
A Note on One-way Functions and Sparse Languages

Yanyi Liu
Cornell University

yl2866@cornell.edu

Rafael Pass∗

Cornell Tech
rafael@cs.cornell.edu

June 28, 2021

Abstract

We show equivalence between the existence of one-way functions and the existence of a sparse
language that is hard-on-average w.r.t. some efficiently samplable “high-entropy” distribution.
In more detail, the following are equivalent:

• The existentence of a S(·)-sparse language L that is hard-on-average with respect to some
samplable distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ 4 log n;

• The existentence of a S(·)-sparse language L ∈ NP, that is hard-on-average with respect to
some samplable distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ n/3;

• The existence of one-way functions.

Our results are insipired by, and generalize, the recent elegant paper by Ilango, Ren and San-
thanam (ECCC’21), which presents similar characterizations for concrete sparse languages.

∗Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267,
and a JP Morgan Faculty Award. This material is based upon work supported by DARPA under Agreement No.
HR00110C0086. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 92 (2021)

1 Introduction

In this note, we consider the long-standing open problem of basing one-way functions (OWF) on the
assumption that NP contains a language that is average-case hard with respect to some efficiently
samplable distribution.

We take a step towards achieving this goal and demonstrate that the existence of OWF is equiv-
alent to the existence of a sparse language that is hard-on-average w.r.t. some efficiently samplable
“high-entropy” distribution. In more details, the Shannon entropy of the sampler needs to be just
slightly bigger than the logarithm of the density of the language.

Our results are insipired by, and generalize, the recent elegant paper by Ilango, Ren and San-
thanam [IRS21], which presents similar characterizations for concrete (sparse) languages; we observe
that these results in [IRS21] follow as direct corollaries from our characterization.

Preliminaries We say that a language L ⊂ {0, 1}∗ is S(·)-sparse if for all n ∈ N, |Ln| ≤ S(n),
where Ln = |L ∩ {0, 1}n|. Given a language L, we abuse of notation and let L(x) = 1 iff x ∈ L. For
a random variable X, let H(X) = E[log 1

Pr[X=x]] denote the Shannon entropy of X.

We say that D = {Dn}n∈N is an ensemble if for all n ∈ N, Dn is a probability distribution
over {0, 1}n. We say that an ensemble D = {Dn}n∈N is samplable if there exists a probabilistic
polynomial-time Turing machine S such that S(1n) samples Dn; we use the notation S(1n; r) to
denote the algorithm S with randomness fixed to r. We say that an ensemble D has entropy h(·) if
for all sufficiently large n ∈ N, H(Dn) ≥ h(n).

We say that a language L ⊂ {0, 1}∗ is α(·) hard-on-average (α-HoA) on an ensemble D =
{Dn}n∈N if for all probabilistic polynomial-time heuristics H, for all sufficiently large n ∈ N,

Pr[x← Dn : H(x) = L(x)] < 1− α(n).

We simply say that L is hard-on-average (HoA) on D if for every c, α(n) = 1/2− n−c, L is α-HoA.
Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be a one-way

function (OWF) if for every PPT algorithm A, there exists a negligible function µ such that for all
n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

Main Theorem We are now ready to state our main theorem.

Theorem 1.1. The following are equivalent:

1. The existentence of a S(·)-sparse language L that is (1
2−

1
4n)-HoA with respect to some samplable

distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ 4 log n;

2. The existentence of a S(·)-sparse language L ∈ NP, that is HoA with respect to some samplable
distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ n/3;

3. the existence of one-way functions.

Theorem 1.1 is proven by, in Section 2 showing that (1) implies (3), and in Section 3 showing
that (3) implies (2); the fact that (2) implies (1) is trivial. We finally present some corollaries of
Theorem 1.1 in Section 4.

1

2 OWFs from Avg-case Hardness of Sparse Languages

Theorem 2.1. Let S(·) be a function, let h(n) ≥ logS(n) + 4 log n, and let L be a S(·)-sparse
language. Assume there exists some samplable ensemble D with entropy h(·) such that L is (1

2 −
1

4n)-
HoA on D. Then, one-way functions exist.

Before proving the theorem, we will state some useful lemmas.

