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Abstract

We identify a new notion of pseudorandomness for randomness sources, which we call the
average bias. Given a distribution Z over {0, 1}n, its average bias is:

bav(Z) = 2−n ∑
c∈{0,1}n

∣∣∣∣ E
z∼Z

(−1)〈c,z〉
∣∣∣∣

A source with average bias at most 2−k has min-entropy at least k, and so low average bias is
a stronger condition than high min-entropy. We observe that the inner product function is an
extractor for any source with average bias less than 2−n/2.

The notion of average bias especially makes sense for polynomial sources, i.e., distributions
sampled by low-degree n-variate polynomials over F2. For the well-studied case of affine
sources, it is easy to see that min-entropy k is exactly equivalent to average bias of 2−k. We

show that for quadratic sources, min-entropy k implies that the average bias is at most 2−Ω(
√

k).
We use this relation to design dispersers for separable quadratic sources with a min-entropy
guarantee.

1 Introduction

Given a source (distribution) Z, the problem of designing an extractor for Z is that of construct-
ing a function which when applied to a sample from Z makes the output be close to a random
bit string. Explicitly constructing extractors is a fundamental object of study in theoretical com-
puter science and has wide-ranging applications to a variety of areas, including complexity theory
[Zuc96, Tre01], data structures [BMRV02, TS02], coding theory [TSZ04], hashing [GW97], cryptog-
raphy [Vad04], graph theory [WZ99], and geometry [Ind07]. See the book by Vadhan [Vad12] and
references therein for an overview of randomness extraction.

1.1 Average Bias

Formally, given a family F of sources over {0, 1}n, an ε-extractor for F is a function E : {0, 1}n →
{0, 1}m such that for any source Z in F , the random variable E(Z) is ε-close in statistical distance
to the uniform distribution over {0, 1}m. Throughout this paper, we will restrict ourselves to one-
bit extractors, i.e., m = 1. It is well-known that in order to extract a bit, the source must1 have
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1To be precise, the source must be ε-close to one having min-entropy ≥ 1 but let’s ignore this technicality for now.
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min-entropy at least 1, where the min-entropy is defined as:

H∞(Z) = − log2 max
z∈{0,1}n

Pr[Z = z].

However, the min-entropy condition is far from sufficient. In fact, no extractor exists even for the
family of sources of min-entropy n − 1!

In this work, we identify another notion of pseudorandomness which is also necessary for extrac-
tion, namely that of average bias, which we define as follows.

Definition 1.1 (Average Bias) Given a source Z over {0, 1}n, its average bias is:

bav(Z) = 2−n ∑
c∈{0,1}n

∣∣∣∣ E
z∼Z

(−1)〈c,z〉
∣∣∣∣ .

It is clear that bav(Z) < 1 in order for Z to admit an extractor, because otherwise if bav(Z) = 1,
Z must be constant. The name “average bias” derives from the well-studied notion of bias of a
distribution:

bias(Z) =

∣∣∣∣ E
z∼Z

[(−1)z]

∣∣∣∣ .

To the best of our knowledge, the notion of average bias has not been systematically studied
previously. Our motivation originated from additive combinatorics where bias has played an
important role in linking analytic and algebraic properties of functions [KL08, GT09].

We begin by observing that low average bias is a stronger notion of pseudorandomness than high
min-entropy. Precisely:

Lemma 1.1 For a distribution Z on {0, 1}n, if bav(Z) ≤ 2−k, then H∞(Z) ≥ k.

While it is true, as mentioned above, that one cannot extract from all sources of min-entropy n − 1,
one can extract from all sources with a small average bias guarantee. This is our second observa-
tion (see Section 2 for definitions).

Lemma 1.2 Any bent function on n bits is an ε-extractor for sources with average bias < 2−(1+ε)n/2.

We also observe that it is impossible to extract from arbitrary sources with larger average
bias.

1.2 Polynomial Sources

Lemma 1.2 indicates that for general sources, small average bias can be a much stronger guarantee
than large min-entropy. However, we now show that for a class of structured sources, average bias
and min-entropy give qualitatively similar guarantees, and we make use of this result to extract
randomness from such sources when there is only a min-entropy lower bound.

A well-studied class of sources studied previously is the set of affine sources. An affine source of
min-entropy k is a random variable that is uniformly distributed on some k-dimensional affine
subspace of F

n
2 . Another way to describe the distribution is by defining n affine functions on k

variables, a1(t1, . . . , tk), . . . , an(t1, . . . , tk), that have rank k. Now, the affine source is interpreted
as the output of (a1(t), . . . , an(t)) on a uniformly chosen input t ∈ F

k
2. The following is easy to

check2:

2The bias of an affine function is 0 if it is not constant and 1 otherwise.
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Fact 1.3 An affine source of min-entropy k has average bias 2−k.

Hence, Lemma 1.1 is exactly tight for affine sources. Our main technical contribution is showing
a qualitatively similar result for quadratic sources.

Definition 1.4 (Quadratic Sources) A quadratic source over F
n
2 is generated by a function

P = (P1, . . . , Pn) where each Pi ∈ F2[x1, . . . , xm] is a polynomial of degree ≤ 2 (for some integer m ≥ 1).
The source is defined as the random variable P(X) = (P1(X), . . . , Pn(X)) where X is uniformly chosen
from F

m
2 . By slight abuse of notation, we let H∞(P) and bav(P) denote the min-entropy and average bias

respectively of the source generated by P.

To the best of our knowledge, there are no known explicit extractors for quadratic sources over
F

n
2 with any non-trivial min-entropy guarantee. Previous work on quadratic, and more generally,

polynomial sources have been over F
n for large fields F, as we discuss later in Section 1.3.

We show the following relation between average bias and min-entropy for quadratic sources:

Theorem 1.1 Let P = (P1, . . . , Pn) generate a quadratic source over F
n
2 . If H∞(P) ≥ d, then bav(P) ≤

2−Ω(
√

d).

In other words, if for a quadratic source generated by P, we have bav(P) = 2−k, then: k ≤
H∞(P) ≤ O(k2). One quick application of this result yields the following structural information
about quadratic sources that may be of independent interest:

Corollary 1.1 Suppose P = (P1, . . . , Pn) generates a quadratic source over F
n
2 where each Pi ∈

F2[x1, . . . , xm], and suppose there exists β ∈ F
n
2 with Prx[P(x) = β] ≥ 2−k. Then:

Pr
z∈Im(P)

[
Pr

x∈F
m
2

[P(x) = z] ≥ 2−O(k2)

]
≥ 2−O(k2).

.

