
Another observation given by Gurevich [36] is:

Lemma 4.2.6 [36] For every P-computable distribution p, there exists a polynomial-time deterministic

Turing machine M such that:
(i) |p(x) — M(z,0")| <271 for all x and i; and

(i1) Ax.M(x,0%) is increasing (i.e., ¥ <y implies M(z,0") < M(y,0%)) for every i € .

Proof. Let p be a distribution in P-comp. By definition, there is a polynomial-time Turing machine N

such that |u(z) — N(z,0")| < 271, We define the deterministic Turing machine M as follows:

begin deterministic algorithm for M

input (z,0%)

if z = A then output N (), 0%)

for all s (0 <s < |x|+ 1) do
let A(0%) := max{N(0",0%) | r < s}

end-for

set @ := 01l and b := Ql#I+1

repeat (binary search part)
if A(a) = A(b) then output N (a,0")
take the minimal ¢ such that [[{z |[a <z <c}|| > |{z | c < 2 < b}
if N(c,0%) < A(a) then set A(c) := A(a)

4.2. COMPUTABLE DISTRIBUTIONS 105

else if N(c,0%) > A(b) then set A(c) := A(b)
else set A(c) := N(e, 0%)
if x <cthenset b:=celseset a:=¢
end-repeat

end.

To verify that M satisfies the required conditions is easy. a

Our approximation scheme is obviously different from the floating point model, another popular approxi-
mation scheme given by a precision floating-point representation, because, even if u is P-computable, the kth
bit of p(x) may not be computable in time polynomial in || and k. Nonetheless, the numbers represented
in a finite precision model does not satisfy the law of associativity. Although we cannot know any exact pre-
cision of the value p(z) in polynomial time in general, it is sufficient to know an approximate value M (z, 0%)
within an exponential factor of its true value p(z) when we consider the average behavior of algorithms
under the distribution p.

Part of the following useful observation was made by Gurevich [36] and by Wang and Belanger [112].

This lemma is the basis of the proofs of average NP-completeness shown in Chapter 5.

Lemma 4.2.7 (Distribution Controlling Lemma) [36, 112] Let p be a distribution in P-comp.

1. There exists a positive distribution v in strict-P-comp such that, for every x, the value v(x) has at

most 2|x|+ 4 binary digits, and 4 - v(x) > j(x) holds.
2. There exists a total, one-one, p-invertible function ¢ € FP such that j(z) < 2-19@IN+2 for all z.

3. If p is supportive, then there exists a total, one-one, p-invertible function f € FP such that 4-27 /() <
i(x) < 20-2-0@N for all x.

Proof. (1) Assume g € P-comp. If there is an « such that u(x) = 1, then, since the set {y | y < z} is
finite, we can easily define v which satisfies the claim. In the rest of the proof, we thus assume that p(z) < 1
for all z.

There exists a polynomial-time Turing machine M such that |u(z) — M(z,0")| < 27 for all and i. For
each string z, take i = 2|2¥| + 1 and let N(z) = M (x, 02|x+|+1). Clearly we have |u(z) — N(z)| < 9= 2oL
We trim the binary output of N(z) by rounding it down to 2|z*| + 1 digits; if the last bit is 0, then cross it
out; otherwise, add 2-212¥1=1 and then cross out the last bit in order to make the number of bits at most
2|z*|+ 1. Now let N'(x) be the result obtained by this process. If x = A, then N’(z) outputs the first two

bits of the binary fraction of N(z). Note that |N(z) — N'(z)| < 92l By the definition of N’ we have
(@) = N'(2)] < () = N (@) + [N () = N ()] < 27207170 g =2kt = g2l

for all # # A. Hence, |p(A) — N'(A)| < 1 and |p(z) — N'(z)]| < 2=217"1 for all nonempty strings . Note that
N'(z) is expressed in binary with at most 2|zT| 4 2 < 2|z| + 4 digits since |z1| < |z| + 1.

106 CHAPTER 4. FEASIBLE DISTRIBUTIONS

To get the desired distribution, we define

(N'(A) + 1) if 2= A,

v(z) = (N'(x) = N'(z~) + 2722141} otherwise.

P

Note that v(z) > 0 for all # since N'(#7) has at most 2|x| bits. From our definition, it is easy to obtain
that dv(x) = 1+ N'(z) + 2>, (.o 27 2%l for all nonempty strings z. Hence,

lim v(z) = 1+ lim N'(z) —1—222” ki .
n=1

!
m—eo 4 oo
For the empty string A, 47(\) = N’(A) +1 > j(A) — L + 1 = (). For the other strings z,
4p(x) = N'(z)— N'(z7) 4272
> (@) =27 = (u(e) 4 27 o
> plz)—p”) = ple).

(2) Assume that g € P-comp and ji(x) > 277U} Consider the distribution v which is constructed in
(1). Let g(z) = min{y | v(x7) < 0.yl < v(x)}. This g is total, one-one, P-computable, and p-invertible.
Moreover, we have () < 27191 for all z. This is seen as follows. By the minimality of g(z), we have
0.w < v(z~) and v(z) < 0.wt, where w = g(z). Hence, i(z) = v(z) — v(z~) < 0wt — 0w = 271V
Therefore, ﬂfl < 27 le(@)1,

(3) Assume that j(x) > 272D for some polynomial p. Take the function ¢ in (2). Since /\x.% is P-
computable, take a deterministic Turing machine M such that |@ — M(x,0%)| < 277, Since j(x) > 2D,
we have ﬂfl > 27PUeD=2 Let N(x) = M(x,0°(2D+4) Let d(x) be the position of the leftmost digit 1 in
the binary fraction of N (x); that is, 2=%®) < N(z) < 2-274®). Now define f(z) = g(x)104=) =191 Clearly
f is a P-computable, one-one, p-invertible function.

We next show that 5-2-17(@) > A) > 2= 7@ First we claim that d(z) < p(]z])+3. Assume otherwise.

1
By definition, N(z) < 2-4@)+1 < 9=rle)=3 " and then ﬂfl < N(z) 4 27pl=D=4 < 9=r(zh=2" This is a

contradiction. Hence, we have

@ < N(a) + 2-2leh=4 < 9=d()=1 4 9=d(e)=1 _ 5. 9=d(e)=L — 5. 9=If()],

To show that @ > 2-171@) et d’(x) be the position of the leftmost digit 1 in the binary fraction of @.

That is, 24 () < ﬂ(f) < 2.274®) We claim that d'(x) < d(x)+1. Assume otherwise. Since N (z) > 2-%®)
and ﬂfl < 274 (@)+1 we have N(z)— ﬂfl > 9=d@) _9-d'(x)+1 > 9-d(@)=1 Thep, N(z)— ﬂfl > 2-p(lel) =4
a contradiction. Using the fact that d'(x) < d(z)+ 1, we conclude that ﬂfl > 9=d'(@) > 9=d(@)=1 > 9=If (@)l

O

The following lemma is easy to prove.

Lemma 4.2.8 For any P-computable distribution p and any P-computable function f on X%, of [s

wmnereasing, then the default distribution Pp-r 18 also P-computable.

4.2. COMPUTABLE DISTRIBUTIONS 107

Proof. We assume that u is a P-computable distribution witnessed by a deterministic polynomial-time
Turing machine M. Assume also that a function f is P-computable.

Let us define another function ¢ as g(x) = max{z | f(z) < «} for each =.
Clawym 4 The function g is P-computable.

Proof of Claim. Take an appropriate polynomial such that |f(z)| < p(]z]|) for all strings «. Using this upper

bound of f, we compute g as follows:

begin deterministic algorithm for ¢

input z

compute the minimal n such that |z| < p(n)

let @ := X and let b := 17

repeat (binary search part)
if « = b then output a
take the minimal ¢ such that [[{z |[a <z <c}|| > |{z | c < 2 < b}
if f(¢) <z thenset a :=c elseset b:=¢

end-repeat

end.

The binary search part of the above algorithm takes at most O(n) steps, and as a result, the algorithm needs

polynomially-many steps to compute g(z). []
Write v for the distribution Az.u(g(z)). We then have:

() = D gz = > aw] f(w) = 2})

z<x z<x

< a{wlf(z) <2}) < plmax{w | f(w) < 2})

Let us define the deterministic Turing machine N as follows: on input (z,0*), simulate M on input (g(=), 0%).
Since g is P-computable, the machine N is also P-computable. To complete the proof, we must check the

approximability of v. This is seen as follows:

() = N(x,0°)| = lu(g(x)) — M(g(x),0%)| < 27,

In complexity theory, a diagonalization argument is one of the most powerful and popular tools for
discussing a separation of two complexity classes. Note that such an argument is based on the existence of
an effective (i.e., recursive) enumeration of all elements in question. We already know that, for example, it

is possible to enumerate all P-computable sets in an effective way.

108 CHAPTER 4. FEASIBLE DISTRIBUTIONS

The reader may wonder if one can effectively enumerate all distributions. Since P-computable distri-
butions are characterized by Turing machines, we must enumerate Turing machines which compute such
distributions. It seems, however, difficult to construct such an enumeration, because there are two objec-
tives: (1) we must check whether the chosen Turing machine, say M, guarantees the convergence of its value
to 1 (i.e., limy_yo M(z,0") = 1) (2) we must effectively check whether the machine satisfies the convergence
scheme, |M (z,0) — M (z,07)| < 271 4277,

To avoid checking the convergence scheme, let us turn our attention to strictly P-computable distri-
butions. By Lemma 4.2.7(1), we can bound an arbitrary P-computable distribution by another strictly
P-computable distribution with a constant factor. For most applications, we therefore consider strictly P-
computable distributions. Can we now enumerate all strictly P-computable distributions 7 We still have to
resolve the problem of checking the convergence of a machine. Actually we do not need to restrict attention
to full distributions. Schuler [92] first pointed out the existence of an effective enumeration of all strictly

P-computable semi-distributions.
Theorem 4.2.9 [92] There exists an effective enumeration of all strictly P-computable semi-distributions.

Proof. The method of proving this lemma is basically the same as in Lemma 4.2.6. Take any effective
enumeration of polynomial-time deterministic Turing machines; say {M;};en. We modify each machine
M; into another machine M/ which is increasing by an algorithm similar to that presented in the proof of
Lemma 4.2.6 (by replacing N by M; and M by M/). The sequence {M/};enw obtained by this modification
also becomes an effective enumeration of deterministic Turing machines, and each M/ computes some semi-

distribution in polynomial time. a

From the above theorem, we remark that we cannot exclude the trivial semi-distribution from the enu-

meration.

4.2.2 Rare Strings and Rare Sets

This section will consider input strings which occur rarely for most P-computable distributions. These
strings need special attention because the set of such strings consists of the most difficult instances for most

algorithms to work on in polynomial time.

Definition 4.2.10 (Rare Strings) Let F be an enumeration of semi-distributions, say F = {uo, 1, - - -},
and let k, s be functions from N to R*. A string = is rare with respect to (k,s, F) if j;(x) < 270=D holds
for all ¢ < k(]x|). Let RARE(k, s, F) be the collection of all rare strings with respect to (k, s, F).

Note that the rareness of a string depends on the enumeration F.

4.2. COMPUTABLE DISTRIBUTIONS 109

Lemma 4.2.11 Let F be an enumeration of all P-computable semi-distributions. Let k be any increasing
function on N such that 0 < k(n) < % for alln. Assume s(n) < n+logn—2logk(9n). For all ng > 0, there
exists an n with ng < n < 9ng such that |RARE(k, s, F) N X7|| > 27 — 2s(n)—logn2logk(on),

Proof. We first show that, for any integer ng > 0, there exists an n with ng < n < 3ng + 6k(ng) such

that, for each i < k(no), [|[{z € B" | fui(z) > 27*M}|| < M Assume otherwise. Let r(n) = 3n+ 6k(n)

and define AL = {& € ¥ | ji;(x) > 27"}, Take ng such that, for all n with ng < n < r(no), there exists

an i < k(ng) satisfying ||A%|| > k(n) - 2°(") /n. Hence, at least L%J many n’s satisfy the condition

AL || > k(n) -2 /n for some j < k(no). Let ¢ = (k(nu)_ll(&g:)”)-l_l)-l_n”. Since r(ng) > %, we have

(Tc(:l_—‘i))k(no) > e. Then,

r(no) r(no) r(no)
R R k(n) - 25(7) —s(n k(n r(no) k(n
E fi(z) > E E ii(x) > E 7()n L9ms(n) = E —(n)>/ ;)dl‘ZL
T n=[c] ¢

n=[c] z€A} n=[c] [+1

The lemma immediately follows from the following inequality:

o€ 2 13 < ki) > O < YD e €57 (o) > 270
i<k(n)

k(9n) - 25(0)

n

< k(n) . 25(n)—logn+210gk(9n).

We can construct a P-computable distribution g and an exp-honest, P-computable function f such that
no distributions in P-comp p-dominate Pgmr- Recall from Chapter 2 that p p-dominates v if and only if
there is a p-bounded function p from ¥* to R* such that p(z) - p(z) > v(z) for all z.

Proposition 4.2.12 [119] There exists a positive P-computable distribution p and an increasing, exp-

honest function f in FP such that Py-1 s not p-dominated by any P-computable distributions.

Proof. We first define n as follows:

. 9~ 2Mog(n=1)=1 if » € {0}* and |z| = n® for some n > 2,
i(e) = :
0 otherwise.
Let p(z) = %Dstand(x) + %f](l‘) The distribution g is positive and obviously P-computable. For every n > 2

6
and for = 0™ | we have

L., 1 S 1 S o 1
filz) > 577(96) T 9. 92log(n-1) = 952 = 3 (n6)1/2 - |x|1/2
since 21°6("=1) < Hence, ji(x) > 1/|z|*/? holds for all = 0"° with n > 2.
To define the desired function f, we need an effective enumeration of all strictly P-computable semi-

distributions. Let F = {v; | ¢ € N} be such an enumeration by Theorem 4.2.9. Let f(#) be the minimum

110 CHAPTER 4. FEASIBLE DISTRIBUTIONS

y such that logn < |y| < 9logn and |y|*~! - #;(y) < @(0") for all i < logn and all integers k with

1<k< T;{?g’fow, where n = min{r | 7% < |z] < (r + 1)%} if n > 213; otherwise, let f(z) = .

Function f is well-defined. To see this, consider the case |z| = n® for some n > 23, By choosing logn

as k(n) and n + logn — 2loglogn — 4 as s(n) in Lemma 4.2.11, we know that there exists at least one rare

161og? |y|

string y with respect to (k,s, F) with logn < |y| < 9logn, i.e., #(y) <2750 = MEIE

for all z < logn.

For such a string y, we have

16|y|F—21og? 16 - 95 1log" ' n - log?(91 9% log® 1
ly|*~*log” |y| < og'” n-log”(9logn) < PlogTn L aom

"= - wiy) <

since logn < |y| < 9logn, 16log?(9logn) < (9logn)? if n > 4, and 9* logh n < vrifk < T;ﬁfg’fow. Hence,
f(x) exists. Tt is easy to see that f is exp-honest and also polynomial-time computable.

By definition, for all k and 7, |y[*~! - 24(y) < fig-1(y) for some y, since fi,-1(y) > 1(0"). O

Inspired by the notion of complexity cores, we shall introduce sets which consist of instances which occur

rarely under most distributions in question.

Definition 4.2.13 (Polynomially /~-Rare Sets) Let £ be a function on N and let F be a set of distribu-
tions. A set S is called £-rare with respect to F if, for any distribution p in F, the set {x € S | ji(x) > 2=*(=D}
is finite. If 7 is P-comp, then we simply call this set S polynomially £-rare.

In what follows, we shall show the existence of a polynomially f-rare set for increasing, unbounded [with

the extra condition 5logn < £(n) < n. The proof uses Kolmogorov complexity.

Theorem 4.2.14 Let £ be any function on N which satisfies blogn < £(n) < n for all n € N. For any
increasing, unbounded function s on N, the set {x | & & KT[2¢(n), 200 s 0en Y s polynomially £-rare.

Proof. Assume that s is increasing and unbounded. In what follows, we show a general statement: for
every distribution g € P-comp, there exists a positive integer ng such that, for all strings = of length > ny,
if & ¢ KT[20(n), 280 +s(0)1087] “then fi(x) < 272D This clearly implies the theorem.

For a distribution p € P-comp, using Lemma 4.2.6, we can take a deterministic polynomial-time Turing
machine M such that, for all i € I, |u(x) — M(x,0%)] < 27% and Ax.M (z,0%) is increasing. We let T(\) =
M (X, 0) and T(z) = M(x,007143) — M (2=, 017143 for 2 € ©F. For any set A, write T(A) for Y owea ().

Notice that 7" may not be a distribution, but 7'(x) > 0 holds for all z. Moreover, T approximates j since it
follows that

li(z) = T(z)] < |u(x)— Mz, 071F3)] + () — M (2, 012143)

< 2—n—3+2—n—3 — 2—77,—2.

From the fact that 7' is P-computable, we now suppose that 7" on input z is computable in |z|? 4 d steps

for some positive integer d independent of .

4.2. COMPUTABLE DISTRIBUTIONS 111

Consider an integer ng large enough so that the following inequalities always hold: logng > 2logig + 9,
ng > 4e, and ng > d + 4, where 4y and ¢ are constants given later (not depending on the choice of ng). For

any integer n not smaller than ng, let
Ay ={z e X" | T(x)+27""2> 27},

As for the cardinality, we can claim that ||4,|| < 2¢)+1
Claim 5 ||An|| < 280+ for all integers n > no.

Proof of Claim. Assume otherwise. Note that, for each z € A,, T'(x) > 2-4n) _ 2-n=2 Hence, we have

dDooale) > Y (T(x) =277 > (A (27 — 2270

TEA, TEA,
> 22(n)+1 . (2—[(77,) _ 2—n—1)

- 9_ QZ(n)—n

Since £(n) <n, 3 ., fi(r) >2—1=1. This is obviously a contradiction. Therefore, ||A,|| < 20+ g

We note that, for each z € X7 if ji(z) < 27" then & € A,. To get the desired consequence, we shall
show that A, C KT[2¢(n),2¢"*s(?)1087] Fix an integer e with 1 < e < 2¢4"+1 Let us take the eth element

of A, in the standard order on X* and consider the following deterministic algorithm:

begin deterministic algorithm
input (s;, s,, s¢)
let 7:=0
for all strings y in X! do
compute the value T'(y) (let this term to be)
ift +27772 < 27! then go to (%)

let j:=j54+1
if j = e then output y
(%) end-for
output 0
end.

Let ¢y be an index of the Turing machine that runs the above algorithm. Note that the description of this
algorithm needs only the index of T

Recall the definition of the universal Turing machine U in Section 2.7. On each input (si,, Se(n), Sn, S¢),
the machine U outputs w.. Let n > ng. From the fact that |{(x1, 2, x5, 24} < 2?21 || + |zl + 1, it follows
that, for k € {ip, {(n), n, e}, |si| = llog(k) < 1+ logk. In particular,

[se] <1+41loge <1+ (£(n)+1)=£(n)+ 2.

112 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Thus, the size of input string (s,, S¢(n), Sn, Se) is bounded above by

2sio| + 2[s0(n)| + 2sn| + [se| + 1
< 2logig + 2logf(n) + 2logn + £(n) + 9
< 3logn +2logl(n) + £(n) < blogn+£(n)

IN

Ln)+£4(n) = 2£(n)

since logn > 2logig + 10 and 5logn < {(n) < n for all integers n > ng.

Finally, we shall analyze the running time of U. Notice that, in the original algorithm as defined above,
there are 2! iterations of the for-loop, and on each of such iterations, for y € X!, the algorithm needs steps
as many as O(Timer(y) +logn +1+loge + 1). Therefore, the running time of U on input (s, ¢(n), $n, Se)

is at most, for some constant ¢ > 0 (not depending on the choice of n),
¢- 20 ((n* 4 d) + n+ £(n) + (£(n) +2))
< e 2" @2Um) + 2+ d+2) < 28 e (204 3nY)

200 pe.p? < 2t pdtl

IN

2Z(n) . 2(d+1)logn < 22(n)+s(n)logn

IN

since 5¢ < n, £(n) < n, and d+ 2 < n?. Therefore, we conclude that w, € KT[2¢(n),2¢M)+s(r)logn] This

completes the proof. a

Note that, by Lemma 2.7.7, the set we have used in the above theorem belongs to the class
DTIME(O(23/n)+s()logny),

The following lemma of Schuler [93] has the same flavor as Theorem 4.2.14 and will be used in Section 5.6.
Let k, s and £ be functions on IN. Assume that ¢ and s are unbounded and increasing. Moreover, assume
that k(n) - £(n) < n, {(n) > 10logn, and k(n) > 1 for almost all n. For each integer n > 0, we define k(n)

strings 27, ..., z,’;(n) as follows:

min{z € X" | » & KT[n, 2:0) "]} ifi=1,
min{z € ¥ | 2 @ KT[n, 22020 .22]} if 1 < i < k(n).

Set ZP = 27 2pXnr=H0) for all i with 1 < i < k(n).

Lemma 4.2.15 [93] For every distribution p in P-comp, there exist inlegers co,ng > 0 such that
(Z2) < 270=c)t(0)/2 for all n > ng and all i with 1 < i < k(n).

Proof. The proof below is similar to that of Theorem 4.2.14. For a distribution p¢ € P-comp, take T as
in the proof of Theorem 4.2.14. This T also satisfies the inequality that |a(Z7) — T(Z])] < 27" for all ¢
with 1 < i < k(n). Assume that the value of T(xX™), where |z| = n, is computed in time (n + m)¢ + d
for some positive integer d. We shall define ¢q and ¢’ later. Choose ng large enough that the self-delimiting

description of T' is sufficiently small, and ng > 4¢, and d + 2 < s(ng).

4.2. COMPUTABLE DISTRIBUTIONS 113

The lemma is obviously true for each n > ng and each ¢ with 1 < ¢ < ¢g since £(n) > 0 and
p(Z7) < p(zm) < 1< 27 limeotm)/2,

We shall show that the lemma also holds for all ¢ with k(n) > ¢ > ¢;. Assume that the claim fails for some ¢
and n. Now take the minimal integer ¢ such that g(7) > 2~ (1=c0)t(7)/2 for some n > ng, and then take the

minimal such n. Define a set A; as
Ai = {w c EZ(”) | T(Z? .. .Z?_lwxn_i'z(”)) + 27 2—[(2'—60)4(”)/21}.

It is clear that 2P € A; since T(Z0) 4 27" > ju(Z7) > 2~ [(i=co)t(n)/2],
We claim that ||4;|| < 2¢0)+4/2 Assume otherwise. If n > 2, then

(i—1—co)f(n)+5<(k(n)—1)f(n)+5<n—10logn+5 < n,

and hence, 27 (=1=¢0)t(n)/2 > 9=(n=5)/2 Then, since £(n) < n

bl

AZy) > T2 =270 > (A - 27T gy g
> UONHR)/2(9=((i=co)t(n)+2)/2 _g=ny _ 9=n
— 9—(i=1—co)t(n)/24+1 _ 9—ng(E(n)+3)/2 o
S 9—(i=1=co)t(n)/241 _ g—n+(n+3)/2+1
> 9.9 (imlme)(n)/2 _9=(n=5)/2 5 9=(i=1=co)l(n)/2,

This contradicts the minimality of i. Hence, we have ||4;|| < 2(¢()+4)/2,
To reach a contradiction, it is suffices to show that A; C KT[n, 250722 ... 22 |]. Now suppose A; =
{wy, wa, ..., wy}, where w1 < ws < -+ < Wy, M < 2(£(n)+4)/2 Consider the eth element w, of A;, where

1 <e < 2000)+9/2 Consider the following algorithm N which computes w,:

begin deterministic algorithm for N
input {¢,l,n,e,z)
find ¢ such that |z| = (i —1) -
let =0
for all string y € ¥! do
compute the value T'(2yX" ") (let this term to be t)
if t +277 < 271=9)/2] then go to (¥)

let j:=j54+1
if j = e then output y
(%) end-for
output 0
end.

Let iy be an index of this machine N. The description of this algorithm needs only the index of T'. Take
co large enough so that the length of this description ¢y satisfies logeg > 2logig + 12. By our assumption,
cp < k(n).

114 CHAPTER 4. FEASIBLE DISTRIBUTIONS

The universal Turing machine U takes an input of the form {ig, co, é(n), n,e, 2} - - -2 ;) and outputs we.

The size of (ig, co, £(n),n,e) is bounded by

2Jio| + 2[eo| + 2[t(n)| + 2|n| + [e[+ 1

b4 4

< 210gi0+210gco—|—210g£(n)+210gn+ﬂ+10
b4
< 310g60+210g€(n)+210gn+%
14 £
< 3logk(n)€(n)+21ogn+—(;) < 5logn+—(2n)
l(n) L(n)

< L4 —-—= < /!
=< 9 + 5 = (n),

since ¢y < k(n) and £(n) > 10logn for all n > ng.

The running time of U on input (i, cg, £(n), n, e, 27 -+ 2 ;) is at most, for some constant ¢/ > 0,

¢ 2t (L”); Lt d) + (ot 2) 4) Cg)g(”) + 1)

< 2t (W +2n% + (5 + d))
< 2M) g pd < 9n it

< 9t) glatl)logn o 9(d+2)i(n)

< 9elDtn)

since i + 1 —¢g < k(n), 4¢’ < n, £(n) > logn, and 4 + d < n?. Therefore, we conclude that w, €

KT[n, 25072022] m

4.2.3 Fault-Tolerance of Distributions

Suppose that we are going to solve a problem in reasonably short time with the help of communication with
another supplementary source of information. Clearly our computation depends on the accuracy of incoming
data from the source. Unless we can guarantee its accuracy (e.g., no cable breakdown or interference, etc.),
it becomes important to make our computation robust and to make it tolerate any faults in data. The
computation may of course require more time in case there is faulty information from the source.

In 1985, Schoning [90] introduced the notion of robust machines to model fault-tolerant computation and
the notion of oracles helping such computation. We shall adapt his concept to our distribution setting and
introduce a new concept, fault-tolerance of distributions, into average-case complexity theory.

For our purpose, we first introduce the concept of distributions computable relative to oracles.

Definition 4.2.16 (Relativized Computable Distributions) TLet A be an oracle and let C be a

complexity class.

1. A semi-distribution p is polynomial-time computable relative to A (PA-computable, for short) if there

exist a polynomial p and a deterministic oracle Turing machine M such that, on input (z,0%), M4

4.2. COMPUTABLE DISTRIBUTIONS 115

works in polynomial time and satisfies |p(z) — M4 (z,0%)| < 277 for all strings = € ¥* and all numbers

i € N. Let PA-comp denote the set of all PA-computable distributions.

2. A semi-distribution y is polynomial-time computable relative to C (P°-computable, for short) if u is

P4-computable for some set A in C. The notation P¢-comp denotes the union of all PA-comp for any

AinC.

We note, similar to the remark following Definition 4.2.2, that PE-comp = E-comp and PEXP_comp =
EXP-comp.

Definition 4.2.17 (Fault Tolerance) Let A be a set and C be a complexity class. A distribution p is

n P‘,;‘elp—comp if there exists a deterministic Turing machine M such that
(i) for every oracle O, |u(z) — M9 (z,0")| < 27 holds for all ¢ € N; and
(i1) there exists a polynomial p satisfying Timeﬁ(l‘, 0%) < p(|z|,) for all and i.

The set A is said to help M. Let Phcelp—comp denote the collection of all distributions in P‘,;‘elp—comp for

some A € C.

It is obvious that P-comp C P‘,;‘elp—comp C P4-comp for every oracle A.

*

Lemma 4.2.18 szlp-comp - Pzg-comp.

A

Proof. Assume that pis in Py,

-comp for some A. There exist a deterministic oracle Turing machine
M and a polynomial ¢ which witness p being in P;?elp—comp. We shall define another machine M’ that tries

to exhaust all possible computation paths of M within time ¢. Here 1s the description of the machine.

begin nondeterministic algorithm for M’

input (z,0%)

start the simulation of M on input x

while the simulation do
if M queries y then (nondeterministically) guess the oracle answer
exit the loop when ¢(|z|, 7) steps are consumed

end-while

if M halts then output M (z) else output A

end.

Note that M’ is polynomial-time bounded.

For each z, let path, be the minimal (code of) path p of the computation tree given by M’ on input z
such that p does not lead to the output A. Let us consider the output of M’ on input z along path path,,
say d.. We get |p(z) — d.| < 27% because, otherwise, it violates the condition |p(z) — M (z,0")| < 271 if C
is chosen so that M (z,0") = d,. Next define the desired set B as follows:

116 CHAPTER 4. FEASIBLE DISTRIBUTIONS

B = {(x,1™) | the éth bit of the binary output d; of M’ on input # on path path, is 1 }.

The set B belongs to X because we must choose the minimal paths first, and this needs two alternations
of the existential state and the universal state. With the help of B as an oracle, we can compute the value

MA(z,0%) in time polynomial in |z| and i. Thus, g is in P=:_comp. a

It is unknown whether Pizp—comp C PNP_comp. However, oracle sets in UP N co-UP do not increase
the computational power of the robust machine.

Lemma 4.2.19 P};LI;OCO'UP-comp = pUPNo-UP _comp.

Proof. It suffices to show that PUPMcoUP_comp C PE'LZ)”CO'UP—comp. Let g be any distribution in
P4-comp for some A € UP N co-UP. There are two polynomial-time unambiguous Turing machines Ny
and N; computing A and A, respectively. Let M be a deterministic polynomial-time oracle Turing machine
computing p relative to A.

We use a set called a witness of the accepting computation of Ny and Nj. Set
Witness(A) = {(x, s;) | Jw € SII[and Ny accepts # on path w whose ith bit is 1]}.

We wish to modify the machine M in order to compute the same distribution. Let O = Og & O, and let us

define the deterministic Turing machine that computes p as follows:

begin deterministic algorithm for N with oracle O (= Og @ 0,)
input z
start the simulation of M on input x
while the simulation do
exit the loop when p(|z|) steps are consumed
halt the algorithm when an accepting or rejecting state is reached
if y is queried then do the following:
(i) query {{y,s0), (¥, 51),---, (¥, S|} } to oracles Oy and O
(ii) let wo := Oo((y, 50)) - - - Oo((¥, 5|2|)) and wy := O1((y, s0)) - - - O1({Y, $|2|))
(iii) if Ny accepts y on path uy then let an oracle answer be “yes”
(iv) if Ny accepts y on path u; then let an oracle answer be “no”
else go to (x)
end-while
(%) simulate M on input = using Ng and Nj as oracles

end.

It is clear that N computes the distribution g, and if the set Witness(A) @ Witness(A) is given as an

oracle, then the running time of N with this oracle on input x is O(Timeps (x)). a

4.3. NORMALIZATION OF SEMI-DISTRIBUTIONS 117

4.3 Normalization of Semi-Distributions

In this section, we shall show how to normalize a semi-distribution to a full distribution. As the reader
can see, there are several way to normalize semi-distributions. Here are two simple methods: for a given

non-trivial semi-distribution g, let

() T
1_221275)\ /1(2) if z = A

(i) @ (x) = L - p(x), where ¢ = limg o0 p().

(i) p'(x) =

Both distributions p' and g need the computability of the limit limy_ o pt(x). This is seen as follows.
Assume that p is P-computable (for simplicity, assume (A) = 0). Assume that u/ € P-comp. Let ¢ =

> sagn (7). Since ¢ = limg_oo pt(x), ¢ is P-computable. Thus, by Lemma 2.7.4, the inverse L is also

P-computable. Since p'’(x) = % -p(x), p'" becomes P-computable. Conversely, assume that p” € P-comp.
Then, ¢ is P-computable since ¢ = fi(x)/p"’(x) for some z for which " (z) > 0. Note that ¢ = limy oo () =
> 2azn B(2). Thus, p € P-comp.

One may raise the question: can all P-computable semi-distributions be normalized to some P-computable

distributions by method (i) or (ii) 7. The answer is unfortunately negative.

Proposition 4.3.1 There exists a P-computable semi-distribution p such that neither y' nor p' is P-

computable.

Proof. Take a tally set A C ¥t which is recursive but not P-printable. Since A is recursive, we choose
a deterministic Turing machine M which, on input A, produces a list of all strings of A (possibly with
repetition).

Now we define the desired semi-distribution pu as

() 272 ifz € {0}* and M produces 0% within |z| steps,
fiw) =

0 otherwise.
We first claim that p is a P-computable semi-distribution.

Soie) = Yo a(f) < Y =

keN i=1
Set ¢ = limgy_oo pt(x) and let 0.r be its binary representation. Notice that this representation is unique
because, for every ¢, the (2¢ 4+ 1)th bit of » must be 0. Moreover,
A ={0"]| the 2i-th bit of ris 1 }.

Assume that ¢ is a P-computable real number. There exists a polynomial-time Turing machine N such
that [N (0%) —¢| < 27% for all k € N. Let N’(0%) = N(0%%+1). Machine N is still polynomial-time bounded,

and N'(0%) is an initial segment of r. Hence, for any sufficiently large n,

ANXS® = {0°] the 2ith bit of N'(0>**2)is 1 }.

118 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Thus, A is P-printable. This is a contradiction. a

We now know that we no longer guarantee the existence of normalized distributions. The reader may
ask under what conditions can P-computable semi-distributions normalized. In the rest of this section, we
shall discuss a sufficient condition for the normalization of computable semi-distributions.

First we consider a general case.

Lemma 4.3.2 Let py, ...,y be semi-distributions such that limy_,o Y e pi(x) < 1, and let Sy, ..., S,
be m disjoint sets with S+ = Ji~, S;. Let h and p be increasing functions on N, and p is time-constructible.
Let

i (%) if v € S; for some i (1 <i<m),

L=> 0 .o iz) fz=A

Let Ni,..., Ny be O(h(n))-time bounded deterministic Turing machines. Assume that, for all x € ¥* and
k € N, the following two conditions (i) and (ii) hold:

) =

(i) Foralli with1 <i<m, |N;j(z,0") —p;({z €S, |z <z} <27%
(ii) For all i with 1 < i < m, ji;(S; — RSPy < 27k,

Then, p is O(h'(n))-time computable, where h'(n) = h(p(n + ilog(m) + 1) + n + ilog(m) + 1).

Proof. Take p1,..., tm and Sy, ..., Sy, and assume all the conditions of the lemma. For the sake of

convenience, let ¢(n) = n +ilog(m) + 1. Consider the following algorithm N.

begin deterministic Turing machine N
input (z,0%)
set Result := 0
if z = A then go to ()
fori=1to mdo
simulate N; on input (z,09(%))
set Result := Result + N;(z, Oq(k))
end-for
output Result and halt
(%) for i = 1 to m do
simulate N; on input (17(¢(k) ga(k))
set Result := Result + Ni(lp(q(k)), Oq(k))
end-for
output 1 — Result and halt

end.

Take a constant ¢ > 0 such that, for all appropriate i, Timey;, (z,0%) < ¢ - h(|z| + k) and TimeNl/(Ok) <

c¢-h(k). Then the running time of N on input (z, 0%) is calculated as follows: for some appropriate constants

4.3. NORMALIZATION OF SEMI-DISTRIBUTIONS 119

¢ and d,
Timey(z,0%) < (Z Timey, (x,09%)) + ZTlmeN (176, 0) + 1)
i=1 i=1
< emecs (Bl + a(k)) + h(p(a(k)) + a(k))

< d-h(p(|z] + k +ilog(m) + 1) + n + ilog(m) + 1)

since p and h are increasing. Hence, N is O(h'(n))-time bounded.

Next we show that N actually computes p. Assume that « # A.

m

M(z,0%) = > jl2)

zz<w i=1

[z € S4]

I\ |
g N
=
N 0
2 %
||M3
|/\M

—p{z eS|z <}l

i=1
< m- 2—k ilog(m)—1 < 2—!@.
For the case © = A, we have
[M (A, 0%) = i(A)]
= Z fi(2) _ZNz’(lp((k) Oq(k))
ER-2-PN i=1
< Z fi(z) — Z ()| + Z fi(z) — ZNi(lp(q(k))’oq(k))
2z EA 2:0<]2|<p(q(k)) 2:0<]2|<p(q(k)) i=1
< > D (e [z€ S Z Yo fu(z) [z e S =Y Ni(1petkD ety
i=1 2|z >p(q(k)) i=1 2]z <p(q(k)) i=1
< Zﬂi (S; — nsrle +Z|“ZS n ek _ Nt plathl)y)
1 i=1
< m- 2—k—ilog(m)—1 +m- 2—k—ilog(m)—1 < 2. 2—k—1
= 27k
Therefore, p is O(h’(n))-time computable. a

Consider, for example, the standard distribution veganq. When we set p(n) = 27+ — 1, the distribution

Vstand satisfies the convergence scheme |1/stand(1p(i)) — I/stand(lp)| < 27" 4277 foralli,j € N.

Corollary 4.3.8 Let p be a semi-distribution and let p(n) be an increasing function on N bounded above
by a polynomial in n. Let p' and p'' be the normalized distributions defined at the beginning of this section.
If p is P-computable and |p(170)) — p(1PU)] < 277 4+ 277 for almost all 3,5 € N, then p' and p" are both
P-computable.

120 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Proof. Assume that g is a P-computable semi-distribution. Let M be a g-time bounded deterministic
Turing machine computes p, where ¢ is an appropriate polynomial. To use Lemma 4.3.2, we set S = X*
and let N(z,0%) = M(z,0t1) — M (X, 0**!) for all k € N. It sufficient to check conditions (i) and (ii)
in the lemma. If both conditions are fulfilled, then Lemma 4.3.2 ensures the existence of the normalized
distribution g’ that is O(¢(p(n + 1) + n 4 1))-time computable. Since p(n) is bounded by some polynomial
in n, clearly p' is P-computable.

For (i), we have

N, 0%) —j({z €S|z < e = [M(,05) = MO0 4 () — ()]
[V (ar, 0% 1) — pu(ar)| 4 [M (X, 0F+) — ()

IN

2—k—1+2—k—1 — 2—/@‘.

IN

For (i), by our assumption, |p(17()) — pu(170))| < 277 4 277 for almost all 4, j € N. By Lemma A .4, this
is equivalent to the condition |limg_eo pt(2) — p(12()] < 277, Hence, (S — L<PF)) < 2-F, a

4.4 Samplable Distributions

Let us consider as a simple example the generation of an “occupied territory” on a finite square board
(e.g., cf. [65]). First we randomly choose a nonnegative integer n, and define the “occupied territory” at
stage 0 to be the center square of the n x n board. At stage ¢, a walker randomly chooses a starting point
which is on the boundary of the board and walks to neighboring points at random. If the walker successfully
reaches an adjacent point s; of the occupied territory at stage ¢ — 1, then the territory is expanded to include
the point s;. We continue to the next stage. Allowing infinitely-many stages, we are able to consider the
probability that a certain region becomes the occupied territory at some stage.

This type of (probability) distribution is called samplable, and the algorithm which produces instances
under this distribution is called a sampling algorithm [9]. Instances of samplable distributions have often
been observed in statistical physics. Samplable distributions are also of importance in cryptography. It
is known that the existence of complex samplable distributions leads to the existence of pseudo-random

generators (see [9, 40]).

4.4.1 Definition of Samplable Distributions

In 1990, Ben-David, Chor, Goldreich, and Luby [9] first formulated a notion of distributions which are
sampled (or generated) by randomized algorithms in time polynomial in the length of their output on dyadic
rational numbers. They coined the term, polynomial samplable distributions for such distributions.

In a recent work on pseudo-random number generators, Hastad et al. [40] also use an ensemble of “polyno-
mial samplable” probability distributions. To cope with real-valued distributions, we use an approximation

scheme and give a generalized definition of ¢-time samplability.

4.4. SAMPLABLE DISTRIBUTIONS 121

<p(3,k)

Figure 4.2: A computation tree of a sampling algorithm

Definition 4.4.1 (Samplable Distributions) Let ¢ be a function on RT. A semi-distribution p is
t-time samplable if there exists a randomized Turing machine M (which does not necessarily halt on all

computation paths), called a sampling machine or generator, such that

ji(x) — Pry[M on input 0 produces = and halts within time ¢(|z|, z)]| <27 (%)

for all # and ¢ € N. We say that M samples p if M satisfies (x). For a set T of functions, p is T -time
samplable if p 1s t-time samplable for some ¢ € T.

Similarly, we can define p to be t-space samplable (T -space samplable, resp.) by requiring M to be t-space
bounded (7 -space bounded, resp.).

An algorithm used for a sampling machine is called a sampling algorithm.

Definition 4.4.2 [9] A semi-distribution y is polynomial-time samplable (P-samplable, for short) if there
exists a polynomial ¢ such that p is ¢-time samplable. Denote by P-samp the set of all P-samplable

distributions.

Figure 4.2 illustrates a computation tree of a sampling algorithm.
To distinguish our definition from Ben-David, Chor, Goldreich, and Luby’s [9], we call their P-samplable
distributions strictly P-samplable. We use the notation strict-P-samp to denote the collection of all strictly

P-samplable distributions. Notice that all strictly P-samplable distributions are supportive.

122 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Lemma 4.4.3 For every P-samplable distribution u, there exists a distribution v in strict-P-samp which

p-dominates p.

Proof. Take an arbitrary P-samplable distribution p. By definition, there exists a sampling machine M

and a polynomial p such that, for all # and 1,

() — Pra [M(0) = 2 within time p(|z|,4)]| < 27°.
Replace i by |#| in the above inequality, then we have

i < 2711 L Pry [M(07) = 2 within time p(|z], |2|)].

To simplify the description, write P, for Prp[M(017l) = 2 within time p(|z|,|2])]. We then have ji(z) <
2-Iel 4 p,..
Since the standard distribution is P-samplable, it has a its sampling machine, say M. We then define

the desired semi-distribution v to be sampled by the following sampling machine N:

begin sampling algorithm for N
input A (the empty string)
choose a bit b at random
if b = 0 then simulate My on A and halt
generate a natural number n (actually generate s,)
simulate M on input 0"
if M enters a halting configuration then let # be its output and
let ¢ be the running time of M
if ¢t < p(|x|, |#|) then output = else output A

end.

Suppose that M outputs string « in time p(|x|, |z|). In the case where b = 1 and n = |z| are chosen,
for some appropriate positive constant ¢, N can output x requiring its computation time to be at most
e (|2 + p(lz|, |z]) + 1), because N needs O(]x|) steps to generate b and n and needs O(p(|z|, |z])) steps for
the simulation of N.

Now let ¢(2) = ¢ (# + p(z,2z) + 1) and define v as v(z) = Pry[N(A) = « within ¢(]z|) steps] for all x.
Obviously this v is a semi-distribution and also P-samplable.

We fix a nonempty string z arbitrarily. Note that the probability of generating n at random is exactly
2~208(n)=1 Then the probability that n = |z| holds and N outputs within time ¢(|z|), is at least

9~ 2og(n)—1 . PI‘M[M(lel) = x within p(|z|, |#|) steps] = 9~ 2log(lel) =1 . p

Hence, it follows that

Pry[N(A) = « within ¢(|z|) steps]

1 1
Z 5) ﬁstand(x) + 5 . 2—2llog(|x|)—1 . Px

v(x)

4.4. SAMPLABLE DISTRIBUTIONS 123

g~ 2log(lz))=2 g—le| 4 9=2log(lel)=2 p
1

> ——— .27 Fl4 p,
Z e B)
S M)
= 16(|x +1)?
Therefore, we conclude that g <P v. a

Theorem 4.4.4 [9] There exists an effective enumeration of all strictly P-samplable semi-distributions.
In particular, for each k > 0, there is an effective enumeration of all strictly O(n*)-time samplable semi-

distributions.

Proof. First we effectively enumerate all randomized Turing machines (which may not halt on some com-
putation paths). Let {M;};en be such an enumeration. Also take an effective enumeration of all polynomials
with positive integer coefficients, say {p; }sen, such that each p;(z) > z for all z.

For each pair (4, j) of natural numbers, we shall consider the ith machine M; and the jth polynomial p;.

We modify the machine as follows:

begin sampling algorithm for M(/z',j)
input A
simulate M; on input A
let be the output of the machine M; and
let ¢ be the running time of M;
if t <p;(]z|) then output = else output 20t 1l

end.

Note that a random seed generated by M/ is exactly the same as that generated by M;. Suppose that M;
outputs z. The running time of M(Z j) s O(lz|+t 4+ 1). In the case where ¢ < p;(|#]), the running time of

/
Mg
¢ - n steps in the length of its output.

) is O(p;(]z|)) because p;(n) > n; otherwise, it is O(¢). Overall, the running time of M(/z',j) is at most

It is easy to check that all P-samplable distributions appear in this enumeration. a

The reader will find an application of Theorem 4.4.4 in Section 5.3.

4.4.2 Invertibly Samplable Distributions

From a different point of view, Impagliazzo and Levin [44] defined “polynomial-time samplable” distributions
to be of the form fi-, for some p € P-comp and some f € FP. Following this definition, we can actually
construct such a distribution that cannot belong to P-comp.

Although there is no proof separating the two notions of “polynomial-time samplability,” in this thesis,

we require f to be p-honest, and take the following weaker definition:

124 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Definition 4.4.5 (Invertibly Samplable Distributions) [44]

1. A distribution g is invertibly polynomial-time samplable (invertibly P-samplable, for short) if there
exists a distribution v € P-comp and a p-honest function f € FP such that u = vi-1. Denote by
IP-samp the set of all invertibly P-samplable distributions.

2. Let IPy-samp be the collection of all distributions of the form y -, for a distribution v € P-comp and

a p-honest, one-one function f in FP.
Proposition 4.4.6 [119] P-comp C IP;-samp C IP-samp.

Proof. For the first inclusion, use the identity function f. Obviously f is p-honest and one-one. Then,

we have p = -1 for all distributions p. The last inclusion is trivial. ad

As shown in [111], in general, the feasible computability of g does not imply that of p; namely, there
are distributions g which are not in P-comp, but e is in P-comp for the function f(z) = 0l*l. Moreover,
Wang and Belanger showed that, for every u € P-comp and every increasing, p-honest function f € FP,
ftg-1 belongs to P-comp [111].

We shall show the inclusion between IP-samp and P-samp.
Proposition 4.4.7 [119] IP-samp C P-samp.

Proof. To establish the proposition, we shall generalize the proof of Theorem 7 in [9].

Assume that v is in IP-samp. By definition, there exist a p-honest function f € FP and a deterministic
polynomial-time Turing machine M such that v = p, and |p(z) — M(z,0%)| < 27" for all z and i. By
Lemma 4.2.6, we can assume that Az.M (z,0*) is nondecreasing for each fixed k. We also assume that, for
some polynomial p, |z| < p(|f(2)]) and |f(2)] < p(|z|) for all .

For simplicity, write M (z,0%) = Zzef_l(x) M’ (z,00UeDHE=1) " where M’ (z,0F) = M (x,0%) — M (2=, 0%).
Note that |fi(z) — M'(z,0%)| < 275+, Since |f(z)| < p(]z]), we have

Pla) = M, 0 < D2 (=) = Mz, 070D+ < gp1eD)gmriei=k = pmk,
z€f 7 e)
To complete the proof, we need to show that M(x, 0%) can be computed by some sampling algorithm on

input 0%. Let us define the sampling algorithm N as follows:

begin sampling algorithm N
input 0*
fori=1to
choose one bit b; randomly
let p; be the real number identified with string b1bs - - - b;

find the minimal string # by binary search such that

4.4. SAMPLABLE DISTRIBUTIONS 125

M (x=,0pUeDHh=1) < b < M (2, 0pUeD+h=1)
if there is such an z then output f(z) and halt
end-for

end.

It is not difficult to see that M(x, 0%) is equal to the probability Pr[N(0%) = z in time ¢(|y|, k)] for some

polynomial q. a

The converse of Proposition 4.4.7 is unlikely to hold; however, we can prove that every P-samplable

distribution is p-dominated by some invertibly P-samplable distribution.
Lemma 4.4.8 [119] For every u € P-samp, there exists a distribution v € IP-samp such that p <P v.

Proof. Let p be a P-samplable distribution, and let M be a randomized Turing machine witnessing p with
a time-bound polynomial p. We modify the original machine M so that, at every configuration of M there
are exactly two nondeterministic choices. Hence, the length of a code which expresses a nondeterministic
path of M on each input is at least the size of its output. Moreover, we assume without loss of generality
that p is increasing.

We define a function f as

output x of M on 0%1%! on path 2’ in time p(3|2|) if z = 2’1 and z exists,
fe)=9 A if 2

z if z =2'0.

2’1 but no such z exists,

To see that f is P-computable, consider the following deterministic algorithm:

begin deterministic algorithm for f
input z
if z = 2’0 then output 2’ else compute z’ such that z = 21
for n =1 to |7’
simulate M on input 027 on path 2/
if M halts in time p(3n) then let be its output else go to (x)
if |2| = n then output z and halt
(%) end-for
output A

end.

For each x, let A, be the collection of all strings w such that, on input 0%/*l on the computation path
encoded by w, M halts in time p(3|z|) and produces z. By our assumption, if w € A, then |w| < p(3|z]).

Hence,
[w € Ax]

Pry[M on 027! produces x in time p(3|z|)] = Z ool

126 CHAPTER 4. FEASIBLE DISTRIBUTIONS

[wEAz]
2wl

On the other hand, since M approximates ji, we then have ji(z) < 272%1 4 >
Let o(2) = Ustana({w | f(w) = x}). Notice that #(A) > 0. Let ¢y be the minimal positive integer such
that ¢ - 2(A) > i(A). Then, it follows that

v(@) = Y vsand(w) - [F(wl) = 2]+) Dsrana(w) - [f(w0) =]

22—|w|—21108(|w|)_1 w € Ap] + Pstanal(®).

Let q(2) = 8(p(32) +1)? +¢o. In the following, we show that ¢(|z|)-#(x) > ji(z). For & = A, this is obviously
the case. For the other strings z € X,

a(lel) - o(x) = q(lel) - Y27 ImeelleD=t T € o]+ g(|2]) - Dsrana(#)

glz]) [we A g(|=|) 1

> . + L
= 8 02 ol TRz 1) 2
woi<r el S0 D (e[+1)
[w e A.] 1 .

Unfortunately, we do not know whether P-samp CP IP-samp, or whether we can replace IP-samp in
Lemma 4.4.8 by IP-samp.
Schuler and Watanabe [96] introduced an average version of P-samplable distributions. We give a brief

definition here.

Definition 4.4.9 (Average Polynomial-Time Samplable Distributions) [96] A distribution p is
average polynomial-time samplable (average P-samplable, for short) if there exists a randomized Turing

machine M and a polynomial p such that
(i) |p(z) — Pray[M(0") = 2] < 277 for any z and ¢ € N; and
(ii) for every number r > 0 and every n € N,
Drany (1) - Prg[M(0%; 5) € " A Timeps (0% 5) > p((n, i) - 7) | s € Ty (0°)] < 1/r.

Let avP-samp denote the set of all average P-samplable distributions.
We shall show below that average P-samplability is a natural extension of P-samplability.
Proposition 4.4.10 P-samp C avP-samp.

Proof. Let y be any P-samplable distribution. Consider a polynomial p and a randomized Turing machine

M which, on input 0%, samples p(z) in p(|z|,) steps; that is,

i) = Pras[M(0') = o in time p(jal.))| <27

4.4. SAMPLABLE DISTRIBUTIONS 127

for all : € N and = € X*.

To show the average P-samplability of 1, we must define another sampling machine that samples g in
polynomial time on p-average with respect to the length of its output. Such a sampling machine is defined
as follows:

begin sampling algorithm for N

input 0’

simulate M on input 0°

if M reaches a halting state then do the following:
let z be its output
let s be the random seed generated so far
if Timeys(0%;5) < p(|z],7) then output = and halt
for i =1 to oo do
flip a fair coin
end-for

end.

By the simulation, it follows that
Pry [M(0') = x in time p(|z|,7)] = Pr,[N(0%;s) = x| s € Tx(0%)].

The running time of N on input 07 along with random seed s, is the same as that of M on 07 with s with

a constant factor.Thus, for an appropriate constant ¢ > 0, it holds that
Pr,[N(0° : s) € ¥" A Timen (0% s) > ¢-p(n, i) | s € Ty (09)] =0,

which implies that p is average P-samplable. ad

4.4.3 Closure Properties of Samplable Distributions
This subsection will discuss several properties of P-samplable and invertibly P-samplable distributions.

Lemma 4.4.11 For every distribution p and every function f in FP, if p € IP-samp and f s p-honest,
then s also belongs to IP-samp.

Proof. Let f be p-honest and in FP. Assume that u = Vg for some v € P-comp and p-honest g € FP.
Then,

() = Az fE) =a)) = (e | Flg(w) = 2 A f() =]))
= d{w|fog(w)=a}) = i)

Since f o g is p-honest and in FP, -, belongs to IP-samp. a

128 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Corollary 4.4.12 For every p € P-samp and every p-honest function f € FP, there exists a v € P-samp
such that pip-, <P v.

Proof. Assume that g € P-samp. By Lemma 4.4.8, we can take a distribution g’ from IP-samp such
that g <P p'. By Lemma 3.4.10, p <P ' implies ;-1 <P u}_l. Now let v = ﬂ}—y By Lemma 4.4.11, we
conclude that v belongs to IP-samp. ad

This corollary will be used to prove Proposition 7.5.10.
The following theorem is similar to the fact that BPPBFY = BPP (sce, e.g., [123]). It states that

PBPP_samp is p-equal to P-samp. However, the proof requires complex analysis of a randomized algorithm.

Theorem 4.4.13 PBPP_samp =P P-samp.

PBPP PBPP

Proof. Since clearly P-samp C -samp, it suffices to show that -samp CP P-samp. Consider

PBPP samp. There exists a Turing machine M and an oracle

a distribution g and assume that g 1s in
A € BPP such that |i(z) — Pry[M4(0%) = =z in time ¢(|z|, k)]| < 27% for all & € N, where ¢ is an
appropriate polynomial. We define another set A" as follows. Let A’ = {«10™ | 2 € A, m € N}. It is easy to

see that A’ € BPP. Let N be a polynomial-time probabilistic Turing machine such that
Pry[N(z10™) = A'(z10™)] > 1 — 9—lzl-m-1

(by the Amplification Lemma). Let p(n) = 2n + 4 for all n € N.

Let us consider the following randomized Turing machine M’:

begin randomized algorithm for M’
input 0
generate a natural number ng at random
let count := 0
for n = ng to o do
while the simulation of M on input 07+r(?)
if M queries y then simulate N on input y1070 () =lyl+r(n)
and let count := count + 1
end-while
(assume that M halts and writes down a string)
if count < q(n, i+ p(n)) then flip a fair coin m times,
where m = (¢(n, i+ p(n)) + 1+ p(n))(¢(n, i + p(n)) — count)
if |2| = n then output z and halt
(%) end-for

end.

4.4. SAMPLABLE DISTRIBUTIONS 129

Let 7," be the overall probability that z is generated by the algorithm when input 0° is given. For
simplicity, write i, = Pry[M4(0?) = = in time ¢(|z|,7)]. Remember that ji(z) = lim;_,«, 0%, holds for all z.
It follows that |oi — od| < 271 4277,

Our goal is to show that, for any string =z,

(1) % Cgitr(n) <p,<2- o) for almost all i € N; and

(i) [p," —p,7| <278 4277 for almost all 4,7 € N.

By Lemma A.4, (ii) implies the existence of the limit lim;_, . 5,*. We then set v(z) = lim; o, p,°. The
condition (i) implies that
Therefore, p is p-equivalent to v.

Fix z and let n = |z|. Let pi denote the probability that the algorithm outputs x after integer n is
already generated. This probability pi. is the product of the probabilities that N correctly computes all the
query strings made by M, and thus is at least

q(n,itp(n)) nidnin
II (1 _ 2—q<m+p<n>>—z’—p<n>) > (1 _ 2—q<n,z'+p<n>>—i—p<n>)q(Dy gmimp)-
j=1

where the last inequality holds by Lemma A.5. Then, we have
U;+p(n) (1= Q—i—p(n)) <ph < U;+p(n).

Now we show that |pi — p/ | < 27P()+1(2=7 £ 9=7). Note that gitr() < 1.

o —pl| < max{|02+p(n) _ Uj+p(n) S(1=271 r(n)| |Uy+p(n) _ ;+p(n) (1 _2—j—p(n))|}
< |Uz+p(n) _ Uy+p |—|—max{al+p(n) Q—Z—p(n)’0£+p(n),2—j—p(n)}
< 97imp(n) 4 9=i=p(n) 4 ax{mimr(0) 9mi-p(n))
< 9—p(n)+1 (Q—i 4 2—]').

Let 78 = inlflIﬂ pi. The probability pi is equivalent to the probability that, for every k < n, k is
first generated, and the algorithm fails to halt until it reaches stage n of the for-loop and finally writes
x. For each k, 0 < k < n, with probability 272198(k)=1 the algorithm generates k; it eventually reaches
n and with probability pi, it outputs z. Hence, if 0 < k < n, then the probability that z is an output is
9~ 2Mog(k)— - pt H (1 — 7), and if k = n, then this probability is exactly 2~2"°g(?)- - pt. Overall, we

have

n—1 ; n—1 ;

— i Pr i Py

P = Z 22110g(k)+1 H (1 - Tj) + 22110g(n)+1 :
k=0 j=k

Using the fact that H (1 —71) <1, we have

1—2-izpln) i 2 1 Fz
0 giten) Pz 5 1 i i+p(n)
8(71 + 1)2 Ty S 22110g(n)+1 S Py S P kZ: 22110g(k)+ 6 px <2 Oy
=0

130 CHAPTER 4. FEASIBLE DISTRIBUTIONS

The absolute value of the difference between 7¢ and 77 is now easy to calculate, as shown below:

= D Al < > |-

z:|z|=n z:|z|=n z:|z|=n

< gr.gmP(Hl (97T 4 9=y = gmp(n)dndl (9=i 4 9=y,

|7 = 7l

Finally we shall show that |p,! — p,7| < 27% +27/. We start with the following fragment. Note that

‘Hlk (1—7)— lk(l—rl)‘<z 1|7'f—7'l‘7'|byLemmaAb.Usingpiglandn (1—7’)<lwe
have
- n—1 - n—1))) n—1)
Hl—ﬁ p -7 < - TTa=) +1kk = Al TT =)
=k =k :k =k =k
< ZIrZ’—rﬁH 6% = |
1=k
< gmr(mtntl, (270 +279) + 9—p(n)+1 (27 +279)
< (n—k)-27PHl(9n 4 1) . (271 4 279),
Using this inequality, we obtain
n—1 n—1 n—1 .
— 1 -7 1 7 7 j |px p‘;:|
Ipe' =P, < Z 92Mog(k)+1 Pe H(l =)= pi H(l Tﬁ) + 92log(n)+1
k=0 =k =k
I on—k 1
< _n-r (2—p<n>+1 2P+ 1)- (27 42) L gmp(HL (9= g
< Ly @) 2) e @7+
n—1
: . n—k 1
< (270427 c9—p(n)+1 (2" +1) +
= 2(k+1)2 2(n+1)
. . 1
< (2774 279) 7Pt D)2 "+ 1) + ——
< (i) =+ 1) +
< (277 4279) .9—p(n)+1 (2.2t 4 92) < (2704279 9-p(n)+1l 9,2 9ntl
S (2—2 +2—]) .22n+3 .2—p(n)+1 S 2—i +2—]
since 2-n? < 2"*2 for all n € N. m]

4.5 The P-comp = P-samp Question

We have seen two categories of feasible distributions, P-computable and P-samplable distributions, both of
which have very different characteristics. It is natural to raise the question of whether these notions are
truly different. The first answer was given by Ben-David, Chor, Goldreich, and Luby [9] who showed that
P-samp # P-comp unless NP collapses to P. Later Milterson [74] pointed out that P = PP is a sufficient
and necessary condition for P-comp = P-samp, and its proof appeared in Yamakami [119]. This section
shows that P-samplable distributions are P-computable if and only if P = PP. Based on the common belief
that P # PP, it seems unlikely that P-comp equals P-samp.

4.5. THE P-COMP = P-SAMP QUESTION 131

We shall introduce another category of distributions, the so-called #P-computable distributions intro-
duced by Schuler and Watanabe [96], which seem to have more computational power than P-samplable

distributions. Again we modify their definition to fit our approximation scheme.

