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Abstract

The advent of data science has spurred interest in estimating properties of discrete distributions
over large alphabets. Fundamental symmetric properties such as support size, support coverage,
entropy, and proximity to uniformity, received most attention, with each property estimated
using a different technique and often intricate analysis tools.

Motivated by the principle of maximum likelihood, we prove that for all these properties,
a single, simple, plug-in estimator—profile maximum likelihood (PML) [1]—performs as well
as the best specialized techniques. We also show that the PML approach is competitive with
respect to any symmetric property estimation, raising the possibility that PML may optimally
estimate many other symmetric properties.

1 Introduction

1.1 Property estimation

Recent machine-learning and data-science applications have motivated a new set of questions about
inferring from data. A large class of these questions concerns estimating properties of the unknown
underlying distribution.

Let ∆ denote the collection of discrete distributions. A distribution property is a mapping
f : ∆→ R. A distribution property is symmetric if it remains unchanged under relabeling of the
domain symbols. For example, support size

S(p) = |{x : p(x) > 0}|,

or entropy
H(p) =

∑
x

p(x) log 1
p(x)
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are all symmetric properties which only depend on the set of values of p(x)’s and not what the
symbols actually represent. To illustrate, the two distributions p = (p(a) = 2/3, p(b) = 1/3) and
p′ = (p′(a) = 1/3, p′(b) = 2/3) have the same entropy. In the common setting for these questions,
an unknown underlying distribution p ∈ ∆ generates n independent samples Xn def= X1, , . . . ,Xn,
and from this sample we would like to estimate a given property f(p).

An age-old universal approach for estimating distribution properties is plug-in estimation. It
uses the samples Xn to find an approximation p̂ of p, and declares f(p̂) as the approximation f(p).

Perhaps the simplest approximation for p is the sequence maximum likelihood (SML). It assigns
to any sample xn the distribution p that maximizes p(xn). It can be easily shown that SML is
exactly the empirical frequency estimator that assigns to each symbol the fraction of times it appears
in the sample, p

Xn
(x) = Nx

n , where Nx
def= Nx(Xn), the multiplicity of symbol x, is the number of

times it appears in the sequence Xn. We will just write Nx, when Xn is clear from the context . For
example, if n = 11, and Xn = a b r a c a d a b r a, Na = 5, Nb = 2, Nc = 1, Nd = 1, and Nr = 2,
and p

X11 (a) = 5/11, p
X11 (b) = 2/11, p

X11 (c) = 1/11, p
X11 (d) = 1/11, and p

X11 (r) = 2/11.
While the SML plug-in estimator performs well in the limit of many samples and its convergence

rate falls short of the best-known property estimates. For example, suppose we sample the uniform
distribution over k elements n = k/2 times. Since at most n distinct symbols will appear, the
empirical distribution will have entropy at most logn ≤ log k − 1 bits. However from Table 1.3, for
large k, only n = O(k/ log k) samples are required to obtain a 1-bit accurate estimate.

Modern applications where the sample size n could be sub-linear in the domain size k, have
motivated many results characterizing the sample complexity of estimating various distribution
properties (See e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). Complementary to property estimation
is the distribution property testing, which aims to design (sub-linear) algorithms to test whether
distributions have some specific property (See e.g., [15, 16, 17, 18, 19, 20, 21, 22], and [23] for a survey).
A particular line of work is competitive distribution estimation and testing [24, 25, 26, 27, 28, 29],
where the objective is to design algorithms independent of the domain size, with complexity close to
the best possible algorithm. Some of our techniques are motivated by those in competitive testing.

1.2 Prior results

Since SML is suboptimal, several recent papers have used diverse and sophisticated techniques to
estimate important symmetric distribution properties.

Support size S(p) = |{x : p(x) > 0}|, plays an important role in population and vocabulary
estimation. However estimating S(p) is hard with any finite number of samples due to symbols
with negligible positive probability that will not appear in our sample, but still contribute to
S(p). To circumvent this, [30] considered distributions in ∆ with non-zero probabilities at
least 1

k ,

∆≥ 1
k

def=
{
p ∈ ∆ : p(x) ∈ {0} ∪

[1
k
, 1
]}

.

For ∆≥ 1
k
, SML requires k log

(
1
ε

)
to estimate the support size to an additive accuracy of εk.

Over a series of work [30, 5, 8], it was shown that the optimal sample complexity of support
estimation is Θ

(
k

log k · log2 1
ε

)
.

Support coverage Sm(p) =
∑
x(1− (1−p(x))m), the expected number of elements observed when

the distribution is sampled m times, arises in many ecological and biological studies [31]. The
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goal is to estimate Sm(p) to an additive ±εm upon observing as few samples as possible. Good
and Toulmin [32] proposed an estimator that for any constant ε, requires m/2 samples to
estimate Sm(p). Recently, [12, 13] showed that it is possible to estimate Sm(p) after observing
only O( m

logm) samples. In particular, [12] showed that it is possible to estimate Sm(p) after
observing only O( m

logm · log 1
ε ) samples. Moreover, this dependence on m and ε is optimal.

