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Abstract

We prove an unconditional lower bound that any extended formulation that achieves an
O(n1−ε) approximation for clique has size 2Ω(nε). There has been considerable recent interest
in proving lower bounds for extended formulations. Fiorini et al [14] proved that there is no
polynomial sized extended formulation for traveling salesman. Braun et al [7] proved that there
is no polynomial sized O(n1/2−ε)-approximate extended formulation for clique. Here we prove
an optimal and unconditional lower bound against extended formulations for clique that matches
H̊astad’s [16] celebrated hardness result. Interestingly, the techniques used to prove such lower
bounds have closely followed the progression of techniques used in communication complexity.
Here we develop an information theoretic framework to approach these questions, and we use it
to prove our main result.

Also we resolve a related question: How many bits of communication are needed to get ε-
advantage over random guessing for disjointness? Kalyanasundaram and Schnitger [19] proved
that a protocol that gets constant advantage requires Ω(n) bits of communication. This result in
conjunction with amplification implies that any protocol that gets ε-advantage requires Ω(ε2n)
bits of communication. Here we improve this bound to Ω(εn), which is optimal for any ε > 0.
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1 Introduction

1.1 Background

A typical goal in combinatorial optimization is to minimize a linear objective function over a
discrete set of solutions. A powerful change in perspective is obtained by representing these discrete
solutions as vectors and taking their convex hull to get instead a continuous optimization problem.
Thus to many discrete sets of combinatorial interest, we associate a polytope and through this
paradigm algorithms for linear programming and geometric insights about polytopes and facets
can be brought to bear to design new algorithms and approximation algorithms. Unfortunately the
natural encoding of a discrete optimization problem as a continuous one often has an exponential
number of facets. Nevertheless often it is possible to express a given polytope P as the linear
projection of a higher dimensional polytope Q and in so doing to drastically reduce the number of
facets needed. In this case, we call Q an extension of the polytope P (sometimes we will refer to Q
as an extended formulation instead). In general P and Q are related by

P = {x|(x, y) ∈ Q}

and we can draw an analogy with the more familiar case of Boolean formulas: every Boolean
formula can be expressed without using quantifiers, but often a Boolean formula can be expressed
much more succinctly using quantifiers. Indeed, in many well-known examples in combinatorial
optimization, particular polytopes admit a much more compact description as the linear projection
of a higher dimensional polytope. We will refer to the minimum number of facets of the higher
dimensional polytope as the extension complexity of P .

For example, the permutahedron is the convex hull of permutations of the vector {1, 2, 3, ..., n}.
Rado gave an exact characterization of this polytope using an exponential number of inequalities
but omitting even a single one results in a polytope that strictly contains the permutahedron. How-
ever, if we represent each permutation instead as a permutation matrix then the permutahedron
can be recovered from a linear projection and the Birkhoff-von Neumann theorem gives a set of 2n2

linear constraints (that the matrix be doubly-stochastic) that exactly characterize the convex hull
of permutation matrices. Another well-known example is the spanning tree polytope: Edmonds
gave an exact characterization of this polytope using an exponential number of facets, and Martin
[23] gave a compact extended formulation using O(n3) constraints. In fact, there are even gen-
eral principles by which one can obtain a compact extended formulation: If the separation oracle
for a linear programming problem itself relies on linear programming, then one can often give a
polynomial-sized extended formulation. Also, dynamic programming algorithms typically lead to
an extended formulation for the associated polytope whose size is roughly the space used by the
algorithm. Lastly, Balas [4] proved that polytopes that admit a compact extended formulation are
closed under disjunction.

There has been remarkable success in characterizing the facets of certain polytopes that arise in
combinatorial optimization. In some cases, this can lead to faster algorithms (that avoid using the
Ellipsoid algorithm). And yet another motivation is that having a convenient representation of a
given polytope can make it easier to prove a statement about purely discrete objects. (For example,
the T -join polytope and the spanning tree polytope play an important role in recent approximation
algorithms for graphic TSP [25] and asymmetric TSP [3] respectively).

Yet there are many polytopes that we do not expect to have a simple description. For example,
if we could find a polynomial-sized extended formulation expressing the convex hull of all traveling
salesman tours, we could then use any one of a number of efficient algorithms known for linear
programming to solve the traveling salesman problem in polynomial time. So certainly, believers in
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NP ( P\poly1 do not believe such an extended formulation exists (and conversely, if you believe
that P = NP , it is quite reasonable to believe that an algorithm for 3-SAT would involve linear
programming). Remarkably, there are tools for understanding the extension complexity of a given
polytope (i.e. for proving that there is no compact extended formulation). To describe these tools,
we must introduce some notation:

In a ground breaking work, Yannakakis defined the notion of a slack matrix. Given a polytope
P with v vertices and f facets, the slack matrix is a v × f entry-wise nonnegative matrix whose
(i, j)th entry is bj−〈aj , vi〉 where vi is the ith vertex of P and 〈aj , x〉 ≤ bj is the jth constraint. This
matrix provides a tight connection between two combinatorial concepts - the first is the extension
complexity as defined earlier, and the second is the nonnegative rank: The nonnegative rank of a
matrixM is the smallest r so thatM can be written asM =

∑r
i=1Ai where eachAi is a nonnegative,

rank one matrix. We will use rank+(M) to denote the nonnegative rank of M . This concept plays
an important role in various methods in machine learning (see [2] and [24]). And Yannakakis
proved that the nonnegative rank of the slack matrix is precisely the extension complexity (of
a given polytope P ). This result is often referred to as Yannakakis’s factorization theorem and
exactly characterizes one important combinatorial parameter – the extension complexity – in terms
of another – the nonnegative rank.

1.2 Extended Formulations and Communication Complexity

So if there are polytopes that we do not expect to have a simple description, how might we go about
proving that the nonnegative rank of the slack matrix is indeed superpolynomial? The increasingly
sophisticated techniques used to prove strong lower bounds on the nonnegative rank have followed
in parallel with the techniques used to prove lower bounds on communication complexity! In order
to compare the various works that prove lower bounds on nonnegative rank (and the technique
that each one uses) it is helpful to consider each work as providing an answer to the question:

Question 1.1. If a matrix M has small nonnegative rank, what does that imply?