Definition 4.5.1 (#P-Computable Distributions) cf. [96] A distribution p is #P-computable if
there exist a function f € #P and a polynomial p such that |ji(x) — 2fp((|—zl) <2 % forall € ¥* and i € IN.
Denote by #P-comp the set of all #P-computable distributions.

We first show that the density function i in the above definition can be replaced by its distribution p.

Lemma 4.5.2 For a distribution p € #P-comp, there exist a function f € #P and a polynomial q such

that |p(x) — gq((lx ,)) <27 for all z and 1.

Proof. Assume that u is #£P-computable. By the definition of #£P-computability, there are a set A € P

and two polynomials p and ¢ such that |i(z) — %(xlx_oll) < 27" and f(z,0°) = |{y | |yl = p(|z],i) A{z, 0%, y) €

AYl]. Without loss of generality, we assume that p and ¢ are increasing.
We first show that the function g defined as g(z,0%) = 29219 DI % is in #P. To see this, we
define another set A’ as follows:
A= {<$’ Zlon_|2|y> | |l‘| =n,z S Ty El{yla R yq(n,z)}[y =Y 'yq(n,i)
AV <G < g(n,d) = 3y [y; = g5 100007100 A g1 = p(l2],) A (e, 07, g5) € Al
Let p/(n,i) = n+ 1+ (p(n,i) + 1)g(n,). Tt is not difficult to prove that g can be characterized as
9(2,0") = [[{u | |u] = p'(Je],é) Az, u) € A},

and thus ¢ 1s in #P.
Now let ¢'(z,0") = g(x, 011+ +1) and ¢/(n,i) = g(n,n + i +1). Then, for any string = of length n, we

have:
g (z, 0] S, 0ntiH)
‘ ()_ 924’ (n,7) B Z<: Z "(|z|,n+i+1)
R f(z’0n+z+1)
S Z<: F‘(Z) - 2q(|z|7n+i+1)
S 2n+1 . 2—(n+i+1) — 2—2'.

Proposition 4.5.3 #P-comp C P#F_comp = PPP-comp.

Proof. Let g be a distribution in #P-comp. Using Lemma 4.5.2, take a function f € #P and a

[(z,0%)

S| < 271, Since f is computable in polynomial time relative to f itself,

polynomial ¢ such that |pu(z) —

132 CHAPTER 4. FEASIBLE DISTRIBUTIONS

p is P-computable relative to f. Hence, #£P-comp C P#P-comp. Since FP#P = FPFF by Lemma 2.5.3, it

follows that P#P-comp = PPP-comp. a
The main theorem of this section is:

Theorem 4.5.4 [74, 119] The following five statements are equivalent:
1. P=PP.
2. P-comp = #P-comp.
3. P-comp = P-samp.
4. P-comp = IP-samp.

5. P-comp = IP;-samp.
The theorem immediately follows from the proposition and two lemmas below.
Proposition 4.5.5 [119] P-samp C #P-comp.

Proof. Assume that p is P-samplable and is witnessed by a sampling algorithm M and a polynomial p.
Without loss of generality, we assume that every path of M on 0’ which outputs z halts in exactly p(|z|, 1)
steps. Let f(z,0%) be the number of computation paths y such that M on 0 outputs = and halts on path y
in time p(|z|,7). Clearly f € #P since each path of M on 0 is bounded by p(|z|,i). It is easy to see that
the probability that M (07) outputs x and halts in time p(|z|,4) equals f(z,0%)/2PU19) Hence, p turns out
to be #P-computable. a

The converse inclusion, #P-comp C P-samp, 1s an open question. The best known result is due to
Schuler and Watanabe [96] that every #P-computable conditional distribution can be approximated within
a polynomial factor by some sampling algorithm in time polynomial in the length of outputs with nonadaptive
queries to an NP oracle. This will be shown as Proposition 4.7.6.

The next lemma establishes a basic relationship between #P and #P-comp.
Lemma 4.5.6 P = PP wmplies P-comp = #P-comp.

Proof. This lemmais an immediate consequence of Proposition 4.5.3. However, we here show this lemma
in a more direct way.

Let us assume that P = PP. This is equivalent to the assumption FP = #P by Lemma 2.5.3. For
an arbitrary distribution g in #P-comp, assume that there exists a function f € #P and a nondecreasing

[z, 0
2p([el,

polynomial p such that |i(z) — 5| < 271 for all and i € N. Now we show that g is computable by

some deterministic Turing machine in polynomial time.

4.6. UNIVERSAL DISTRIBUTIONS 133

Define g(z,0%) = Y. ., h(z,2,0%), where h(z,z,0") = f(z,0lzl+iy coplellzl+i)=p(zLlzl4i) - Since g € #P,
it follows from our assumption that ¢ € FP. We then define the deterministic Turing machine M such that
M (x,0%) outputs g(x,07)/22Uz10) where g(n,i) = p(n,n +1). Thus, M satisfies:

o g(x,0%) h(z, z,0%)
|ﬂ(l‘) - M(l‘, 0)| - ‘ﬂ($) - 2q(|x|,i) ﬂ(l‘) - Z<: 2q(|x|,i)
N [z, lel-H) lz| 9—lz|-i
< 2 |re) -y | S 22
= 27
Hence, pt € P-comp. This completes the proof. a

In the following lemma, we prove that IP;-samp = P-comp implies P = PP.
Lemma 4.5.7 [119] IfIP;-samp = P-comp, then P = PP.

Proof. Let us assume that IP;-samp = P-comp: namely, for any g € P-comp and any one-one, p-honest,
P-computable function f, the distribution e is P-computable. We shall show that FP = #P, which is
equivalent to P = PP.

Given a set A in P and a polynomial p, we set g(x) = ||[{y € ZPU°D) | xy € A}||. We can assume without
loss of generality that p is strictly increasing. We want to show that ¢ € FP.

Now take the standard distribution vgtanq and define the one-one, P-computable function f as follows:

Ozy if zy € A and [y| = p(|=]),
fley) =4 ley ifzy & Aand |y| = p(|z|),

xy otherwise.

We also define the invertibly P-samplable distribution 1 by 7 = Az.Ugtana(f~1(2)). By our assumption, 7 is

P-computable. For the function g, we have the following simple equation:
gl =2Moglr(lz -1 g(4) = Z Ustand (f 1 (02y)) = n(0217U=Dy — (02~ 17020y,
y:lyl=p(l=])

where 7(n) = n—+ p(n) + 1. Therefore, ¢ is P-computable. a

We combine the above lemmas and propositions to complete the main theorem.

4.6 Universal Distributions

A distribution p 1s called universal if, for every recursive distribution v, there exists a constant ¢ > 0 such
that ¢ - i(x) > ©(«) holds for all strings « (see e.g., [61, 74]). These universal distributions are known to be
malign: that is, average-case complexity equals worst-case complexity [61]. Tt is also known that there is no

recursive universal distribution (see e.g., [61]).

134 CHAPTER 4. FEASIBLE DISTRIBUTIONS

This section will introduce a slightly weaker notion of universal distributions, called p-uniwersal distri-
butions, and shows that there is no p-universal distribution in P-comp, which is due to Schuler [95]. This
result is difficult to extend to the even weaker notion of O(f)-universal distributions.

We begin with the formal definition.

Definition 4.6.1 (7 -universal distributions) Let F be a set of distributions and 7 a set of functions
from X* to RT. A distribution p is called T -universal for F if

(i) p€F; and
(ii) for every v € F, there exists a function t € T such that ¢(z) - i(z) > ©(z) for all strings «.

In particular, if 7 is the set of p-bounded functions, then pu is called p-universal.

The following theorem of Schuler [95] is a negative reply to the question of whether p-universal P-

computable distributions exist for P-comp.

Theorem 4.6.2 [95] There is no single P-computable distribution which avp-dominates all P-computable

distributions. Hence, no p-universal distributions exist in P-comp.

Proof. We shall show the contrapositive of the theorem. First we assume that p is P-computable and
dominates all other P-computable distributions. By Lemma 4.2.7(1), we can assume that yu is further strictly
P-computable.

Using this p, we shall construct a P-computable set which contains one string on each interval ¥* n € N.

We define the function f from {0}* to ¥* by the following procedure:

begin deterministic algorithm for f
input 0"
if n = 0 then output A
for k=1ton do
(Assume that ag = A.)
let L :={ajas---ar_105" %} and R = {ayas - ap_1 12" 7%}
(%) if (L) > p(R) then let a := 0 else let a; := 1
end-for
output a1as - -a,

end.

To check that f is P-computable is easy. By the above algorithm, f satisfies that |f(0™)| = n for all numbers

n € N. Moreover by line (), the probability f1(f(0")) is at most 27" because at each iteration of the for-loop,

the probability of the set, either R or L, is reduced by half. To get the desired set, we set D = f({0}*).
Fix an arbitrary P-bi-immuneset B in E, and let A = DN B. This set A is infinite because, otherwise, the

difference D — BN D becomes an infinite subset of B; this implies that B is not P-immune, a contradiction.

4.6. UNIVERSAL DISTRIBUTIONS 135

We next show that (A, u) € Aver(P,).
Clarm 6 (A, p) € Aver(P, *).

Proof of Claim. Since B € E, there exists a deterministic Turing machine My which computes B in time

2" 4 ¢ for some positive constant ¢. To compute A, let us define another machine N as follows:

begin deterministic algorithm for N
input z (say, n = |z|)
compute f(0") in polynomial time
if # f(07) then reject and halt
simulate My on input x and halt

end.

The machine N actually computes A. Now we must discuss the running time of N on input z. Suppose
that # € D. In this case, N needs polynomial time. Next suppose € D. In this case,
2 (e+1)lel—210g Jo| <\
Timey (z) < ¢ - (p(|z]) + 29171 4 ¢) < ¢ - 2letDizi=2loglal < (*A) :
2] - ()

Hence, Az.Timey () is polynomial on p-average. []

Let us define the distribution v as

R Drany (0171) if € D,
v(x) =
0 otherwise.

Because p avp-dominates v, Claim 6 implies (A4, v) € Aver(P, x). To get a contradiction, we must show that
(A, v) & Aver(P, *).
Assume that (A, v) € Aver(P, x), and we shall derive a contradiction. There exist a deterministic Turing

machine M and a polynomial ¢ such that A is computable by M in time ¢ on v-average. For every string z
in A,

Timens(2) < q(|z]/orany (01)) < g(8lz|(|2| + 1)%).
Next we set p(z) = q(8z(z + 1)?) for all z. Using this time bound ¢, the set A is rewritten as

A={x| M accepts A in time p(|z|) }.

This yields the P-computability of A. Since A C B, B is not P-immune, a contradiction.
This completes the proof. a

Under the assumption P = NP, Theorem 4.6.2 can be further extended to O(f)-universal distributions,
where f is any function in the set 0(2"), by a modification of the proof of Lemma 4.1 in [62].

Proposition 4.6.3 [119] Assume that P = NP. For every function f € o(2"), P-comp has no O(f)-

universal distribution.

136 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Proof. Assume that P = NP. Assume that f € o(2"), and pg is O(f)-universal for P-comp. We note
that ¢(x) - fio(%) > Ustana(x) for some g € O(f) since pg is O(f)-universal. Hence, fig(z) > ﬁ“%;)(x) > 23l
for almost all . Let _; be the minimal string #’ such that jip(z) > 2731l for all & > 2/

By definition, there is a polynomial-time Turing machine M which computes pg. For each z € X1, set
v(x) = M(x,031°1¥4) and let v(x) = v(x) —v(x~). In general, v is not a distribution since does not always

take a nonnegative value. However, we have v(x) > 0 for all # > #_;. This is seen as follows: for all #,
o () = ()] < lpo() = ()] + [po(x™) = w(a™)| < 2720174 4 97307174 < 9730,

and thus, o(z) > fio(x) =273l > 0if & > 2_4.
Now we define a series of strings {x; | i € N} as follows. For convenience, write R(x,y) if y > 2/l and

v(y) —v(z) > 2lul . v(y). Let z;41 be the minimal string such that R(x;, #;41) holds. This ;41 exists since

otherwise, v(zf) < v(y) — v(x;) < 2. (y) for all y of length > 21| and thus v(y) > ﬁ for some
constant ¢ > 1. For each integer n > [z;[, 32, =, V(y) > 2" - —— = 1 a contradiction.

The set {z; | ¢ € N} is expressed by {y | Im < |y|Fzg,...,2m = y¥i < m[29 > #_1 and ;41 is the
minimal string such that R(z;, #;41)]}, and hence it belongs to NP. Since NP collapses to P, {x; | i € N}
is in P. Note that

ZQM o(xy) < Z(y(xH_l) —v(x;)) < lim v(2;) < 1.

1— 00
Let f(z) = ¢ - 211 (x) + 27312y if & € {x;]i € N}; otherwise it is 0, where ¢ is an appropriate positive
constant. The distribution 7 1s obviously computable in polynomial time, and thus, € P-comp.

By our definition, for any constant d > 0, there exists an ¢ such that
(i) > 270 () + 272070 > 20 g () > d - f (i) - fro(as).

This 1s a contradiction. O

4.7 Domination Relations and Equivalence Relations

As seen in Section 3.4, domination relations can be viewed as an “approximation” or a “reducibility” between
two distributions in average-case complexity theory. If two distributions dominate each other; in this paper,
we call them “equivalent” since they are close to each other and have almost the same degree of complexity.
Equivalence relations were first discussed in [96] using the terminology “approximation within constant
factor” to show the closeness of two conditional distributions.

In this section, we shall focus on (average) polynomial-domination and equivalence relations and study

their properties.

4.7.1 Condition I

Let us first recall that u p-dominates v, denoted by v <P p, if p(x) - i(x) > v(x), where p is some p-bounded

function. Polynomial-domination relations are useful in average-case complexity theory since they do not

4.7. DOMINATION RELATIONS AND EQUIVALENCE RELATIONS 137

change the degree of average running time: namely, provided that 1 p-dominates v, if an algorithm requires
polynomial time on p-average, then this algorithm also runs in polynomial time on v-average (see Lemma
3.4.6).

Let us consider the following condition:
Condition I. Every distribution in P-samp is p-dominated by some distribution in P-comp.

The next proposition lists several different conditions which are equivalent to Condition I.

Proposition 4.7.1 The following conditions are equivalent.
1. For every p € P-samp, there exists a distribution v in P-comp such that p <P v.
2. For every p € IP-samp, there exists a distribution v in P-comp such that p <P v.
3. For every p-honest function f € FP and every pu € P-comp, there exists a distribution v in P-comp

and a p-bounded function p from ¥* to Rt such that v(y) > erf_l(y) Zg; for all strings y.

Proof. Since IP-samp C P-samp, (1) implies (2). By Lemma 3.4.13(1), (2) is equivalent to (3). We show
that (2) implies (1). Assume (2). For every pu € P-samp, take a p/ € IP-samp which p-dominates p by
Lemma 4.4.8. Use our assumption to obtain a distribution v € P-comp which p-dominates p/. By Lemma

3.4.5(1), we have y <P v. O

By Theorem 4.5.4, Condition I is derived from the assumption P = PP. Ben-David, Chor, Goldreich,
and Luby [9] further show that if Condition I holds, then no strong one-way function exists. The following

i1s an important fragment of their proof.

Lemma 4.7.2 [9, 119] Assume Condition 1. Let f be any function in FP, let k be a positive number,
and let ¢ be any polynomial with q(n) > 1. Assume that |z| < |f(x)| + klog|f(z)| for almost all . There

exist a set S and a deterministic Turing machine M such that
(i) S Cran(f);
(i) |ISNnE"| < %for each n € N; and
(111) M on input x correctly lists all elements of f~1(x) (whenever f~1(z) = @, M oulputs 0) in polynomial

time unless © € S.

Proof. Now let h({w, z)) be {y,z) if w € {0}, |z] = |w|, z C #, and f(x) = y. Note that h is well-defined
and p-honest. Take a distribution p defined as follows: p({w,x)) = Vstana () L9 2Mog(lwh)=1 if 4y {0}*, or

else 0. Clearly, pt)-» € IP-samp C P-samp. Note that Jgana(z) > %
By our assumption Condition I (as well as Proposition 4.7.1(2)), there are an 5 € P-comp and a polyno-
. ~ ~ o =yl
mial 7 such that r(|y|) - 7(y, 2) > f1,-1(y, z) for all y and z. So, for each y € ran(f), we have i(y, z) > f?(l—yl)

for some z, where s(n) = 4r(n)n"(n+n* +1)*. For each y, let Cy, = {z | #(y, 2) > %, |2] < |yl +klog |y}

138 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Define S = {y [1Cyll > q(lyD)s(|y]), v € ran(f)}. Clearly we have S C ran(f). We show that, for almost

all n, ||S"]] < 5. Assume otherwise, and let i be an element of S. Let n = |y|. Then we have
Sn Cyrl|-277
S S e s LG
s(n)
yES™ 2€C,

a contradiction. Define a Turing machine M as follows: on input y, by a depth-first search, M computes all
elements of Cy, if ||Cy|| < ¢(ly])s(]y|) and lists all elements z of Cy, which satisfy f(z) =y, or else M outputs
0. Since f~!(y) C Cy, all elements of f~!(y) are printable in polynomial time if y € S. This completes the
proof. a

Using the hash-function technique of [40] and the amplification technique of probabilistic Turing machines,

we can show that Condition I leads to the consequence that every NP set is nearly-RP.

Theorem 4.7.3 [119] Assume Condition I. Let A be any selt in NP. For every polynomial p with
p(n) > 1 for all n € N, there exist a set D and a polynomial-time randomized Turing machine M such that
D C A, and, for each x, v € A— D implies Pry[M (z) # A(z)] < , & Admplies Prys[M(z) # A(x)] =0
and Pr,[z € D] < ﬁ for almost all n. Hence, Condition I tmplies that every NP set is nearly-RP.

Proof. Assume Condition I. Take any set A in NP and any polynomial ¢, and we will show that A
satisfies the claim. There exists a set B € P such that A = {2 | 3z € ¥I*[xz € B]}. Let B, = {z | 2z € B}
for each @. Assume that there exists an increasing polynomial p such that Pr,[z € A] > ﬁ for almost all
n since, otherwise, the theorem is trivial by choosing D = @.

We take the set H, 4. of hash functions. Let s be the kth string in the set ilos(n) with respect to
the standard order. Define f(2') = 12s?hh(y)n+.0" "% if 2/ = zysPh and y € By ; otherwise 0z’, where
r €X", h € Hynye, and ¢ = ilog(n). Notice that |¢'| < |f(2')| for all z’. For each z, let g(x) = ||f~*(x)]|.
For brevity, write t(n) = 1 + n +ilog(n) + (n + 1)(n + ilog(n)) + n + ilog(n).

For fixed k, and z of length n, let pr o = Prpyly (1x52hw<_n+60”_k) =1|h € Hppte,w € X", We
first show that py . > 2n+3 for almost all n. Now we fix k and «, and assume that n = || is sufficiently
large and ilog(g(x)) < k < n. Consider the case ||By|| > 0. The probability pg , is larger than or equal to
the probability over all hw that, for each y in By, h(y) —s4ec = Wekte, and h k-distinguishes y on B,. Thus,

we have

c —c p —e n—1 1
e 2 B 27049 (1= 2y > (12 Bl L

since logn < ¢ <logn + 1. For the case ||B;|| = 0, clearly py , = 1 since g(lzsfhwe,+.0""%) =1 for all k,
h, and w. This yields the desired result.

By Lemma 4.7.2, there are a set S and a polynomial-time deterministic Turing machine N which rec-
ognizes S such that S C ran(f) and ||S N XH?)|| < #;)l]m)' We define a randomized polynomial-time

algorithm M as follows:

begin randomized algorithm M

input z (say, n = |z|)

4.7. DOMINATION RELATIONS AND EQUIVALENCE RELATIONS 139

choose w and h at random (w € ¥"¢ h € H, p4c,c = ilog(n))
let Result :=0
for all k£ (1 <k <n)

run N on z} = lzslhw,_ 4.0 7%

let Result := OR of Result and N(z})
end-for

output Result and halt

end.

Let 6p » = Prhw[leZthk_FcO”_k €S| we X" h e Hypiel, where ¢ = ilog(n). Using this dy 4,

we define D = {z € St N A | Fk[ilog(||B:|]) < k < n Ao > m A x| = n]}. We will show that

Pr,[z € D] < ﬁ. Assume otherwise. So, we have dy, » > m for some k (ilog(||Bs||) < k& < n) and
z € D™. Since
: n IR 1
max{d o, | log(||Bs]]) < k <n,z € X"} -Pryjz € D] < <

2t(n) 2(2n + 3)q(n)’

we have max{dy » | ilog(||B:|]) < k < n,z € ¥} < m This is a contradiction. Therefore, Pr, [z €
D] < gy

Now our goal is to prove that (i) Pray[M(z) = A(z)] > m for all z in A— D, and (ii) Pry [M (z) #
A(x)] = 0 for all # € A. This is enough to establish the theorem because of the worst-case version of
the Amplification Lemma. Take any input z of length n. Let py, = Prp,[A(z) = ORG_ N(z})) | b €
Hp pte,w € X"F¢]. Note that the probability Pry[M(z) = A(x)] is at least p,. Assume A(z) = 1 for a
string € D. Note that if z}, € S and g(z},) = 1 for some k', then OR}_, N («%) = 1. Hence,

1

o> o — 0 |l B <k<n}> —~ .
po 2 max{ps.s — s |iloglllBal) S & S n} 2 gy

For the other case A(z) = 0, N(zshw,4+.0""%) = 0 for all h, w, and k; and thus, p, = 1. This completes
the proof. a

4.7.2 Condition T

Polynomial-domination relations are useful but too tight to be considered an effective measure of “approx-
imation” or “reducibility” between distributions in average-case complexity theory. Gurevich [36] later
introduced a weaker form of domination relations by requiring a function to be p-bounded “on the average.”
Following his definition, we also relax Condition I to allow the domination to be, instead, “polynomially-

bounded on the average.”
Condition I'. Every distribution in P-samp is avp-dominated by some distribution in P-comp.

Obviously Condition I implies Condition I’, but we suspect that the the converse implication may not be

provable affirmatively.

140 CHAPTER 4. FEASIBLE DISTRIBUTIONS

In the case of avp-dominations, we no longer prove a similar equivalence as in Proposition 4.7.1. The

following claim is the best possible so far.

Lemma 4.7.4 The following conditions are equivalent.
1. For every p € IPy-samp, there exists a distribution v € P-comp such that p <P v.

2. For every p-honest function f € FP and every p € P-comp, there exists a v € P-comp and a function
p which is polynomial on p-average such that v(y) > erf_l(y) %(% for all y.

Proof. By Lemma 3.4.13(2). O

To see a consequence of Condition I’, we need a notion of Pp_comp and its structural properties. These

will appear in Section 7.5.

4.7.3 #P-comp versus P-samp

We first see the gap between the two notions: #P-computability and P-samplability. The next proposition
was shown by Schuler and Watanabe [96] for conditional distributions. We modify their proof to accommo-
date infinite distributions. To describe the proposition, we need the notion of truth-table samplability of

distributions.

Definition 4.7.5 (Truth-Table Samplable Distributions)

1. A distribution y is P{-samplable if there exist a randomized oracle Turing machine M, a deterministic

Turing machine N, and a polynomial p such that

(i) M with oracle A generates p in time polynomial in the length of outputs; and

(i) oninput (0%, s), N lists all query strings of Q(M, A, 0%, s) in polynomial-time (without any queries)

if 5 is a code of a computation path given by M with oracle A on input 0°.

2. The notation P{i-samp denotes the collection of all P{-samplable distributions, and P¢,-samp denotes

the union of all distributions in P#-samp for any A € C.
Proposition 4.7.6 [96] #P-comp CP PNF _samp.

Proof. Take an arbitrary #P-computable distribution g. There exist a function f € #P and a polynomial

,0°

%ﬁTl}) < 271 for all 2 and ¢ € N. Without loss of generality, we can assume that this ¢

q such that |j(z) —

is increasing. For simplicity, let ¢! = J;(f(f:)) for each ¢ € N. Since f € #P, there exists a set A € P such that
f(2, 0 = |H{w € x2U=bD) | (07 2, w) € A}|| for all x. For brevity, let A; = {{(w,z) | w € DU A0 &, w) €

A}. Let S8 = {zw | {z,w) € A; A || = n A |w| = q(n,i)}. Note by Lemma A .4 that |o, — od| < 27 4 277

for all integers i,5 > 0.

4.7. DOMINATION RELATIONS AND EQUIVALENCE RELATIONS 141

We use universal hash functions to approximate the value of J;(f(;g:)). Let us consider the set

Hiy g 4(n,i),n4q(n,i)+1 of hash functions. We define the following three sets that will be used as oracles:
Xo = {(0%,0") | 3z € ¥" 3w € LI [(z, w) € A]};
X1 = {0507 h,y) | Jzw, z'w’ € S [zw # 'w' A h(2w) gn,iy = ME' W) —q(n,i) = Yeg(n,i)]}; and
Xo = {{0%,07, g, 07) | Fzw € S)[h(2w) g(n,i) = Yegin,i) A (2w); = 1]}
It is easy to see that all sets Xy, X; and X5 are in NP.
If there exists a string « such that u(z) = 1, then p falls into P-comp, and thus, the claim is trivial.

We therefore assume that there is no such z. Let p(n) = 2n + 4. We consider the following randomized

algorithm M

begin randomized algorithm M
input 0’
generate a natural number ng at random
for n = ng to oo do
if (0+P(") 07) ¢ X, then go to ()
repeat ¢ + p(n) times
generate h in Hy, n41 at random, where m = n + ¢(n, i + p(n))
generate y in ¥ 1! at random
if (012" 07 b y) € X; then go to (¥)
find the strings € ©* and w € L4 +r(") yging X, s.t.
h(zw) ey = yr and (&, w) € A;, where r = ¢(n, i+ p(n))
output z and halt
(%) end-repeat
(#%) end-for

end.

For each z, we define 5, as the probability that the randomized algorithm M outputs z. As in the proof
of Theorem 4.4.13, it suffices to show that

() S5 o) <50 < 2. 0, wehere n = o], and

(i) [p,t —p7| <278 4270 for all i,j > 0.
To get the desired distribution v, we set (x) = lim;_,, 7,', and consequently, p is p-equivalent to v.
In the following, we shall prove claims (i) and (ii) above. Fix ¢ and n. Let m = n + ¢(n,i) and
r = q(n,i+ p(n)). Moreover, let Si = {w | (x,w) € Aj4p(n)}. First we define pi;! as the probability, over
all h € Hy my1 and all y € ¥+ that the algorithm M finds z in a single iteration of the repeat-loop;

namely,

Prhy[<0i+p("), 0", h,y) & X1 AJw(h(zw)p =y, Azw € SL) |y €S h e J; —

142 CHAPTER 4. FEASIBLE DISTRIBUTIONS

This is equivalent to the following:

il
P - § :Prhy rTw <—7‘—y<—r/\
wESY

AVz € Si —{zw}(h(2)r # h(zw),) |y €X™T he Hy, m+i]
= Z Pryy[h(zw)er = yer A h m-distinguishes zw on S¢ |y € ym+l ohe H, m41]-

wES’

Hence, by Proposition 2.6.2(2), we have (letting ¢ = 1 in the proposition)

Z 9—a(ni+p(n Z 9—q(n,itp(n (1 2—1) < pi’l < Z 9—a(n,itp(n))

wES’ wES’ wES?
Since [|SL|| = f(x, 07FP() we have

Lo o L F@ Oy J 000

2 °F 9 924(nitp(n)) — 7% = 9gq(n,itp(n))

Next we define pi, as the probability, over all h € Hp i1 and all y € T that the algorithm M finds
during i + p(n) iterations of the repeat-loop. We fist estimate the error probability. The error probability
is at most 271"P(") Ag a consequence, we have

1
S . Z () Z ()
(1 2i+p(n)) o < pp <o

As in Theorem 4.4.13, we can show that |pf, — pl| < 27P(")+1(2=% 4 2-7),

The following analysis of the algorithm is similar to the proof of Theorem 4.4.13.

Let 7! = inlflIﬂ pi. The probability 7,! is equivalent to the probability that, for every k < n, k is
first generated, and the algorithm fails to halt until it reaches stage n of the for-loop and finds z. For each
k, with probability m, we generate integer k. Following the algorithm, we eventually reach n and
with probability pi., we output z. Hence, if 0 < k < n, then the probability that z is actually output is

9~ 2Mog(k)=1 . 5 . H;L:_kl(l - T;), and if k = n, then this probability is exactly 2-21°8(?)=1. 5 Thus,

n—1 i n—1 i
- Z 92llog(k)+1 H(- Tj) + 92llog(n)+1 "
k=0 j=k
Hence, we have

1—27i-pl0) 1 . o 1 2 '

- Giten)) —= 1 (. T _itp(n)

8(n+1)2 e < 92llog(n)+1 Pe S Pe < Po ; 92llog(k)+1 < 6 pe <20, :
=0

For the condition (ii), we follow the proof of Proposition 4.4.13. a

There may be possible to replace the symbol “CP” in the above proposition by “C.” However, because
our algorithm needs to know the length of output strings « before the actual simulation of ji(x), we cannot
conclude that #P-comp C PYP-samp.

Here is a corollary of Proposition 4.7.6. We note that NP C BPP if and only if NP = RP [52].

4.7. DOMINATION RELATIONS AND EQUIVALENCE RELATIONS 143
Corollary 4.7.7 NP C BPP implies #P-comp =P P-samp.

Proof. We note that P-samp C #P-comp. It suffices to show that #P-comp CP P-samp under the
assumption NP C BPP. Let us assume NP C BPP. Take an arbitrary distribution g in #P-comp. By

Proposition 4.7.6, there is a v € PNP-samp such that g is p-equivalent to v. Under our assumption, v

PBPP

belongs to -samp. Using Proposition 4.4.13, there is a distribution ¢ in P-samp such that v &P &.

Hence, p =P €. a

4.7.4 Condition IT

In this subsection, we study the following condition on equivalence relations:
Condition IT'. P-samp C*'P P-comp.

Clearly Condition IT' implies Condition T’

As in the previous subsection, we can show the following proposition.

Proposition 4.7.8 The following two conditions are equivalent.
1. IPy-samp C*'P P-comp.

2. For every p-honest f € FP and every pp € P-comp, there exists v € P-comp and functions p,q which
are polynomial on p-average such that erf_l(y) q(z)p(z) > v(y) > erf_l(y) % for all y.

Proof. By Lemma 3.4.14(2). a

In what follows, we shall show that IP;-samp C*P P-comp implies P = RP, and thus if Condition
Il is true, then RP collapses to P. In the following proof, the worst-case version of the Amplification
Lemma to one-sided bounded-error probabilistic algorithms is effectively used to make its error probability

exponentially small.
Proposition 4.7.9 [119] IP;-samp C*P P-comp implies P = RP.

Proof. Consider an arbitrary A € RP. We prove that A belongs to P. By the amplification lemma [91],
there is a strictly increasing polynomial p and a set B € P such that, for every z € ¥7, Pry[(z,y) € B |y €
Y] <277 if ¢ € A, and otherwise, Pry[(z,y) € B|y€ yr()] = 0.

Let y« be the distribution defined by fi(2y) = Dstana () - 272070 if |y| = p(|2]), or else ji(zy) = 0. Clearly
p s P-computable. Let

w1PU=D i |y| = p(|z|) and (z,y) € B,
flzy) =< gorleh if lyl = p(|z]) and {z,y) € B,

xy otherwise.

144 CHAPTER 4. FEASIBLE DISTRIBUTIONS

By our assumption and Proposition 4.7.8, we have a distribution v € P-comp and a function ¢ which is poly-

i(x) l‘ 1/k N
Z((x)) for all y. Since Zx;ﬂ %ﬂ(l‘) <

k
) for all nonempty strings « with j(z) > 0. Thus, for

nomial on p-average such that erf_l(y) q(z)p(z) > v(y) > erf_l(y)

¢ for some constants k, ¢ > 1, we have ¢(z) < (Z(li

U

almost all z and all y of length p(|x]),

C|x|k prxk T xpxk_rx
g(zy) < (ﬂ(myﬁ) < (C(|x|+p(|x|))(|x|+1) glzl+p(] I)) < (2| I glzl+p(] I)) — 9l I)’

where r(n) = (2n + p(n))*. Since v € P-comp, there exists a deterministic polynomial-time Turing machine
M such that |[p(z) — M(x,0%)| < 277, Let M'(x) = M(z,0"IzD+22ly " By definition, |p(x) — M'(z)| <
2-r(zD =212l for all .

Let x € X7, Assume that # € A. Then, we have

(-1 p(n) 7 an _
7 P(”) /’L(Z) Hf (l‘l)H . Vstand(x)
I/(l‘l) > Z (](Z) > 9r(n) 9p(n) = 9r(n)+2n

zef~1(zlr(m)
since Dstana(2) > 5357 > 55 if n > 7. Hence, M'(z) > p(x1p(M)) — 9=r(n)=2n > 9=r(n)=2n(9n _ 9) [n
the case that « ¢ A, p(x17(") < Zzef_l(“p(n)) q(2) - fi(z) = 0. Hence, M'(z) < p(x1?(?)) 4 2-7(0)=2n
2-7(")=27 Now we have a complete characterization of A in terms of M’; namely, A N X" = {z € X" |

M'(x) > 277(M)=27(27 — 2)} for almost all n. Since M’ halts in polynomial time, A is also computable in

polynomial time. a

The above proposition does not suffice to imply that P = PP, since the worst-case version of the

Amplification Lemma may not hold for PP sets.

4.7.5 Condition II

In contrast to Condition II', we shall consider its polynomial version, which leads to the conclusion that

P = NP. Formally we define Condition II as follows:
Condition II. P-samp CP P-comp.

Note that Condition IT implies Condition IT" as well as Condition I and that, by Theorem 4.5.4, Condition
IT is true if FP = #P.

We start with the following proposition.
Proposition 4.7.10 [119] The following three conditions are equivalent.
1. P-samp CP P-comp.
2. IP-samp CP P-comp.

3. For every p-honest f € FP and every p € P-comp, there exist a distribution v in P-comp and p-
bounded functions p and ¢ from X* to R such that erf—l(y) q(x)p(z) > v(y) > erf_l(y) %(% for
all y.

4.7. DOMINATION RELATIONS AND EQUIVALENCE RELATIONS 145

Proof. By Lemma 3.4.14(1). a

By Proposition 4.7.10, we can replace P-samp in Condition II by a smaller set IP-samp. At the end of
this section, we shall see that we also can replace P-samp by a larger set #P-comp.
Next we shall prove that Condition II yields the consequence that NP collapses to P. We first strengthen

Lemma 4.7.2 under the assumption that P-samp is p-included in P-comp.

Lemma 4.7.11 [119] Assume that P-samp CP P-comp. For any set B € P and any polynomial p, let
Sp = {x | ||B:|| < p(|z])}, where B, = {2 € XI°l | £z € B}. There exists a deterministic Turing machine M
such that, for each n € N, M on input x in Sp NX" lists all elements of B, (whenever By, = @, M outputs

0) in polynomial time.

Proof. Assume that P-samp CP P-comp. We define a p-honest function f as follows: f({w, yz)) = (ly, z)
if w = SLWI for some k, || = |y|, |z| = k, 2 C =z, and yx € B; otherwise, (0y,z). Let p({w,z)) =
Ustand (%) - 9—2log”(I2)) =1 if o ¢ ylog(l#l) or else 0, where Hogz(n) = llog o llog(n).

Since pis-1 € P-samp, our assumption ensures that there are an 7 € P-comp and a polynomial r such that
r(ly|+1z]) i {y,z)) > n{y, z)) > fp-a ({y, 2))/7(|y|+]#]) for all y and z. Denote by D, . the collection of
such that 2 C z and « € By. If y € Sg, then ||D, .|| < p(|y|). Note that ﬂf-1(<y, z)) = ID. | 22!

92llog2 ([yl)+1 22Mog(2[yD+1

For simplicity, let ¢(n) be 2110g2(n) + 2llog(2n) + 2. Hence, n({ly, z)) > Wﬁw it Dy, # 0.

Let N be a polynomial-time Turing machine which computes 7. Let d be the minimal positive in-
teger such that 3 - 7(2n) - 29(?) < 241°8(") for almost all n. We define a new machine N’ as N'((y,z)) =
N((y, 2), 02lyl+dlog(lyD+1y Hence, N'((1y, 2)) > #((1y, z)) — 2~ 2WI-dloslyl) -1 % For each y € X7,
let Cy = {2 | N'((1y, 2)) > 250, |2 < n).

We note that if z € Cy, then 7({(1y, z)) > 921yl

od-Tlog(n) *

For each n > 0 and any y € S N X",

—2n

r(2n)? . 272" R 2
) S, 1= Y vl + <Dt (12D = Y12 2 oL

Therefore, ||Cy]] < 2dllog(n)=a(n) . p(2p)2 . S 1Dy 2|l < 247(2n)%p(n)3n.
Note that B, C Cy if y € Sp. Since Cy, is printable in polynomial time, all elements of By are printable

in polynomial time. This completes the proof. a

Theorem 4.7.12 [119] P-samp CP P-comp impliecs P = NP.

Proof. Let us assume that P-samp CP P-comp. Let A be an arbitrary set in NP. We shall show that
A € RP since P = RP by Proposition 4.7.9. Tt suffices to consider a set A of the form A = {# | 3z €
vl*l[zz € B]} for some B € P. Let B, = {z € ©I*l | xz € B}.

Let us define

B= {@’z | Jkhaz[z,z€ X" N2’ = xthh(z)Hk_FcO”_k

146 CHAPTER 4. FEASIBLE DISTRIBUTIONS

Az =210 1=l A w2 € BAD € Hpy pye Ae = ilog(n)]}.

Since B € P, Bis also in P. Let Sz = {a' | ||Bw|| < 1}, where By = {2/ € ©I*'l | 2/2’ € B}.

We define py » = Prhw[xSZthk_FcO”_k €S =1|h€ HynyeAw € E™F¢]. We first show that, for

1

7n73- Now fix k and x and assume that n = [2] is sufficiently

almost all n and all # with ||By|| > 0, pg o >
large, and ilog(||B:||) < k& < n. The probability pi , is at most the sum of the probabilities over all strings
hw that, for each z € By, h(2)ktec = Wekte, and h k-distinguishes z on B,. Thus, we have
n—1 1

> —.
2n? — 2n+3

Pl > |[Bell - (1= 279) - 2704 > (1 = 9727 =

We apply Lemma 4.7.11 to the set Sp, and we obtain a polynomial-time deterministic Turing machine

N which recognizes Sp. We define a randomized polynomial-time algorithm M as follows:

begin randomized algorithm M
input z (say, n = |z|)
choose w, h at random (w € X7, h € H, 4., ¢ = ilog(n))
let Result =0
for all k£ (1 <k <n)
run N on zj, = xsphjw
let Result = OR of Result and N(z},)
end-for
output Result

end.

Our goal is to prove that Pray [M(z) = A(x)] > m for almost all z. Take any input z of length n.
Let pp = Prypu[A(x) = ORG_ N (2})) | h € Hp nte, w € £7]. Note that the probability Pras[M (z) = A(z)]
is at least p,.

Assume A(x) = 1. Note that if 0 < gp(x},) < 1 for some &', then OR_; N (z}) = 1. The probability
pr = Prpy[A(x) = OR,_ N(2xg) | h € Hp pge,w € X7 is at least the sum of the probability over all hw
that, for each z € B, and for some k with ilog(gp(2)) < k < n, h(2) chte = Wekte and h k-distinguishes
z on B,. Hence, p, > gp(x)- (1 —27¢)-2=k+e) > (1 —2-9)2-¢ > 2n1+5. For the other case A(x) = 0,
N(zsfthwej4.0""%) = 0 for all h, w, and k; thus p, = 1. This completes the proof. a

Covrollary 4.7.13 [119] P-samp CP P-comp if and only if #P-comp CP P-comp.

Proof. (If - part) This is obvious since #P-comp D P-samp by Proposition 4.5.5.
(Only if — part) Assume Condition II. By Theorem 4.7.12, we have P = NP. In particular, NP C BPP.
By Corollary 4.7.7, every #P-computable distribution i1s p-equivalent to some distribution which can be

sampled by a randomized Turing machine in time polynomial in its output. a

4.8. OTHER TOPICS 147

4.8 Other Topics

There are several intriguing distributional issues which are not discussed in this chapter. Here we present

two different approaches.

Ranking Distributions. Reischuk and Schindelhauer [84] introduced a new type of distributions that
allows precise complexity classification of distributional problems. They called such distributions rankable
distributions.

Given a distribution p, its ranking function rank,(z) is defined as rank,(z) = ||{z | i(z) > ia(z)}|.
A distribution g is polynomially rankable (P-rankable, for short) if the function rank, is one-one and P-
computable [84]. Let P-rank denote the collection of all P-rankable distributions. Note that, for every z,
rank, (z) - pi(z) < >, fi(#) = 1. This implies that rank,(z) < ﬁ unless ji(xz) = 0. In particular, if p is
positive and supportive, log(rank, (x)) < p(|z|) holds for some polynomial p.

For simplicity, let ¢ be a strictly increasing function on R*. A function f from X* to N is called ¢-average
with respect to rank, if Zx:ranku(x)Sm rll(% < m for any number m > 0. We say that a distribution
(D,rank,) is solvable in average polynomial time with respect to rankability if there exist a polynomial p and
a deterministic Turing machine M computing D such that Az.Timeys(2) is p-average with respect to rank,,.

Watanabe [114] pointed out the following relationship between P-computable distributions and P-
rankable distributions. Take a distribution u satisfying log(rank,(z)) < |z|? for some constant d > 0.

Let us then define
N Co

fix () =

rank,, () - log?(rank ,(x))’

where ¢g is the normalizing constant and log? z = (log z)?.

Proposition 4.8.1 [114] Let p be a distribution and assume that log(rank,(z)) < |z|* for some k > 0.
For any function f from X* to N, if f is polynomial on p.-average, then f is polynomial-average with respect

to rank,.

Proof Sketch. Assume that f is polynomial on p,-average. Then we can take constants ¢, k > 0 such

that, for all m > 0,

1/k
Z f(x) <e.om?.om
z:rank, (z)<2™ |l‘|

For any m, let X,, be the set of strings x such that 2”~! < rank,(z) < 2™. Now we can claim that

there exists a constant e > 0 such that, for any sufficiently large m,
(l,)1/16dk

f m—
2 T =T

To show the claim, let X! = {z € X, | f(x)"/*/|z] < m*} and X" = {x € X, | f(x)*/*/|x| > m*}. For
the set X/ | it holds that

mo

1/16dk gm
Z f(x) < _ < gm-3,
|x| ml/4t—1/8dt

148 CHAPTER 4. FEASIBLE DISTRIBUTIONS

On the other hand, the set X!/ satisfies that

Z f(l‘)1/16dk em2om —

|| = a(1—1/16t) <

Combining the above two sums, we obtain the desired result.

f(l‘)l/lsdk

Therefore, for any sufficiently large number m, Zx:ranku(x)<2m T

< 2™ which implies that f 1s

p-average with respect to rank,. [|

We note that Belanger and Wang [6] show that if RBTP isin Aver(P, %), then any problem in Dist(NP, P-rank)

is solvable in average polynomial time with respect to rankability.

Indistinguishability of Distributions. Another topic is the complexity of distributions. We shall
follow Meyer’s terminology [73]. Two distributions p and v are called “statistically indistinguishable” if
lim,, _y oo n* inlflIﬂ |ftn (%) — Dp(x)| = 0 for all £ € N. Similarly, i and v are “circuit indistinguishable” if,
for all families of polynomial-size circuits C = {C,, }nn, limy,_s oo n¥] inlflIﬂ Cr(2)(pin(x) — Dy ()| = 0 for
all £ € N; and “algorithmically indistinguishable” if, for all polynomial-time probabilistic Turing machines
M, lim,_s oo n¥] inlflIﬂ Pry[M(2) = 1] (fin(2) — 0n(2))| = 0 for all £k € N.

Meyer [73] show the following separation result:

Theorem 4.8.2 [73] Let f be a space-constructible function on N such that lim,_ % =0 for all
k € N. There erist two O(f?)-space samplable distributions p and v such that p and v are algorithmically

indistinguishable but circuit distinguishable.

We do not intend to include any proof of this theorem. The interested reader may refer to [73].

Chapter 5

Average Polynomial Time

Reducibilities

5.1 Introduction

In the early 1970’s, Cook [22], Karp [49], and Levin [59] took a pioneering step towards the classification
of the hardest problems in NP. They introduced notions of resource-bounded reducibilities among NP
problems. The idea of these reducibilities is as follows: a problem 7' is recognized to be at least as hard
as another problem S if the problem .S can be transformed into the problem 7" in polynomial time so that
if T' is solved easily, then so is S. The problems “hardest” in this sense among NP problems are called
NP-complete. Typical NP-complete problems are the satisfiability problem, Hamiltonian circuit problem,
and traveling salesman problem. For more NP-complete problems, see [26].

In average-case complexity theory, Levin has introduced a similar notion of polynomial-time many-one
reducibility among distributional decision problems and showed that the randomized bounded tiling problem
is one of the hardest problems in Dist(NP, P-comp). His reduction from a distributional problem (A4, i) to
another distributional problem (B, v) requires a polynomial-time many-one reduction that maps set A to set
B and employs a so-called domination condition between p and v. This domination condition guarantees
that instances occurring with high probability are mapped by the reduction to instances occurring with
high probability. This requirement is essential in Levin’s theory of average-case NP-completeness in order
to ensure the closure property of a class under these reductions. At the same time, 1t makes completeness
proofs of given distributional problems difficult to achieve.

Since Levin’s discovery of average-case NP-completeness, researchers have introduced several interesting
notions of reducibilities into the theory of average-case NP-completeness. We will review these reducibilities
in this chapter.

Section 5.2 will introduce two of the most important reducibilities among distributional decision problems:

deterministic many-one reducibility and Turing reducibility. Levin [60] introduced a notion of many-one

149

150 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

reducibility, and the notions of deterministic Turing reducibility and random many-one reducibility were
introduced and studied in [60, 9, 44, 12, 96]. Other reductions of interest are logspace many-one reductions
[9] and logspace many-one reductions which are p-honest [32].

Section 5.2 will introduce deterministic many-one reducibility and polynomual-time isomorphism among
distributional decision problems, and then the notion of deterministic Turing reducibility will be introduced.
The Turing reducibility will be particularly used to build the average polynomial-time hierarchy in Chapter 6.

In Section 5.3, we shall exhibit several many-one complete problems for Dist(NP, P-comp). We first
show that the randomized bounded halting problem is complete for Dist(NP, P-comp), and then the other
distributional problems are shown to be polynomially isomorphic to this problem.

In Section 5.4, we shall discuss several incompleteness results. The choice of distributions is important
when one attempts to prove that some distributional problem is complete for Dist(NP,P-comp). Some
distributions are such that their associated distributional problems cannot complete for Dist(NP, P-comp).
For example, flat distributions and sparse distributions have this characteristic.

Flat distributions are often arise in graph-related decision problems; however, no distributional problems
with flat distributions become complete for Dist(NP,P-comp) unless EXP = NEXP. Venkatesan and
Levin [106] proposed new reduction which uses random coin tosses. In Section 5.5, we shall introduce
probabilistic reducibility, called bounded-error probabilistic truth-table reducibility.

In Section 5.6, some structural results are shown.

Major Contributions. Some results in Section 5.6 are from Schuler and Yamakami [97], and Section 5.5
provides a series of new results. More precisely, the following are the major contributions to this chapter.

Theorem 5.4.5 shows that sparse distributions fail to make the corresponding distributional problems
p-m-complete for Dist(NP, P-comp) unless P = NP.

Lemma 5.5.5 is a relativized version of the Amplification Lemma (Lemma 3.5.31).

Lemma 5.5.4 shows that skew avbpp-tt-reducibility is closed under p-m-reductions; namely, if (A, y) is
p-m-reducible to some distributional problem which is skew avbpp-tt-reducible to (B, v), then (A, u) is skew
avbpp-tt-reducible to (B, v).

Lemma 5.5.2 shows that, if (4, p) is skew avbpp-tt-reducible to (B, v), then there exists a problem (B’, v/
which is p-m-reducible to (B, v) such that (A, p) is skew avbpp-tt-reducible to (B’, v’) via a reduction machine
which queries strings of length greater than the input size.

Proposition 5.6.5 shows that, for every recursive set D not in P, there exists an incomparable pairs with
respect to §§.

Theorem 5.5.9 shows that the distributional bounded halting problem with a flat distribution is bpp-tt-
complete for Dist(NP, P-comp).

Proposition 5.5.7 introduces a new result regarding the transitivity of avbpp-tt- and bpp-tt-reducibilities.

5.2. DETERMINISTIC REDUCIBILITY 151

5.2 Deterministic Reducibility

Reducibility 1s one of the most important tools in computational complexity theory for assessing the rel-
ative complexity of two given problems. This section will present the formal definitions of deterministic

reducibilities among distributional decision problems and develop their basic structural properties.

5.2.1 Many-One Reducibility

In this section, we shall formally introduce two notions of many-one reducibilities: polynomial-time many-one
and average polynomial-time many-one reducibilities.

A many-one reducibility among distributional decision problems requires mappings among sets and con-
straints among distributions. Let us consider the worst-case polynomial-time many-one reduction f between
two sets A and B. The reduction ensures the relationship A = {x | f(») € B}. If B is computed by a
machine M in polynomial time, then a simple algorithm N which first computes f(x) and then simulates
machine M on input f(x) actually witnesses the P-computability of A. Now we switch from sets A and B
to two distributional decision problems (A, y) and (B, v). Suppose that (B, v) is computed by a machine M
in polynomial time on v-average; that is, Az. Timeps () is polynomial on v-average. The above algorithm N
needs at most O(Times(2) + Timeps (f(2))) steps, where Timer () denotes the time required to compute
f(z). To guarantee the average polynomial-time computability of (A, u), the values j(#) and (f(x)) must
be closely related. This last requirement is called a “domination condition” for f.

First recall that the notation Vi1 denotes the default distribution defined from v and f by its probability
ve-i(z) = v({z | f(2) = a}) for each =.

There are several possibilities for domination conditions. Here is a list of popular conditions:

(i) P 2P v [9].
(i) o(z) > erf_l(y) %(% for some p-bounded function p.
(ii)) p =P 5 and v > 74, for some distribution 7 [36, 109].

By Lemma 3.4.11, condition (ii) is equivalent to the condition that g <P 5 and v > M1 for some semi-
distribution 5, and thus, (iii) implies (ii). By the proof of Lemma 3.4.13, (i) implies (ii) if f is p-bounded.
Assume that f is p-honest and p-bounded. By Lemma 3.4.12, (ii) implies (iii), and by Lemma 3.4.13, (ii)
implies (i).

In most cases, the choice of domination condition is relatively harmless when one proves average NP-
completeness of a given distributional decision problem, because most known complete problems are isomor-

phic. In this thesis, however, we shall use the weakest domination condition (ii).

Definition 5.2.1 (Polynomial-Time Many-One Reductions) [60] Given two distributional decision
problems (A, i) and (B,v), (A, u) is called polynomial-time many-one reducible (p-m-reducible, for short)
o (B,v), denoted by (A, p) <P, (B, v), if there exists a function f such that

152 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

(i) (Efficiency) f € FP;
(i) (Validity) A = {z | f(z) € B}; and
(iii) (Domination) p <P 5, and # > 7~ for some semi-distribution 1.
The function f is called a polynomial-time many-one reduction (p-m-reduction, for short) function and is

said to reduce (A, p) to (B, v).

Gurevich [36] expanded many-one reducibility by allowing a many-one reduction to be polynomial on the

average. This reduction is known as average polynomial-time many-one reducibility.

Definition 5.2.2 (Average Polynomial-Time Many-One Reductions) [36] Let (A, y) and (B, v)
be two distributional decision problems. (A, u) is average polynomial-time many-one reducible (avp-m-

reducible, for short) to (B, v), denoted by (A, p) <&P (B, v), if there exists a function f such that
(i) (Efficiency) (f, pn) € Aver(FP, x);
(i) (Validity) A = {z | f(z) € B}; and
(iii) (Domination) p <*P 5, and v > 7~ for some semi-distribution .
The condition (iii) on the distributions in the above definition is simply called the domination condition
for the reduction function f.
Our definition basically follows Gurevich’s domination condition. Gurevich [36] defined his many-one
reducibility as follows: (A,) polynomially many-one reducible to (B,v) if and only if there exists a P-

computable function f and a distribution n and a set C' C {« | v(z) > 0} such that f reduces AN{x | 4(z) >
0} to B, p =P, and v[¢c(y) = ﬁf—l(y) for all y, where v[¢ is the distribution satisfying that

(z) ifeed,

v
v[e(x)
0 otherwise.

The following lemma is straightforward.
Lemma 5.2.3 Let D be any set. Given distributions p and v, jp <P v implies (D,) <P, (D, v).

Proof. Let us consider the identity function f, i.e., f(z) = » for all #. The assumption g <P v is

equivalent to p ;-1 <P v. Hence, (D, pt) is p-m-reducible to (D, v) via f. a

The following lemma is a useful tool for proving that the composition of functions is polynomial on

p-average.

Lemma 5.2.4 Let p be a distribution and let g be a function on X* such that Ax.|g(x)| is polynomial

on p-average. Also let f be a function from ¥* to RT such that f is polynomial on v-average. If there

5.2. DETERMINISTIC REDUCIBILITY 153

exists a semi-distribution n which avp-dominates p such that v majorizes Nyt then the composition fo g is

polynomaal on p-average.

Proof. Assume that g <*P 5 and v > fi -, for some semi-distribution 7. Assume that f is py on
v-average, and Az.|g(z)| is py, on p-average, where py and p, are appropriate increasing polynomials. Since
1 =P g there exists a function p that is ¢ on p-average, where ¢ is an increasing polynomial, satisfying
p(x) - 7(x) > j(x) for all z.
Fix r > 1. Let us define
$() = by (pg(3) - 64(32) - 22) + <o,

where ¢y = f o g(A). Obviously s is a polynomial, and it follows that
s(lz] 1) > ps(pg (| - 37) - 6¢(J] - 3r) - rla]?) + co.
for all strings z. Let D, = {z € % | p(x) < q(|z|-3r) Alg(x)| < py(]z| - 3r)}. We then have

iz | fogla)>silel- 1)) < alfe | p(e) > qlle]-30))) + il{z | lg(@)] > pylz]-3r))
Hil{e € Dy | 3lgle) = 2 A J(2) > s(]2] - 1)),

By our assumption, the first two terms are bounded above by 1/3r. For simplicity, let 7, represent the third
term. It suffices to show that 7, < 1/3r in the rest of the proof.

Take an arbitrary « € D,, say |¢| = n, and let z = g(x). If f(g(x)) > s(|z| - r), then f(z) > pr(py(3rn)-
6¢(3rn) - rn?). Since |z| < py(3rn), we have f(z) > ps(|z| - 6¢(3rn) - rn?). Moreover, it holds that fi(x) <

q(3rn) - 7(z). Hence, T, is estimated as follows:

T, < Y a(fe € DoAY | 3:ly(@) = = A S(2) > ps(l2]-6g(3rn) - rn®)]))

Nk

3
1
-

q(3rn) - n({x € D, NE" | Iz[g(x) = z A f(2) > ps(|2] - 6¢(3rn) - n?)]})

Nk

3
1
-

I
]2

a(3rn) i ({2 1 £(2) > pr (2] - 69(3rn) - rn®)}).

1
-

n

Since 7),-1(2) < ¥(z), we conclude:

T<S g3y o({z | FE) > prllz] - Ba(3m) - rnt) < 3 # S

n=1

In the following, we demonstrate some of the basic properties of many-one reducibilities.

Proposition 5.2.5 Let (A, pn), (B,v), and (A,), i = 1,2, 3, be distributional decision problems.

1. The <P, and <%P are reflexive; i.e., a € {p,avp}, (A, p) <% (A, p).

154 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

2. The <P implies <¥P . i.e., (A, p) <L, (B,v) implies (A, p) <2P (B, v).

3. The < and <%P are transitive; i.e., for o € {p,avp}, if (A1, p1) <& (A2, pa2) and (Az, pa) <2
(A3a/'t3)7 then (Ala/'tl) S?;L (A3a/'t3)~

Proof. (1)-(2) Clear from the definitions.

(3) We shall show the transitivity of <2'P. TFirst we assume that (Ap, p1) <P, (As, p2) via fi and
(Aa, p2) <2P (As, p3) via fa. The domination conditions for f; and fs ensure the existence of two semi-
distributions 1, and 7y such that gy <P 9y, pg <P 1y, fis > Az (f71(2)), and jiz > Az.92(f5 1 (2)).

Since f; and fo are many-one reductions, we define f as f(x) = f2 o fi(x). Then function f reduces A;
to Az. In the rest of the proof, we shall check the domination condition for f.

From p; <P 71, 1t follows that there exists a function p;, which is polynomial on p;-average, satisfying
that pi(x) - 71(x) > i (x) for all z. Similarly, there is another function ps that is polynomial on pa-average
such that pa(z) - 92(x) > fia(z) for all z. We assume without loss of generality that pi(x) > 1 and pa(z) > 1
for all z.

Let us define p(x) = p2(fi(x)) - p1(x) for all . Notice that p is polynomial on pi-average. To see this,
we first note that ps o f1 is polynomial on p-average by Lemma 5.2.4 because Az.|fi(z)| is polynomial on
p1-average and po is polynomial on po-average. Since p; is also polynomial on pq-average, p turns out to be
polynomial on pq-average. Set f(z) = ji1(x)/p(x) for all z. Clearly 5 is a semi-distribution.

For any string y in ran(f), letting D, = f5 '(y) Nran(f), it follows that

fis(y) = 2/ () = na(f5 " (w) Nran(f1)) > > ia(w).

wED,

For each string w in ran(fy),

Theorem 5.2.6 LetC € {P,NP,RP,BPP PSPACE}. The average complerity class Aver(C, *) is closed

downward under <2'P-reductions.

Proof. We begin with the closure property of Aver(P,x*) under <2'P-reductions. Let us assume that
(A, u) <%P (B,v) via f and (B,v) € Aver(P,«). Note that f is computable in time polynomial on pu-

average. Let M be a deterministic Turing machine which computes B in polynomial time on v-average.

5.2. DETERMINISTIC REDUCIBILITY 155

We can construct another deterministic Turing machine N which, on input #, computes f(z) first and
then simulates M on input f(x). This machine N actually computes A, and its running time on input

needs at most

¢ (Timey(z) + Timepr (f(2)) + 1),

where Timef(x) denotes the time required to compute the value f(z), and ¢ denotes some appropriate
constant independent of z.

Notice that Az.|f(x)| is polynomial on p-average. Since Az.Timeps(x) is polynomial on v-average, the
domination condition for f implies, by Lemma 5.2.4, that Az.Timeys (f(x)) is also polynomial on p-average.
Therefore, N is polynomial-time bounded on p-average.

The proofs for the classes C € {NP, RP, BPP, PSPACE} are similar. a

5.2.2 Polynomial Time Isomorphism

A polynomial-time Isomorphism in worst-case complexity theory is a P-computable, p-invertible bijection
which p-m-reduces a set A to another set B. If such an isomorphism exists, then we say that A is p-isomorphic
to B. Interestingly, most NP-complete sets are known to be p-isomorphic.

Wang and Belanger [112] introduced a polynomial-time isomorphism between two distributional problems.
This subsection will introduce the notion of polynomial-time isomorphism.

We first introduce a notion of one-one reducibility.

Definition 5.2.7 (Polynomial-Time One-One Reductions) For two distributional decision problems
(A,) and (B, v), the problem (A,) is polynomial-time one-one reducible (p-1-reducible, for short) to (B, v),
denoted by (A, u) <} (B, v), if there exists a one-one, P-computable reduction f which p-m-reduces (A, u)
to (B, v).

Since the reduction f is one-one, the domination condition for f is simply expressed as py- 3P v, or
equivalently p <P v o f by Lemma 3.4.10(2).

