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Abstract

In their highly influential paper, Ben-Sasson, Goldreich, Harsha, Sudan, and

Vadhan (STOC 2004) introduced the notion of a relaxed locally decodable code

(RLDC). Similarly to a locally decodable code (Katz-Trevisan; STOC 2000), the

former admits access to any desired message symbol with only a few queries to

a possibly corrupted codeword. An RLDC, however, is allowed to abort when

identifying corruption. The natural analog to locally correctable codes, dubbed

relaxed locally correctable codes (RLCC), was introduced by Gur, Ramnarayan

and Rothblum (ITCS 2018) who constructed asymptotically-good length-n RLCC

and RLDC with plog nqOplog lognq queries.

In this work we construct asymptotically-good RLDC and RLCC with an im-

proved query complexity of plog nqOplog log lognq. To achieve this, we devise a mechanism–

an alternative to the tensor product–that squares the length of a given code. Com-

pared to the tensor product that was used by Gur et al. and by many other construc-

tions, our mechanism is significantly more efficient in terms of rate deterioration,

allowing us to obtain our improved construction.
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1 Introduction

Error correcting codes with “local structure” play a major role in modern coding the-

ory, and their study is highly motivated by applications to theoretical computer science.

Of particular interest are locally decodable codes (LDC), introduced by Katz and Tre-

visan [KT00], and locally correctable codes (LCC) that originated in works on program

checking [BK95, Lip90]. These are error correcting codes that admit highly efficient pro-

cedures for recovering a single data symbol. LDC allow one to decode a specific symbol of

the message while querying only a small number of symbols of the received, possibly cor-

rupted, codeword. LCC on the other hand are equipped with a procedure for recovering

any desired symbol of the codeword using few queries.

In their highly influential work, Ben-Sasson, Goldreich, Harsha, Sudan and Vad-

han [BSGH`06] introduced a natural relaxation of LDC dubbed relaxed locally decodable

codes (RLDC). Roughly speaking, the decoder of an RLDC is allowed to abort when

identifying corruption, though it is required to always succeed when given access to a

codeword. The natural analog of relaxed locally correctable codes (RLCC) was introduced

by Gur, Ramnarayan and Rothblum [GRR20]. For linear codes, RLCC directly induce

RLDC, and so in this case it can be easily seen that RLCC are stronger objects (for the

case of non-linear codes, see [BGT16], Theorem A.6).

LDC, LCC and their relaxed counterparts have attracted significant attention (see

[GI05, Woo07, Yek08, KY09, KV10, DGY11, Efr12, GKS13, KSY14, Mei14, HOW15,

GG16, BGT16, GKO`18, LW19, GGK19, GRR20, CGS20, DGGW20, GL21, AS21, AG21,

CY21b, CY21a, DGL21, BGGZ21] and references therein), and have found applications

to PCPs [MR08, DH13, RZR20], property testing [CG18], privacy [GKST02], and prob-

abilistic proof systems [GG21, GR17, GR18], to name a few.

For simplicity, in this introductory part we focus on binary codes. Formally, a pq, δ, εq

RLCC is an error correcting code C Ď t0, 1un that is equipped with a randomized “cor-

rection procedure” Cor : t0, 1un ˆ rns Ñ t0, 1u Y tKu having the following guarantees:

1. For every codeword x P C, Corpx, iq “ xi for every i P rns, with certainty.

2. For every x P t0, 1un of distance at most δn from some codeword y P C, and for

every i P rns, Corpx, iq P tyi,Ku with probability at least 1´ ε.

3. Cor makes at most q queries.

In this paper we consider asymptotically-good RLCC. The reader may consult [CGS20],

and references therein, to learn more about the constant query regime. Gur, Ramnarayan

and Rothblum [GRR20] constructed asymptotically-good RLCC with query complexity
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plog nqOplog lognq. This offers a significant saving over the query complexity of the state-

of-the-art LCC and LDC, q “ 2Õp
?

lognq, obtained by Kopparty, Meir, Ron-Zewi, and

Saraf [KMRS17]. As the [GRR20] construction is linear, it also yields an RLDC.

Interestingly, the idea underlying the Gur et al. construction is influenced by the con-

struction of locally testable codes (LTC) of Kopparty et al. and not by the construction of

LCC that appears in the same paper. Indeed, Kopparty et al. devised an LTC with query

complexity q “ plog nqOplog lognq which stood as the state-of-the-art asymptotically-good

LTC construction until the recent breakthrough by Dinur, Evra, Livne, Lubotzky, and

Mozes [DEL`21], and independently by Panteleev and Kalachev [PK21], that obtained

asymptotically-good constant query LTC.

Answering a problem raised by Goldreich [Gol11], a beautiful result by Gur and

Lachish [GL21] and by Dall’Agnol, Gur and Lachish [DGL21] rules out any hope of

obtaining asymptotically-good RLCC with constant query complexity. Indeed, the lower

bound obtained is q “ Ωp
?

log nq.

These results determine that the “playfield” for the query complexity of RLDC and

RLCC lies in the exponent. That is, a main challenge in the area is to understand what

is the least e “ epnq for which a length-n asymptotically-good RLDC (or RLCC) with

plog nqepnq queries exists 1. Summarizing the above discussion, prior to this work it was

known that
1

2
ď epnq ď c ¨ log log n,

for some constant c ě 1. Naturally, for upper bounds on epnq, an explicit construction is

much preferred.

1.1 Our contribution

In this work we make progress on the study of relaxed locally decodable and correctable

codes by constructing explicit asymptotically-good linear RLCC (and, by extension, RLDC)

with significantly lower query complexity. Our result, stated below as Theorem 1.1, gives

an exponential improvement in epnq, achieving epnq “ Oplog log log nq.

Theorem 1.1 (Main result; informal). There are explicit asymptotically-good length-n

linear RLCC (and thus RLDC) with query complexity

q “ plog nqOplog log lognq.

The complete and formal statement of our result is given by Theorem 5.4.

1For the sake of brevity, we sometimes refer to the block-length of a code simply as its “length”.

Moreover, we alternate freely between the term distance and (local) error correction radius.
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Perhaps no less important than the improvement itself is the underlying technique that

we introduce. The construction of [GRR20] as well as many other constructions in the

literature are based on the tensor product. This is a procedure that transforms a length-n

code to a length-n2 code with a manageable deterioration in the code parameters. As

such the procedure serves as the basis for iterative constructions, starting with a small

code that can be found, say, in a brute force manner, and ending up with a code with the

desired length in log log n iterations. In different settings, different ideas are required so

to manage the deterioration of the code parameters throughout the iterations.