We also use Theorem 1.1 to design dispersers for a class of quadratic sources. A disperser for
a family F of sources over {0, 1}n is a function D : {0, 1}n → {0, 1} such that for any source
X ∈ F , the random variable D(X) is not constant. Dispersers are clearly weaker objects than
extractors, but no explicit disperser constructions are known for quadratic sources over F

n
2 with a

min-entropy guarantee.

We consider the class of r-separable quadratic sources. Informally speaking, such a source is gen-
erated by quadratic polynomials P1, . . . , Pn : F

m
2 → F2 so that the graph Gi on m vertices corre-

sponding to each quadratic Pi is r-partite (with the same partition for each graph). A 1-separable
quadratic sources is an affine source, while an m-separable quadratic source is a general quadratic
source. Thus, r parameterizes in some sense how far from affine the quadratic source is. In this
paper, we show that for a broad range of r, affine dispersers are also dispersers for r-separable
quadratic sources.

Theorem 1.2 There exists a constant C > 0 such that the following holds. Let AFF : n
2 7→ 2 be a

disperser for affine sources with min-entropy at least kmin = kmin(n). Let X be a r-separable quadratic
source with min-entropy k := H∞(X) which satisfies k ≥ Cr2k2

min. Then, AFF is a disperser for X.

Li’s work [Li16] gives an affine extractor (hence, a disperser) for sources with poly log n min-
entropy. Plugging this into Theorem 1.2 yields dispersers for O(1)-separable quadratic sources
with min-entropy poly log n and for Õ(

√
n)-separable quadratic sources with min-entropy

Ω(n).
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1.3 Related Work

Bias. The bias of randomness sources has a long history of study in the context of pseudorandom
generators. A distribution X on {0, 1}n is said to be ε-biased if:

max
c∈{0,1}n

∣∣∣∣ E
x∼X

(−1)〈c,x〉
∣∣∣∣ ≤ ε.

In other words, X fools all F2-linear tests. Sums of small-bias sources are known to fool polyno-
mials of bounded degree [BV10, Lov08, Vio09]. Beautiful works by Naor and Naor [NN93], Alon
et al [AGHP92, ABN+92], and Ta-Shma [TS17] have yielded explicit ε-biased sources with nearly
optimal support size. However, from the point of view of extractors, ε-biased sources are trivial to
extract from, and small bias in the above sense is clearly not necessary for extraction.

Bias as a notion of pseudorandomness has also been extensively studied in the context of additive
combinatorics. An influential result by Kaufman and Lovett [KL08] states that if a polynomial
P : F

n
2 → F2 has degree ≤ d and bias at least ε, then it has rank at most r(d, ε) for a bounded

function r, where rank(P) is defined as the number of (d− 1)-degree polynomials P can be written
as a function of. This result is a generalization of a fundamental fact about quadratic polynomials,
known as Dickson’s Lemma [Dic58], which relates the bias of a quadratic form to the rank of its
associated matrix. For cubics, quartics, and quintics, Haramaty and Shpilka [HS10] and Hatami
[Hat16] have obtained quantitatively stronger bounds on the rank in terms of the bias than what
[KL08] yields.

Seedless Extractors. Previous work on deterministic extractors have considered various restric-
tions on the randomness source, such as partitioning the source into a few independent sources
[CG88, BIW06, BKS+10, Rao07, BRSW06, Li15, CZ16, Coh16b, Coh16a, Li17], requiring the distri-
bution to be the output of a computational process [vN51, Blu86, TV00, KRVZ06, DW12], making
the distribution be fixed on some bits [KZ06, GRS06], and putting algebraic structure on the source
[BKS+10, Bou07, Dvi12]. We focus on the last type of restriction.

Over F2, [Bou07] gave an affine extractor for dimension (min-entropy) Ω(n), which was improved
slightly by Yehudayoff [Yeh11] and Li [Li11] to Ω(n/

√
log log n). Rao [Rao09] gave extractors

for poly log n dimension when the affine subspace is guaranteed to have a basis of low-weight
vectors, while Ben-Sasson and Kopparty [BSK12] and Shaltiel [Sha11] gave affine dispersers for
no(1) dimension. All these results were vastly improved recently by Li [Li16] who constructed
affine extractors for polylogarithmic min-entropy.

Dvir, Gabizon and Wigderson [DGW09] introduced the problem of constructing extractors for
polynomial sources as a natural extension of affine sources, albeit over large fields. Ben-Sasson and
Gabizon [BSG12] considered polynomial sources over F

n
pℓ

and constructed extractors for sources

with linear entropy rate with constant ℓ and p. However, their construction does not apply to the
hardest case of F

n
2 which we consider here. In fact, we do not even know of explicit dispersers in

this regime. An explicit construction of dispersers or extractors for quadratic sources over F
n
2 is

known to imply worst case circuit size lower bounds [GKST16].

1.4 Proof Techniques

We sketch the proofs for Theorems 1.1 and 1.2 in this section.

For Theorem 1.1, assume that bav(P) ≥ ε. Assuming that P(0) = 0, we show a lower bound on
Prx[P(x) = α] for some α ∈ F

n
2 . This implies the theorem by a simple translation trick.
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If we consider the set of quadratics {PS = ∑i∈S Pi | S ⊆ [n]}, then we know that at least ε/2
fraction of the PS’s have bias at last ε/2. Hence, by Dickson’s theorem, at least ε/2 fraction of the
PS’s have small rank. Call an S bad if PS has small rank.

Since rank is sub-additive, we might expect that the bad S’s form a subspace over F
n
2 . Indeed, we

can make this intuition formal using the Bogolyubov-Chang Lemma from additive combinatorics.
Our arguments here closely follow the analysis by Haramaty and Shpilka in [HS10], even though
their context is completely different! Whereas we are looking at the space of linear combinations of
quadratics P1, . . . , Pn, they were looking at the space of additive derivatives of a cubic polynomial.
But we can use their techniques to find a linear space V ≤ F

n
2 of dimension ≥ n −O(log ε−1) such

that any PS for S ∈ V is a quadratic with rank at most O(log2 ε−1). We also need and obtain an
additional property: many of the quadratics in V have nonzero bias, not just low rank3.

Following the line of arguments in [HS10] yields a subspace N ≤ F
m
2 of co-dimension d =

O(log2 ε−1) such that all the quadratics in V restricted to N become affine polynomials. That is,

there exist linear forms ℓ1, . . . , ℓd such that for every PS ∈ V, we can write PS = ∑
d
i=1 ℓi · ℓ(S)i + ℓ

(S)
0 .