We then introduce a polynomial-time isomorphism among distributional decision problems.

Definition 5.2.8 (Polynomially Isomorphic) [112] For two distributional decision problems (A,)
and (B, v), (A, u) is polynomially isomorphic (p-isomorphic, for short) to (B, v) if there exists a P-computable,
p-invertible bijection f on ¥* such that (A, u) <V (B,v) via f and (B,v) <} (A, p) via f=1. This f is called

a polynomial-time isomorphism (p-isomorphism, for short).

Berman and Hartmanis [10] show by an analogy of Myhill’s isomorphism theorem in recursion theory
that, for two functions which are one-one, length-increasing, P-computable, and p-invertible, if A <} B via
fand B <! A via g, then A and B are p-isomorphic. In fact, however, we need only the condition that fog
and g o f are length-increasing instead of both f and g being length-increasing. Wang and Belanger [112]

156 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

give an analogous result in average-case setting.

Proposition 5.2.9 [112] Let (A,) and (B,v) be two distributional decision problems. Let f, g be one-
one, P-computable, and p-invertible, and assume that fog and go f are length-increasing. Moreover, assume
that u=Pvo f and v =P pog. If (A u) <y (B,v) via f and (B,v) <} (A, u) via g, then (A, p) and (B, v)

are p-isomorphic.

Proof. Assume that f, g, g, and v satisfy the conditions of the proposition. Let p be a polynomial
which is a time-bound of P-computable functions, f, g, f~', and g~'. We first define two sets R; and R,

as follows:
Ry ={(go f)F (&) | k> 0,2 & g(=")}; and
Ro={go(fog)(z)|k>0,2¢ f(X)},

where (g o f)*(x) means k applications of the function g o f to x, and in particular, (g o f)°(z) = =.

We claim that R; U Ry = X* and R N Ry = Q.
Claim 7 Rl N Rz == @

Proof of Clazm. Assume that there is an element z in Ry N Ro. We take two strings y and z such that
r=(gof)fy) =go(fog)™(2), y & g(X*), and » & f(X*) for some k,m > 0. Notice that = € g(X*).
Obviously k > 0, since otherwise, y = z and = € ¢(X*), a contradiction. Hence, we have k > 0. In the case
where m > k, we have . = go(fog)™(z) = (9o f)"og(z). Ase = (gof)™(y) and go f is one-one, it follows
that y = (go f)™ * o g(z) = go(fog)™ ¥*(z). Clearly the last term belongs to ¢(X*), so y is in g(¥*), a
contradiction. Hence, m < k. Using go (fog)™(z) = #, we have z = (g o f)*(y) = go (fog)* 1o f(y), and
thus (fog)™(2) = (fog)* "' (f(y)). Thus, 2= (fog)* " ' (f(y)) = folgo f)* ™ '(y). This implies that
z € f(X£™), a contradiction. Therefore, Ry N Ry = 0. [|

Claim 8 R1 U R2 = X*.

Proof of Claim. Take an arbitrary x in X*. Assume that @ = (g o f)*(y) and z = g o (f o0 g)"(2) for
some y, z, m, and k. We also assume that k,m are maximal. If either y € ¢(X*) or z ¢ f(¥*), then =
is in Ry U Ry. Now we assume to the contrary that y = g(wy) and z = f(w,) for some appropriate w,
and w,. From y = g(wy), it follows that (g o f)*(y) = g o (f o 9)"(wy). From z = f(w,), it follows that
go(fog)™(z) = (g0)™t (w,). Both imply the same z, and thus we have (g o f)*(y) = (g o f)™ ! (w,)
and go (fog)*(wy) = go(fog)™(z). By the maximality of k and m, we conclude both that &k = m + 1 and

k = m. This is a contradiction. []

It is possible to check whether z € Ry or z € Ry within O((|z] + 2)p(|z])) steps. This is shown as

5.2. DETERMINISTIC REDUCIBILITY 157

follows. Notice that f=! o g=! is P-computable because ran(f) and ran(f) are both P-computable, and,
more important, it is length-decreasing (i.e., |z| > |f~! o g7!|) because g o f is length-increasing. Let us

consider the strictly descending chain
|2l > |~ o™ (D > 1 oy) ()] > -

until f~! o ¢g=! can no longer be applied. This chain consists of at most |z| + 1 elements. Let Z be the last
element of this descending chain. Hence, z = (g o f)*(Z) for some k& > 0. Notice that if Z € Ry, then all
other elements are in Ry by the definition of R;. In particular, z € Ry if and only if 2/ € R;. To check
whether z € Ry, we would check whether g=! cannot be applied to z, and thus we need O((|z] + 2)p(|z|))
steps. Similarly, we can determine whether z € Ry in O((|z] + 2)p(]2])) steps. As a consequence, Ry and Rs
are both P-computable.

Similarly, we define S; and S; as follows:
S1={(fog)(x) [k >0,z ¢ f(5*)}; and
Sy ={fo(gof)*(x) |k >0,z ¢g(X")}

We also have 51N Sy = @ and S; U Sy = X*. Moreover, S; and Ss are P-computable.

Let us define the desired p-isomorphism £ as follows:

f(2) if 2 € Ry,
g Hz) ifz € Rs.

h(z) =

This function h is total because R; U Rs = X*. Also h is one-one because f and g~! are one-one, and h is

also onto because h(R;) = Sz and h(Rz2) = S1. It is not hard to show that

J~i(z) ifz €Sy,
g(2) if z € 51.

Hence, h is total and thus a bijection on X*.

We can easily see that h reduces A to B because h(z) = f(z) for all z € Ry, and h(x) = g~'(x) for all
r € Ry. Similarly, h~! reduces B to A.

What remains is to check the domination conditions for A and h~!. It is sufficient to prove that y <P voh
and v <P g o h~'. We shall show that ¢ <P v o h. Since g <P v o f, let sy be a polynomial such
that ji(z) < so(|z]) - 2(f(2)) for all z. Similarly, since g o g <P v, there is a polynomial s; such that
i(g(2)) < s1(|2]) - v(#) for all z. Recall that ¢ is p-honest, and thus we can take a polynomial ¢ such that
l2] < q(lg(#)]) for all z. Let s(n) = sg(n)+s1(¢(n)). If z € Ry, then j1(2) < so(]2]) - p(f(2)) < s(]z]) -2 (h(2)).
If z € Ry, then let z = g(w), so we have i(g(w)) < so(|w]) - (w) < so(q(lg(w)])) - #(w). This implies that
v(z) < s(]z|) - 2(h(z)). Therefore, yu <P oh. Similarly, we can show that v <P o h~1.

This completes the proof. a

The reader who is interested in other types of many-one reducibilities may refer to [36, 9, 30, 51, 44, 32,
108].

158 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

5.2.3 Deterministic Turing Reducibility

We turn our attention to Turing reducibility. In worst-case complexity theory, Cook [22] first formulated
deterministic polynomial-time Turing reductions to show that SAT, the satisfiability problem, is one of the
hardest problems that is in NP. A Turing reduction from a set A to another set B is a deterministic oracle
Turing machine that computes set A with the help of set B as an oracle.

In average-case complexity theory, Ben-David, Chor, Goldreich, and Luby [9] introduced a similar notion
of deterministic Turing reducibility among distributional decision problems. We begin with this deterministic
Turing reducibility. Let us recall that the notation Q(M, B, x) denotes the set of strings queried by an oracle

Turing machine M with oracle B on input z.

Definition 5.2.10 (Deterministic Turing Reductions) [9] Let (A, x) and (B,v) be distributional

decision problems.

1. (A, p) is polynomial-time Turing reducible (p-T-reducible, for short) to (B,v), denoted by (A, u) <%,

(B, v), if there exist a deterministic oracle Turing machine M and a semi-distribution 5 such that

(i) (Efficiency) M with oracle B is polynomial-time bounded;
(if) (Validity) A = L(M, B); and

(iii) (Domination) pu <P and & > Az.p({z | 2 € Q(M, B, x)}).

2. (A, p) is average polynomial-time Turing reducible (avp-T-reducible, for short) to (B, v), symbolically
(A, p) <7P (B,v), if there exist a deterministic oracle Turing machine M and a semi-distribution 7

such that

(i) (Efficiency) M with oracle B is polynomial-time bounded on p-average;
(if) (Validity) A = L(M, B); and

(iii) (Domination) g <*P pand v > Az.i({z | z € Q(M, B, z)}).

The condition (iii) is called the domination condition for the reduction M.

Originally Ben-David et al. [9] used a stronger domination condition:
pz [z € QM, B, x)}) < v(2) - p(2)

for some polynomial p.

Proposition 5.2.11 1. The relation <P, implies <., and <2 implies <7'".
2. The relation <§ and <3'* are reflezive.

avp

T

3. The relation <, implies <

4. The relation <}, and <3'* are transitive.

5.2. DETERMINISTIC REDUCIBILITY 159

Proof. (1)-(3) Clear from the definitions.

(4) Here we show that <7’V is transitive. The proofs for the transitivity of the other reducibilities are
analogous. Now we assume that (Dq, pq) is avp-T-reducible to (D2, g2) via a reduction M; and a semi-
distribution vy, and also assume that (Ds, pug) is avp-T-reducible to (Ds, u3) via a reduction My and a
semi-distribution va. We assume that Q(My, Dy, z) # @ for infinitely many « since, otherwise, (D, 1) €
Aver(P, #) and, thus trivially (Dy, 1) is avp-T-reducible to (Ds, p3). In what follows, we shall show that

(D1, p1) <77 (Ds, pa).
By definition, there exist two functions f; and fo which are polynomial on pp-average and on po-average,
respectively, such that fi(x) - #1(z) > j1(x) and fa(z) - D2(x) > fi2(z) for all z. Without loss of generality,
we assume that fi(z) > 2 and fa(x) > 2 for all strings «.
We define a new machine M as follows: on input &, M deterministically simulates M; on x, and whenever
M, queries a string y, M deterministically simulates M5 on input y. In the case where z is the empty string

A, M must be designed not to query any strings (if Mz queries some strings to oracle Ds, then their oracle

answers are encoded into a program of M). Clearly Dy = L(M, D3)). Note that

Timeff’(r) <ec- TimeﬁQ1 () + Z Timeﬁi(y) +1
YyEQ(M1,Dy)
for some constant ¢ > 0.
Let f(x) = fi(®) - maxyeq(m,,p.,e) f2(y). Obviously, for each x, f(x) > 1, and thus ji;(x) < f(z). Now

we choose a distribution v:

Ay (o) if 2 £ A,
1-— Zy:y;ﬂ v(y) ifz=A\

In particular, (A) > 0. Let ¢y = % Then, we have (f(x) + co)v(x) > ju(x) for all # # A. For each

pair (z,y), it follows that z € Q(M2, D3,y) and y € Q(My, D2, z) if and only if z € Q(M, D3, z) and
y € Q(My, Da,z). Note also that

f2(y) 2 n({z |y € @My, Dy, 2)}) > Z
Then, for all z € | J, Q(M, Ds, z),

ps(z) > 2({ylz € Q(M2, Ds,y)}) >

y2€Q(M;
1 f () 1 ()
> > — 3 - 3 3 .
yec@Otnpsg) W ool pom 11 v € QUM Dae) yeQM Do) 2W) f1(®)
fur (x) fir (x)
> -
- 2 fi(z) - maxyeqan, psw) f2(Y) 2 f(z)

z:2€Q(M,Ds,x)
= v({z|z€Q(M D3, x)}).

z:2€Q(M,Ds,x)

Next we shall show that M and f are both polynomial on pi1-average. We first see that M is polynomial-

time bounded on pj-average. Let h(z) = ZyEQ(Ml D) Timeﬁi(y) for each z. To complete the proof, by

160 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES
Lemmas 3.3.13 and 3.3.12, 1t is sufficient to show that & is polynomial on pp-average since /\ar:.TimeﬁQ1 (z) is
polynomial on p1-average; however, this i1s not difficult to see.

The proof that f is polynomial on p;-average is similar, and thus the claim is established. a
The transitivity of avp-T-reducibility implies the closure property of Aver(P, %) under avp-T-reductions.
Theorem 5.2.12 [9] The class Aver(P, %) is closed downward under avp-T-reductions.
Proof. Assume that (A, p) <3P (B, v) for some (B,v) € Aver(P, *). Note that

Aver(P,x) = {(A, 1) [(A, 1) <77 (O, vstana) }-

Since (B,v) <7 (D, Vgtand), by Proposition 5.2.11(4), we obtain (A, u) <77 (D, Vstana). Thus, (A4, p) €
Aver(P, F). a

5.3 Many-One Complete Problems

We have introduced two different types of reducibilities in the previous section which play a significant role
in measuring the relative complexity of any two distributional decision problems. If a distributional problem
(A, pt) is reducible to another distributional problem (B, v), then (B,v) is considered at least as hard as
(A, pt) to solve. We wish to see the hardest problems in Dist(NP, P-comp) in this sense.

The notion of complete problems was introduced into computational complexity theory in the early 1970’s,
and subsequently many problems have been found to be complete for NP. We generalize the definition of

“completeness” to our setting below.

Definition 5.3.1 (Complete Problems) Let <, be any reducibility and let C be a class of distributional

decision problems.

1. A distributional problem (D,) is <, -hard for C if every problem (%, n) in C is <,-reducible to (D, p).

2. A distributional problem (D, pu) is <,-complete for C if it is in C and is <,-hard for C.

This section will show that several important distributional decision problems are p-m-complete for
Dist(NP, P-comp), and hence that they are among the hardest problems to solve.

Intriguingly, Belanger and Wang [6] pointed out that most known p-m-complete problems for Dist(NP, P-comp)
are actually p-isomorphic. They proposed an average-case version of a conjecture given by Berman and Hart-
manis [10], known as (Berman-Hartmanis) isomorphism conjecture, that asserts that all p-m-complete distri-
butional problems for Dist(NP, P-comp) are p-isomorphic. We refer to this conjecture as the Isomorphism

Conjecture.

5.3. MANY-ONE COMPLETE PROBLEMS 161

5.3.1 Randomized Bounded Halting problem

One of the most useful distributional decision problems is the randomized bounded halting problem. To
describe it, we assume an effective enumeration of all nondeterministic Turing machines, say {M;};en. The
randomized bounded halting problem (RBHP) is the distributional problem (BHP, yppp) that is based on
the bounded halting problem

BHP = {(s;,#,1") | M, accepts x in less than n steps },
where s; 18 the string corresponding to ¢ and based on the default probability
ﬂBHP(Sia T, 1n) = ﬁstand(si) : ﬁstand(x) : ﬁtally(ln)~
Intuitively, we independently pick up a string s;, a string z, and a unary string 1” at random. Clearly pypup
is supportive and P-computable. We remark here that the choice of a1y (17) is essential.
In the following theorem, we shall prove that RBHP is <P, -complete for Dist(NP, P-comp). This theorem

has been proven in numerous ways (see e.g., [9, 30, 36, 111]). The proof below follows the argument given

by Wang and Belanger [111].
Theorem 5.3.2 [36] RBHP is <P -complete for Dist(NP, P-comp).

Proof. We first note that RBHP is in Dist(NP, P-comp) because BHP belongs to NP and uppp is
P-computable.

Consider any distributional decision problem (D,) from Aver(NP, P-comp). There exists a polynomial-
time nondeterministic Turing machine M which accepts D. For every set D € NP and every distribution
p € P-comp, we next show that (D, u) <t (BHPk, pupmp). Let g be the one-one, p-invertible, P-computable
function of Lemma 4.2.7(2). Note that |g(z)| < ¢(|z]) for some absolute polynomial ¢, and that p(z) <

2-19()1+2 for all 2. Now let us consider the machine N that simulates M in the following fashion:

begin nondeterministic Turing machine N
input y
compute a string @ such that y = g(«) by binary search
(this is done in time polynomial in ||)
if such an z exists then nondeterministically simulate M on input z
else reject

end.

Since N is a polynomial-time nondeterministic Turing machine, we take an index ¢ such that L(M;) =
L(N). Let p be a polynomial time-bound of M;. The desired reduction f is now defined as f(z) =
(si,g(x), 120Dy Tt is not difficult to see that f is one-one and reduces D to BHP. Tt is sufficient to
check that f satisfies the domination condition. Let s be any polynomial such that Dgana(s;) - s(n) >

256(q(n) +1)%(p(n) + 1)? for all n € N. Note that 7 is a constant and does not depend on n. Then, we have:

s(|z]) - asup (f(2)) = s(z|) - asap (s, g(z), 1207DY)

162 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

(1) - urana(s:) - Prsana(g(x)) - 272108 0=1)=1
s(|z) - Vstana(ss) . 9=lg(@)|+2

256(p(l]) + 1)%(lg(z)| + 1)?

97192 > i),

v

v

Hence, (D, u) <, (BHP, pupmp). O

In Section 6.5, we shall generalize the problem RBHP in order to show that the generalized RBHP is
also complete for Dist(X%}, P-comp) for each k& > 0.

5.3.2 Randomized Bounded Tiling problem

The randomized bounded tiling problem (RBTP) is the first problem discovered by Levin [60] to be <P -
complete for Dist(NP, P-comp). RBTP is the distributional problem (BTP, uprp) that is defined as follows.
A tileis a quadruple [u, v, 2, w] of strings, where w is called “left,” v “top,” « “right,” and w “bottom.” We
use the notation left[u, v, z, w] to denote the left element uw. Similar notations are used for “top,” “right,”
and “bottom.” Let S, be the n x n square {1,...,n} x {1,...,n}. Let T be a set of tiles. A function f from
Sy, to T is called a T-tiling of Sy, if left[f(i + 1,7)] = right[f(i,)] and bottom[f(¢,j + 1)] = top[f (4, j)] for
all ¢, with 1 <i<nand 1 <j<n. A sequence (t1,...,4) is a T-row of length k if t; € T for all ¢ with
1 <i<nandleft[sj41] = right[s;] for all j with 1 < j < n. Let

BTP = {(T, 17, 1% (t1,.. ., t&)) | {t1,...,tx) is a T-row of length k, 1 < k < n,
f[f is a T-tiling of S, and Vi[l < i <k — f(1,1) =]]}.

Fix a positive P-computable distribution v for a set 1" of tiles and let

AT - ey (17) - 2Ty g 1<k < nand
fmre (T, 17,15, (L, k) = T; # @ for all i with 1 < i <k,
0 otherwise,
where T; = {t € T' | left[t] = right[t;]}. We remark here that the choice of a default distribution v for tiles

is not important because it does not affect the proof of Theorem 5.3.3.

It is shown that RBTP is p-m-reducible to RBHP [60, 36].
Theorem 5.3.8 [112] RBTP is p-isomorphic to RBHP.

Proof. Tt is known that BTP is NP-complete. Thus, RBTP is in Dist(NP, P-comp). In the following, we
shall construct two one-one, length-increasing, p-invertible, P-computable reductions f and g from RBHP
to RBTP and from RBTP to RBHP, respectively, with the condition that puggp ~* pgrp o f and upTp AP
pup © g. This is sufficient to show the theorem, because Proposition 5.2.9 yields the existence of a p-
isomorphism between RBHP and RBTP.

Since BHP € NP, there is a nondeterministic Turing machine M accepting BHP in polynomial time.

From the Distribution Controlling Lemma (Lemma 4.2.7), there exists a total, one-one, p-invertible, P-

5.3. MANY-ONE COMPLETE PROBLEMS 163

computable function A such that 4 - 271" < fpup(z) < 20 - 217 for all input . Take a polynomial ¢
such that |h(z)] < ¢(]#]) for all .
For each string w, let wr = 0™ 1s),|w, where m = |s|,||. Notice that if a string z is given, then we can

uniquely determine wy, such that wr C z if one exists. Let M’ be the following algorithm:

begin algorithm M’
input z
if there is no w such that wy C z then reject
(Assume that there is the unique w such that wy C z.)
check if w = h(x) for some z by a binary search
(This is done in time polynomial in |z|.)
if no such z exists then reject
simulate M on input x

end.

Now write # instead of h(x) for brevity. We then have &, = 07 Lsp(r) h(x), where m = [s|5(s)|. Note

that
|ZL| = [0" Is|p(z) h(z)]| = 2]8[n(a) | + |R(2)| + 1 = 2log(|h(x)|) + |h(z)| + 1 < 2llog(q(|z|)) + [A(x)] + 1,

where m = |s),()|. Moreover, it is clear that x € L(M) if and only if £72 € L(M') for any string z.

Recall the (formal) definition of Turing machines given in Section 2.3. Let (@, qo, acc, rej, d, B) define
the machine M where @ is the set of states, gy the initial state, acc the accepting state, rej the rejecting
state, § the transition function, and B the blank symbol. Let M be any nondeterministic Turing machine
which runs in polynomial time. Let Thys contain the following tiles (T1)-(T5):

(T1) %, {q0, @), #, 9], where ¢q is the initial state of M’ and a € {0,1}.

(T2) [#,a,#,9], where a € {0,1}.

(T3) [%, ¢, %, c], [%, ¢, %,], [%, {acc, ¢), %, {acc, ¢)], where ¢ € {0, 1, B}.

(T4) For each instruction 6(p,a) = (¢,b, R) of M, [%,b, 1p,{p,a)], [1p,{q,¢), %, c], where ¢ € {0,1, B}.
(T5) For each instruction 6(p,a) = (¢,b, L) of M’ [%, {q, c),0p, c], [Op, b, %, (p, a)], where ¢ € {0, 1, B}.
Clearly the number of tiles in Tjs/ does not depend on z.

Let us define the reduction f from BHP to BTP by f(z) = (T, 12 1% Sy, where &1 = uyug - - ug,
u; € {0,1}, and

Sx = {[$a <QOa U1>, #a $]’ [$au2a #a $]’ [$a us, #’ $] ey [#a Uk, #a $]}

The function f is one-one and p-invertible because so is h. We remark that, for each ¢ with 2 < ¢ < k, the
number of tiles ¢ which matches [$, u;, #, $] to the right (i.e., left[t] = right[$, u;, #,9]) is exactly 2, and
consequently, the probability that the ith tile of S, is chosen is 1/2.

Clavm 9 The function f is a reduction from BHP to BTP.

164 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

Proof of Claim. Assume that M’ accepts a string &1 . By the choice of the initial row of length k, the sequence
of the top of the tiles set in the bottom row of the square is exactly Zpz, where z satisfies |212] = p(]z|). This
is an initial ID (i.e., instantaneous description) of the machine M’ on input Zzz. The second row of tiles
that match the bottom row represents the ID of M’ on &z obtained by a single application of the transition
function ¢ (i.e., after one step) because a pair of tiles in (T4) (corresponding to d(po, a) = (¢,b, R)) are the
only tiles that are different from the symbols on the top of the bottom row. Recursively we can continue
this argument, and then, when we rebuild the history of the ID’s of M’ on input Zrz, we see that the tiles
fill the square. Recall that M’ reaches the accepting state in less than p(|z|) steps. Conversely, if the tiles
fill the square, the sequence of the top of each row describes an 1D of M’ on input Z;z. This implies that
M" accepts 1. Hence, f becomes a reduction from BHP to BTP. [|

We should check the domination condition for f. Let s(z) be a polynomial such that

T
S(2) 2 1280 p()(p() + 12(a() + 17 - I
I/(TM/)
for all z. Then, we have:
s(le)) - psre(f(2)) = s(]) - psre(Tar, 17070, 5,)
2llog(p(lo))—-1 , ! L (e
ot . L L (1)
() v i) MENETIRE
H(Tyr) 1 2
> s(|x]) - . .
S P I E I e e
By the definition of s, the last term is bounded by:
2 20
. 2, . A, Ll L1 €
160 - q(ol+ 1" Soegamnemer 2 8 el + 07 gemn sy 2
> 2027
> fipup(z).

Thus, gpTp(f(z)) > N]EE{II;I()M for all z. It follows that pugup <P psTp o f. The other direction ppTp <P upHP
is shown similarly using the inequality fippp(z) > 4 - 9-Ih(@)l, Therefore, ppup & pupTp © f.

Next we define a reduction g from RBTP to RBHP. This part is simpler than the above argument. Again
by the Distribution Controlling Lemma, there exists a total, one-one, p-invertible, P-computable function
R’ such that 4 . 2= 7'l < jpTp(2) < 20 - 2=1"" (@) for all z. Take a nondeterministic Turing machine M

which computes BTP in polynomial time. Let us define another Turing machine M’ as follows:

begin algorithm M’
input z
compute w such that & = h'(w)
if no such w exists then reject
simulate M on input w

end.

5.3. MANY-ONE COMPLETE PROBLEMS 165

Let p be a polynomial which is a time bound of M'. Tt is obvious that « € L(M) if and only if
h(x) € L(M') for all strings z. Let ¢ be an index such that L(M;) = L(M’). Let p be a polynomial such
that Timeys, (h(x)) < p(|z]) for all z. Define g(x) = (s;, h'(x), 17U=D). Clearly g is one-one, length-increasing,
P-computable, and p-invertible. Assume that |h'(x)| < ¢(|#|) for some polynomial ¢. Take a polynomial s’
so that

$(2) > 1280 (p(=) + 1) - (4(2) + 1/ Fasana(s2).

The following calculation is similar to the one above.

s'(|¢]) - frsmp (g(2)) = fsmp(si, b (x), 1702D)
= 5'(|2]) Ustand(5i) - Dstana (B (7)) - Prany (1717D)
s'(|2]) - Ustand(s:) - ! . —|n' ()|
2 el vl R S 1 07
> 90 . 9~ A" ()]
> fipre(T).

Hence, we have uptp <P pupgp o g. It is also easy to show that upgyp o g <P uptp. Therefore, uppp o g &P

ppup- This completes the proof. O

Knijnenburg [51] considered complete problems for Dist(PSPACE, P-comp) and pointed out that an
extension of randomized bounded tiling problem becomes <P -complete for Dist(PSPACE, P-comp).

5.3.3 Other Complete Problems

Gurevich [36] showed that the following randomized bounded Post correspondence problem is also <P -
complete for Dist(NP, P-comp). The randomized bounded Post correspondence problem (RBPCP) is the dis-
tributional problem (BPCP, uppcp) defined as follows. Given a nonempty list L =
((ug,v1), (w2, v2),. .., (Um, vm)) of pairs of binary strings, the sequence (iy,%2,...,%;), 1 <k <m, is called a

solution of length k if w;, w;, - - - wi, = vy, v;, - - - v;, . The set BPCP is defined by
BPCP = {{((L), 1) | L = ((u1,v1), .-, (ttm, vm)) A Tk < n[there exists a solution of length & for L]},

where (L) is the encoding ((u1,v1), ..., (tm, vm)), and the distribution puppcp is defined by

5

/lBPCP(<<u1a Ul>, ceey <uma vm>a 1n>) = ﬁtally(ln) : ﬁtally(lm) : H(ﬁstand(ui) : ﬁstand(vi))~

This default probability is experimentally given by picking up independently and randomly two natural
numbers n and m, and 2m strings uy, ..., Um, V1, - - ., Um.

This problem RBHP is p-m-reducible to the randomized bounded Post correspondence problem RBPCP.
We omit the proof; the interested reader may refer to [36].

By a slight modification of RBPCP, Gurevich [35] introduced the Randomized Bounded String Corre-
spondence Problem and showed that this problem is also p-m-complete for Dist(NP, P-comp).

166 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

Another problem known to be complete is the Randomized Palindrome Problem, which was defined by
Gurevich [36]. Wang and Belanger [112] introduced the Randomized Word Problem for Thue System and
showed that this problem is p-m-complete for Dist(NP, P-comp).

5.3.4 Hard Problems under Samplable Distributions

We have seen several intriguing complete problems for Dist(NP, P-comp). A natural question is: does
the class Dist(NP, P-samp) have any p-m-complete problems ? Ben-David, Chor, Goldreich, and Luby [9]
constructed such a distributional problem.

First of all, we shall define a “universal” P-samplable distribution pgy. Take an effective enumeration

{nitiew of all O(n)-time samplable distributions. Let us define pp as follows:

fiole) = 30 2701 ().
i=0

Experimentally, we choose a number ¢ at random, then sample a string under the distribution 7;. Clearly

pu 1s a P-samplable distribution.
Theorem 5.3.4 [9] The distributional decision problem (BHP, ug) is p-m-complete for Dist(NP, P-samp).

Proof. WE must reduce an arbitrary distributional problem (D, i) in Aver(NP, P-samp) to (BHP, u).

By Lemma 4.4.3, we can take a strictly P-samplable distribution v such that g <P v. By its samplability,
there exists a randomized Turing machine M sampling v in time ¢ in the length of its output, where ¢ is
an appropriate polynomial. For each xz, let g(x) be 2090eD=12l " Tet us define v’ by vy1. We show that
this distribution v’ becomes O(n)-samplable. To sample v/, we consider the following procedure M’: on
input A, simulate M, and if z is an output of M, then output x091*D=1#1 We fix any random seed s which
leads to the output . The running time Timeps (A;s) is O(Timensr(A;s) + ¢(Jz])) € O(q(]z|)) because

Timeps (A;s) < g(|#]). As a result, it is bounded above by O(n) in the length n of output.
We then define the set D’ by

D' ={y| 3w, wly=2wAxeDnqg(le]—1) <yl < q(|z])]}-

Obviously, D' is in NP since D is so. By the definition of g, it follows that # € D if and only if g(z) € D/,
and thus (D, u) <P (D', V') via g.

Now we must show that (D', v') is p-m-reducible to (BHP, ur). Because D is an NP set, it is recogniz-
able by some nondeterministic Turing machine, say M, in polynomial time. Let p be a strictly increasing
polynomial which bounds the running time of M. Let ¢ be an index so that L(M;) = L(M) in the list
{M;}ien. We take the standard reduction function f discussed before: f(x) = (s;, x, 12(=D) for all x.

Let Timey (x) be the computation time needed to compute f(z) deterministically. Since f is P-computable,

for some constants ¢, ¢’ > 0, Timey (z) is bounded by

Timey (z) < - (2 +p(|2]) + 1) < ¢ - (51,2, 1PED) 1) = - |f ()] + ¢

5.3. MANY-ONE COMPLETE PROBLEMS 167

Thus, f is computable in O(n) steps in the length n of its output.
Now define 7(x) = ¢/(f~*(x)) for all . This n is O(n)-time samplable, and thus there exists an index i
such that 5 = n;. By the definition of pr, i (x) > 2721°8(@)=1 . 5, (x). Then, we have:
1
1 > ———— - V(x).
Therefore, (A, p) is p-m-reducible to (BHP, up). a

5.3.5 Discussion of Complete Problems for Aver(NP,P-comp)

We have seen several complete problems for Dist(NP, P-comp) and Dist(NP, P-samp). In this subsection,
we shall discuss complete problems for the average-case complexity class Aver(NP, P-comp).

Unfortunately, it is not known whether Aver(NP, P-comp) has any <P -complete problems. This is
because of our definition of nondeterministic Turing machines and their accepting criteria. In this section,
we shall see what happens when we take other models of nondeterministic Turing machines and accepting
criteria.

However, by Wang and Belanger [111], if we use a “clocked” model of nondeterministic Turing machines
(thus, all computation paths are assumed to be of the same length), then any p-m-complete problem for
Dist(NP, P-comp) is <'P-complete for Aver(NP* P-comp). Recall the notation Aver(NP* F) used in
Section 3.6. We shall see a complete problem for Aver(NP* P-comp).

We begin with a general result. Let us expand a notion of “weak C-descriptive” to “<,-descriptive” using

any <,-reducibility.

Definition 5.3.5 (<,-Descriptive) Let <, be any reducibility. An average complexity class Aver(D, F)
is <q-descriptive if, for every problem (D, p1) in Aver(D, F), there exists a problem (F, v) in Dist(D, F) such
that (D, p) <, (E,v).

Proposition 5.3.6 Let C be a complerity class and let F be a set of distributions. Assume that Aver(C,F)
15 defined and <,-descriptive for reducibility <.. Moreover, assume that <b, implies <., and <, s tran-
sitive. If a distributional problem (A,) is <P -complete for Dist(C, F), then (A, p) is also <.-complete for
Aver(C, F).

Proof. Assume that (A4, p) is <P -complete for Dist(C,F). Let (B,v) be an arbitrary distributional
problem in Aver(C,F). We shall show that (B,v) is <,-reducible to (A,v). Since Aver(C,F) is <q-
descriptive, there is a problem (B’,v') € Dist(C, F) such that (B, v) is <,-reducible to (B’,v’). From the
assumption that (A, p) is <P -complete for Dist(C, F), it follows that (B’,v’) <. (A,). The transitivity of
< implies that (B,v) <4 (A, p). O

Claim 10 RBHP and RBTP are avp-m-complete for Aver(NP* P-comp).

168 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

Proof of Claim. Tt suffices to show that Aver(NP* P-comp) is <2'P-descriptive. Assume that (A, u) €
Aver(NP*, P-comp). Let M be a nondeterministic Turing machine which computes A in time polynomial
on p-average. Let us take g as in Lemma 4.2.7(2). Note that ¢ is P-computable and p-invertible. Then, we
have ji(z) < 27190142 for all strings #. We define v as

ﬁstand(g($)) : ﬁtally(ln) if z = <l‘, 1n>’

I?(z) =
0 otherwise.

It is not difficult to see that v is a P-computable distribution and does not depend on p.

To get the desired result, we would define a many-one reduction f and a set B in NP. Let f(z) =
(g(x), 1Timem (@)Y for every . We claim that (f, u) € Aver(FP, P-comp). Note that the function Az. Timeyy ()
is computable in time polynomial on p-average. Since g € FP, f(z) is computable in time polynomial on
p-average. Note that f is one-one. Let B = f(A). It follows that B € NP since B is computed by the

following Turing machine M':

begin nondeterministic algorithm for M’
input (z,1")
compute u for which f(u) =
simulate M on input u for time n
if M fails to halt then reject
output M(z) and halt

end.

This implies that (B, v) € Dist(NP, P-comp). Now we set ¢(x) = 256(|g(x)|+ 1)?(Timeps(z) + 1)2. Then,
by Lemma 3.3.14, ¢ turns out to be polynomial on p-average.

We next show that o(f(x)) - q¢(x) > ji(x). For all #, we have

() - Dstana (g(x)) - 27 2Nos(Timear(@)) =1

q(x) - v(f(z))

S q(z) . 9=lg(@)l
~ 64(|g(z)] +1)*(Timeps (z) + 1)
_ 4(x) o lg@)l+2
256(|g(z)| + 1)*(Timeys (z) + 1)?
= 9-lgl@l+2 fi(z).
Therefore, pg-r 2P [|

If we use the length of the longest computation path whenever the machine rejects an input as the running

time, then any p-m-complete problem for Dist(NP, P-comp) is avp-T-complete for Aver(NP” P-comp).

Claim 11 RBHP and RBTP are avp-T-complete for Aver(NP* P-comp), where Aver(NP*, P-comp) is
defined based on the model of nondeterministic Turing machines with running time measured by the longest

rejecting path whenever it rejects an input.

5.4. INCOMPLETENESS RESULTS 169

Proof of Claim. For this claim, it suffices to show that Aver(NP*, P-comp) is <7'"-descriptive. Assume
that (A, p) € Aver(NP* P-comp). Let M be a nondeterministic Turing machine which computes A in time
polynomial on p-average. Assume that g is defined as in Lemma 4.2.7(2). Note that ¢ is P-computable and
p-invertible. Then, we have fi(z) < 2719@I+2 for all strings «.

Recall the proof of Claim 3 in Section 3.6, and consider the same set (' and the deterministic oracle
Turing machine N that computes D with oracle C' in polynomial time on p-average. Remember that, for
each query string (b, #, 1™), x is the only input string that N on input # can query (b, z, 1) to oracle C'. Let

us define v as
“Vstand (¥) - Vrany (1) if 2 = (b, 2, 17),

I?(z) =
otherwise.

[=RENCITS

It is not difficult to see that v 1s a P-computable distribution and does not depend on p or C.
We modify the Turing machine N into N’ in the following fashion:

begin algorithm N’
input z
compute u for which g(u) = »
simulate N with oracle C on input u
output N'(z) and halt

end.

This implies that (B,v) € Dist(NP, P-comp). Now we set ¢(z) = 512(|g(x)| + 1)2(Time§n(1‘) + 1)%. Then
by Lemma 3.3.14, ¢ turns out to be polynomial on p-average.

For all =, we have the simple estimation, where n = Time%, (z),

: ﬁstand(g(x)) ’ ﬁtally(ln)

N | —

q(x)~1>(b,g(x),1n) = Q($)

a(x) g—la(@)l+2
512(|g(x)| + 1)*(Time§, («) + 1)
= 9-lgl@l+2 ().

Therefore, (D,) <3 (C,v) via N'.]

5.4 Incompleteness Results

We shall discuss two important distributions: flat distributions and sparse distributions, both of which

possibly make associated distributional problems incomplete for Dist(NP, P-comp).

5.4.1 Flat Distributions

Let us recall the definition of flat distributions. A distribution p is called flat if there exists a real number

¢ > 0 such that ji(z) < 271°1° for almost all .

170 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

We shall observe the distributions of some p-m-complete problems discussed in the previous section.
Neither uppp, pgpTp, nor puppcp, for example, is a flat distribution. Here a distribution g is flat if there
exists a real number ¢ > 0 such that j(z) < 2-1#1° for all z. This is seen as follows. For example, assuming
that upgp is flat (i.e., jpmp () < 271°1° for some € > 0), let us consider sufficiently large n, i, and x satisfying

n > (llog(i) + |])*/c. Then we have

/lBHP(Sia z, 1n) — 2—2110g(|s,|)—|s,|—1 . 2—2llog(|x|)—|x|—1 . 2—2110g(n)—1

S g-log(i)—la| . 1 v 1
= 8(llog(i) + 1) 8(jz[+ 1)2 8(n+1)?
9—llog(i)—|x| 1
> .
- 512 Allog()? - 4]x|? - 4n?
9—llog(i)—|x|
>

n? - log(i)? - |z|?’

On the other hand, we have

[(si, 2, 1) = 2(llog(i) + []) + n
. 2(log(é) + []) n
> 1/2 11 2/e
> Uogl) + B0 Giogiy + e w72 ¥ W72 (llog(d) + e)2re

nl/2pl/2

> nl?. (llog(d) + ||)¥*.
Hence, using the assumption that pggp is flat,

fisip (51, ¢, 17) < 2~ sem 17« 9=n®/(llog(i)+|z))? o 9—n/*—2llog(i)~2|a]

Now we have % < 2—n6/2—2110g(i)—2|x|, and thus 2lles()+lz[+n/? 3 -log(i)? - |z|?. This is clearly
a contradiction. Hence, ppgp is not flat.

One might suspect that there is no <P -complete problem with a flat distribution. Gurevich [36], and
Wang and Belanger [112] indeed showed that distributional problems with flat distributions are not complete
for Dist(NP, P-comp).

Using the same argument as above, we can show the following result. Under p-honest, P-computable,

one-one reductions, there are no complete problems with flat distributions in Dist(NP, P-comp).

Proposition 5.4.1 [112] For any set D € NP and any flat distribution p, the distributional problem
(D,) cannot be <y-complete for Dist(NP,P-comp) under one-one, p-honest reductions.

Proof. We shall prove the contrapositive. Assume that (A, p) is <V-complete for Dist(NP, P-comp)
under one-one, p-honest reductions. As RBHP is in Dist(NP, P-comp), there is a p-honest, P-computable,
one-one reduction f that reduces RBHP to (A,). The domination condition for f, by Lemma 3.4.12(1),

implies that ppgp <P po f since f is one-one. Since ppypp 1s not a flat distribution, then po f is also non-flat.

5.4. INCOMPLETENESS RESULTS 171

As f is p-honest, p cannot be flat. To see this, assume that ji(z) < 271°1° and |f(x)|* < |2| for ¢,k > 0.

Thus, 1o f(z) < 2~ @I < 2=lel*/*, .

| €

Proposition 5.4.2 [36] Assume that EXP # NEXP. For any flat distribution u and any EXP set D,
the distributional problem (D, u) is not avp-m-hard for Dist(NP, P-comp).

Proof. Assume that (D, p) is <2P-hard for Dist(NP, P-comp) and show that any set in NEXP is
deterministically solvable in exponential time.

Let A be an arbitrary set in NEXP. There is a nondeterministic Turing machine M which computes A
in time 22D where p is a fixed polynomial. We may assume that p(n) > n+ 2llog(n) + 1 for all n € N.
For each z, set 2 = z012""“"=1=1=1 We note that if |z| = n, then |z/| = 22("). We set A’ = {2’ | 2 € A}.
This A’ belongs to NP and consequently it is in EXP. Let M4 be a deterministic Turing machine which
computes A’ in exponential time.

We define v/ as follows:

Ustand(z) 1if z = &’ for some z,

0 otherwise.

To see that v/ is P-computable, notice that v'(z) = vstana(max{u | w0127V =lul—1 < z}), and thus
lim; o0 v(2) = limy 00 Vstand (u) = 1.

Since (A',v') € Dist(NP, P-comp), our assumption implies that (A’,v’) is avp-m-reducible to (D, u).
Take a reduction f witnessing (A’, ') <2P (D,). Note that f is computable in time polynomial on /-
average, and v’ <®P p and g > 71 for some semi-distribution 1. We note that, by the definition of ¢/, f is
actually computable in exponential time.

First we show that |f(#’)| is bounded by a polynomial in |z|. The domination condition yields the

existence of a function s being polynomial on v'-average such that ji(y) > erf—l(y) % for all y. In

particular, we have p(f(z')) > f’sl((;,l)). Assume that s is ¢ on v/-average for some polynomial ¢q. Then, for

almost all z,

s(a') q(|2'|/0' (") = q(gp(lxl).22llog(|x|)+|x|+1)

IN

g(22P0=Dy < okrleh)

IN

for some fixed constant k > 2. Thus, s(2’) < 28'?(2]) Using this inequality, we have

v'(x') < 9=kp(lel) 9=2log(lz))=|z|=1 5 5= (s+1)p(lz])

f(a") =
for almost all z. Since p is flat, for some constant m > 0, we have
o=lf ()™ > a(f(z')) > 9—(k+Dp(l=])

This yields the desired consequence that |f(2")] < (k4 1)™ - p(|z])™.

Let us consider the following deterministic algorithm M which computes A.

172 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

begin deterministic algorithm M
input z (say, n = |z|)
compute ¢’ (= J:Olzp(n)_”_l)

compute f(z')
(%) simulate M4/ on input f(z’) and halt

end.

The running time of line () is at most exponential in |z| since | f(z')| is bounded by a polynomial in |z|.
Hence, the total running time of algorithm A is exponential in the length of input. This implies that A is
in EXP. m|

5.4.2 Sparse Distributions

Gurevich [36] called a distributional problem (D,) “sparse” if the set {z | i(z) > 0} is sparse, where a set
S is (polynomially) sparse if there is a polynomial p such that ||SNX"|| < p(n) for all n € N. In this section,
we instead call the distribution p (polynomially) sparse if the set {x | p(x) > 0} is sparse. In other words,

u is positive only on a sparse set. For instance, the standard distribution on {0}* is sparse.

Definition 5.4.3 (Sparse Distributions) A distribution p is called (polynomially) sparse if the set
{x | p(x) > 0} is sparse.

We shall see that any distributional problems having a flat distribution cannot be p-isomorphic to the

standard complete problem RBHP.

Lemma 5.4.4 For any set D in NP and any P-computable distribution p, if 1 is sparse, then (D, p) is
not p-isomorphic to RBHP.

Proof. Assume that (D, u) is p-isomorphic to RBHP via a bijection f. The domination condition by
Lemma 3.4.12(1) implies that there exists a p-bounded function p such that p(z) - 4(f(=)) > piup(z). For
the sake of convenience, we set S = {(s;,2,1") | i,n € N,z € X*}.

Since pppp is positive on S, the distribution g o f is also positive on S that is,

f(S) ={f(x) [z €5} C{z|p(z) > 0}.

By the sparseness of the set {z | fi(z) > 0}, the set f(S) is also sparse. In particular, f(BHP) is sparse.
Therefore, since f is one-one, BHP should be sparse. This contradicts the fact that BHP is not sparse. 0O

It is known that, under the isomorphism conjecture, no sparse sets can be NP-complete. In 1988,
Mahaney [66] proved that, without assuming the isomorphism conjecture, there is no sparse NP-complete

set unless P = NP. Notice that the isomorphism conjecture conflicts with the assumption P # NP. A

5.4. INCOMPLETENESS RESULTS 173

similar result also holds in our average-case environment.

Theorem 5.4.5 Assume that P # NP. For any set D and any sparse distribution p, the distributional
problem (D, p) is not p-m-hard for Dist(NP, P-comp).

Proof. Assuming that (D, u) is p-m-hard for Dist(NP, P-comp) and p is sparse, we shall show that
NP collapses to P. In particular, (BHP, upup) <E, (D,) via some reduction f. By an argument similar
to that in the proof of Lemma 5.4.4, the domination condition by Lemma 3.4.12(1) implies that there
exists a p-bounded function p such that j(z) > erf_l(z) %ﬂ for all z. Thus, in particular, it holds that
p(x)-p(f(2)) > peup(z). Asin Lemma5.4.4, the set f(S) is sparse, where S = {{s;,z,1") | {,n e N,z € ¥*}.

We shall use the fact that BHP is “self-reducible,” that is, to determine whether (s;, z,1") € BHP, we
can check whether (s;,,x,1"~1) € BHP or (s;,,z,1"~!) € BHP, where jj is an index of the machine that
deterministically chooses the first nondeterministic branch and then simulates M;, and j; is similarly defined
by choosing 1 instead of 0. We view this process as a tree. Since we can determine whether (s;, z,1") € BHP
within n steps, the height of the tree is n. Now let us consider such a self-reduction tree. This tree may contain
exponentially-many nodes, but when they are mapped by f, there are at most polynomially-many distinct
values taken by f. Hence, many nodes of the tree merge. This motivates us to construct a polynomial-time
algorithm which computes BHP in the following fashion.

Let us first describe the main body of the algorithm M below:

begin deterministic algorithm M for BHP
input (s;, z, 1)
set Visit := @ and set Dead := O
call Marking((s;,x,1™), Visit, Dead)
reject and halt

end.

Marking(w, Visit, Dead) is the following subroutine that recursively kills nodes which do not lead to an

accepting configuration in a depth-first search:

subroutine Marking(w, Visit, Dead)

if w is a leaf and true then accept and halt

set Visit .= Visit U{w}

compute f(w)

for all nodes u € Vist until neither Visit nor Dead changes
if f(w) = f(u) and u € Dead then set Dead := Dead U {w}
if both children wug, u; of u are in Dead

then Dead := Dead U{u} and Visit := Visit — {ug, uy}

if u is a leaf and false then Dead := Dead U {u}

end-for

174 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

construct a left child of w, say wq
call Marking(wy, Visit, Dead)
construct a right child of w, say w;
call Marking(wy,Visit, Dead)

return.

The algorithm M requires at most polynomially-bounded running time and also computes BHP. There-
fore, BHP belongs to P. The conclusion P = NP follows immediately from the fact that BHP is p-m-
complete for NP. a

5.4.3 Unreasonable Distributions

In 1996, Paven and Selman [83] presented another type of incompleteness result. They called a distribution
p reasonable if An.i(X2") € Q(n~*) for some number k£ > 0. Any distributional decision problem with an
unreasonable distribution fails to be hard for Dist(NP, P-comp) unless NP is small (i.e., NP has p-measure
0). Since many researchers believe that NP is not small, this result shows another limitation of distributions

in distributional complete problems.

Theorem 5.4.6 [83] Assume that NP has p-measure 1. Let D be a set and let pi be such that An.ji(%2") €
Q(n=k) for any positive integer k. Then, the distributional problem (D,) is not p-m-hard for
Dist(NP, P-comp).

Proof. Assume that An.a(X27) € Q(n~*) for any positive integer k. We also assume that (D, p) is
p-m-hard for Dist(NP, P-comp). In particular, for any NP set A, the distributional problem (A, vgand) is
p-m-reducible to (D, p). Since D € EXP, there exist two positive integers k' and ¢ such that D belongs
to DTIME(c - Q”kl + ¢). For brevity, we can assume &’ = k. Note that this assumption does not essentially
affect the following argument.

Let {fi}ien be an effective enumeration of all polynomial-time computable functions. Take any set A in

NP and assume that (A, vstand) <B, (D, i) via fp,. We claim the following.
Claim 12 There exist infinitely-many strings = such that |fm (z)|*F < |z|.

Proof of Claim. Assume to the contrary that there exist positive integers k and ng such that |fn, (z)[F > |z|
for all strings « of length > ng. We shall show that yu satisfies An.i(32") € Q(n~%) for some d > 0. This
clearly leads to a contradiction.

By the domination condition for the reduction function f,,, there exists a semi-distribution 5 such that

Vstand <P n and p > IS Take a positive polynomial ¢ such that ¢(|z]) - 7(x) > Dstana(x) for all x. This

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 175

implies that 7(X") > gana(E")/¢(n) for any integer n.

Vgrand (1) 1 1 1 1
~ Ezn > Vstand(> > — >
M2 2 2 T 2 Dm0 2 San) e gl 2

for any number n > 32.

Fix n arbitrarily but greater than né/k. Then,

pEZ") >z € fn(E) [l 2 nd) = ({2 € fn(E5) | 2] 2 n))
= j({w] 3z €ran(fin) N X2"[frn(w) = 2]})
S l/k 1
z nE="") = I E Y
Now let s = (d + 3)/k + 1. The above inequality implies that An.i(%27%) € Q(n™%). []

Recall that D € DTIME(c - on* + ¢). We define the 1-MS d as follows:

1 if 2 = A
d(m,) = d(m,w) i [fn(s1) " > |51z,
2d(m, w) if |fin (5121 < sz and b = [fa(s)2)) € D],
0 if [fin (51217 < 11| and b # [f(s1)) € D],
where b € {0,1} and z = wb. Tt is easy to check that d is P-computable. Let us check if d succeeds on
D. By the definition of d, dn,(D[0..n]) = 2d(D[0..n — 1]), where dp,(w) = d(m,w). Thus, we obtain
limsup,,_, ., dm(D[0..n]) = 0o, and consequently d succeeds on D.
For each i € N, we define the set A; to be the set on which d; succeeds. Notice that the collection {A4;};en
is a p-union of all NP sets. We thus conclude by Lemma2.7.9 that NP has p-measure 0. This contradicts

our assumption. a

5.5 Bounded-Error Probabilistic Reducibility

As seen in Section 5.4, deterministic many-one reductions are so restricted that, under the common belief
that EXP # NEXP, no distributional problems with flat distributions are complete for Dist(NP, P-comp).
Many “natural” distributions for graph-related problems are actually flat. Is there any hope that we can prove
such problems to be “hard” to compute 7 Venkatesan and Levin [106] presented a solution by introducing
another reducibility, called “random many-one reducibility,” to measure the complexity of distributional
problems. Their notion of “random many-one reducibility” was further studied by Impagliazzo and Levin
[44] and extended by Blass and Gurevich [12] (see Section 5.7).

From a different point of view, Ben-David, Chor, Goldreich, and Luby [9] introduced a new notion of
“random truth-table (and Turing) reducibility.” This section will follow the idea of Ben-David et al. and
introduce probabilistic truth-table reducibility among distributional decision problems. (This name seems
more appropriate than “random reducibility” because of its similarity to worst-case probabilistic Turing

reductions.)

176 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

5.5.1 Skew Bounded-Error Probabilistic Reducibility

Ben-David, Chor, Goldreich, and Luby [9] introduced a notion of random reducibility for which reduction
machines are probabilistic rather than deterministic. Here we use the phrase skew bounded-error probabilistic

truth-table reducibility to describe this type of reductions.

Definition 5.5.1 (Skew Bounded-Error Probabilistic Truth-Table Reductions) [9] Let (A4, p)

and (B, v) be any distributional decision problems.

1. (A, p) is skew bounded-error probabilistic polynomial-time truth-table reducible (skew bpp-tt-reducible,
for short) to (B, v) if there exist a randomized oracle Turing machine M, a positive real number ¢, and

a semi-distribution 7 such that
(i
(il

(i

Query Type) M makes nonadaptive queries;
Efficiency) M with oracle B is polynomial-time bounded;

Validity) Pry [MB(z) = A(z)] > % + ¢ for all z; and

(iv

) (
) (
) (
) (Domination) u jfﬂpMB nand v > Az.q({(x,s) | 2 € Q(M, B, z,s)}).

2. (A, p) is skew bounded-error probabilistic average polynomial-time truth-table reducible (skew avbpp-

tt-reducible, for short) to (B,v) if there exist a randomized oracle Turing machine M, a positive real

number €, and a semi-distribution 7 such that

(i
(ii

) (Query Type) M makes nonadaptive queries;
) (

(iii) (Validity) Pry [MP(z) = A(z)] > % + ¢ for all z; and
) (

Efficiency) M with oracle B is polynomial-time bounded on p-average;

(iv) (Domination) u j?;?; nand v > Az.q({(x,s) | 2 € Q(M, B, z,s)}).

Condition (iii) is also called the domination condition for the reduction M.

Ben-David, Chor, Goldreich, and Luby [9] instead used the following domination condition:

pr,, s ({(z,5) [2 € Q(M, B, z,5)}) < p(l|z]) - v(2)

for some polynomial p. Our condition (iv) is obviously weaker.

In worst-case complexity theory, we often assume that an oracle Turing machine queries only strings
whose length is larger than that of the input. The motivation is that we can always construct another oracle
machine which satisfies this condition without changing the complexity of computations, and also we can find
another oracle set which is very close to the original oracle set. For example, assume that polynomial-time
oracle Turing machine M with oracle set B computes a set A. We let B’ = {{z,z) | + € B} and let M’
simulate M with the following change to oracle queries: if M queries a string z, then M’ queries a pair
(z,2). Then, clearly A is computed by M’ with oracle B’ and also B’ <P, B holds.

We can obtain a result similar to one in worst-case complexity theory; however, its proof is more involved.

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 177

Lemma 5.5.2 Assume that (A, p) is skew avbpp-tt-reducible to (B,v) with B # ¥*. There exists a bounded-

error probabilistic oracle Turing machine M' and a distributional problem (B’ V') such that
(i) (B,) <b, (B,v);
(ii) (A, p) is skew avbpp-tt-reducible to (B',v') via M'; and

(iii) all strings queried by M' with oracle B' on input x are of length greater than |z|.

Proof. Let us assume that (A, u) is skew avbpp-tt-reducible to (B,v) via a bounded-error probabilistic
oracle Turing machine M with nonadaptive queries which runs in time p on p-average, where pis an increasing
polynomial. For simplicity, let T' be the random-input domain associated with MP. There exist a semi-
distribution 7 and a random function ¢ which is polynomial on p-average such that ¢(z,s)-9(x,s) > jr(z, s)
and v(z) > p({(x,s) | = € Q(M, B,x,s)}) for all # and z. We can assume without loss of generality that
Timeﬁ(l‘) > 0 for all strings x, and that on the empty input A, M does not make any queries.

For brevity, we write §(z,n) = 9({(z,s) |z € X" Az € Q(M,B,z,s)}) and §(z) = >~ ,8(z,n). Notice

that the sum ", d(#) does not exceed 1 because

26(2) :Zﬁ({($’5) |z € Q(M, B, z,s)}) < ZD(Z) =1

Moreover, we write Q(M, B) = U(x s)erQ(M,B,x,s). To obtain the desired results, we let B = {z01™ |
z € B,n € N} and define v’ as follows:

v(z) - 652’” if w = 201" and §(z) > 0 for some n € N
v'(w) = and some z € Q(M, B),

0 otherwise.

Since Yo7 v'(201™) = p(z), we have

STV w) =D w(2017) =) i(z) =1

w z n=0 z

Thus, v’ becomes a distribution.
First we shall show that (B’,v') <P, (B,v). Fix an element 2o in B (because of B # X*). Define a

function f as follows:

z if w = 2017,
f(w) =

zo otherwise.

It is clear that f is P-computable, and f reduces B’ to B. (Note that this f is not p-honest.) For the string

20, 19}_1(,20) =v'({w| f(w) = z0}) = 0 by the definition of f, and thus we have v(zy) > 19}_1(,20). For other

strings z,

[M]¢

v(z) =

V'(201") = V'/({w | Fzdnfw = 201"]}) = V' ({w | f(w) = z}) = D}_l(z).

I
=)

n

Hence, (B, v') <P, (B,v) via f.

m

178 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

We next show (ii) and (iii) of the lemma. We define a new randomized oracle Turing machine M’ which
works as follows: on input x, M’ simulates M on input z, and whenever M queries a string z, M’ queries
z011° to the oracle. This simulation is carried out on each computation path. Note that the random-input
domain associated with (M’ B') is the same as that with (M, B). By definition, z011"l € Q(M’, B, x, s)
if and only if z € Q(M, B,»,s). Clearly M’ with oracle B’ computes A with bounded-error probability.
Moreover, the length of a queried string i1s longer than that of the input. The rest of the proof will be
devoted to showing the domination condition for (M’, B').

Now we introduce a random function g. Define

B min{ %‘ Iz, |z]) >0Az € Q(M,B,x,s)} if such a z exists,
glz,s) =
1 otherwise.
Note that 0 < g(x,s) < 1 for all . In particular, g(A,s) = 1 because M does not have any query strings.

Using this function g, we also define 7’ as follows:

ﬁ’(x,s) = 77($’5) ~g(l‘,8).

We shall show that 2/(201") > 7/ ({(z,s) | 201" € Q(M', B' z,s)}).
Claim 13 '(z01™) > 7' ({(xz,s) | 201" € Q(M', B’ z,5)}).

Proof of Claim. Tor every z in Q(M, B, z, s), it follows that 7' (x,s) < (=, s) - %%l. Hence, for every z

and n, we have

7' ({(z,5) | 201" € Q(M', B, z, 5)})
7 ({(x,s) |z €X" ANz €Q(M, B, x,5)})

< illle) | € QUL Bz o)) - T
< I?(z)~6gz(;7;) = (201",

We next show that g/ <" 7. By the definition of 7/, it follows that

o 7

i(z) < gqlz,s) (e, s) = D20 g(a,s) (2) =

To show the desired result, we should show that the random function 1/g is polynomial on p-average since,
if so, Lemma 3.3.13 ensures that the function ¢/g is also polynomial on p-average. Let us assume that ¢ is
p’ on p-average, where p’ is an increasing polynomial. For simplicity, write Q , for Q(M, B, z,s) and let
p(z) = 6272 -p/(32). We shall show that 1/g is p on p-average. Assume r > 1. Let E, = {(z,s) €[|z € XTA
Timeﬁ(l‘; s) < p(|z|-3r)}. Note that, for every (z,s) € Ey, if i(x) > 0, then |s| < Timeﬁ(l‘; s) < p(|=|-3r).
Moreover, in this case, we have |(z, s)| < 2|z|+ |s| + 1 < 2|=|(p(]x| - 37) + 2).

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 179

This 1s seen as follows:

i ({ _g(;’ s> illel 0 })

e ({(x,5) | g(z,5) - plla] - v) < 1))
jir({(a,s) | Time§y (x:5) > pllal- 31)}) + ar({(x. 5) [gz, 5) > p(Jz] - 3r)})
ir({(r,5) € By | g(a,s) - lJz] -r) < 1)).

IN

It is clear that the first two terms are bounded above by 1/37. Let T, be the third term, and we shall show
this term is also bounded by 1/3r. Tt holds that

T, < Zﬂr({(l‘,s) € B |g(x,s)-6nr-p/(3nr) < 1}).

Notice that g(z,s) < 1, and thus, d(z, [2]) > 0 for some 2z € @, ;. Then, g(z,s) = ﬂ(%l for some z.

T, < pr({(z,s) € Er | gz, s) - 6lz|*r-p'(J2] - 3r) < 1})
< pr({(e,s) € Er | 32 € Qo s[6(z, |2]) - 6z - p'([2] - 3r) < 6(2)]})
<

g:lp’(:anr)) ({(1‘,5) €L,
< S5 ({es

n=1 =z

€Y AIz €Qy, [5(2’”) < ﬁ] })

6rn? - p'(3nr)

) (2)
T €Y NZEQry Nb(z,n) < m})

> d(z) =1
< ! R
- nzz:l Zz:p (3nr) 6rn? - p'(3nr) nzz:l 6rn?
< 7T_2 < -
- 36r 3r

5.5.2 More Structural Properties

We shall show another important lemma below. Before stating the lemma, we prepare some notation.