Then each work uses a particular consequence of small nonnegative rank to derive a contradiction
(with some communication complexity result).

• [14]: If M has small nonnegative rank, then a nonnegative matrix factorization M =
∑r

i=1Ai
gives a covering of the non-zero entries of M by combinatorial rectangles (the support of
each Ai). This in turn contradicts the lower bounds for the nondeterministic communication
complexity of unique disjointness (when M is chosen to be the correlation polytope).

Fiorini et al [14] used this connection to prove that there is no polynomial-sized extended
formulation for the traveling salesman polytope. An important point is that this result (and others
in this line) would follow immediately from P 6= NP , but in fact this result holds without any
assumption!

• [7]: If M has small nonnegative rank, then there is a large rectangle in M with discrepancy
bounded away from zero and this contradicts Razborov’s rectangle corruption lemma.

Braun et al [7] use this to prove that any extended formulation for clique that achieves an
O(n1/2−ε) approximation has size at least 2n

ε
. What Braun et al [7] need is a technique to prove

1Note that even if a polynomial-sized extended formulation did exist, it is not necessarily easy to compute what
it is. So in general the existence of a polynomial-sized extended formulation would only imply that if we are given
advice about what it is, we could solve NP -hard problems.
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lower bounds on the nonnegative rank of matrices that have no zero entries, and accomplish this
through a generalization of Razborov’s rectangle corruption lemma (for disjointness).

Interestingly, the result of [7] falls short of the known NP -hardness results for clique. If P 6=
NP , then the celebrated result of H̊astad [16] and later Khot [21] and Zuckerman [33] directly
imply that any extended formulation for clique that achieves an O(n1−ε) approximation has super-
polynomial size. Can we prove an analogue of this result without the assumption that P 6= NP?

In this paper, we give a new method to lower bound nonnegative rank.

• [this work]: If M has small nonnegative rank, then we can use the factorization M =
∑

iAi
to generate a uniform sample from S – the set of pairs of disjoint strings – using too few bits
of entropy.

This new method allows us to draw on some of the most powerful tools in communication
complexity – information complexity. Information complexity has been recently shown [20] to
contain as a sub-case many other lower bound techniques for two-player communication complexity.
This is the first time that tools from information complexity have been used in the context of
nonnegative rank, and we believe that this new method for proving lower bounds will be useful in
other applications.

Our main theorem is (see Section 3 for background information on the polytope associated with
clique):

Theorem 1.2. Any extended formulation for clique that achieves an s+ 1-approximation has size
at least 2Ω( n

s+1
).

Thus any extended formulation that achieves an O(n1−ε)-approximation must have size at least
2Ω(nε) and our lower bound for extended formulations matches the celebrated hardness results of
H̊astad [16]. In fact, the best known approximation algorithm for clique is due to Feige [13] and
achieves an approximation ratio of O(n(log log n)2/(log n)3) and our results even imply that any

extended formulation that achieves this bound has size at least Ω(nΩ̃((logn)2)). This is the first
example that we know of in which there is a polynomial time approximation algorithm and yet
provably there is no polynomial-sized extended formulation that achieves the same approximation
ratio! Although we remark that it is widely believed that there is no polynomial-sized extended
formulation 2 for matching even though there is an efficient algorithm3.

1.3 Disjointness

In order to explain our main technical contribution (even at a heuristic level) it helps to consider
the communication complexity of disjointness. The techniques of Braun et al [7] break down at
n1/2 precisely because there is a gap in our understanding of the communication complexity of
disjointness!

In this problem, Alice and Bob are given a, b ∈ {0, 1}n and their goal is to determine whether
or not these two strings are disjoint, that is, whether there is an index i ∈ [n] such that ai =

2Yannakakis [31] proved that there is no polynomial-sized symmetric extended formulation for matching.
3There is a combinatorial algorithm for this problem. And in fact there is also a polynomial time algorithm

based on a linear program: even though the characterization of the matching polytope given by Edmonds [12] has
exponential size, there is a polynomial time separation oracle for these constraints [26] and hence matching with
general weights can be solved by the ellipsoid algorithm. This illustrates a subtlety in not only our lower bounds
for extended formulationss but all such works; these lower bounds show that there is no polynomial-sized extended
formulation, but it still could be the case that there is an exponential-sized extended formulation that has an efficient
separation oracle.
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bi = 1. Kalyanasundaram and Schnitger [19] were the first to prove an Ω(n) lower bound on the
communication complexity of any protocol that gets a constant advantage. In fact any linear lower
bound in conjunction with amplification implies that any protocol that gets ε-advantage requires
Ω(ε2n) bits of communication4. Since then a number of simpler proofs have been given. Razborov
[27] proved an elegant rectangle corruption lemma which yields a linear lower bound. Perhaps the
most intuitive lower bound was given in the ground breaking work of Bar-Yossef et al [6] which
used information theoretic arguments to prove that an protocol that gets advantage ε over random
guessing must communicate at least Ω(ε2n) bits. However, this does not quite settle the asymptotic
complexity of disjointness.

Question 1.3. Is there a protocol that gets advantage 1/
√
n for disjointness and uses a subpoly-

nomial amount of communication?

There is a simple to state technical issue that arises in these proofs, and makes Ω(ε2n) a barrier
for these approaches: For example, the work of Bar-Yossef et al [6] works by reducing an n-bit
communication problem – disjointness – to a one-bit problem – an AND. Indeed, any lower bound
(say, γ) on the information revealed to the participants (about the inputs to Alice and Bob) based
on the transcript implies a γn lower bound on the communication complexity of the n-bit problem.
Yet, there is a protocol for AND that gets advantage ε and reveals only O(ε2) bits of information
(see Lemma 2.1)!