Lemma 2.1 (Implicit in [LP20, IRS21]). Let Dn be a distribution over {0, 1}n with entropy at least
h. Then, with probability at least 1

n over x← Dn, it holds that

Pr[Dn = x] ≤ 2−h+3

Proof: Assume for contradiction that with probability less than 1
n over x ← Dn, Pr[Dn = x] ≤

2−h+3. Let Freq denote the set of strings x ⊆ {0, 1}n such that Pr[Dn = x] > 2−h+3, and let Rare
denote the set of strings ⊆ {0, 1}n such that Pr[Dn = x] ≤ 2−h+3. Let flag be a binary random
variable such that flag = 0 if Dn ∈ Freq and 1 otherwise (i.e. if Dn ∈ Rare). Let pFreq be the
probability that Dn ∈ Freq and pRare be the probability that Dn ∈ Rare. By the chain rule for
entropy, it holds that

H(Dn) ≤ H(Dn, flag) = H(flag) + pFreqH(Dn | Dn ∈ Freq) + pRareH(Dn | Dn ∈ Rare)

In the RHS, the first term is at most 1 (since flag is a binary variable). The second term is at
most h − 3 since |Freq| ≤ 2h−3. Recall that by assumption, we have that pRare <

1
n ; furthermore,

H(Dn | Dn ∈ Rare) ≤ n (since |Rare| ≤ 2n) and thus the last term of the RHS is at most 1. Therefore,
H(Dn) ≤ 1 + (h− 3) + 1 < h, which is a contradiction.

Lemma 2.2. Let Ln ⊂ {0, 1}n be a set of strings such that |Ln| ≤ S(n). Let Dn be a distribution
over {0, 1}n. Let ε be a constant such that ε ≤ 1

S(n)n2 . Then, the following holds:

Pr
x←Dn

[Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] ≤ 1

n2

Proof: By the union bound, it follows that Prx←Dn [Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] is bounded by
S(n)× 1

S(n)n2 = 1
n2 .

We will rely on the following important lemma showing that approximate counting can be effi-
ciently done if one-way functions do not exist.

Lemma 2.3 ([IL90, IL89, IRS21]). Assume that one-way functions do not exist. Then, for any
samplable ensemble D = {Dn}n∈N and any constant q ≥ 1, there exist a PPT algorithm A and a
constant δ such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1− 1

nq

where px = Pr[Dn = x].

In addition, we observe that if approximate counting can be done, the Shannon entropy of any
samplable distribution D can be estimated efficiently.

2

Lemma 2.4. Let D = {Dn}n∈N be a samplable ensemble, let Samp be the corresponding sampler,
and let m(·) be a polynomial such that m(n) is greater than the number of random coins used by
Samp(1n). Assume that there exist a PPT algorithm A, a constant δ, and an infinite set I ⊆ N such
that for all n ∈ I,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1− 1

m(n)

where px = Pr[Dn = x]. Then, there exist a PPT algorithm est and a constant δ′ such that for all
n ∈ I, with probability at least 1− 1

n2 ,

|est(1n)−H(Dn)| ≤ δ′

Proof: Let n ∈ I be a sufficiently large input length on which A succeeds. Let px denote Pr[Dn = x].
Let A′ be an algorithm such that A′(x) = max(2−m,min(1,A(x))). A′ will have the same property
that A has in the assumption since for all x in the support of Dn, it holds that 2−m ≤ px ≤ 1. We
first claim that

|Ex←Dn [− logA′(x)]−H(Dn)| ≤ − log δ + 1 (1)

If this holds, note that D is samplable and A′ runs in PPT, it follows that we can empirically estimate
Ex←Dn [− logA′(x)] in polynomial time by sampling at least n6 samples and taking the average. By
Hoeffding’s inequality, the difference between this estimation and the real expectation value is at
most 1 with very high probability (≥ 1− 1

n2).
Thus, it remains to show that inequality 1 holds. Notice that

|Ex←Dn [− logA′(x)]−H(Dn)|
=|Ex←Dn [− logA′(x)]− Ex←Dn [− log px]|
≤Ex←Dn [| − logA′(x)− (− log px)|]
= Pr
x←Dn

[A′ succeeds] · Ex←Dn [| − logA′(x)− (− log px)| | A′ succeeds]

+ Pr
x←Dn

[A′ fails] · Ex←Dn [| logA′(x)− (− log px)| | A′ fails]

≤Ex←Dn [| log
px
A′(x)

| | A′ succeeds] +
1

m
·m

≤Ex←Dn [− log δ | A′ succeeds] + 1

≤− log δ + 1

Now we are ready to prove Theorem 2.1.
Proof: [Proof of Theorem 2.1] Assume for contradiction that one-way functions do not exist. Then,
by Lemma 2.3, there exist a PPT algorithm A and a constant δ such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1− 1

n2

where px = Pr[Dn = x]. By Lemma 2.4, there exist a PPT algorithm est and a constant δ′ such that
for all n on which A succeeds, with probability at least 1− 1

n2 ,

|est(1n)−H(Dn)| ≤ δ′ (2)

Consider some sufficiently large input length n on which A succeeds. Let

ε = 2−est(1
n)+logn

3

We are now ready to describe our heuristic H for L. On input x← Dn, H computes ε and outputs
0 if A(x) ≤ ε; otherwise, H outputs a random guess b ∈ {0, 1}. We will show that H solves L with
probability 1

2 + 1
4n on the input length n (whenever n is sufficiently large).