Let M be a randomized oracle Turing machine, and let N be a randomized Turing machine. We define
another randomized Turing machine My which, on input z, does the following: it simulates M on input
z; whenever M queries z, simulates N on input z; and halts if M does. Let T’ be the the random-input
domain of this composite machine Mpy. Let x be fixed. For each random seed r € f(a:), r, denotes the
associated random seed generated by M with some oracle on input #, and r, denotes the associated random
seed generated by N on input z.

Using this notation, the lemma is stated as follows.

Lemma 5.5.3 Let p and v be distributions and let A be a set. Let M be a randomized oracle Turing

machine and let N be a randomized Turing machine. Let g be a random function with random-input domain

180 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

' which is almost total. Assume that there exists a semi-distribution n satisfying the following condition:
it <%‘;§2 n and v > Azn({(z,s) | z € Q(M, A x,9)}). Define the random function h from T to N as

h(z,r) = ZzEQ(MA o) g(z,7.). If g is polynomial on v-average, then h is polynomial on p-average.

Proof. For brevity, we write I'' in place of I'jya. We choose an increasing polynomial p4 such that g
is pa on v-average. Since p <77 7, take an increasing polynomial p and a random function ¢ such that
q(z,s) - n(x,s) > fir(x, s) for all pairs (z,s) € I', and ¢ is p on p-average.
Set
p(2) = pa(32) - palpa(32) - 622p(32)) + co,
where ¢y = Max, ¢ f(p) h(A, 7). We shall show that h is p on p-average. Fix d > 1. Let F4 and E4 be the sets
defined by

Ey = {(z,s) el |z Xt Aqgz,s) < p(z]- 3d) /\Timeﬁ(r;s) < pa(lz|-3d)}; and

Eq = {(z,7) €T |(2,5:) € Eyq}.
Let Qg s denote Q(M, A, z,s). We estimate the term pir({(z,7) | h(z,r) > p(|z| - 7)}) as follows:

pr({(z,7) | Az, 7) > p(le| - d)})
< () gl) > pllel - 3d)}) + e ({(x, 7) | Timegy (2;70) > pa(lz] - 3d)})})

+ip (z,7) € Eq Z g(z,72) > p(|z| - d)
2€Qu,ry

Clearly the first term is

pi({(z,r) [gz, re) > p(lz] - 3d)}) = i ({ (=, 5) [q(, 5) > p(l2| - 3d)}) < 3%[

Similarly, the second term is also bounded above by 1/3d. Let us denote the last term by T, and calculate
its upper bound.

Fix (z,r) € E; and let |z| = n (n > 0). Assume that ZzEQI” g(z,7;) > p(dn). Then, for some
z € Qor, We get |Qer. || - 9(z,7:) > p(dn). Fix such a string z. Since ||Qq || < Timef/[(x; ry) < pa(3dn),
we have g(z,7,) > pa(pa(3dn) - 6n%d - p(3dn)). Moreover, |z| < TimeAM(x;rx) < pa(3dn). Thus, it follows
that g(z,7,) > pa(|z] -6n2%d - p(3dn)). Using this fact, the term Ty is estimated as follows:

Ty < > ap({(x,7) € Eg| 2 € X" ATz € Qur.lg(z,72) > pallz] - 6dn® - p(3dn))]})

< ST, 8) | (r,5) € Bz €5
n=1
ATz € Qu s €T(2) Aglz,s") > pallz]- 6dn? -p(3dn))]}),

where ﬂgx\fy(l‘, s,8') = firr - 2710,
Write 7 X 4 to denote the distribution & defined as é(x, s,8') = n(z, s) 271"l for all (z,s,s"). From the fact
that p(3dn)-9(x,s) > ar,,, (x,s) for each (x,s) € Ey, it follows that p(3dn) 7ﬁ<\'y(1‘, s,8') > ugx\'y(x, s, 8').

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 181

Thus, T, is bounded above by the term

> p(Bdn) -7 x A({(z,5,5) | (2,5) € Eg Az € ="

. ATz € Qusls’ €T(2) Ag(z,5) > pal(lz] - 6dn? - p(3dn))]}).
Since v(B) > 7({(z,s) | 3z € Qo 5[z € B]}) for any set B,
vr({(z,5") 1 9(z,5") > pa(|z] - p(3dn) - 6dn*)})

> nxy({(x,5,5) | 32 € Qusly(z,8") > pallz] - p(3dn) - 6dn?)]}).

As a conclusion,

Ta < Zp(3dn) or({(z,8") | g(z,5") > pa(|z] - p(3dn) ~6dn2)})
n=1
2 p(3dn) 2 1
< - 2
N nzz:l p(3dn) - 6dn? 36d < 3d

Skew avbpp-tt-reducibility turns out to be closed under p-m-reducibility.

Lemma 5.5.4 Assume that (A, p) <P, (B,v) and (B,v) is skew avbpp-tt-reducible to (C,€). Then, (A, p)
is skew avbpp-tt-reducible to (C,¢).

Proof. Forsimplicity, let us assume that (Ay, pi1) <, (Asz, pi2) and that (Az, pa) is skew avbpp-tt-reducible
to (As, ps). Let f be an appropriate reduction which reduces (Aj, 1) to (Az, p2) with the domination
condition for f. Further, let M be a bounded-error probabilistic oracle Turing reduction which reduces
(A2, p2) to (As, us).

We shall consider the randomized algorithm N defined as follows: on input z, first compute f(z) and
then simulate M on input f(z). For each fixed x, since Ay(z) = Ax(f()),

Pry[N4 () = Ay(2)] = Prag[M* (f(x)) = Ao(f(2))] >

C»JI[\D

This shows that N is a bounded-error probabilistic oracle Turing machine with oracle As.
The estimation of the running time of N with oracle Az on input # with random input s, Timeﬁa(l‘; s),
is given by
Timeﬁa(l‘; s) < c- (Times(z) + TimeAMa(f(x)) +1)
for some constant ¢ > 0. Notice that Az.Timey(z) is polynomial on p-average, and /\xs.TimeAM3(f(x)), as
a random function, is also polynomial on pi-average by Lemma 5.2.4. In consequence, /\xs.Timeﬁe’(l‘; s) is
polynomial on pi-average.

To see the domination condition for N, write 7 for the default distribution induced from 7y and T pa,.

Then,

i) > i (w.s) | 2 € QML Agw) = 3 ()2t > Y L2y

(w,s)EFMAa (w,s)EFMAa pM(w’S)

182 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

For w, 1t holds that

frf) _ inlf (w) jin(e) jis (o)
Pl 2 o9 2 2o) 5@

Thus

bl

fi3(z) > Z Z pM(f(/il)(x) .9~ Isl
)

(w,s)ET a5 z€f L(w ’8)pf ($)

This sum is taken over all pairs (z,s) € T'ya, such that
Jw eran(f)[f(x) =w Az € Q(M, Az, w,s)].

This condition is equivalent to the condition z € Q(N, As, , s). Now let us define p(z, s) = par (f(2),) -ps(?)
and f(x,s) = jun(x) - 27151 /p(x,s) if s € T ya,(2), and 0 otherwise. Notice that Az.|f(x)| is polynomial on
p1-average, and consequently, Axs.pas(f(x), s) is polynomial on y;-average. Thus, p becomes polynomial on

p1-average. Then it follows that

s> S M S = (e s) | 2 € QN Asx,5)).

wsieTn, PO e,

This completes the proof. a
We need a relativized version of the Amplification Lemma (Lemma 3.5.31).

Lemma 5.5.5 Assume that (A, p) is skew avbpp-tt-reducible to (B,v) with B # ¥*. Then, there erist a
semi-distribution ', a randomized Turing machine N, and a distributional decision problem (B’ v') such

that
(i) (B'v) <b, (Bw);
(ii) PI‘S[NBI(l‘, 1m:5) = A(x) | s € Tymi (2, 1™)] > 1 = 2711=" for all 2 € ©* and m € N; and

(111) p X Veany j?‘ggl ' and v > Xz ({(x,y,8) | = € Q(N, B, 2,y,5)}).

Proof. Let us assume that (A, p) is skew avbpp-tt-reducible to (B, v) via a randomized Turing machine M
and a semi-distribution 5. Let ' be the random-input domain associated with M with oracle B. We suppose
that Pry [MB(z) = A(z)] > % + €. Since p <" p, there is a random function ¢ which is polynomial on
p-average such that q(x,s) - 7(x, s) = jr(z,s) for all pairs (z,s) € T'. Let z5 be the minimal string that is
not in B. We can assume that M does not query any strings of length smaller than or equal to |zp|.

For the desired problem (B’ V'), we set B’ = {z01" | z € B An € N} and set
Vratly(17) - #(2) if w = 201" for some n € N,

I?l(w) =

0 otherwise.

Obviously v/ becomes a distribution because Y ., /(201") = v(z) for all strings 2.

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 183

We then show (i). Let f be

z if w = 201" for some n € N,
flw) =

zo otherwise.

The function f becomes a reduction function which reduces B’ to B. To show that (B’,v') <P, (B,v), we

should check if the domination condition for f holds. This is shown as follows:

V(TR = Y 0(017) = Yty (17) - 0(2) = 0(2) - Brany ({1)7) = 2(2).

n=1
Next we show (ii). Let us recall the randomized algorithm in the proof of the Amplification Lemma that
boosts the success probability up to 1 —27121=™ on input pair (z,1™). Here we slightly modify its algorithm
to allow the algorithm to make queries. Take an integer ¢ satisfying ¢ > 1/e and let p(z, y) = 2¢3(|z|+]y|) for
all pairs (z,y). Then, we let N be the randomized oracle Turing machine defined by the following algorithm:

begin randomized algorithm for N

input (z,y)
if y ¢ {1}* then reject
for i = 1 to p(z,y) do

simulate M on input x without queries until M produces a query list
end for
list all possible query strings
for i = 1 to p(z,y) do

while simulation do

if M makes a query z then query 201

end while
end for
if the majority of the outcomes is 1 then accept else reject

end.

By a similar argument to that in the proof of the Amplification Lemma, we can prove (ii).
Notice that, for any strings « and y and any random seed s, the relation 201" € Q(N, B’ #,y, s) implies
that y = 1™ and 1 < n < p(x, 1) for some number m € N. Moreover, provided that 1 < n < p(x, 1), we

have the close relationship
201" € Q(N, B’ z,1™,5) <= 2 € Q(M, B, z, 5,),

where each s; is in T'(x) and is associated with s.
We shall show (iii). Let T' be the random-input domain associated with N with oracle B’. Then, we
define 5’ as follows. For (z,y,s) € [, let us define ¢'(=,y, s) to be 8(p(x,y) + 1) - fixl’y) q(z, sk) and let
1
]

— () B () 27N
7 (x,y,s) = p(z) - Veany (y) 7@

184 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

It is not difficult to see that ¢’ is polynomial on g X vany-average and also p X veany j?‘,’rp n.
By the definition of 7/, it follows that, for any (x,y, s) € T,
Peys) = () - hany (y) 2710 () - rany (y) - 27
¢'(z,y,s) 8(p(z,y) + 1)2 500 g(, ;)
p(x,y) /lr‘(l‘)
< Drany (1IF99)) - Diany (y) -
t y() t y() poet (](l‘,Sz)
p(z,y)
— ,;tany(lp(x,y)) Drally (¥) - iz, s;) co—lsl+sl

Now we must check the domination condition for N; that is, 7' ({(z,y,s) | 201" € Q(N, B’ z,y,s)}) <

v’ (201") for any z and n. Using the previous calculation, for each string of the form z01™,

0 ({(x,y,5) | 201" € Q(N, B, x,y,5)})

= > D iz 1M s) [201" € QN, Bz, 1™, 5)]

m=0 (z,s)el”
(o] p(xvlm)
< Z Z ﬁtally(lp(x’lm)) Deany (1) - Z iz, s;) - 9~ IslHlsil [201" € Q(N, B, z, 1™ s)].
m=0 (z,s)el” i=1

The last term 1s equivalent to the following term:

S (1) By () e s) - [z € QM. B, sy,

=0 (z,s,)€l

Therefore,
ﬁ/({(xayas) |Z01n EQ(NaB/a$aya5)})
< Prany (1) - Z Z Wz, s') [z € Q(M, B,z,s")] | - rany (1)
m=0 \(z,s")er
< g (1) 7 ({(2,8) | 2 € QM B,z s')}) - Y trany (17)
m=0

< rany (1) - 0(2) = 2(2017).

This completes the proof. a

5.5.3 Bounded Error Probabilistic Truth Table Reducibility

An ordinary bounded-error probabilistic oracle Turing machine can diminish the error probability signif-
icantly by repeating the same computation and taking a majority vote to determine the outcomes of the
machine. Our skew reduction does not seem to enjoy this property because of tight domination conditions for
the reduction machines. To guarantee 1t, we need a many-one transformation as well as the skew reduction.

Now we introduce our bounded-error probabilistic truth-table reducibility.

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 185

Definition 5.5.6 (Bounded-Error Probabilistic Truth-Table Reductions) Let (A4, p) and (B, v)

be distributional decision problems.

1. (A, p) is bounded-error probabilistic polynomial-time truth-table reducible (bpp-tt-reducible, for short)
o (B,v), denoted by (A,) §?tpp (B, v), if there exists a distributional decision problem (B’ v’) such
that (A,) is skew bpp-tt-reducible to (B’,v), and (B’,v’) is p-m-reducible to (B, v).

2. (A, p) is bounded-error probabilistic average polynomial-time truth-table reducible (avbpp-tt-reducible,
for short) to (B, v), denoted by (A, pt) §?;’bpp (B, v), if there exist a distributional decision problem
(B',v) such that (A, u) is skew avbpp-tt-reducible to (B’,v'), and (B’,v’) is p-m-reducible to (B, v).

In the following, we show basic properties of the reducibilities.

Proposition 5.5.7 Let a € {bpp,avbpp}.

avbpp

1. The relation <P, implies §?tpp and <P implies <j;

?

2. The relation <5} is reflerive.
3. The relation §?tpp implies §?;’bpp.

. b b .
4. The relations <P and <3P are transitive.

Proof. (1) By definition, deterministic Turing machines are a special case of probabilistic Turing machines.

(2) The claim of reflexivity is obvious by choosing the identity reduction, i.e., f(z) = x.

(3) Clear from the definitions.

(4) Here we show that <*'"PP is transitive. Assuming that (A;, p1) <%'PP (Ao, po) and (Ay, pg) <EPPP
(As, p3), we shall show that (Ay, 1) §?;’bpp (As, pa).

Let (A%, 45) be a distributional problem such that (Aj, 1) is skew avbpp-tt-reducible to (A%, ph) , and
(A%, ph) is p-m-reducible to (Az, pa). Suppose that (Aa, ps) is skew avbpp-tt-reducible to some distributional
problem, say (A%, u5), which is p-m-reducible to (As, pus). By Lemma 5.5.4, (A5,) is skew avbpp-tt-
reducible to (A%, p4). Apply Lemma 5.5.5 to this skew avbpp-tt-reduction to obtain another randomized
oracle Turing machine N, another semi-distribution 5, and another distributional problem (A%,) which
satisfies conditions (i)-(iii) of the lemma as well as (A4, u§) <P, (As, p3).

For readability and simplicity, in what follows, we can assume that (A;, p1) is skew avbpp-tt-reducible
to (A, p2) via a semi-distribution n; and a bounded-error probabilistic oracle Turing machine M; which,
with oracle As, is polynomial-time bounded on pj-average. Moreover, Prs[M{‘?’(x, 1™s) = Aax(x) | s €
FM2A3($, ™) > 1 =277y < vy j?‘;?a n2, and g3 > Az.aa({(z,y,5) | 2 € Q(Ma2, Az, z,y,5)}) for
some semi-distribution 7» and some randomized oracle Turing machine M which, with oracle Az, runs in
polynomial time on ps-average.

By the domination conditions, there are random functions p; and p; which are polynomial on p;-average

and polynomial on fia X 14any-average, respectively, such that pi(x,s) - 71(z,5) > fa(2) 22718l o (e, y, 8) -

186 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

o(2,y,5) > fio(®) - Prany (y) - 2710 fia(2) > m({(z,5) | 2 € Q(My, Ag, w,5)}), and fi5(2) > o ({(z,y,5) | 2 €
Q(Ms, Az, z,y,s)}) for all z and z.

Now we define a randomized Turing machine N which computes A; using oracle As:

begin randomized algorithm for N
input z (say, n = |z|)
simulate M on input x until the first query is made
complete a list of query strings
let m,_ be the number of query strings
resume the simulation
while simulation do
if M5 queries z then simulate M on input (z, 1"r=*3)
if M, reaches a halting configuration then output AM;(x) and halt
end while

end.

Let r be the random seed generated by N with oracle Az on input z. Clearly random seed r is associated
with all random seeds generated by M, with oracle As on input strings which M; with oracle As queries.
For such random seeds, we write 7, to designate the random seed that is used for the computation of M,
with oracle A, on input , and write r, for the random seed for the computation of Ms with oracle Az on
input z provided that z is in Q(My, Az, z,7y).

Given a pair (#,7r) € I'ya,, the running time of N with A3 as an oracle on input # with random input r
is bounded by

- TimeAM21(x; ry) + Z Timefj;(z’ 1?3) 4 1
2€Q(M1,Az,2,7)
for some constant ¢ > 0, where m,_ is the number of strings in the query list produced by N on input z along
with random seed R,. Clearly Timef/fl(x; ry) > my, > ||Q(My, Aa, 7p)||. Tt is immediate from Lemma 5.5.3
that the random function Axr. ZzeQ(Ml,AQ,x,rz) Timefj;(z, 1mr=+3: 1) is polynomial on p-average; thus, N
with oracle Az is polynomial-time bounded on py-average.

To see the validity of this algorithm, let us consider the success probability of the new machine N. Fix
an input z and a random seed 7 in I'yas (). Write Qo for Q(Mi, Ao, 2, s). The success probability that
NAs(z;7) = Ag(z) is at least

II Pr (M3 (2, 1M=F25) = A3(2) | s € T47 (2, 1= +5)]
2€Q(M1,Az,2,r2)

>[I a-2m=79

zEQz,ra:

I1 (1 _ 2—||Qx,rz||—z)

zEQz,ra:

v

S (1_2—||Qz,rx||—3)”QW” o 1 9 lQu =24+ Qu, I +1

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 187

3

= 1-927"? = .
4

It remains to establish the domination condition for N. For each z,

Z /,Lz Vtally() .9~ Is| . [Z e Q(MQ,AS,waya S/)]'
e pz w,y,s)

Write ph(w, y,s') for pa(w,y,s’) - 8(|y| + 1)?. Using the fact that 8(|y| + 1)* - Zrany (y) > 1,

~ Lo (w —|s
() 2 3 g e QUi A
(wyy,s’) 3 3

Also we have

Z () - sl [w e Q(My, As, . 5)].

P1l‘8

Combining both inequalities, we can calculate the lower bound of fiz(z) as follows:

ZZWS

271y € Q(My, Ay, @, 5)] - [2 € Q(Ma, As, w,y,)]

=3
w

&
Y

<,ys>xs pzwy’)
ﬂl 7l I ~lral
cglrel 2
Z pl x rx wE%I:,rz plz(w’ 1mrg;+3’ rw)
- “1 -l 1 olrl=lrel=Iru]
Z e T T E

Since |r| > |rg| + |7w|, we further calculate the lower bound as follows:

. p X (2, 7) 1 X A 'y x, r 1
Z .
al)) A)

Z m(l‘ﬂ“)
. / ?

(x 7‘) P (l‘, rl‘) ZwEQz,rz p2(wa 1er+3a rw)

v

where Qy s = Q(Mi, Ay, 2, s) and m(l‘, Py = (x) -2 if e € ['),4:(z), and 0 otherwise.
Now we set p(l‘, 7“) =DM (l‘, rl‘) 'ZwEQ(MhAz,x,Tz) p/Z(wa 1mr1+3a Tw) and 77(1‘, 7“) = m(x’ T)/p(l‘, 7“). By

Lemma 5.5.3, p turns out to be polynomial on pi-average. It then follows that
fis(z) = n({(2,7) | z € QN, As, 2, 7)}).

Thus, the claim is established. a

Finally we can show the closure property of the class Aver(BPP,x) under avbpp-reductions. This is a

direct consequence of Proposition 5.5.7(4).
Theorem 5.5.8 [9] The class Aver(BPP, %) is closed downward under avbpp-tt-reductions.

Proof. Similar to that of Theorem 5.2.12. O

188 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

5.5.4 Application of Probabilistic Reducibility

The motivation in having introduced the bounded-error probabilistic reducibility is to show that distribu-
tional problems in Dist(NP, P-comp) with natural flat distributions become complete. As a simple example,
we shall demonstrate that a flat version of the randomized bounded halting problem is truly complete for
Dist(NP, P-comp) with respect to bpp-tt-reducibility.

Let us introduce a flat version of the randomized bounded halting problem (RBHP f14:), (BHP s1ar, pHP, .,),

in the following fashion:
BHP 1o = {(s;, 2,t) | M; accepts z in |t| time }; and
HBHP 114, ((5i, 2, 1)) = Ustand (i) - Ustand (%) - Vstana(t)-
Theorem 5.5.9 RBHP 4 is bpp-tt-complete for Dist(NP, P-comp).

Proof. It is enough for us to show that (BHP, ppup) §?tpp (BHPfia¢, pBHP,,,,). Let us consider the

following randomized Turing machine N:

begin randomized algorithm for N
input (s;, z, 1)
generate a random seed w of length m
query {s;,x,w) to oracle
if (s;, z, w) is in oracle then accept else reject

end.

Notice that there is no error if BHP ¢4, is chosen as an oracle; that is, Py [NBHP et ((s; 2 17);5) = A(2)] =
1. Also N makes nonadaptive queries and runs in polynomial time for any oracle.
Let ¢ be an integer such that ¢ > 1/Dgana(s;). Let us define the semi-distribution n as #(z,s) =

figap (2) - 27151 for all pairs (2, s) € T yeue; otherwise, 0. We then have

0({(z.5) | (st 2,0) € QN BHP f1ar, 2,8)}) = i({si, 2, 11*1))

= iBuP,, ((si;2,w)).

Therefore, we have (BHP, yipmp) §?tpp (BHP f1at, piBHP 4,)-]

Another significant application of the bpp-tt-reducibility given by Ben-David et al. [9] is that “distri-
butional NP search problems” with P-computable distributions are actually reducible to distributional
decision problems in Dist(NP, P-comp). Nonetheless, since we have not defined “distributional NP search
problems” and the main subject of this thesis is decision problems, we state the result below without proof.

The interested reader may refer to [9] for the definition of search problems and the proof of the theorem.

Theorem 5.5.10 [9] Let (R,) be be a distributional NP search problem with P-computable distribution

5.5. BOUNDED-ERROR PROBABILISTIC REDUCIBILITY 189

p. Then there is a distributional decision problem (D, v) in Aver(NP,P-comp) such that (R, pu) is bpp-tt-
reducible to (B, v).

In worst-case complexity theory, it is easy to see that if A <} C and B <} C, then A® B <} C. The
same is true in average-case complexity. In the next lemma, we prove this claim.

Recall from Section 3.5 the definition of p @ v for two distributions p and v.

Lemma 5.5.11 Let <,€ {SgwS%/p’Sg’S;Vp’Sgpp’S;vbpp}’ If (A, pa) <o (C,€) and (B, pup) <o (C,§),
then (A® B, pa @ pup) <4 (C,8).

Proof. We demonstrate only the case §;prp. The other cases are somewhat similar. Let us assume

that (A, pa) §;prp (C,&) via My and (B, up) §;prp (C,&) via Mp. Define a new algorithm N: on input
z, if x = Ou for some u, then simulate M4 on input u; if # = lu for some u, then simulate Mp on u;
otherwise, reject the input. For the sake of convenience, write v for s @ pp. Take a computational path y
of the computation tree given by N on input . Since N basically follows either M 4’s computation or Mp’s,
we can determine the unique computation path, which is made by either M4 or Mg, corresponding to the
computation path specified by random input s. We denote this computation path by g.

We show that (A @ B,v) §;prp (C,&) via N. By our assumption, there exist semi-distributions 14 and
np such that ia <> 14, jp <= ng, £(2) > 3 ({(1,5) | 2 € Q(Ma,Cyuy5))), and (=) > iy ({(u,5) | = €
Q(Mp,C,u,s)}) for all z, where 7/, and nf; are the induced distributions from g4 and Fye, and from up

and FMg, respectively. Let 1 be defined as

%W}A(u) if # = Ou for some wu,
nx) =19 %-n8(v) if x = lu for some u,
0 otherwise.

It is obvious that 7 is a distribution. We also let n = n4 ® np. Let
pa(u) if 2 = Ou,

ple) =< pplu) ifz=lu,

1 otherwise.

We next show that p(z) - 7j(x) > ©(x). This is seen as follows. Assume that # is of the form Ou. The

other case 1s similar:

pla) (@) = pal)sialw) = <pale)-ialv)
> i) = o).
Finally, we show that &(z) > ir({(z,) | z € Q(N,C, z,y)}) for all z. For each string z, we have
€5 > u({(ns) 12 € QUM Cous))) + S ({(ws) | = € QMo €, o))

= ﬁp({(OU,S) | z € Q(N’ C, OU’S)}) + ﬁF({(lu’S) | z € Q(Na C, 1u’5)})
= ﬁF({an) | z e Q(N’ C’$’5)})'

190 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

This completes the proof. a

5.6 Structure of Reducibility

In this section, we shall take a close look at the structure of the randomized complexity class Dist(NP, P-comp)
in the light of reducibility. First we shall review the results of Ben-David, Chor, Goldreich, and Luby [9].
They proved that if there is a hard distributional problem in Dist(NP, P-comp), there is also a problem
which is in Dist(NP, P-comp) but not p-m-complete for Dist(NP, P-comp).

Proposition 5.6.1 [9] Let p € strict-REC-comp and D € REC. Assume thal there exisls a lime-
constructible function p such that p(n) € n°W) and |p(170) — p(1P0))| < 2714277 for almost all i,j € N. If
(D, p) & Aver(P, x), then there exists a semi-distribution v such that (i) (D,v) ¢ Aver(P,x), (i) (D, u) €%
(D,v), (i) (D,v) <B, (D, p), and (iv) v is computed by an oracle log-space deterministic Turing machine

relative to the function oracle p.

Proof. The proof proceeds by a so-called slow diagonalization technique. We first enumerate all quadruples
(M, N;, ¢, d;) of a deterministic Turing machine M;, a deterministic oracle Turing machine N;, and natural
numbers ¢; and d;. Write also D; for L(M;) for brevity. Note that by our assumption, there exists a
deterministic Turing machine which exactly computes .

For a finite sequence ¢ and an integer k > 1, let o(k) denote its kth element of ¢. For a finite sequence
o of 0’s and 1’s, let

v(z) = o(lz]) - (u(z) — p(171) + 3 o (@) - (n(1) = p(0%)).
i<z

It is easy to see that, for each #, v(z) = 0 if o(|z]|) = 0, and P(x) = ji(x) otherwise. Note that the condition
on g that |u(170)) — p(17G))| < 277 4 277 will be used later to guarantee the existence of a “normalized”
distribution of v.

Let us consider the following subprogram Cond(, o,):

subroutine Cond(i, o,1)
if t steps are consumed during the following computation then return “no”
if i = “even” then let i, := [¢/2]| and go to (*)
let ¢ = | (i — 1)/2] (since i = “odd”)
check the following two conditions:
(i) D;, NX=lol £ D xslel and
(it) Xso<fel<lo) Timenr,, (&) 4o - 2~ (2) > e
if either (i) or (ii) is true then return “yes” else return “no”
(%) check the following three conditions:

(i) L(Ny,, Di,) N BSlel £ DA xslel

0

5.6. STRUCTURE OF REDUCIBILITY 191

. . D, 1 -

(ll) Zx:0<|x|s|o| TlmeN,g ($)1/dlu : |l‘| L. ﬂ($) > Cigs and

(iii) there exist two #, y of length < |o| such that i(z) > v(y) =0, and y € Q(Ni,, Di,,)
if either (i), (ii), or (iii) is true then return “yes” else return “no”

return.

Notice that if Cond(i, o,t) answers “yes,” then so does Cond(i, r,t) for all extensions 7 of ¢ (i.e., 7 J o).

The following is the main body of the algorithm which computes o:

begin deterministic algorithm for o
input k
let ¢ := [log k]
fori=1tot do
exit the for-loop when ¢ individual steps are executed in this for-loop
compute pi(17)
if 2(1°) > 3 then go to (x)

end-for
output o (k) := 1 and halt
(%) for j=1tot do

exit the for-loop when ¢ individual steps are executed in this for-loop
re-compute o(j) (by a recursive call)
end-for
let J be the largest index j for which o(j) has been recomputed in the above for-loop
if no such J exists then output ¢(k) := 1 and halt
set 7y = o()o(2)---o(J)
fori=1to J do
exit the for-loop when ¢ individual steps are executed in this for-loop
call Cond(i,75,1)
if Cond(i,77,t) = “no” then exit the for-loop
end-for
let I be the smallest index ¢ for which Cond(¢,77,t) answers “no”
output o(k) := I mod 2 and halt

end.

The exit-statement enforce a time bound ¢ (= |logk|) on each each for-loop; thus, this algorithm
requires at most O(log k) steps. Hence, o is computed by using O(log k)-space. By definition, v is correctly
computable using log-space with the help of 1 as an oracle.

We shall show that this algorithm correctly computes o(k) on input k. We assume that there is no
extension 7T of o such that Cond(i, ,t) answers “yes.” Assume that ¢ is odd. Then 7 is of the form o1™
for some m € N because o(j), j > k, is always set to be 1. We then have D;; N vl = p = nusl7l This
implies L(M;,) = D. Also we have 37 |, 1<|r| TimeMlD(x)l/d’D “Jz|7t - p(2) < ¢,. We remark that the

192 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

value v(z) equals fi(z) if |#| > |o|. Hence, for some constant ¢ > 0, we have

Z TimeMlD(x)l/d’D e|Thu(w) < e+ Z TimeMlD(x)l/d’D e|Thp(x) < e e < 0.
o:|z|>0 o:|z|>0
This implies that (D, i) belongs to Aver(P, %), a contradiction.
Now let us consider the other case that ¢ is even. Notice that any extension 7 of ¢ 1s of the form ¢0™ for
some m € N. Then L(N; DZ'D)OEV| = DNXSIl for all extensions 7 of o. Thus, L(N;,, Di,) = D. Moreover,
there are no pairs (#, y) such that p(x) > 0, v(y) = 0, and y € Q(Ny,, Ds,,). Recall the definition of v. Since

0 0

T =00™, m € N, it follows that, for any y of length greater than |o|, #(y) = 0. This means that there is no
z (x| > |o|) on which N;, queries strings of length greater than |o|. In other words, ||, @(Ni,, Di,, #)|| is
finite. Let us define another Turing machine N’ which simulates N;, on the same input with all oracle answers
from D;, being encoded into its program. Clearly L(N;,, D;,) = L(N), and Timey (z) < c(Timeﬁ:[‘j () +1)
for some absolute constant ¢ > 0. Notice that 3, o j,<| ||t ~Timeﬁ:g (2) %0 () < ¢, for all extensions
7. Hence, we have
Timey (z)/ 40 , Timeﬁ:” () o
Z — a(e) < +e- Z — Yo’

cp(r) <+ ey
z:|z|>0 |l‘| z:|z|>0

||
This again concludes that (D, u) is in Aver(P,), a contradiction. Therefore, the algorithm for ¢ works
properly.

By Corollary 4.3.3, we can normalize v to a “full” distribution v* such that *(z) = () for all nonempty

strings x. ad

In a similar fashion, we can demonstrate the existence of a distributional problem that is not p-T-harder

than a given problem, but can be p-m-reduced to the given problem.

Proposition 5.6.2 [9] Let u € strict-REC-comp and D € REC. If (D, u) ¢ Aver(P, %), then there
exists a set E such that (i) (E,p) & Aver(P,*), (i) (D,p) €5 (E,p), (i) (E,p) <k, (D,p), and (iv)
Eell.

Proof. Similar to Theorem 5.6.1. O

Theorem 5.6.3 [9] Assume that Dist(NP,P-comp) € Aver(P,x). Then, there exists a distributional
problem (D, u) in the difference Dist(NP,P-comp) — Aver(P,*) which is not <I -complete for
Dist(NP, P-comp).

Proof. Assume that Dist(NP,P-comp) € Aver(P,%). Then, no p-m-complete problem for
Dist(NP, P-comp) belongs to Aver(P, x). Let (D,) be any distributional problem which is p-m-complete
for Dist(NP, P-comp). Since (D,) & Aver(P, #), Proposition 5.6.2 guarantees the existence of a set E such

5.6. STRUCTURE OF REDUCIBILITY 193

that (£, u) € Aver(P,x), (D, p) £5 (B, p), and (E, p) <P, (D, p). As (E,) <P, (D, p), the problem (E,)
is in Dist(NP, P-comp).
Clearly (F,p) is not p-m-complete for Dist(NP, P-comp). (Otherwise, (F,pu) <P (D, p), and thus

m

(E,p) <4 (D, p), a contradiction.) O

We say that two distributional problems (D,) and (E,v) are incomparable with respect to <4 if
(D, p) £ (E,v) and (E,v) £ (D, p).
The following theorem leads to the existence of incomparable pairs in Dist(NP, P-comp) with respect to

p-T-reductions.

Proposition 5.6.4 [97] For every recursive set D notl in P, there exist two P-computable distributions

p and v such that (D, p) €5 (D,v) and (D,v) £5 (D, p).

Proof. We use the slow diagonalization technique again. Let {M;};cn be a standard enumeration of
all deterministic polynomial-time oracle Turing machines. We recall that s; denotes the ¢th string in the
standard order on X*. Let o, 7 be infinite sequences of 0’s and 1’s. Let (z) = 2721#1=1 for all x. This
distribution is P-computable. We next define a semi-distribution p as
p(x) = a(le]) - (n(x) = n(F7) + 37 o (i) - (n(1') = n(07)
i< ||

for any nonempty string #. Similarly, v is defined by replacing ¢ with 7. Note that o(|z|) = 7(||) if and
only if j(z) = v(x).

The infinite sequences ¢ and 7 are computed by the following recursive procedure:

begin deterministic algorithm for (o(n), 7(n))
input n
if n = 0 then output (c(n), r(n)) := (1,1)
let t = |logn| (t does not change during n € {2™,2™ +1,...,2m+1 —1})
for j=0tot do
exit the for-loop when ¢ steps have been executed
recompute a pair (¢(j), 7(j)) (by a recursive call)
end-for
let J be the largest index j for which (¢(4), 7(j)) has been recomputed
if no such J exists then output (o(n), 7(n)) := (1,1)
fori=1to J do
call Cond(i, J,1)
if Cond(i, J,t) = “no” then exit
end-for
let I be the smallest index ¢ for which Cond(?, J,t) = “no”

(for the sake of convenience below, write r(n) = I)

194 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

if no such I exists then output (c(n),7(n)) := (1,1)
output (o(n), 7(n)) := ((I + 1) mod 2, I'mod 2)

end.
The subroutine Cond(i, J,t) is as follows:

subroutine Cond(7, J, 1)
if i = “odd” then let iy = [(¢ — 1)/2| and go to (*)
let ¢y = |i/2] (because i = “even”)
check the following two conditions:
(i) L(M;,, D) nuslel £ D xslel o
(ii) there are z,y < |o| s.t. fi(z) > v(y) =0 and y € Q(M;,, D, x)
if either (i) or (ii) is true then return “yes” else return “no”
(%) check the following two conditions:
(i) L(M;,, D) nuslel £ D xslel o
(ii) there are z,y < |o| s.t. o(x) > f(y) =0 and y € Q(M;,, D, x)

0

if either (i) or (ii) is true then return “yes” else return “no”

return.

Claim 14 range(r) =N, where range(r) = {r(z)|z € N}.

Proof of Claim. Assume range(r) # N. Take the minimal integer I such that r(n) < I for all n > 0. Since
I does not change, the algorithm always takes the same index 1.

First consider the case that I is even. Let ip = I/2 and let n be sufficiently large. Notice that, for every
z of length at least n, 4(x) > 0 and v(x) = 0. Moreover, for every z, we have le))(x) = D(x), and le))(x)
does not query any string y, where (z) > (y) = 0. Hence, Mz’? computes D on all inputs, and it queries
only strings of length smaller than n. This implies that D is in P, which contradicts our assumption. The

same argument also holds for the case where [is odd. []

Therefore, p and v are well-defined.

Finally, we must normalize these two semi-distributions to obtain the desired distributions. It is not hard
to see that p and v are log-space computable since, in each stage n, we quit the simulations after log n steps
are made. From Corollary 4.3.3, it suffices to show that, for p(n) = n 4 1, [p(17®)) — p(120))] < 277 4 277
holds for almost all i, 7 € N. Assume that ¢ > j. Then,

p(i) i+l
u(1PO) — (PO = 3T aEf) < D0 k)
k=p(j)+1 k=j+2

p070) =) = (=27 = (- 27))

277 4 977

IN

5.7. RECENT TOPICS 195

because either i(X*) = (%) or i(X*) = 0. By Corollary 4.3.3, y1 can be normalized by p’ such that i’ (z) =
ji(z) for all nonempty strings «. Thus, p' is P-computable. In a similar way, we can show the existence of
the P-computable distribution v’ which normalizes v. Distributions p’ and v/ satisfy the conditions of the

theorem. Thus, we complete the proof. a

Corollary 5.6.5 [97] If Dist(NP,P-comp) € Aver(P,«), then there is an incomparable pair in
Dist(NP, P-comp).

Proof. Assume that Dist(NP,P-comp) € Aver(P,*). Let D be a set in NP — P. This set D exists
because P = NP implies Dist(NP, P-comp) C Aver(P, *). By Proposition 5.6.4, there exist two distribu-
tions p, v € P-comp such that (D, u) and (D, v) are incomparable. Notice that (D,) and (D, v) are in
Dist(NP, P-comp). a

5.7 Recent Topics

In this section, we shall discuss some issues which have emerged recently.

Randomized Many-One Reductions. The search for a better definition of “reductions” is an exciting
field in average-case complexity theory, because the different choices of reducibility can lead to different
worlds.

For example, we have seen that there is no flat distribution for which a distributional problem is p-m-
complete for Dist(NP, P-comp) if EXP # NEXP. However, Gurevich introduced a random version of
many-one reductions under which some flat distributions make their distributional problems “complete.” A
similar phenomenon occurs in the case of random reductions. Impagliazzo and Levin [44] demonstrated that
distributional NP-search problems can be randomly reduced to distributional decision problems.

Here is the definition of random reductions. Recall the definition of dilations from Section 3.6.

Definition 5.7.1 [12] For two distributional problems (D,) and (F,v), (D, i) is polynomial-time ran-
domly (or randomizing) reducible to (E, v) if there exists a function f which is computable by a randomized
algorithm in polynomial time on p-average, and a dilation T' such that (i) for any (z,s) € T, € A if and

only if f(xz,s) € B, and (ii) f satisfies the domination condition. (N.B. f takes inputs of the form (z, s).)
Using this type of reduction, the following interesting claim can be proved.

Proposition 5.7.2 [36, 109] There erxits a flat distribution p such that (BHP,u) is complete for
Dist(NP, P-comp) under polynomial-time random reducibility.

196 CHAPTER 5. AVERAGE POLYNOMIAL TIME REDUCIBILITIES

Alternative Definition of Polynomial on the Average. Let us take a quick look at Levin’s definition of

g(@)®
[=]

“polynomial on the average.” Recall that a function g is polynomial on p-average if and only if Zx:x;ﬂ
fi(x) < 0o. One of the observations is that it allows us to deal with distributions that put too much weight
on the first few strings. J. Cai and A. Selman [19] considered such distributions inappropriate for a coherent,
general theory of average-case complexity. As an alternative, they propose a different notion of “polynomial

on the average” which counts on the convergence rate of the expectation.

Definition 5.7.3 [19] A function g is “¢ on the p-average” (in the sense of Cai and Selman) if, for all
n>1,

tHg(x) - n
> i) < i - 5.

As long as p satisfies An.i({z | |z| > n}) € Q(n~%) for some constant k& > 0, Levin’s definition of
“polynomial on p-average” coincides with that of Cai and Selman [19]. Moreover, this notion of Cai and
Selman is equivalent to the notion of “polynomial on average with respect to {ft>n }nen” in Definition 3.3.7.

C. Rackoff also suggests (reported in [19]) the following definition.

Definition 5.7.4 [19] A function g is “¢ on the p-average” (in the sense of Rackoff) if, for all n > 1,

S S) <).
o|e|=n

Rackoff’s definition also provides the same notion of “polynomial on p-average” given by Levin if p
satisfies An.fi({z | |2] = n}) € Q(n~*) for some constant k > 0.

However, Cai and Selman’s definition seems inappropriate when we consider the polynomial-time many-
one reductions introduced in Section 5.2. Let us denote by CS-Aver(P, F) the collection of all distributional
decision problems (A, p) such that g € F, and A is computed by a deterministic Turing machine M which
satisfies the condition that, for all n > 0, 32 1 1>n M‘%Mﬂ(r) < pl{z | |z] = n}) for some constant
k> 0.

Belanger and Wang [7] showed that CS-Aver(P, %) is not closed under <P -reductions or <2"P-reductions

with one-one reduction functions. Hence, CS-Aver(P, «) is properly included in Aver(P,).

Theorem 5.7.5 [T] CS-Aver(P,*) is not closed downward under <P -reductions or <ZP-reductions with

one-one reduction functions.

Chapter 6

Average Case Hierarchies

6.1 Introduction

One of the most novel contributions to worst-case complexity theory is the introduction of the polynomial-
time hierarchy (or polynomial hierarchy) by Meyer and Stockmeyer in 1972. This worst-case hierarchy is
built from P and NP in a way similar to how Kleene constructed his arithmetical hierarchy above recursively
enumerable sets. Notably, the classes of the hierarchy lies between P and PSPACE. The construction is
such that the kth level of the polynomial-time hierarchy is defined to be the collection of all sets, each of
which can be recognized by a polynomial-time deterministic/nondeterministic oracle Turing machine relative
to some sets in the (k — 1)th level of the hierarchy.

The polynomial-time hierarchy has been studied extensively for over two decades with many intriguing
results. For example, if the Boolean hierarchy over NP collapses, then so does the polynomial-time hierarchy
[47], and if the polynomial-time hierarchy collapses, then the low and high hierarchies in NP collapse [89].
Many NP-hard problems are classified into various levels in the polynomial-time hierarchy.

This chapter will build average-case analogues of the polynomial-time hierarchy among distributional
decision problems. To introduce an average polynomial-time hierarchy, we shall begin with the relativization
of the fundamental average-case complexity classes Aver(P, F) and Aver(NP, F), relative to a distributional
problem (E,v).

A relativization of the class Aver(P, F) to an oracle problem (F,v) is naturally induced from the average
polynomial-time deterministic Turing reducibility defined in Section 5.2. A similar approach toward a rela-
tivized Aver(NP, F) is taken by Schuler and Yamakami [97] based on the model of clocked nondeterministic
Turing machines. Here we shall define a relativized Aver(NP, F) in a slightly different way. In Section 5.2,
the relativization of Aver(P,F), Aver(BPP,F), Aver(NP,F), and Aver(PSPACE, F) will be formulated
in terms of various restrictions on average polynomial-time oracle Turing machines together with weaker
domination conditions for those machines.

In relativized worlds, we can see a desirable separation of Aver(NP, P-comp) and Aver(P, P-comp), and

197

198 CHAPTER 6. AVERAGE CASE HIERARCHIES

a collapse between Aver(P,P-comp) and Aver(PSPACE, P-comp).

In Section 6.4, using Turing reducibility, we shall introduce an average-case version of the polynomial-
time hierarchy, average polynomial-time hierarchy under a set F of distributions {Aver(A}, F), Aver(Z¥, F),
Aver(IIY, F) | k > 0}.

Another effective way of characterizing the kth level of the polynomial-time hierarchy is to use polynomial-
time alternating Turing machines with k-alternation. This worst-case characterization is very suggestive
and enables us to build another type of average polynomial-time hierarchy using “average” polynomial-
time alternating Turing machines with constant-alternation. We call this average-case hierarchy the average
polynomual-time alternating hierarchy. Section 6.5 will formally introduce an average-case alternation hi-
erarchy based on average polynomial-time alternating Turing machines with constant-alternation. As the
reader may perceive, however, these two types of average-case hierarchies are unlikely to coincide.

We have seen in the previous chapter that if Dist(NP, P-comp) is not included in Aver(P, P-comp), then
there are distributional problems which are in Dist(NP, P-comp) but which are not p-m-complete. This
indicates the possibility of a large gap between Aver(P, P-comp) and Aver(NP, P-comp). One approach of
refining this gap involves constructing a hierarchical structure within Aver(NP, P-comp) and sorting out all
distributional problems in Aver(NP, P-comp) into various levels of this hierarchy. This approach was taken
by Schoning in worst-case complexity theory in 1980, and the hierarchies within NP are called the high and
low hierarchies. A natural average-case version of the low hierarchy, called the average low hierarchy within

Aver(NP, F), will be introduced.

Major Contributions. In this chapter, we introduce several new hierarchies.

In Proposition 6.2.8, it follows by the self-reducibility of RBHP that Dist(NP, P-comp) C Aver(BPP, %)
implies Dist(NP, P-comp) C Aver(RP,).

The notion of relativization originally comes from Schuler and Yamakami [97]; however, the relativizations
of the classes Aver(NP,F) and Aver(BPP, F) treated in this chapter are different from those in [97].

Proposition 6.3.8 shows that Aver(BPP, F) relative to Aver(BPP,) collapses to Aver(BPP, x) for any
set F of distributions.

Proposition 6.3.11 shows basic properties of relativized Aver(NP,F), such as reflexivity and transi-
tivity. In particular, if (A, p) is in Aver(P,*)(Z¥) then all problems in Aver(NP,F)(4#) belong to
Aver(NP, F)(Bv),

Theorem 6.3.12 demonstrates an oracle separation between Aver(P, P-comp) based on a tally oracle con-
struction given by Baker, Gill, and Solovay [3], whereas Theorem 6.3.17 shows a collapse of
Aver(PSPACE, P-comp) to Aver(P,P-comp) in a relativized world. The proof uses a relativized version
of the randomized bounded halting problem.

Proposition 6.3.19 shows that Aver(PSPACE,F) relative to Aver(PSPACE,) collapses to
Aver(PSPACE, F) for any set F of distributions.

Basic inclusion relationships, such as Aver(A}, F) C Aver(Z},F) C Aver(Ag_H,}"), among classes in

the average polynomial-time hierarchy are shown in Proposition 6.4.4.

6.2. DISTRIBUTIONAL POLYNOMIAL-TIME HIERARCHY 199

Proposition 6.4.6 shows that a collapse of two levels of the average polynomial-time hierarchy causes any
higher level of the hierarchy to collapse.

An important new idea is the use of of alternating machines to build another average-case version of
the polynomial-time hierarchy. Theorem 6.5.2 gives an oracle characterization of the average polynomial-
time alternating hierarchy; for example, Aver(AAg_H,}") is equivalent to the class Aver(P,F) relative to
Dist(XF,). A similar characterization holds for Aver(AEg_H,}").

In Proposition 6.5.4, it is shown that the class Aver(BPP,F) is included in the second level of the
average polynomial-time alternation hierarchy.

Proposition 6.4.9 and Theorem 6.4.11 show that many basic average complexity classes, such as Aver(P,)

and Aver(NP, %), have the sparse interpolation property.

6.2 Distributional Polynomial-Time Hierarchy

In the previous chapter, we showed that several important distributional decision problems, such as the
bounded halting problem RBHP, are p-m-complete for Dist(NP, P-comp). This section will extend these
completeness results to the class Dist(2F, P-comp), the kth level of the “distributional polynomial-time

hierarchy under P-comp.”

6.2.1 Definition of Hierarchy

Randomized complexity classes are the simplest randomization of existing worst-case complexity classes. As
with the polynomial-time hierarchy, we can consider its natural counterpart of the polynomial-time hierarchy,
the distributional polynomaial-time hierarchy, under a given set of distributions.

We begin with its formal definition.

Definition 6.2.1 Let F be a set of distributions. A distributional polynomial-time hierarchy under F
consists of the following classes: Dist(A}, F), Dist(2}, F), and Dist(II}, F) for all & > 0.

We next demonstrate the existence of p-m-complete problems for each class Dist(X}, P-comp). We
generalize the randomized bounded halting problem RBHP, seen earlier, to the kth level randomized bounded
halting problem RBHP*. The kth level randomized bounded halting problem RBHP* is the distributional
problem (BHPk,/,LBHP) defined in the following fashion. Let upgp be the same distribution as in Section
5.3. Assuming that {M;};en is an effective enumeration of all nondeterministic oracle Turing machines, we

define
BHP(A) = {(i,#,1") | M accepts x in less than n steps },

and then set BHP! = BHP(Q) and BHP**! = BHP(BHP*) for k > 1.
Next theorem proves that, for each k, the problem RBHP* is p-m-complete for Dist(2F, P-comp). Note
that the case £ = 1 has been already shown as in Theorem 5.3.2.

200 CHAPTER 6. AVERAGE CASE HIERARCHIES
Theorem 6.2.2 [97] For any k > 0, RBHP* is <P -complete for Dist(E}, P-comp).

Proof. The general case k& > 1 is very similar to the base case k = 1 of Theorem 5.3.2. We note that
BHP” is X} -complete.

For every set D € ¥ and every distribution y € P-comp, we shall show that (D, u) <E, (BHPk,pBHp).
Notice that BHP* ! is p-m-complete for 3P ., and as a consequence, there exists a polynomial-time non-
deterministic oracle Turing machine M computing D with oracle BHP* 1.

Let g be the function g defined in Lemma 4.2.7(2). The function g satisfies ji(z) < 2-19@)+2 Now let i
be an index such that L(M;) = L(M). Let p be a polynomial time bound of M;. For the reduction f from
D to BHP* we set f(x) = (s, g(x), 120=DY. Clearly f is one-one and witnesses the reduction D <P, BHP*
because z € D holds exactly when M; with oracle BHP*~! accepts within p(|x|) steps. To check the
domination condition for f, we simply follow a argument similar to that used in the proof of Theorem 5.3.2.

Thus, we obtain (D, u) <P, (BHPk,NBHP)~ 0

6.2.2 Self-Reducibility

Meyer and Paterson [71] have introduced the notion of (polynomial-time Turing) self-reducibility into worst-
case complexity theory.

All known NP-complete problems are self-reducible; and every self-reducible set belongs to PSPACE. It
is natural to ask whether the notion of self-reducibility has a counterpart in distributional decision problems.
We shall indeed give in this section the formal definition of an average-case version of self-reducibility and
show the existence of self-reducible sets in each level of the average polynomial-time hierarchy.

We begin by defining the important concept of a P-computable, OK partial order on the set X*.

Definition 6.2.3 (OK Partial Order) Let < be a partial order.

1. A partial order < is polynomial-time computable (P-computable, for short) if there exists a polynomial-

time deterministic Turing machine M such that, for every pair (z,y), © < y if and only if M (z,y) = 1.
2. A partial order < is OK if there exists a polynomial p such that

1) every strictly descending chain is finite and is polynomial in the length of its maximum element;
g g
ie, ifey > 2o > > ap_1 > xp is astrictly descending chain starting from 1, then & < p(|z1]),

and

(i1) for every pair (z,y), x < y implies |z| < p(|y]).

For example, let us write # < y to mean |z| < |y| for any pair (#,y). Then the relation < becomes a
P-computable, OK total order on X*.

The notion of self-reducibility is now stated as follows.

6.2. DISTRIBUTIONAL POLYNOMIAL-TIME HIERARCHY 201

Definition 6.2.4 (Self-Reducibility) [97] A distributional decision problem (D, p) is (polynomial-time
Turing) self-reducible if there exist an OK partial order and a deterministic oracle Turing machine M such
that (D, p) <§. (D, p) via M, and for every input x, all query strings in the computation of M on input z

are smaller than x with respect to the partial order. The machine M is called a self-reducing machine for

(D,).

Lemma 6.2.5 1. Bvery distributional decision problem in Dist(P,) is self-reducible.

2. Every self-reducible distributional decision problem is in Dist(PSPACE,).

Proof. (1) For any distributional problem (D, p1) in Dist(P, %), there exists a deterministic Turing machine
M which computes (D,) without any queries. This machine reduces (D, u) to (D, u). By the definition of
self-reducibility, (D,) turns out to be self-reducible.

(2) Assume that (D, u) is self-reducible. Let us take a self-reducing machine M for (D, pu). We shall
define a Turing machine N which computes D using polynomial space. Below we describe an algorithm for

N using a recursive call.

begin deterministic algorithm for N
input z
simulate M on input x
while simulation do
(%) if M makes a query z then simulate N on input z
if M reaches a halting configuration then output M (z) and halt
end-while

end.

We must prove that N uses only polynomial space. Let us analyze the query process of N on input z.
Notice that the space used by the machine M is p-bounded, and thus there are at most exponentially-many
different configurations. Remember that this number is independent of the choice of oracle. Let us assume
that in the first round of the simulation of M, M queries at most exponentially-many strings, which are in
Q(M, D, z). The recursive protocol in the line (%) brings another round of the simulation of M on each input
taken from the set Q(M, D, z). Fix an arbitrary string 2(!) in Q(M, D, z). In the second round, M makes
another set of queries, Q(M, D, z(l)). To go into the third round, we fix a query string z(*) in Q(M,D, z(l))
and then consider the set Q(M, D, z(z)) of query strings. Recursively, we keep fixing a query string z(*) and
then start another round of the simulation of M on the input (). This process proceeds until M does not
query any strings.

Now let us consider an arbitrary sequence z("), 2(*) . () ... taken by the above procedure. Since M
is a self-reducing machine, this sequence makes a strictly descending chain with respect to the given OK

partial order. This implies that the length of the chain is bounded above by a polynomial in |#|, and the
length of each string z(*) is also bounded by a polynomial in |z|. Let p be such a polynomial. As a result, N

202 CHAPTER 6. AVERAGE CASE HIERARCHIES

can simulate M using p(]z|) blocks on a working tape, each of which is used to store one of the strings z(0)

being queried in each ¢th round. Therefore, N needs only polynomial space. a

Moreover, the set of all self-reducible problems is closed under p-isomorphism; i.e., if (D, p) is p-

isomorphic to some distributional problem which is self-reducible, then (D, u) is self-reducible.

Lemma 6.2.6 Let (D, p) and (E,v) be any distributional problems. If (D, p) is p-isomorphic to (E,v)
and (E,v) is self-reducible, then (D, p) is self-reducible.

Proof. Let f be a p-isomorphism from (D, u) to (E,v), and let M be a self-reducing machine for (E,v).
By the definition of p-isomorphism, f is P-computable and p-invertible; that is, f~! is also P-computable.

Since (D,p) <V (E,v) via f, there exists a polynomial p such that p(|z|) - v(f(z)) > p(z) for all z.
Similarly, f=! reduces (E,v) to (D, u), and thus there is a positive, strictly increasing polynomial ¢ such

that ¢(|f(z)]) - pp(x) > 0(f(x)) for all .

We wish to construct another self-reducing machine N for (D, it). Let us define the machine N as follows:

begin deterministic algorithm for N with oracle
input z
start the simulation of M on input f(x)
while simulation do
if M queries z then query f=1(z) to oracle
if M reaches an accepting configuration then accept
end-while
accept

end.

Recall that D(z) = E(f(z)) and D(f~1(z)) = E(z) for all strings = and z. From these equations, N can
reduce D to D in polynomial time. Furthermore, there exists a strictly increasing polynomial ¢’ such that
if z is a query string made by N on input z, then |f(z)] < ¢/(]z]), since f and f~! are both p-honest and
p-bounded.

Next we shall check the domination condition for N. By the domination condition for M, we can find a
semi-distribution ¢ and a polynomial p’ such that p'(|z|) é(x) > v(z) and p(z) > é({x | 2 € Q(M,E,2)})
for all z and z. We define the semi-distribution 5 by 7(z) = é(f(x))/s(|x|), where s = g o ¢'. We first show

that p <P 7. This is seen as follows. For each z, we have:

A
=
2
=
==
&
I

p(x) < p(lzl) - v(f(2)) < (f(@) < pzDp/(1f (@)D s(l2]) - 7 ().

From these inequalities, we set ¢(z) = p(2)p'(f(2))s(x), and thus t(z) - 7(z) > pi(x).

6.2. DISTRIBUTIONAL POLYNOMIAL-TIME HIERARCHY 203

To see that fi(z) > n({x | = € Q(N, D, z)}), we notice that

Wel-eeu.poy< Y U)oy V@) S S,

S .
z:2€Q(N,D,x) 8(|l‘|) z:2€Q(N,D,x) (](f(Z)) (](f(Z)) z:2€Q(N,D,x)

The term Zx:zeQ(N,D,x) é(f(x)) Is equivalent to the term é({y | f(z) € Q(M, E,y)}, which is bounded by
v(f(z)). Therefore, it follows that

v(f(2))
q(f(2))

This completes the proof. a

{z]z€Q(N, D z)}) <

One of the classical self-reducible NP-complete problems is the satisfiability problem, SAT. However,
we do not know a simple distribution g such that (SAT, i) is Dist(NP, P-comp)-complete. Moreover, as
shown by Franco and Paull [25], SAT is deterministically computable in polynomial-time on the average
under some natural distribution. Instead, we consider a skew version of the kth level randomized bounded
halting problem, skewRBHP* | which is p-isomorphic to RBHP¥. We want to show that skewRBHP* is
self-reducible. By Lemma 6.2.6, this implies the self-reducibility of RBHP* .

First we define the kth level randomized skew bounded halting problem skew RBHP* as the distributional
decision problem (BHPpeq, ppmp.,,.,). Assuming that all nondeterministic Turing machines take at most
two nondeterministic choices at every step, BHP ., is the collection of strings of the form (s;, z,y, 1),
ly| < t, such that, on input ¢, M; with oracle BHP*~! deterministically follows the computation path
specified by y during the first |y| nondeterministic choices and then halts in an accepting state within ¢

steps. The distribution puppp is defined by:

skew

fBHP, ., (5i, %, 9,1) = fiHp (Si, 7, 1) - Ustana(y)-
Theorem 6.2.7 [97] For each k > 0, RBHP* is self-reducible.

Proof. As mentioned above, our strategy is to show that (i) skew RBHP* is p-isomorphic to RBHP* | and
(ii) skewRBHP* is self-reducible.

We first sketch the proof of statement (i). The proof that skew RBHP* < RBHP” via a P-computable,
p-invertible reduction function is similar to the proof of Theorem 5.3.2. The other direction RBHP* <
skewRBHP” is shown by considering the reduction function f defined by

Flsi, e, t) = (si,2, A1)

for all triplets (s;, #,t). The function f is one-one, P-computable, and p-invertible.
Next we prove statement (ii); that is, skew RBHP* is self-reducible. Let us define the binary relation <
as follows:
(siyz,y, 1) < (sj, 2"y,)<= i=jAhe=d ANy Cynt=tAly| <|t'.
It is easy to see that the relation < is P-computable and that it is an OK partial order because of the upper
bound || on the size of y.

204 CHAPTER 6. AVERAGE CASE HIERARCHIES

Next let us consider the following oracle Turing machine N:

begin deterministic algorithm for N

input (i, z,y,1)

if ¢ is not of the form 1™ then reject

if |y| > |t| then reject

decode the code s; and recover the machine M;

simulate M; on input deterministically following the computation path
encoded by y until the machine either exhausts |¢| steps or
makes the (|y| + 1)th nondeterministic choice

if either M; reaches a halting state or it does not halt within |¢| steps then go to (x)

query (i, z,y0,t) and (i, z,yl,1) to oracle

if one of the strings belongs to oracle then accept else reject

(%) if M; accepts & within |¢| steps then accept else reject

end.