So in a sense, the n-bit problem cannot be reduced to n instances of a one-bit problem! Yet
here we are able to circumvent this issue. Instead of considering the advantage of a protocol, we
consider a more nuanced quantity – a matrix that describes the probability of outputting a one for
each pair of input bits for Alice and Bob. Suppose this matrix is:

N =

[
N00, N01

N10, N11

]
Then the advantage of the protocol is at least γ if and only if N00, N10, N01 ≥ 1/2 + γ and

N11 ≤ 1/2 − γ. Indeed, there is a protocol for AND that gets N00 = 1/2 + 5ε + Θ(ε2), N10 =
N01 = 1/2 + ε+ Θ(ε2), N11 = 1/2− 3ε+ Θ(ε2), and reveals O(ε2) bits of information. Another way
to think about this is that Hellinger distance (see [6] for the details) implies that the information
revealed is at least (N00 −N11)2. Our main insight is:

• The information revealed is at least Ω(N10 +N01 −N00 −N11).

• This does not directly imply a better than Ω(ε2) lower bound for one-bit AND (afterall, how
could it since there is such a protocol?) but nevertheless any protocol for disjointness can be
“smoothed” so that the communication complexity does not increase and yet, in expectation
N00 = N10 = N01.

To put it another way, after this “smoothing” operation changing a pair of bits (aj , bj) from
(say) (0, 0) to (1, 0) will not change the probability that the protocol outputs one. Hence the one-
bit AND problems that we get by considering just a single pair of bits (aj , bj) is not an arbitrary
problem where the goal is to get advantage ε in any way possible but rather to do so in such a way
that the probability of outputting a one is the same, independent of whether the input is (0, 0),
(0, 1) or (1, 0). Yet for protocols that meet this extra restriction, getting an advantage of ε implies

4If a protocol gets ε-advantage and requires o(ε2n) bits of communication, then we can run the protocol O(1/ε2)
times and take the majority vote to get constant advantage, but this would violate the linear lower bound for
disjointness.
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that at least Ω(ε) bits are revealed. Hence using the direct sum results for information complexity,
we obtain an Ω(εn) lower bound for disjointness, thus resolving the asymptotic complexity of
disjointness for any ε > 0 (not just ε = Ω(1)).

How does this relate to nonnegative rank? As we mentioned, Braun et al [7] gave an interesting
generalization of Yannakakis’s factorization theorem to the case of approximate extended formu-
lations. And it turns out that if you want to prove a lower bound on the extension complexity of
any polytope that approximates P within a multiplicative factor of C, then this quantity is equal
to the nonnegative rank of M + (C − 1)J , where M is the slack matrix of P and J is the all ones
matrix. (And indeed nonnegative rank lower bounds are proven using communication complexity
lower bounds for disjointness). Then we can think of the factors Ai (in M + (C − 1)J =

∑
iAi)

intuitively as the “output” matrix N in the preceding discussion, and hence proving a nonnegative
rank lower bound for C = n1−ε is akin to proving a lower bound for disjointness when the target
advantage ε ≈ 1/C. This is precisely why the proof of [7] breaks down for C =

√
n - because it was

not known whether or not getting advantage 1/
√
n for disjointness requires a polynomial amount

of communication!
However, lower bounds for disjointness do not immediately yield lower bounds for nonnegative

rank. Intuitively, many techniques in communication complexity aim to show that a player must
reveal too much information about his input in order to solve the communication problem. Yet in
the setting of nonnegative rank5, a player can reveal a nonnegative real value (which can contain a
great deal of information about his input).

2 A New Lower Bound for Disjointness

Here we prove that any protocol for disjointness that gets advantage ε over random guessing must
communicate at least Ω(εn) bits between the two players. This improves the Ω(ε2n) lower bound
due to Razborov [27] and Bar-Yossef et al [6]. The known lower bounds for disjointness were optimal
only for ε = Ω(1) – it was a priori possible that a protocol that gets advantage 1/

√
n requires as

much as Ω(
√
n) communication or as little as O(1) communication. Our lower bound completely

resolves the asymptotic complexity of disjointness for any ε > 0.
The standard (information complexity) approach for proving lower bounds is to reduce an n-bit

problem to a one-bit problem (which in the case of disjoints is a one-bit AND). The difficulty is
that there is indeed a protocol that gets advantage ε for one-bit AND, but reveals O(ε2) bits of
information to an observer:

Lemma 2.1. There is a communication protocol for one-bit AND that gets advantage ε over random
guessing but reveals O(ε2) bits of information to an observer.

Proof. We first describe a simpler protocol that almost works: Alice and Bob behave identically,
and on input one Alice sends a one with probability 1/2 + 4ε and otherwise sends a zero. On
input zero Alice sends a zero with probability 1/2 + 4ε and otherwise sends a one. (Bob behaves
identically). If both players send a one, the protocol outputs one. If both players send a zero, the
protocol outputs zero. Otherwise the protocol flips a coin and outputs either one or zero with equal
probability. (This is not quite the protocol in the lemma, but a simple modification will complete
the proof). The probability that the protocol outputs a zero, for each pair of inputs, is given by
the matrix:

N =

[
1/2 + 4ε, 1/2
1/2, 1/2− 4ε

]
5Here, one player is given a row and one player is given a column, and their goal is to compute the value of

corresponding entry in expectation, using only nonnegative values.
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This protocol Γ does not have an advantage over random guessing for all inputs, but we can obtain
one that does with a simple modification. The final protocol Π will run Γ with probability 1− 2ε,
and with probability 2ε will output zero. Then Π has advantage ε and a simple calculation shows
that it reveals O(ε2) bits of information to an observer.

Notice that the probability Π outputs zero is different when the input to Alice and Bob are 0
and 0 or instead 1 and 0 respectively (even though the answer in both of these cases is the same).
The standard approach to proving lower bounds (though information complexity) is to use a n-bit
protocol to get a one-bit protocol. In fact, we can “symmetrize” any n-bit protocol for disjointness
in such a way that the one-bit protocol we obtain has the same probability of outputting zero
whether the input to Alice and Bob is 0 and 0, 1 and 0 or 0 and 1 respectively. Our main insight is
that this one bit communication problem (with an additional constraint that the top-left, top-right
and bottom-left values of N be the same) must reveal Ω(ε) bits of information.