Towards this, let us first assume we have access to a “perfect” approximate-counter algorithm
O such that δ · px ≤ O(x) ≤ px with probability 1 when x sampled from Dn; let us also assume
we have access to a “perfect” entropy-estimator algorithm est∗ such that |est∗(1n) − H(Dn)| ≤ δ′

with probability 1; consider the heuristic H′ that behaves just as H except that H′ uses O and est∗

instead of A and est.
We first show that H′ solves L with high probability on Dn. Note that

Pr
x←Dn

[H′(x) = L(x)]

= Pr
x←Dn

[H′(x) = L(x) | O(x) > ε] Pr[O(x) > ε] + Pr
x←Dn

[H′(x) = L(x) | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1

2
(1− Pr[O(x) ≤ ε]) +

(
1− Pr

x←Dn

[H′(x) 6= L(x) | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1

2
(1− Pr[O(x) ≤ ε]) +

(
1− Pr

x←Dn

[L(x) = 1 | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1

2
+

1

2
Pr[O(x) ≤ ε]− Pr

x←Dn

[L(x) = 1 | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1

2
+

1

2
Pr[O(x) ≤ ε]− Pr

x←Dn

[L(x) = 1 ∧ O(x) ≤ ε]

Note that px ≤ ε implies O(x) ≤ ε (since O is a prefect approximate-counter). In addition, for
sufficiently large n, px ≤ 2−H(Dn)+3 implies px ≤ ε since

2−H(Dn)+3 ≤ 2−est
∗(1n)+δ′+3 ≤ 2−est

∗(1n)+logn = ε.

Thus,

Pr[O(x) ≤ ε] ≥ Pr
x←Dn

[px ≤ ε] ≥ Pr
x←Dn

[px ≤ 2−H(Dn)+3] ≥ 1

n

where the last inequality follows from by Lemma 2.1.
Next, observe that ε ≤ 1

S(n)n2 (for sufficiently large n). This follows since if n is sufficiently large,

we have:

ε = 2−est
∗(1n)+logn ≤ 2−H(Dn)+δ′+logn ≤2−H(Dn)+2 logn ≤ 2−h(n)+2 logn

≤2− logS(n)−4 logn+2 logn =
1

S(n)n2

Finally, since L(x) = 1 ∧ px ≤ ε implies L(x) = 1 ∧ O(x) ≤ ε, we have that

Pr
x←Dn

[L(x) = 1 ∧ O(x) ≤ ε] ≤ Pr
x←Dn

[L(x) = 1 ∧ px ≤ ε] ≤
1

n2

where the last inequality follows from Lemma 2.2 and the fact that ε ≤ 1
S(n)n2 . Thus, we conclude

that

Pr
x←Dn

[H′(x) = L(x)] ≥ 1

2
+

1

2
· 1

n
− 1

n2

We now turn to analyzing H as opposed to H′ and note that H and H′ work identically the same
except when either A or est “fail”. Observe that the probability that A(x) 6= O(x) on x sampled

4

from Dn is at most 1
n2 . Additionally, the probability that |est(1n) − H(Dn)| > δ′ is at most 1

n2 .
Thus, by a union bound, we have that

Pr
x←Dn

[H(x) = L(x)] ≥ 1

2
+

1

2n
− 3

n2
≥ 1

2
+

1

4n

on infinitely many n ∈ N, which is a contradiction.

3 Avg-case Hardness of Sparse Languages from OWFs

Theorem 3.1. Assume the existence of one-way functions. Let S(n) = 2n/10 and h(n) = n/2. Then
there exists a S(·)-sparse language L ∈ NP and a samplable ensemble D with entropy h(·) such that
L is HoA on D.