We wish to show that N is self-reducing machine. Clearly N reduces BHP*

skew

to BHP’;kew by querying
only strings which are smaller than input with respect to <. To complete the proof, we must check the
domination condition for N. Notice that two query strings (s;, #,y0,t) and (s;, z, y1,¢) uniquely correspond
to input (s;,z,y,t). Let us consider the query string (s;,z,40,t). The probability jipup.,,., (si, %, y0,1) is
bounded by:

8 - iBHP (5, %, 1) - Vstana (y0)

8 - [iBHP. .., (5i, %, 40,1)
= 8- jpnp(si, 1) . 9~ 2llog(ly0[)—y0[-1

8 - finrp (56, ¢, 1) - 273 - 2~ 2os(lyl-lyl-1

v

= [BHP ... (5i,2,¥,1)

= ﬂBHPskew({w | (Siaxayoat) € Q(Na BHP?kewaw)})

since llog(n 4+ 1) < llog(n) 4+ 1 for all n € N. A similar inequality holds for gpup.,., (si,#,yl,t). Therefore,

N is a self-reducing machine. ad

As stated before, Wang and Belanger [112] show that most known distributional problems complete for
Dist(NP, P-comp) are p-isomorphic to each other. From Theorem 6.2.7, we immediately conclude that
most known p-m-complete problems for Dist(NP, P-comp) are self-reducible. Nevertheless, we do not know
whether all p-m-complete problems for Dist(NP, P-comp) are self-reducible. If the Isomorphism Conjecture
(in Section 5.3) is true, then all distributional problems in Dist(NP, P-comp) obviously become self-reducible.

Finally in this section, we shall demonstrate an application of self-reducibility. In worst-case complexity
theory, Ko [52] and Zachos [122] use self-reducible sets to show that NP C BPP implies NP = RP. A

similar argument can be carried out in the average-case setting.

6.3. RELATIVIZATION OF AVERAGE COMPLEXITY CLASSES 205
Proposition 6.2.8 Dist(NP, P-comp) C Aver(BPP, x) if and only if Dist(NP,P-comp) C Aver(RP, *).

Proof. Let us assume that Dist(NP, P-comp) is included in Aver(BPP, x). We have seen that skewRBHP
is self-reducible and complete for Dist(NP, P-comp). It is thus enough to show that skewRBHP belongs to
Aver(RP,) because the class Aver(RP, x) is closed under p-m-reductions.

Let M be a self-reducing machine for skewRBHP which runs in polynomial time, and a P-computable,
partial OK order < for self-reducibility. Let p be a polynomial such that Timeys(z) < p(|x]|) for all z. Let us
consider the self-reducing tree of skew RBHP. By our assumption, there is a bounded-error probabilistic Tur-
ing machine My which recognizes BHP in polynomial time on puppp-average. Benefited by the Amplification
Lemma, we can assume that Prys,[Mo(z) = BHP(2)] > 1 — 277()=3 for all 2.

On input (s;,z,y,1™), each node of the self-reducing tree starting from the root (s;,z,1™) describes
a nondeterministic choice made by the machine M; on input z. To determine the correct outcome of the
machine, we probabilistically trace the self-reducing tree along each path as a series of nondeterministic
choices; when we reach a leaf, we check whether the machine reaches an accepting configuration. This last
step is done without any error, and thus we have a one-sided error randomized algorithm.

Therefore, RBHP is in Aver(RP,). a

6.3 Relativization of Average Complexity Classes

In 1975, Baker, Gill, and Solovay [3] initiated a study of relativized complexity classes. Early studies
revealed possible worlds in which P = NP = co-NP, P # NP = co-NP, or P # NP # co-NP holds.
This appalling phenomenon clearly reflects the difference in computational power between determinism and
nondeterminism.

In Chapter 5, we have already seen “relativized computation” in terms of average-case versions of
Turing reducibility. Naturally we can expand our boundary to relativized worlds. This section will in-
troduce four relativized average-case complexity classes: Aver(P,F), Aver(BPP,F), Aver(NP,F), and
Aver(PSPACE, F).

6.3.1 Relativized Aver(P,F)

The concept of relativization is another way of viewing Turing reducibility. We have already seen two types of
Turing reducibilities: deterministic Turing reducibility and bounded-error probabilistic Turing reducibility.
Here we shall introduce the notation Aver(P, }")(B’”) to denote the collection of distributional problems which
are avp-T-reducible to a given distributional problem (B,), analogous to the notation P? in worst-case
complexity theory.

Now let us introduce a relativization of the fundamental average classes Aver(P, F) and Aver(BPP, F).

Definition 6.3.1 (Relativized Aver(P,F)) [97] Let (B, v) be a distributional decision problem. For

206 CHAPTER 6. AVERAGE CASE HIERARCHIES

a set F of distributions, denote by Aver(P,}")(B’”) the collection of all distributional decision problems
(A, pt) such that there exist a deterministic oracle Turing machine M and a semi-distribution 5 satisfying

the following conditions:
(i) (Efficiency) M with oracle B is polynomial-time bounded on p-average;
(if) (Validity) A = L(M, B); and
(iii) (Domination) gt <*P n and & > Az.p({z | 2 € Q(M, B, x)}).
To improve readability, we simply say that the oracle machine M computes A with oracle (B,v) in
polynomial time on p-average if Conditions (i)-(iii) are witnessed by M with some semi-distribution 7.
We remark that it is possible to introduce a weaker type of relativization using p-T-reductions (see,

e.g., [97]). However, we believe that average polynomial-time Turing reductions are a better choice when

discussing average-case complexity, because the class Aver(P, %) is closed under avp-T-reductions.

Proposition 6.3.2 [97] Let (A, pn) and (B,v) be any distributional decision problems, and let F be any

set of distributions.
1. (B,v) € Aver(P, F)(B»),
2. If (A, p) € Aver(P, %) BY) then Aver(P, F)4H) C Aver(P, F)B¥),
Proof. (1) Consider the oracle Turing machine that queries the input string to oracle and then accepts

it exactly when it is in the oracle. (2) This is another interpretation of the transitivity property of avp-T-

reducibility. a

Finally we shall extend Definition 6.3.1 from a single oracle problem to a class of oracle problems.

Definition 6.3.3 Let C be a class C of distributional decision problems. For a set F of distributions, set

Aver(P, F)¢ = {(D,p) | 3(E,v) € C[(D, p) € Aver(P, F)E}.
Propositions 5.2.11 and 5.5.7 immediately yield the following closure properties.
Proposition 6.3.4 [97] Aver(P, F)2vr(P) = Aver(P, F) for any set F of distributions.

Proof. Clearly Aver(P,F) C Aver(P, F)2v'(P) since (A, u) € Aver(P, F)(4#) . For the other direction,
consider any problem (A,) in Aver(P, F)Ave"P*) There exists a problem (B,v) € Aver(P,) to which
(A,) is avp-T-reducible. Using Theorem 5.2.12, we conclude that (A,) belongs to Aver(P,x). Since
nE F, we get (A, p) € Aver(P, F). O

6.3. RELATIVIZATION OF AVERAGE COMPLEXITY CLASSES 207

6.3.2 Relativized Aver(BPP, F)

We have seen the average-case version of bounded-error probabilistic reducibility in Section 5.5. Although
the reducibility defined there is truth-table reducibility, we can easily extend it to Turing reducibility which

will provide a relativization of the average-case complexity class Aver(BPP, F) in this subsection.

Definition 6.3.5 (Relativization of Aver(BPP,F)) Let (B,v) be a distributional decision problem.
For a set F of distributions, denote by Aver(BPP, F)(#¥) the collection of problems (A, u) such that there
exist a probabilistic oracle Turing machine M, a real number ¢ in the interval (0,1/2), a distributional
decision problem (B’,v’), and a semi-distribution 5 satisfying the following conditions:
(i) (Efficiency) M with oracle B’ is polynomial-time bounded on p-average;

(i1) (Validity) Prps [MBI(l‘) = A(z)] > % + ¢ for all z;
(iii) (Domination) j%\;?; nand v > Az.({(x,s) | 2 € Q(M, B’ z,s)}); and
(iv) (Transformation) (B’,v') <E (B,v).

If conditions (i)-(iii) are satisfied, we simply say that M recognizes A with oracle (B',v') in polynomial
time on p-average.

The reader may pay attention to the fact that our relativization of Aver(BPP, F) is a Turing extension
of avbpp-tt-reducibility. Since avbpp-tt-reducibility is transitive (Proposition 5.5.7), (A4, p) S?t\/bpp (B,v)
implies (A, yt) € Aver(BPP +)(B»),

We first discuss some of the basic properties of the relativized Aver(BPP, F).

Proposition 6.3.6 Let (A, p) and (B,v) be any distributional decision problems, and let F be any set of

distributions.
1. (B,v) € Aver(BPP, F)(Bv),
2. The class Aver(BPP, F)B¥) s closed under avbpp-tt-reductions.
3. If (A, p) € Aver(P,)BY) then Aver(BPP, F)(44) C Aver(BPP, F)(F»),

Proof. (1) By an argument similar to that of Proposition 6.3.2(1). (2) The claim follows from Proposition
5.5.7. (3) The claim follows by a an argument similar to Proposition 5.5.7. a

As in the definition of Aver(P,F)¢, we extend Definition 6.3.5 from a single oracle problem to a class C

of oracle problems.

Definition 6.3.7 If C is a class of distributional decision problems and if F is a set of distributions, let

Aver(BPP, F) = {(D,p) | 3(E,v) € C[(D, 1) € Aver(BPP, F)(E¥)]},

208 CHAPTER 6. AVERAGE CASE HIERARCHIES

Next we show a collapse of Aver(BPP, F) relative to Aver(BPP, x) down to Aver(BPP, F).
Proposition 6.3.8 Aver(BPP, F)AVer(BPPY) — Aver(BPP, F) for any set F of distributions.

Proof. To prove this proposition, we assume that (A, g) is in Aver(BPP, F)(E¥) for some (B,v) €
Aver(BPP,). In what follows, we shall prove that (A, i) belongs to Aver(BPP, F).

Let M be a bounded-error probabilistic Turing machine which recognizes A with oracle (B, v) in polyno-
mial time on p-average. We can assume without loss of generality that the error probability of the machine
M with oracle B on input « is bounded above by 1/4.

Let B' = {201% | z € B} and let

(z) - ﬁtally(lk) if w = 201*,

v
0 otherwise.

Note that (B'v’) is p-m-reducible to (B, v). Since Aver(BPP,) is closed under p-m-reductions, (B’,v') is
in Aver(BPP,). Using Corollary 3.5.32, let M4yp be a bounded-error probabilistic Turing machine which
recognizes B’ in polynomial time on v’-average with the error probability Prs[Mam,(201%; s) # B'(201%)] <
27k,

Let us define the randomized Turing machine My as follows:

begin randomized algorithm for My with an oracle
input z
simulate M on input x until the first query is made
if there is no query then output M (z) and halt
for £ =1 to oo do
resume the simulation of M on input x
until the next query is made
(%) if M queries z then query z01%*3 instead and
receive an answer from oracle
if M reaches a halting configuration then output M (z) and halt
end-for

end.

Note that the probability Pr, [MOBI(l‘; s) = A(z)] is equal to the probability Pr,, [M? (x;s5) = A(z)], which
is is at least 1/4. Thus, it is easy to show that A is recognized by My with oracle (B’,v') by an argument
similar to that for Lemma 5.5.2.

Next we change the line () from making a query 201¥%3 to simulating Mg, on input z01+3. Let N be
the randomized Turing machine obtained by this modification. By Lemma 5.5.3, it follows that the running
time of the machine N is polynomial on p-average.

Consider the error probability e (x) of the machine N on input z. On each computation path generated

by My with oracle B’ on input z, the error probability that N draws an erroneous conclusion is at most the

6.3. RELATIVIZATION OF AVERAGE COMPLEXITY CLASSES 209

sum of all error probabilities which are made by the machine Mg,,,, which does not exceed:

oo o 1
9=4 4 9-5 4 . _ ~k=3 _ 5—4 —k_ L
+27°+ > 2 271 2t =g
k=1 k=0
Thus, we have:
e () < Pro[MP (2:5) £ Ala)] 4~ < L4 1 =3
M= T 1517873
Hence, ey (z) < 3/8.
Therefore, (A, p) is in Aver(BPP, F). O

6.3.3 Relativized Aver(NP,F)

This section introduces a relativization of Aver(NP, F) which will be used to build an “average polynomial-
time hierarchy” in Section 6.4.

Schuler and Yamakami [97] first studied an average-case version of nondeterministic Turing reducibility
and introduced a relativized class Aver(NP,}")(B’”) requiring that all computation paths be pruned to
the same length, using a model of clocked nondeterministic oracle Turing machines. Based on this model,
they introduced a “biased” domination condition in such a way that it puts equal weight on all accepting
computation paths if one exists, or else puts equal weight on all rejecting computation paths. Our model
of nondeterministic Turing machines is more general, and we cannot take the same approach towards the
relativization of Aver(NP, F). How can we define a relativization of Aver(NP,F) 7 Steve Cook is credited
with the following idea.

Let us recall the model of nondeterministic Turing machines. Our definition of the running time of
nondeterministic Turing machines depends only on a shortest accepting computation path whenever it exists.
When we look at a computation tree of a nondeterministic Turing machine on a particular input, we are
interested only in one shortest accepting computation path, provided that one exists. Our domination
condition for the oracle machine needs a constraint only on the computation paths of interest.

Let M be a nondeterministic oracle Turing machine and let A be an oracle. Let us recall that Acc(M, A, »)
(Rej(M, A, z), resp.) denotes the set of (codes of) all accepting (rejecting, resp.) computation paths of M
with oracle A on input . We introduce a “flip-flop” set Flip(M, A, z) as follows:

Acc(M, A z) if Acc(M, A, z) # O,

Flip(M, A, z) =
Rej(M, A, z) otherwise.

By af;(z), we denote the (code of the) minimal computation path of M with oracle A on input z if
one exists, and otherwise, the (code of the) minimal rejecting computation path. Obviously a4, (z) is the

minimal computation path in Flip(M, A, z).

Definition 6.3.9 (Relativized Aver(NP,F)) Let (B,v) be a distributional decision problem. A dis-
tributional problem (A, y) is in Aver(NP, F)(B¥) if there exist a nondeterministic oracle Turing machine

M and a semi-distribution 7 such that

210 CHAPTER 6. AVERAGE CASE HIERARCHIES

(i) (Efficiency) M with oracle B is polynomial-time bounded on p-average;
(if) (Validity) A = L(M, B); and

(iii) (Domination) g <3P 5, and © > Az.n({z | = € Q(M, B, =, a5 (z))}).

As in Turing reducibility, we call condition (iii) the domination condition for M.

We begin with a technical lemma.

Lemma 6.3.10 Let M be a nondeterministic oracle Turing machine, ¢ a function from X% to RT, and let
p, v be two distributions. Assume that M witnesses (D, p) € Aver(NP, F)E¥) and let
h(x) = min Z g(z).

y€Flip(M,E z
()zEQ(M,E,x,y)

If g 1s polynomial on v-average, then h is polynomial on p-average.

Proof. Assume that (D, y) € Aver(NP, F)(F¥) via a nondeterministic oracle Turing machine M. There
exist a semi-distribution 1 and a polynomial pp such that D = L(M, E), pu <>P g, /\x.Timef/I(l‘) Is pp on
p-average, and (z) > H({z | = € Q(M, E,z,a(x))}) for all 2. Without loss of generality, we assume that
Time}; () > |2| for all z.

Choose a polynomial pg such that ¢ is pg on v-average. Moreover, let p be a polynomial and ¢ a function
such that ¢ is p on p-average and ¢(z) -)(x) > f(x) for all . We can assume that all polynomials, pp, pr
and p, are increasing.

Now define a polynomial s as
s(z) =pp(32) -pE (pD(3z) 622 p(3z)) + ¢p,

where ¢g = h(A).

We shall show that h is s on p-average. For simplicity, let A, and R, denote Acc(M, FE, z) and
Rej(M, E, z), respectively. Also let @Q,, denote Q(M,FE,z,y). Let B, = {& € Tt | Timeﬁ(r) <
pp(|z] - 3r) A q(z) < p(|z| - 3r)}. For any real number » > 0,

pfe | h(z) > s(|z]-7)})
< a({z | Timeyy (¢) > pp(J2] - 3r)}) + a{x | a(x) > p(e| - 3r)})

+p({z € By | h(z) > s(|z] - 7)}).

Clearly the first two terms are bounded above by 1/3r. To complete the proof, we should show that the last
term (say, 7,) is also bounded by 1/3r.
Fix # € B, and assume that h(z) > s(|z| - 7).

Claim 15 For every x € By, 32 € Qp o5 (2)[9(2) > pE(l2] 6r|z|? - p(|z| - 3r))].

6.3. RELATIVIZATION OF AVERAGE COMPLEXITY CLASSES 211

Proof of Clazm. First we consider the case that x € D. From the minimality of A, it follows that Vy €
Ael> - eo.) g(z) > s(|z| -)], and in consequence, Yy € A,3z € Qu y[|Qeyll - 9(2) > s(|z] - r)]. Now take
the minimal accepting computation path af;(z) of M with E on input . Then, for some z in QL%E/I(M,

||Qx,ocAE/[(x)|| g(Z) > 8(|x| . 7“). For such a z,
2] < 11Qu k(o | < Timegy(2) < pp(|z] - 3r),

and as a result, g(2) > pr(|z|-6(r|z|)? -p(|z|-37)) > pr(]z|-6r|z|*-p(|z| 7)), since pg is increasing. Therefore,
3z € Qu g,)l9(2) > pr(lz] - 6rlx|* - p(lz] - 37))].

The other case z € D follows in a similar fashion. []

Note that, for any set A, v({z | z € A}) > 9({z | Iz € Q, o45,(s)[2 € A]}). Hence, the bound on T, is

calculated further as follows:

T, < > p{reB,nT|3e Qs a5)9(2) > pr(|z] - 6rn” - p(3rn))]})

n=1

< 3 b i{e € S |3z € Qup o l9(2) > pill:]-6rn - p(3ra))]))
< > prm) vz [9(2) > pe(|2] - 6m? - p(3m)})

= 1 2 1
< LB Gy < e < B

Hence, we obtain the inequality g({z | h(z) > s(r - |z])}) < 1/r, and this implies that h is s on p-average.
O

The following is a list of basic properties which Aver(NP, }")(B’”) satisfies.

Proposition 6.3.11 Let (A, p) and (B,v) be distributional decision problems, and let F be any set of
distributions.

1. (B,v) € Aver(NP, F)(B),

2. Aver(P, F)(B¥) C Aver(NP, F)(B»),

3. The class Aver(NP, x)(B¥) s closed downward under avp-m-reductions.

4. If (A, p) € Aver(P,%)B¥) then Aver(NP, F)(4#) C Aver(NP, F)(B»),

Proof. (1)-(2) Clear from the definitions.
(3) The idea of the proof is similar to that of Proposition 5.5.7(5). Assume that (A1, ;1) <2P (As, po)
via a reduction f such that (f,pu1) € Aver(FP,x). Assume that a nondeterministic Turing machine M

computes A, with oracle (As, us) in time par on ps-average, where pps is a polynomial. Let M; be a

212 CHAPTER 6. AVERAGE CASE HIERARCHIES

deterministic transducer which computes f in time p; on p;-average for some polynomial p;. We note that
|f(x)] < Timeps, (x) for all x.

To improve the readability, we write a(x) instead of ozAM3(x). By the domination condition for (M, As),
there exist a semi-distribution 72 and a function pays which is polynomial on ps-average such that pas(w) -
f2(w) > fo(w) and fiz(z) > H2({w | 2 € Q(M, Az, w,a(w))}). Similarly, there are a semi-distribution #;
and a function p; which is ¢ on pi-average, where ¢ is a polynomial, such that ps(z) - 71(2) > fi1(2) and
fo(w) > m({z | f(xr) = w}). Without loss of generality, we assume that par(2) > 2 and ps(x) > 2 for all
strings . Notice that

ol 2 mlle [@) =wp) > 3 2
z:f(e)=

()

Next we consider the most conservative algorithm N which computes A; using oracle As: namely, on

input z, simulate M () first and then simulate M nondeterministically on input f(z). Clearly
TlmeN (x) <c-(Timep, (x) + TimeAM3(f(x)) +1)

for some positive constant ¢ independent of x.

To simplify the description, denote by @, the set {w | z € Q(M, As, w, a(w))}. Then,

() 2 (w0 € QY 2 (@ nran() > 30 LA
weQ Nran(f) pm
Now fix w in @, Nran(f). For this w,
pa(w) me | fe) =wh) pa(x) fur ()
py(w) ~ v (w) T e pu(w) - py() vl @ pu(f(2)) - ps(x)

Thus,

()
> Z)pf()

This sum is taken over all # such that Jw € ran(f) [x € Y (w) Az € Q(M, As, w,a(w))]. This condition is
logically equivalent to the condition z € Q(N, As, x, a(z)). We define p(x) = par(f(2)) - ps(2), and then,

. fui () _ f1 ()
D S N G)

:2€Q(N, Az ,z,a(x)) :2€Q(N, Az ,z,a(x))

To complete the proof, we should show that /\x.Timeﬁe’(l‘) and p are polynomial on pq-average since, by
Lemma 5.2.4, /\J:.Timefj’(f(x)) turns out to be polynomial on py-average. However, by Lemmas 3.3.13 and
3.3.12, we can conclude that /\x.Timeﬁa(l‘) is polynomial on p-average. Since the case for p is similar, we
omit its proof.

(4) To show the claim, we assume that (A, x) € Dist(P,*)(%*) and take an arbitrary distributional
problem (D,£) in Aver(NP,}")(A’“). There exists a nondeterministic oracle Turing machine Mp which
computes D with oracle (F,v) in polynomial time on p-average. We shall show that (D,¢) belongs to
Aver(NP, x)(B¥) - Since (A, p) € Aver(P,+)(B¥) we can find a deterministic oracle Turing machine M,

which computes A with oracle (B, v) in polynomial time on p-average.

6.3. RELATIVIZATION OF AVERAGE COMPLEXITY CLASSES 213

Now we consider a machine M which nondeterministically simulates the computation of Mp, and when-
ever Mp makes a query z, M deterministically simulates M4 on input z. By definition, M computes D with

the help of oracle B, and the running time of M with oracle B on input x is bounded above by

¢ | Timegy (z)+ min E Timed,, (2) +1],
b y€Flip(Mp,A,z) 4
2€Q(Mp,Az,y)

where ¢ is a constant. Note that /\x.TimeﬁD(l‘) is polynomial on &-average, and the function
AZ. iy eFlip(Mp, A,x) ZzEQ(MD,E,x,y) TimeﬁE(l‘) is also polynomial on £-average by Lemma 6.3.10. As
a result, Az.Timeps (z) is polynomial on &-average.

The proof of the domination condition for M is similar to that of Proposition 5.2.11(4). This yields the
desired consequence that (D, &) € Aver(NP, F)(B»), O

We can conjecture that Aver(P,P-comp) differs from Aver(NP,P-comp). As yet it remains an open
question whether this is the case in the unrelativized world. In some relativized world, however, we can see
a clear distinction between Aver(P,P-comp) and Aver(NP,P-comp). Here we observe a relativized world

in which the two classes differ.

Theorem 6.3.12 There exists a problem (B, up) such that
Aver(P, P—Comp)(Bv“B) # Aver(NP, P-COmp)(B’uB).

Proof. We shall use the oracle set constructed by Baker, Gill, and Solovay [3] to separate P from NP.
In the following proof, we first review their construction and then define the desired distributional decision
problem (B, up).

Also let {M; },,en be an effective enumeration of all polynomial-time deterministic oracle Turing machines.
Let also {p,, }nen be an enumeration of polynomials such that each p,, satisfies Timej?h(x) < pa(|z]) for any
choice of oracle O and any input z. In particular, the number of query strings of M,, on input & with oracle
O is also bounded above by py, (|#]).

Let us define the strictly increasing function £ from N to N as follows: let £(—1) = 0 for the sake of
convenience, and let ¢(n) be the minimal integer k such that & > ¢(n — 1) and p, (k) < 2*. It is easy to see
that such a k exists for any n.

We use the test language T(B) defined as T'(B) = {0" | y € X"[y € B]}. This T(B) is a tally set and
belongs to NPP. We shall construct a set B in the following such that T(B) ¢ PB. First we construct a
series of finite sets, { By }nen, and then let B be the union of all sets B,,. Now let B_; = @ for the sake of

convenience. For each n € N, let y,, be the minimal string (in the standard order on X£*) such that
|yn| = E(n) and y, ¢ Q(Mna Bn_1, OZ(n))

Such a string exists because ||Q(M,, Bn,_10™)|| < p,(€(n)) < 2¢?) by the definition of £(n). Then, B, is

214 CHAPTER 6. AVERAGE CASE HIERARCHIES

defined as

s _] BiaU{nl it M (00 = 0,
! B,_1 otherwise.

Notice that the outcome of M,, on 0¢(*) is irrelevant to oracle By, i.e., M (04™)) = M P (04") | because

Yn is not queried by M, on 0¢(*). Hence, we get
04" € T(B) <= yn € By <= MP»(0") = 0 = MP(0"™) = 0 <= 0" ¢ L(M,,, B).

This shows that T(B) # L(M,, B) for all numbers n, and thus 7'(B) ¢ PZ.
We then define the distribution pp for the set B. Let

(Je| +1)=2 if € B,

pp(x) o
(=) (Jz| + 1)=2- 2712l otherwise.

Consider the distributional decision problem (T'(B), vtany). Clearly (T'(B), Vtany) is in Aver (NP, P—comp)(B’“B).
Now assume to the contrary that (T'(B), ttany) belongs to Aver(P, P-comp)Z#8) There exists a determin-
istic Turing machine M which computes T(B) with oracle (B, pg) in polynomial time on vtany-average.

Recall that T'(B) is a tally set. Since M is polynomial-time bounded on viany-average, we conclude that

T(B) € PB. This contradicts the fact that T(B) ¢ PZ. O
Finally we extend Definition 6.3.1 from a single oracle problem to a class of oracle problems.

Definition 6.3.13 (Relativization) Let C be a class of distributional decision problems and let F be
aset of distributions. Let Aver(NP, F)¢ denote the union of Aver(NP, F)(F¥) for any oracle (E,v) chosen

from C.

As an immediate consequence of Proposition 6.3.11, the relativized Aver(NP,) relative to Aver(P,x)
collapses to Aver(INP,). Note that whether Aver(INP,) relative to Aver(NP, %) collapses to Aver(NP,)

1s an open question.
Proposition 6.3.14 Aver(NP,) = Aver(NP, F)Aver(P),

Proposition 6.3.14 will be extended to any level of the average polynomial-time hierarchy in Section 6.4.

6.3.4 Relativized Aver(PSPACE, F)

Another important average complexity class is the collection of deterministic average polynomial-space com-
putable sets, Aver(PSPACE, F). This class contains Aver(P,F) and Aver(BPP,F) as subclasses. In this
section, we shall introduce a relativization of Aver(PSPACE, F).

6.3. RELATIVIZATION OF AVERAGE COMPLEXITY CLASSES 215

Definition 6.3.15 (Relativized Aver(PSPACE, F)) Let (B,v) be a distributional decision problem.
A distributional problem (A,) is in Aver(PSPACE, F)(B¥) if there exist a deterministic oracle Turing

machine M and a semi-distribution 7 such that
(i) (Efficiency) M with oracle B is polynomial-space bounded on p-average;
(if) (Validity) A = L(M, B); and

(iii) (Domination) p <P 5, and v > Az.n({z | z € Q(M, B, x)}).

We also call the condition (iii) the domination condition for M.

Since our relativization is similar to that of Aver(P, F), the following proposition is straightforward.

Proposition 6.3.16 Let (A,) and (B,v) be distributional decision problems.
1. (A, p) € Aver(PSPACE, F)(41),
2. Aver(BPP,F)(4#) C Aver(PSPACE, F)(41),

3. If (A, p) € Aver(PSPACE, F)(B¥) | then Aver(PSPACE, F)(4:#) C Aver(PSPACE, F)(B»),

Theorem 6.3.17 There exists a problem (A, pia) such that

Aver(P, P-comp)(A’“A) = Aver(PSPACE, P-comp)(A’“A).

Proof. For the proof, we need a relativized version of the randomized bounded halting problem
(BHP(A), ppup,). Assume that {M;};en is an effective enumeration of all deterministic oracle Turing

machines. For a set A, let
BHP,(A) = {{0,s;,2,1") | M; with oracle A accepts = using less than n squares }
U1, s, 2, 1) | M; with oracle A on x uses at least n squares };

and, for b € {0, 1}, let
1

ﬂBHPl (b, S5, &, 1n) = 5 : ﬁstand(si) : ﬁstand(x) : ﬁtally(ln)~

Notice that the distribution pupmp, is not dependent on oracle A.

Take the desired set A so that A = BHP;(A). We remark that this set A exists because M; cannot query
any strings of length more than n, and thus, it makes only queries to oracle A that are lexicographically
smaller than (b,s;, #,1"). Now let 4 = ppnp,. We shall show that any distributional problem (D,)
in Aver(PSPACE, P-comp)(4#4) belongs to Aver(P, P-comp)(4#4) For this pair (D, u), there exists a
deterministic Turing machine M computing D with oracle A in polynomial time on p-average.

Let g be the function of Lemma 4.2.7(2) such that ji(z) < 2-19()1+2 for all #, and define the machine
M’ as follows: on input x, it computes g(z) and then simulates M on input g(z). Let ¢ be an index such

that M; = M’ since M’ is also deterministic. Let us consider the following deterministic procedure N:

216 CHAPTER 6. AVERAGE CASE HIERARCHIES

begin deterministic algorithm N
input z
compute ¢~1(z) and set u := g~ (x)
for n =1 to oo do
query (0,s;,u, 1) to oracle A
if (0, s;,u,1™) € A then accept and halt
query (1,s;,u, 1) to oracle A
if (1,s;,u,1™") ¢ A then reject and halt
end-for

end.

Notice that the machine N makes queries only of the form (b, s;, ¢=!(2), 1™), where b € {0,1} and 1 < n <
Timef/[l(x) + 1.

It is not difficult to check that, with oracle A, N computes D correctly. We next check the domination
condition for N. Remember that, for each query string (b, s;, u, 1), the string g(u) is the only input on
which N queries it. Since ¢ is one-one, this correspondence from query strings to inputs is also one-one.
Thus, the rest of the proof is analogous to the proof of Claim 11 in Section 5.3.5.

Let g(z) =512 (|g(=)|+1)- (Timeﬁl(l‘) +1)?/Ustana(si). It is obvious that ¢ is polynomial on p-average
because /\J:.Timefa(x) is polynomial on p-average. As in Theorem 5.3.2, we have

q(x) - fra(b,si,9(x),1") = q(x) - 5 - Ustand (i) - Vstand (€) - Prany (17)

N | —

q(l‘) : ﬁstand(si) . 2—|g(x)|+2
512 (lg(x)| + 1)2 - (Timejy, () + 1)2
— 9-lgl@)l+2 o ().

This indicates that (D,) belongs to Aver(P, P-comp)(?:#), a

We then introduce a relativized class Aver(PSPACE, F)¢ for a class C of distributional decision prob-

lems.
Definition 6.3.18 (Relativization) Let C be a class of distributional decision problems. For a set
F of distributions, Aver(PSPACE, F)¢ (Aver(PSPACE, F) relative to C) denotes the collection of all
distributional problems in Aver(PSPACE, F)(Z¥) for some (B, v) € C.

The class Aver(PSPACE, F) relative to Aver(PSPACE, %) collapses to Aver(PSPACE, F).

Proposition 6.3.19 For any set F of distributions,

Aver(PSPACE, F) = Aver(PSPACE, F)Aver(PSPACE),

6.4. AVERAGE POLYNOMIAL-TIME HIERARCHY 217

Proof. It is clear that Aver(PSPACE,F) C Aver(PSPACE, F)Aver(PSPACE) = We shall show the
other inclusion. Assume that (A,) € Aver(PSPACE, F)(P¥) for some (B,v) € Aver(PSPACE,). Let
M be a deterministic oracle Turing machine which computes A with oracle (B, v) using polynomial space
on p-average. Since (B,v) € Aver(PSPACE, %), there exists a deterministic Turing machine Mp which
computes B using polynomial space on v-average. The algorithm we would like to consider here is the
conservative one: on input z, simulate M on z except for oracle queries; instead of querying a string z,

simulate Mg on z. On each input «, this algorithm uses space at most

- Space, S 1
¢ (paCeM(x)JrzeQr(nA%Byx) pacey (2) +)

for some fixed constant ¢ > 0.
We can conclude that this bound is polynomial on p-average since Az. max,eq(um,B,z) Spaceﬁ(z) is poly-

nomial on p-average as in Lemma 6.3.10. Therefore, (A,) belongs to Aver(PSPACE, F). O

6.4 Average Polynomial-Time Hierarchy

This section will formally introduce an average-case version of the polynomial-time hierarchy. In previous
sections, we introduced relativized Aver(P,F) and relativized Aver(NP, F). These relativized classes will

be the basis for constructing an average-case version of the polynomial-time hierarchy.

6.4.1 Average Polynomial Time Hierarchy

We now give a formal definition of an average polynomial-time hierarchy under a particular set of distribu-
tions. This hierarchy is an average-case analogue of the polynomial-time hierarchy in worst-case complexity

theory.

Definition 6.4.1 (Average Polynomial-Time Hierarchy) [97] Let & > 1 and let F be a set of

distributions.
1. Aver(AL, F) = Aver(Zh, F) = Aver(P, F).
2. Aver(A},F) = Aver(P,]-")Aver(zz—l’*).
3. Aver(ZF,F) = Aver(NP,]-")Aver(zz—l’*).
4. Aver(II}, F) = Aver(co-2}, F).

5. Aver(PH,F) =J,s, Aver(Z}, F).

In what follows, we shall show several fundamental properties of the average polynomial-time hierarchy.

218 CHAPTER 6. AVERAGE CASE HIERARCHIES

Lemma 6.4.2 [97] Let k>0 and let F be a set of distributions.

1. The classes Aver(2Y, F) and Aver(II}, F) are closed under avp-m-reductions.

2. The class Aver(AY, F) is closed under avp-T-reductions.

Proof. (1) In the case k = 1, the claim for Aver(NP,F) follows from Proposition 5.2.6. Now let
k > 2 and assume that (A4, u) <P (B,v) and (B,v) € Aver(X}, F). By definition, there exists a problem
(C,€) € Aver(Z§_,, *) such that (B,v) € Aver(NP,F)(“8 . Proposition 6.3.11(3) implies that (A, u) €
Aver(NP, F)(©8). Using the definition again, we obtain (A,) € Aver(XF F).

For the class Aver(IT}, F), assume that (A, x) <3P (B,v) and also (B, v) is in Aver(IIY, F). Note that
(A, p) <3P (B,v) if and only if (A, p) <%P (B,v). From this fact, it follows that (A4, p) € Aver(Z}, F).
This is equivalent to (4,) € Aver (I}, F).

(2) Similar to (1). If & = 1, then the claim is based on Proposition 5.2.6. For the other case, we use
Proposition 5.5.7(5). O

In what follows, we shall see the basic inclusions among the classes of the average polynomial-time

hierarchy. First we want to see the lemma that characterizes the relationship between Dist(X}, F) and

Aver(XF F).

Lemma 6.4.3 Let k>0 and let F be a set of distributions.
1. Dist(Ag_H,}") C Aver(P, f)Dist(EZ,*)’

2. Dist(ZP

ry1 F) € Aver(NP, F)Pist(Z5x),

Proof. We shall show only case (2) because case (1) follows by a similar argument. Let us assume that
(A, p) isin Dist(Eg_H,}"). Since A € EE_H, there exists a nondeterministic oracle Turing machine M which
computes A in polynomial time with oracle B in £}. By a simple modification of M and B, we can assume
the following property: on each input 2, the machine makes a query once of the form (x, y), where y is the
(code of the) computation path. Note that, for every query string, there is the unique pair of an input and
a path.

We shall show that (A4, u) € Aver(NP, F)B¥) for some v. Let us first define such a distribution. Let v
be defined as:

sy 2|) it = G afi)

0

otherwise.

Our definition of v obviously guarantees the domination condition for M. Hence, M recognizes A with oracle

B in polynomial time. Since (B, v) € Dist(X},), we obtain:

(A,) € Aver(NP, }")(B’”) C Aver(NP, }")Dm(zz’*).

6.4. AVERAGE POLYNOMIAL-TIME HIERARCHY 219

Using Lemma 6.4.3, we can prove the following proposition.

Proposition 6.4.4 [97] Let k > 1 and let F be any set of distributions.
1. Dist(AL, F) C Aver(A}, F).
2. Dist(EL, F) C Aver (T}, F).

3. Aver(AY,F) C Aver(2},F) C Aver(Ag_H,}").

Proof. (1)-(2) The claims follow from Lemma 6.4.3. (3) This claim follows from Definition 6.4.1 and from
the facts that Aver(P, F)¢ C Aver(NP, F)¢ and (D,) € Aver(P, F)(P:#), a

The above proposition may be taken as evidence that our average polynomial-time hierarchy has a
structure similar to that of the worst-case polynomial-time hierarchy.

Figure 6.1 illustrates the structure of the average polynomial-time hierarchy under F.
Lemma 6.4.5 Letk > 0. For a set F of distributions, Aver(NP,}")Aver(AEH’*) = Aver(Eg_H,}").

Proof. Assume that (A4, p) is in Aver(NP,}")Aver(AEH’*). By definition, we then have a chain of
membership relations (A, u) € Aver(NP, F)(E¥) and (B, v) € Aver(P,*)(©8) where (C,€) € Aver(ZV, %).
By Proposition 6.3.11(4), we can shorten this chain to (A4, u) € Aver(NP, F)(©8) . This shows that (A,) is
in Aver(Eg_H,}").

The converse is even simpler to prove. Since Aver(XF,) C Aver(AL

k41 *), it follows that

Aver(Eg_H,}") C Aver(NP, }")Aver(zz’*) C Aver(NP, }")AVGF(AEH’*).

Theorem 3.5.24 shows the separation between Aver(P, x) and Aver(NP,). Although these basic average-
case complexity classes are different, we do not conclude that similar separations occur in the higher levels
of the average polynomial-time hierarchy. The reason is that domination conditions restrict the complexity
of oracles, especially distributions.

The worst-case polynomial-time hierarchy entails the “downward collapse” property; that is, if any two
levels of the hierarchy collapse, then the upper levels collapse down to those levels. More precisely, if
D EZH’ then PH =). Now we show that the assumption Aver(X},) = Aver(Eg_H,) leads to the

collapse of the average polynomial-time hierarchy.

Proposition 6.4.6 Let k> 1 and let F be a set of distributions.

1. If Aver(ZV, %) = Aver(Eg_H, %), then Aver(PH, F) = Aver(X}, F).

220 CHAPTER 6. AVERAGE CASE HIERARCHIES

Aver(PH |F)

L

|
Aver (Ih F) Aver (z@

Aver (AS, F)

Iﬂ

Aver (110, F) Aver (ZE, F)

;

Aver (AP F)

Figure 6.1: The average polynomial-time hierarchy under F
2. If Aver(AY, x) = Aver(Z}, x), then Aver(PH, F) = Aver(AL, F).

Proof. (1) Let us assume that Aver(Eg_H, x) collapses to Aver(XF,). We want to show by induction on
integer ¢ > k that Aver(E?_I_l,}") C Aver(ZP, F) for all sets F of distributions.

The base case i = k is trivial from our assumption. For the induction step ¢ > k, we have

AVGI’(E?_I_z,f) = Aver(NP’ f)Aver(Ef’_'_l,*)
Aver(NP, }")Aver(z?’*)

N

Aver(ZF, |, F).

Hence, Aver(Eg_H,}") = Aver(Z}, F) for all i > 0. Therefore, Aver(PH, F) = Aver(X}, F).
(2) Similarly, we have:

AVGT(EEH, f) = AVeI’(NP, }“)Aver(ziﬁrp*)
= Aver(NP,]—")AV@F(AEer*)
= Aver(EgH,}"),

The last equality follows from Lemma 6.4.5. a

The following lemma is an extension of Lemma 3.5.16.

6.4. AVERAGE POLYNOMIAL-TIME HIERARCHY 221

Lemma 6.4.7 Let C € {A}, SV II}) | k > 0}. Assume that F is closed under &. If (A, pa) and (B, up)
are both in Aver(C,F), then so is (A® B, pa & pip).

Proof. Assume that (A, ua) and (B, up) are in Aver(C,F). The proof is by induction on & > 1. For
the base case & = 1, the claim for ¢ € {P,NP} is immediate from Lemma 3.5.16. Now let us consider
the case C = co-NP. Assume that (A4, pa) and (B, pug) are in Aver(co-NP, F). In other words, (A, ua)
and (B,pp) are in Aver(NP,F). Again by Lemma 3.5.16, we have (A @® B, pua @ pug) € Aver(NP,F).
Notice that A® B = A@ B — {\}, where A is the empty string. Since /,L@B(/\) = 0, we may ignore A,
and thus (A @ B, s @ up) € Aver(NP, F). This yields the desired conclusion that (A @ B, pua @ ug) €
Aver(co-NP, F).

For the induction step k& > 1, first let C = X¥. By our assumption, there exist distributional problems
(Co,&) and (C1,£&1), both of which belongs to Aver(X}_,,F), such that (A, pua) € Aver(NP, F)(Coto)
and (B,pp) € Aver(NP,}")(Cl’El). It is relatively easy to see that (Cy, &) <P, (Co & C1,& @ p1) and
(C1,&1) <P, (Co@Ch, €@ p1). For simplicity, write (C, &) for (Co ®Ch, P p1). By our induction hypothesis,
we obtain (C,€) € Aver(BY_ |, F). Using Lemma 7.2.12, we get (A& B, ua & pup) € Aver(NP, F)(©8 As
(C,€) is in Aver(X}_ |, F), the problem (A ® B, pia @ pug) is in Aver(E}, F). The case C = A} is similar,

and the other case C = Hg 1s obtained with the same 1dea used for the base case C = co-NP. O

At last, we may conjecture that, for a naturally selected set F of distributions, the average polynomial-

time hierarchy under F is truly an infinite hierarchy.

6.4.2 Sparse Interpolation Property

We shall show a basic relationship between worst-case complexity and average-case complexity on strings
with high probability. We first introduce an interpolation property of an average-case complexity class
Aver(C,F). Intuitively, the property says that if we compute a set A fast on average under a distribution
which assigns high probability to instances in a sparse set S, then there is an “interpolant” set B between
ANS and A which is computable fast in worst-case. This set B is a collection of “easy” instances in A, and
it becomes a good worst-case approximation of the set A.

Here is the formal definition of the sparse interpolation property.

Definition 6.4.8 (Sparse Interpolation Property) [97] For a sparse set .S and a polynomial ¢, let

fts,q denote a distribution such that

i q(e) > —
Hsq\T) =
! ED
for all € S provided that ers m < 1. A class Aver(C, F) has the sparse interpolation property if, for

any set A, any infinite sparse set S, and any polynomial ¢ such that (A, ps) € Aver(C,F), there exists a
set B € C such that ANS C B C A. The set B is called an interpolant of A and S.

222 CHAPTER 6. AVERAGE CASE HIERARCHIES

Proposition 6.4.9 ForaclassC € {P,NP RP,BPP,PSPACE}, Aver(C, «) has the sparse interpolation

property.

Proof. We first show the case C = NP. Take any sparse set S and a polynomial ¢ and assume that
(A, pts,q) € Aver(NP,). There exists a nondeterministic Turing machine M which computes A such that
Az.Timeps () is p on pis o-average for some polynomial p. Note that Timens(2) < p(|2|/fts ¢(z)) for all with
fts g(z) > 0. Let N simulate M on input z in p(|z| - ¢(|z|)) steps. If the simulation of M does not terminate
within p(|z| - ¢(|#])) steps, then N rejects z. Let B = L(N). Clearly B C A. Since ¢(|z|) > 1/jis () for all
z € 5, N completely simulates M on all inputs z in S. Thus, ANS = BN.S. Clearly N is polynomial-time
bounded. Therefore, B € NP.

The other cases are treated similarly, but specifically for the case C € {RP, BPP}, we must use Time}, (z)

instead of Timeps(2;). O

Proposition 6.4.9 can be extended to an arbitrary level of the average polynomial-time hierarchy. However,

its proof is not as simple as that of Proposition 6.4.9. We first present a key lemma.

Lemma 6.4.10 [97] Let k> 1 and let (A, u) be a distributional problem.

1. Assume that (A, pu) € Aver(A}, x). For any set S and any polynomial q, there exist sets Cp, Cy € AL
and S' such that S' C S, ANS' CCyC A, ANS' CCy C A and a(S™ — S™) < 1/¢(n) for all n € .

2. Assume that (A, p) € Aver(X}, «). For any set S and any polynomial q, there exist sets Cy € X},
Cy € I} and S such that ' C S, ANS' CCy CA, ANS' CCy C A and p(S™ — S™) < 1/q(n) for all
n € N.

Proof. (1) The proof proceeds by induction on k. The base case k = 1 essentially follows from Proposition
6.4.9. Assume that (A,) € Aver(NP,*) and let S € ¥* and let ¢ be any polynomial. There are a
nondeterministic Turing machine M and a polynomial p such that A = L(M) and ja({z | Timep(z) >
p(l|-7r)}) < 1/r for all » > 0.

Let 7 = ¢q(n), and then p({z | TimeM (z) > p(|z| - ¢(n))}) < 1/q(n). Let My simulate M on the same
input in time p(n - ¢(n)); if M accepts z, then My accepts it, or else My rejects x. Similarly, let M; simulate
M in time p(n - ¢(n)); if M rejects x, then My accepts it, or else M; rejects it. Define Cy = L(My) and
Cy = L(My), and let S" = SN (Co UCY). Clearly ANS' C CyC Aand ANS' C Cy C A. Moreover,

(™ = 57) < e | Timens () > plle]-a()P) < o

The induction step is carried out as follows. Let k& > 2 and assume that (A4, p) € Aver(Z},). By
definition, there exists a distributional problem (B, v) € Aver(XL_,, *) such that (A, u) € Aver(NP, }")(B’”).
Let M be a nondeterministic oracle Turing machine which computes A with oracle (B,v) in polynomial
time on pu-average. We assume that /\x.Timef/I(l‘) 1s p on p-average for some increasing polynomial p.

The domination condition for M implies the existence of a semi-distribution 5 and a function d which is

6.4. AVERAGE POLYNOMIAL-TIME HIERARCHY 223

polynomial on p-average such that d(z) - f(z) > (x) and (z) > H({z | z € Q(M, B,z,af(z))}) for all ©
and z. Assume also that ¢ is a polynomial witnessing that d is polynomial on p-average.

Consider any set .S and any polynomial g. We define T as
T = {z €5 | Timek(z) < ple]- 3a(leD) A d(z) < L] 3q(2))}.
For each n € N, let us consider the subset 7™ of T'. Notice that
" =T C {w € X7 | Time (2) > pllel - 3¢(n)) V d(z) < t(Jz| - 3¢(n))}.

Then, it follows that

A(S™) = @(T7) = a(S™ = T7) < f({x | Timegy (2) > p(lz| - 3q(n))}) + a({x | d(x) < t(|e]-3¢(n)} < ek

In the rest of the proof, we use s(n) for t(n - 3¢(n)).
To use the induction hypothesis, we let Z = {2 | 3x € T(» € Q(M, B, z, a5, (x)))}, and we also let

I(n) = 3q(n) - s(n) - p(n - 3¢(n)).

Applying the induction hypothesis to Z and I(n), it follows that there exist sets Z’ C Z, C}, € BF_,, and
C1 € IIL_, such that, for every n € N, 0(Z") — p(2"™) < 1/l(n).

Now recall that M queries strings whose length is at least the same as that of the input and at most the size
of its Tunning time. In other words, for every z in 7", if 2 € Q(M, B, z, a¥;(z)), then n < |z| < p(n - 3¢(n)).
Based on this fact, we prepare sets Z, = {z € Z | n < |z| < p(n-3¢(n))} and Z/, = {z € Z' | n < |z| <
p(n - 3¢(n))}. Since

Zn =2, C(Z—=2"Y0{z | n < |2| < p(n-3q(n))},

1t follows that

o g T - 3q(n)) 1
(Zn) —0(Z)) < ; W(z') —v(Z")) < 2 MS I(n) 3¢(n) - s(n)

The desired set S’ is defined as follows:
S'={x €T |Q(M, B,z o (z)) C 7'}
Clearly " C S. Using the fact that
T - $ C{a € T | QM. Boa, (@) 0 (2o — 74) # OV,

by the domination condition, we obtain IP(ZH — Z,’L) > (7™ — S'™). Then,

f(T™) = (1(8™) = (T = S™) < s(n) - H(T™ — 8™) < s(n) - ¥(Zn — 2!

Since fi(S") = 4(T™) < g2, we get (™) — p(S™) < s

Let My be an oracle Turing machine with oracle X defined as follows. On input x, My simulates M on

z in time p(|z| - 3¢(|z|)), and whenever M queries a string z, My queries both 0z and 1z to its oracle X. If

224 CHAPTER 6. AVERAGE CASE HIERARCHIES

0z € X and 1z ¢ X, My continues the simulation with the assumption that the oracle answer is “yes”; if
0z ¢ X and 1z € X, then it continues the simulation with the oracle answer “no”; otherwise, it immediately
rejects the input z. The machine My accepts x exactly when M halts and accepts it. Similarly, we define
a machine M, by interchanging the oracle answers and requiring that Ay accept the input @ if M halts in
time p(|z| - 3¢(]x|)) and otherwise M rejects x. Now let Cy = L(My,C{ & C1) and Cy, = L(My,C{ & C7).
By the definitions of the oracle machines My and Mj, it follows that ANS’ C Cy C Aand ANS' C C; C A.
(2) The proof is similar to (1). a

Theorem 6.4.11 [97] For k> 1, Aver(A},) and Aver(X},) have the sparse interpolation property.

Proof. We show only the case Aver(X!, «) here. The case k = 1 follows from Proposition 6.4.9. Let
k > 2 and assume that (A4, psq) € Aver(X%, *) for a sparse set S and a polynomial ¢. It follows from
Lemma 6.4.10 that there exist a set ¢’ € E} and a subset S’ of S such that ANS C C C A and
fsg(S™) — fts 4(S™) < 1/2¢(n) for all n € N. It suffices to show that S’ = 5. Assume that there exists a
string # € S — 5. Let n = |z|. Since fig 4(2) > 1/¢(|z]), it follows that

L < i g(S7) — s () < .

q(n) 2q(n)

This is a contradiction. Hence, S’ = 5. a

The following proposition is another consequence of Lemma 6.4.10, and it will be used in the next chapter.

Proposition 6.4.12 Let k > 0. For any polynomial p and any set A such that (A, Vstana) € Aver(Zh, #),
there are two sets Co in Y and Cy in II} such that Cy C A, Cy C A, ||CFUCT|| > (1 - 1/p(n)) - 2™ for

almost all n.

Proof. Let p be any polynomial. Assume (A, vstand) € Aver(ZL, x). Take q(n) = 2(n + 1)? - p(n). Note
that
92log(n)+1 2(n + 1) 1
o) = 20+ 17 p(n) ~ p(n)
We apply Lemma 6.4.10 to ¢, A, and X". Then, we have sets Cy € i, C; € IIY, and S’ such that
ANS' CCrC A ANS C Oy C A, and Dgpana (X" — 5™) < 1/q(n) for all n € N. Obviously, S C Cy U Cy.

Hence, [|CF U CT|| > ||S™]]. Tt suffices to show that ||S'n|| > (1 — ﬁ) -2". Note that

ﬁstand(En — S/) = I)stand(zn) - ﬁstand(Sm) = 2—2110g(n)—1 - HSmH : 2—71—21108(”)_1.
Since Dgeand (2" — S'n) < 1/¢(n),

1™l

v

(2—2110g(n)—1 _ 1) . 2n+2110g(n)+1
g(n)

v

6.5. AVERAGE POLYNOMIAL-TIME ALTERNATION HIERARCHY 225

6.5 Average Polynomial-Time Alternation Hierarchy

In worst-case complexity theory, alternation plays a variety of roles. Recall that AZ} = ATIMEE(k, no(l))
and AAY = ATIMEA(k,nO(l)). Then, we have AX) = ¥F and AAL = Al for all & > 0; namely,
the polynomial-time alternation hierarchy is exactly the polynomial-time hierarchy (see Lemma 2.5.7). In
what follows, we introduce an average version of this polynomial-time alternation hierarchy, an average
polynomial-time alternation hierarchy under a set of distributions, and study its relationship to the average

polynomial-time hierarchy defined in Section 6.4.

Definition 6.5.1 (Average Polynomial Time Alternation Hierarchy under F) Let &k > 0 and
let F be a set of distributions. The average polynomial-time alternating hierarchy under F consists of the

following average classes:
1. Aver(AAL, F) = J,o Aver(ATIME® (k, n® + ¢), F).
2. Aver(AXY, F) =, o Aver(ATIME™ (k, n¢ + c), F).
3. Aver(AILL, F) = Aver(co-AXY, F).

Let Aver(APH, F) = J;5 o Aver(AX], F).

Recall that 1-alternation bounded alternating Turing machines with existential states are exactly the
nondeterministic Turing machines. Similarly, semi-deterministic 1-alternation bounded alternating Turing
machines are deterministic Turing machines. Hence, it is clear that Aver(AAY F) = Aver(P,F) and
Aver(AX) F) = Aver(NP, F) for all set F.

Nevertheless, two classes Aver(AXY, F) and Aver(X}, F) are unlikely to be the same even for the set F of
feasibly computable distributions. The following proposition helps us understand the gap between these two

classes. Recall that Aver(Ag_H, F) = Aver(P, }")A"er(zz’*) and Aver(Eg_H,}") = Aver(NP,]-")A"er(zz’*).

Theorem 6.5.2 Let k> 0 and F be a set of distributions.

1. Aver(AAg_H,}") = Aver(P, }")Dm(zz’*).

2. Aver(AX}, |, F) = Aver(NP, F)Dist(E{7).
Proof. We prove (2) here. First we assume that (A,pu) € Aver(AEE_H,}"). There exists a (k + 1)-
alternation bounded Turing machine M such that A = L(M) and Az.Timeps(z) is p on p-average, where p

is a polynomial. We shall show that A is computable by a nondeterministic oracle Turing machine N with

oracle (B,v) in polynomial time on p-average.

226 CHAPTER 6. AVERAGE CASE HIERARCHIES

The main idea here is to query sufficiently long strings to the oracle so that the complexity of the oracle

set can be substantially diminished. We begin by defining the oracle Turing machine N as follows:

begin nondeterministic algorithm for N

input z (assuming that z # A)

simulate M on input & during the first series of existential states
until M reaches the universal states

(let y be the code of such a computation path)

choose a path starting from y nondeterministically (ignoring the states of configurations)
and follow this path until M reaches a halting configuration

(let n be the length of the path from the initial configuration)

query the pair (z,y10") to the oracle

if oracle answers “yes” then reject else accept

end.

Clearly N is a nondeterministic Turing machine whose running time is O(Timep;()).

Let B be the set that is accepted by the following algorithm. On input (z,y10"), check if y encodes a
computation of the first series of existential states of M on input z, and if so, then simulate this path until
M goes into universal states. Simulate the rest of the computation of M within n steps. If a path does not

halt within n steps, then go into an accepting configuration immediately. It is not difficult to see that B is in

ATIMEE(k, O(n)), and thus B € BF. By definition, A = L(N, B). To see that (4,pu) € Aver(NP,}")(E’”)

for some v, we remark first that Q(N, B, z, a¥,(z)) = {(z,y10")} for some y and n. Next we define

p({z]z € QN, B, z,aB(z))}) ifz#),
)

v(z) =) ,
1_Zw:w¢>\ v(w if z=A.

It is easy to check that (A, u) € Aver(NP, *)(E’”) via N. Since (B,v) is in Dist(Z}, ¥), we have (4, p) €
Aver(NP,}")DiSt(EE’*).

Conversely, assume that (A, p) € Aver(NP,}")DiSt(EE’*). There exists a problem (B,v) € Dist(Z},)
such that (A,) € Aver(NP, F)B¥) via an appropriate nondeterministic oracle Turing machine M. Assume
that B is in ATIMEE(k’,p(n)) for some polynomial p. We can assume that p is strictly increasing.

Next we define an alternating Turing machine N as follows. On input z, N simulates M on input
x starting with an existential state. During this existential state, if M queries z, then N stores z (in a
work tape) and guesses its oracle answer ans(z) and continue the simulation until M terminates. On each
computation path, if M reaches an accepting configuration, then N existentially checks if z; € B for all z;
with ans(z;) = 1. Then N universally checks if z; ¢ B for all z; which satisfy ans(z;) = 0 at once using B.
If xp(z;) = 1 for all such z;, then accept x; otherwise, reject .

It is easy to check that A = L(N). The running time of N on input z is at most

Timey (2) < ¢ - (Timeps (2) - p(Timeps (2)) + 1)

6.5. AVERAGE POLYNOMIAL-TIME ALTERNATION HIERARCHY 227

for some constant ¢ > 0. Since Az.Timeps(z) is polynomial on p-average, by Lemma 3.3.14, Az Timey () is
also polynomial on p-average. We then have (A, pu) € Aver(ATIMEE(k' +1,n°W), F) = Aver(AEg_H,}").
O

Corollary 6.5.3 Let k >0 and F be a set of distributions.

1. Dist(AL, F) C Aver(AA}, F) C Aver(A}, F).

2. Dist(EL, F) C Aver(AXY, F) C Aver(Z}, F).

In worst-case complexity theory, there is a nice characterization of the class PSPACE by polynomial-
time alternating Turing machines: that is, PSPACE = ATIME(nO(l)). Interestingly, we do not know
whether Aver(PSPACE, F) equals Aver(ATIME(n©(1)), F) because of the definition of the running time of
alternating Turing machines.

In what follows, we shall show that Aver(BPP,F) for a supportive set F of distributions is located

within the average polynomial-time alternation hierarchy under F.
Proposition 6.5.4 For any supportive set F of distributions, Aver(BPP,F) C Aver(AX) N AILY, F).

Proof. Assume that F is supportive and let (D,) be an arbitrary problem in Aver(BPP, F). Since y is
supportive, we can define a strictly increasing, positive polynomial p such that j(z) > 2-r=]) for all z. By
Proposition 3.5.33, there exists a randomized Turing machine M which recognizes D in polynomial time on
p-average with error probability 2-pUe)® e Pry[M(z) # D(z)] < 9-r(lz))?,

Now let us define
min{n | Pr,[Timey (2;5) < n|s € Qy(z)] > 5} if one exists,

Timejy; (z) =
00 otherwise.

Apply Lemma 3.3.21 to Az.Time}; (), and we conclude that Az.Timej;(z) is polynomial on p-average. Let
q be a polynomial such that Az.Time},(z) is ¢ on p-average. For this ¢, we have Timej; (z) < q(|z|/p(z))
unless ji(z) = 0. Let S = {« | i(z) > 0}. Then, for almost all z in S, Time}; (z) < ¢(||-20(=D) < 2v(=h*=2,
We take a positive integer ng satisfying log(Time},(z)) < p(Jz|)? — 2 for all z € S with || > no.

We next claim that the probability p, = Pr;[M (z;s) = D(z) | Timeps (z; s) < Timej (z) As € Qpr(2)]

is at least 1 — 2702D*+1 First we have:

Pr[M(z;s) = D(x) A Timeps (z;5) < Timeys (2) | s € Qas (2)]
> 1—Pr[M(z;s) # D(z) | s € Qu(x)] — Prs[Timep (z;s) < Timeyy(z) | 5 € Qg (2)]

—_

> 1ol L o L omntentey,

N | —
[N

228 CHAPTER 6. AVERAGE CASE HIERARCHIES

Notice by the definition of Time},(z) that Pr;[Timeps (z;5) < Timey(z) | s € Qpr(x)] > 1/2. Hence, the

conditional success probability p, is at least

11 _ o=p(z])?+1
L1 —27pU=h +1y | opllel1

Pz =

[T

In particular, when m = Time};(z), py > 1 — 2-p(2))’+1 > 1 _ 9-legm=1 gince log m < p(jz])? — 2.
Let us define another Turing machine M’ that simulates M by using an additional input string as a

random seed. Formally, the algorithm is as follows:

begin deterministic algorithm for M’
input (z,y) (say ¥ = y1y2 - - Ym, where y; € {0,1}, 1 < i< m)
let ¢ :=0
start the simulation of M on input x
while the simulation do
if M flips a coin and 7 < m then let its outcome be y;
if M flips a coin and ¢ > m then enter an infinite loop
let e : =241
end-while

end.