Theorem 2.2. Any protocol for disjointness that gets advantage ε over random guessing must
reveal at least Ω(εn) bits of information to the participants.

Consider a protocol Γ. We will consider the information complexity of Γ measured with respect
to a particular distribution on inputs: We will group the n bits into blocks of size exactly three,
and for each pair of three bits we will generate aj , bj ∈ {0, 1}3 uniformly at random from the pairs
of length three strings where aj and bj have exactly one 1 and two 0’s, and aj and bj are disjoint.
Thus the location of the 1 must be different in a and b, and therefore there are six such pairs.

Given the protocol Γ we will construct a new protocol Π which takes each block of size three
and applies a random element π of S3 to both aj and bj . This does not change whether or not aj
or bj are disjoint, and furthermore has the effect of “smoothing” the protocol Γ: For any pair aj , bj
(that are disjoint), the probability that Π outputs one is exactly the same. We will abuse notation
and let Bj = i be the event that the only one in bj is the ith bit in the block.

We will be interested in I(A; Π|B) + I(B; Π|A). The following is well-known:

Fact 2.3. 1
2

[∑
j I(Aj ; Π|A1...j−1, Bj...n) + I(Bj ; Π|A1...j , Bj+1...n)

]
≤ H(Π)

Proof. Using the chain rule for mutual information (see e.g. [8]) we have

1

2

[∑
j

I(Aj ; Π|A1...j−1, B1...n) + I(Bj ; Π|A1...n, Bj+1...n)
]
≤ 1

2

[
I(A; Π|B) + I(B; Π|A)

]
≤ H(Π)

Moreover we will use the following inequality for mutual information (again, see [8]): I(W ;X|Y ) ≤
I(W ;X|Y Z) if I(X;Z|Y ) = 0. We can apply the inequality above for example by setting W = Π,
X = Aj , Y = A1...j−1Bj...n and Z = B1...j−1. Then it is easy to see that I(X;Z|Y ) = 0 in this case,
and we conclude:

I(Aj ; Π|A1...j−1, Bj...n) ≤ I(Aj ; Π|A1...j−1, B1...n)

Similarly we can set W = Π, X = Bj , Y = A1...jBj+1...n and Z = Aj+1...n and again we have
I(X;Z|Y ) = 0 and so

I(Bj ; Π|A1...j , Bj+1...n) ≤ I(Bj ; Π|A1...n, Bj+1...n)

and this completes the proof.
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Let Cj = A1...j−1, Bj+1...n. Then we can write I(Aj ; Π|A1...j−1Bj..n) as:∑
c,i

∑
t

Pr[Π = t, Cj = c,Bj = i]D(Aj |Cj = c,Bj = i,Π = t‖Aj |Cj = c,Bj = i),

where D(•‖•) is the KL-divergence of the two distributions – see [11] for more background on
information theory. Note that Aj conditioned on Bj = i is uniform on the set {1, 2, 3} − {i}.

Let us choose Cj = A1...j−1, Bj+1...n according to the distribution on inputs. Then, I(Aj ; Π|Cj , Bj)+
I(Bj ; Π|Cj , Aj) =

∑
t E[adv(t, Cj)] where the expectation is over Cj and adv(t, Cj) defined as:

adv(t, Cj) =
∑

i=1,2,3

Pr[Π = t, Bj = i|Cj ]D(Aj |Bj = i,Π = t, Cj‖Aj |Bj = i, Cj)

+ Pr[Π = t, Aj = i|Cj ]D(Bj |Aj = i,Π = t, Cj‖Bj |Aj = i, Cj).

Definition 2.4. Let IC(a, b, c) = (ab+ ac)D(Bab/(ab+ac)‖B1/2).

Lemma 2.5. IC(α0, β0, β1) + IC(β0, α0, α1) ≥ Ω(α0β1 + α1β0 − α0β0 − α1β1)

Proof. We have that D(Bα0β0/(α0β0+α0β1)‖B1/2) = Ω
(

(β0−β1)2

(β0+β1)2

)
and hence it suffices to show that:

2α0(β0 − β1)2

β0 + β1
+

2β0(α0 − α1)2

α0 + α1
≥ α0β1 + α1β0 − α0β0 − α1β1.

We multiply both sides by (α0 + α1)(β0 + β1) and the left hand side is:

4α2
0β

2
0 + 2α2

0β
2
1 + 2α2

1β
2
0 + 2α0α1β

2
1 + 2α2

1β0β1 − 2α2
0β0β1 − 2α0α1β

2
0 − 8α0α1β0β1.

The right hand side is:

(α0 + α1)(α0 − α1)(β1 − β0)(β0 + β1) = α2
0β

2
1 + α2

1β
2
0 − α2

0β
2
0 − α2

1β
2
1

and subtracting the right hand side from the left hand side we get:

(α2
0β

2
0+α2

0β
2
1−2α2

0β0β1)+(α2
0β

2
0+α2

1β
2
0−2α0α1β

2
0)+(3α2

0β
2
0+α2

1β
2
1+2α0α1β

2
1+2α2

1β0β1−8α0α1β0β1)

which is at least zero, using the weighted AMGM inequality.

We will consider a fixed block j, and the matrix N t(Cj) that gives the probability of Π = t
(where the output is one) for each pair of inputs for Alice and Bob conditioned on the parts of their
input Cj that we have already fixed. (Note that the expectation here is taken over the randomness
of the protocol and the remaining bits in the input to Alice and Bob). To simplify notation we will
abbreviate N t(Cj) as N t. Let us write:

N t =

 N t
11, N

t
12, N

t
13

N t
21, N

t
22, N

t
23

N t
31, N

t
32, N

t
33


Note that N t is a nonnegative. Since Π is a protocol and Alice and Bob can privately sample their
remaining bits conditioned on Cj , Aj and Bj we conclude that N t is a rank one matrix6. So we
can write N t = [a1, a2, a3][b1, b2, b3]T . In particular bi is the probability over B1...j−1 that the string
B = B1...j−1, Bj = i, Bj+1...n is in the rectangle for Π = t.