Proof: Assume the existence of OWFs. By [HILL99], there exists some pseudorandom generator
g : {0, 1}n/10 → {0, 1}n. Consider the NP-language L = {g(s) | s ∈ {0, 1}∗}. Note that L is S(·)-
sparse for S(n) = 2n/10. Let D = {Dn}n∈N be an ensemble such that Dn samples from g(Un/10) with
probability 1/2 and from Un with probability 1/2. Note that D has entropy at least h(n) = n/2
(since with probability 1/2, we sample from Un). Finally, it follows from the pseudorandomness
property of g (using a standard argument) that L is HoA over D.

4 Corollaries

In this section, we present some direct corollaries that follow by applying our main theorem to known
sparse languages. For convenience of the reader, we recall the (standard) proofs that these languages
are sparse.

4.1 Kolmogorov Complexity

The Kolmogorov complexity of a string x ∈ {0, 1}∗ is defined to be the length of the shortest program
Π that outputs the string x. More formally, let U be a fixed Universal Turing machine, for any string
x ∈ {0, 1}∗, we define K(x) = minΠ∈{0,1}∗{|Π| : U(Π) = x}. Let MINK[s] denote the language of
strings x having the property that K(x) ≤ s(|x|). We observes that MINK[s] is a sparse language
when s(n) is slightly below n.

Lemma 4.1. For all n ∈ N, |MINK[s] ∩ {0, 1}n| ≤ 2s(n)+1.

Proof: The lemma directly follows from the fact that the number of strings with length ≤ s(n) is
at most 2s(n)+1.

Combing Lemma 4.1, we get:

Corollary 4.1. Let s(n) ≤ n − 4 log n − 1 be a function. Assume that there exists some samplable
ensemble D with entropy h(n) ≥ s(n) + 4 log n+ 1 such that MINK[s] is (1

2 −
1

4n)-HoA on D. Then,
one-way functions exist.

Proof: By Lemma 4.1, the number of n-bit YES instances is at most S(n) = 2s(n)+1. Since Dn has
entropy h(n) ≥ s(n) + 1 + 4 log n, the corollary follows directly from Theorem 1.1.

5

4.2 k-SAT

We then show that one-way functions can be based on some average-case Let k, c be two positive
integers. The language k-SAT(m, cm) is defined to consist of all satisfiable k-CNF formulas on m
variables with cm clauses. We recall the well-known fact that k-SAT(m, cm) is a sparse language
when c ≥ 2k+1.

Lemma 4.2. The number of satisfiable k-CNF formulas on m variables with cm clauses is at most
2m

(
(2k − 1)

(
m
k

))cm
, and the number of all such k-CNF formulas is

(
(2k)

(
m
k

))cm
.

Proof: We first show that there are ((2k)
(
m
k

)
)cm k-CNF formulas on m variables with cm clauses.

Note that are are 2k
(
m
k

)
choices for a single k-clause; therefore, the number of cm k-clauses is

((2k)
(
m
k

)
)cm.

We then show that there are at most 2m((2k−1)
(
m
k

)
)cm satisfiable k-CNF formulas on m variables

with cm clauses. Consider any possible assignment x; the number of k-clauses that is satisfied by x
is at most (2k − 1)

(
m
k

)
since given the choice of k variables, there are at most 2k − 1 possible choices

of the polarities. Finally, since there are cm such k-clauses with m variables, we have that the total
number of satisfiable formulas is at most 2m((2k − 1)

(
m
k

)
)cm

To consider average-case hardness of this problem, we need to have a way to encode formulas
as strings. We use the following standard encoding scheme for k-SAT from [IRS21]: a m-variable
cm-clause k-CNF is represented by using n(m, k, c) = cm(kdlogme+ k) bits to describe a sequence
of cm clauses. In each clause, we specify k literals one-by-one, and each of them takes dlogme bits
to specify the index of a variable and 1 bit to fix the polarity. When n is not of the form n(m, k, c),
for an input of length n, we ignore as few bits as possible in the end of the input such that the
prefix the input is of length n(m, k, c) for some m. Following [IRS21], let the entropy deficiency
of a distribution Dn over n bits denote the difference between n and H(Dn). The follow corollary
implies [IRS21, Theorem 4, Term 1].

Corollary 4.2. Let k, c be two integers such that c ≥ 2k+2. Let m = m(n) be a polynomial. Assume
that there exists some samplable ensemble D = {Dn}n∈N with entropy deficiency at most cm(n)/2k+1

distributed over k-CNF formulas on m(n) variables and cm(n) clauses such that k-SAT is (1
2 −

1
4n)-

HoA on D. Then, one-way functions exist.