Our key idea lies in the construction of a new mechanism for enlarging the block-

length from n to n2. Our mechanism has a better deterioration of parameters compared

to tensoring which in turn allows us to obtain our improved construction as given by The-

orem 1.1. We believe that our technique may find other applications in some of the many

other settings in which tensoring is used.

In Section 2 we give a detailed yet informal account of our “length squaring” mecha-

nism and how it fits into our RLCC construction.

2 Proof technique

In this section we informally discuss our proof technique and, in particular, the underlying

new mechanism which replaces the useful, yet expensive, tensor product in our RLCC

construction. For simplicity we only consider binary codes though our construction works

over any field. To begin with, in Section 2.1, we give an informal presentation of the

tensor-based construction by Gur, Ramnarayan and Rothblum [GRR20].

2.1 The Gur-Ramnarayan-Rothblum construction

Following Kopparty et al.[KMRS17], the construction of a length-n RLCC by Gur, Ram-

narayan and Rothblum [GRR20] is combinatorial in nature. Starting with an RLCC

having a small block-length, the construction proceeds by enlarging the block-length in

an iterative manner. At each iteration, a new code is obtained from the previous one,

where the block-length increases at the expense of some deterioration of the remaining

parameters, namely, the distance, rate, and query complexity (as well as the error param-

eter ε that we choose to suppress). At the end of each iteration, the distance of the new

code is amplified back to its original value.

Ingredients. To give a more precise description of the construction we recall its two

main ingredients:
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1. Given a code C Ď t0, 1un, we define the tensor product of C with itself, denoted

C b C Ď t0, 1un
2
, as follows. We think of the index set of C b C as rns ˆ rns and

define C b C to be the code that consists of all n ˆ n binary matrices having the

following property: every row and every column of the matrix is a codeword of C.

It is well-known that the rate of C b C is at least ρ2, where ρ is the rate of C.

2. The second ingredient is a distance amplification procedure. This is a procedure that

amplifies the distance of a given code or, more precisely, the local error correction

radius in our case, without significant deterioration in the remaining parameters.

In particular, for local codes such as LCC, LDC and their relaxed counterparts, the

crucial point is to minimize the deterioration in the query complexity. Starting with

the works of Alon, Edmonds, and Luby [AEL95, AL96], several works obtained new

and improved distance amplification procedures [KMRS17, CY21b, CY21a].

For this informal introductory part, it suffices to know that a distance-δ1 linear

binary RLCC can be transformed to a distance δ ą δ1 linear binary RLCC with

an additive rate deterioration of polypδq and a multiplicative cost of polyp 1
δ1
q to the

query complexity.

The Gur-Ramnarayan-Rothblum RLCC. With the above-mentioned ingredients,

we can present the Gur-Ramnarayan-Rothblum RLCC construction.

1. Start with a small RLCC C0 Ď t0, 1u
n0 .

2. For j “ 1, . . . , t “ log log n

(a) Set C 1j “ Cj´1 b Cj´1 Ď t0, 1u
nj , where nj “ n2

j´1.

(b) Set Cj “ DistAmppC 1jq Ď t0, 1u
nj , where DistAmp is set so that the distance of

Cj matches the distance of Cj´1.

3. Return DistAmppCtq, where DistAmp amplifies the distance to a constant.

Rate deterioration. In the above construction, at each iteration the block-length

squares in Step (2a) via the tensor product. Thus, in log log n iterations one would

get a length-n (or a slightly larger) code. This progress has its cost, and we first consider

the effect on the rate. As mentioned, if Cj´1 has rate ρj´1 then the rate of C 1j is ρ2
j´1.

There is an additional cost to the rate incurred by the distance amplification procedure

in Step (2b) though even if we ignore it, we see that the rate of Cj satisfies ρj ď ρ2
j´1.
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This results with a final rate ρt ď ρ2t

0 . Thus, the only way of ending up with a constant

rate code Ct is to set the base code C0 to have rate

ρ0 « 1´ 2´t “ 1´
1

log n
.

By, say, the Singleton bound, this forces the distance δ0 of C0 to be at most 1
logn

. Further,

we see that n0, the base code’s length, must be taken at least logarithmic in n.

Query deterioration and the error correction radius. On top of its rate deteri-

oration, the tensor product also squares the error correction radius. Letting δj´1 be the

error correction radius of Cj´1, it is known that C 1j has error correction radius δ2
j´1. In

Step (2b) the latter is amplified back to δj´1 at a small cost in rate, which we ignore.

Thus, the error correction radius remains δ0 throughout.

Both the tensor product and the distance amplification procedure have a polyp 1
δj´1
q “

polyp 1
δ0
q multiplicative cost in query complexity. Denoting the query complexity of Cj by

qj, we get the recurrence relation

qj “ qj´1 ¨ poly
1

δ0

, (2.1)

resulting with qt “ p
1
δ0
qOplog lognq. But now recall that the rate deterioration forces δ0 ď

1
logn

and so the query complexity incurs a multiplicative polyplog nq cost in each iteration,

resulting with a final query complexity of q “ plog nqΘplog lognq.

Note that throughout the iterations we maintain a fixed sub-constant distance δ0 «

1
logn

. We cannot afford to work with constant distance at the iterative stage because we

must keep the rate high (we do not have a sufficiently good rate amplification procedure;

see [CY21b]). However, once the iterative process terminates and we have obtained the

desired block-length, at Step (3) we can afford to amplify the distance, one last time, to

a constant.

The tensor-based corrector. To see why the tensor product causes a query deterio-

ration as given by Equation (2.1), we take a look at how a local corrector for C 1j “ CjbCj

is defined given a local corrector for Cj. For correcting entry pa, bq P rnjs
2 the corrector

proceeds by first invoking the corrector for Cj to the ath row, querying for index b to

obtain σ P t0, 1,Ku. If σ “K, the corrector safely returns K as well. But, of course, the

ath row accounts for a negligible fraction of the codeword and so an adversary can easily

alter that row to a different codeword, resulting with an incorrect σ P t0, 1u.