6We would like to thank Thomas Watson for pointing out an oversight in our earlier version. We had asserted that
N t is rank one, but had neglected to condition on Cj as we had intended to do. Indeed, this is the same conditioning
trick that we make use of in our later applications to extended formulations, and is by now standard in information
complexity (see e.g. [9]).

7



Lemma 2.6. adv(t, Cj) = Ω(
∑

i 6=i′ N
t
ii′(Cj)− 2

∑
i=1,2,3N

t
ii(Cj))

Proof. We will prove this lemma by repeatedly applying Lemma 2.5. For example, set α0 = a3,
α1 = a1 and β0 = b2, β1 = b1. We can symbolically think of this as “covering” a set of entries in
the matrix N t:  α1β1, α1β0,−

−, −, −
α0β1, α0β0,−


where we have chosen α1 and β1 so that the corresponding entry in N t is on the diagonal. The
term IC(α0, β0, β1) equals Pr[Π = t|Aj = 3, Cj ]D(Bj |Aj = 3,Π = t, Cj‖Bj |Aj = 3, Cj) and we
can think of this as the bottom row in this covering. Similarly, the term IC(β0, α0, α1) equals
Pr[Π = t|Bj = 2, Cj ]D(Aj |Bj = 2,Π = t, Cj‖Aj |Bj = 2, Cj) and we can think of this as the
middle column in the covering. And applying Lemma 2.5 has the effect of adding N t

1,2 and N t
3,1

and subtracting N t
1,1 and N t

3,2. We can apply Lemma 2.5 to the following covering scheme: ∗, ∗,−−,−,−
∗, ∗,−

 ,
 −, ∗, ∗−, ∗, ∗
−,−,−

 ,
 −, ∗, ∗−,−,−
−, ∗, ∗

 ,
 ∗,−, ∗∗,−, ∗
−,−,−

 ,
 −,−,−∗, ∗,−
∗, ∗,−

 ,
 −,−,−∗,−, ∗
∗,−, ∗


always choosing α1 and β1 so that the corresponding entry in N t is on the diagonal. The left hand
side double-counts each term in adv(t, Cj) and the right hand side is

∑
i 6=i′ N

t
ii′−2

∑
i=1,2,3N

t
ii and

this completes the proof.

We can now complete the proof of the main theorem in this section.

Proof. If we sum
∑

i 6=i′ N
t
ii′(Cj) − 2

∑
i=1,2,3N

t
ii(Cj) over all transcripts t for which the output

of Π is one and take the expectation over Cj , the value is Ω(ε) by the assumption that (1) the
advantage of the protocol is ε and (2) for any pair of disjoint aj , bj where aj and bj each have
exactly one one, the probability that the protocol outputs one is the same. Hence we conclude
that I(Aj ; Π|Bj , Cj) + I(Bj ; Π|Aj , Cj) = Ω(ε) for each block j, and combining this with Fact 2.3
we conclude that H(Π) = Ω(εn) since the input restricted to each block is mutually independent of
the other blocks. And so the communication complexity of any protocol for disjointness that gets
advantage ε is Ω(εn).

3 Extended Formulations for Clique

Recall that the nonnegative rank is defined as follows:

Definition 3.1. The nonnegative rank rank+(M) of a nonnegative matrix M is the smallest r so
that M can be written as M =

∑r
i=1Mi where each Mi is a rank-one nonnegative matrix.

The nonnegative rank plays a central role in lower bounds for extended formulations, and here
we will explain this connection in more detail. The central polytope in the recent breakthrough
lower bounds of Fiorini et al [14] and of Braun et al [7] is the correlation polytope.

Definition 3.2. P = COR(n) = conv{bbT |b ∈ {0, 1}n}

Recall that the smallest extended formulation (for a given polytope) is exactly the nonnegative
rank of the slack matrix. However one can prove lower bounds on extended formulations (for a
given polytope) by considering only a subset of the constraints. This corresponds to proving a
nonnegative rank lower bound on a submatrix of the full slack matrix. Fiorini et al [14] identified
a set of constraints on the correlation polytope that are enough to prove strong lower bounds:
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Lemma 3.3. [14] For any a ∈ {0, 1}n, the inequality 〈2diag(a)− aaT , x〉 ≤ 1 is valid for COR(n)
and the slack of a vertex x = bbT is (1− aT b)2.

Hence these constraints define a polytope Q for which P ⊂ Q. In fact, Fiorini et al [14] prove
that the extension complexity of COR(n) is 2Ω(n) by considering only pairs of vertices bbT and
constraints (for a ∈ {0, 1}n) such that bTa ∈ {0, 1}. Whether or not a vertex is on the facet is
exactly the unique disjointness problem. An important definition from [7] (and a generalization
from the one in [31]) is:

Definition 3.4. [7] Let P ⊂ Q, then the slack matrix SM(P,Q) is a nonnegative matrix where
each row corresponds to a vertex vi in P and a column corresponds to a constraint 〈aj , x〉 ≤ bj in
Q and the corresponding entry in SM(P,Q) is bj − 〈aj , vi〉.

Braun et al [7] gave a generalization of Yannakakis’s factorization theorem [31]. This is the
connection between nonnegative rank and extension complexity (that is relevant when our goal is
to show lower bounds for approximate extended formulations) that we will use here:

Theorem 3.5. [7] The minimum extension complexity of any polytope P ⊂ K ⊂ Q is exactly the
nonnegative rank of SM(P,Q).

In fact, the correlation polytope naturally defines a linear encoding for clique: Given a graph
G on n nodes, one can choose an objective function w(G) (which is an n × n matrix that is the
direction we are trying to maximize over COR(n)) where w(G) is one on each diagonal entry and
is zero on i, j and j, i if (i, j) is an edge, and otherwise is −1. The maximum value of w(G) over
COR(n) is exactly the maximum clique value of G. (And in fact, these directions are admissible
in the sense of [7] in that any lower bounds for the nonnegative rank of SM(P,Q) imply that any
extended formulation for this linear encoding is large).