Proof: Recall that k-CNF formulas are represented by binary strings using the standard encoding
scheme. Let n′ = n(m(n), k, c) (be the length of the input without padding); by the encoding
scheme, it follows that every m(n)-variable cm(n)-clause k-CNF formula will be encoded by 2n−n

′

n-bit strings. By Lemma 4.2, it follows that n′ is at least

log

((
(2k)

(
m

k

))cm)
= cm log 2k + cm log

(
m

k

)
Since Dn has entropy deficiency at most cm/2k+1, it follows that Dn has entropy lower bounded by:

n′ + (n− n′)− cm/2k+1 ≥ cm
(

log 2k − 1

2k+1
+ log

(
m

k

))
+ (n− n′)

By Lemma 4.2, the number of n-bit YES instances is at most

S(n) = 2m
(

(2k − 1)

(
m

k

))cm
× 2n−n

′

6

It follows that

H(Dn)− logS(n) ≥ cm
(

log 2k − 1

2k+1
+ log

(
m

k

))
+ (n− n′)− log

(
2m

(
(2k − 1)

(
m

k

))cm
× 2n−n

′
)

= m(c log 2k − c log(2k − 1)− c

2k+1
− 1)

≥ m(
c

2k
− c

2k+1
− 1)

≥ m
≥ 4 log n.

where the second inequality follows from the standard inequalty that log x − log(x − 1) ≥ 1
x for all

x ≥ 2, the third one from the fact that, by assumption, c ≥ 2k+2, and the fourth one inequality
follows from the fact that due to the encoding scheme, m ≥ Ω(

√
n).

4.3 t-Clique

Let t : N→ N be a function and let t-Clique(m) be the set of graphs on m vertices having a clique of
size at least t(m). We recall the well-known fact that t-Clique(m) is sparse when t(·) is large enough.

Lemma 4.3. The number of m-vertex graphs with at least a t-size clique is at most
(
m
t

)
2(m2)−(t

2).

However, the number of m-vertex graphs is 2(m2).

Proof: There are
(
m
2

)
edges in a m-vertex graph, and thus the number of possible graphs is 2(m2).

There are
(
m
t

)
choices of cliques in a graph, and after fixing a clique, there are

(
m
2

)
−
(
t
2

)
edges in the

rest of the graph and therefore the number of graphs with at least 1 clique is at most
(
m
t

)
2(m2)−(t

2).

We use the standard encoding scheme for t-Clique from [IRS21]. A m-vertex graph is encoded
by a (n = n(m) =

(
m
2

)
)-bit string where the i-th bit is 1 iff the i-th edge appears in the graph. For

input lengths n that are not of the form n(m), we ignore as few bits as possible at the end of the
input such that the prefix of the input is of length n(m) for some m.

Corollary 4.3. Let m(n), t(n) ∈ ω(logm) be two polynomials. Assume that there exists some
samplable ensemble D = {Dn}n∈N with entropy deficiency at most 0.99

(
t(n)

2

)
distributed over m(n)-

vertex graphs such that t-Clique(m) is (1
2 −

1
4n)-HoA on D. Then, one-way functions exist.

Proof: Recall that graphs are represented by binary strings using the standard encoding scheme.
Let n′ = n(m(n)) (be the length of the input without padding); by the encoding scheme, it follows
that every m(n)-vertex graph will be encoded by at least 2n−n

′
n-bit strings. By Lemma 4.3, it

follows that n′ is at least

log 2(m2) =

(
m

2

)
Since Dn has entropy deficiency 0.99

(
t
2

)
, it follows that Dn has entropy lower bounded by:

n′ + (n− n′)− 0.99

(
t

2

)
≥

(
m

2

)
− 0.99

(
t

2

)
+ (n− n′)

By Lemma 4.3, the number of n-bit YES instances is at most

S(n) =

(
m

t

)
2(m2)−(t

2) × 2n−n
′

7

It follows that

H(Dn)− logS(n) ≥
(
m

2

)
− 0.99

(
t

2

)
+ (n− n′)− log

((
m

t

)
2(m2)−(t

2) × 2n−n
′
)

≥
(
m

2

)
− 0.99

(
t

2

)
− log

(
m

t

)
−
((

m

2

)
−
(
t

2

))
≥

(
t

2

)
− 0.99

(
t

2

)
− t logm

≥ 4 log n

since t(n) = ω(logm).

References

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 Novem-
ber 1989, pages 230–235, 1989.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812–821, 1990.

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribu-
tion suffices: New characterizations of one-way functions by meta-complexity. Electronic
Colloquium on Computational Complexity (ECCC), (082), 2021.

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 1243–1254. IEEE, 2020.

8
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