Therefore, the corrector for Cj must have a mechanism for measuring how confident

it is in σ being the correct bit. To this end, we only need to consider the problematic
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case in which the ath row has more than a δ , δ0 “ δj fraction of errors. The corrector

will make use of the fact that each column is also an RLCC so to try and identify that

this is the case. To do so, the corrector samples Θp1
δ
q indices in the ath row uniformly

and independently at random. As we are in the problematic case, we will hit a corrupted

bit with good probability. For each such sample–a point pa, cq–the corrector will utilize

the RLCC that is embedded in the cth column to retrieve entry a. If we denote the result

returned by τc P t0, 1,Ku then the corrector will safely return K if τc “K. Otherwise, it

will compare τc against the bit in entry pa, cq, and will return K in the case of a mismatch.

As these samples are chosen uniformly and independently at random, a simple av-

eraging argument can be used to show that a column c with corruption at pa, cq, and

not too many corruptions otherwise will be considered. As a result, a mismatch between

the resulted query and the bit read directly will lead the corrector to return K in this

problematic case, with high probability.

2.2 The double cost of tensoring

By inspecting the tensor-based construction discussed in Section 2.1, we see that the

quadratic rate deterioration of the tensor product requires us to start with a rate 1´ 1
logn

base code C0 which, in turn, forces the distance to be bounded by δ ď 1
logn

. As the

query complexity suffers a multiplicative polyp1
δ
q “ poly log n in each iteration, we get

the above-mentioned query complexity.

Thus, a natural idea is to try and come up with a more rate-efficient procedure–an

alternative to tensoring–that increases the length of the code, hopefully squares it. Indeed

the rate deterioration is “responsible” for the deterioration of the remaining parameters.

One first needs to understand why does tensoring squares the rate. Consider a code

C Ď t0, 1un with rate ρ. As the rates we consider are close to 1, we write ρ “ 1 ´ α

where the “rate deficiency” α should be thought of as small, say, α “ op1q. While one

can show that the rate of C b C is ρ2 “ 1 ´ 2α ` α2, for our purpose, it will be useful

to describe a simple argument that guarantees a slightly lower rate of 1´ 2α. Note that

the difference between the two bounds is negligible in our regime of parameters. To see

that the rate is such, recall that C is determined by αn linear constraints. Therefore, in

C b C one introduces αn linear constraints for each row and for each column. This adds

up to 2n ¨ αn linear constraints, resulting with rate 1´ 2α.

Observe that the reason we need the rows and columns to be RLCC is very different.

Indeed, a row being RLCC allows us to retrieve entry pa, bq by using the ath row’s RLCC-

ness to retrieve the bit at index b, obtaining a result σ P t0, 1,Ku. Had σ ‰K, the

columns’s RLCC-ness are used to vet for the correctness of σ.
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2.3 Our RLCC

Our key idea lies in introducing a mechanism that allows us to drop the requirement of the

columns being RLCC. Instead we use the fact that the rows are RLCC both for the first

step of retrieving the desired bit as well as for the second step of vetting for the correctness

of the retrieved bit. Of course, our mechanism also has a cost in rate but it is significantly

more economical. Instead of doubling the rate deficiency, moving from 1 ´ α to 1 ´ 2α,

we only incur an additive loss of β resulting in rate 1 ´ α ´ β. Thinking ahead of the

iterative process, this smaller loss yields a linear (rather than exponential) deterioration

throughout the iterations, which enables us to take the initial α and β reciprocal to the

number of iterations. This then enables the query complexity to deteriorate more slowly,

but we are getting ahead of ourselves.

Row-evasive partitions. An ingredient we need for our construction is an object we

dub a row-evasive partition. This is a set of n partitions of rns, P “ tP1, . . . , Pnu, where

each part of each partition is of size b for some parameter b to be set later on. We think of

Pj as a partition of the jth column of rnsˆrns and require the collection to be row-evasive

in the following sense: For all distinct i, i1 P rns,

|tj P rns | i1 P pPjqiu| ď 2b, (2.2)

where pPjqi is the set of elements in the part containing i, excluding i itself, in partition

Pj. From here on we denote β “ 1
b
. Informally, the partition is row-evasive if every two

distinct rows have few parts that intersect both rows.

In this section we leave the question of the existence and, by extension, the construction

of row-evasive partitions and assume such is available to us. Our explicit construction of

row-evasive partitions can be found in Section 4.1.

Squaring without tensoring. We are now ready to present our mechanism for squar-

ing the block-length. We in fact present a restricted version of it which suffices for the

proof of Theorem 1.1. However, a more general and arguably more natural (though some-

what more technically involved) mechanism is covered in the formal part of this paper

(see Section 4.2).

Given a code C Ď t0, 1un we define the code CP Ď t0, 1un
2
, P being a row-evasive

partition of size |P | “ n as follows. Assume C has rate 1´ α. Then, C is defined by αn

linear constraints. Thinking of the indices of CP as rns ˆ rns, the code CP is defined by

enforcing these constraints at each row. Moreover, for each part of each partition of P we
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introduce the linear constraint enforcing the parity of the bits in that part to vanish 2.

Thus, we have αn constraints per row and n
b
“ βn constraints per column, giving rise to

a total number of

αn ¨ n` βn ¨ n “ pα ` βqn2

constraints. Hence, the rate of CP is at least 1 ´ α ´ β, and so the rate-loss incurred

by moving from C to CP is only an additive β. As discussed above, the reader should

compare this to the factor-2 multiplicative loss of the tensor product C b C in the high

rate regime.

The corrector for CP . We turn to describe the corrector for CP . Say we wish to query

entry pa, bq P rns ˆ rns. Much like the corrector for the tensor product that was described

in Section 2.1, our corrector also makes use of the row to query the desired entry and

then, upon receiving a non K symbol, proceeds by vetting the result before returning it.

As in the analysis of the tensor product, we only need to consider the case in which

the ath row has more corruptions than the code that is embedded in that row can handle

by itself, namely, more than δn corruptions. We similarly proceed by sampling some

number of “vetting indices” in the row, querying each directly and compare the result

against a more global process, hoping to identify a mismatch. However, whereas in the

tensor-based construction this global process invokes the RLCC-ness of the columns, we

do not longer have that option available to us, and this is where our corrector deviates

from the tensor-based corrector.