Entropy H(p) =
∑
x p(x) log 1

p(x) , the Shannon entropy of p is a central object in information
theory [33], and also arises in many fields such as machine learning [34], neuroscience [35, 36],
and others. Entropy estimation has been studied for over half a century, and a number of
different estimators have been proposed over time. Estimating H(p) is hard with any finite
number of samples due to the possibility of infinite support. To circumvent this, similar to
previous works we consider distributions in ∆ with support size at most k,

∆k
def= {p ∈ ∆ : S(p) ≤ k}.

The goal is to estimate the entropy of a distribution in ∆k to an additive ±ε, where ∆k is all
discrete distributions over at most k symbols. In a recent set of papers [5, 7, 11], the min-max
sample complexity of estimating entropy to ±ε was shown to be Θ

(
k

log k ·
1
ε

)
.

Distance to uniform ‖p− u‖1 =
∑
x |p(x)− 1/k|, where u is a uniform distribution over a known

set X , with |X | = k. Let ∆X be the set of distributions over the set X . For an unknown
p ∈ ∆X , to estimate ||p − u||1 to an additive ±ε, [6] showed that O

(
k

log k ·
1
ε2

)
samples are

sufficient. The dependence was later shown to be tight in [37].

[5] also proposed a plug-in approach for estimating symmetric properties. We discuss and compare
the approaches in Section 3.

1.3 New results

Each of the above properties was studied in one or more papers and approximated by different
sophisticated estimators, often drawing from involved techniques from fields such as approximation
theory. By contrast, we show that a single simple plug-in estimator achieves the state of the art
performance for all these problems.

As seen in the introduction for entropy, SML is suboptimal in the large alphabet regime, since
it over-fits the estimate on only the observed symbols (See [38] for detailed performance of SML
estimators of entropy, and other properties). However, symmetric properties of distributions do not
depend on the labels of the symbols. For all these properties, it makes sense to look at a sufficient
statistic, the data’s profile (Definition 1) that represents the number of elements appearing any given
number of times. Again following the principle of maximum likelihood, [1, 39] suggested discarding
the symbol labels, and finding a distribution that maximizes the probability of the observed profile,
which we call as profile maximum likelihood (PML).

We show that replacing the SML plug-in estimator by PML yields a unified estimator that is
provably at least as good as the best specialized techniques developed for all of the above properties.

Theorem 1 (Informal). There is a unified approach based on PML distribution that achieves the
optimal sample complexity for all the four problems mentioned above (entropy, support, support
coverage, and distance to uniformity).
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We prove in Corollary 1 that the PML approach is competitive with respect to any symmetric
property.

For symmetric properties, these results are perhaps a justification of Fisher’s thoughts on
Maximum Likelihood:

“Of course nobody has been able to prove that maximum likelihood estimates are best under all
circumstances. Maximum likelihood estimates computed with all the information available may turn out
to be inconsistent. Throwing away a substantial part of the information may render them consistent.”

R. A. Fisher’s thoughts on Maximum Likelihood.

However, several heuristics for estimating PML has been studied including approaches motivated
by algebraic approaches [40], EM-MCMC algorithms [41], [42, Chapter 6], Bethe approximation [43,
44]. As discussed in Section 3, PML estimation reduces to maximizing a monomial-symmetric
polynomial over the simplex. We also provide another justification of the PML approach by proving
that even approximating a PML can result in sample-optimal estimators for the problems we
consider. We hope that these strong sample complexity guarantees will motivate algorithm designers
to design efficient algorithms for approximating PML. Table 1.3 summarizes the results in terms of
the sample complexity.

Property Notation P SML Best possible References PML
Entropy H(p) ∆k

k
ε

k
log k

1
ε [5, 7, 11] optimal1

Support size S(p)
k ∆≥ 1

k
k log 1

ε
k

log k log2 1
ε [8] optimal

Support coverage Sm(p)
m ∆ m m

logm log 1
ε [12] optimal

Distance to uniform ‖p− u‖1 ∆X k
ε2

k
log k

1
ε2 [6, 37] optimal

Table 1: Estimation complexity for various properties, up to a constant factor. For all properties
shown, PML achieves the best known results. Citations are for specialized techniques, PML results
are shown in this paper. Support and support coverage results have been normalized for consistency
with existing literature.

To prove these PML guarantees, we establish two results that are of interest on their own right.
• With n samples, PML estimates any symmetric property of p with essentially the same

accuracy, and at most e3
√
n times the error, of any other estimator.

• For a large class of symmetric properties, including all those mentioned above, if there is an
estimator that uses n samples, and has an error probability 1/3, we design an estimator using
O(n) samples, whose error probability is nearly exponential in n. We remark that this decay
is much faster than applying the median trick.

Combined, these results prove that PML plug-in estimators are sample-optimal.
We also introduce the notion of β-approximate ML distributions, described in Definition 2.

These distributions are more relaxed version of PML, hence may be more easily computed, yet they
provide essentially the same performance guarantees.