What about approximate extended formulations for clique? Clearly, we would like to prove
lower bounds on the nonnegative rank of SM(P, (s+ 1)Q) in order to show that there is no small
extended formulation (for clique) that has an approximation factor of s. In this case, the slack
matrix SM(P, (s+ 1)Q) has a particularly simple structure: Restricted to the pairs of strings that
have at most one intersection, it is SM(P,Q) + sJ where J is the all ones matrix! Hence, what we
need to prove lower bounds on approximate extended formulations of clique is just to prove lower
bounds for the nonnegative rank of the slack matrix (generated by the correlation polytope and the
constraints defined above) when a large value (say n1−ε) is added to each entry that corresponds
to a pair of strings with at most one intersection.

4 A New Method to Lower Bound Nonnegative Rank

Let M be a 2n × 2n nonnegative matrix. We will associate rows and columns of M with strings
a, b ∈ {0, 1}n and furthermore if aT b ∈ {0, 1} then Ma,b = s + 1 − aT b. If s = 0, Fiorini et al
[14] proved that rank+(M) ≥ 2Ω(n). If s = O(nβ) with β < 1/2, Braun et al [7] proved that

rank+(M) ≥ 2Ω(n1−2β). Here we prove that even if s = n1−ε, then rank+(M) ≥ 2Ω(nε).
In fact, we will prove such a lower bound by constructing a sampling procedure (from a non-

negative matrix factorization of M) and deriving an entropy-theoretic contradiction. Suppose that
f1, f2, ...fr and g1, g2, ...gr are nonnegative functions defined on {0, 1}n and that furthermore for
each a, b ∈ {0, 1}n with aT b ∈ {0, 1} we have

r∑
i=1

fi(a)gi(b) = s+ 1− aT b
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Algorithm 1. Generate, Output: (a, b)

1. Choose an index i ∈ [r] from γ

2. Choose (a, b) ∈ S from µi

3. Output (a, b)

Definition 4.1. Let S = {a, b|aT b = 0} ⊂ {0, 1}n × {0, 1}n.

We will next define a sampling procedure (based on fi and gi) that generates a uniformly
random pair of strings (a, b) ∈ S:

Definition 4.2. Let Wi =
∑

(a,b)∈S fi(a)gi(b). Let γ(i) = Wi∑r
i=1Wi

and let µi(a, b) = fi(a)gi(b)
Wi

for

all (a, b) ∈ S and µi = 0 elsewhere.

Claim 4.3. The procedure Generate samples a (a, b) ∈ S uniformly at random.

Proof. The probability of Generate outputting (a, b) ∈ S is

r∑
i=1

γ(i)µi(a, b) =
r∑
i=1

Wi∑r
i′=1Wi′

fi(a)gi(b)

Wi
=

s+ 1∑r
i′=1Wi′

Throughout this section, we will let A1, A2, ...An and B1, B2, ...Bn denote the random variables
associated with the output (a, b) and additionally we will let I denote the random variable associated
with the intermediate random variable i in Generate.

Corollary 4.4. H(A1...n, B1...n) = log |S| = (log 3)n and nH(Aj) = H(A1...n) = H(B1...n) =
nH(Bj) = nH(1/3)

We proceed to invoke the chain rule (and we will analyze each term using properties of fi and gi):

H(A1...n, B1...n) ≤ H(A1...n, B1...n, I) = H(I) +H(A1...n, B1...n|I)

= H(I) +
1

2

[
H(B1...n|I) +

n∑
j=1

H(Aj |A1...j−1, B1...n, I)
]

+
1

2

[
H(A1...n|I) +

n∑
j=1

H(Bj |A1...n, Bj+1...n, I)
]

≤ log r + nH(1/3) +
1

2

n∑
j=1

H(Aj |A1...j−1, Bj...n, I) +
1

2

n∑
j=1

H(Bj |A1...j , Bj+1...n, I)

where in the last inequality we have used the fact that H(X|Y ) ≤ H(X).

Definition 4.5. Let advAj (i) = 1−H(Aj |A1...j−1, Bj = 0, Bj+1...n, I = i) and similarly let advBj (i) =
1−H(Bj |A1...j−1, Aj = 0, Bj+1...n, I = i).

Note that if Bj = 1, then Aj = 0 and the entropy of Aj (conditioned on the given events) is
zero. We will use this in conjunction with the following fact about conditional entropy:
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Fact 4.6. H(W |X = x, Y, Z) =
∑

z Pr[Z = z|X = x]H(W |X = x, Y, Z = z)

Then:

H(A1...n, B1...n) ≤ log r + nH(1/3) +
1

2

n∑
j=1

E
I

[H(Aj |A1...j−1, Bj...n, I = i)]

+
1

2

n∑
j=1

E
I

[H(Bj |A1...j , Bj+1...n, I = i)]

= log r + nH(1/3) +
1

2

n∑
j=1

E
I

[Pr[Bj = 0|I = i]H(Aj |A1...j−1, Bj = 0, Bj+1...n, I = i)]

+
1

2

n∑
j=1

E
I

[Pr[Aj = 0|I = i]H(Bj |A1...j−1, Aj = 0, Bj+1...n, I = i)]

= log r + nH(1/3) +
1

2

n∑
j=1

E
I

[Pr[Bj = 0|I = i](1− advAj (i))]

+
1

2

n∑
j=1

E
I

[Pr[Aj = 0|I = i](1− advBj (i))]

= log r + nH(1/3) + 2n/3− 1

2

n∑
j=1

E
I

[Pr[Bj = 0|I = i]advAj (i)]

−1

2

n∑
j=1

E
I

[Pr[Aj = 0|I = i]advBj (i)]

Note that H(1/3) + 2/3 = log 3.

Definition 4.7. Let Li,j = advAj (i)Pr[Bj = 0|I = i].

It will be easier to analyze advAj (i) directly rather than the quantity Li,j and the following

lemma will provide the means for translating lower bounds on advAj (i) into lower bounds on Li,j :

Lemma 4.8. Suppose for all j ∈ [n],EI [adv
A
j (i)] ≥ 1

s , then EI [
∑n

j=1 Li,j ] = Ω(ns )−O(log r).