For each of the vetting indices in row a we proceed as follows. Consider a vetting

index pa, jq P rnsˆ rns. We first directly read entry pa, jq as well as the other b´1 indices

in pPjqa - the part of partition Pj that contains a. Recall that the parity of these bits

must vanish in a codeword, and so if this is not the case, we can safely return K. For each

i P pPjqa, using the RLCC-ness of the ith row, we query index j and compare it against

the bit we read directly. In case of a mismatch we return K; otherwise, if no mismatch

have occurred, we return the vetted bit.

Error analysis of the corrector for CP . Say that C has error correction radius δ

and that we are aiming for error correction radius δ1 to be determined later on. For

comparison, recall that for the tensor product it is known that δ1 “ δ2. Let B be the

set of rows in which more than a δ-fraction of corruptions have occurred. By a simple

averaging argument, |B| ď δ1

δ
n.

2The more general row-evasive squaring that we consider in the formal sections of this paper, uses not

just a single parity check on the bits of each part but rather parity checks as dictated by a small RLCC.
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As mentioned, we focus on the case where row a has more than a δ-fraction of corrupted

bits. Let J Ď rns be the set of corrupted indices in that row. Further, let J 1 Ď rns be the

set of indices in row a for which the corresponding parts of P intersect B. That is,

J 1 “ tj P rns | pPjqa XB ‰ Hu . (2.3)

Observe that any j P JzJ 1 will be a successful vetting index. This is because all points in

pPjqa lie in rows that have fewer than a δ-fraction of errors, and so all the b´1 applications

of the corresponding RLCC will succeed with high probability. Therefore, as j P J , this

will result in a mismatch with high probability.

By the above observation, the task at hand is to bound the size of JzJ 1 from below,

but recall that |J | ě δn, and so it suffices to bound |J 1| from above by, say, δn
2

. This is

where the row-evasiveness comes into play. Indeed, by Equation (2.3),

|J 1| ď
ÿ

jPJ 1

|pPjqa XB|.

Now, if we switch to count via the rows of Bztau rather than the columns of J 1, we get

ÿ

jPJ 1

|pPjqa XB| “
ÿ

iPBztau

|tj P J 1 | i P pPjqau|,

and so

|J 1| ď
ÿ

iPBztau

|tj P rns | i P pPjqau|.

By the defining property of P as given by Equation (2.2), for each i ‰ a,

|tj P rns | i P pPjqau| ď 2b,

and so

|J 1| ă 2b ¨ |B| ď 2b ¨
δ1

δ
n.

Setting δ1 “ δ2

4b
we can bound |J 1| ă δ

2
n and so |JzJ 1| ą δ

2
n.

To recap, every index in JzJ 1 is a good vetting index, and |JzJ 1| ě δn
2

. Hence, by

sampling, say, 2
δ

vetting indices we will find a good vetting index with good probability.

For comparison, recall that the tensor product has distance deterioration of δ1 “ δ2

whereas we suffer a slightly larger deterioration as δ1 “ δ2

4b
. This turns out to be a

nonissue as the distance amplification step that will follow works just as well, with the

same asymptotic cost in query complexity for our setting of the parameter b.
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The query complexity of the corrector for CP . Recall that we first use the RLCC-

ness of the desired row, which amounts to q queries. Additionally, the vetting process then

begins by sampling 2
δ

vetting indices in that row; for each, querying the corresponding

part, and for each entry in each part invoking a row corrector. This results in an overall

number of Op bq
δ
q queries.

In comparison, the query complexity resulted by the tensor product is Op q
δ
q. Thus,

like in the case of the distance deterioration, our mechanism is slightly more costly in

terms of query complexity. However, this turns out to be negligible compared to the cost

in query complexity that results from the significantly higher rate deterioration of the

tensor product compared to our mechanism.

The RLCC construction. We now plug this machinery that we developed as a replace-

ment for the tensor product into the framework of [GRR20] to get our RLCC construction.

1. Start with a small RLCC C0 Ď t0, 1u
n0 with distance δ.

2. For j “ 1, . . . , t “ log log n

(a) Let Pj´1 be a row-evasive partition, |Pj´1| “ nj´1, with parts of size b.

(b) Set C 1j “ pCj´1qPj´1
Ď t0, 1unj , and note that nj “ n2

j´1.

(c) Set Cj “ DistAmppC 1jq Ď t0, 1unj so that the distance is amplified back to

match the distance of Cj´1, namely, to distance δ.

3. Return DistAmppCtq, where DistAmp is set so that the distance is amplified to a

constant.

Analyzing the RLCC construction. Recall that the rate deterioration is “respon-

sible” for the deterioration of all other parameters. So we start by considering the rate.

If we denote the rate of Cj by 1 ´ αj, and the rate of C 1j by 1 ´ α1j then, by the above

discussion,

α1j ď αj´1 ` β.

Taking into account the rate deterioration of the distance amplification procedure, we

have that

αj ď α1j ` polypδq.

Thus, αj ď β ` polypδq ` αj´1, and so

αt ď t ¨ pβ ` polypδqq ` α0. (2.4)
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With this in mind, it is time to set the parameters. To ensure that Ct has constant rate,

since t “ log log n, we set β “ Op 1
log logn

q. Next, we take the base code C0 to have distance

δ “ poly
´

1
log logn

¯

so that the contribution of the polypδq term in Equation (2.4) is also

Op 1
log logn

q. Recall now that C0 has rate 1´α0. As we set C0 to have distance δ we are, of

course, not free to set α0 as we wish. However, we can take α0 “ polypδq “ poly
´

1
log logn

¯

.

This choice of parameters ensures that Ct has indeed constant rate.

We now consider the effect of this choice of parameters to the query complexity. Denote

the query complexity of Cj by qj. Then, the query complexity of C 1j is of the order of

b ¨ qj´1

δ
“ qj´1 ¨ polyplog log nq.

As the distance amplification procedure increase the query complexity by a multiplicative

polyp 1
δ1
q factor, where δ1 is the distance of C 1j, and since δ1 “ polypδq “ poly

´

1
log logn

¯

, we

have that

qj “ qj´1 ¨ polyplog log nq,

and so Ct has query complexity

qt “ plog log nqOplog lognq
“ plog nqOplog log lognq,

which is also the query complexity of DistAmppCtq - the code obtained after the last

application of the distance amplification procedure.

Comparison with axis-evasive partitions. Cohen and Yankovitz devised a rate am-

plification procedure for LCC [CY21b]. More precisely, their procedure efficiently trans-

forms a q-query LCC with rate ρ to a constant rate LCC with query complexity qpolyp1{ρq.