For any PS whose bias is nonzero, it must be the case that ℓ
(S)
0 in the span of {ℓ(S)1 , . . . , ℓ

(S)
d }, for

otherwise, the bias would be 0 as the bias of any linear form is 0. Hence, for any PS whose bias is

nonzero, we can write PS = ∑
d
i=1(ℓi + c

(S)
i )ℓ

(S)
i . Since we also ensure that there are many S ∈ V

for which PS has nonzero bias, an averaging argument shows that there exists c∗i , . . . , c∗d such that

2−O(log2 1/ε) fraction of PS’s are in the ideal generated by 〈ℓ1 + c∗1 , . . . , ℓd + c∗d〉. Thus, restricting
to the affine subspace N∗ given by ℓ1 = c∗1 , . . . , ℓd = c∗d makes all these polynomials vanish. It is

then easy to see that in fact, the remaining O(log2 1/ε) polynomials are constant on a 2−O(log2 1/ε)

fraction of N∗, concluding the proof of Theorem 1.1.

For Theorem 1.2, consider the case r = 2, so that the source is generated by polynomials P1, . . . , Pn

where each Pi(x, y) = xT Aiy + bT
i y + cT

i x + ri. Let Mx be the matrix where the ith row is given by
AT

i x+ bi and C be the matrix whose i’th row is given by ci. Consider the following two cases:

• Suppose rank(Mx) > d for some x. Then, P1, . . . , Pn take values over a d-dimensional affine
subspace, for that fixed x and ranging over all y.

• Suppose rank(Mx) ≤ d for all x but rank(C) > d′. Then if we fix a y such that Mxy = 0, then
P1, . . . Pn take values over a d′ dimensional affine subspace as we range over x.

We prove that these are the only two cases possible. This is so, since if rank(Mx) is small for all x
and rank(C) is also small, then we can show a lower bound on the average bias which contradicts
the guaranteed min-entropy bound. Thus, if we use an affine disperser for dimension min(d, d′),
it is non-constant on our source. For larger r, we can argue similarly using induction.

1.5 Future Directions

Many questions are raised by the work we describe in this paper. While it is clear that the average
bias of a source must be < 1 to admit a one-bit extractor, we believe a stronger statement that
holds for extracting multiple bits.

Conjecture 1.5 Let X be a source for which there exists an extractor which can extract m-uniform bits.
Then we must have bav(X) ≤ exp(−m).

3The quadratic (x1 + · · ·+ xm)(y1 + · · ·+ ym) + z, for instance, has rank 1 but bias 0.
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Proving this conjecture would establish our hypothesis that low average bias is a tighter condition
for “extractability” than high min-entropy.

Turning to polynomial sources, we showed that for quadratic sources X, H∞(X) ≥ k implies

bav(X) ≤ 2−Ω(
√

k). We hope such a result is true for any bounded degree source.

Conjecture 1.6 Let X be a source generated by degree-d polynomials over F
n
2 . Then ,if H∞(X) ≥ k, then

bav(X) ≤ 2− fd(k) for some function fd that depends only on d.

We identified a broad sub-class of quadratic sources (namely, separable sources), for which affine
extractors also act as dispersers. We believe that a stronger claim can also be established, which
we state as a conjecture:

Conjecture 1.7 For every k > 0, there exists a k′ such that the following holds. An affine extractor for
min-entropy at least k′ is a disperser for quadratic sources of min-entropy at least k.

1.6 Organization

In Section 2, we establish some preliminaries and prove Lemmas 1.1 and 1.2. We show Theorem
1.1 and Corollary 1.1 in Section 3 and Theorem 1.2 in Section 4.

2 Preliminaries

Definition 2.1 (Randomness Extractor) Suppose that C is a class of sources, i.e. distributions over F
n
2 .

Then a function Ext : F
n
2 → F

t
2 is a ε-extractor for C-sources, if for all X ∈ C, we have

δTV(Ext(X), Unif(Ft)) ≤ ε

where δTV(·, ·) denotes the statistical (total variation) distance between two distributions.

Definition 2.2 (Dispersers) Suppose that C is a class of sources, i.e. distributions over F
n
2 . Then a

function Disp : F
n
2 → F2 is a disperser for C-sources, if for all X ∈ C, we have that Disp(X) is non-

constant.

In our proof of Theorem 1.1 for quadratic polynomial sources, we make heavy use of Dickson’s
lemma. Dickson’s lemma provides a canonical representation for quadratic polynomials over finite
fields, as well as a very useful notion of rank (which we refer to as Dickson’s lemma rank) which is
tightly connected to the bias of the quadratic when working over F2.

Lemma 2.3 (Dickson’s Lemma (Chapter 15, Theorem 4 of [MS77])) Let f : F
n
2 → F2, f (x) =

x⊤Ax + b⊤x + c be a quadratic polynomial mapping. Then, there exists a non-singular linear transfor-
mation T : F

n
2 → F

n
2 such that, with the transformation of variables y = T(x), we can write

f ◦ T−1(y) =
r

∑
i=1

y2i−1 · y2i + b⊤1 y + c

where r = rank(A + A⊤)/2. Furthermore, if b⊤1 y is linearly dependent on y1, . . . , y2r, then bias( f ) =
2−r. Otherwise, bias( f ) = 0.

Definition 2.4 (Dickson’s Lemma Rank) For a quadratic polynomial mapping f = x⊤Ax + b⊤x + c,
we define its Dickson’s lemma rank as rank2( f ) = rank(A + A⊤)/2, i.e. the number of quadratic terms
in its Dickson’s lemma representation.
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We use standard notions of Fourier analysis over F
n
2 . For a function f : F

n
2 → R, we denote

its Fourier coefficients by f̂ (c) = Ex[ f (x) · (−1)〈c,x〉]. We refer to [O’D14] for useful facts about
Fourier coefficients of functions over F

n
2 .

2.1 General Facts about Average Bias

Given a distribution Z on F
n
2 , let pZ : F

n
2 → [0, 1] be its probability density function. Then, observe

that:

bav(Z) =
1

2n ∑
c∈F

n
2

∣∣∣∣ E
x∼Z

(−1)〈c,x〉
∣∣∣∣ =

1

2n ∑
c∈F

n
2

∣∣∣∣∣ ∑
x∈F

n
2

pZ(x) · (−1)〈c,x〉
∣∣∣∣∣ = ∑

c∈F
n
2

| p̂Z(c)|, (1)

which is also known as the spectral norm of pZ.

Small Average Bias implies Large Min-Entropy

Lemma 1.1 For a distribution Z on {0, 1}n, if bav(Z) ≤ 2−k, then H∞(Z) ≥ k.