Note that we do not require the machine M’ to exhaust all bits of y on each computation path of M on x;
thus, M’ halts on input (z,y) exactly when s is a prefix of y for some random seed s € T'pr(z).

Towards achieving our goal, it suffices from Proposition 6.5.2(2) to show that (D,u) belongs to
Aver(NP, F)E¥) for some distributional problem (E, v) in Dist(NP, x).

We first define a nondeterministic oracle Turing machine My as follows:

begin nondeterministic algorithm M, with an oracle
input z
if |#| < ng then output D(x)
guess a string w
let m = |w|
simulate M’ on input (z, w) for m steps
if either M’ does not halt within m steps or M’ enters a rejecting state
then reject
guess m distinct strings uq, ..., up, of length m
query the string (z, u1 - - -, w) to oracle
if the string is not in the oracle then accept else reject

end.

We now show that, for any oracle, My 1s polynomial-time bounded on p-average. To show this, it suffices

to consider the case where |w| = Timej,(z). First notice that, for any oracle O, Timej(\)/fu(x) <c-(m+

6.5. AVERAGE POLYNOMIAL-TIME ALTERNATION HIERARCHY 229

m? 4+ 1), where ¢ is an appropriate constant. Since Az.Time},(z) is polynomial on p-average, the function
/\J:.Time]%D(x) is also polynomial on p-average.

Next we shall define the desired oracle F so that D = L(My, F). The set F is defined as the set computed
by the nondeterministic machine M; below. Let u & v denote the bitwise addition of v and v modulo 2, and

let the algorithm for M; be as follows:

begin nondeterministic algorithm for M;
input (z,uy -y, W)
if |uy - upm| # |w|? then accept
(Now assume that m = |w].)
guess a string v of length m
fori=1tomdo
simulate M’ on input (z, u; ® v) for m steps
if M’ does not halt then accept
simulate M’ on input (z,w) m steps
if M’ does not halt then accept
if M'(x,u; ®v) # M'(z,w) then accept else reject
end-for

end.

Note that AM; is polynomial-time bounded, and as a result, £ belongs to NP. Still we must prove that
D = L(My, F). For simplicity, we fix and set m = Timej;(z). Let A = {(w,y) € Z™ x ¥™ | M'(z,w) =
M'(z,y)}. Moreover, let

B = {w€X™| there are more than 2™~1°6™~1 strings y of length m such that (w,y) € A}.

We now claim that:
Claim 16 w € B if and only if I(u1, ..., upm) € (Z™)™Tv € ZMVi < m[(w,u; v) € A].

Proof of Claim. (Only if — part) Assume that w isin B. To produce a contradiction, we further assume that
the right side of the above equivalence is false; namely, for every m-tuple (w1, ..., up) in (™)™, there exists
a string v € £™ such that (w,u; v) &€ A for all i, 1 < i < m. Let {vg,v1,...,vam_1} be an enumeration of
all strings of length m. For each j, we define U; as the set {(u1,...,umn) € (™) | Vi < m[(u; $ v;) € A]}.
Define U = Uj:o_l U;. Since ||U|| = [|Z™)™ = 2m2, there exists a natural number j, such that ||Uj,|| >
|U]|/2™. This implies that [|U;,|] > 2™ ™.

Let C = {u € X™ | (w,u) ¢ A}. Towards a contradiction, we must show that [|C|| > 2m~!°6™~1 Notice
that ||C]| is equal to the cardinality of the set {u € ™ | (w, u® v;,) € A} because of the operator . Given

any m-tuple (uq,...,un) € Uj,,

1G5 I" = [{u € X™ | (w, u® vjo) & AH™ 2 [|Uj|-

230 CHAPTER 6. AVERAGE CASE HIERARCHIES

The cardinality of the set C, thus is bounded above by
||Cj0|| > (2m2—m)1/m > gm=1 ~, gm-—logm—1

(If — part) Assume that the right side of the equivalence in the claim is true; namely, there exists a
m-tuple (u1,...,um) € (™)™ such that, for every v € £, (w,u; @ v) € A holds for some i. Fix such an
m-tuple (u1,...,um). Let €' = {u € ¥ | (w,u) € A}. For each y € C’| there exists a number ¢ such that
(u; ®v) € A. For each ¢, let Cf = {y € ¥™ | Jy[ly = w; ® v A (w,y) € A]}. Because of the definition of ¢,
IS = [|C3|| for all pairs (7, 5), 1 < 4,5 < m. Since X7 = UiL, €, we have ||CY|| > 2™ /m > 2m=legm=1,
Therefore, w is in B. [|

Recall that & € D if and only if there exist more than 271°8(")=1 strings y of length m such that
(w,y) € A. This is equivalent to saying that there exists a string w of length m such that w € B and
M'(z,w) = 1. By the above claim, it holds that

r €D <= I(ur,...,um) € (") (2, u1 - um,w) & E.

This yields the equation D = L(My, E).

Finally we define the desired distribution v on I as follows. Using the function aﬁu(l‘), we set U(z) =
a{z | 2 € Q(MO,E,x,aﬁD(x))}). It is straightforward to see that (D,) is in Aver(NP, F)(F+¥) and
consequently (D, p) is in Aver(NP, F)(E¥) C Aver(NP, F)Pist(NP %) — Aver(ASE F).

The other claim that Aver(BPP,F) C Aver(AIL}, F) follows from the inclusions:

Aver(BPP, F) = co-Aver(BPP, F) C co-Aver(AX) F) = Aver(AIL}, F).

6.6 Average Low Hierarchy

The average polynomial-time hierarchy allows us to construct an average-case version of the low hierarchy
in NP to refine the structure within Aver(NP,F). Perhaps some NP-complete problems with natural
distributions which are unknown to be either in Aver(P,) or p-m-complete for Dist(NP, P-comp) fall into
a low hierarchy in Aver(NP,P-comp).

We first define the relativized average polynomial-time hierarchy.

Definition 6.6.1 (Relativized Average Polynomial Time Hierarchy) Let F be a set of distribu-
tions. For a distributional decision problem (B, v), the relativized average polynomial-time hierarchy under
F relative to (B, v) consists of the following classes:

(B,v)

1. Aver(ZV, }")(B’”) = Aver(NP, }")Aver(zz—l’*)

>k)(B,V)

2. Aver(AE, f)(B’V) = Aver(P’ }“)A"er(zi_u

6.6. AVERAGE LOW HIERARCHY 931
3. Aver(Hg,f)(Byl’) = co—Aver(Eg,}")(Bvl’).

Based on the relativized hierarchy {Aver(AP, F)(E¥) Aver(ZF, F)E¥) | k > 0}, we introduce the low
hierarchy within the class Aver(NP, F).

Definition 6.6.2 (Average Low Hierarchy under) Let k € N.
1. Aver(LAL F) = {(D,) € Aver(NP, F) | Aver(AF)(P:#) C Aver(Af, %)}
2. Aver(LXZP F) = {(D,) € Aver(NP, F) | Aver(EP, %)(P:#) C Aver(ZF, #)}.
3. Aver(LII}, F) = co-Aver(LX}, F).

4. Aver(LPH,F) = UieNAver(LEE,}").

Here we remark that it is open whether each class of the average low hierarchy enjoys the sparse inter-

polation property.

Lemma 6.6.3 Let k>0 and F be a set of distributions.
1. Aver(LAY,F) = Aver(LXY, F) = Aver(P, F).

2. Aver(LXV,F) C Aver(LAg_H,}") C Aver(LEg_H,}").

Proof. (1) Since Aver(A}, +)(P#) = Aver(ZF #)(P#) = Aver(P, F)(P:#) by definition, we obtain the
equality Aver(LX}, F) = Aver(LAY, F). Tt is also clear that Aver(LAY, F) C Aver(P,F) because (D, u) €
Aver(P, *)(D’“).

The other direction Aver(P, F) C Aver(LAY, F) follows from the fact that Aver(P, F) = Aver(P, F)Aver(P*),
as shown in Lemma 6.3.4(1).

(2) For the first inclusion, let (D, u) be any distributional problem in Aver(LXE}). By definition, we
have Aver(XZ}, *)(D’“) C Aver(Z},). We then obtain:

Aver(AEH, *)(D’“) = Aver(P, *)Aver(EE,*)(D’”) C Aver(P, *)A"er(zz’*) = Aver(Az_H,).

Hence, Aver(Az_H, $)(Dm) C Aver(Az_H,), which implies that (D, y) belongs to Aver(LAg_H,}").

Similarly, we can prove the other inclusion. a

The assumption Aver(XF,) = Aver(Eg_H, *) is sufficient for the class Aver(NP, F) to collapse to the
kth level of the average low hierarchy.

Proposition 6.6.4 Let k > 0 and F be a set of distributions. If Aver(Z},) = Aver(Eg_H,*), then
Aver(LEY, F) = Aver(NP, F).

232 CHAPTER 6. AVERAGE CASE HIERARCHIES

Proof. Let us assume that Aver(XV,) = Aver(Eg_H,

in Aver(NP, F). We shall show that (D, 1) belongs to Aver(LXY, F). Since (D, 1) € Aver(NP, F), we have

). Let (D, p) be an arbitrary distributional problem

the following inclusions:

Aver(Zh, x) C Aver(ZF, *)(D’“) C Aver(Eg_H,).

By our assumption, it follows that Aver(X}, $)(Dm) C Aver(XV,). This shows that (D,) is in Aver(LX}, F).
O

Unfortunately, we do not know any natural examples of distributional decision problems falling in the

average low and high hierarchies. The search for such problems is a challenge.

Chapter 7

Quintessential Computability

7.1 Introduction

The most exciting aspect of this thesis is the attempt to investigate the notion of quintessential computability,
first proposed by Schuler and Yamakami [97]. Throughout this thesis, we have developed the average-case
complexity theory initiated by Levin. We know that average-case complexity theory is very sensitive to the
choice of distributions. For example, if we take a distribution which decreases fast enough to 0, then all NP
problems are polynomial time solvable on the average. Nevertheless, this type of extreme analysis does not
capture the significant feature of average-case complexity theory.

Regarding Levin’s question Dist(NP, P-comp) C?Aver(P, x), Ben-David, Chor, Goldreich, and Luby [9]
gave a partially negative answer by demonstrating that Dist(NP,P-comp) € Aver(P,) unless E = NE.
This result suggests one approach to open questions posed in average-case complexity theory: embedding
average-case complexity classes into worst-case complexity theory in such a way that the embedding does
not lose the complexity of these classes. The simplest solution is to focus on “rare instances” under “every”
reasonable distribution. This notion was developed by Schuler and Yamakami [97] (suggested by Uwe
Schéning).

In Section 7.2, we shall formally introduce the notion of “real C under F.” For a (worst-case) complexity
class C, “real C under F” represents the class of sets which can be computable on average no matter
what distributions are chosen from F. The simple notation Cx was invented by Schuler and Yamakami

”

[97] to denote the class “real C under F;” for example, Pp_comp captures “real P under P-comp.” Using
this notation, Levin’s question Dist(NP,P-comp) C7Aver(P,) can be simply rephrased by the question
NP C7Pp-comp in the worst-case setting.

Based on this notion, we are able to introduce the real polynomial-time hierarchy under F, {A} 7, ¥ 7,
ITI' 7 | k > 0}, that captures the essentials of the average polynomial-time hierarchy under F. By the

definition, quintessentially computable classes have very different structures from their worst-case counter-

parts. For instance, it is unknown whether Pz equals Uk>0DTIME(O(nk))}- in general, whereas P is

233

234 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

Usso DTIME(O(n*)). One of the exciting results here is that the real polynomial-time hierarchy under the
set of recursive distributions indeed coincides with the worst-case polynomial-time hierarchy. In particu-
lar, Pg-comp collapses to P. These results support our main focus on feasible distributions in average-case
analysis. Section 7.2 will formally define the notion of “real C under F” and demonstrate the fundamen-
tal properties and the equivalence between the real polynomial-time hierarchy under REC-comp and the
polynomial-time hierarchy.

Our interests are now in the real polynomial-time hierarchy under P-comp and its alternation counterpart,
the real polynomial-time alternation hierarchy under P-comp, and we shall study its properties from the
perspective of structural behaviors. The first question we want to ask ourselves is whether any level of
the real polynomial-time hierarchy under P-comp contains sets which are hard to compute. Schuler [92]
succeeded in constructing such a hard set within Pp-comp Wwhich cannot be computed by a deterministic
polynomial-time Turing machines. His method is further extended by Schuler and Yamakami [98] to the
separation between DTIME(O(2°")) and Pp_comp. In Section 7.3.1, we shall see how to construct hard sets
within AEP_Comp and Egp_comp, k € N, by using resource-bounded Kolmogorov complexity.

Immune sets and bi-immune sets are good examples of hard sets. The class E, for example, contains
P-immune sets and P-bi-immune sets, and thus E is different from P. We shall see that Pp_comp contains a
P-immune set of an “arbitrary” density. Nonetheless, the class Pp-comp or even its truth-table closure has
no P-bi-immune sets, and as a consequence, the class turns out to be small, i.e.; it has p-measure 0, from
measure theoretic point of view. This consequence is intriguing in contrast with the fact that the Turing
closure of Pp_comp is equal to the class EXP, which has p-measure 1.

In 1974, Book [15] first showed that E is structurally different from NP. He actually proved that NP
enjoys the closure property under p-m-reductions, but E does not; therefore, NP cannot equal E. A similar
structural property characterizes the classes in the real polynomial-time hierarchy under P-comp. We shall
see In Section 7.5 that neither AZP_Comp nor Egp_comp is closed under p-m-reductions, and consequently
both AZP_Comp and Egp_comp are structurally different from all worst-case complexity classes which are
closed under p-m-reductions.

In Section 7.6, we shall look at the probabilistic classes BPPp_comp and BPPp_gomp, which are another
example of well-studied quintessential complexity classes. Due to Impagliazzo and Levin [44] and Schuler
and Watanabe [96], the question NP C?BPPp_comp is known to be equivalent to the question NP C
?BPPp-samp. This is not known for Pp-comp and Pp-samp.-

The notion of random oracles was introduced by Bennett and Gill [8] in 1981 to prove that the probability
of the event of a relativized NP coinciding with a relativized P is 0 when oracles are chosen at random.
In Section 7.7, we shall show that neither of the inclusions, NP C Pp-comp nor Pp_comp C NP, is possible

relative to a random oracle.

Major Contributions. The author formalizes the notion of substantial computation on the average and
shows the hardness and the structural properties of the classes in the real polynomial-time hierarchy under

P-comp.

7.2. REAL POLYNOMIAL-TIME HIERARCHY 235

Propositions 7.2.5 and 7.2.10 show the inclusions among quintessential computable classes: e.g., A} C
AAVr C APy C A5, A similar inclusion holds for the X} class.

Proposition 7.2.14 shows that, for any class C of the polynomial-time hierarchy, every set in Cx is nearly-
C. As a direct consequence, Corollary 7.2.15 shows that if strong one-way functions exist, then NP is not
included in BPP £ for any set of distributions F which contains at least one supportive distribution.

Lemma 7.2.16 shows that if Aver(C,F) has the sparse interpolation property, then TALLY N Cr C C.
This lemma leads to several interesting consequences including, as in Corollary 7.2.19, ¥ C ALz unless
A = X7,

Theorem 7.2.23 shows that AEREC—comp = AAEREC—comp = Ag for any k. Similarly for EZREC—Comp
and BPPREC-comp- In particular, as in Corollary 7.2.24, the class Pg-comp equals P.

Theorem 7.3.2 shows that, for each constant ¢ > 0, there exists a sparse set in AAEP_Comp but not in
ATIMEA(k', O(2°")). A similar separation result holds for AXYp_comp.

Proposition 7.3.4 shows that, assuming Pp_gamp # P, either FPE ¢ #P or NP ¢ BPP holds.

Proposition 7.3.6 shows that for each constant ¢ > 0, AAEP_Comp 1s not 1ncluded in
ATIMEA(k', 0(2°"))-close. This immediately implies that Pp_comp € P-close.

Theorem 7.3.9 shows that, for each constant ¢ > 0, AEP_Comp 1s not included in Ag/cn.

Theorem 7.4.1 shows that there exists a P-immune set in Pp-comp. The final claim of Proposition 7.4.5,
that there is no P-bi-immune set in Pp_comp, comes from Schuler and Yamakami [98].

Proposition 7.5.10 shows that Agp_samp and Egp_comp are closed under hp-m-reductions.

Lemma 7.5.9 shows that there exists an incomparable pair of sets A and B in Pp_comp With respect to
hp-m-reducibility, namely, A £ B and B £P A.

Proposition 7.5.8 shows that if every P-samplable distribution is avp-dominated by some P-computable
distribution, then AEP_Comp is closed downward under hp-m-reductions.

As for polynomially-bounded operators, Theorem 7.5.13 shows that the class 3> Al p_comp is not included
in APpcomp. As its corollary (Corollary 7.5.14), 3P Pp_comp € NPp_comp if P = NP. Theorem 7.5.16
asserts a similar result about the probabilistic operator PP that the class PP- Pp_comp 18 not included in
Pp-comp-

There is a series of random oracle separation results taken from Schuler and Yamakami [97, 98]. Propo-
sition 7.7.4 shows that, relative to a random oracle, Pp-comp is different from NPp-comp. In Theorem 7.7.6,
it is shown that, relative to a random oracle, NP is not included in Pp-comp, whereas Theorem 7.7.7 shows

that, relative to a random oracle, Pp_comp is not included in PSPACE.

7.2 Real Polynomial-Time Hierarchy

Average-case complexity theory has given us a different perspective from worst-case complexity theory about
what is hard to compute. Some NP-complete problems have been already categorized as relatively “easy”
on the average. This is one of the reasons that Levin asked whether all NP-complete problems are “easy”

on the average.

236 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

As shown by Ben-David, Chor, Goldreich, and Luby [9], Levin’s question is closely related to the E =7NE
question in worst-case complexity theory. Is there any general way we can discuss other open questions
in average-case complexity theory in terms of worst-case complexity classes 7 Or more bravely, can we
embed our average-case complexity classes into the world of worst-case complexity classes without losing
any significant feature of their average-case complexity 7 One answer was presented by Schuler and Yamakami
[97] in 1992. They introduced a new notion, called real C under F, that enables us to treat an average-case
complexity class as a worst-case complexity class.

This section will begin with the notion real C under F and then introduce the real polynomial-time

hierarchy.

7.2.1 The Notion of “Real C under F”

At a conference in 1992, Schuler and Yamakami [97] proposed a way that we can bring average-case complex-
ity classes back to the worst-case complexity world. The idea is that rather than argue the average behavior
of an algorithm with respect to each individual distribution, we wish to extract the hardest instances under
every distribution. Let us consider a set A in P. The set A 1s not only computable in polynomial time, but
also computable in polynomial time on p-average under every distribution p. In other words, A is “easy” to
compute regardless of the probability with which each instance occurs. What kind of instances are “easy” to
compute on average under all reasonable distributions like P-computable distributions 7 We shall formalize
the collection of such instances in a more general way.

Formally, we introduce the general notion of “real C under F.”

Definition 7.2.1 (Real C under F) [97] Let C be a complexity class and let F be a class of distributions.
Assume that Aver(C, F) is defined. The class real C under F, symbolically Cr, is the class of sets D such
that (D, u) € Aver(C, *) for every u € F.

This new notion formalizes a significant feature of the associated average-case complexity classes. The

next proposition indicates its importance.

Proposition 7.2.2 [97] Let Dist(C, F) and Aver(D,F) be any randomized and average-case complezity
classes, respectively. Then, C C Dr if and only if Dist(C, F) C Aver(D, F).

Proof. Assume that C C D and (A, p) is in Dist(C, F). From the fact that A belongs to D, it follows
that (A, p) € Aver(C, F). Conversely, assume that Dist(C, F) C Aver(D,). Let D be any a set in C. For
every p € F, since (D, u) € Dist(C, F), we obtain (D,) € Aver(D,F). Hence, D belongs to Dr. a

For most classes C, we immediately conclude the inclusion C C Cr, since Dist(C, F) C Aver(C, F).
An advantage of Proposition 7.2.2 is that Levin’s question Dist(NP, P-comp) C7Aver(P,#) can be

>

simply rephrased as follows: “Is NP included in Pp-comp 77 In an attempt to answer his question, we

7.2. REAL POLYNOMIAL-TIME HIERARCHY 237

must make a careful study of the quintessential complexity class Pp-comp. More generally, the question
Dist(2F, P-comp) C?Aver(AF, %) is translated into the question 2} C?APp_comp in the worst-case setting.

From Definition 7.2.1, we obtain quintessential complexity classes NPz and X} 7, where k € . Recall
the definition of the average-case complexity classes, Aver(co-NP, F) and Aver(II}, F), k € N. These classes
are conventionally defined to be the complements of the original defined-by-machine classes Aver(NP, F)
and Aver(XZ}, F). Adapting Definition 7.2.1, we are able to “define” the classes (co-NP)z and II} 7. Nev-
ertheless, do these classes conflict with the definition of the complement class 7 More specifically, do they
equal the complements of NPz and 2} 7 7 The following lemma shows that Definition 7.2.1 does not conflict

with the complement classes Aver(co-C, F) in general.

Lemma 7.2.3 Let C and D be complexity classes and F be a set of distributions.
1. If Aver(C,F) is defined, then co-Cr = (co-C)r.

2. If Aver(C, F) and Aver(D,F) are defined, then Cr NDr = (CND)r.

Proof. (1) For any set A € co-Cx, we have A € Cr. For every distribution pu € F, (A, p) € Aver(C, F).
By our assumption, this is equivalent to the statement that (A, p) € Aver(co-C, F) for every u € F. Thus,
we have A € (co-C)r.

Conversely, assume that A € (co-C)r. We have (A, u) € Aver(co-C, F) for all distributions g in F, and
thus (A, i) € Aver(C, F). Hence, A € Cx. In other words, A € co-Cr.

(2) By a similar, simple argument. a

In particular, we have the equalities Hg}- = co—Eg}- and Eg}- N Hg}- = (Eg N HE)}- for all £ > 0 and for
any set F of distributions.

We make the remark here that although we have seen in Corollary 3.5.18 that Aver(P,P-comp) ¢
Dist(NP, *), we do not know whether Pp_comp € NP.

The following inclusion follows immediately from Corollary 3.4.7.

Lemma 7.2.4 Let F1 and Fy be two sets of distributions and let C be any class in the polynomial-time

hierarchy. If every distribution in Fy 1s avp-dominated by some distribution in Fa, then Cr, C Cr,.

We remark here that PHz is not defined as the union of all 375 for any k € IN. Hence, despite
Proposition 6.4.6, we cannot simply conclude that X » = EE_H}- implies PHz = X} 7.
We next locate the newly defined classes Pr, NPr, BPPr, and PSPACEx in the worst-case world.

Proposition 7.2.5 [97] Let F be any set of distributions which contains the standard distribution.
1. PCPsCE.

2. NP C NPz C NE.

238 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

3. BPP C BPPs C BPE.

4. PSPACE C PSPACEs C ESPACE.

Proof. We give only the proof of (1) since the rest of the claims follow by a similar argument. Since
Dist(P,F) C Aver(P,F), we have P C Pr. To show that P C E, we let A be any set in Pr. Since
(A, Vstand) € Aver(P,F), there exist an increasing polynomial p and a deterministic Turing machine M
which is p-time bounded on vgtang-average such that M computes A. Recall that Dgiana(z) > W.

It clearly holds that, for almost all x,
Timexs (2) < pllal/ana()) < plSlz] - (Jo] + 1)2 - 21Ty < 2ele

for an appropriate constant ¢ > 0. Therefore, A belongs to DTIME(O(2°)), which is a subset of E. a

As a final note in this introductory subsection, we wish to demonstrate that the class “real P under
FLAT” is not a large class, where FLAT denotes the collection of all flat distributions. We note that
whether NP C PpraT 18 an open question, which is related to the incompleteness of distributional problems

with flat distributions. We now recall that SUBEXP = ﬂ6>0 DTIME(O(?”E)).

Lemma 7.2.6 PFLAT g SUBEXP.

<(=h for almost all

Proof. Assume that A is in Pppar. Let g be a distribution such that i(z) < 92—l
z, where ¢(n) = 1/|logn|. This distribution is flat because ¢ is decreasing. By the choice of A, (A, pu) €
Aver(P,). There is a deterministic Turing machine M computing A in time p on p-average, where p is a
function from X* to R*. Choose constants ¢, k > 0 such that p(z) < ¢ - 2* for almost all 2.

Let m be any positive integer. Then, for any sufficiently large z,

e(lzl)

Timey (z) < p(lel/a(z)) < p(le]- 27777
< e (|u]- 21y < gGeDleleD
< ol
Thus, A € DTIME(O(?”l/m)). Since m is arbitrary, A € SUBEXP follows. O

The converse is unlikely to hold.

7.2.2 Real Polynomial-Time Hierarchy

The notion of quintessential computability enables us to translate all average-case complexity classes into
worst-case complexity classes. In particular, we can naturally translate the average polynomial-time hier-
archy into its quintessential counterpart. We call such a hierarchy the real polynomial-time hierarchy. This
subsection will study its structural properties.

The formal definition of the real polynomial-time hierarchy is given below.

7.2. REAL POLYNOMIAL-TIME HIERARCHY 239

Definition 7.2.7 (Real Polynomial-Time Hierarchy under F) [97] Let F be any set of distribu-
tions. The real polynomial-time hierarchy under F consists of A}z, BV 7, and II} # for all natural numbers

k. Let PHz be the collection of all sets A such that (A, g) is in Aver(PH, F) for all distributions y € F.

Immediately from the facts that Aver(X%, F) C Aver(Az_H,}") C Aver(Eg_H,}") and IIL 7 = co-2} 7,
it follows that:

Lemma 7.2.8 Forallk >0, Eg}- Uﬂg}- - Ag_l_l}- - EE_H}- ﬂﬂg_l_l}-.

Analogous to the real polynomial-time hierarchy, we can define the real polynomial-time alternation

hierarchy using the average polynomial-time alternation hierarchy.

Definition 7.2.9 (Real Polynomial-Time Alternation Hierarchy under F) Let F be any set
of distributions. The real polynomial-time alternation hierarchy under F consists of AAY 7, AXY 7 and
AT 7 for all k € N. Let APH# be the collection of all sets A such that (A, u) is in Aver(APH, F) for all
distributions p € F.

Because of domination conditions imposed on oracle Turing machines,; the real polynomial-time hierarchy

forms a sub-hierarchy of the linear exponential-time alternation hierarchy, {A§, 3¢, II5, | & > 0}.

Proposition 7.2.10 Letk > 0 and let F be any set of distributions which contains the standard distribution

Vstand -
1. AL CAAVFCAlF CAS.

2. B CAS s C Xl r C 325,

Proof. Recall that Dist(A}, F) C Aver(AA}, F) and Dist(Z}, F) C Aver(AX}, F) for all k > 0. Hence,
Ag C AAE}- and EE C AEE}-. The inclusions AAE}- - AE}- and AEE}- - Eg}- come from Corollary
6.5.3. In the following, we show the rest of the claim, namely, Al C Af and 2} » C 3%,

It suffices to show that (A, Vstana) € Aver(2F, x) implies A € 3¢, This proceeds by induction on k. The
base case k = 1 follows from Lemma 7.2.5(2). Let k > 2. Let (A4;, i), 1 < i < k, be a distributional problem,
where A1 = A and g1 = Vgtana. Assume that (A;, ;) € Aver(NP, *)(A“rl’““rl) via an oracle machine M; for
all 7 with 1 < ¢ < k. Assume also that Ay is recognized by a Turing machine N which runs in polynomial
time on pg-average. Let g (x) = Timen(x), gi(x) = minyerlip(M; 4,41 ,0) ZZEQ(M,,AH_l,x,y)gH‘l(Z)' It is not
difficult by induction on ¢ to show that g; is polynomial on p-average, since gi is polynomial on pg-average.

First we construct alternating Turing machines M/, 1 < i < k, as in the proof that AXY = ¥, More
precisely, the machine M/ is defined as follows: on input #, M/ simulates in an existential state M; on the same
input except for oracle queries; if M; queries z, then M/ guesses its oracle answer ans(z) and continue the

simulation; if M; reaches an accepting configuration, it sequentially simulates M/, ; on all z with ans(z) = 0;

240 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

then in a universal state, M simulates M/, on all z with ans(z) = 0; M/ enters an accepting configuration
exactly when M/, reaches a rejecting configuration. Otherwise, M/ enters a rejecting configuration. It is
obvious that each M/ is an alternating Turing machine with (k — ¢ 4+ 1)-alternation. Moreover, assuming
z € L(M]), the length of the minimal subtree of the computation tree of M/ on x which contains only
“yes”-configurations is bounded by ¢ ¢;(x), where ¢ is a positive constant not depending on the choice of x.

Second we define a new machine M as follows: on input #, M simulates M{ on z in time 2¢clel+es on each
computation path, if M{ does not reach any halting configuration, then M enters a rejecting configuration.
Since ¢, is polynomial on vetanq-average, # € A if and only if # € L(M). Hence, we have A € X7.

The case for A} 7 is shown analogously. ad

In worse-case complexity theory, PH is the union of all sets in X} for any k¥ > 0. Nevertheless, we have
no proof that PHz = Uk>0 Eg}-. On the other hand, can we show that PHz differs from Uk>0§]£}- 7
Since it is still possible that Px = PHz, the separation between PH £ and Uk>0 Eg}- seems difficult to
prove. This situation is similar to the question of ATIME(n®(1)) versus Ukso ATIMEE(k, nOW)). Because
Ukso ATIMEE(k, nPW) coincides with PH while ATIME(n°()) equals PSPACE, we do not know whether
PH = PSPACE. Therefore, as mentioned before, we cannot conclude that if 3% » = Eg_l_l}-, then PHz =
S F.

We have seen that A} = X} implies Aver(AAY, F) = Aver(AX}, F). Hence:
Lemma 7.2.11 Let k >0 and let F be a set of distributions. If Ay = 3P then AALr = AXY 7.

Last, we shall demonstrate some basic closure properties, under set operators, of classes in the real

polynomial-time hierarchy under P-comp.

Lemma 7.2.12 Let C € {A}, XV TIV | k> 0}. If A and B in Cpcomp, then ANB, AUB, A— B, and
A® B are in Cp-comp-

Proof. Let k > 0. Here we shall show the closure property of X} 7 under ¢. Let us assume that A and
B are in X} 7: that is, (A, p) € Aver(E}, P-comp) and (B, u) € Aver(Z}, P-comp) for all distributions p in
P-comp. Take an arbitrary distribution g € P-comp. We assume that () = 0 for simplicity. Let ¢g and
¢y be defined as

2 iy, alba) > 1,

1 otherwise,

where b € {0,1}. We next define p' as i'(A) = 0, and for each nonempty z,

%ﬂ(bx) if z = bx for some b € {0,1} and z € XF,

g (Z) - 2 Zw:w;é)\ /lO(bw) ifz=b¢ {0’ 1}

—

The function p' becomes a distribution and satisfies 4/(0X*) = f/(1¥*) = 3. It is also easy to see that
i <P i because i(x) < 2 ¢ (¢). Hence, (A B,u) <b, (A& B,).

7.2. REAL POLYNOMIAL-TIME HIERARCHY 241

Define fia(x) = 2 - i/ (0x) and pp(x) = 2 - @/(1z) for all z. Notice that p/ = ps & pp. By the
definition of y', both p4 and pp are P-computable. Thus, we conclude that (A, u4) and (B, pp) are in
Aver(C, P-comp). Lemma 6.4.7 yields the conclusion that (A® B, pia ®up) € Aver(C, P-comp), which means
(A® B, ') € Aver(C,P-comp). Since Aver(C, P-comp) is closed under <P -reductions, then (A& B, y) is in
Aver(C, P-comp).

Since y is arbitrary, we get A @ B € Cp-comp- m]

7.2.3 Nearly-X} and Nearly-A} Sets

In Section 4.7, we introduced the notions of “nearly-RP” and “nearly-BPP” sets. In a similar fashion, we
can extend this notion and introduce the new notions of “nearly-X}” and “nearly-Al” sets. Our goal here

is to prove that every set in XYz (AL 7, resp.) is nearly-X% (nearly-Ar, resp.).

Definition 7.2.13 (Nearly-X! and Nearly-A} Sets) A set A is nearly-X} if, for every polynomial
p, there exist a set S and a polynomial-time alternating Turing machine M whose alternation is at most &
starting with an existential state such that (i) € A —.S implies M (z) = 1; (ii) * € A — S implies M (z) = 0;
and (iii) Pr,z € 5] < ﬁ for almost all n. Similarly, a notion of “nearly-A}” is defined by using an
alternating Turing machine with a semi-deterministic process.

Proposition 7.2.14 Let F be a set of distributions such that vganqg € F. Let C be one of the following
classes, A}, T k € N, BPP, and RP. Then, cvery set in Cr is nearly-C.

Proof. First we shall show the case C = X. The other case C = A} follows similarly. Let A be
an arbitrary set in X} 7. Note that (A, Vstana) € Aver(Z},). By Proposition 6.4.12, we have two sets
Cyp € B and €1 € I} such that Cy C 4, C; C A4, and [|CJ U CT|| > (1 —1/p(n)) - 2" for all n € N.
Let S = ¥* — (Cy U C1). We then have Hg_:[[< ﬁ for almost all n, and also we have Cy = A — S and
C1 = A— S. Therefore, A is in nearly-XF.

Next we shall prove the proposition for C = BPP. Assume that A € BPP#. Since vgang € F, we
have (A, vstand) € Aver(BPP,F). For convenience, write v for Vgang. By the definition of Aver(BPP, F),
there is a bounded-error probabilistic Turing machine M computing A in time p on v-average, where p is
an increasing polynomial. In particular, for the random-input domain T'ps associated to M, r,, ({(x,s) |
Timeys(x;8) > p(|lz| - r)}) < 1/r for any real number » > 0. By Lemma 3.3.21, it follows that #({x |
Timejys (z) > p(|z]-7)}) < 1/r. We can assume by the Amplification Lemma that Pry[M (z) = A(x)] > 5/6
for all z.

Take any polynomial ¢, and let ¢'(n) = p(n - 40(n + 1)? - ¢(n)). We then define

s={s

Thus, if x € S, then 5 - ZseFM(x) 2=Isl [Timeps (x5 5) > ¢/ (|2])] > 1.

5

. 1
Pr,[Timey (z;s) > ¢'(|z]) | s € Tpr] > —} .

242 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

First we shall show that the density of S is not so large. Fix n € N.

ProreS|eex’] < > 27080 () 5. Pr[Timey (2;s) > ¢'(n) | s € Dpr(a)]

TESNE™
< 8(n+1)7-5- > i(x) Pr,[Timey (z;5) > ¢'(n) | s € [yr(z)]
TESNE™
= 40(n+ 1) or,({(x,8) | £ € " A Timeys(z;5) > ¢'(n)})
) 1 1
R RS e M

Next we define a randomized Turing machine N as follows: on input z, simulate M on z in time ¢'(|#]);
if a computation does not terminate, then simply reject the input. Note that the error probability is less

than 1/6. We shall show that N correctly computes A on most inputs. For 2 not in S|

Pry[N(z) = A(2)] Pr,[Timey(z;s) < ¢'(Jz]) A M(z;5) = A(z) | s € T (2)]

> Pry[Timey(z;s) < ¢'(|z]) | s € Tar(2)] - Prs[M(z;5) = A(z) | s € T (2)]
1\ b 2
> 1—-=-)- = = -
- (5) 6 3
Hence, A is nearly-BPP. The case for C = RP is similar. a

Corollary 7.2.15 If strong one-way functions exist, then NP & BPPx for any set F of distributions

which includes Vgiang.-

Proof. Suppose that there is a strong one-way function. Assume also that NP C BPPx for some F
with vgiang € F. By Proposition 7.2.14, every NP set is nearly-BPP. Proposition 2.6.4 shows that there is

no strong one-way function. This is a contradiction; hence, NP € BPP«. a

7.2.4 Collapsing Classes

Let us return to Levin’s original question of whether NP C Pp_comp. As discussed in the previous section,
we can now raise the more general question of whether 3! C APz holds for some F. Clearly if P = NP,
then NP is included in Pz for all . Ben-David et al. [9] first gave a partial answer to this question by
showing that Dist(NP, P-comp) Aver(P, «) if E # NE. In other words, NP C Pp_comp, implies E = NE.
Note that E = NE if and only if TALLY N NP C P [14]. Hence, Ben-David et al. actually showed that
TALLY N Pp-comp C P.

We shall generalize this result and show that the tally part of any real average complexity class collapses
to its worst-case counterparts. First we state a technical lemma. Recall the standard distribution viany. In

the rest of this section, we use this distribution.

Lemma 7.2.16 [97] Let C be a complexity class and let F be a set of distributions which contains viany.
Assume that Aver(C, F) is defined. If Aver(C, F) has the sparse interpolation property, then TALLYNCx C C.

7.2. REAL POLYNOMIAL-TIME HIERARCHY 243

Proof. Let A be in TALLY NCr. We note that (A, veany) € Aver(C, F) since vy € F. By the sparse
interpolation property for Aver(C, F), there exists a set B in € such that AN{0}* C B C A. Since A C {0}*,
we have A = B. Thus, A belongs to C. i

Recall that most average-case complexity classes discussed in this thesis enjoy the sparse interpolation

property. In particular, we have:

Proposition 7.2.17 [97] Let F be a set of distributions with viany € F. For every C € {AY, BV AAP
AS? BPP,PSPACE | k > 0}, TALLY N Cr C C.

Several corollaries follow from Proposition 7.2.17.
Corollary 7.2.18 Let k> 0. For any set F of distributions, A, € ALz, ¢ € Bl 7, and I ¢ TIL 7.

Proof. The claim follows from the fact that TALLY N A € A} but TALLY N A C AP The cases for

Eg}- and Hg}- are similar. 0O

Corollary 7.2.19 Let F be a set of distributions with viany. For eachk > 0, if BY C ALz, then A§ = 2¢.

Proof. Assume that £} C A} z. By Proposition 7.2.17, TALLY N2} C TALLY N A} C A}, and thus
TALLY N X} C A}, This is equivalent to A = 2¢. a

Covrollary 7.2.20 Letk > 1 and let F be a set of distributions with viany. IfAE}- = Eg}-, then A = X7.
Proof. The claim is another variant of Corollary 7.2.19 because A}z = X} 7 implies) C A 7. a

It is unlikely that Aj = X7; thus we may conjecture that EE ¢z AE}- for all 7 which contains viany. In
other words, the sets in X} seem hard to compute even on average.

When we consider the class Pp-comp, the claim of Proposition 7.2.17 can be strengthened in the following
manner. Recall that a set S is P-printable if and only if there exists a polynomial-time computable function

which, on input 07, lists all strings in S of length n.

Lemma 7.2.21 [98] Let A be an arbitrary set. If A is in Pp_comp, then ANS is in P for any P-printable
set S. If P = NP holds, then this is also true for all sparse sets S in P.

Proof. Let A be an arbitrary set in Pp-comp. Take any P-printable set S. Under our assumption, we
may assume that there exists an integer £ > 0 such that ||S N X7|| = (n + 1)* for all n € N, since if the

density of SN X" does not reach (n + 1) then we can deterministically add an element, which is not in 9,

244 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

to S repeatedly until its density is exactly (n + 1)*.

Let us define ji(z) oc (Jz| + 1)7%~2 if 2 € S; else 0. Notice that p is P-computable. Take a machine
M which computes A in polynomial time on p-average. There are integers m,c¢ > 0 such that p({z |
Timeps () > c(|z] - r)}) < 1/r for all » > 0. For any fixed # € AN S, we have Timeys (2) < e(|z]/p(x))™ <
|| (|x] + 1)k +2) Hence, ANS € P.

The latter half of the claim follows from the fact that all sparse sets in P are P-printable if P = NP. O

We have seen that the tally part of quintessentially computable class Cr is easily computed, and thus
it collapses to its worst-case counterpart C. If we take the set of recursive distributions REC-comp, then
CREC-comp collapses to C. To prove this, we show that if Aver(C, REC-comp) has the sparse interpolation
property, then CREC-comp € C. In the proof of the following lemma, we again use infinite, recursive, proper

hard cores (see Definition 2.5.11).

Lemma 7.2.22 [97] Let Aver(C,REC-comp) be an average-case complexity class with C C REC. If
Aver(C,REC-comp) has the sparse interpolation property, then CREC-comp C C.

Proof. Suppose that Aver(C, REC-comp) has the sparse interpolation property. The proof is by contra-
diction. Now assume that there exists a set A in CREC-comp — C. By Lemma 2.5.12, there exists an infinite,
recursive, proper hard core H for A with respect to C. We note that if C = P, then H is in the class E (see,
e.g., [4]). Thus, for any set B € C, if B C A, then BN H is finite. Now let S be a recursive, infinite, sparse
subset of H. Let ¢(n) = ||S N X"||. Consider the distribution ug 4 such that

Doany (117! .
Zuatpl) if 2 €5 —{A}

/’LS,q(l‘) = 0 1fl=¢SU{A}’
1- Zz:z;ﬁ)\ /lS,q(Z) fze=A\

Clearly pus , € REC-comp. Since (A, us) € Aver(C, REC-comp), there exists an interpolant B’ € C of A
and S. We then have B"N H D S, and thus B’ N H is infinite. This contradicts the fact that H is a proper
hard core for A. ad

Theorem 7.2.23 [97] Let k > 0.
1. AYREC-comp = AALREC-comp = A}.
2. BYREC-comp = AZLREC-comp = Xh-
3. BPPREC-comp = BPP.

4. PSPACEREC-comp = PSPACE.

Proof. By Lemma7.2.22,it suffices to show that, for C € {A}, =%, BPP, PSPACE}, Aver(C, REC-comp)

7.3. FUNDAMENTAL SEPARATIONS 245

has the sparse interpolation property. The claim for ¢ € {BPP, PSPACE} follows from Proposition 6.4.9,
and the claim for C € {A}, 2} | k¥ > 0} follows from Proposition 6.4.11. 0

Theorem 7.2.23 indicates that the definition of the average polynomial-time hierarchy in Section 6.4 is a
reasonable generalization of the worst-case polynomial-time hierarchy.

Note that, in the proof of Lemma 7.2.22, the complexity of the distribution ps, depends only on the
complexity of the complexity core. Since all sets not in P have complexity cores in E, we get the following

corollary.
Corollary 7.2.24 [97] Pg-comp =P.

Complex distributions like recursive distributions make quintessential complexity classes lose their average-
case nature. This supports our primary interests in feasible distributions in Chapter 4. In later sections, we

shall focus on quintessential complexity classes under sets of those feasible distributions.

7.3 Fundamental Separations

We have seen the collapse of the real polynomial-time hierarchy under the set of recursive distributions. This
section shows the separations between the real polynomial-time hierarchy under P-computable distributions
and the polynomial-time hierarchy. The technique cultivated in this section is fundamental and will be used

again in later sections.

7.3.1 Construction of Hard Instances

Three years after the notion Pp_comp was presented, Schuler [92] succeeded in showing that Pp_comp # P by
constructing a complex set which lies in the difference Pp_comp — P. A crucial idea in his proof is to find a
string of each length which occurs with low probability by pruning other strings which occur with relatively
high probability. The construction needs an effective enumeration of P-computable semi-distributions. Later
Schuler and Yamakami [98] extended this result to create sets which are hard to compute even by O(2°")-time
bounded Turing machines for a fixed constant ¢ > 0. Certainly we cannot extend this result to 2°(*)-time
bounded machines because all sets in Pp-comp are already in E. Hence, this result seems nearly optimal.

The following lemma will be useful in later subsections. The proof given here uses Lemma 4.2.15, due
to Schuler [93], which uses resource-bounded Kolmogorov complexity to avoid any enumeration of semi-
distributions for the construction of a hard set.

For a set A, define Prefiz(A) = {0"1v | Jw[|w| = n Avw € A]}.

Lemma 7.3.1 (Hard Instance Lemma) [92, 98, 93] ILet k > 1. Let k(n) and s(n) be time-
constructible functions on N. Assume that k(n) and s(n) are unbounded, increasing, and 1 < k(n) < n

and k(n) € Q(n). Then, there exist a set A € DTIME(n*™) and a function h computable in time O(n*™))

246 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

such that, for all integers n > 0,

1) = k),

2. ANY? = 271 where 2 = h(17);

3. AnBe AAgp_Comp for every set B € Ay;

4. ANB € AXlp_comp for every set B € X5 ; and

5. Prefiz(A) € Pp_comp.
Proof. Without loss of generality, we may assume that s(n) < logn for all n. Since k(n) € £2(n), we can
take an integer ¢; > 0such that k(n) > o foralln € N. Let (1) =k(1)=1. Forn > 2, let [(n) = [10logn]
and let &'(n) = max{l, [k(n)/10-logn|}. Now consider an integer n; > 0 such that n > 40¢; - logn for all

n > ni. Obviously, #'(n) - l{(n) < k(n) for all n > 0. Note that, for all n > nq, &'(n) - {(n) > %k(n) since

k(n) > 40logn and, in consequence,

K(n)l(n) > (1(?1(:;71_1) (10logn —1) > k(n)—(lgl(:g)n—l—mlogn)

> k(n)—%k(n) = %k(n)

It is also clear that Az.l(|z]), Az.k(|#]), and Az.k'(|#|) are unbounded and computable in polynomial time
since k(n), s(n), and An.[10logn| are time-constructible.

To simplify the following analysis, we always disregard the computation time for the values k(n), {(n),
and k'(n) because, as we have seen, Az.k(|z|), Az.s(|z|), and Az.l(]z|) are all P-computable and do not affect
“average” running time.

As for the desired function h, we define A(17) to be a string z7 - ~z£,(n)0k(”)_kl(”)l(”), where 2z =
min{w €) | w & KT[n, 2"} and 2! = minfw € B | w @ KT[n, 250720 .22]} for all i
with 1 < i < k'(n). Obviously, we have |h(17)| = k(n) for all n > 0. Now define the desired set A
as A = {zw | In[z = F1") Aw € 7L An > 0]}, Note that AN X = A(1")X?~1P0"1and thus
[ANZ"|| = 2n=k(n) for all n > 0. We next show that AN B € AALlp_comp for all sets B in A§. Now fix a
set B in Af. Consider the following algorithm M

begin algorithm M for AN B

input z (let n = |z|)

compute k(n), s(n),{(n), and £'(n) (in polynomial time)

let y = A

for i = 1 to k'(n) do
compute 2P = min{w € B | w ¢ KT[n, 250 7|y]}
let y = y2!
if y Z x then reject

end-for

7.3. FUNDAMENTAL SEPARATIONS 247

if yOk () =k (n)i(n) IZ « then reject
(%) if x € B then accept else reject

end.

It is easy to see that the algorithm M computes A N B. For later convenience, we call a string which goes
into the line (%) a candidate.

Now let g be any P-computable distribution. By Lemma 4.2.15, there exists a constant c¢g, ng > 0 such
that, for all ¢ with co < i < k'(n), (2] - 2P~} < 2=0=0)l(?) Let ¢ be a large integer so that, in
the following estimation of the time complexity of the algorithm, the inequalities (%) and (x *) below hold
for any integer n > 0. Moreover, we assume that the computation time of the set B on input of length n is
at most 2¢ %<’ for each n € IN. Let ny be a constant large enough so that ny > max{ng,ni}, n > 2¢, and
n > 2¢1(10¢p + 1) logn + 1 for all n > ny. In what follows, we assume that n is any integer larger than ns.

Let Z; be the set of strings of length n which are not rejected through the first ¢ iterations of the for-loop;
namely, Z; = 2 --- 22X~ By definition, Zp = £” and A C Zpr(ny- Recall that i(Z;) < 2= (i=co)l(n)
We then partition X" into k'(n) 42 subsets, S = {Z;_1 = 7Z; | 1 <@ <K' (n)}U{Zpin) — A} U{A}. Note that
k'(n) +2 < nsince n > na. By Lemma 3.3.15, it suffices to show that, for some constant ¢ > 0 independent
of the choice of n, Timey (z) < n°+ (1/n?(D))¢ for all z € D, where D is an arbitrary set in S.

n
)

KT[n, 2507 | y]. Hence, we need at most 2/(?) . 25()I(n) < 9Uogj+1)i(n) steps because logj > s(j). Since

Note that, to compute z?, in the worst case we have to check all strings w in X" whether w ¢

i-ln)+1< 2/(") the running time of M on input z which is in Z;_, — Z; requires

7

Timey (z) < C/Z(Q(IOng)l(") +j-ln)+1) (#%)
j=1
< i (aUoRHLI) 4 gitn)y
< 210gc'+logi . 2(logi+1)l(n)+1 — 210gc”+logi+1 . 2(logi+1)l(n)
< 2210gn . 2(logi+1)l(n)
S 21(n)+(logi+1)l(n) < 2(logi+2)l(n)

since logn > loge’ 4+ 1, logn > log4, and {(n) > 2logn.

Let d be the minimal integer satisfying the following condition: ¢ > logi + ¢g + 3 for all integers ¢ > d.
Note that d does not depend on the value of n. Let ¢ = max{4c1c/, [6(logd + 2)]}. We examine below the
running time of M for several cases of input string .

(1) For the computation on all rejected strings # in X" — 74, for i < d,

TlHleM(l‘) < 2(logd+2)l(n) < 25(logd+2)logn — n5(logd+2) < nt.

(ii) For the computation on all rejected strings x in Z;_1 — Z; with d < i < k’(n), as we have seen,
Timeyr (z) < 2008142)1) Note that, since i > logi + co + 3, (logi + 2)I(n) < (i — co)l(n) — 2logn. Then we

have

1
n? - i(Zioy — Z;)

Timeyr (z) < 20084210 < L gli=conin) <

248 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

(iii) For the computation on all rejected strings = in Zg/(n) — A, note that 27 - - ~z2,<n) C z. We also note

that k(n) — k'(n)l(n) — 1 < 21°8*()+1 Hence, the time spent for z is

Timey (2) < gllogk'(n)+2)i(n) d(k(n) — K (n)l(n) +1) (% * *)
< 2(logk'(n)+2)l(n) + 210gc' . 210gk(n)+1
< 2(logk'(n)+2)l(n)+210gn < 2(logk'(n)+3)l(n)

since logn > logc¢ + 1 and I(n) > 2logn. Using the fact that ji(Zg/(n) — A) < 9= (kK'(n)=co)l(n) e have

: : 1
Timenrs (z) < 2(logk (n)+3)l(n) < Q(k (n)—co)l(n)—2logn < _)
v(e) < - ~n® e j(Zny — A)

(iv) For the computation on all strings # in A, we remark that the computation of B needs, by our as-
sumption, at most 2¢ 7+¢ time. Hence, Timepr(z) < 2¢'n+¢’ Note that MA) < i Zriny) < 9= (k' (n)=co)i(n)
Recall that &'(n){(n) > %k(n) and k(n) > 2. We first remark that dn+d < ce((k'(n)l(n)—co)l(n)—2logn).
This is seen as follows: since ¢ > 4¢’cy and n > 2¢1(10¢g + 1) logn + 1,

/ / 1 k,
C”:C — (K (n) —co)i(n) < ”42 _%_co.z(n)
n+1 n
— — 4+ 10¢p -1
461 261 + Co-logn

1
- 4+ 10¢q - logn + — < —2logn.
261 461

Therefore, we have
1 1 1 1 ¢
TimeM x) < 9° n4c < 26((k (n)—co)l(n)—2logn) < (.))
(e) < - ~\n?-a(4)
By Lemma 3.3.15, we conclude that Az. Timeps () is polynomial on p-average. Since y is arbitrary, AN B
belongs to AAEP_Comp.
The same argument can be carried out for the claim (4).

Next we show that claim (5) also holds. To prove (5), we consider the following algorithm M.

begin algorithm M’ for Prefix(A)
input z
find v such that 2 = 0"~ "Iy
if no such v exists then reject
let y = A
for i = 1 to k'(n) do
compute 2P = min{w € B | w ¢ KT[n, 250 7|y]}
let y = yz7
if v C y then accept
if y Z v then reject
end-for

ifvC yOk(”)_kl(”)l(”) then accept

7.3. FUNDAMENTAL SEPARATIONS 249

if yOk () =k (n)i(n) IZ v then reject else accept
end.
Fix n sufficiently large. Let V» = {07~I!l1v | (i = 1){(n) < |v| < i-l(n) Av T 27 ---21} for each i,
1 < i < k'(n). For the sake of convenience, let VJ' = ¥7+! — Uf;(ln) Vi". Notice that X"+ = U?;((?) v
Take an arbitrary P-computable distribution v. Tt suffices to show that, for each ¢ (1 < ¢ < k'(n)),
Timeyr: (x) < n° + (1/(n 4+ 1)*2(V;?)) holds for all € V. First we show that #(V?) < 27— ¥n) where

¢p 1s a constant chosen above.
Claim 17 (V") < 27 (imco)ln),

Proof of claim. Let us define f as follows. For each =,

2 .ZZU()”—Z"’(”) if # = 07111y for some v
flz) =

0" otherwise,

where ¢ = min{# | (i’ =1){(n) < |v| < -l(n)}. The function f is increasing and P-computable. Furthermore,
we obtain f(V;*) C Z, and as a consequence, V* C f~1(Z*). For v, we set u = Vi-1. As discussed above,

f(Z2) < 2~ (i=c0)l(?) holds. This yields the estimation of #(V;?) as follows.

PV < o(fHZP)) = (28 < 27 (imeo)iin),

K3

Therefore, it follows that p(V;?) < 27 (i=c0) (), m

Using an argument analogous to the proof for (1), we can prove that Timey (z) < n°+(1/(n+1)-(V,*))°

for some constant ¢. This completes the proof. a

7.3.2 Separation from “Quasi” Linear Exponential Time

This subsection will apply the Hard Instance Lemma to show that AEP_Comp and Egp_comp contain sets which
are hard to compute. In particular, we shall show the separation of the classes AZP_Comp and Egp_comp
from ATIMEA(k', 0(2°™)) and ATIMEE(k, 0(2°™)), respectively.

We have seen that all tally sets in Al p_comp (ZF p-comp, resp.) collapse to A} (EF] resp.). We first show
the existence of sparse sets in AEP_Comp and 1n Egp_comp, respectively, which do not collapse to Ag and Eg,
i.e., SPARSEN Alpcomp € A} and SPARSE N X} p_comp € .

To help the reader understand the following proofs, we first consider a strategy for proving Pp_comp € P.
The basic idea used in this section is a traditional diagonalization technique. The Hard Instance Lemma
guarantees the existence of a hard set A whose intersection with any set in E falls into Pp_comp. Now take a
set D “diagonalized” against all sets in P. Since D is in E, we simply consider the intersection AN D. This
intersection still belongs to Pp-comp but does not belong to P.

Now we are ready for a general theorem.

250 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

Theorem 7.3.2 Let k> 1 and let ¢ be any positive real number.
1. SPARSENAA}P_comp € ATIMEA(k’, 0(2°™)).

2. SPARSE N AXPp_comp € ATIME® (k, O(2¢7)).

Proof. Let ¢ be fixed.

(1) Let {M;}ien be an effective enumeration of all semi-deterministic alternating Turing machines
which work with at most k-alternations in time O(2°"), with infinitely many repetitions. Now we de-
fine the diagonalized set D = {x | @ € L(M|iog|¢|))}- It is not hard to see that the set I belongs to
ATIMEA(k,O(Q(CH)”)), but not to ATIMEA(k,O(QC'”)). By Lemma 7.3.1, we have a set A of density 1
such that AN D € AAlp_comp. We show that AN D ¢ ATIMEA(k', 0(2°™)). Assume that there exists the
ith machine M; which computes A N D. Let z be any string « of length 2. Then,

teEAND<=zreD<—=c ¢ L(M)<=2z¢ AND.

This is a contradiction. Thus, AN D & ATIMEA(k', 0(2°)).

(2) Consider a set A and a function h as defined in Lemma 7.3.1 such that AN X”? = {h(1™)} for all
n > 0. Recall that A belongs to DTIME(O(nlOg*”)). By an “alternation” version of a time hierarchy
theorem [99], there is a tally set B in the difference ATIMEE(k, 0(2°" -logn)) — ATIMEE(k, 0(2°")). Define
C={z|2ze AN olel ¢ B}. Clearly C' € 2} pcomp by Lemma 7.3.1. Now we prove that C' is not in
ATIME® (k, 0(2°")). Assume otherwise. Consider the following algorithm that works on {0}*:

begin alternating Turing machine
input 0"
compute h(1")
if h(17) € C then accept else reject

end.

Since ANX" = {h(17)} for all n, the above algorithm computes A. The running time of the algorithm
on input 0" is
Timeg(0") < ¢ - Z Times(z) + ¢’ - Timec ()
z:z|=n

< C/.2n.nlog*n+cl.26n < 90 . 9

for any sufficiently large integer n, where ¢’ is an appropriate positive constant. Therefore, we have B &

ATIMEE(k, 0(2°")). This is a contradiction. a

Corollary 7.3.3 [97] For any constant ¢ > 0, Pp_comp € DTIME(O(2°7)).

7.3. FUNDAMENTAL SEPARATIONS 251

Now recall that A§ = ATIME® (k,2°(")) and 2§ = ATIME®(k, 2°™)). Since AAPp-comp C A§ and
AEZP_Comp C X7, the results of Theorem 7.3.2 are nearly optimal; thus the classes AZP_Comp and Egp_comp
share hard sets with A} and Xj. As a particular case, the class Pp-comp has hard sparse sets in E. In light
of resource-bounded measure theory, however, the class DTIME(O(2°")) is known to be small within E,
and this suggests that the class Pp_comp may not be a large class within E. In the later section, we shall
show that Pp-comp 1s actually small.

Clearly P C Pp-gamp C Pp-comp since P-comp C P-samp. Can we show that Ppgamp # P 7 In contrast

to Theorem 7.3.2, if Pp_gamp # P, we can solve some open questions in worst-case complexity theory.
Proposition 7.3.4 If Pp_gamp # P, then either FPE Z #P or NP € BPP holds.

Proof. We shall prove the contrapositive. Assume that FPE C #P and NP C BPP. Since P-samp C
#P-comp, we have P 4p-comp € Pp-samp- Under the assumption NP C BPP, by Corollary 4.7.7, Pp-samp =
P 4p-comp. Our assumption FPE C #P leads to the conclusion that E-comp C #P-comp since

E-comp C PE-comp C #P-comp.

Hence, we have Pgp-comp C PE-comp. Recall from Corollary 7.2.24 that Pg-comp = P. This yields the

desired conclusion that Pp-gomp = P. 0O
Here we show another application of Lemma 7.3.1.

Definition 7.3.5 (Sparsely Close Sets) For a complexity class C, a set S is called (sparsely) C-close
if there exists a set B € C such that AAB is sparse. For the sake of convenience, we also use the notation

C-close to denote the collection of all C-close sets.
Note that any recursive set whose polynomial complexity core is sparse belongs to P-close.

Proposition 7.3.6 Let k > 0. For any ¢ > 0, AAp_comp € ATIMEA(k',O(QC'”))-Close. In particular,
Pp_comp € P-close.

Proof. The proof is by diagonalization. Let C' = {z [# € L(M|1og|c|j)}, Where {M;};cr is an effective
enumeration of semi-deterministic k-alternation, O(2°")-time bounded alternating Turing machines with
infinitely many repetitions. We have C' € ATIMEA(O(Q(CH)”)). Define A as in the Hard Instance Lemma
by choosing n — [log2 n] as k(n). It follows from Lemma 7.3.1 that ANC € Alp_comp-

We next show that A is not sparse. Note that ||[(ANC)AL(M|iogn|) N E"|| = [JANX"]|. The density of

A 1s, for each n,

||Aﬁ EnH — 2|'log2n'| > 210g2n — nlogn.