Proof. Since advAj (i) ≤ 1, we get:

E
I

 n∑
j=1

Li,j

 ≥ 1

4
E
I

 n∑
j=1

advAj (i)

− 1

4
E
I

[
|{j|Pr[Bj = 0|I = i] ≤ 1

4
}|
]

≥ n

4s
− 1

4
E
I

[
|{j|Pr[Bj = 0|I = i] ≤ 1

4
}|
]

Our immediate goal is to bound EI [|{j|Pr[Bj = 0|I = i] ≤ 1
4}|]. To accomplish this, we will

use the following claim:

Claim 4.9. H(Bj |I) ≤ H(1/3)− Ω(PrI [Pr[Bj = 0|I = i] < 1
4 ])

Proof.
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Fact 4.10. H(c+ x) ≤ H(c) +H ′(c)x− Ω(x2)

Hence:

H(Bj |I) = E
I

[H(Bj |I = i)]

≤ H(2/3) +H ′(2/3) E
I

[Pr[Bj = 0|I = i]− 2/3]− Ω(E
I

[(Pr[Bj = 0|I = i]− 2/3)2])

= H(1/3)− Ω(E
I

[(Pr[Bj = 0|I = i]− 2/3)2])

≤ H(1/3)− Ω(PrI [Pr[Bj = 0|I = i] <
1

4
)

Next, we can use this claim to prove Lemma 4.8:

H(B1...n)−H(I) = H(B1...n|I) ≤
n∑
j=1

H(Bj |I)

≤
n∑
j=1

(
H(Bj)− Ω(PrI [Pr[Bj = 0|I = i] <

1

4
])

)
= nH(1/3)− Ω(E

I
[|{j|Pr[Bj = 0|I = i] ≤ 1

4
}|])

However, H(B1...n) = nH(1/3) and so EI [|{j|Pr[Bj = 0|I = i] ≤ 1
4}|] = O(H(I)) = O(log r).

An analogous lemma holds with A and B exchanged. We will prove the following lemma in the
next section:

Lemma 4.11 (Main). For all j ∈ [n],EI [adv
A
j (i) + advBj (i)] ≥ Ω( 1

s+1)

In fact in the exact case (s = 0), it is much easier to prove an Ω(1) lower bound (see the discussion
after Lemma 5.10). We can now put these pieces together:

(log 3)n = H(A1...n, B1...n) ≤ O(log r) + (log 3)n− Ω

(
n

s+ 1

)
and hence r ≥ 2Ω( n

s+1
), and this proves our main theorem:

Theorem 4.12. rank+(M) ≥ 2Ω( n
s+1

)

5 The Typical Advantage

Here we prove the main lemma, and this will complete our main theorem. Throughout this section,
we will fix j ∈ [n].

Definition 5.1. Let Sj = {a, b|aT−jb−j = 0} ⊂ {0, 1}n × {0, 1}n

In particular, Sj is the set of pairs of strings a, b so that a and b are disjoint except possibly on
the jth coordinate. Note that |Sj | = 4× 3n−1. Our proof will be based on a single data structure
that will allow us to sample from either Aj conditioned on A1...j−1, Bj = 0, Bj+1...n, I = i or from
Bj conditioned on A1...j−1, Aj = 0, Bj+1...n, I = i. We now proceed to define this structure.
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Definition 5.2. Let E ⊂ Sj and let K ⊂ [r], then we will denote N j
E,K as a 2 × 2 matrix, which

for each a′j , b
′
j ∈ {0, 1} the (a′j , b

′
j) entry of N j

E,K is equal to∑
(a,b)∈E,aj=a′j ,bj=b′j

∑
i∈K

fi(a)gi(b)

Claim 5.3. N j
Sj ,[r]

=
|Sj |

4

[
s+ 1, s+ 1
s+ 1, s

]
Proof. Consider (a, b) ∈ Sj . Suppose, for example, that aj = 0, bj = 0 then this pair contributes

s+ 1 to the (0, 0) entry in N j
Sj ,[r]

.

Next we define the data structure that will be crucial in our proof. The nodes will correspond
to 2× 2 matrices given by NE,H :

Definition 5.4. The sampling tree T is a depth four tree in which:

• The root node corresponds to E = Sj and K = [r]

• The first layer corresponds to nodes E = Sj , and K = {i}

• The second layer corresponds to E = {(a, b) ∈ Sj |a1 = a′1, ...aj−1 = a′j−1, bj+1 = b′j+1, ...bn =
b′n} and K = {i}

• The third layer corresponds to E = {(a, b) ∈ Sj |a1 = a′1, ...aj−1 = a′j−1, aj = a′j , bj =
b′j , bj+1 = b′j+1, ...bn = b′n} and K = {i}

Furthermore a node defined by E,K is connected to a node in a lower layer defined by E′,K ′ if
and only if E′ ⊂ E and K ′ ⊂ K.

Claim 5.5. For any node u ∈ T , we have that Nu =
∑

v∈child(u)Nv.

Proof. In fact, by construction if a node u corresponds to E,K then the children v either have
E′ = E or K ′ = K and in the first case, the children v define a partition of K (and vice-versa in
the other case).

An important point is that in any leaf node, the corresponding matrix N has only one non-zero
entry. Next, we define three different methods for sampling the pair (aj , bj) using this tree:

Definition 5.6. Given a 2× 2 matrix N , we will define N(F ) to be the sum of the first column of
N , N(G) to be the sum of the first row of N and N(T ) to be the total sum of the entries in N .

Using this definition, we can define F -sampling, G-sampling and T -sampling:

Definition 5.7. F -sampling generates a (aj , bj) pair as follows:

• Start at the root node.

• While the current node u is not a leaf node, choose a child v of u with probability Nv(F )
Nu(F ) .

• Output the (aj , bj) pair corresponding to the non-zero entry in the leaf node at termination.