Proof. As above, let pZ be the probability density function of Z. Then, for any x ∈ F
n
2 :

pZ(x) =

∣∣∣∣∣ ∑
c∈F

n
2

p̂Z(c)(−1)〈c,x〉
∣∣∣∣∣ ≤ ∑

c∈F
n
2

| p̂Z(c)| = bav(Z)

due to the Fourier inversion formula, triangle inequality and (1) respectively. �

A one-bit extractor for low average bias sources

As a first application of average bias as a measure of pseudorandomness, we show that any bent
function (Ch. 6, [O’D14]) is an extractor for sources with small average bias, as shown in the
following lemma.

Lemma 2.5 (Lemma 1.2 restated) Let G : F
n
2 → F2 be a bent function. If X is a source over F

n
2 with

bav(X) ≤ 2−k for k ≥ (1 + α)(n/2) and α > 0, then G is a ε-extractor for X with ε = O(2−αn) = o(1).
In particular, if k > n/2, then G is a disperser.

Proof. Let g : F
n
2 → {±1} be defined as g := (−1)G.

∣∣∣∣ E
x∼X

g(x1, . . . , xn)

∣∣∣∣ =
∣∣∣∣∣ ∑

x∈F
n
2

g(x) · pX(x)

∣∣∣∣∣ = 2n ·
∣∣∣∣∣ ∑
c∈F

n
2

ĝ(c) · p̂X(c)

∣∣∣∣∣ ≤ 2n · 2−n/2 · ∑
c∈F

n
2

| p̂X(c)|

where the last equality is Plancherel’s identity and the last inequality is from the definition of a
bent function. Applying (1), we see that if bav(X) ≤ 2−(k−n/2), Ex∼X g(x) ≤ 2−(k−n/2) (which is
< 1, if k > n/2).

Applying Vazirani’s XOR lemma [Gol95] in this case, we get ‖G(X)− U1‖1 ≤
√

2 · 2−(k−n/2). So if
we have k ≥ (1 + α)(n/2) for some α > 0, we get that the bent function G ε-extractor for sources
X such that bav(X) ≤ 2−(1+α)(n/2), with ε =

√
2 · 2−αn = o(1). �

We reproduce an argument of Andrej Bogdanov that it is in general impossible to extract from
sources of larger average bias.

Lemma 2.6 For any function G : F
n
2 → {0, 1}, there exists a source X over F

n
2 with bav(X) ≤ 2−(n−1)/2

such that G(X) is constant.
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Proof. Suppose without loss of generality that |G−1(1)| ≥ 2n−1. Let X be the distribution that is
uniform over G−1(1). Then:

bav(X) = ∑
c

| p̂X(c)| ≤ 2n/2 ·
√

∑
c

p̂2
X(c) = 2n/2

√
E
x

p2
X(x) ≤ 2n/2

√
1

2n
· 1

2n−1
= 2−(n−1)/2

using (1), Cauchy-Schwarz, Parseval’s identity, and the definition of X respectively. �

3 Average Bias vs. Min-entropy for Quadratic Sources

We have already seen the relationship between average bias and min-entropy in one direction,
namely that a source with average bias ≤ 2−k has min-entropy ≥ k (Lemma 1.1). In this section,
we derive a relationship between min-entropy and average bias in the other direction, for the
special case of quadratic polynomial sources.

Theorem 1.1 Let P = (P1, . . . , Pn) generate a quadratic source over F
n
2 . If H∞(P) ≥ d, then bav(P) ≤

2−Ω(
√

d).

In the following subsection, we prove the above theorem.

3.1 Structure of quadratic forms with High Average Bias

Throughout this subsection, we will consider P1, . . . , Pn ∈ F2[x1, x2, . . . , xm] to be quadratic poly-
nomials which satisfy bav(P) ≥ ε for ε = 2−o(n). Additionally we shall assume that P(0) = 0. The
main result of this subsection is the following lemma:

Lemma 3.1 Let P = (P1, P2, . . . , Pn) be quadratic polynomials in F2[x1, . . . , xm] satisfying P(0) = 0.
Let ε := bav(P) denote the average bias of P. Then there exists a subspace U ⊆ F

n
2 of co-dimension

O(log2(1/ε)) and an affine subspace N∗ ⊆ F
m
2 of co-dimension O(log2(1/ε)) satisfying the following

condition: for every set S ∈ U, the corresponding quadratic PS = ∑i∈S Pi vanishes on N∗ i.e., PS|N∗ = 0.

The proof of the above lemma consists of 3 steps.

1. Finding a large subspace V of low rank quadratics: Since bav(P) = ES bias(PS) = ε, by
an averaging argument we have that for at least ε/2 fraction of choices of S, the corresponding
bias term satisfies bias(PS) ≥ ε/2. Let A := {S ∈ F

n
2 : bias(PS) ≥ ε/2} denote the set of S’s

with large bias, and let µ0 = |A|/2n satisfying µ0 ≥ ε/2. Let rank2(P) of a quadratic form P
be the number of quadratic terms in its Dickson’s lemma representation ∑

r
i=1 x2i−1x2i + ℓ(x) (see

Definition 2.4).

Lemma 3.1 There exists a subspace V ⊆ F
n
2 of co-dimension O(log(1/ε)) such that the following proper-

ties hold:

1. For all S ∈ V, rank2(PS) ≤ O(log2(1/ε))

2. The density of A in V satisfies µ =
|A ∩ V|
|V| ≥ µ0 ≥ ε/2.

Proof. We show the existence of the subspace V by applying the Bogolyubov-Chang Lemma to the
set A. In particular, we invoke the proof of the lemma in [HS10], Lemma 2.3. We only sketch the
construction and observe that part (2) of the Lemma also holds.

The claim is that there exists a subspace V ⊆ F
n
2 of co-dimension O(log(1/2µ0)) = O(log(1/ε))

contained in kA − kA, for k ≤ max
(

1,
⌈

1
2

(
log 4

3
(2/µ0) + 2

)⌉)
= O(log(1/ε)). The way V is

8



constructed in [HS10], Lemma 2.3, is by producing a sequence of subspaces F
n
2 = W0, W1, . . . , Wt

such that |A ∩ Wi|/|Wi| ≥ 1.5 · |A ∩ Wi−1|/|Wi−1| and t ≤ log3/2(1/2µ0). Then, if V = Wt, it is
shown that V = k(A ∩ V)− k(A ∩ V) for k as above.

Part (1) of the Lemma follows because for any S ∈ A, rank2(PS) ≤ log(2/ε) (since the bias
of a Dickson’s lemma representation with r quadratic terms is 2−r or 0) and so for any S ∈ V,
rank2(PS) ≤ k · log(2/ε) = O(log2 1/ε) since rank2 is subadditive.