252 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY
Hence, (AN CYAL(M;), i € N, is not sparse since infinitely many machines coincide with M;. a

Recall that INT is the collection of all near-testable sets. It is known that P C NT C ENPSPACE

[31]. We show that Pp_comp contains a non near-testable set.
Proposition 7.3.7 [98] Pp_comp € NT.

Proof. Define A as in Theorem 7.3.2(1) with density given by [|A NX"|| = 1 for each n > 0, so that A
separates Pp_comp from DTIME(O(2"”)). We show that A is not near-testable.

Assume otherwise. Let boundary(A) = {z | * # A, exactly one of and zT is in A }, where 2T is the
successor of . Notice that boundary(A) = boundary(A). We claim that A is near-testable if and only if
boundary(A) is in P. Define f by f(x) = xa(z)+ xa(z7) (mod 2) for all . By the definition fo f, f(z) =1
if and only if exactly one of z and = belongs to A. This yields the claim.

Thus, we have boundary(A) € P. Note that the set ANX” contains at most one string, i.e., A € SPARSE.

Consequently, A is in P. The conclusion that A € P contradicts the fact that A ¢ DTIME(O(2")). a

However, it is open whether Pp-comp C @P or not.

7.3.3 Separation from Advice Hierarchy

Another immediate consequence of the Hard Instance Lemma below is to show a relationship between
Alp_comp and the class A /en defined by linear advice functions (see, e.g., [4, 41]). First we introduce an

advise hierarchy in the following general fashion.

Definition 7.3.8 (C with Advice f) For C a complexity class and f a function from IN to X%, a set S is
in C/f (C with advice f) if there is a set B € C such that SNX" = {x € X" | (#, f(n)) € B} for all integers
n > 0. For a class F of functions from N to X* let C/F = Ufef C/f.

For example, the class P/poly is known as the class of sets computable by non-uniform families of
polynomial-size circuits. For the general properties of the advice hierarchy {A} /poly, =¥ /poly, IIY /poly |
k € N}, see Yap [121]. Note that whether 3P C AF /poly is an open question.

We want to show that AZP_Comp 1s not included in Ag/cn when c 1s fixed.
Theorem 7.8.9 Let k > 0. For each constant ¢ > 0, Agp_comp ¢z Ag/cn.

Proof. Again we use a diagonalization argument. Let A be the set in ATIME® (k, O(n!°8"*)) whose
existence is guaranteed by Lemma 7.3.1, such that ||A"| = 2llosn®] and AN B ¢ Al p_comp for every set
B e A;.

Now let {M;}ien be an effective enumeration of all polynomial-time semi-deterministic k-alternation

bounded alternating Turing machines, each of which, M;, runs in n’+¢ steps. We shall define a set which diag-

7.3. FUNDAMENTAL SEPARATIONS 253

onalizes against all such machines. For each machine M;, let ACC(D,x) = {2z € D | M|10g|2|] accepts (z,z)}
and REJ(D,x) = {2 € D | M|1og|e|) Tejects (z,z)}. Let us consider the following algorithm:

begin semi-deterministic alternating Turing machine
input x (say, |z| = n)
if z € A then reject
enumerate all elements in A NX" (say, z1,. .., &y, where m = QUOg”QJ)
(assume that © = xy)
let Dy = X7
if K =1 then go to (x)
fori=1tok—1do
if D; = O then reject
if ||ACC(Dy, ;)| > [|REJ(D;, ;)|| then D;y1 = REJ(D;, %;)
else D; 11 = ACC(D;, ;)
end-for
(%) if ||ACC(Dy, zi)|| > [|REJ(Dg, 21)|| then reject else accept

end.

Let B be the set accepted by the above Turing machine. Since B D A, it suffices to show that B € Af.
For each input « in A, the machine takes 0(2(C+1)”) steps since it needs O(2" - nlog’ ") steps to enumerate
all elements in A N X7, at most n? iterations of the for-loop and O(n!'°8" . 2"} steps to compute each
ACC(D;, z;) and REJ(D;, x;) for some constant ¢ > 0. Therefore, B belongs to Af,.

We show that B & AY/cn. Let us consider the set {D; |1 <i < 2llesn®]} We remark that the definition
of sets D;, 1 < i < QUOg”2J, does not depend on the choice of strings z in A N X". Consider the maximal
k such that Dy # O, i.e., the algorithm goes into the line (). Note that k exists and & < e¢n. By our
definition, either ACC(Dy, xy) or REJ(Dy, x) is empty. By (%), ACC(Dy, x) # O exactly when z; ¢ B
holds. Hence, there is no advice string »z € " such that x; € B if and only if (x;,2) € L(M|iogn])- a

Despite of the above theorem, it is still open whether Alp_comp, C AL /poly. Schuler [93] presented
negative evidence by demonstrating that if Pp_comp C P/poly, then EXP = X}, Here we wish to prove
that Alp_comp € AL /poly if and only if A7 C A} /poly.

We shall show that every AZXp—set 1s reducible to AEP_Comp via polynomial-size circuits. We first describe

these reductions.

Definition 7.3.10 (P/F-m-reductions) Let h be a function from N to ¥*. A set A is P/h-m-reducible

to a set B, denoted by A §71,31/h B, if there exists a function ¢ € FP such that A = {z | g((x, h(|2|))) € B}.

For a set F, A is P/F-m-reducible to B, denoted by A §71,31/}- B, if A §71,31/h B for some h € F.

254 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY
Note that A <P, B and B §71,31/O(n) C imply A §71,31/p01y C', where poly is, as before, the set of p-bounded

functions from N to X*.

Lemma 7.3.11 For each k € N, the classes A} /poly and XY, /poly are closed downward under P /poly-m-

reductions.

Proof. We shall prove the lemma only for A /poly. Assume that A §71,31/p01y B and B € A} /poly.
Since A §71,31/p01y B, there exists a function g in FP and a p-bounded function A from N to X* such that
A ={z | g((x,h(]z])) € B}. Also by our assumption that B € AL /poly, there are a set D € A} and a
p-bounded function f from N to X* satisfying that B = {z | {x, f(|=])) € D}.

Combining those two set equations, it follows that

A= {x [(g((z, h(l2])), f(2])) € D}.

To show that A is in A} /poly, we define the set E as E = {(z,y) | (¢({z, (¥)0)), (v)1) € D}, where (y)o and
(y)1 are decodings of y satisfying y = ((y)o, (¥)1). Let us set ¢(n) = (h(n), f(n)) for all natural numbers n.
Clearly ¢ 1s p-bounded because both h and f are so. The definitions of E and ¢ yields the desired conclusion
that A = {z | (z,¢(|z])) € D}, which implies that A € AL /poly. O

The following lemma generalizes the special case (k = 1) proven in [93].

Lemma 7.3.12 Let k > 0. Every set in AZXP is P /poly-m-reducible to some set in AZP_Comp. A similar

clatm holds for EZXP and Egp_comp.

Proof. Let S be a set in A7™". Note that every A set is p-m-reducible to some set in A§ by Lemma
2.5.10. Hence, there exists a set S’ in A§, such that § <P, §’. Let us define the set L to be the collection of
all strings x such that & = zy for some y € S’ and z with |z| = |y| + b, where b = |z| (mod 2). Clearly L is
in Af.

Take a set A and a function h defined in the Hard Instance Lemma with the condition |A(17)| = [n/2].
Since L € Af, the intersection LN A lies in AZP_Comp. Now let T'= LN A. It follows that, for all y of length
n, y € 5" if and only if A(1")y € T. Hence, S’ §71,31/O(n) T. Since S <P S, we have S §71,31/p01y T. |

Using the above lemma, we can show the intractability of the classes in the real polynomial-time hierarchy

under P-comp.
Theorem 7.3.13 Letk > 1. Let C € {A}L, X} | k € N}
1. AVp_comp C C/poly if and only if A7" C C/poly.

2. B p-comp C C/poly if and only if ;" C C/poly.

7.4. IMMUNITY AND BI-IMMUNITY 255

7.4 Immunity and Bi-Immunity

Immune sets are another typical example of hard sets. In recursion theory, a set i1s called “immune” if it
1s infinite but contains no infinite recursive enumerable set. This notion has been adapted to complexity
theory and used in a variety of situations.

Bi-immune sets are defined to be immune sets whose complements are also immune. These notions are
fundamental and have already appeared elsewhere in this thesis. In this section, we shall pay more attention

to the existence of such sets in Pp_comp.-

7.4.1 Immune Sets and Complexity Cores

First of all, let us recall the formal definition of immunity. For a complexity class C, a set S is C-immune if
S 1s infinite and S has no infinite subsets in C.

A general notion of complexity cores has been introduced in Section 3.5, but in this subsection, we shall
focus only on complexity cores with respect to P, the so-called polynomial complexity cores. For a recursive
set S, a set C is called a polynomial complexity core for S if, for any deterministic Turing machine M
computing S and any polynomial p, the set {# € C' | Timeps(2) < p(|2])} is finite.

This section will show that there exist P-immune sets in Pp-comp, but Pp-comp has no P-bi-immune sets.
Under the assumption that P = NP, all infinite polynomial complexity cores for sets in Pp-comp are shown
to be hard to compute.

We first show the existence of a P-immune set in Pp-comp of arbitrary density. The proof below uses an

elegant technique developed by Ko and Moore [56].

Theorem 7.4.1 [98] Let § be a real number with 0 < 6 < 1. There exists a P-immune set in Pp_comp
of density at least 2°7.

Proof. Let {P;}icy be an effective enumeration of all sets in P, where P; is deterministically computed
in n® + 7 steps.

Let € = (14 0)/2 and take the set A defined in the Hard Instance Lemma such that ||A"]] > 2. Note
that A € DTIME(O(n'°8" ?)). Now consider the following algorithm:

begin
input x (say, |z| = n)
if z € A then reject
for i = 1 to log" n do
if € P; then go to (#x)
for all z (i < |z] and z < #) do
if z ¢ A then go to (x)
if z € P; then go to ()
(%) end-for

256 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

accept
(*%) end-for
reject

end.

Let B denote the set accepted by this algorithm and let C'= A — B.

First, we see that C' is of density at least 2°?. Assume 2,y € B and 2 # y. Note that € P; and y € P;
are witnessed through the first for-loop, then i # j by the algorithm. Hence, we have [|[B N X"|| < log" n.
Since [|A A S7| > 27, |0 S| = [[A7] = [|B7]| > 27 — log" n > 27,

We next show that C has no infinite P-subset. Assume that an infinite set in P is a subset of C'. Let iy
be any integer that guarantees that P;; is such a set. Consider the minimal z € P;, N Ag such that || > .
By the minimality of 2, we have z ¢ P;, for all z with iy < |z] and z < «. Thus, 2 € B, a contradiction.
Therefore, C' is P-immune.

Now we claim that B is in Pp_comp since this implies C' € Pp_comp. Let Timeg(z) be the executing
time of this algorithm on input z. It suffices to show that Timep(z) < 2¢'n for all z in A, where ¢ is
an absolute positive constant. Notice that Timey(z) < clz[2198" 17l for some constant ¢ > 0. Thus, the
algorithm takes time }°_ ., [¢]z]2'°8" Il 4 (|2]" + 4)] in the second for-loop, and this term is bounded by
O(nZIOg* n.92") C O(2?"). The total execution time, Timeg(z), requires log" n iterations of the first for-loop,

each of which takes O(2%") steps, and therefore, Timeg (z) < 2¢'" for some constant ¢/ > 0. a

We note that any P-immune set is a polynomial complexity core for itself. Since the P-immune set

constructed in Theorem 7.4.1 is non-sparse, we immediately get the following corollary.

Corollary 7.4.2 [98] There exists an infinite set in Pp_comp which has a non-sparse polynomial com-

plexity core in Pp_comp.

Let us recall the complexity class APT introduced by Meyer and Paterson [71]. A set S isin APT if
and only if the set {« | Timeps(x) > p(|x])} is sparse for some polynomial p and some deterministic Turing

machine M which computes A.
Corollary 7.4.3 [98] Pp_comp € APT.

Proof. This result follows from Corollary 7.4.2 and the fact that a recursive set S is in APT if and only

if any polynomial complexity core for S is sparse [78]. a

We have already seen the existence of polynomially £-rare sets in Section 4.2. The particular example
shown there was based on Kolmogorov complexity sets. Here we shall present another example of polyno-

mially /-rare sets based on complexity cores in Pp-comp.

7.4. IMMUNITY AND BI-IMMUNITY 257

Lemma 7.4.4 Let { be any positive function from N to Rt. Let A be any set in DTIME(?O(Z(”)HOg”)) N
Pp_comp. Any complexity core for A with respect to DTIME(?O(Z(”)HOg”)) 1s polynomaally C-rare.

Proof. Let S be a complexity core for A with respect to DTIME(?O(Z(”)HOg”)) N Pp-comp. To arrive at
a contradiction, we assume that S 1s not polynomially ¢-rare. From this assumption, it follows that there
exists a P-computable distribution p satisfying the condition that the set B = {x € S —{\} | i(x) > 27¢(")}
is infinite.

Since A € Pp-comp, there exists a deterministic Turing machine M which computes A in polynomial time
on p-average. Let p be a polynomial such that Az.Timeys () is p on p-average. For any string x in B (say,
n=lz]),

TlmeM(x) < p(QZ(”) n) < (22(71)+logn)k

for some constant k > 0 independent of z. Now we set B’ = {x | Timey(x) < (2000)+1087)k1 Tt is clear
that B’ belongs to DTIME(2C({")+1een)y - Notice that B’ N S is infinite. This obviously contradicts our

assumption that S is a complexity core for A. Therefore, S is polynomially {-rare. a

7.4.2 Bi-Immune Sets and Resource-Bounded Measure

We shall turn our interests to bi-immune sets. A set S is called C-bi-immune if S and its complement S are
both C-immune. The class of P-bi-immune sets has a close connection to resource-bounded measure theory.
As seen in Proposition 2.7.11, any class which has no P-bi-immune sets has p-measure 0; in other words, it
1s small.

It is known that the set E has “strongly” P-bi-immune sets [5], and thus E has P-bi-immune sets. Tt
is important to remember here that a recursive set S is P-bi-immune if and only if ¥* is a polynomial
complexity core for S. Hence, E contains a set for which X* is a complexity core. However, we can see in
the following proposition that there are no P-bi-immune sets in Pp-comp. This contrast clearly shows the
difference between E and Pp-comp.

Schuler and Yamakami [98] first showed that Pp_comp has no P-bi-immune sets. Later Schuler [94]

extended their result as follows.

Proposition 7.4.5 [94] Let ¢ > 0. There are no DTIME(O(2°"))-bi-immune sets in the truth-table

closure of Pp-comp. In particular, there are no P-bi-immune sets in Pp_comp.

Proof. Assume that B is DTIME(O(2°%))-bi-immune, and B is p-tt-reducible to a set A in Pp_comp.
Without loss of generality, we assume that ¢ is a positive integer. Let M be a polynomial-time oracle Turing
machine which reduces B to A with nonadaptive queries. Let p be a polynomial such that Times(z) < p(|z|)
for all z. Since A € Pp-comp, there is a deterministic Turing machine N which computes A in time polynomial
on p-average for every P-computable distribution g. This shall lead to a contradiction.

We define a set D as follows. For each n € N, let D, = {y | |y| > n/2¢c Ay € Q(M,0")}, and then

258 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

let D = {0}* U (U,5oDn). First we show that D is P-printable. This is seen as follows. Consider the
algorithm: on input 07, recursively take a natural number & such that & < 2¢ - n, and list all strings in
{y € " | y € Q(M,0%)}. Since M makes nonadaptive queries in polynomial time, this algorithm writes
down all query strings of length n in polynomial time.

Now let us consider the set AN D. By Lemma 7.2.21;, AN D must be in P. The following algorithm

computes BN {0}*:

begin algorithm for BN {0}*
input 0"
list all queries made by M on input 07
for all query string y
if |y| > 3= then set ans(y) := [y € AN D]
(%) else simulate N on input y and let ans(y) be its output
end-all
simulate M on 0" with oracle {y | ans(y) = 1}
output M (0™)

end.

In line (%), the number of steps we need is at most 2¢lvl < 9¢3c = 27/2 Hence, the total number of steps of

this algorithm is, for some absolute constant d > 0,
d-p(n) - (p(n) + 2% +1) < (2d - p(n)) - 22 < /2. 9n/2 = 9n

for every sufficiently large integer n. Therefore, the set B N {0}* belongs to DTIME(O(2")). A similar
argument shows that B N {0}* is in DTIME(O(2")).

Notice that at least one of the sets BN {0}* and BN {0}* is infinite. This contradicts our assumption
that B is DTIME(O(2°"))-bi-immune. O

For each constant ¢ > 0, the class of DTIME(O(2°"))-bi-immune sets is known to have p-measure 1 [69].
In other words, the class of non-DTIME(O(2°"))-bi-immune sets has p-measure 0. Hence, by Propositions
7.4.5 and 2.7.11, the class Pp-comp cannot have p-measure 1. Therefore, we obtain the following corollary

given by Schuler [94].

Corollary 7.4.6 [94] The truth-table closure of Pp_comp has p-measure 0, and thus it has measure 0 in
E.

We remark here that the weaker statement that Pp_comp has p-measure 0 was proved by Schuler and
Yamakami [98], and independently by Cai and Selman [19]. Notice that, as an immediate consequence of

Corollary 7.4.6,if NP C Pp-comp, then NP has p-measure 0.

Definition 7.4.7 (Almost Immunity) [24, 77] A set is called almost P-immune if it is a union of a

7.5. CLOSURE PROPERTIES 259

P set and a P-immune set. A set whose complement is almost P-immune is called P-levelable.

For a set A, a set S is called a maximal subset of A if any infinite subset of A in P 1s a finite variant
of S, i.e., [|S— Al is finite. Tt is known that, for any infinite recursive set A, A is almost P-immune if and

only if A has a maximal subset in P [24, 77].

Lemma 7.4.8 [24, T7] If a set A not in P satisfies A <P, A via a length-increasing reduction, then A

1s P-levelable. Hence, most well-known NP-complete sets are P-levelable unless P = NP.

Proof. To arrive at a contradiction, we assume that A is almost P-immune. The almost-P-immunity
ensures that there is a maximal subset of A in P. Let E be such a set.

Now we define B = {z | & EA f(z) € E}. Since f € FP and F € P, we conclude that B is in
P. Moreover, BN E = @ by definition. We now show that B is infinite. Assume that B is finite. We
choose an element z in A — F such that B C XI®I=1 The element x exists because A ¢ P but E € P.
Consider the set B, = {z} U {fF)(z) | k > 1}, where f)(z) = f(x) and fE+)(x) = f(f®) () for each
k > 0. Since f reduces A to A, E, C A. Moreover, F, is infinite and in P since f is length-increasing
(i.e., |f(x)] > |z]). Note that E, N E # O since, otherwise, F' U F, is a P-subset of A such that £ — F, is
infinite, and consequently F is not a maximal subset of A. Since # & F| there exists a string y in By — F,
but f(y) € E. Hence, y € B. Clearly |y| > |#|. This contradicts the finiteness of B.

The latter part of the claim follows from the fact that most known NP-complete sets A, such as SAT,

satisfy the condition A <P, A via a length-increasing reduction. ad

Proposition 7.4.9 Assume that P # NP. If every set in Pp_comp — P is almost P-immune, then NP ¢

P P-comp-

Proof. Consider the NP-complete set SAT. If P # NP, then SAT is in NP — P and is P-levelable by
Lemma 7.4.8. Hence, if SAT € Pp-comp, then Pp_comp — P contains a set which is not almost P-immune.

O

To show that all sets in Pp-comp — P are almost P-immune seems difficult. Moreover, we do not know

how to construct a P-levelable set in Pp-comp which is not in P.

7.5 Closure Properties

This section will be devoted to closure properties under several types of polynomial-time reductions. Recall
that, for a reducibility <., a class C is closed (downward) under <,-reductions if, for every two sets A and
B, A<, Band B € C implies A € C. We know that most known complexity classes are closed under
p-m-reductions, such as RP, BPP, NP, PH, PP, ®P, etc.

260 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

In Subsection 7.5.1, we shall demonstrate that neither Agp_comp nor Egp_comp, k > 0, 18 closed under p-
m-reducibility. The lack of this property indicates a structural difference between Pp-comp and other regular
complexity classes, such as P, NP and BPP. Thus, it presents a partial solution to the NP C7Pp_comp
question. Our result relies on the sets constructed in Section 7.3.1.

In Subsection 7.5.2, we shall show that the class A} p-comp is not closed under the polynomially-bounded

existential operator. This result also implies that AZP_Comp 1s different from Eg.

7.5.1 Polynomial Time Reducibilities

In this subsection, we will discuss properties of quintessential complexity classes in relation to various
polynomial-time reducibilities.

We claim that there i1s a the difference between polynomial-time truth-table reducibility and Turing
reducibility within Pp-comp. This claim is proved by demonstrating that the Turing closure of Pp-comp is
“large,” whereas its truth-table closure is “small.”

The following proposition shows that the Turing closure of AYp_comp is equal to A, where k > 0.
Proposition 7.5.1 [94] For each k > 1, the Turing closure of ALp_comp is equal to ALY,

Proof. We shall show that every set in AZXP is p-T-reducible to some set in Agp_comp. Let B be an
arbitrary set in A7 and assume that B € ATIMEA(k', 2¢7) for some constant ¢ > 0. Let A be the set defined
in the Hard Instance Lemma. We then define the set B’ as

B' ={xy||e|=lylANey € Any € B'}.

Since A is in DTIME(n!°8"), clearly B’ is in A§. Since B’ C A, by the Hard Instance Lemma, B’ is in
AAVP comp. Hence, B’ € Al pcomp.

From ||A N X?"|| < 1, it follows that, for all y of length n, y € B if and only if h(1")y € B’. Recall
that hA(17) is computed by n adaptive queries to Prefiz(A). This implies that B is p-T-reducible to
B'® Prefiz(A). Let C = B’ @ Prefiz(A). Since B’ € Alp_comp and Prefiz(A) € Al p_comp, C' 1s also in
AZP_Comp by Lemma 7.2.12. 0O

It 1s not known whether p-T-reducibility in the above proposition can be replaced by p-m-reducibility.

Note that this is the case if AEP_Comp has some p-m-complete sets for Af.
Corollary 7.5.2 [94] The truth-table closure of Pp_comp is not equal to EXP.

Proof. Recall that EXP has p-measure 1. The corollary then is immediate from Corollary 7.4.6 since,

otherwise, EXP has p-measure 0, a contradiction. a

Assume that there exists a p-m-reduction from a set A to another set B which is in Pp_comp. The next

proposition characterizes the reduction when A ¢ P.

7.5. CLOSURE PROPERTIES 261

Proposition 7.5.3 Assume that a set A is p-m-reducible to B in Pp_comp via a reduction function f.

If A 1s not in P, then, for every number c, there are infinitely many strings x satisfying the inequality

log |z| > ¢|f(x)].

Proof. Assume that A is p-m-reducible to B in Pp-comp via a P-computable reduction function f.
Furthermore, assume that there exists a positive constant ¢ satisfying log |z| < ¢|f(z)| for almost all #. In
the following, we want to show that A belongs to P.

Let Mp be a machine which computes B in polynomial time on vgang-average, and consider the following
machine M4: on input , compute f(z), and accept the input exactly when Mp accepts f(z). We thus

have:

Timens, () < d- (Timeps, (x) + Timenr, (f(2)) + 1)

for some positive constant d. Since B € Pp_comp, Timenr,, (f(2)) < 217 for some constant ¢’ > 0. This
implies that

Timesr, (f(x)) < 271N < [o]o7°

for almost all z, since 21/(®)| > |z|'/¢. This shows that A belongs to P. O

The next proposition, due to Wang and Belanger [6] (in a different setting) and Schuler and Yamakami

[98], shows the closure property of the class Pp_comp under restricted reductions.
Proposition 7.5.4 [6, 98] For k >0, the class Pp_comp is closed under increasing hp-m-reductions.

Proof. Let B be any set in A} p_comp. For a set A, we assume that A <PP B via a P-computable reduction
J which is increasing and p-honest. We shall show that A is also in AYp_comp. For each p € P-comp, let
V= piy-. By the condition on f, we conclude that v € P-comp by Lemma 4.2.8. It 1s easy to see that if B
is computed by a deterministic Turing machine M in polynomial time on v-average, then A is computable

in polynomial time on p-average by simulating M (f(x)). O

As an example application of this proposition, consider the bounded halting problem BHP. Note that
BHP is p-1-complete for NP under increasing, p-honest reductions. Therefore, by Proposition 7.5.4, if
BHP € Pp-comp, then NP is included in Pp-comp.

Next we show that neither AEP_Comp nor Egp_comp is closed under p-m-reducibility. Note that Wang and
Belanger [111] have shown a similar result for their classes APp, ANPp and DNP of distributional decision

problems.
Theorem 7.5.5 Let k > 0. Neither AZP_Comp nor Egp_comp 15 closed downward under p-m-reducibility.

Proof. We prove the theorem only for AEP_Comp, since the proof for Egp_comp 1s almost 1dentical. Let A

be the set in DTIME(O(nlOg* ")) such that [|A"|| = 1 for all n € N and let h be the function A computable in

262 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

time O(nlOg* ™) in order to separate A} p_comp from ATIMEA(k', 0(2™)), both of which are used in Theorem
7.3.2.

Now we define a reduction function f as follows:

h(1lesl=l®y it 2 € {02" | n € N},

0 otherwise.

fle) =

Note that if f(02") = «, then n < y/]z]. Let T = {0% | i € N, £(0*") € A}. Clearly T <P, A via f. Note
that the function f is not p-honest.
We shall show that f is computable in time O(n). Assume that z = 02" for some i € N, and let y be a

string of length [log |z|]? in A. By our definition, the computation time of f(x), where |z| = n, is at most
c-yflos Wl < ¢ og” Iyl < . 9lloglog® [2)* < . 94(loglogn)® <

for any sufficiently large n.
We next show that 7' & AEP_Comp. Assume otherwise. Since T is tally, 7T 1s in Ag. Note that Ag =
ATIME® (k,n°™). Consider the following algorithm:

begin
input z
if z € A then reject
take n (< \/[z]) such that f(0*") =«
if 02" € T then accept else reject

end.

This algorithm computes A and is in ATIMEA(k', 0(2™)). This clearly gives a contradiction. Therefore,
T ¢ AEP—comp~ d

Theorem 7.5.5 yields the significant consequence that the classes in the real polynomial-time hierarchy

under P-comp are structurally different from most known worst-case complexity classes.

Corollary 7.5.6 Letk > 0 and let C be any complexity class. If C is closed downward under p-m-reductions,
then AZP_Comp +C and Egp_comp +C.

As another application of Theorem 7.5.5, we shall present the following corollary, proven as Lemma
7.1 in [36]. The corollary demonstrates the necessity of the p-honesty condition in Condition I’ defined in

Section 4.7. The proof presented here is very different from Gurevich’s and is based on Theorem 7.5.5.

Covrollary 7.5.7 [36] There exist a function f € FP and a distribution p € P-comp such that, for every

v € P-comp and every function p which is polynomial on p-average, v(y) < erf'l(y) ZJ(% for some y.

7.5. CLOSURE PROPERTIES 263

Proof. Assuming the contrary of the corollary, we shall prove that Pp-comp is closed under p-m-reductions.
This contradicts Theorem 7.5.5.

Assume that A is p-m-reducible to B via a reduction f, and also B is in Pp-comp. We show that
A € Pp-comp. For every distribution u in P-comp, by our assumption, there is a distribution v € P-comp
and a function p which is polynomial on p-average such that o(y) > erf_l(y) % for all y. Note that B 1s

computable in polynomial time on v-average. Then A is also computable in polynomial time on p-average.

Since y is arbitrary, A belongs to Pp-comp- m]

Let us recall Condition I'. Condition I’ asserts that every P-samplable distribution is avp-dominated by
some P-computable distribution. Assuming Condition I', Pp_comp turns out to be closed under many-one

reducibility with p-honest polynomial-time computable reductions.

Proposition 7.5.8 If Condition I’ holds, then Alp_comp is closed downward under hp-m-reductions.

Proof. Immediate from Lemma 6.4.2 and by the same argument in Proposition 7.5.7. a
Finally we show the existence of an incomparable pair in Pp-comp With respect to the hp-m-reducibility.

Lemma 7.5.9 [98] There exists a pair of sets A and B in Pp_comp such that A £2 B and B £8P A.

Proof. Recall from Theorem 7.4.1 that there is a P-immune set in Pp-comp. Let A be such a set, and
let B = {0}*. Note that A ¢ P. If A <" B then A € P since B € P, a contradiction. If B <P A4 via a
polynomially honest f € FP, then A should not be P-immune since the infinite set {f(z) | « € B}, which

is a subset of A, belongs to P. Both cases induce contradictions. ad

Let us next observe the closure property of average complexity classes under hp-m-reductions when

P-samplable distributions are taken instead. The P-samplable distributions show us a different world.

Proposition 7.5.10 For any k > 0, Al p_samp and AL p-samp are both closed under hp-m-reductions. A

similar result holds for Egp_samp and Eglp_samp.

Proof. We only consider the case Agp_samp. Assume that A 1s p-m-reducible to B via a p-honest
reduction f, and B is in Agp_samp. We shall show that A is in Agp_samp.

Let p be any distribution in P-samp and define v as v = pi4-,. Distribution v may not be P-samplable,
but by Corollary 4.4.12, we can find another distribution ¢’ which p-dominates v and is in P-samp. Since
B € Alp gamp, we have (B,v') € Aver(A},). Note that (A4, p) <P (B,v') via f. Hence, by Lemma
6.4.2(2), we have (A, u) € Aver(A}, x). Hence, A is in A} p_samp- a

264 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

7.5.2 Polynomially Bounded Existential Operator

We have already shown the difference between Pp-comp and other regular complexity classes, such as NP
and BPP, by demonstrating that Pp-comp 1s not closed under p-m-reductions. Here we shall discuss other
properties that elucidate the structural difference between Pp-comp and NP as well as UP and PP.

We shall introduce the following types of existential operators and show that AEP_Comp 1s not closed

under such operators.

Definition 7.5.11 (Polynomially Bounded Operators) Let C be a complexity class.

1. Aset Sisin 3P C, the closure of C under the existential operator, if there exist a polynomial p and a

set B € C such that S = {z | 3y € XPU=D[(y,) € B]}.

2. A set S isin UP. C, the closure of C under the unique existential operator, if there exist a polynomial

p and a set B € C such that if x € S then Jly € Ep(lxl)Ky, z) € B]; otherwise Yy € Ep(lxl)Ky, z) ¢ B].

Obviously UP- C C 3P- C for any complexity class C. It also holds that 3°- X} C 2P and UP- UP C UP.

We need the following lemma for subsequent results.

Lemma 7.5.12 Let C € {A}L, S0 I} | k > 0} and let g be any increasing function on ¥* which belongs to
FP. If A € Cpocomp, then the set B = {{w,z) | w = g(z) Az € A} is also in Cp-comp-

Proof. Here we prove the lemma for the case C = Ag. Assume that A € AZP_Comp and B ¢ Agp_comp.
There exist a polynomial ¢ and a deterministic Turing machine M, computing g in time ¢. Since B ¢
Alp_comp, there exists a distribution p € P-comp such that, for any machine N and any polynomial s,
a({z | Timen(z) > s(|z| - 7)}) > 1/r for some real number » > 1. Recall the monotonicity of the pairing
function {,) for any increasing function (see Section 2.5). For this function g, # < y implies {g(z),x) <
(9(y),y). Moreover, (g(z7),27) < {g(x),z)”

Define v as v(x) = p(g(x), z). This function v is indeed a distribution in P-comp since v(z) > v(z7).

Moreover, we have (z) > ji(g(x),). This is seen as follows:

ve) = v(e)-v@T) = p({g(x) 2)) —p(g(x™),27))
> pl(g(x), 2) — u((g(@),2)7) = plg(x),).

Since A € AEP_Comp, there exist a semi-deterministic alternating Turing machine M computing A with
k-alternation and a polynomial p such that v({x | Timeps (x) > p(|z|-r)}) < 1/r for all » > 0. Assume that
p(n) > n for all n.

Now consider a machine N which computes B in the following fashion: on input {w, z), accept the input
if w=g(x) and M accepts x, and reject the input otherwise. Note that, by our assumption, N does not halt
in polynomial time on p-average. To arrive at a contradiction, however, we show that N runs in polynomial

time on p-average. Note that Timey ((w, z)) < ¢(Timeps(2) + Timeys, () + [+ 1) for some constant ¢ > 0;

7.5. CLOSURE PROPERTIES 265

on the other hand, Timey ((w, 2)) < ¢(p(|z|)+q(|2])+1) for all w different, from 0721 Let s be a polynomial
such that
s([(w, z)| - 7) > e(p(l] - 7) + q(|2]) + |2| + 1).

For all r > 1, we have

f({y | Timen (y) > s(ly| - r)})

< a{(w, z) [w # g(x) ATimen ((w, 2)) > s([(w, 2)[- 7)})
+p({(w,) | Timen ((w,)) > s(|(w,)| - r)})

p{(w,) | Timen (x) > p(|z]-7)})

< Ul | Timex () > pllel -1} <+

IN

Hence, N is polynomial-time bounded on p-average. This contradicts our assumption. a

Contrary to the situation for Ag, it 1s not known whether AZP_Comp C ub. AEP_Comp, or even whether

AEP_Comp C 3r. Agp_comp. However, we are able to show that the converse does not hold for Agp_comp.
Theorem 7.5.13 Letk > 0. UP- Alp_comp € ALp-comp. Hence, I APp_comp € AL p-comp-

Proof. Assume that UpAEP_Comp - AEP_Comp. By Theorem 7.3.2(1), we can define a set A in AZP_Comp —
ATIMEA(k', 27) and take a corresponding function h, as defined in the proof of Lemma 7.3.1, which has the
following property: for each length n, A" C {h(1™)} and h(17) is computed in time O(2"). Now define
C ={0" | Jy[lyl = n Ay € A]}. To see that C' € UP- Alp_comp, let B = {(01*l z) | « € A}. By Lemma
7.5.12, B is also in Alp_comp, and let C' = {0" | Jy[|y| = n A (y, z) € B]}.

By our assumption, the set C'is also in AYp_comp. Since C' is tally, by Proposition 7.2.17, C' is in A}.
As a result, we have C € ATIMEA(k', 0(2™)). Consider the following procedure that computes A:

begin algorithm for A
input x (say, |z| = n)
if 07 ¢ C' then reject
compute h(1")
if # = h(17) then accept else reject

end.

This procedure guarantees that A is in ATIMEA(k', 0(2™)), and hence, this contradicts the choice of A. O

As an immediate consequence of Theorem 7.5.13, we again have Pp_comp # NP and Pp_comp # UP.
We note that it is not known whether 3P AZP_Comp - EZP_Comp. However, if 3P AZP_Comp C EZP_Comp,

then Theorem 7.5.13 implies that Pp-comp # NPp-comp, and thus that P # NP.

Corollary 7.5.14 F* Pp_comp € NPp_comp if P = NP.

266 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

Moreover, we can consider a restricted type of probabilistic operator.

Definition 7.5.15 (Class PP-(C) For a complexity class C, a set S is in PP- C, the closure under the
probabilistic operator, if there are a polynomial p and a set B € C such that S = {z | |[{y € T2 | (y,z) €
BY|| > - 2¢=Dy.

The probabilistic class PP is closed under this operator, i.e., PP- PP C PP.

A proof technique similar to that used for Theorem 7.5.13 shows the following theorem.
Theorem 7.5.16 [98] PP Pp_comp € Pp-comp-

Proof. Let the set A and the function & be as defined in the proof of Theorem 7.5.13 but with &£ = 1.
Recall the algorithm described in the proof of Lemma 7.3.1. Define B to be a set accepted by the following

algorithm:

begin
input z (say, |z| = n)
compute 27 = minfw € ¥ | w & KT[n,2:) "]}
if1C 27 theny=0elsey=1
if 2 € yX!°1=1 then accept else reject

end.

By the choice of y in the algorithm, AN B =@ and ||BNX"|| = % -2" for all n. Note that B is in P. Now
we let A’ = AU B. Then, we have A’ € Pp_comp. Note that either ||A'NX"|| > % 2% or ||A' N = % A

Let C={0" | |[{y e X" |y e A'}]| > % -2"}. We have C' € PP- Pp_comp by definition, but C' € Pp_comp
since if C' € Pp_comp, then the same algorithm as in the proof of Theorem 7.5.13 computes A in time O(27).
O

Theorem 7.5.16 directly shows that Pp-comp # PP.

7.6 Bounded Error Probabilistic Polynomial Time

We direct our attention now to the bounded-error probabilistic complexity class BPP £. In this section, we
shall discuss the class BPP# under weak reductions, and consider a result of Schuler and Watanabe [96]
regarding the question NP C7BPP£.

We begin with the closure property of BPPp_gamp under p-honest bpp-tt-reductions.

Proposition 7.6.1 BPPp_gump is closed under p-honest, bpp-tt-reducibility.

Proof. Assume that A € BPPp-gamp and A is bpp-tt-reducible to B via a p-honest reduction. Let

7.6. BOUNDED ERROR PROBABILISTIC POLYNOMIAL TIME 267

M be such a reduction, i.e.; a polynomial-time probabilistic Turing machine computing A with bounded
error which accesses oracle B with nonadaptive p-honest queries. For simplicity, assume that the number
of queries on each computation path is of the form 27, where m is dependent only on #. Since M makes
p-honest queries, for any query z by M on «, || is bounded above by an absolute polynomial p in |z|.

Choose any distribution g in P-samp. We define a distribution v as follows:

v(z) = Z f(x) - Pray[M on x queries z |.
z:|z|<p(lz])
It is not difficult to confirm that v is P-samplable. To see this, let M, be a sampling machine which samples

1 and consider the following sampling algorithm:

begin sampling algorithm
input 0’
simulate M, on 0
let & be an output of M, on 0
list all query strings, say z1, 22, ..., 22m
generate k (1 < k < 2™) at random
output zg

end.

Hence, (A,v) € Aver(BPP, P-samp). We now show that (B,) §pr (A, v) via M. Tt is sufficient to check
the domination condition for M. This is easily verified, however. By Proposition 5.5.7(4), (B,) belongs to
Aver(BPP, P-samp). a

Ben-David et al. [9] showed that all distributional NP search problems are “randomly” reducible to their
corresponding distributional decision problems. Later Schuler and Watanabe [96] rephrased this result in

the following fashion.
Corollary 7.6.2 [9, 96] NP C BPPp_gup, if and only if ©F C BPPp_gamp.

Proof. Assume that NP C BPPpgamp. For any set A € @g, there exists a set B € NP such that
A is p-tt-reducible to B. This reduction can be p-honest by choosing an appropriate set B. Hence, A is
bpp-tt-reducible to B via some p-honest reduction. Notice that B belongs to BPPp_gamp by our assumption.
By Proposition 7.6.1, B € BPPp_gamp implies A € BPPp_gomp. Therefore, we get A € BPPp_gamp.- O

Impagliazzo and Levin [44] demonstrated that distributional NP decision problems are “reducible” to
distributional NP decision problems with standard distribution. Schuler and Watanabe [96] extended their

result in terms of quintessential computability.

Theorem 7.6.3 [96] Given a subset F of avP-samp including vsiana, NP C BPPx if and only if
NP g BPPavP-samp~

268 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

Proof. We follow the argument given by Schuler and Watanabe [96]. Let us assume that NP C
BPPayp-samp-

Let (A, p) be an arbitrary distributional decision problem from Dist(NP, avP-samp). We shall show
that (A, p) is in Aver(BPP,). If i(X") > 1/2 for some n € N, then we can eliminate all strings of length
n from the following argument. Hence, we assume without loss of generality that 4(X") < 1/2 for all n € N.

Since A € NP, there are a set £ € P and a polynomial p such that A = {z | Jy € ZPU=D[(x, y) € E]}.
Moreover, from the fact that A € EXP, we can define a deterministic Turing machine M4 which recognizes
D in time 290°D) where « is any input. For the sake of convenience, we assume that q(n) > 32n3(n+ 1) for
all n € N.

Since p is an average P-samplable distribution, there are a generator M for u and a polynomial p’ such

that (i) |p(z) — Pry[M(0%) =]| < 27 and (ii) for every r > 0 and n € N,
9~ 2o =1 Py [M(0%;5) € " A Timenr (07 8) > p'(r- (n+ 1)) | s € Qar (0] < 1/7,
Write p;(n) for p/(2711(n + ¢(n))). Let us define the function f as follows: for each j with 0 < j < g¢(n),

M (0405 5) - if Timenr (04015 5) < pj(n), [M (0405 5)] = n, and j =0,
M(090VFE5) if py_1(n) < Timenr (090775 5) < pj(n),

F(s) =
|M (020 5)| = n, and 0 < j < q(n),
A otherwise.
Without loss of generality, we may assume that, for any two random inputs s and s, if |f7({7)(5)| = |f7(1j)(5’)|,

then |s| = |s'|, and thus, |[{s | fT(Lj)(s) € x| < 2pri(m=1,
Fix any integer j satisfying 0 < j < ¢(n) and any string z of length n. Let k) = ilog(||(f7(1j))_1(x)||).
Since ||(f7(57))_1(x)|| < 2vi(m)=1 it follows that 0 < kY < p;j(n). As a consequence, we have

Z

Pry [M (01 = 4] < R _1w

' 9p;(n)
7=0
+Pr,[Timey (09T 5) > pyny—1(n) | s € Qpr (090F1]
q(n)-1 ,
< 2—pj(n)+k§£) 4 g~ 2Mog(n)=1 9—q(n)
7=0
g(n)—1 v
< 9=pi(n)+k{) L 9—q(n)—1
7=0

Therefore, we obtain

() < 2790071 Pry [M(010VH) = o] < 27000 3T pmmi(mek
0<j<q(n)

)2_pj(”)+ks(vj) < 1, there exists an index j' such that j(z) < 279" 4 _L_.

For each z, since } ;. . q(n)

n

9= ()+hT et je be the minimum of such an index.

7.6. BOUNDED ERROR PROBABILISTIC POLYNOMIAL TIME 269

Note that if ¢(n) > p;, (n) — k=) ilog(g(n)), then 2-9(7) < 9=ilogla(n)) . 9=rie (”)"'ka(:jZ); thus,

() < 2 - 9-20B(a() L9 (m4kG) < gmpi () bRUe)
- ~a(n)
On the other hand, if ¢(n) < p;,(n) — k=) — ilog(q(n)), then f(x) < 22790 = 2=a(n)+1,
Let XT(Lj) ={zeX"|j=js Aq(n) > p;.(n) - k’é‘j’:) —ilog(q(n))}. Tt follows that

- . 2 . () 2 ||(fr(L]))_1(l‘)||
Xy < —- 9-pi(n)+ky) . (1)~ @)l
. b= a(n) Z:(j) q(n) Z:(j) 9p5(n)
TEX rexy
< o Prl(s) € X |5 € Qur (01
q(n)
2_ .
<) - Pr,[Timey (0974 5) > pi 1 (n) A £ (5) # A | s € Qur (090VFY)],
1.
< = 9-J

since ¢(n) > 2n3. Therefore, /:L(Xr({j)) < - 270 for all j with 0 < j < ¢(n).

Recall that s, denotes the nth string of ¥* (N.B. A is the 0Oth string), and s}’ represents the kth string
of ¥es(m) (N B. sp* = 01°80™)). Note that |s,| = llog(n).

We begin with the following NP sets:

By = {(51, 5n, 50,57, hihoz) | v € Xl hg o £ 0 hy(v) = 2] Ahy € Hign Ay € Hy 140}
By = {(s2, 50,58, 57", hiho2) | Fv,w € S 0 hi(v) # 17 0 b (w)
Ahyo £ 0 hy(v) = hy o £ o hy(w) = 2]}
Bs = {(s, 5n, 5", 57, hihyz) | Jv € Sz = hyo £ o hy(v) A the ith bit of £ o hy(v) is 1]}; and
By = {(s3, 5, 5%, 57, hihoz) | Jwdv € Sz = hy o £ 0 hy(v) A (£ 0 hi(v), w) € E]},

where l =m —k, hy € H; ,,, and ho € H,, ;42. The notation hyhyz above means the concatenation of three
strings hy, ho, and z. Let B = U?Il B;. Clearly B isin NP. By the assumption, (B, Vstana) € Aver(BPP, «).

Let ¢g be a sufficiently large and fixed constant. First we shall define the randomized Turing machine
My that (i) chooses j at random from {0,1,...,¢(n) — 1} (by choosing 5;1»(”)), (i) chooses k at random

'(n)) (le)szj(|x|)>

from {0,1,...,pj(n) — 1} (by choosing s;’""’), and (iii) outputs (z, 53 . The following is a formal

description of this algorithm:

begin randomized algorithm for M

input z (say, n = |z|)

compute ilog(¢(n))

generate at random a string s of length ilog(¢(n)) such that
— S;z(n)

s for some j with 0 < j < ¢(n)

q(”))

(assume that s = 5

compute ilog(p;(n))
generate at random a string s’ of length ilog(p;(n)) such that

270 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

s = gzj(n) for some k with 0 < k < p;(n)
(assume that s’ = Szj(n))
output (z, ss")

end.

The machine My runs in polynomial time because the running time is proportional to the length of the

random seeds. The length of each random seed, |53(n)szj(n)|, 1s at most
ilog(q(n)) + ilog(p; (n)) < ¢’ - (j +logn)

for some constant ¢’ > 0.

Write d(n, j, k) = sg(n)szj(n). Let us define h(z) = d(n,jx,k’é‘j’:)) and D = {{(x,h(x)) | © € £*}. Note
that, for any ¢ and y, if z,y € XT(Lj), then |h(z)| = |h(y)]. For all x € XT(Lj), since |h(z)| < (j + logn),
we have |h(z)] < ¢’ -log(1/n? /l(XT({?))) By Lemma 3.3.11(3), we conclude that Az.|A(z)]| is logarithmic on
ji-average.

Next we define another randomized oracle Turing machine N as follows:

begin randomized algorithm for N with oracle B
input (z,d(n, j, k)) (say, n = |z|)
if n < ¢y then output A(x)
set { = p;(n) — k and m = p;(n)
if ¢(n) <! —ilog(q(n)) then simulate M4 on input # and halt
(assume that ¢(n) > [—ilog(gq(n)))
choose at random h; from Hyp) and hg from Hy, 40
let z = ha(x)
check if the following three statements are true:
(1) {51, 8, 55,87, hihaz) € B;
(i1) (82, 8n, s7, S5, h1hoz) ¢ B; and
(ill) x; = [(s3, $n, 7,87, hihazy € Bl forall i with 1 <i<n
if the three statements as above are not all true
then simulate M4 on input # and halt
if (s4, 80,80, 81", hihaz) € B then accept else reject

end.

It is important to note that our algorithm is error-free as it always outputs a correct answer.
First we consider the running time of the machine N on input from D. Fix a positive integer n not smaller

than ¢y and a string z of length n. It suffices to show that Az.E,[Timek ({2, h(x));s) | s € Tns((x, h(x)))]

is polynomial on p-average. Note that Timeﬁ((r, h(z));s) < c-(pj(n) +n+ 1)? for some constant ¢ > 0

independent of x and s; thus, NV is exponential-time bounded in the worst case.

()

For each j, consider X’. For all x € XT(Lj), the expected running time of the machine N with oracle B

7.6. BOUNDED ERROR PROBABILISTIC POLYNOMIAL TIME 271

on input {x, h(z)) is at most

E[Timeg, ((z, h(2));s) | s € Dys ({2, h(2)))] < e- (pj(n) +n+1)* < ¢ - (2n)? + ¢

for some appropriate constants ¢, d > 0. Thus, for each z € XT(Lj),

: B . / 7 d / / 1 ’ /
Eg[Timey ((z, h(x));s) | s € Tys({z, h(z)))] < - (2n)*+ < - (m) + .

By Lemma 3.3.20, we conclude that Ax.E[Time% ((x, h(x));s) | s € ['ns((x, h(z)))] is polynomial on p-
average. Therefore, Azs. NB({x, h(z));s) is polynomial on p-average.

Next we shall discuss the success probability of machine N. Fix « and let n = |¢|. Let p, be the
probability that the algorithm N on input {(x, h(z)) succeeds in producing the correct answer. We shall show

a lower bound of p,. For this purpose, we introduce a new notion. We say that (h1, ko, z) determines x if
(i) there exists a string v € X! such that f,(Lj) o hy(v) =z and ha(z) = z; and
(ii) for all w € X!, if hyo fT(Lj) o hi(w) = z, then fT(Lj) ohy(w)=u.

Fix j and assume that ||(f7({7))_1(x)|| # 0. Let us choose k’éj) and set { = p;(n) — kéj). Then, p, > 1/16

follows from the claim below.
Claim 18 Prpy,p,[(h1, ho, ho(x)) determines © | hy € Hyp.(ny, b2 € Hy1q2] > %.

Proof of Claim. Let 0 = Pry,p,[(h1, ho, hao(x)) determines & | hy € Hy . (ny, b2 € Hy 42]. To compute o,

we introduce two probabilities:

o1 = Pry[Fve S [fY) ohi(v) = 2]]; and
oo(hy) = Prp[Fv,w e X9 o hi(v) # fU) o hy(w) Ahso f9) o ha(v) = hy o f19) 0 hy(w)]].

By the definition of o, we have o > o1 — maxp,en, . oa(hy1). In the following, we shall estimate these two
probabilities o1 and a2(hy).
We first calculate the probability o;. Let us define two sets

Ge = {(s,v) | fU%s) =z AveX}; and

G o= {(s,v,8,0") | (5,v) € Gy, (s',0V') € Gyy5 < 8" v < (5,0) # (s, 0)}.
Notice that ||G || = [|(f) ! (2)[| - 2¢ and ||GL || = UGellGel=b) From | = p;(n) — k¥, it follows that
ori(n)-1 < gk =1 ol < |G|l < ok 9l _ 9pi(n).
The probability ¢; is estimated as follows:

oy = PI‘hl[H(S,U) S Gx[hl(v) = 5] | hy € Hlypj(”)]

272 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

> > Pry[h(v)=s|hi € Hyn)
(5,v)EG,
— > Pryh(v)=sA() =5 [b € Hipn)]

(s,v,8" v)EGL
= |G- 2770 — |G || - 27 2 ()
S 9-2ps(n) (IIGxHZ GG = 1))
= 2
S N 4| NS G T R
> 5 2
= 2_3 = 1

.

Next we shall show that oa(h1) < 11—6. Let Fpp, = ran(f,gj) o hq). The cardinality of Fy 5, is at most 2!,

O'Z(hl) = Prh2[3$1a$2 € nyhl[l‘l 7£ Kb} A hz(l‘l) — hz(l‘z) — Z] | h2 c Hnyl_l_z]
= Z Pry,[ha(w1) = ha(xs) = 2 | hy € Hn 1420]
71,82€Fy hy AT1#T2
< || Fap, |7 - 272002 <2 gm0
1
= 2_4 -
16

To complete the proof of the claim, we combine the above results.

o>0c1— max oa(hy) >
hlEHl,pj(n)

1 1
— > —.
16 — 16

0| =

This completes the proof. [|

To use Lemma 5.5.3, it suffices to show that, for each string w, 7({(y,s) |y € DAw € Q(N,B,y,s)}) <
Vstana (w) for some n which avrp-dominates pi. Let d(n) = 24en(n+1)q(n)?. Then, 92llog(n)+2ilog(n)+2llog(w)+5 <
d(n). For this semi-distribution 7, let us define f(z,s) = m
z. Notice that Pr;[{e, s,,s7, si', hihoz) € Q(N,y,s)] = o= lhal=lhal " Let w = (e, sn, 87,87 hihaz), and

m = p;,(n). Then, 2-pi(n)tk — 9-lz+2,

2715l ji(x) for all nonempty strings

ﬁ({(y’ 5) lye DA <6a5n75?a52nahlh2z> € Q(NaBaya 5)})
= ﬁ(<x,8?(n)szj(n)>,h1h2)

1

L —— .9~ k1l =]hs]

ey "
< L onilogle;(n) . gmpi(n)+h | g=ml-lhal
— d(]=])
— 22110g(n)+2ilog(n)+2110g(w)+5 . .2—2ilog(m) . 2—|z|+2 . 2—|h1h2|
— 2—4—2110g(n)—2ilog(n)—2ilog(m)—|h1h2,z| . 2—2110g(w)—1
< 2—|(e,sn,s:‘,s;€”,h1hgz)|—2110g(w)—1 — 2—|w|—2110g(w)—1

ﬁstand(w)a

7.6. BOUNDED ERROR PROBABILISTIC POLYNOMIAL TIME 273

since |(e, s,, 57, s, h1haz)| < 2(2 + llog(n) + ilog(n) + ilog(m)) + |h1| + |h2| + |2] + 1. Notice that
llog(w) < log([{e, sn, sy, si', hihaz)| + 1) < ¢ - (log(pj(n)) +logn+ 1) < (7 + logn + 1) < ’q(n).

Finally we apply Lemma 5.5.3, and thus there exists a randomized Turing machine M; such that

Axs. My ((x, h(z)); s) is polynomial on p-average with the condition that, for each s’ € T'py, (),
Py [My((z, Mg(z;s'));s) = A(z)] > 1/16.

By the remark following Proposition 3.5.33, we immediately obtain that (A, u) € Aver(BPP, x). The proof

1s completed. a

The class BPPp_comp is closely related to P-samplable distributions. In the following lemma, we see
that an assumption like NP C BPPp_.omp causes the P-samplable distributions relative to NP oracles to

be average P-samplable.

Proposition 7.6.4 [96]
1. NP C BPPp.comp mplies PNP_samp CP avP-samp.

2. AL CBPPp.comp implics PNP _samp CP avP-samp.

Proof. We shall show only claim (2). Assume that A} C BPPp_com. Take an arbitrary PNP_samplable
distribution p. By its definition, there exists a sampling algorithm M| a polynomial ¢, and a set A € NP

such that, for any string z and any number ¢ € N,
lii(x) = Pra [MA(0") = in time ¢(|z|,9)]] < 27"

We can assume without loss of generality that if M with oracle A on input 0% halts and outputs z, then its
running time does not exceed ¢(|z/|, 7).

Let us define the set B as follows.
B={(0°,17, 5,19, d) | d € {0,1} A s € R0 A |MA(0%; 5)| = n
A TimeAM(Oi;s) < q(n,i) A the j-th bit of MA(0%;s)is d }.

Let p(n) = 2n+4 for alln € N. Since B € A}, our assumption ensures the existence of a probabilistic Turing

(n)—n—i—4

machine N which accepts B in polynomial time on vgiang-average with error probability 277 , Where

input is of the form (0%, 17, s, 17, d). Consider the following sampling machine M’.

begin sampling algorithm for M’
input 0°
generate a natural number ng randomly
generate a string s of length < ¢(ng, 7+ p(n))

for n = ng to oo

274 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

generate s’ at random so that |ss’| < ¢(n, i+ p(n))
set s := 55
for j =1 ton do
if N((0iP() 17 5 17.0)) = N((07+P(") 17 5,17 1)) then go to (¥)
if N((0P() 17 5 17 0)) < N (0740 17 5 17 1))
then set d; :== 1 else set d; := 0
end for
output dids - - -d, and halt
(%) end for

end.

In the following analysis, we fix ¢ and ». Let |z| = n. Set
Sei = {5 € Dypa(0PUD) ||| < q(lel, i+ p(l2])) A MAOTFP)55) = & in time g(J2], i+ p(|2]))}.

Write ¢ to mean PI‘S[MA(OHP(n)) =z in time ¢(|z|, i+ p(|z])) | s € QMA(OZ'-I-p(n))]. By the definition of
Sy.i, we have of, = Y ses. 9-lsl,

Note that the success probability that each iteration of the second for-loop is at least:
Pry[N (0770 17 519 75)) < (0142 17 1519)]

= Pry[N(0H0, 175,17, 75) = 0A N0 17, 5,19, 05)) = 1]
(1 _ 2—p(n)—n—i—4)2

v

1 — 2—p(n)—n—i—1.

v

Now let us denote by p. the probability that the machine M’ on input 0°*+7(") with random input s € Ses

outputs z. The function pi. clearly does not exceed ¢’. The lower bound of pi. is calculated as follows:

o = o 2L T Pen N (O 07 5, 1, 75)) < N (070 175,12
SESz,: j=1
=D DI A [[i e B Y B L e

SESL j=1
(1 —27p0)=1) 5t

v

The last inequality follows from Lemma A.6.

We then have
1 i i i
(1_W) 0y S pp SOy
Therefore, we obtain |p%, — p| < 27P()+1(271 4 277) a result analogous to Theorem 4.4.13.
Let ﬁxi be the probability that the machine M’ on input 0° outputs . We then have:

1 — 9—i=p(n)

= —2llog(n)—1 _ i —1 2—2110g(k)—1 Ry 9. 7
0, <2 Py <P <Y Pl <2-05.
8(n+1) =

7.7. RANDOM ORACLE SEPARATIONS 275

As in Theorem 4.4.13, we can show that |5/ — 77| < 2714277 for all 4, > 0.
It is not difficult to show that N’ runs in polynomial time on p-average with respect to the size of its

output. Therefore, u belongs to avP-samp. a

Corollary 7.6.5 [96]

1. NP C BPPp_comy implies NP C BPPpnr

-samp *

2. AL CBPPp._comp implies NP C BPPpnr_ g,
Proof. Assume that NP C BPPp_comp. Notice that ng—samp CP avP-samp implies BPPayp-samp C
BPPPHP By Proposition 7.6.4, it follows that NP C BPPayp-samp C BPPPHP

-samp"” -samp"”

A similar argument leads to (2). O

7.7 Random Oracle Separations

We return to Levin’s original question of whether NP C Pp_comp. Since this question is difficult to answer,
we turn our interest to its relativization.

Bennett and Gill [8] first used a notion of “random oracles” and made several important contributions to
computational complexity theory including the result that, relative to a random oracle, three classes P, NP,
and co-NP are different. Intuitively, if we choose an oracle set A at random, P4 is different from NP with
probability 1. In other words, “most” oracles can separate P from NP. In the same paper, Bennett and
Gill proposed a “random oracle hypothesis” that states: if a property P holds relative to a random oracle,
then P also holds in the non-relativized world. (However, this hypothesis is now known to be false [57].)

To approach Levin’s original question, we consider randomly relativized world. We remark that there
is no known inclusion relationship between the class Pp-comp and other worst-case complexity classes, such
as NP and PSPACE. This section will discuss, relative to a random oracle, several negative results about
these relationships.

We identify a set A with a binary real number 0.r, where » = x4(0)x4(1)xa(00)x4(01)---.

Definition 7.7.1 (Random Oracles) Let Q% be a property relativized to oracle X. We say that, (with
probability 1) QX holds relative to a random oracle X if the Lebesgue measure of the set {X | @Q*holds} is
1, denoted by m({X | @* holds }) = 1.

In our setting, the Lebesgue measure behaves like a probability measure if the property QX is finitely

evaluated. Here is an example. Let

na(z) = A(z10) A(2100) A(£1000) - - - A(z10/=1).

276 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

Then, clearly |na(z)| = |z| for all z. Consider the event {A | na(z) = 0/} for each fixed string . The
measure of this event, m({A | na(z) = 0171}), is 27121, Hence, for each n € N, m({4 | Yy(na(y) # 0")}) =
(1 — 272" which approaches 1/e as n goes to co.

We shall show that, with probability 1, NPp-comp is different from Pp-comp relative to a random oracle.

In this section, we choose the following relativization of the classes Px and NP £.

Definition 7.7.2 (Relativization) Let X be a set of strings, and let 7% be a set of distributions relative
to X.

1. Let P;_.(X be the collection of all sets A such that, for any distribution g in FX, (A, u) belongs to

Aver(P, F)X¥) for some distribution v.

2. Let NP;_-(X be the collection of all sets A such that, for any distribution p in FX | (A, i) belongs to
Aver(NP, F)X¥) for some distribution v.