The rest of the paper is organized as follows. In Section 2, we formally state our results. In
Section 3, we define profiles, and PML. In Section 4, we outline the our approach. In Section 5, we

1We call an algorithm optimal if it is optimal up to universal constant factors.
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demonstrate auxiliary results for maximum likelihood estimators. In Section 6, we outline how we
apply maximum likelihood to support, entropy, and uniformity, and support coverage.

2 Formal definitions and results
Recall that ∆k is the set of all discrete distributions with support at most k, and ∆ = ∆∞ is the set
of all discrete distributions. A property estimator is a mapping f̂ : X n → R that converts observed
samples over X to an estimated property value. The sample complexity of f̂ when estimating a
property f : ∆ → R for distributions in a collection P ⊆ ∆, is the number of samples f̂ needs
to determine f with high accuracy and probability for all distributions in P. Specifically, for
approximation accuracy ε and confidence probability δ,

C f̂ (f,P, δ, ε) def= min
{
n : p(|f(p)− f̂(Xn)| ≥ ε) ≤ δ ∀p ∈ P

}
.

The sample complexity of estimating f is the lowest sample complexity of any estimator,

C∗(f,P, δ, ε) = min
f̂
C f̂ (f,P, δ, ε).

In the past, different sophisticated estimators were used for every property in Table 1.3. We show
that the simple plug-in estimator that uses any PML approximation p̃, has optimal performance
guarantees for all these properties.

It can be shown that the sample complexity has only moderate dependence on δ, that is typically
de-emphasized. For simplicity, we therefore abbreviate C f̂ (f,P, 1/3, ε) by C f̂ (f,P, ε).

In the next theorem, assume n is at least the optimal sample complexity of estimating entropy,
support, support coverage, and distance to uniformity (given in Table 1.3) respectively.

Theorem 2. For all ε > c/n0.2, any plug-in exp (−
√
n)-approximate PML p̃ satisfies,

Entropy
C p̃(H(p),∆k, ε) � C∗(H(p),∆k, ε), 2

Support size
C p̃(S(p)/k,∆≥ 1

k
, ε) � C∗(S(p)/k,∆≥ 1

k
, ε),

Support coverage
C p̃(Sm(p)/m,∆, ε) � C∗(Sm(p)/m,∆, ε),

Distance to uniformity

C p̃(‖p− u‖1,∆X , ε) � C∗(‖p− u‖1,∆k, ε).
2For a, b > 0, denote a . b or b & a if for some universal constant c, a/b ≤ c. Denote a � b if both a . b and a & b.
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3 PML: Profile maximum likelihood

3.1 Preliminaries

For a sequence Xn, recall that the multilplicity Nx is the number of times x appears in Xn.
Discarding, the labels, profile of a sequence [1] is defined below.

Definition 1. The profile of a sequence Xn, denoted ϕ(Xn) is the multiset of the multiplicities of
all the symbols appearing in Xn.

For example, ϕ(a b r a c a d a b r a) = {1, 1, 2, 2, 5}, denoting that there are two symbols
appearing once, two appearing twice, and one symbol appearing five times, removing the association
of the individual symbols with the multiplicities. Profiles are also referred to as histogram order
statistics [2], fingerprints [5], and as histograms of histograms [17].

Let Φn be all profiles of length-n sequences. Then, Φ4 = {{1, 1, 1, 1}, {1, 1, 2}, {1, 3}, {2, 2}, {4}}.
In particular, a profile of a length-n sequence is an unordered partition of n. Therefore, |Φn|,
the number of profiles of length-n sequences is equal to the partition number of n. Then, by the
Hardy-Ramanujam bounds on the partition number,

Lemma 1 ([45, 1]). |Φn| ≤ exp(3
√
n).

For a distribution p, the probability of a profile ϕ is defined as

p(ϕ) def=
∑

Xn:ϕ(Xn)=ϕ
p(Xn),

the probability of observing a sequence with profile ϕ. Under i.i.d. sampling,

p(ϕ) =
∑

Xn:ϕ(Xn)=ϕ

n∏
i=1

p(Xi).

For example, the probability of observing a sequence with profile ϕ = {1, 2} is the probability of
observing a sequence with one symbol appearing once, and one symbol appearing twice. A sequence
with a symbol x appearing twice and y appearing once (e.g., x y x) has probability p(x)2p(y).
Appropriately normalized, for any p, the probability of the profile {1, 2} is

p({1, 2}) =
∑

Xn:ϕ(Xn)={1,2}

n∏
i=1

p(Xi) =
(

3
1

) ∑
a6=b∈X

p(a)2p(b), (1)

where the normalization factor is independent of p. The summation is a monomial symmetric
polynomial in the probability values. See [42, Section 2.1.2] for more examples and definitions.

3.2 Algorithm

Recall that p
Xn

is the distribution maximizing the probability of Xn. Similarly, define [1]:

pϕ
def= max

p∈P
p(ϕ)

as the distribution in P that maximizes the probability of observing a sequence with profile ϕ.
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For example, for ϕ = {1, 2}. For P = ∆k, from (1),

pϕ = arg max
p∈∆k

∑
a6=b

p(a)2p(b).