Part (2) of the Lemma also holds because the density |A ∩ Wi|/|Wi| strictly increases with i by
construction. Hence, we have that the density of A in V is ≥ µ0 (and in fact, is > µ0 if t > 0). �

2. Finding a large subspace N on which the quadratics are linear. Let V ⊆ F
n
2 be a subspace as

guaranteed by Lemma 3.1. We now have that there exists a small set of linear forms such that the
quadratic component (in the Dickson’s Lemma representation) of every P ∈ V can be expressed
as linear combinations of these linear forms.

Lemma 3.2 There exist linearly independent linear forms ℓ1, ℓ2, . . . , ℓd, with d = O(log2(1/ε)) for which
the following holds. For all S ∈ V, we can write:

PS =
d

∑
i=1

ℓiℓ
(S)
i + ℓ

(S)
0

for some linear forms ℓ
(S)
0 , ℓ

(S)
1 , . . . , ℓ

(S)
d . Furthermore, without loss of generality, the ℓi’s are linearly inde-

pendent, and the ℓ
(S)
0 s are linearly independent of the ℓi’s.

Proof. Follows directly from Lemma 3.7 of [HS10]. The last line is because if the ℓi’s were linearly

dependent, then d can be decreased, and if ℓ
(S)
0 were linearly dependent on the ℓi’s, then the ℓ

(S)
i ’s

can be changed to make ℓ
(S)
0 equal to 0. �

Let N ⊆ F
m
2 be the subspace {x : ℓ1(x) = · · · = ℓd(x) = 0} with co-dimension d = O(log2(1/ε)),

where ℓ1, . . . , ℓd are as in Lemma 3.2. For every choice of c = (c1, . . . , cd) ∈ F
d
2, let N[c] denote the

coset of N parametrized by N[c] := {x : ℓi(x) = ci ∀ i ∈ [d]}. Note that by construction, there are
exactly 2d such cosets.

The following proposition states some useful structural properties of the linear forms ℓ
(S)
i .

Proposition 3.3 For all S ∈ V, the linear forms ℓ
(S)
i have an additive structure inherited from the polyno-

mials {PS} themselves i.e,. for any choice of sets S1, S2 ∈ V with S = S1 + S2, we have ℓ
(S)
i = ℓ

(S1)
i + ℓ

(S2)
i

for i = 0, . . . , d. Moreover, for any choice of c ∈ F
d
2 and sets S1, S2 ∈ V, if ℓ

(S1)
0 = ∑i ci ℓ

(S1)
i and

ℓ
(S2)
0 = ∑i ci ℓ

(S2)
i , then ℓ

(S1+S2)
0 = ∑i ci ℓ

(S1+S2)
i

Proof. For the first part, fix any pair of sets S1, S2 ∈ V. Since PS1+S2
= PS1

+ PS2
, with S = S1 + S2,

we have PS = ∑
d
i=1 ℓi · (ℓ(S1)

i + ℓ
(S2)
i ) + (ℓ

(S1)
0 + ℓ

(S2)
0 ) and the observation follows.

The second part can be argued as follows. We have ℓ
(S)
0 = ∑i∈[d] ci ℓ

(S)
i if and only if PS |N[c]= 0.

Since PS = PS1
+ PS2

, PS1
|N[c]= 0 and PS2

|N[c]= 0 =⇒ PS |N[c]= 0. The observation then follows.
�
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We shall also need the following observation, which says that for any quadratic PS : S ∈ V with

nonzero bias, the linear component ℓ
(S)
0 must be in the span of the linear forms ℓS

1 , . . . , ℓ
(S)
d .

Proposition 3.4 For each S ∈ V such that bias(PS) 6= 0, there exists c(S) ∈ F
d
2 such that ℓ

(S)
0 =

∑i c
(S)
i ℓ

(S)
i

Proof of Proposition 3.4. We fix a set S ∈ V. Recall that from Lemma 3.2, the linear forms
ℓ1, ℓ2, . . . , ℓd are linearly independent. Therefore, we can assume ℓi = xi ∀ i ∈ [d] by a non-

singular linear renaming of variables. Let W := SpanF2

(
ℓ
(S)
1 , . . . , ℓ

(S)
d

)
. Let L(Fm

2 , F2) denote the

vector space of linear forms on F
m
2 . Then we can decompose L(Fm

2 , F2) = W ⊕ W⊥ (non-unique
direct sum complement).

We shall prove our claim by contradiction i.e., we assume that ℓ
(S)
0 /∈ W. Then we can write

ℓ
(S)
0 = ℓ

(S)
00 + ℓ

(S)
01 such that ℓ

(S)
00 ∈ W, and ℓ

(S)
01 ∈ W⊥. In particular, since ℓ

(S)
0 6∈ W, we have

ℓ
(S)
01 6= 0. Furthermore, from Lemma 3.2 we know that ℓ

(S)
0 (and consequently ℓ

(S)
01 ) must be linearly

independent of the linear forms ℓ1, ℓ2, . . . , ℓd.

Let w1, . . . , wr be a basis of W and wr+1, . . . , wn to be a basis of W⊥, which together forms a basis of
L(Fm

2 , F2). Then, using this basis, we can perform another non-singular linear renaming wi 7→ zi

so that ℓ
(S)
01 is variable disjoint in terms of {zi} from {ℓ(S)1 , . . . , ℓ

(S)
d , ℓ

(S)
00 , } and {ℓ1, ℓ2, . . . , ℓd}. Then

without loss of generality, we can assume that ℓ
(S)
01 = z1, and the rest of the linear forms can be

expressed in terms of z2, z3, . . . , zn. But then we have

bias(PS) =

∣∣∣∣ E
x1,...,xm

[
(−1)PS(x)

]∣∣∣∣ =

∣∣∣∣ E
x1,...,xm

[
(−1)∑i∈[d] ℓi(x)ℓ

(S)
i (x)+ℓ

(S)
00 (x)+ℓ

(S)
01 (x)

]∣∣∣∣

=

∣∣∣∣ E
z1,...,zn

[
(−1)∑i∈[d] ℓi(z≥2)ℓ

(S)
i (z≥2)+ℓ

(S)
00 (z≥2)+z1

]∣∣∣∣

=

∣∣∣∣ E
z2,...,zn

[
(−1)∑i∈[d] ℓi(z≥2)ℓ

(S)(z≥2)+ℓ
(S)
00 (z≥2) E

z1

(−1)z1

]∣∣∣∣
= 0

�

3. Finding a large subspace U of quadratics vanishing on a large subspace N∗. Finally, we show
that there exists a large subspace U ⊆ F

n
2 and a coset of N such that every quadratic from U

vanishes on the coset.