A key idea in their construction is to use the rate deterioration of the tensor product to

their favor. Indeed, the authors took the tensor product of the dual codes, thus decreasing

the dimension of the dual code as a way of increasing the dimension of the code. This

however has a significant cost in distance. To overcome this, the authors considered a

pseudorandom partition of the coordinate set rnsˆ rns and, for each part in the partition,

added a dual constraint requiring the parity of the bits in each part to vanish (slightly

harming the rate). This allowed them to read a bit by querying the other pseudo-randomly

located indices in its part. The pseudorandom notion they required, dubbed axis-evasive

partition, is tailored to their need.

Our construction is influenced by this idea of adding dual constraints that are induced

by pseudorandom partitions. Of course, the setting is not the same and our requirement of

the partition is different. Indeed, our use of the partitions is not for distance amplification

but rather as a way of reusing the row RLCC-ness to vet for a potential output bit.

11



3 Preliminaries

3.1 Notations and conventions

Unless stated otherwise, all logarithms are taken to the base 2. The set of natural numbers

is N “ t0, 1, 2, . . .u and we also use Neven “ t0, 2, 4, . . .u and Nodd “ t1, 3, 5, . . .u. For n P N,

n ě 1, we use rns to denote the set t1, . . . , nu. For ease of readability, we sometimes avoid

the use of floor and ceiling. This does not affect the stated results. For q P N, q ě 2, we

use Hq to denote the q-ary entropy function, and H “ H2 to denote the binary entropy

function. We use F to denote a field, and any referenced field is assumed to be finite.

For a finite set N , we refer to a function v P FN as a vector and we say that it is indexed

by N . For a vector v P FN and i P N we use vi as a shorthand for vpiq. For a vector

v P FN and a set N 1 Ď N we denote by vN 1 the vector v1 P FN 1 such that v1i “ vi for every

i P N 1. For two vectors u, v P FN , their (absolute) hamming distance is |ti P N | ui ‰ viu|,

which we denote by distpu, vq, and the hamming weight of u is distpu, 0̄q. For two vectors

u, v P FN , their inner product is
ř

iPN uivi (over F) and we denote it by xu, vy.

3.2 Entropy related inequalities

We will make use of the following easily verified facts.

Fact 3.1. For every q P N, q ě 2, and ∆ P
`

0, 1
2

‰

, Hqp∆q ď 2∆ log 1
∆

.

Fact 3.2. For every q P N, q ě 2, and 0 ď ∆ ď 1´ 1
q
, it holds that Hqp∆q ě ∆.

Fact 3.3. For every q P N, q ě 2, c ě 1 and 0 ď ∆ ď 1
c
, it holds that c¨Hqp∆q ě Hqpc¨∆q.

3.3 Error correcting codes

We start by recalling the definition of an error correcting code. In this work we only

consider linear codes. The definition below is standard, however, for our purposes we find

it convenient to work with an arbitrary index set rather than the usual set rns, and so

the reader may benefit from glancing over the definition.

Definition 3.4. For a finite set N of size |N | “ n and a field F, a code is a linear subspace

C Ď FN . We say that the code C is indexed by N and that it is over F. The length of the

code is n. The dimension of the code, usually denoted by k, is the dimension of C over

F, dimFC. The (non-local) distance of the code, denoted by d, is minc,c1PC,c‰c1 distpc, c
1q.

The rate of the code, typically denoted by ρ, is k
n

. The (non-local) relative distance of the

code, denoted by ∆, is defined to be d
n

. The elements of C are called codewords.
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The following is a straightforward claim about the dimension of linear codes.

Claim 3.5. Let C Ď FN and C 1 Ď FN be two codes, with rates ρ and ρ1, respectively.

Then, C X C 1 has rate at least ρ` ρ1 ´ 1.

3.4 Relaxed locally correctable codes

We turn to recall the definition of relaxed locally correctable codes as put forth by Gur,

Ramnarayan and Rothblum [GRR20].

Definition 3.6. A code C Ď FN of length n is called a pq, δ, εq-RLCC (relaxed locally

correctable code, abbreviated) if there exists a randomized procedure

Cor : N Ñ FY tKu

that is given an oracle access to z P FN , and has the following guarantee. For every i P N ,

y P C and z P FN , satisfying 0 ă distpz, yq ď δn, Corzpiq P tyi,Ku with probability at least

1 ´ ε; if z “ y (namely, distpz, yq “ 0), we require that Corzpiq “ yi, with probability 1.

Furthermore, Corzpiq always makes at most q queries to z. We call Cor a local corrector

(or corrector). The parameter δ is called the correction radius, and the parameter q is

called the query complexity.

The error parameter of an RLCC can be easily amplified, with low cost to the query

complexity, as stated in the following claim.

Claim 3.7. Let C Ď FN be a pq, δ, εq-RLCC. Then, for any h P N, C is also an phq, δ, εhq-

RLCC.

Proof. Let Cor be a local corrector for C. For any z P FN and c P C such that distpz, cq ď

δ|N |, and for any i P N , Corzpiq outputs a symbol not in tci,Ku with probability less than

ε. A correction procedure with a reduced error probability ε1 “ εh is achieved simply by

invoking Corpiq for h times. If there is a disagreement between the outputs of the different

runs of Corpiq, or if one the runs resulted in K, then it is certain that z is not a codeword

and so K can be outputted in such a case. If all the runs are in agreement (on a symbol

other than K), then note that they can all agree on a wrong symbol only if all the runs

failed, and the probability for that event is bounded by εh, as the runs are independent.

It follows that the error probability of this corrector is indeed εh, and clearly the query

complexity is hq, as required.
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4 Row-evasive squaring

In this section we define the tensor-like mechanism for squaring the length of an RLCC

while only moderately deteriorating its remaining parameters. In Section 4.1 we introduce

the notion of row-evasive partitions which is a key component in this mechanism, and

give an explicit construction of such partitions. Then, in Section 4.2 we describe the

row-evasive squaring mechanism.

4.1 Row-evasive partitions

In this section we introduce the notion of row-evasive partitions, which are needed for the

operation we put forth. Let P be a partition of a set N and let i P N . We denote by rP si

the set of elements of the part to which i belongs, and let pP qi “ rP siztiu.