Note that in contrast, SML only maximizes one term of this expression.
We give two examples from the table in [1] to distinguish between SML and PML distributions, and
also show an instance where PML outputs distributions over a larger domain than those appearing
in the sample.
Example 1. Let X = {a, b, . . . , z}. Suppose Xn = x y x, then the SML distribution is (2/3, 1/3).
However, the distribution in ∆ that maximizes the probability of the profile ϕ(x y x) = {1, 2} is
(1/2, 1/2). Another example, illustrating the power of PML to predict new symbols is Xn = a b a c,
with profile ϕ(a b a c) = {1, 1, 2}. The SML distribution is (1/2, 1/4, 1/4), but the PML is a uniform
distribution over 5 elements, namely (1/5, 1/5, 1/5, 1/5, 1/5).

Suppose we want to estimate a symmetric property f(p) of an unknown distribution p ∈ P given
n independent samples. Our high level approach using PML is described below.

Input: P, symmetric function f(·), sample Xn

1. Compute pϕ : arg maxp∈P p(ϕ(Xn)).

2. Output f(pϕ).

There are a few advantages of this approach (as is true with any plug-in approach): (i) the
computation of PML is agnostic to the function f at hand, (ii) there are no parameters to be tuned,
(iii) techniques such as Poisson sampling or median tricks are not necessary, (iv) well motivated by
the maximum-likelihood principle.

We remark that various aspects of PML have been studied. [39] has a comprehensive collection
of various results about PML. [46, 47] study universal compression and probability estimation
using PML distributions. [39, 48, 49] derive PML distribution for various special, and small length
profiles. [39, 50] prove consistency of PML. [51] study PML over Markov Chains.

Comparision to the linear-programming plug-in estimator [5]. Our approach is perhaps
closest in flavor to the plug-in estimator of [5]. Their result was the first estimator to provide
sample complexity bounds in terms of the alphabet size, and accuracy the problems of entropy and
support estimation. Before we explain the differences of the two approaches, we briefly explain
their approach. Define, ϕµ(Xn) to be the number of elements that appear µ times. For example,
when Xn = a b r a c a d a b r a, ϕ1 = 2, ϕ2 = 2, and ϕ5 = 1. [5] design a linear program that uses
SML for high values of µ, and formulate a linear program to find a distribution for which E[ϕµ]’s
are close to the observed ϕµ’s. They then plug-in this estimate to estimate the property. On the
other hand, our approach, by the nature of ML principle, tries to find the distribution that best
explains the entire profile of the observed data, not just some partial characteristics. It therefore
has the potential to estimate any symmetric property and estimate the distribution closely in any
distance measures, competitive with the best possible. For example, the guarantees of the linear
program approach are sub-optimal in terms of the desired accuracy ε. For entropy estimation the
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optimal dependence is 1
ε , whereas [5] yields

1
ε2 . This is more prominent for support size and support

coverage, which have optimal dependence of polylog(1
ε ), whereas [5] gives a 1

ε2 dependence. Besides,
we analyze the first method proposed for estimating symmetric properties, designed from the first
principles, and show that in fact it is competitive with the optimal estimators for various problems.

4 Proof outline
Our arguments have two components. In Section 5 we prove a general result for the performance of
plug-in estimation via maximum likelihood approaches.

Let P be a class of distributions over Z, and f : P → R be a function. For z ∈ Z, let

pz
def= arg max

p∈P
p(z)

be the maximum-likelihood estimator of z in P. Upon observing z, f(pz) is the ML estimator of
f . In Theorem 4, we show that if there is an estimator that achieves error probability δ, then the
ML estimator has an error probability at most δ|Z|. We note that variations of this result in the
asymptotic statistics were studied before (see [52]). Our contribution is to use these results in the
context of symmetric properties and show sample complexity bounds in the non-asymptotic regime.

We emphasize that, throughout this paper Z will be the set of profiles of length n, and P will
be distributions induced over profiles by length-n i.i.d. samples. Therefore, we have |Z| = |Φn|. By
Lemma 1, if there is a profile based estimator with error probability δ, then the PML approach will
have error probability at most δ exp(3

√
n). Such arguments were used in hypothesis testing to show

the existence of competitive testing algorithms for fundamental statistical problems [24, 25, 53].
At its face value this seems like a weak result. Our second key step is to prove that for the

properties we are interested, it is possible to obtain very sharp guarantees. For example, we show
that if we can estimate the entropy to an accuracy ±ε with error probability 1/3 using n samples,
then we can estimate the entropy to accuracy ±2ε with error probability exp(−n0.9) using only 2n
samples. Using this sharp concentration, the new error probability term dominates |Φn|, and we
obtain our results. The arguments for sharp concentration are based on modifications to existing
estimators and a new analysis. Most of these results are technical and are in the appendix.

5 Estimating properties via maximum likelihood
In this section, we prove the performance guarantees of ML property estimation in a general set-up.
Recall that P is a collection of distributions over Z, and f : P → R. Given a sample Z from an
unknown p ∈ P, we want to estimate f(p). The maximum likelihood approach is the following
two-step procedure.

1. Find pZ = arg maxp∈P p(Z).
2. Output f(pZ ).

We bound the performance of this approach in the following theorem.