Lemma 3.5 There exists a subspace U ⊆ F
n
2 with dim(U) ≥ n − O(log2(1/ε)), and c ∈ F

d
2 such that

the following holds: For all S ∈ U, PS |N[c]= 0, or equivalently, ℓ
(S)
0 = ∑i∈[d] ci ℓ

(S)
i .

Proof. By Lemma 3.1, there exists a large subset V̂ ⊆ V of density ≥ ε/2 such that for all S ∈ V̂,
bias(PS) 6= 0. By Proposition 3.4, for all S ∈ V̂, there exists at least one c(S) such that PS |N[c(S)]= 0.

So for each S, choose one such representative c(S) and let C = {c(S) : S ∈ V̂}. Since every coset of

N can be identified by a d-dimensional vector over F2, we must have |C| ≤ 2d = 2O(log2(1/ε)).

Now recall that from Lemma 3.1, our choice of V̂ satisfies

|V̂| ≥ ε

2
|V| = 1

2O(log(1/ε))+1
· 2n−O(log(1/ε)) = 2n−O(log(1/ε))
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Therefore, by an averaging argument, there exists c ∈ F
d
2 such that for at least |V̂|/2d ≥

2n−O(log2(1/ε)) choices of sets S ∈ V, we have c(S) = c. Let U =
{

S ∈ V : c(S) = c
}

be the collection

of all such sets from V.

Finally, we claim that U is closed under addition over F2, and therefore, is a subspace. To see this,
fix any pair of sets S1, S2 ∈ Γ. Then PS1

|N[c] = PS2
|N[c] = 0, which using Proposition 3.3 implies

that PS1+S2
|N[c] = 0, or equivalently S1 + S2 ∈ U. Since |U| ≥ 2n−O(log2(1/ε)) it follows that the

dimension of U is at least log |U| ≥ n − O(log2(1/ε)). �

Since the above lemma directly gives us the a large dimensional subspace U of quadratics, all
of which vanish on a large dimensional affine subspace N∗ := N[c], this concludes the proof of
Lemma 3.1.

3.2 Finishing the proof of Theorem 1.1

We first handle the case when P(0) = 0.

Lemma 3.6 Let P = (P1, P2, . . . , Pn) be quadratic polynomials in F2[x1, . . . , xm] satisfying P(0) = 0,

and let ε = bav(P). Then Prx(P(x) = α) ≥ 2−O(log2(1/ε)), for some α ∈ F
n
2 .

Proof. By a linear transformation of the polynomials, we can assume without loss of generality that
the subspace U obtained from Lemma 3.1 is spanned by P1, . . . , Pt where t = n − O(log2(1/ε)).

Let N∗ be the affine subspace from Lemma 3.1. By averaging, there exists some α′ ∈ F
t
2 such that

Pr
x∈N∗

[(Pt+1(x), . . . , Pn(x)) = α′] ≥ 1

2n−t
.

Hence:

Pr
x
[(P1(x), . . . , Pn(x)) = (0t, α′)] ≥ |N∗|

2n
· 1

2n−t
≥ 2−O(log2(1/ε)).

�

We are now ready to prove our main theorem

Proof of Theorem 1.1. Consider the vector of polynomials P′ = P − P(0). Then, the average bias of
P′ is equal to the average bias of P, and P′(x) = 0 ⇐⇒ P(x) = P(0). Applying Lemma 3.6 to P′

gives that for some α ∈ F
n
2 , Prx(P(x) = P(0) + α) ≥ 2−c·log2(1/ε), and so H∞(P) ≤ O(log2 1/ε). �

3.3 The distribution of a quadratic polynomial source

An affine source has the probability mass distributed uniformly in its support. Using the result
above, we can say something similar for quadratic sources.

Corollary 1.1 Suppose P = (P1, . . . , Pn) generates a quadratic source over F
n
2 where each Pi ∈

F2[x1, . . . , xm], and suppose there exists β ∈ F
n
2 with Prx[P(x) = β] ≥ 2−k. Then:

Pr
z∈Im(P)

[
Pr

x∈F
m
2

[P(x) = z] ≥ 2−O(k2)

]
≥ 2−O(k2).

.
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Proof. Since there exists a β in Im(P) with probability mass ≥ 2−k, we have H∞(P) ≤ k. This
implies that bav(P) ≥ 2−k, by Lemma 1.1.

Consider any y in Im(P), and let x0 be such that y = P(x0). Now, define P′ as P′(x) = P(x+ x0)+ y.
It is easy to see that P′ also generates a quadratic source with the same average bias as P (since x
and x + x0 are distributionally identical for a fixed x0). From Lemma 3.6, there exists α ∈ F

n
2 such

that:
Pr
x
[P′(x) = α] = Pr

x
[P(x) = y + α] ≥ 2−O(k2)

for some constant c > 0. Let zy = y + α. (Note that α may well depend on y.)

From the proof of Lemma 3.6, α is nonzero only in O(k2) coordinates4. This means that for any z ∈
Im(P), there are at most 2O(k2) choices of y ∈ Im(P) such that z = zy. Thus, there are Im(P)/2O(k2)

many distinct z’s such that Pr[P(x) = z] ≥ 2−O(k2), establishing the claim. �

4 Separable Quadratic Sources

In this section, we introduce the notion of a r-separable quadratic source and show that affine
dispersers are also dispersers for separable quadratic sources with high enough min-entropy. We
begin by defining separable quadratic sources.

Definition 4.1 (r-Separable Quadratic Source) An r-separable quadratic source is a quadratic

source generated by P = (P1, . . . , Pn) where each Pi ∈ F2[x
(1)
1 , . . . , x

(1)
m1

, x
(2)
1 , . . . , x

(2)
m2

, . . . , x
(r)
1 , . . . , x

(r)
mr
]

is a quadratic polynomial containing no monomial of the form x
(i)
j1

· x
(i)
j2

for any i ∈ [r], j1, j2 ∈ [mi].

In particular, a 2-separable quadratic source is generated by polynomials of the form Pi(x, y) = x⊤Aiy+
b⊤i y + c⊤i x + ei, where Ai ∈ F

m1×m2
2 , bi ∈ F

m2
2 , ci ∈ F

m1
2 , ei ∈ F2.

Intuitively, r-separable quadratic sources with small r should behave close to affine sources. We
establishing this intuition by showing that affine dispersers are also dispersers for r-separable
quadratic sources with large min-entropy, as stated formally in the following theorem:

Theorem 1.2 There exists a constant C > 0 such that the following holds. Let AFF : n
2 7→ 2 be a

disperser for affine sources with min-entropy at least kmin = kmin(n). Let X be a r-separable quadratic
source with min-entropy k := H∞(X) which satisfies k ≥ Cr2k2

min. Then, AFF is a disperser for X.