Definition 4.1. Let N be a set. Let P “ tPi | i P Nu be a set of partitions of N into

parts of size b. We say that P is row-evasive if for every distinct i, i1 P N ,

|tj P N | i1 P pPjqiu| ď 2b. (4.1)

Claim 4.2. For every N such that |N | “ n “ 2k, where k P N, and every ` ď k, there

exists a set of partitions P “ tPi | i P Nu of N into parts of size b “ 2` that is row-evasive.

Our proof of Claim 4.2 is based on simple modular arithmetic. While we could have

based a somewhat cleaner construction on finite fields (also obtaining a slightly better

bound of b rather than 2b in Equation (4.1)), we find it more convenient to work with

the rings that we (implicitly) consider. Indeed, in the finite-field-based that we omit,

the construction requires that N is of the same size as the multiplicative group of the

field, which limits the range of partition size we can obtain. In particular, due to the

iterative nature of our RLCC construction it is convenient to have a row-evasive partition

for every size that is a power of two. Moreover, we note that any universal hash family

[CW79], H “ th : rns Ñ rmsu, can be used to construct a row-evasive partition, given

that |H|, n,m are appropriate and that it satisfies the following extra property: for every

h P H and r, r1 P rms, |h´1prq| “ |h´1pr1q|.

Proof of Claim 4.2. We may assume without loss of generality that N “ t0, . . . , n ´ 1u.

Define for every i, j P N ,

fpi, jq “ p2i` 1qp2j ` 1q mod 2k`1.

Note that for every i, j P N , it holds that fpi, jq P t0, . . . , 2k`1´1uXNodd. Further define

for every m P t0, . . . , 2k`1 ´ 1u X Nodd,

gpmq “ m mod 2k´``1.

14



Note that for every m P t0, . . . , 2k`1 ´ 1u X Nodd, gpmq P t0, . . . , 2k´``1 ´ 1u X Nodd.

Moreover, for every r P t0, . . . , 2k´``1 ´ 1u X Nodd

g´1
prq “

 

t P t0, . . . , 2k`1
´ 1u X Nodd | gptq “ r

(

,

and note that |g´1prq| “ 2k`1

2k´``1 “ b, for every such r.

The set of partitions P “ tPj | j P Nu is constructed as follows. For every j P N , the

parts of partition Pj are given by

ti P N | gpfpi, jqq “ rurPt0,...,2k´``1´1uXNodd
.

To show that P is as required, we first need to show that every part of every Pj is of size

b. This is indeed the case, as for every j P N , and every i, i1 P N , i ‰ i1, we have that

fpi, jq ‰ fpi1, jq. This can be seen as

fpi, jq ´ fpi1, jq mod 2k`1
“ p2i´ 2i1qp2j ` 1q mod 2k`1

‰ 0.

The inequality follows since p2j`1q is odd, then 2k`1 | p2i´2i1qp2j`1q mod 2k`1 implies

2k`1 | p2i ´ 2i1q. But as i, i1 P t0, . . . , 2k ´ 1u and i ‰ i1, we have that 0 ă |2i ´ 2i1| ď

2k`1 ´ 2 so it cannot be that 2k`1 | p2i ´ 2i1q. It follows that for every j P N , fp¨, jq

is a bijective mapping from t0, . . . , 2k ´ 1u onto t0, . . . , 2k`1 ´ 1u X Nodd. Therefore, as

for every j P N , the elements of each part of Pj are ti P N | gpfpi, jqq “ ru for some

r P t0, . . . , 2k´``1´1uXNodd, and |g´1prq| “ b, we conclude that each part’s size is indeed

b.

Secondly, to prove that P satisfies the row-evasive requirement, we need to show that

for every distinct i, i1 P N ,

| tj P N | gpfpi, jqq “ gpfpi1, jqqu | ď 2b.

Towards that, note that we have that if gpfpi, jqq “ gpfpi1, jqq then fpi, jq ´ fpi1, jq

mod 2k´``1 “ 0, which implies in turn that

`

2pi´ i1qp2j ` 1q mod 2k`1
˘

mod 2k´``1
“ 0.

Define for every j P N ,

hi,i1pjq “ 2pi´ i1qp2j ` 1q mod 2k`1,

and note that for every t P t0, . . . , 2k`1´1uXNeven there are exactly two distinct j, j1 P N

such that hi,i1pjq “ hi,i1pj
1q “ t (as there are exactly two solutions x P t0, . . . , 2k`1 ´ 1u

to the equation 2x mod 2k`1 “ 0, namely, 0 and 2k). Furthermore, there are exactly

15



2k

2k´`
“ b values t P t0, . . . , 2k`1 ´ 1u X Neven such that gptq “ 0, and let T denote the set

of these values. It follows that

|tj P N | gpfpi, jqq “ gpfpi1, jqqu| ď |tj P N | gphi,i1pjqq “ 0u|

“ tj P N | hi,i1pjq P T u

“ 2|T |

“ 2b.

This shows that the requirement is met, and the claim follows.

4.2 The row-evasive squaring

In this part we define the basic operation of the construction, we dub “row-evasive squar-

ing”.

Definition 4.3. Let N be an arbitrary finite set and b ě 1 an integer dividing |N |. Let

Cb Ď Frbs be a code and let P be a partition of N into |N |
b

parts of size b. For every

B P P , assume an arbitrary fixed bijection fB : B Ñ rbs and let CB Ď FB be the code

tc ˝ f | c P Cbu. Define

CN
P,Cb

“
 

c P FN | @B P P cB P CB
(

.

It is immediate that given that a code Cb Ď Frbs is a pq, δ, εq-RLCC then so is any CB

as defined in Definition 4.3.

Definition 4.4 (The squaring operation). Let N be an arbitrary finite set and b ě 1 an

integer dividing |N |. Let C Ď FN be a code, let Cb Ď Frbs be a code and let P “ tPi | i P Nu
be a set of partitions of N into parts of size b. We define the pP , Cbq-squaring of C,

denoted by pCq2P,Cb, to be the code

pCq2P,Cb “
!

c P FNˆN | @i P N ctiuˆN P C and @j P N cNˆtju P C
Nˆtju
Pj ,Cb

)

.

A bound on the rate of the row-evasive squaring of a code is given in the following

claim.