Theorem 3. Suppose there is an estimator f̂ : Z → R, such that for any p, and Z ∼ p,

Pr
(∣∣∣f(p)− f̂(Z)

∣∣∣ > ε
)
< δ, (2)
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then

Pr (|f(p)− f(pZ )| > 2ε) ≤ δ · |Z| . (3)

Proof. Consider symbols with p(z) ≥ δ and p(z) < δ separately. A distribution p with p(z) ≥ δ

outputs z with probability at least δ. For (2) to hold, we must have,
∣∣∣f(p)− f̂(z)

∣∣∣ < ε. By the

definition of ML, pz(z) ≥ p(z) ≥ δ, and again for (2) to hold for pz ,
∣∣∣f(pz)− f̂(z)

∣∣∣ < ε. By the
triangle inequality, for all such z,

|f(p)− f(pz)| ≤
∣∣∣f(p)− f̂(z)

∣∣∣+ ∣∣∣f(pz)− f̂(z)
∣∣∣ ≤ 2ε.

Thus if p(z) ≥ δ, then PML satisfies the required guarantee with zero probability of error, and any
error occurs only when p(z) < δ. We bound this probability as follows. When Z ∼ p,

Pr (p(Z) < δ) ≤
∑

z∈Z:p(z)<δ
p(z) < δ · |Z| .

For some problems, it might be easier to just approximate the ML, instead of finding it exactly. We
define an approximation ML as follows:

Definition 2 (β-approximate ML). Let β ≤ 1. For Z ∈ Z, p̃Z ∈ P is a β-approximate ML
distribution if p̃z(z) ≥ β · pz(z). When Z is profiles of length-n, a β-approximate PML is a
distribution p̃ϕ such that p̃ϕ(ϕ) ≥ β · pϕ(ϕ).

The next result proves guarantees for any β-approximate ML estimator.

Theorem 4. Suppose there exists an estimator satisfying (2). For any p ∈ P and Z ∼ p, any
β-approximate ML p̃Z satisfies:

Pr (|f(p)− f(p̃Z)| > 2ε) ≤ δ · |Z|
β

.

The proof is very similar to the previous theorem and is presented in the Appendix C.

6 Sample optimality of PML
We first prove that PML is competitive with respect to the best estimator for any symmetric property.
This is a side-result and a direct corollary of the results in the previous section. We then provide
much sharper concentration bounds for estimating the properties we are considering, and use it to
prove the optimality of PML.

6.1 Median trick and competitiveness of PML

Suppose for a property f(p), there is an estimator with sample complexity n that achieves an
accuracy ±ε with probability of error at most 1/3. The standard method to boost the error
probability is the median trick: (i) Obtain O(log(1/δ)) independent estimates using O(n log(1/δ))
independent samples. (ii) Output the median of these estimates. This is an ε-accurate estimator of
f(p) with error probability at most δ. By definition, estimators are a mapping from the samples to
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R. However, in many applications the estimators map from a much smaller (some sufficient statistic)
of the samples. Denote by Zn the space consisting of all sufficient statistics that the estimator uses.
For example, estimators for symmetric properties, such as entropy typically use the profile of the
sequence, and hence Zn = Φn. Using the median-trick, we get the following result.

Corollary 1. Let f̂ : Zn → R be an estimator of f(p) with accuracy ε and error-probability 1/3.
The ML estimator achieves accuracy 2ε using

min
{
n′ : n′

log(3Zn′)

}
> n.

Proof. Since n is the number of samples to get an error probability 1/3, by the median trick,
the error after n′ samples is at most exp(−O(n′/n)). Therefore, the error probability of the ML
estimator for accuracy 2ε is at most exp(−O(n′/n))Zn′ , which we desire to be at most 1/3.

For estimators that use the profile of sequences, |Φn| < exp(3
√
n). Plugging this in the previous

result shows that the PML based approach has a sample complexity of at most n2. This result
holds for all symmetric properties, independent of ε, and the alphabet size k. For the problems
mentioned earlier, something much better in possible, namely the PML approach is optimal up to
constant factors.

6.2 Sharp concentration for some interesting properties

To obtain sample-optimality guarantees for PML, we need to drive the error probability down much
faster than the median trick. We achieve this by using McDiarmid’s inequality stated below. Let
f̂ : X ∗ → R. Suppose f̂ gets n independent samples Xn from an unknown distribution. Moreover,
changing one of the Xj to any X ′j changed f̂ by at most c∗. Then McDiarmid’s inequality (bounded
difference inequality, [54, Theorem 6.2]) states that,

Pr
(∣∣∣f̂(Xn)− E[f̂(Xn)]

∣∣∣ > t
)
≤ 2 exp

(
− 2t2

nc2
∗

)
. (4)

This inequality can be used to show strong error probability bounds for many problems. We mention
a simple application for estimating discrete distributions.
Example 2. It is well known [55] that SML requires Θ(k/ε2) samples to estimate p in `1 distance
with probability at least 2/3. In this case, f̂(Xn) =

∑
x

∣∣∣Nxn − p(x)
∣∣∣, and therefore c∗ is at most 2/n.