G-sampling and T -sampling are defined analogously with F replaced by G or T respectively. Also
if instead we start the F sampling procedure at a first layer node with K = {i} we will call it
F, i-sampling and similarly for G and T .
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The crucial observations are:

Observation 1. The F -sampling and G-sampling procedures represent a faithful method to sam-
ple from the distribution Aj conditioned on A1...j−1, Bj = 0, Bj+1...n, I and Bj conditioned on
A1...j−1, Aj = 0, Bj+1...n, I respectively.

Observation 2. The F, i-sampling and G, i-sampling procedures represent a faithful method to
sample from the distribution Aj conditioned on A1...j−1, Bj = 0, Bj+1...n, I = i and Bj conditioned
on A1...j−1, Aj = 0, Bj+1...n, I = i respectively.

Note that the last choice in an F -sampling procedure represents choosing the random variable Aj
conditioned on A1...j−1, Bj = 0, Bj+1...n, I. And similarly the last choice in a G-sampling procedure
represents choosing the random variable Bj conditioned on A1...j−1, Aj = 0, Bj+1...n, I. Hence we
can interpret the advantage through these processes:

Corollary 5.8. advAj (i) is equal to 1 − H, where H is the expected entropy of the last random

choice when performing F, i-sampling. Also advBj (i) is equal to 1 − H, where H is the expected
entropy of the last random choice when performing G, i-sampling.

Finally, we can use the T -sampling procedure to simulate either F -sampling or G-sampling:

Claim 5.9. The following procedure is equivalent to F -sampling: Use T -sampling to obtain (aj , bj)
and if bj = 0, output (aj , bj) and otherwise restart the process. Also, the following procedure is
equivalent to G-sampling: Use T -sampling to obtain (aj , bj) and if aj = 0, output (aj , bj) and
otherwise restart the process.

We are now ready to prove the main lemma. We will let N denote the random variable corre-
sponding to the matrix generated by running the T -sampling procedure until reaching the parent
of a leaf. Similarly, let N00, N10, N10 and N11 denote the entries of this matrix. Then:

Lemma 5.10. N is always a rank one matrix.

Proof. Since N is the matrix corresponding to the parent of a leaf, we have that E corresponds to
a fixed choice a1...j−1 for A1...j−1, bj+1...n for Bj+1...n and I = i. Hence the (a′j , b

′
j) entry of N is

Fi(a
′
j)Gi(b

′
j), where Fi(a

′
j) is the sum of fi(a) over all a with aj = a′j and aTj+1...nbj+1...n = 0 and

similarly Gi(b
′
j) is the sum of gi(b) over all b with bj = b′j and bT1...j−1a1...j−1 = 0.

In the exact case (s = 0), our proof is particularly simple. Since N is a rank one matrix and
must have N11 = 0, there must be another zero in either the same row or column. Hence choosing
an entry in N proportional to its value has entropy at most one bit, and this is already log 3 − 1
bits smaller than the uniform distribution on the top-left, bottom-left and top-right entries, and
this already implies an exponential lower bound in the exact case. Since our goal here is to give
lower bounds even for large values of s that approach n, we must be more careful in accounting for
the entropy lost when the entry N11 is allowed to be non-zero.

Definition 5.11. Let adv(N) = N00+N10
N00+N10+N10+N11

[1−H( N00
N00+N10

)]+ N00+N01
N00+N10+N10+N11

[1−H( N00
N00+N01

)].

Lemma 5.12. EI [adv
A
j (i) + advBj (i)] ≥ EN [adv(N)]

Proof. We can use Corollary 5.8 to get an interpretation of EI [adv
A
j (i)] as 1 − H, where H

is the entropy of the last random choice in F -sampling. And using Claim 5.9 we have that
EN [ N00+N10

N00+N10+N10+N11
] is the probability that T -sampling results in a sample coupled with one

from F -sampling. Hence, the expected entropy lost in the last step of F -sampling is lower bounded
by the entropy lost in the last step of T -sampling if the sample satisfies Bj = 0. An identical
argument for advBj (i) implies the lemma.
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Furthermore N is nonnegative so we can always write

N = (N01 +N10 +N00 +N11)

[
(1

2 + β)(1
2 − γ), (1

2 + β)(1
2 + γ)

(1
2 − β)(1

2 − γ), (1
2 − β)(1

2 + γ)

]
Note that N01+N10−N00−N11

N01+N10+N00+N11
= 4βγ.

Lemma 5.13. adv(N) = Ω(βγ)

Proof. Using the bound 1−H(1
2 + x) ≥ x2:

adv(N) = (
1

2
− γ)H(

1

2
+ β) + (

1

2
+ β)H(

1

2
+ γ)

≥ (
1

2
− γ)β2 + (

1

2
+ β)γ2

Clearly we can assume that βγ > 0 otherwise the lemma is trivial. We can prove the lemma
through a simple case analysis:

• Case: β > −1/3 and γ < 1/3, then adv(N) = Ω(β2 + γ2) = Ω(βγ).

• Case: β ≤ −1/3, then adv(N) ≥ (1
2 − γ)β2 because the other term is non-negative, and

furthermore β2 = Ω(1) and (1
2 − γ) = Ω(1) since γ ≤ 0.

• Case: γ ≥ 1/3, then adv(N) ≥ (1
2 + β)γ2 and again both terms are Ω(1) because β ≥ 0.

Lemma 5.14. EN [N01+N10−N00−N11
N01+N10+N00+N11

] = 1
4s+3

Proof. The quantity EN [N01+N10−N00−N11
N01+N10+N00+N11

] is exactly the probability that under T -sampling the
output has (aj , bj) ∈ {(0, 1), (1, 0)} minus the probability that it has (aj , bj) ∈ {(0, 0), (1, 1)}. We
can analyze this probability directly by considering the matrix corresponding to the root node,

which has (2s+2)
|Sj |

4 total weight in the (1, 0) and (0, 1) entries and has (2s+1)
|Sj |

4 total weight in
the (0, 0) and (1, 1) entries. Hence the difference of the probabilities of these two events is exactly

1
4s+3 .

And using Lemma 5.12, Lemma 5.13 and Lemma 5.14 we conclude that EI [adv
A
j (i)+advBj (i)] =

Ω( 1
s+1). This concludes the proof of the main lemma.
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