Claim 4.5. Let C Ď FN be a length n “ |N | code with rate ρ, and let C Ď Frbs be a code

with rate ρb. Let P “ tPi | i P Nu be a set of partitions of N into parts of size b. Then

pCq2P,Cb is a code of length n2 over F having rate at least ρ` ρb ´ 1.
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Proof. That the length of pCq2P,Cb is n2 and that it is over F is immediate from the

definition. As for the rate, by inspecting the subspace orthogonal to pCq2P,Cb , it can be

seen that the dimension of ppCq2P,Cbq
K is at most

` “ n ¨ p1´ ρqn` n ¨
n

b
p1´ ρbqb.

From that we conclude the rate of pCq2P,Cb is at least 1´ `
n2 “ ρ` ρb ´ 1.

We now show that if the partition sequence used is row-evasive, the squaring operation

preserves the RLCC property.

Proposition 4.6. Let C Ď FN be a pq, δ, εq-RLCC of length n “ |N |, and let Cb Ď Frbs

be a pqb, δb, εbq-RLCC. Further let P “ tPi | i P Nu be a set of partitions of N into parts

of size b which is row-evasive. Then, C 1 “ pCq2P,Cb is a pq1, δ1, ε1q-RLCC for

q1 “ 64pq ` qbq
1

δδb
,

δ1 “
δ2δb

8
,

ε1 “
5

9
`

4

9
maxpεb, εq.

Proof. To show that C 1 is a pq1, δ1, ε1q-RLCC we need to devise a corrector Cor1 for it with

the desired parameters. Towards that, let Cor be a corrector for C. For every j P N and

B P Pj, let CorB be a corrector for CB.

The corrector. For i, j P N , Cor1pi, jq with oracle access to z P FNˆN proceeds as

follows.

1. Invoke Corpjq with oracle access to ztiuˆN , and denote the output by σ P F Y tKu.
If σ “K, halt and output K.

2. Sample uniformly and independently at random m “ 4
δ

indices j1, . . . , jm P N . For

every t P rms query zi,jt .

3. For every t P rms proceed as follows: Invoke CorrPjt sipiq with oracle access to zrPjt si
to obtain an output σt P FYtKu. If for some t P rms either σt “K or σt ‰ zi,jt , halt

and output K.

4. For every t P rms sample d “ 4
δb

indices i1t , . . . , i
d
t P pPjtqi uniformly and indepen-

dently at random, and query zirt ,jt for each r P rds.
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5. For every t P rms and r P rds invoke Corpjtq with oracle access to ztirt uˆN , and set

σrt P FY tKu to be the resulted output. If for some t P rms, r P rds either σrt “K or

σrt ‰ zirt ,jt , halt and output K.

6. Output σ.

Correctness. That Cor1pi, jq always outputs ci,j, when given oracle access to c P C 1,

is immediate from the fact that Cor and the correctors tCorB | j P N,B P Pju always

correctly output the desired symbol when given access to codewords of their respective

codes.

Query analysis. It can be seen that the number of queries that Cor1pi, jq makes satisfies

q1 ď q `m`mqb `md`mdq

ď 4mdpq ` qbq

“ 64pq ` qbq
1

δδb
.

Error analysis. It remains to bound the probability that Cor1pi, jq outputs a wrong

symbol in F. Towards that, let z P FNˆN be such that distpz, cq ď δ1n2 for some c P C 1.

Define

B “
 

i P N | dist
`

ztiuˆN , ctiuˆN
˘

ą δn
(

.

By an averaging argument,

|B| ă δ1

δ
¨ n. (4.2)

We consider two cases. If it is the case that i R B, then σ P F Y tKu, obtained in

Step (1), satisfies σ P tci,j,Ku with probability at least 1´ ε, by the guarantee of Cor. By

inspecting the corrector Cor1 one can see that it either outputs σ or K (namely, it never

outputs a field element other than σ). It follows that in this case the output of Cor1pi, jq

is in tK, ci,ju with probability at least 1´ ε ě 1´ ε1, as required.

Hence, we may proceed under the assumption that i P B. Define

J “ tj1 P N | zi,j1 ‰ ci,j1u ,

and notice that per our assumption that i R B, |J | ą δn. Further define

J 1
“

"

j1 P N
ˇ

ˇ

ˇ
|pPj1qi X B| ą 1

2
δbb

*

.
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In what follows we will argue that given that some index jt sampled in Step (2) by Cor1pi, jq

satisfies jt P J zJ 1, Cor1pi, jq outputs K with good probability. Therefore, it is desirable

to bound |J zJ 1| from below.

Claim 4.7.

|J zJ 1
| ě

δn

2
.

Proof. Towards that, note that

ÿ

j1PJ 1
|pPj1qi X B| ą |J 1

|
1

2
δbb. (4.3)

On the other hand, counting by columns rather than by rows, we get

ÿ

j1PJ 1
|pPj1qi X B| “

ÿ

j1PJ 1

ÿ

i1PBztiu

|pPj1qi X ti
1
u|

“
ÿ

i1PBztiu

ÿ

j1PJ 1
|pPj1qi X ti

1
u|

“
ÿ

i1PBztiu

|tj1 P J 1
| i1 P pPj1qiu|

Therefore,

ÿ

j1PJ 1
|pPj1qi X B| ď

ÿ

i1PBztiu

|tj1 P N | i1 P pPj1qiu|

ď p|B| ´ 1q ¨ 2b, (4.4)

where the last inequality follows from by the fact that P is row-evasive. Equations (4.2)

to (4.4) imply

|J 1
| ă

4|B|
δb

ă 4
δ1

δδb
n.

By our choice of δ1 we conclude that

|J 1
| ď

δn

2
,

and so, as i P B,

|J zJ 1
| ě

δn

2
.

By Claim 4.7 and since Cor1pi, jq samples m “ 4
δ

indices jt P N , uniformly and inde-

pendently at random, with probability at least 1´ 1
e2
ą 2

3
, it holds that for some t P rms,
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jt P J zJ 1. Let EA denote this event. We therefore condition on that the event EA oc-

curred, and proceed by bounding the (conditioned) probability that the output of Cor1 is

“legal”, namely, the output is in tσ,Ku.

Let t P rms be an element such that jt P J zJ 1. We consider two cases. If

dist
`

zrPjt siˆtjtu, crPjt siˆtjtu
˘

ď δbb, (4.5)

then with probability at least 1 ´ εb, σt P tK, ci,jtu. If σt “K then the output of Cor1 is

legal. Otherwise, as jt P J , we have that σt “ ci,jt ‰ zi,jt and so in Step (3), Cor1 will

output K which is, again, a legal output. We conclude that if Equation (4.5) holds then

Cor1pi, jq outputs K with probability at least 1´ εb.