Using McDiarmid’s inequality, it follows that SML has an error probability of δ = 2 exp(−k/2),
while still using Θ(k/ε2) samples.

Let Bn be the bias of an estimator f̂(Xn) of f(p), namely

Bn
def=
∣∣∣f(p)− E[f̂(Xn)]

∣∣∣ .
By the triangle inequality,∣∣∣f(p)− f̂(Xn)

∣∣∣ ≤ ∣∣∣f(p)− E[f̂(Xn)]
∣∣∣+ ∣∣∣f̂(Xn)− E[f̂(Xn)]

∣∣∣ = Bn +
∣∣∣f̂(Xn)− E[f̂(Xn)]

∣∣∣ .
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Plugging this in (4),

Pr
(∣∣∣f(p)− f̂(Xn)]

∣∣∣ > t+Bn
)
≤ 2 exp

(
− 2t2

nc2
∗

)
. (5)

With this in hand, we need to show that c∗ can be bounded for estimators for the properties we
consider. In particular, we will show that

Lemma 2. Let α > 0 be a fixed constant. For entropy, support, support coverage, and distance to
uniformity there exist profile based estimators that use the optimal number of samples (given in
Table 1.3), have bias ε and if we change any of the samples, changes by at most c · nαn , where c is a
positive constant.

We prove this lemma by proposing several modifications to the existing sample-optimal estimators.
The modified estimators will preserve the sample complexity up to constant factors and also have a
small c∗. The proof details are given in the appendix.

Using (5) with Lemma 2,

Theorem 5. Let n be the optimal sample complexity of estimating entropy, support, support coverage
and distance to uniformity (given in table 1.3) and c be a large positive constant. Let ε ≥ c/n0.2,
then any for any β > exp (−

√
n), the β-PML estimator estimates entropy, support, support coverage,

and distance to uniformity to an accuracy of 4ε with probability at least 1− exp(−
√
n).3

Proof. Let α = 0.1. By Lemma 2, for each property of interest, there are estimators based on
the profiles of the samples such that using near-optimal number of samples, they have bias ε
and maximum change if we change any of the samples is at most nα/n. Hence, by McDiarmid’s
inequality, an accuracy of 2ε is achieved with probability at least 1 − exp

(
−2ε2n1−a/c2). Now

suppose p̃ is any β-approximate PML distribution. Then by Theorem 4

Pr (|f(p)− f(p̃)| > 4ε) < δ · |Φn|
β

≤ exp(−2ε2n1−a/c2) exp(3
√
n)

β
≤ exp(−

√
n),

where in the last step we used ε2n1−a & c′
√
n, and β > exp(−

√
n).

7 Discussion and future directions
We studied estimation of symmetric properties of discrete distributions using the principle of
maximum likelihood, and proved optimality of this approach for a number of problems. A number
of directions are of interest. We believe that the lower bound requirement on ε is perhaps an artifact
of our proof technique, and that the PML based approach is indeed optimal for all ranges of ε.
Approximation algorithms for estimating the PML distributions would be a fruitful direction to
pursue. Given our results, approximations stronger than exp(−ε2n) would be very interesting. In
the particular case when the desired accuracy is a constant, even an exponential approximation
would be sufficient for many properties. We plan to apply the heuristics proposed by [43] for various
problems we consider, and compare with the state of the art provable methods.

3The above theorem also works for any ε & 1/n0.25−η for any η > 0
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A Support and support coverage
We analyze both support coverage and the support estimation via a single approach. We first start
with support coverage. Recall that the goal is to estimate Sm(p), the expected number of distinct
symbols that we see after observing m samples from p. By the linearity of expectation,

Sm(p) =
∑
x∈X

E[INx(Xm)>0] =
∑
x∈X

(1− (1− p(x))m) .

The problem is closely related to the support coverage problem [12], where the goal is to estimate
Ut(Xn), the number of new distinct symbols that we observe in n · t additional samples. Hence

Sm(p) = E
[
n∑
i=1

ϕi

]
+ E[Ut],

where t = (m− n)/n. We show that the modification of an estimator in [12] is also near-optimal
and satisfies conditions in Lemma 2. We propose to use the following estimator

Ŝm(p) =
n∑
i=1

ϕi +
n∑
i=1

ϕi(−t)i Pr(Z ≥ i),

where Z is a Poisson random variable with mean r and t = (m− n)/n. We remark that the proof
also holds for Binomial smoothed random variables as discussed in [12].

We need to bound the maximum coefficient and the bias to apply Lemma 2. We first bound the
maximum coefficient of this estimator.

Lemma 3. For all n ≤ m/2, the maximum coefficient of Ŝm(p) is at most

1 + er(t−1).

Proof. For any i, the coefficient of ϕi is

1 + (−t)i Pr(Z ≥ i).

It can be upper bounded as

1 +
t∑
i=0

e−r(rt)i

i! = 1 + er(t−1).

The next lemma bounds the bias of the estimator.

16



Lemma 4. For all n ≤ m/2, the bias of the estimator is bounded by

|E[Ŝm(p)]− Sm(p)| ≤ 2 + 2er(t−1) + min(m,S(p))e−r.