Instantiating the above theorem with Li’s extractor from [Li16] directly gives us the following
corollary.

Corollary 4.2 Let AFF : n
2 7→ be the affine disperser (actually an extractor) from [Li16], and let Z be

a r-separable quadratic source with min-entropy at least Ω(r2 log2C(n)) where C is as in Theorem 1.8 in
[Li16]. Then AFF is a disperser for Z.

In particular, one can set r to be as large as Õ(
√

n) (where the Õ(·) hides polylogarithmic factors
in n), for which Li’s extractor [Li16] will be a disperser for r-separable quadratic source with
polylogarithmic min-entropy.

The proof of Theorem 1.2 crucially uses average bias as an intermediate measure of psuedoran-
domness to go back and forth between the min-entropy of the separable source and the ranks of
the coefficient matrices of the separable source. For simplicity of exposition, we first prove the

4Assume without loss of generality that the linear transformation of the polynomials indicated in the first paragraph
of the proof of Lemma 3.6 has been applied on P′.
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theorem here for the case r = 2, which will highlight the key steps for the proving the general
case, and later extend these techniques to prove the full theorem.

4.1 The case r = 2

We state the guarantees for the case r = 2 in the following theorem:

Theorem 4.3 There exists a constant γ > 0 such that the following holds. Let AFF : n
2 7→ be a

disperser for affine sources with min-entropy at least kmin = kmin(n). Let Z be a 2-separable quadratic
source such that H∞(Z) ≥ γk2

min. Then AFF is a disperser for Z.

Before we proceed with the proof of the above theorem, we setup some additional notation that
will be used in the rest of the proof. As in Definition 4.1, let the quadratic source Z be generated
by polynomials Pi(x, y) = x⊤Aiy + b⊤i y + c⊤i x + ei, where Ai ∈ F

m1×m2
2 , bi ∈ F

m2
2 , ci ∈ F

m1
2 , ei ∈ F2.

For ease of notation, we can write the vector function P = (P1, . . . , Pn) as P(x, y) = Mxy + Cx + e,
where the ith row of Mx is (Mx)i = (Ai)

⊤x + bi, C = [c1 c2, · · · , cn]⊤ and e = [e1 e2, · · · , en]⊤. The
vector source is then Z = P(U, V) where U ∼ Unif(Fm1

2 ), V ∼ Unif(Fm2
2 ).

We shall need the following lemma, which says that, assuming the source Z has large min-entropy
(and hence, small average bias), if rank(Mx) is small for all x, the min-entropy must result from
the quantity Cx, and therefore, C must have large rank.

Lemma 4.4 Suppose that we have rank(Mx) ≤ d with for all x ∈ F
m1
2 . Then bav(P) ≥ 2−(d+rank(C)).

Proof. We ignore the constant term e in the calculations, since average bias is translation invariant.

bav(P) := E
λ

∣∣∣∣E
x,y

[
(−1)λ⊤Mxy+λ⊤Cx

]∣∣∣∣ = E
λ

∣∣∣∣Ex

[
(−1)λ⊤Cx

E
y
(−1)λ⊤Mxy

]∣∣∣∣

= E
λ

∣∣∣E
x

[
(−1)λ⊤Cx

{λ⊤Mx=0}
]∣∣∣

≥ E
λ

E
x

[
(−1)λ⊤Cx

{λ⊤Mx=0}
]

= E
x

[
Pr
λ

[
λ⊤Mx = 0

]
E

λ∼Null(M⊤
x )

[
(−1)λ⊤Cx

]]

≥ 2−d
E
x

E
λ∼Null(M⊤

x )

[
(−1)λ⊤Cx

]

1
≥ 2−d

E
x

E
λ

[
(−1)λ⊤Cx

]

= 2−d
E
x

[
1{Cx=0}

]

= 2−(d+rank(C))

Step 1 uses the following proposition:

Proposition 4.5 For any subspace V ≤ F
t
2 and vector a ∈ F

t
2:

0 ≤ E
λ∼F

t
2

[(−1)λ⊤a] ≤ E
λ∼V

[(−1)λ⊤a].
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Proof. Note that for any vector space W, Eλ∼W [(−1)λ⊤a] is either 0 or 1. So, the only case we need

to rule out is that Eλ∼F
t
2
[(−1)λ⊤a] = 1 but Eλ∼V [(−1)λ⊤a] = 0. But this is impossible since the first

equality implies a = 0. �

�

Using the above lemma we now proceed to prove Theorem 4.3. Let AFF : F
n
2 7→ F2 be an affine

disperser for min-entropy at least kmin.

Let X be a separable quadratic source with min-entropy ≥ k. Since k ≥ γk2
min, using Theorem 1.1,

this implies that its average bias is ≤ 2−γ1

√
k ≤ 2−γ1kmin for some constant γ1, which grows with

γ. Furthermore, we set d := γ1kmin/2. Note that we can choose γ to be a large enough constant,
such that γ1 > 2 and d > kmin. We now divide the analysis into two cases:

• Case (i): Suppose rank(Mx) > d for at least one x = x∗ ∈ F
m1
2 . Then, restricted to x = x∗ and

y uniformly chosen from F
m2
2 , P(x∗, y) = Mx∗y + Cx∗ + e which is uniform over an affine

subspace of dimension > d. By definition, AFF is non-constant over any affine subspace of
dimension ≥ kmin.

• Case (ii): Suppose rank(Mx) ≤ d for all x. Then using Lemma 4.4 we have 2−rank(C) ≤
2d
(
bav( f )

)
≤ 2d

(
2−γ1kmin

)
= 2−d or equivalently, rank(C) ≥ d.

Let p := Prx,y [y ∈ Null(Mx)) ≥ 2−d. Then, we can upper-bound the bias of the disperser as
follows.

∣∣∣E
x

E
y
(−1)AFF(Mxy+Cx+e)

∣∣∣ ≤ p
∣∣∣E

x
E

y∼Null(Mx)
(−1)AFF(Mxy+Cx+e)

∣∣∣+ 1 − p

= p
∣∣∣E

x
E

y∼Null(Mx)
(−1)AFF(Cx+e)

∣∣∣+ 1 − p

= p
∣∣∣E

x
(−1)AFF(Cx+e)

∣∣∣+ 1 − p < 1

where in the last step, we use the fact that AFF is non-constant on an affine subspace of
dimension ≥ d.