Proposition 7.7.3 [8] Relative to a random oracle X, TALLY N NP* ¢ PX,

Proof. We can even show the slightly stronger statement that TALLY N NP* ¢z co-NP? relative to a
random oracle X. This clearly yields the desired consequence. In what follows, we shall prove this stronger
statement.

We first introduce a test language which lies in TALLY N NP* for any oracle set X. For this purpose,
let us define RANGE4 = {0 | Jy[na(y) = 0"]}. Clearly RANGE“ is in TALLY and also in NP# for any
oracle A. Let M be an arbitrary polynomial-time oracle Turing machine. Let C0 = {A | Vy[na(y) # 0]}
and let CL = {A | n4(07) # 07 A y(na(y) = 07)}. As seen above, m(C?) = (1 —27")?" for any natural
number n, and consequently lim,_, . m(C?) = 1/e, where e is the base of the natural logarithms.

Let Y be the probability space of X — {0"}. We introduce a transformation from C x Y to C} x Y as
A y) = (Ay,n4(y)), where A, = A— {y10™ |1 < m < n}. We now claim that f is surjective. For any
(B,u) € C} x Y, there exists a unique y such that ng(y) = 0". Let A = BU{y10™ |1 < m < n}. Then,
na(z) # 0" for all z because na(y) # 0".

Moreover, for any event £ C Cl, we have

m({A|AEE}):ZQHI_1 ‘m({A|AeC A4, €EY).

yey

Hence, in particular, it holds that

m(C) = 3 o (€0 = m(C)
yey

because the term m(C?) does not depend on the choice of y.

Let us define two conditional probabilities. Let

n 0
o = mUALC LML ANACGY
m(CR)

7.7. RANDOM ORACLE SEPARATIONS 277

ol m({A|0" e L(M,A)NA € C}L}).

! m(C})

Now we shall claim that o > 9T al for almost all n.

Claim 19 o} > 9T al holds for almost all n.

Proof of Claim. Let n be large enough that 51,((71)) < ﬁ. For any pair (4,2) € CY x Y, with conditional
probability g, M4 accepts 0”. Let us fix one of its accepting paths and denote it by p. Let us consider the
oracle set A,. On the path p, the probability that M does not make all queries of the form 210%, 1 < k < n,

is at least 1 — () > 22 With this probability, M4+ accepts 0". Thus, a} can be estimated as follows:

100
X m({A]|0" e L(M,A)NA€C}})
o =
! m(C})
B Z 1 m({A|0" € L(M,A)NA € CLAO" € L(M, Ay)})
- n-l m(C})
yey
S 9 m({A|0" e L(M,A)NAeCP})
— 100 m(C?)
9
00 "
|
Finally we must calculate the overall error probability ¢ = m({A | M4(0") # RANGE4(0™)}). Choose
an integer n large enough that we can guarantee that m(C?) > % and o} > 9T . For this n,
¢ > (1-ap) m(Cy) +a, m(C,)
> (1- cy -m(C))
> (1-ab))+ 0l m(cd)

1ol + 2 an) m(C?)

1Y 36

> (1-)t

= (100 ”) 100 = (100) 100

.
3

Hence, the error probability ¢ is not 0. Thus, the event that M4 computes the complement of RANGE4
has measure 0 by the 0 — 1 Law. In other words, RANGEX ¢ co-NPX relative to a random oracle X. O

Using the above proposition, we can show the following separation result.

Proposition 7.7.4 Relative to a random oracle X, ng + NPPX

-comp -comp *

PA-comp = NPPA_Comp clearly implies TALLY N NP4 C P4. By Proposition
7.7.3, relative to a random oracle X, TALLY N NPX ¢ PX with probability 1. Hence, we obtain the desired

result. O

Proof. For any oracle A, P4

278 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

Proposition 7.7.5 [8] Relative to a random oracle X, there exists a PX -bi-immune set in NPX

Proof. For any oracle A, we define RANGFE4 as the set {z | Jy[na(y) = zzz]}. Clearly RANGE% is in
NP#. In the following, we want to prove that RANGFEZ is PX-bi-immune relative to a random oracle X.

First we claim that RANGEZ is PX-immune relative to a random oracle X. Let us fix a polynomial-time
deterministic oracle Turing machine M and let p be an increasing polynomial which bounds the running
time of M. If L(M, X) is finite relative to a random oracle X, then the claim is trivially true. Now we
assume otherwise.

We say that y is examined by M on input w if M4 on input w queries a string of the form y10™,
1< m <|y|. Let

EXAMA(w) = {y | M* on w examines y, but there is no v < w such that M4 on v examines y }.
Using the set EXAMA(w), we define EVID# as follows:

EVIDA = U {y |y € EXAMA(w) Az > wnaly) = xxx]}.
wWEL*

Now we shall show that, relative to a random oracle X, EVID? is finite.
Claim 20 EVIDX is finite relative to a random oracle X .
Proof of Claim. Note that, by the polynomial bound on M, [|[EXAMA(w)|| < p(|w|) for any string w. Now
fix any sufficiently large string w satisfying ||FX AM4 (w)]| < 2lwl/2 for all oracles A. For each y,
m({A |3z > wlna(y) = vaa]}) < 20027300 = 972l

For simplicity, we write F4(w) to mean that there exist two strings = and y such that * > w, y in

EXAMA(w), and 14(y) = xxz. The probability that F4(w) holds is at most
m({A | FA(w)}) < 2lvl/2 . g=2lwl = g=slwl/2]
Hence, >, m({A | F4(w) holds }) <> 2-3lwl/2 < oo, Thus, by Borel-Cantelli’s Lemma (Lemma A.11),

m({A |O§ wF#4(w)}) = 0. This implies that m({A | EVID# is infinite }) = 0. []

Let us define D = {A | L(M, A) is an infinite subset of RANG4 and EVID# is finite }. To lead to a
contradiction, it suffices to show that m(D) = 0. To do so, for each set A, we shall define the series of strings

{zf};en as follows: initially, set 4 = A, and for each k > 1, set

min{z € L(M, A) | x > 2 | AVy € EVIDA[na(y) # zxx]}, if one exists,

undefined, otherwise.
Note that J:;? may not always be defined. Using this series, we define

Dy = {A | zf exists and Vi < k[zf* € RANG4]}

7.7. RANDOM ORACLE SEPARATIONS 279

for £ > 1. Tt is not difficult to see that Dy D Dy D -+ D D.
We next claim that, for almost all &, the ratio m(Dy41)/m(Dy) does not exceed some constant ¢ less

than 1.

Claim 21 There exists a constant ¢ in the interval [0,1) such that m(Dgy1) < ¢-m(Dy) for almost all
keN.

Proof of Claim. Take any sufficiently large integer ko such that p(k) - 28T < 22% holds for all integers
k > ky. Fix any such integer k.

Since || Ung EXAMA(w)|| < p(Jz|) - 21°1+1 < 221°1 for each & with |x| < ko, it holds that
Yy € U EXAMA(w)[naly) # zxx] Ay & U EXAMA(w)[na(y) = zax].
w<e w<e

Since Diy1 = Di41 N Dy, the ratio m(Dy41)/m(Dy) is equal to the conditional probability m(Dy 41 | Di).
This is bounded by the probability that there exists a string @ accepted by M with oracle A such that
na(y) # zzx for all y in EXAMA(w) for some w < =z, but n4(y’) = zzx for some y' which is not in
Ung EXAMA(w), provided that z# exists. Hence,

m(Dis1 | Dy) < m({A | 3o > 2 Jylna(y) = zaz]})).

The last expression tends to 1 — 1/e as k approaches oo. [|

Therefore, for almost all k&, m(Dgy1) < ¢-m(Dg), which implies m(D) = limg_,, ¢*. This yields the
conclusion m(D) = 0.

The proof that RANGEZ is PX-immune relative to a random oracle proceeds similarly. a
The next theorem follows from the previous proposition.

Theorem 7.7.6 Relative to a random oracle X, NP* ¢ PX

PX-comp”

Proof. By Proposition 7.7.5, there exists a PX-bi-immune set in NP¥ for a random oracle X. Since
Proposition 7.4.5 is relativizable, PéA—Comp has no PA-bi-immune sets for any oracle A. Therefore, NPX

cannot be included in PZ relative to a random oracle X. O

PX-comp

Theorem 7.7.7 Relative to a random oracle X, ng_comp ¢ PSPACE”.

Proof. The proof presented here is a modification of the proof of the corollary of Theorem 2 in [8].

In the proof, we identify strings with natural numbers; that is, if « is s,, then @ represents the nat-
ural number n. By this identification, it follows that 2/*1=1 + 3 < 2 < 21°l 4 2 for all 2 > 4. Let
na = A(x10)A(210%) - - A(z101*1) and QUERY# = {z | = is a candidate, 74(0%) € A}. Tt follows that
QUERYA € PéA—Comp for all oracles A.

280 CHAPTER 7. QUINTESSENTIAL COMPUTABILITY

Take any polynomial-space deterministic Turing machine M. TFor each z, let C, = {A | na(0%) &
Q(M, A z)} and C, = {A| A ¢ C.}. We shall show that m(C) is not small.

Claim 22 m(Cy) > 1/3 for almost all strings x.

Proof of Claim. Notice that the tape space used by the machine M on input z is bounded above by a
polynomial in |z|. Let p be such a polynomial. By the space bound, the number of all possible instantaneous
descriptions of M on input « is at most 2°0#1) and this number is irrelevant to the choice of oracles. This
number is also an upper bound of the number of queries made by M. On the other hand, to determine

n4(0%), we need to check at most 21#1=1 hits since
4(07)] = @ > 21717 - 3 > 2lel=t,

The measure of C, is at most the ratio of the number of query strings to the number of bits to determine

14(0%), and hence
Ua QUL A)| _ 20D

= |
m(Co) < omina [na(0®)] = gz2lel-1°

Obviously, m(@x) approaches 0 when x grows, and therefore limg . m(Cy) = 1. [|

Next let us consider the error probability ¢ = m({A | M4(z) # QUERY (x)}). We must show that

€ > z. Note that

1
3

e>m({AeCr|lze LM, A) Ana(0") € A) +m({Ae Cp |2z ¢ L(M,A) Ana(0¥) € A}).
To obtain the desired lower bound of ¢, we define two sets:

CY = {AcC,|x€ (M, A) Ana(0”) € A}, and
Cl = {AcC,|x€L(M, A Ana(0°) & A}

Next we shall show that m(C?) = m(C}). To show this, we define the transformation f, as

A—{na(07)} ifna(07) € A,

T A) =
f=(4) AU{na(0")} otherwise.

It is easy to see that f; is bijective on Cy. Hence, from the fact that m({A € C, | x € L(M,A)}) =
m(CY U C}), it follows that m(CY) =1 -m({A € C, | v € L(M, A)}).

A similar argument shows that m({A € Cp | @ € L(M,A) Ana(0”) € A}) = 3 m({A€C, |z ¢
L(M, A)}). By combining the two equations, we obtain

L m({Aec, |ver(n)+ % m{AeC, |z L(M,A)})

>_
© =3
1
2

-m(Cy).

Wl

The last term exceeds % for any large string z. Therefore, € >

Chapter 8

Conclusion

In the early days of average-case analysis, researchers had great hopes of solving all NP-complete problems
in average polynomial time. The satisfiability problem, for example, can be solved in average polynomial
time with respect to some natural input distribution, and so have the Hamiltonian circuit problem with some
input distribution. As research has progressed, however, the realm of average-case analysis has encountered
the same difficulty as its worst-case counterpart.

L. Levin showed that there are problems intractable even in the average-case setting. Since Levin pre-
sented his approach to average-case complexity theory, much research has been devoted to grasping what
the intractability of problems is. These average-case analyses have attracted significant attention from re-
searchers in the other fields, such as cryptography and statistical physics. Researchers have continued to
seek for another complete problem for Dist(NP, P-comp). At the same time, there have been a number of
different approaches developed to gain a better understanding of average-case intractable problems. One of
them is to study the average-case complexity of distributional search problems. For example, NP search
problems have recently been shown not to be harder than NP-problems in the average-case setting.

This thesis tried to contribute to the development of a general and consistent theory of average-case
complexity. Personally, I have been inspired by Levin’s early question of whether all NP-complete problems
are solvable in polynomial time on the average with respect to naturally selected distributions. This question
1s deeply related to the E =7NE question as well as the P =7NP question in worst-case complexity theory.
We thus see a tie between average-case complexity theory and worst-case complexity theory.

Reducibilities have played a central role in our study of the structural properties of those classes. One of
the significant features of this thesis is the introduction of two average-case versions of the polynomial-time
hierarchy, one by average-case Turing reducibilities, and the other by a model of alternating Turing machines.
These two hierarchies preserve numerous properties of the worst-case hierarchy, but they are intrinsically
different in character because of their sensitivity to the choice of input distributions. A structural study
of average classes has commenced in recent years, whereas there have already been a number of studies on
worst-case complexity classes.

Another important feature of this thesis is to introduce the notion of quintessential complexity classes.

281

282 CHAPTER 8. CONCLUSION

This notion actually enables us to bridge the gap between average-case complexity theory and its worst-case
counterpart. In particular, the class Pp-comp has been thoroughly studied in this thesis. We have seen a
variety of possibilities in this direction that contribute to an understanding of average-case complexity.

We regret that there remain many intriguing topics in average-case complexity theory, and we have left
numerous questions unsolved in this thesis. One important direction is the study of distributional search
problems. There are a number of studies in this area (see e.g., [9, 12, 113, 108]).

Average-case complexity theory is a fruitful field to cultivate. However, it is not always easy to seek
the right definition of average-case counterparts of well-known concepts in worst-case complexity theory.
For example, we have already seen several possible ways of defining the class Aver(NP,F). Consider
the following example. Suppose that we wish to ask ourselves: “Is 1t possible to define in a natural way
an average-case version of #P 7”7 Recall that the #P-functions were originally introduced by the model
of polynomial-time counting machines (i.e., nondeterministic Turing machines which sum the number of
accepting configurations). Our definition of nondeterministic Turing machines does not seem to provide
any reasonable model for counting machines because not all accepting computation paths are considered in
measuring the running time of the machines. One possible way to define such a class, say Aver(#P,F), is

given as follows:

Definition 8.0.8 (Average #P Functions) A function f on X* is called #P-computable on p-average
if there exists a randomized Turing machine M such that (i) M is polynomial-time bounded on p-average,
and (ii) f(z) is the number of accepting computation paths of M on input #. The class Aver(#P,F) is
defined to be the collection of all pairs (f, 1) such that f is a function which is #P-computable on p-average.

R. Impagliazzo recently expressed the view in [43] that there are five possible worlds we might inhabit: Al-
gorithmica, in which no intractable problems exist (i.e., P = NP or NP C BPP holds); Heuristica, in which
there are intractable problems, but no problems are hard on the average (i.e., P # NP C Pp_gamp); Pessi-
land, in which there are hard distributional problems, but no (strong) one-way functions exist; Minicrypt, in
which one-way functions exist, but public key cryptography is impossible; and Cryptomania, in which public
key cryptography is possible.

No matter which world we inhabit, researchers will continue to pursue attempts to understand natural

phenomena.

Appendix A

Small Lemmas

This section provides several important lemmas used in this thesis.

The following inequality is known as Markov’s inequality.

Lemma A.1 (Markov’s Inequality) Let p be a distribution and let f be a function from X* to RT.
For every positive real number v, ji({z | f(z) > r - E[f(X)]}) < %, where E[f(X)] = >, f(z)i(z).

T

Proof. If E[f(X)] = 0, then either f(x) = 0 or ji(x) = 0 for all x € ¥*. Thus, if f(x) > 0, then j(x)
must be 0. This yields the consequence that a({x | f(z) > 0}) =0 < L for all 7 > 0.
Now we assume that E[f(X)] > 0. Let A = {z | f(z) > r-E[f(X)]}. Since the case A = 0 is trivial, we

assume otherwise. Define t;(x) = 1if f(z) > r - E[f(X)], and 0 otherwise. Since t;(z) < HEf[ff(XL)] for all

NP

x € A, we have

a(A) =E[t;(X)]<E [r . E[;((X)]

Lemma A.2 (Jensen’s Inequality) Lel f be a strictly increasing concave function defined on an in-

terval (0,00) and set f(oo) = limg_ oo f(2). Then,

Ef(X)] < F(E[X]),

where X is a random variable with values in (0, o0].

Proof. In the case where E[X] = co, we get
FIELX]) = Jim f(z) > BIF(X)]
On the contrary, suppose that E[X] < co. Since f is concave,

F0) = fw) | f(w) = 1)

v—Uu - w—v

()

283

284 APPENDIX A. SMALL LEMMAS

for all positive real numbers u, v, and w satisfying u < v < w.

Let us fix v and consider the upper and lower limits:

g (v) = lzlglif(vlif(z), and
g«(v) = lzlﬁlw

By the monotonicity of the function f, these limits g*(v) and g.(v) exist for any v in the interval (0, co).

The definition also implies g*(v) > g.(v).
Claim 23 For all x,v € (0,00) and every ¢ € [¢.(v), ¢"(v)], f(z) <c(e —v) + f(v).

Proof of Claim. 1If x = v, then the claim is trivial. Now suppose > v. Then, by (x), it follows that

Hence, f(z) — f(v) <c¢-(x —v).
In the other case where z < v, we get
f(vl:£($)lel%rvlf(vl:f(Z):g*(v)an
and thus, we conclude that f(z) — f(v) < c¢-(z —v). []

As a special case of the above claim, for a random variable X, f(X) < ¢ (X — E[X]) + f(F[X]). By

taking expectations,

Lemma A.3 1. Y " L

n=1 n
2. Y@ L
: n=1 n* 90 *

0 1 _ x®
3. anl n® — 945°

Lemma A.J Let g be a function from X* x ¥* to RY. Let x € ¥*. The following two statements for g

are equivalent.
1. There exists a function h such that |h(x) — g(z,0%)| < 27 for almost all x and i € .
2. |g(=,0%) — g(=,07)| <27+ 277 for almost all i,j € N.

Proof. We first show that (1) implies (2). This is somewhat straightforward.

lg(2,0") — g(2,07)| = |g(x,0") — h(x) + h(x) — g(x,07)]

285

< g(e,07) = h(x)| + |h(z) — g(x,07)]
< 2704977,

Conversely, we show that (2) implies (1). Assume that |g(z,0%) — g(x,07)| < 27% 4+ 277 for almost all
i,j € N. We first note that, for each x, there exists the limit lim;_, ., g(z, 04) by a classical argument in
analysis. We then set h(z) = lim; ., g(z, 07).

Then,

[h(z) = g2, 0] < | lim g(x,0°) = g(x,0')| = lim |g(x,0%) — g(x,0)| < lim (27% +27F) = 277,
k—oco k—oco k—oco

Lemma A.5 Assume that {a;}1<i<n and {b;}1<i<n are sequences of real numbers such that, for each 1,

|ai| S L and |bl| S L. Then? |HZ:1 a; — HZ:l bl| S ZZ:I |ai - bl|

Proof. By induction on n, we shall show that

o i1
k=1

k+1

n

sZ (kﬂm)m—bm IT 1) |

-1
i=1 j=k+1

where Hfz_ll la;] = 1if k = 1, and H;’L:k+1 |6;] = 1 if & = n. The lemma immediately follows from this
inequality.
The base case n = 1 is trivial. Assume that n > 1. Since |[aA —bB| < |a|-|A — B|+ |a — b| - |B]| holds in

general, we have

n+1 n+1

o[
k=1 i=1

n n
An41 H a; — bn+1 H bz
k=1 i=1

n n n
< |an+1_bn+1|'H|ai|+|bn+1|' Hai_Hbi
i=1 k=1 k=1
n n k—1 n
< s = boga | L lail + 3 (Hm) jas — bl | TT sl] - ool
i=1 k=1 i=1 j=k+1
n+1 k—1 n+1
= S (Tt et T
k=1 i=1 j=k+1

Lemma A.6 (1 —27%)" >1—27"t"=1 for qll m € N and all real number x > 0.

Proof. The proof proceeds by induction on m. In the base cases that m € {0, 1}, the claim is trivial. So,

we assume m > 1. The induction hypothesis says that (1 —27%)"=1 > 1 — 272+m=2 Then, we have

(L—27)" = (=27 (1—277) > (L— 27+ (-2

286 APPENDIX A. SMALL LEMMAS

— 1— 2—x+m—2 _ 2—x 4 2—2x+m—2 Z 1—9. 2—x+m—2

1— 2—x+m—1)

O

Lemma A.7 For any natural numbers k and n (0 < k < n) and any real number ¢ € (0, %), let s} =

(Z)(% + e)k(% —)" R If 2(k+1) < n, then s} < Sha1-

Proof. Suppose 2(k + 1) < n. Notice that this assumption implies that 2k + 1 < n since k and n are

integers.

. . n 1 k+1 1 n—k—1 n 1 k 1 n—k
TR S G D=k =) (5“) (5_6) ICEDL (5“) (5_6)

- @+m£1h4ﬂG+0k6—0%“fm—@@+0—%+”@—01

Write L for W‘_k_l), (% + e)k (% — e)n_k_l. Then, it follows that

) -
Spp1—sp =L~ [5(71—2147—1)—1—(71—1—1)6 > L(n+1)e>0.

Therefore, we conclude that s, > sj. a
Below we shall state Stirling’s formula without proofs.

Lemma A.8 (Stirling’s Formula) n!=2mn(2)"(1+ 2= +h(n)), where h € O(:5) and e is the base

of the natural logarithm.
Lemma A.9 For any sufficiently large natural number n, (Ln72J) < 272(1 + 1) < %

Proof. Suppose that n is even and is of the form 2m. Using Stirling’s formula, for any sufficiently large

integer n,
no\ L eml VAP +)
[n/2] (mh)? — 2mm()
< —(1+s) = =(1+5)
= Vo2mm 12m LD 6n
on+1
NS
since 1 + ﬁ < 2.
Next we suppose that n = 2m + 1.
v\ emrny _ VEOREDEENTH()

(mj2)) mlm A DN T mm(2) /2 (m o T) (2R

287

1 2l @m0
e/ 2 m(m+1) mm™ - (m+ 1)m+! 12(2m+ 1)

92m+l1 1 1\ 1
— = (1+=)[1+—) (14—
22m+1 1 m 1
. <1+—) .(1+7).
2em(2m 4+ 1) 2m 12(2m 4+ 1)

The last inequality follows from the fact that 1 + ﬁ < +/e. From the fact that (1 + ﬁ)m < /e, it follows

that
n 22m+1

§—~¢E~(1+ :)s h ~(1+L) <z
[n/2] V2er(2m + 1) 12(2m+1) N 19n V2

Lemma A.10 Let I be a finite index set. Let {&;};er be a partition of the sample space Q1. Then, for any

event &,
Pr[€] =) Pr[€|&] Pr[&].
i€l
Proof. For simplicity, assume that I = {1,2,...,k}. By the definition of the conditional probability,
Pr[& | &) = Pr[€N&]/Pre, |] if Pr[&] > 0. Hence, we get Pr[€ | &] - Pr[&] = Pr[EN&).
Since &; and &; are disjoint if ¢ # j, the sum of all Pr[€ | &] - Pr[&;] is calculated as follows:

k k k
ZPI‘[€|&]~PI‘[&] = ZPI‘[SO&] = Pr[U(é‘ﬂ&)]
k
= Pr[é‘ﬂ(Ué‘)] = Pr[£]

Given a series {A; };en of sets, the notation limsup,, A,, denotes the set (._, Us~, Ax and is called the

limits superior of {A;};en. Note that w € limsup,, A, if and only if w lies in infinitely many of the A,.

Lemma A.11 (Borel-Cantelli Lemma) Let {A;}icny be a sequence of events.
1 If 3 Pr[A,] converges, then Pr[limsup, A,] = 0.
2. Assume that {Ap}nen is independent. If S Pr[A,] diverges, then Pr[limsup, A,] = 1.

Proof. (1) Assume that > 2 Pr[A,] converges. Let k be any natural number. From the fact that
limsup,, 4, C U;2, A, it follows that

i=k

U

Pr[limsup A4,,] < Pr
n i=k

288 APPENDIX A. SMALL LEMMAS

By our assumption, lim; e > o, Pr[4;] = 0. Therefore, Pr{limsup,, 4,] = 0.

(2) Assume that {4;};cy is an independent sequence of events. Assume also that Y ;- Pr[A;] diverges.
It suffices to prove that Pr[J,—, sz, A5] = 0, where A¢ is the complement of Ag (i.e., 2 — Ay). For this
claim, we want to show that Pr[,—, A¢] = 0 for all n € N.

Note that Pr[(),—, Af] = limj_ e Pr[ﬂnﬂ AZ]. Let e be the base of the natural logarithm. Since
1— 2z < e™? holds,

n+j

IHPI‘[AC Hn—l—j 1 —Pr[Ag]) <exp
= k=n

n+j n+j

r ﬂAi ZPI‘Ak
k=n

where exp[z] means e?. Let us consider the last expression and denote it by 7%. Since > ;- Pr[A4;] diverges,

bl

the value T? tends to 0 as j approaches infinity. Thus, lim;_ Pr[ﬂZiZL Afl=0. a

Lemma A.12 (Holder’s Inequality) Let I be a finite index set. For any two sets of positive real

sl (59"

i€l i€l i€l

numbers {a; }icy and {b;}icr,

1,01 _
wherez—)—l—g_l.

Bibliography

[10]

[11]
[12]

[13]

[14]

[15]

E.W. Allender and R. Rubinstein, P-printable sets, STAM J. Comput., 17 (1988), 1193-1202.

D. Angluin, On counting problems and the polynomial hierarchy, Theoretical Computer Science 12 (1980),
pp.161-173.

T. Baker, G. Gill, and R. Solovay, Relativizations of the P=?NP question, SIAM J. Comput. 4 (1975), 431-442.
J. L. Balcazar, J. Diaz and J. Gabarrd, Structural Complezity I, II, Springer-Verlag, 1988(I), 1990(II).

J.L Balc4zar and U. Schéning, Bi-immune sets for complexity classes, Mathematical Systemns Theory, 18 (1985),
pp-1-10.

J. Belanger and J. Wang, Rankable distributions do not provide harder instances than uniform distributions,
in “Proceedings, 1st Computing and Combinatorics Conference,” 1995, Lecture Notes in Computer Science,

Vol.959, pp.410-419.

J. Belanger and J. Wang, Reductions and convergence rates of average time, in “Proc. 2nd International

Computing and Combinatorics Conference”, Lecture Notes in Computer Science, Vol.1090, pp.300-309, 1996.

C.H. Bennett and J. Gill, Relative to a random oracle A, P* % NP4 #£ co-NP# with probability 1, SIAM J.
Comput. 10 (1981), 96-113.

S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case complexity, J. Comput.
System Sci. 44 (1992), 193-219. A preliminary version appeared in Proceedings, 22nd STOC, 1990, pp.379-386.

L. Berman and J. Hartmanis, On isomorphism and density of NP and other complete sets, SIAM J. Comput.
6 (1977), 305-322.

P. Billingsley, Probability and Measure, John Wiley & Sons, New York, 1995.
A. Blass and Y. Gurevich, Randomized reductions of search problems, STAM J. Comput. 22 (1993), 949-975.

B. Bollobas, T.I. Fenner and A.M. Frieze, An algorithm for finding Hamiltonian cycle in a random graph, in
“Proceedings, 17th ACM Symposium on Theory of Computing”, 430-439, 1985.

R.V. Book, Tally languages and complexity classes, Information and Control, 26 (1974), pp.186-193.

R.V. Book, Comparing complexity classes, J. Comput. System Sci. 9 (1974), 213-229.

289

290

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY
R. Book and D.Z. Du, The existence and density of generalized complexity cores, J. of ACM, 34 (1987),
718-730. 1987.

R. Book, D.Z. Du, and D. Russo, On polynomial and generalized complexity cores, in “Proceedings, 3rd
Conference on Structure in Complexity Theory”, pp.236-250, 1988.

J. Cai and L. A. Hemachandra, On the power of parity polynomial time, Math. Systems Theory, 23 (1990),
pp-95-106.

J. Cai and A. Selman, Fine separation of average time complexity classes, in “Proceedings, 13th Annual
Symposium on Theoretical Computer Science”, Lecture Notes in Computer Science, Vol.1046, pp.331-343,
1996.

J. Carter and M. Wegman, Universal classes of hash functions, J. Comput. System Sci., 18 (1979), pp.143-154.
A K. Chandra, D.C. Kozen, and L.J. Stockmeyer, Alternation, J. ACM 28 (1981), 114-133.

S. Cook, The complexity of theorem proving procedures, in “Proceedings, 3rd ACM Symposium on Theory of
Computing, pp.151-158, 1971.

K. de Leeuw, E.F. Moore, C.E. Shannon, and N. Shapiro, Computability by probabilistic machines, in C.E.
Shannon and J. McCarthy, editors, Automata Studies, pp.183-212, Princeton University Press, Princeton, 1955.

D.Z. Du, T. Isakowitz, and D.A. Russo, Structural properties of complexity cores, unpublished manuscript,

Department of Mathematics, University of California at Santa Barbara, 1984.

J. Franco and M. Paull, Probabilistic analysis of the Davis Putnum procedure for solving the satisfiability
problem, Discrete Applied Math. 5 (1983), 77-87.

M.R. Garey and D.J. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness,
W.H.Freeman and Company, New York, 1979.

J. Geske, D. Huynh, and J. Seiferas, A note on almost-everywhere complex sets with application to polynomial

complexity degrees, Information and Computation 92 (1991), pp.97-104.
J. Gill, Computational complexity of probabilistic Turing machines, STAM J. Comput. 6 (1977), 675-695.

M. Goldmann, P. Grape, and J.Hastad, On average time hierarchy, Inform. Processing Letters 49 (1994),
15-20.

O. Goldreich, Towards a theory of average case complexity (a survey), Technical Report No.507, Israel Institute
of Technology, 1988.

J. Goldsmith, L.A. Hemachandra, D. Joseph, and P. Young, Near-testable sets, STAM. J. Comput. 20 (1991),
Pp.506-523.

P. Grape, Two results in average case complexity, Technical Report TRITA-NA-9105, Royal Institute of
Technology, Stockholm, Sweden, 1991.

BIBLIOGRAPHY 291

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. Grollman and A.L. Selman, Complexity measures for public cryptosystems, SIAM J. Comput. 17 (1988),
309-335.

Y. Gurevich, Complete and incomplete randomized NP problems, in “Proceedings, 28th [EEE Symposium on
Foundations of Computer Science”, pp.111-117, 1987.

Y. Gurevich, Matrix decomposition is complete for the average case, in “Proceedings, 31st IEEE Symposium

on Foundations of Computer Science”, pp.802-811, 1990.
Y. Gurevich, Average case completeness, J. Comput. System Sci. 42 (1991), pp.346-398.

Y. Gurevich and S. Shelah, Expected computation time for Hamiltonian path problem, STAM J. Comput. 16
(1987), pp.486-502.

J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations, in “Proceedings,

24th IEEE Symposium on the Foundations of Computer Science,” pp.439-445, 1983.

J. Hartmanis, N. Immerman, and V. Sewlson, Sparse sets in NP—P: EXPTIME versus NEXPTIME, Informa-
tion and Control 65 (1985), pp.159-181.

J. Hastad, R. Impagliazzo, 1.. A. Levin, and M. Luby, Construction of a pseudo-random generator from any
one-way function, Technical Report, TR-91-068, International Computer Science Institute, Berkeley, California,
1991. Preliminary versions appeared in the proceedings of the 21st STOC, 1989, pp.12-24 and the 22nd STOC,
1990, pp.395-404.

M. Hermo and E. Mayordomo, A note on polynomial-size circuits with low resource-bounded, Math. Systems

Theory, 27 (1994), pp.347-356.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-
Wesley, Massachusetts, 1979.

R. Impaghazzo, A personal view of average-case complexity, in “Proceedings, 10th Annual Structure in Com-

plexity Theory Conference,” pp.134-147, 1995.

R. Impagliazzo and L.A. Levin, No better ways to generate hard NP-instances than picking uniformly at
random, in “Proceedings, 31th IEEE Symposium on Foundations of Computer Science”, pp.812-821, 1990.

D.S. Johnson, A catalog of complexity classes, Chapter 2 of Handbook of Theoretical Computer Science, edited
by J. van Leeuwen, Elsevier Science Publishers B.V., 1990.

D. Joseph and P. Young, Some remarks on witness functions for nonpolynomial and noncomplete sets in NP,

Theoret. Comput. Sci. 39 (1985), 225-237.

J. Kadin, The polynomial hierarchy collapses if the Boolean hierarchy collapses, SIAM J. Comput. 17 (1988),
1263-1283. Its erratum appeared in: SIAM J. Comput. 20 (1991), p.404.

C. Karg and R. Schuler, Structure in average case complexity, in “Proceedings, 6th Annual International

Symposium on Algorithms and Computations,” Lecture Notes in Computer Science, Vol.1004, pp.62-71, 1995.

292

[49]

[50]

[51]

[52]

53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

BIBLIOGRAPHY

R.M. Karp, Reducibility among combinatorial problems, in Complezity of Computer Computations (R. Miller
and J. Thatcher, eds.), pp.85-104, Plenum Press, new York, 1972.

R.M. Karp and R.J. Lipton, Turing machines that take advice, Enseign. Math., 28 (1982), pp.191-209.

P.M.W. Knijnenburg, On randomizing decision problems: a survey of the theory of randomized NP, Technical

Report RUU-CS-88-15, Department, of Computer Science, University of Utrecht, 1988.

K. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Information Processing

Letters, 14 (1982), pp.39-43.
K. Ko, On some natural complete operations, Theoretical Computer Science, 37 (1985), pp.1-30.
K. Ko, Complexity Theory of Real Functions, Birkhauser, Boston, 1991.

K. Ko and H. Friedman, Computational complexity of real functions, Theoretical Computer Science, 20 (1982),
pp.323-352.

K.I. Ko and D. Moore, Completeness, approximation and density, SIAM J. Comput., 10 (1981), pp.787-796.
S.A. Kurtz, On the random oracle hypothesis, Information and Control 57 (1983), pp.40-47.

C. Lautemann, BPP and the polynomial time hierarchy, Information Processing Letters, 17 (1983), pp.215-218.
L.A. Levin, Universal sequential search problems, Problems of Information Transmission 9 (1973), pp.265-266.

L. Levin, Average case complete problems, SIAM J. Comput. 15 (1986), 285-286. A preliminary version
appeared under the title “Problems, complete in “average” instance” in “Proceedings, 16th ACM Symposium

on Theory of Computing”, p.465, 1984.

M. Li and P. M.B. Vitanyi, Average case complexity under the universal distribution equals worst-case com-

plexity, Information Processing Letters, 42 (1992), pp.145-149.

M. Li and P. Vitanyi, An introduction to Kolmogorov complexity and its applications, Springer-Verlag, New
York, 1993.

J.H. Lutz, Category and measure in complexity classes, SIAM J. Comput. 19 (1990), 1100-1131.
J.H. Lutz, Almost everywhere high nonuniform complexity, J. of Comput. System Sci. 44 (1992), 220-258.

J. Machta and R. Greenlaw, The computational complexity of generating random fractals, Technical Report,

TR 93-04, University of Massachusetts at Amherst, 1993.

S.R. Mahaney, Sparse complete sets for NP: solution of a conjecture by Berman and Hartmanis, J. Comput.

System Sci. 25 (1988), 130-143.

J.A. Makowsky and A. Sharell, On average case complexity of SAT for symmetric distribution, J. Logic Com-
putat. (1995), 71-92.

Y. Mansour, N. Nisan, and P. Tiwari, The computational complexity of universal hashing, Theoret. Comput.

Sei. 107 (1993), 121-133.

BIBLIOGRAPHY 293

[69]

[70]

[71]

[72]

[77]

[78]

[79]

[80]

[81]

[82]

83]

[84]

E. Mayordomo, Almost every set in exponential time is P-bi-immune, Theoret. Comput. Sci. 136 (1994),
487-506.

E. Mayordomo, Contributions to the study of resource-bounded measure Ph.D. dissertation, Sistemes In-

formatics, Universitat Politecnica de Catalunya, 1994.

A. Meyer and M. Paterson, With what frequency are apparently intractable problems difficult 7, Technical
Report MIT/LCS/TM-126, MIT, 1979.

A.R. Meyer and L.J. Stockmeyer, The equivalence problem for regular expressions with squaring requires
exponential time, in “Proceedings, 13th IEEE Symposium on Switching and Automata Theory”, 125-129,
1972.

B. Meyer, Constructive separation of classes of indistinguishable ensembles, “Proceedings, 9th IEEE Annual

Conference on Structure in Complexity Theory”, pp.198-204, 1994.
P.B. Milterson, The complexity of malign ensembles, STAM J. Comput. 22 (1993), 147-156.
R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New York, 1995.

M. Mundhenk and R. Schuler, Random languages for non—uniform complexity classes, Journal of Complezity

7 (1991), 296-310.

P. Orponen, D.A. Russo, and U. Schéning, Optimal approximations and polynomially levelable sets, STAM J.
Comput. 15 (1986), 399-408.

P. Orponen and U. Schoning, On the density and complexity of polynomial cores for intractable sets, Inform.

Control, 70 (1986), pp.54-68.

R. Ostrovsky and A. Wigderson, One-way functions are essential for non-trivial zero-knowledge, in “Proceed-
ings, 2nd Israel Symposium on Theory of Computing and Systems,” Israel, 1993. An extended abstract appeared
as Technical report, ICSI-TR-93-073, International Computer Science Institute at Berkeley, 1993

C.H. Papadimitriou, Computational Complexity, Addison Wesley, 1994.

C. Papadimitriou and S. Zachos, Two remarks on the power of counting, in “Proceedings, 6th GI Conference
on Theoretical Computer Science,” Lecture Notes in Computer Science, Vol.145, pp.269-275, Springer- Verlag,
Berlin, 1983.

W.J. Paul, N. Pippenger, E. Szemerédi, and W.T. Trotter, On determinism versus nondeterminism and related

problems, in “Proceedings, 24th IEEE Symposium on Foundations of Computer Science”, pp.429-438, 1983.

A. Pavan and A.L. Selman, Complete distributional problems, hard languages, and resource-bounded measure,

manuscript, Department of Computer Science, State University of New York at Buffalo, 1996.

R. Reischuk and C. Schindelhauer, Precise average case complexity, in “Proceedings, 10th Symposium on
Theoretical Aspect of Computer Science”, Lecture Notes in Computer Science, Vol.665, Springer-Verlag, 650
661, 1993.

294

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

BIBLIOGRAPHY

K.W. Regan, Minimum-complexity pairing functions, J. Comput. System Sci. 45 (1992), 285-295.
E.S. Santos, Probabilistic Turing machines and Computability, Proc. Amer. Math. Soc. 22 (1969), pp.704-710.
H. Satoh and O. Watanabe, On set size comparison problem, Technical Report of IEICE, 1993.

R.E. Schapire, The emerging theory of average-case complexity, Technical Report, MIT/L.CS/TM-431, Mas-
sachusetts Institute of Technology, 1990.

U. Schéning, A low and a high hierarchy within NP, J. Comput. System Sci. 27 (1983), 14-28.

U. Schéning, Robust algorithms: a different approach to oracles, Theoretical Computer Science 40 (1985),
pp-57-60.

U. Schoning, Complexity and structure, Lecture Notes in Computer Science, Vol.211, Springer-Verlag, 1986.

R. Schuler, Some properties of sets tractable under every polynomial-time computable distribution, Information

Processing Letters, 55 (1995), pp.179-184.

R. Schuler, Average polynomial time is hard for exponential time under sn-reductions, in “Proceedings, 15th
Foundations of Software Technology and Theoretical Computer Science,” Lecture Notes in Computer Science,

Vol.1026, pp.240-247, 1995.

R. Schuler, Truth-table closure and Turing closure of average polynomial time have different measure in EXP,

in “Proceedings, 11th Annual Conference on Computational Complexity,” pp.190-197, 1996.

R. Schuler, A note on universal distributions for polynomial-time computable distributions, in “Proceedings,

12th Annual IEEE Conference on Computational Complexity,” 1997.

R. Schuler and O. Watanabe, Towards average-case complexity analysis of NP optimization problems, in

“Proceedings, 10th Annual Conference on Structure in Complexity Theory,” pp.148-159, 1995.

R. Schuler and T. Yamakami, Structural average case complexity, J. Comput. System Sci. 52 (1996), 308-327.
A preliminary version appeared in “Proceedings, 12th Foundations of Software Technology and Theoretical

Computer Science,” Lecture Notes in Computer Science, Vol.652, pp.128-139, Springer-Verlag, Berlin, 1992.

R. Schuler and T. Yamakami, Sets computable in polynomial time on average, in “Proceedings of the 1st
Computing and Combinatorics Conference,” Lecture Notes in Computer Science, Vol.959, pp.400-409, 1995,
Springer-Verlag.

J.1. Seiferas, M.J. Fischer, and A.R. Meyer, Separating nondeterministic time complexity classes, J. ACM, 25
(1978), pp.146-167.

M. Sipser, A complexity theoretic approach to randomness, in “Proceedings, 15th ACM Symposium on the
Theory of Computing,” pp.330-335, 1983.

L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977), 1-22.

S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20 (1991), pp.865-877.

BIBLIOGRAPHY 295

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]

[117]
[118]

[119]

L.G. Valiant, Relative complexity of checking and evaluating, Information processing Letters 5 (1976), pp.20—
23.

L. Valiant, The complexity of computing the permanent, Theoretical Computer Science, 5 (1979), 189-201.

L.G. Valiant and V.V. Vazirani, NP is as easy as detecting unique solutions, Theoretical Computer Science 47

(1986), pp.85-93.

R. Venkatesan and L. Levin, Random instances of a graph coloring problem are hard, in “Proceedings, 20th

ACM Symposium on Theory of Computing”, pp.217-222, 1988.

R. Venkatesan and S. Rajagopalan, Average case intractability of Diophantine and matrix problems, in

“Proceedings, 24th ACM Symposium on Theory of Computing”, pp.632—-642, 1992.

J. Wang, Average case completeness of a word problem for groups, in “Proceedings, 27th ACM Symposium

on Theory of Computing”, pp.325-334, 1995.

J. Wang, Average-case computational complexity theory, in Complexity Theory Retrospective II, editors, A.
Selman and L. Hemaspaandra, Springer-Verlag, 1996.

J. Wang, Average-case intractable NP problems, manuscript, 1996.

J. Wang and J. Belanger, On average P vs. average NP, in Complexity Theory — Current Research, editors
K. Ambos-Spies, S. Homer and U. Schoning, Cambridge University press, 47-67, 1993. A preliminary version
appeared in “Proceedings, 7th IEEE Conference on Structure in Complexity Theory,” pp.318-326, 1992.

J. Wang and J. Belanger, On the NP-isomorphism problem with respect to random instances, J. Comput.
System Sci., 50 (1995), 151-164. A preliminary version appeared in “Proceedings, 8th Conference on Structure
in Complexity Theory,” 1993, pp.65-74 under the title: Isomorphisms of NP complete problems on random

instances.

O. Watanabe, Test instance generation for promised NP search problems, in “Proceedings, 9th Annual Con-

ference on Structure in Complexity Theory,” pp.205-216, 1994.
O. Watanabe, personal communication, 1996.
R.L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.

R.E. Wilber, Randomness and the density of hard problems, in “Proceedings, 24th IEEE Symposium on
Foundations of Computer Science”, pp.335-342, 1983.

H. Wilf, Some examples of combinatorial averaging, American Math. Monthly 92 (1985), 250-261.
C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977), 23-33.

T. Yamakami, Polynomial time samplable distributions, in “Proceedings, 21st International Symposium on
Mathematical Foundation of Computer Science,” Lecture Notes in Computer Science, Vol.1113, pp.566-578,
1996.

296 BIBLIOGRAPHY
[120] A.C. Yao, Theory and applications of trapdoor functions, in “Proceedings, 23rd Annual IEEE Symposium on
Foundations of Computer Science,” 1982, pp.80-91.

[121] C. Yap, Some consequences of non-uniform conditions on uniform classes, Theoret. Comput. Sci. 26 (1983),

pp-287-300.

[122] S. Zachos, Collapsing probabilistic polynomial hierarchies, in “Proceedings, Conference on Computational

Complexity Theory,” Santa Barbara, 1983, pp.75-81.

[123] S. Zachos, Probabilistic quantifiers and games, J. Comput. System Sci. 36 (1988), pp.433-451.

List of Notation

(a,b), 12 Aver(FP,F) , 81

(a,b] , 12 Aver(NP*, F) , 97, 167
%, 77 Aver(NP, F)° | 214
onM 17 Aver(NTIME(T), F) , 79
2000 17 Aver(NTIME(t), F) , 79
[a,b) , 12 Aver(P, F)¢ | 206

[a,b] , 12 Aver(PH, F) , 217
Acc(M, A, z) , 22 Aver(II}, F) , 217
AAP: 239 Aver(RTIME(T), F) , 79
APH , 239 Aver(RTIME(1), F) , 79
ALY - | 239 Aver(#P, F) , 282
APT , 32 Aver(XP, F) | 217
ASP x| 239 <& 152

<PPP 185 <3P 69
Aver(ATIME(T), F) , 79 ~avp 7]
Aver(ATIME(t), F) , 79 cave 71
Aver(ATIME®(T,8), F) , 79 avP-samp , 126
Aver(ATIME® (¢,5), F) , 79 <P 158
Aver(ATIME* (T, 8), F) , 79 BHP | 161
Aver(ATIME®(t,5), F) , 79 BHP(A) , 199
Aver(BPP, F)¢ | 207 BHP" | 199
Aver(BPTIME(T), F) , 79 BHP, (A) , 215
Aver(BPTIME(t), F) , 79 BHP ;1. , 188
Aver(C;NCq, F) , 80 BHP, e , 203
Aver(co-C, F) , 80 BPCP | 165
Aver(co-NP, F) , 80 BPE | 31

Aver(AP, F) | 217 BPP | 31
Aver(DSPACE(S), F) , 80 <PPP 185
Aver(DSPACE(s), F) , 80 BPTIME(t) , 30
Aver(DTIME(T), F) , 79 BTP , 162
Aver(DTIME(t), F) , 79 S]], 11

297

298

AP, 33

Abr 239
EXP , 30
Vtally , 92
DSPACE(?) , 30
DTIME() , 30
E 30
E-comp , 102
Af 33

EH | 33

I, | 33
25,33
ESPACE , 30
na(z) , 275
FxQ(x) , 11
EXP-comp , 102
AP 33
EXPH , 33
;™ | 33
=733
FLAT , 51
VeQ(z) , 11
T, 27
fi(z,y) , 51
ilog(n) , 13
OETl‘Q(l‘) c11
OVOxQ(x) c11
712
IP-samp , 124
X\ 14

L-comp , 102
llog(n) , 13
log*n, 13
log(k) n,13
logn , 13
max{f g} , 16
m(S) , 25, 275
min{f, ¢} , 16

LIST OF NOTATION

<P , 35, 151
p =Py 76
wdv,bh3
pu=<"Py 75
fn , 50

HBHP, , 215
HBHP ., > 188
HBHP, e, > 203
uBHP , 161
uBpcp , 165
HUBTP , 162

ur o, 93

f>n 5 90

fi<n , 90

Hs,q ;221

N 12

NE | 30
NEXP , 30
NP , 30
NP%x , 276
NTIME(t) , 30
Q(f) 17

w(f) 17
Qur(z) , 25

<{ 155

A 15

P, 30

P¢ -samp , 140
P{-samp , 140
P;_.(X , 276
P-comp , 102
<P 69

=P 71

PHf , 239
Phcelp—comp , 115
P‘,;‘elp—comp , 115
II}; | 33

I} » , 239

LIST OF NOTATION

crh Tl

Qt 12

RT 12

RTe 12

PP 31

P(S), 11

PP.C | 266
Pry[Q(M(2))], 26
Pr[E], 18, 26
P-samp , 121
PSPACE | 30
Q, 12

RE | 31

R, 12

R> 12
Rej(M, A, x) , 22
RP , 31
RTIME(?) , 30
#P-comp , 131
¥ 14

¥t 14

xzn 14

e 15

¥roo 14

=P, 33

=PF 239
SPARSE | 15
C,15

Vstand 5 91
strict-P-comp , 103
strict-P-samp , 121
TALLY | 15
o(f) , 17

or 33

<L, 35,158

<t » 35

NMeQ(x) , 11
UP | 31

alb, 16

A® B, 15
AAB | 15
f+g,16
f:A—= B 15
f>9,16
fxg,16
L(M) , 20
L(M,A) , 22
M(x;s) , 26
n®M 17

o(f) 11

o(f) , 17
QM A z,y) , 22
Readyr () , 25
Sp , 14

SUPP | 89

Tr 51

zt 14

x~ 14

bl

bl

Tei, 15

x_i, 15

RBHP | 161
RBHP* | 199
RBHP 14; , 188
RBPCP | 165
RBTP , 162
skewRBHP* | 203

299

Index

Symbols

C-f(n)-close ... 41
C-complete 35
C-immune 46, 255
T ON p-AVerage ..ottt i 55, 65
T-dominate 68
T-space Turing machine........... 25
T-time Turing machine............. 25
T-time bounded 29
T-time machine 29
EXP-computable............. ... 30
E-computable 30
L-TATE oo 110
<g-complete 160
<g-descriptive......... 167
<g-hard.....o 160
P-computable 30
P-printable........ o 36
#P-computable on p-average................ 282
o-fieldo 17
e-distinguish ... oo 37
e-indistinguish ... oo o 38
ton p-average ... 55, 65
{ on average

with respect to {p>ntnen ..ol 56

with respect to {p<pnen . ..ol 56
t-dominate 68
t-space Turing machine 25
t-space computable.............. L 42
t-time Turing machine 25, 29
t-time bounded oL 29

300

t-time computable 42
1-dimensional martingale system 45
A
absolute value 12
ACCEPE .« 20, 22
accepting computation tree 23
acyCliC. .o 14
adaptive query ... 22
adjacent. 13

almost
2 11
EVETY ittt et 11
everywhere................ L 11
total ... 26
almost immune............ 258
almost polynomial time.................... ... 32
alphabet...... 14
alternation 23
ancestor....... ... i 14
associatiVe. 12
avbpp-tt-reducibility. ... L 185
average T-dominateol 69
average {-dominateo oL 69

average polynomial-time

many-one reducibility 152

Turing reducibility 158
average polynomially equal 71
average polynomially include.................. 71
average-polynomial domination 69
average-polynomial equivalence 69
avp-domination............... 69

INDEX

avp-equal o 71
avp-equivalence......... L 69
avp-m-reducibility 152
avp-T-reducibility, 158
avrp-domination............ 76
axiom of choice, the 12
B
benign algorithm scheme...................... 90
bijection...... ... 15
bijective 15
binomial coefficient 13
Boolean variable.............. 10

bounded on p-average

T -SPACE . oot 78
T-time........o 78
T-SPaACE . .ot 78
T-time. ..o 78
polynomial-space...................... ... 79
polynomial-time....................... ... 79

bounded-error probabilistic truth-table

average polynomial-time reducibility. 185

polynomial-time reducibility............. 185
bounded-error probability..................... 27
bounded:exponential-time..................... 25
bounded:linear-exponential-time 25
bounded:logarithmic-space.................... 25
bounded:polynomial-space 25
bounded:polynomial-time 25
bpp-tt-reducibility 185

C

candidate......... 247
cardinality............ 11
Cartesian product 11
characteristic function 11
child 14

301
k-addition.......... oL 53
complement........... 30
weak description 85
closure under
the existential operator.................. 264
the probabilistic operator 266
the unique existential operator 264
commutative 12
complement 15, 30, 80
complexity class 30
COMPOSIEION ...t 16
computable in
exponential-time 30
linear-exponential-time 30
polynomial time on p-average 80
polynomial-time.......................... 30
computation............. ... i 19
acceptingot 20
TEJECHING . oottt 20
compute with benign faults................... 90
concatenation.......... 14
COMCAVE . v ettt ettt ettt 16
Condition I.......... 137
Condition I" 139, 262
Condition IT.............. 144
Condition IT" 143
conditional expectation 27
conditional probability............ 18
configuration oo oo 19
acceptingot 19
existential L 23
halting. ... 19
TEO ¢t ettt 23
TEJECHING . oottt 19
universal 23
S ettt e 23
congruence modulon............ ... L. 16
connected 13

302

COMVEX . oo vttt et ettt ettt e e e 16
COVETIIIE .+ ottt e e e e e 12
critical configuration.............. 24
cycle oo 14
D
decreasing
strictly ... 16
weakly ... 16
degenerative......... 53
degree. 14
density ... 15
density function, probability 50
depth. ... 14
descendantl 14
difference. 11
disjoint union............ o 15
distribution........ 49
T-space samplable 121
T-time samplable 121
T-universal 134
EXP-computable....................... 102
E-computable............ 102
L-computable........................... 102
P-computable........................... 102
P-samplable 121
Pid-samplable........................... 140
#P-computable............ ... 131
t-space samplable 121
t-time samplable L. 121
average P-samplable 126
average polynomial-time samplable 126
conditional L 50
exponential-time computable............ 102
flat. ... 51, 169
invertibly P-samplable.................. 124

invertibly polynomial-time samplable....124

linear-exponential-time computable. 102

INDEX
logarithmic-space computable 102
pruniversal ... 134
polynomial-time computable 102
polynomial-time samplable........... ... 121
standard L 51
strictly P-computable................. .. 103
strictly P-samplable..................... 121
trivialo o 49
uniform ... 50
distributional problem 77
domain............... i 15
domination condition, 158
dyadic rational numbero o 15
E
edge. oo 13
edge set 13
element........ ... 11
empty set ... 11
error probability L 27
event 18
exp-honest. 16
expectation. 18
expected polynomial on p-average............. 53
expected value............ ... 18
exponential 13
exponentially bounded 16
F
formula.......... .. 10
G
generator. i i 121
OO o 62
graph
directed........ 13
undirected 13
H
Harmonic number 13

INDEX
hash function.................. 37
height ... 14
help. ..o 115
hierarchy
average polynomial-time 217
distributional polynomial-time 199
exponential-time 33
high ... 35
linear-exponential-time 33
low ..o 35
polynomial-time....................... ... 33
real polynomial-time 239
real polynomial-time alternation......... 239
honest
exponentially......... 16
polynomially, 16
I
incomparable.......... 193
INCTEASIIIG « o et ettt e e e 60
strictly ... 16
weakly 16
independent 18
mfnity ..o 12
INJECHIVE . .o 15
instantaneous description 19
INEEZET © ot 12
interpolant 221
intersection............. ... i 11
interval
closed.......... 12
half-open............. 12
OPEIL . oo ettt e 12
INVETSE TMAZE oo v vt eee e 15
isomorphism conjecture. 36
L
lambda notation................... 16

language. ... 14

leaf. ... 14
Lebesgue measurable 12
Lebesgue measure 12
Lebesgue outer measure 12
length of a string 14
length-increasing L. 16
length-preserving o .. 16
linear-exponential, 13
literal oo 10
logarithm....... o i 13
logarithmic on p-average...................... 55
logical connective........... o 10
logical constanto 10
M
TNAJOTIZE .« o ot vee et et 16
many-one closure 36
many-one complete 35
martingale...... i 45
measurable ... 12
member ... 11
monotone...........o o i 16, 60
N

natural number........ ... o 12
nearly-BPP 39
nearly-A} ..o 241
nearly-RP 39
nearly-XF ..o 241
negligible..... ... 16
node ... 13

external L 14

internal 14
node set 13
nonadaptive query............. ..., 22
nondeterministic choice............... 20
normalizing constant............ 50

304

O

OK partial order 200
OME-OTIC ¢« v vttt e e et e e et e e e et 15
one-sided error 27
one-way function L. 38

uniform strong oL 39

weakly ... 39
ONbO . ot 15
oracletape 22
ordered pair 11

P

p-l-reducibility 155
p-l-reducible 35
p-domination i 69
prequal ... 71
pequivalence i 69
p-honest. ... o 16
princludeo 71
p-invertible o 38
p-isomorphic 155
p-isomorphism......... 155
p-m-reducibility ... oo 151
p-m-reduction 152
PTIEASUTE « o vttt e ee e e e et e et 45
p-T-reducibility 158
PUTIOM . .o ettt e e e e 45
pairwise independent L. 18
parent 14
paring function........ oL 29
path. ... 13
polynomial complexity core.................. 255
polynomial domination 69
polynomial equivalence 69
polynomial on p-average...................... 55
polynomial on average

with respect to {p>ntnen ..ol 57

with respect to {p<pnen . ..ol 57

INDEX
polynomial-time
1-1 reducibility 35
isomorphism 36, 155
many-one reducibility 35, 151
many-one reduction 35
one-one reducibility 155
truth-table reducibility 35
Turing reducibility 35, 158
polynomial-time computable
SEQUETICE © oottt ettt e 42
polynomial-time many-one reduction. 152
polynomially f-rare.............. 110
polynomially bounded 16
polynomially equal 71
polynomially include.......................... 71
polynomially invertible 38
polynomially isomorphic................. 36, 155
polynomially sparse. 15
POSIEIVE ..t 16, 50
POWET SET . oottt e e et e e 11
Predecessor . ..o e 14
prefix. ... 15
probabilistic polynomial time 31
probability 18
probability (measure) space................... 18
probability measure. 18
discrete 18
Q
query list. ... 22
QUETY taPe. .ottt 22
R
random
function....... 27
IPUb .o 25
oracle. 275
seed . 25
fape . 25

INDEX

variable 18
random-input domain......................... 26
randomized

bounded halting problem............. ... 161

bounded Post correspondence problem .. 165

bounded tiling problem 162
randomized bounded halting problem 199
randomly average p-domination............... 76
randomly p-domination....................... 75
FANEE . ottt e 15
rare string with respect to (k,s, F)........... 108
rarity function......... ... o 26
rational number L 12
reachable. L 13
real Cunder F 236
real number 12
TECOGNIZE vttt et e i 22,27
recognize in

T-space ON fi-average..........c..ooeen... 78

T-time on p-average 79

t-space on p-average...................... 78

t-time on p-average 79
reflexive 11
TEJECt . ot 20
TOOb et 14
rp-domination 75
running time 20

S
safe ... 86
sample space 17
sampling machine 121
satisfiable 11
self-delimiting 44
self-reducible, Turing 201
self-reducing machine........ 201
semi-distribution oo 49
SO L 11

305
sibling 14
simple. ... 13
skew avbpp-tt-reducibility 176

skew bounded-error probabilistic

average polynomial-time truth-table reducibil-

By 176
polynomial-time truth-table reducibility . 176
skew bpp-tt-reducibility 176
space-constructible oo 20
SPATSE « o vttt e e e 15
sparse interpolation property 221
standard order....... L 14
SETING © et 14
binary ... 14
EMPLY . 14
finite. 15
infinite. ... 15
subgraph 13
subpath 13
subset 11
subtree. 14
succeed 45
SUCCESSOT « oottt et ettt 14
suitable 61
SUPPOTt. oo 18
SUPPOTTIVE . ..ottt 89
SUTJECHIVE . ..ot 15
symmetric difference........ ... 15
T

tally ..o 15
tame ... 89
tautology 11
BETIN oot 10
tile. oo 162
time-bounded complexity set.................. 44
time-constructible L 20

transducer. 23

306

transitive. ... i 11
tree
EMPLY .o 14
null ..o 14
rooted ... 14
truth assignmento oL 10
truth-table closure. 36
truth-table complete.......................... 35
Turing closure oo 36
Turing completeo. oL 35
Turing machine............ oL 18
T-space bounded 25
T-time bounded.............. 25
t-space bounded.......... L 25
t-time bounded........ oL 25
alternating............ il 23
clocked....... ... 21
deterministic................... ... 19
nondeterministic 20
oracle. 22
probabilistic 27
random ... 27
randomized 25
semi-deterministic........................ 24
unambiguous 20
two-sided error 27
U
unambiguous polynomial time 31
unbounded 16
UTHOTL . vttt et e e e e e e 11
unordered pair...........ooiiiiiiii 11
Vv
valid ... 11
VETEEX o oottt 13

INDEX
w
weakly
C-descriptive 84
p-invertible oo 39
WO .o 14