Proof. As before let t = (m− n)/n.

E[Ŝm(p)]− Sm(p) =
n∑
i=1

E[ϕi] + E[USGT
t (Xn)]−

∑
x∈X

(1− (1− p(x))m)

= E[USGT
t (Xn)]−

∑
x∈X

((1− p(x))n − (1− p(x))m) .

Hence by Lemma 8 and Corollary 2, in [12], we get

|E[Ŝm(p)]− Sm(p)| ≤ 2 + 2er(t−1) + min(m,S(p))e−r.

Using the above two lemmas we prove results for both the observed support coverage and support
estimator.

A.1 Support coverage estimator

Recall that the quantity of interest in support coverage estimation is Sm(p)/m, which we wish to
estimate to an accuracy of ε.

Proof of Lemma 2 for observed. If we choose r = log 3
ε , then by Lemma 3, the maximum coefficient

of Ŝm(p)/m is at most
2
m
e
m
n

log 3
ε ,

which for m ≤ αn log(n/21/α)
log(3/ε) is at most nα/m < nα/n. Similarly, by Lemma 4,

1
m
|E[Ŝm(p)]− Sm(p)| ≤ 1

m
(2 + 2er(t−1) +me−r) ≤ ε,

for all ε > 6nα/n.

A.2 Support estimator

Recall that the quantity of interest in support estimation is S(p)/k, which we wish to estimate to
an accuracy of ε.

Proof of Lemma 2 for support. Note that we are interested in distributions with all the non zero
probabilities are at least 1/k. We propose to estimate S(p)/k using

Ŝm(p)/k,

for m = k log 3
ε . Note that for this choice of m

0 ≤ S(p)− Sm(p) =
∑
x

(1− (1− (1− p(x))m)) =
∑
x

(1− p(x))m ≤
∑
x

e−mp(x) ≤ ke− log 3
ε = kε

3 .
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If we choose r = log 3
ε , then by Lemma 3, the maximum coefficient of Ŝm(p)/k is at most

2
k
e
m
n

log 3
ε ,

which for n ≥ α k
log(k/21/α) log2 3

ε is at most kα/k < nα/n. Similarly, by Lemma 4,

1
k
|E[Ŝm(p)]− S(p)| ≤ 1

k
|E[Ŝm(p)]− Sm(p)|+ 1

k
|S(p)− Sm(p)|

≤ 1
k

(2 + 2er(t−1) + ke−r) + ε

3
≤ ε,

for all ε > 12nα/n.

B Entropy and distance to uniformity
The known optimal estimators for entropy and distance to uniformity both depend on the best
polynomial approximation of the corresponding functions and the splitting trick [7, 11]. Building
on their techniques, we show that a slight modification of their estimators satisfy conditions in
Lemma 2. Both these functions can be written as functionals of the form:

f(p) =
∑
x

g(p(x)),

where g(y) = −y log y for entropy and g(y) =
∣∣∣y − 1

k

∣∣∣ for uniformity.
Both[7, 11] first approximate g(y) with PL,g(y) polynomial of some degree L. Clearly a larger

degree implies a smaller bias/approximation error, but estimating a higher degree polynomial also
implies a larger statistical estimation error. Therefore, the approach is the following:
• For small values of p(x), we estimate the polynomial PL,g(p(x)) =

∑L
i=1 bi · (p(x))i.

• For large values of p(x) we simply use the empirical estimator for g(p(x)).
However, it is not a priori known which symbols have high probability and which have low

probability. Hence, they both assume that they receive 2n samples from p. They then divide them
into two set of samples, X ′1, . . . , X

′
n, and X1, . . . , Xn. Let N

′
x, and Nx be the number of appearances

of symbol x in the first and second half respectively. They propose to use the estimator of the
following form:

ĝ(X2n
1 ) = max

{
min

{∑
x

gx, fmax

}
, 0
}
.

where fmax is the maximum value of the property f and

gx =


GL,g(Nx), for N ′x < c2 logn, and Nx < c1 logn,
0, for N ′x < c2 logn, and Nx ≥ c1 logn,
g
(
Nx
n

)
+ gn, for N ′x ≥ c2 logn,

where gn is the first order bias correction term for g, GL,g(Nx) =
∑L
i=1 biN

i
x/ni is the unbiased

estimator for PL,g, and c1 and c2 are two constants which we decide later. We remark that unlike
previous works, we set gx to 0 for some values of Nx and N ′x to ensure that c∗ is bounded. The
following lemma bounds c∗ for any such estimator ĝ.
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Lemma 5. For any estimator ĝ defined as above, changing any one of the values changes the
estimator by at most

8 max
(
eL

2/n max |bi|,
Lg
n
, g

(
c1 log(n)

n

)
, gn

)
,

where Lg = nmaxi∈N |g(i/n)− g((i− 1)/n)|.

B.1 Entropy

The following lemma is adapted from Proposition 4 in [7] where we make the constants explicit.