Since in both cases (i) and (ii), we have established that
∣∣∣Ex,y(−1)AFF(Mxy+Cx+e)

∣∣∣ < 1, it follows

that AFF is a disperser for X. This concludes the proof of Theorem 4.3.

4.2 Proof for general r

An r-separable quadratic source is generated by polynomials of the form Pi(x1, . . . , xr) =

∑1≤j1<j2≤r x⊤j1 A
(i)
j1 j2

xj2 + ∑j∈[r](b
(i)
j )⊤xj + c(i) for some A

(i)
js,jt

∈ F
mj1

×mj2
2 , b

(i)
j ∈ F

mj

2 and c(i) ∈ F2

Succinctly, we can also write the vector function P as P = ∑
r
i=1 M≤ixi + c where the matrix M≤i

depends on x1, x2, . . . , xi−1.

The proof of Theorem 1.2 goes through the following generalization of Lemma 4.4.

Lemma 4.6 For P as above, suppose bav(P) ≤ 2−k. Let 0 < C < 1 be a constant. Suppose that for all
1 < i ≤ r, we have rank

(
M≤i

)
≤ d with probability 1, where d satisfies rd ≤ (1 − C) · k. Then, we have

rank(M≤1) ≥ C · k.

Proof. The proof follows by applying the arguments from Lemma 4.4 to iteratively remove the
variables, starting with xr. By definition, we can express the average bias bav(P) as
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E
λ

∣∣∣∣∣∣
E

x1,...,xr


(−1)

λ⊤
(

∑i∈[r] M≤ixi

)

∣∣∣∣∣∣
= E

λ

∣∣∣∣∣∣
E

x1,...,xr−1


(−1)

λ⊤
(

∑i∈[r−1] M≤ixi

)

E
xr

(−1)λ⊤M≤r xr



∣∣∣∣∣∣

≥ E
λ

E
x1,...,xr−1


(−1)

λ⊤
(

∑i∈[r−1] M≤ixi

)

E
xr

(−1)λ⊤M≤r xr




= E
λ

E
x1,...,xr−1


(−1)

λ⊤
(

∑i∈[r−1] M≤ixi

)

{λ⊤M≤r=0}




= E
x1,...,xr−1

Pr
[
λ ∈ Null(M⊤

≤r)
]
· E

λ∼Null(M⊤
≤r)


(−1)

λ⊤
(

∑i∈[r−1] M≤ixi

)


1
≥ 2−d

E
x1,...,xr−1

E
λ∼Null(M⊤

≤r)


(−1)

λ⊤
(

∑i∈[r−1] M≤ixi

)


2
≥ 2−d

E
λ

E
x1,...,xr−1


(−1)

λ⊤
(

∑i∈[r−1] M≤ixi

)


Here, in step 1 we use the observation that each of the probability terms is at least 2−d by the upper
bound on the rank. Step 2 uses Proposition 4.5. Rearranging, we get that

E
λ

E
x1,...,xr−1


(−1)

λ⊤
(

∑i∈[r−1] M≤ixi

)
 ≤ 2dbav(X1, X2, . . . , Xr) ≤ 2d−k

Applying the above inequality iteratively we get that

2−rank(M≤1) ≤ 2rd−k

Now we have by assumption that rd − k ≤ −C · k, to get the claim.

�

4.3 Proof of Theorem 1.2

Since H∞(X) ≥ Cr2k2
min, using Theorem 1.1 we have bav( f ) = 2−k where k ≥ C′rkmin for some

constant C′ that grows with C. Furthermore, we set d = 2kmin. C is chosen such that k ≥ 2rd. As
before, we break our analysis into two cases:

• Case (i): First, suppose there exists an 1 < i ≤ r such that Prx1,x2,...,xi−1

[
rank(M≤i) ≥ d

]
> 0,

and let i∗ be the largest such i. By the maximality of i∗, we have Prx(rank(M≤j) ≤ d) = 1 for
all j > i∗. Now we can upper bound the bias of the disperser as
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∣∣∣∣∣∣
E

x1,x2,...,xr


(−1)

AFF

(
∑l∈[r] M≤l xl+c

)

∣∣∣∣∣∣

≤ Pr
x1,...,xr


∧

j>i∗
M≤jxj = 0


 ·

∣∣∣∣∣∣
E

x1,...,xr


(−1)

AFF

(
∑ℓ∈[r] M≤ℓxℓ+c

)
∣∣∣
∧

j>i∗
M≤jxj = 0



∣∣∣∣∣∣

+ Pr
x1,...,xr


∨

j>i∗
M≤jxj 6= 0




= Pr
x1,...,xr


∧

j>i∗
M≤jxj = 0


 ·

∣∣∣∣∣∣
E

x1,...,xr


(−1)

AFF

(
∑ℓ∈[i∗ ] M≤ℓxℓ+c

)

∣∣∣∣∣∣
+ Pr

x1,...,xr


∨

j>i∗
M≤jxj 6= 0




Note that Prx1,...,xr

[∧
j>i∗ M≤jxj = 0

]
> 0 by definition of i∗. So, we will be done if we can

show that: ∣∣∣∣∣∣
E

x1,...,xr


(−1)

AFF

(
∑ℓ∈[i∗ ] M≤ℓxℓ+c

)

∣∣∣∣∣∣
< 1.

This can be argued as follows. Since Prx1,x2,...,xi∗−1

[
rank(M≤i∗) ≥ d

]
> 0, there exists an

assignment x1 = a1, . . . , xi∗−1 = ai∗−1 such that M≤i∗ has rank ≥ d. Restricted to this assign-
ment, ∑ℓ∈[i∗] M≤ℓxℓ + c generates an affine source of dimension ≥ d > kmin. So, the above
bias is strictly less than 1 because AFF is an affine disperser for dimensions ≥ kmin.

• Case (ii): In this case, for every 1 < i ≤ r, we have Pr [rank(M≤i) ≤ d] = 1. Then using
Lemma 4.6, we get that rank(M≤1) ≥ k/2 ≥ 2kmin. Note that again in this case, we want to
show that

∣∣∣∣∣∣
E

x1,x2,...,xr


(−1)

AFF

(
∑i∈[r] M≤ixi+c

)

∣∣∣∣∣∣
< 1

Using arguments identical to the previous case, we can iteratively remove variables
xr, xr−1, . . . , x2 and reduce this to the task of arguing

∣∣∣∣∣∣
E
x1


(−1)

AFF

(
M≤1x1+c

)

∣∣∣∣∣∣
< 1

But then, M≤1x1 + c is an affine source in x1 of min-entropy at least rank(M≥1) ≥ 2kmin, and
so, AFF is non-constant on it. This concludes the analysis for case (ii).
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