Lemma 6. Let gn = 1/(2n) and α > 0. Suppose c1 = 2c2, and c2 > 35, Further suppose that
n3
(

16c1
α2 + 1

c2

)
> log k · logn. There exists a polynomial approximation of −y log y with degree

L = 0.25α, over [0, c1
logn
n ] such that maxi |bi| ≤ nα/n and the bias of the entropy estimator is at

most O
((

c1
α2 + 1

c2
+ 1

n3.9

)
k

n logn

)
.

Proof. Our estimator is similar to that of [7, 37] except for the case when N
′
x < c2 logn, and

Nx > c1 logn. For any p(x), and N ′x and Nx both distributed Bin(np(x)). By the Chernoff bounds
for binomial distributions, the probability of this event can be bounded by,

max
p(x)

Pr
(
N
′
x < c2 logn,Nx > 2c2 logn

)
≤ 1
n0.1

√
2c2
≤ 1
n4.9 .

Therefore, the additional bias the modification introduces is at most k log k/n4.9 which is smaller
than the bias term of [7, 37].

The largest coefficient can be bounded by using that the best polynomial approximation of
degree L of x log x in the interval [0, 1] has all coefficients at most 23L. Therefore, the largest change
we have (after appropriately normalizing) is the largest value of bi which is

23LeL
2/n

n
.

For L = 0.25α logn, this is at most na

n .

The proof of Lemma 2 for entropy follows from the above lemma and Lemma 5 and by substituting
n = O

(
k

log k
1
ε

)
.

B.2 Distance to uniformity

We state the following result stated in [37].

Lemma 7. Let c1 > 2c2, c2 = 35. There is an estimator for distance to uniformity that changes by
at most nα/n when a sample is changed, and the bias of the estimator is at most O( 1

α

√
c1 logn
k·n ).

Proof. Estimating the distance to uniformity has two regions based on N ′x and Nx.

Case 1: 1
k < c2 logn/n. In this case, we use the estimator defined in the last section for

g(x) = |x− 1/k|.
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Case 2: 1
k > c2 logn/n. In this case, we have a slight change to the conditions under which we

use various estimators:

gx =


GL,g(Nx), for

∣∣∣N ′x − 1
k

∣∣∣ < √ c2 logn
kn , and

∣∣∣Nx − 1
k

∣∣∣ < √ c1 logn
kn ,

0, for
∣∣∣N ′x − 1

k

∣∣∣ < √ c2 logn
kn , and

∣∣∣Nx − 1
k

∣∣∣ ≥ √ c1 logn
kn ,

g
(
Nx
n

)
, for

∣∣∣N ′x − 1
k

∣∣∣ ≥ √ c2 logn
kn .

The estimator proposed in [37] is slightly different, assigning GL,g(Nx) for the first two cases.
We design the second case to bound the maximum deviation. The bias of their estimator was shown
to be at most O

(
1
L

√
logn

k·n logn

)
, which can be shown by using [56, Equation 7.2.2]

E|x−τ |,L,[0,1] ≤ O
(√

τ(1− τ)
L

)
. (6)

By our choice of c1, c2, our modification changes the bias by at most 1/n4 < ε2.
To bound the largest deviation, we use the fact ([57, Lemma 2]) that the largest coefficient

of the best degree-L polynomial approximation of |x| in [−1, 1] has all coefficients at most 23L.
Similar argument as with entropy yields that after appropriate normalization, the largest difference
in estimation will be at most nα/n.

The proof of Lemma 2 for entropy follows from the above lemma and Lemma 5 and by substituting
n = O

(
k

log k
1
ε2

)
.

C Proof of approximate ML performance
Proof. We consider symbols such that p(z) ≥ δ/β and p(z) < δ/β separately. For an z with
p(z) ≥ δ/β, by the definition of f(pZ ),

p̃z(z) ≥ pz(z)β ≥ p(z)β ≥ δ.

Applying (2) to p̃z, we have for Z ∼ p̃z,

δ > Pr
(∣∣∣f(p̃z)− f̂(Z)

∣∣∣ > ε
)
≥ p̃z(z) · I

{∣∣∣f(p̃z)− f̂(z)
∣∣∣ > ε

}
≥ δ · I

{∣∣∣f(p̃z)− f̂(z)
∣∣∣ > ε

}
,

where I is the indicator function, and therefore, I
{∣∣∣f(p̃z)− f̂(z)

∣∣∣ > ε
}

= 0. This implies that∣∣∣f(p̃z)− f̂(z)
∣∣∣ < ε. By an identical reasoning, since p(z) > δ/β, we have

∣∣∣f(p)− f̂(z)
∣∣∣ < ε. By the

triangle inequality,

|f(p)− f(p̃z)| ≤
∣∣∣f(p)− f̂(z)

∣∣∣+ ∣∣∣f(p̃z)− f̂(z)
∣∣∣ < 2ε.

Thus if p(z) ≥ δ/β, then PML satisfies the required guarantee with zero probability of error, and
any error occurs only when p(z) < δ/β. We bound this probability as follows. When Z ∼ p,

Pr (p(Z) ≤ δ/β) ≤
∑

z∈Z:p(z)<δ/β
p(z) ≤ δ · |Z| /β.
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