Consider then the case where Equation (4.5) does not hold, and let

I “ ti1 P pPjtqi | zi1,jt ‰ ci1,jtu .

Per our assumption (and since zi,jt ‰ ci,jt), we have that |I| ą δbb´1. Therefore |I| ě δbb.
3

Consider the set IzB “ IzppPjtqi X Bq. As jt R J 1, we have that |pPjtqi X B| ď 1
2
δbb.

Therefore,

|IzB| ě |I| ´ |pPjtqi X B|

ě δbb´
1

2
δbb

“
1

2
δbb.

Hence, as Cor1pi, jq samples d “ 4
δb

indices i1t , . . . , i
d
t P pPjtqi uniformly and independently

at random, with probability at least 1´ 1
e2
ą 2

3
, for some r P rds, it occurs that irt P IzB.

Let EB denote this event. We therefore further condition on that EB occurred (recall, we

already conditioned on the event EA).

Let r P rds be an element such that irt P IzB. As irt R B, we have that with probability

at least 1 ´ ε over the randomness of Corpjtq invoked in Step (5) with oracle access to

ztirt uˆN , it holds that σrt P tcirt ,jt ,Ku. Since we also know that zirt ,jt ‰ cirt ,jt (as irt P I), it

follows that with probability at least 1´ ε, σrt ‰ zirt ,jt , and therefore Cor1pi, jq outputs K

with probability at least 1´ ε in the case that Equation (4.5) does not hold.

3We assume, without loss of generality, that δb is taken to be the maximal value such that Cb is a

pqb, δb, εbq-RLCC. This implies, in particular, that δbb is an integer. We may make this assumption since

plugging in a smaller value of δb in the proposition results in a weaker statement.
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To conclude the error analysis, we have that if i P B then

PrrCor1pi, jq P tci,j,Kus ě PrrEAs ¨PrrCor1pi, jq P tci,j,Ku | EAs

ě
2

3
¨PrrCor1pi, jq P tci,j,Ku | EAs

ě
2

3
¨minp1´ εb,PrrEB | EAs ¨PrrCor1pi, jq P tci,j,Ku | EA X EBsq,

ě
2

3
¨minp1´ εb,

2

3
¨PrrCor1pi, jq P tci,j,Ku | EA X EBsq,

ě
2

3
¨minp1´ εb,

2

3
¨ p1´ εqq,

where the minimum in the third inequality is due to the two possibilities of whether or not

Equation (4.5) holds, and the last inequality follows by the discussion above. Therefore,

PrrCor1pi, jq P tci,j,Kus ě minp1´ ε,
2

3
¨minp1´ εb,

2

3
¨ p1´ εqqq,

“
2

3
¨minp1´ εb,

2

3
¨ p1´ εqq

ě
4

9
¨minp1´ εb, 1´ εq

“
4

9
´

4

9
maxpεb, εq

“ 1´ ε1,

where the first minimum is for considering the two possibilities of whether i P B (recall

that the case that i R B was discussed at the start of the analysis). This shows that the

error probability is as stated, and the proposition follows.

5 Deriving the main result

In this section we prove our main result, Theorem 1.1. To this end, in Section 5.1 we

devise a distance amplification procedure (or, more accurately, a correction-radius ampli-

fication procedure) for RLCC. This procedure is quite similar to previously known pro-

cedures [AEL95, AL96, KMRS17]. However, there is some technical nuances that make

it difficult for us to invoke those in a black-box manner. Further, we give a somewhat

more simplified construction and analysis, suitable to our needs. Finally, in Section 5.2,

we prove Theorem 1.1.

5.1 Distance amplification for RLCC

We start by defining relaxed-local-amplifiers.
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Definition 5.1. Let N be a finite set such that |N | “ n and let F be a field. A linear

subspace L Ď FN is called a pq, δ, αq-relaxed-local-amplifier if there exists a deterministic

procedure Cor : N Ñ F that is given an oracle access to z P FN and has the following

guarantees:

1. For every i P N and y P L, Corpiq “ yi.

2. For every i P N , c P L and z P FN such that distpz, cq ď δn, it holds that Corpiq P

tci,Ku for at least p1´ αq-fraction of the indices i P N .

3. Cor always makes at most q queries to z.

Relaxed-local-amplifiers give rise to the following claim.

Claim 5.2. Let C Ď FN be a pq, δ, εq-RLCC and let L Ď FN be a pq1, δ˚, αq-relaxed-local-

amplifier such that α “ δ. Then, sC “ C X L is a pqq1, δ˚, εq-RLCC.

Proof. The proof goes by demonstrating a corrector ĎCor for sC which attains the stated

parameters. Towards that, let n “ |N |, and let Cor be a corrector for C, and let CorL be

a corrector for L. For c P sC and z P FN , define zc P FN to be the string that is given by

@j P N zcj “

$

&

%

CorzLpjq CorzLpjq ‰K ;

cj CorzLpjq “K .

Note that zc is a well-defined, fixed, element in FN as CorzL is deterministic. By the

guarantee of CorL, for every c P sC and z P FN such that distpz, cq ď δ˚n, we have that

distpzc, cq ď αn “ δn. (5.1)

We turn to define the corrector ĎCor for sC. For z P FN and i P N , ĎCor
z
piq proceeds as

follows:

1. Simulate Corpiq but, in the process, for every query index j P N that Corzpiq asks

to query:

(a) Run CorzLpjq in attempt to obtain zcj (if CorzLpjq ‰K, zcj is successfully obtained).

(b) If the attempt failed, namely, CorzLpjq “K, halt and output K.

(c) Feed Corpiq with zcj .

2. Return the result returned by Corpiq.
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It is immediate that the number of queries that ĎCor makes is at most qq1. As for the

correctness, first, it can be easily verified that in the case that ĎCorpiq is given access to a

codeword c P ĎCor, it outputs ci (this follows by the respective guarantees of Cor and CorL).

Secondly, we turn to analyze the case that ĎCorpiq is given access to a possibly corrupted

codeword, and so assume that z P FN is such that distpz, cq ď δ˚n for some c P C̄.

Consider a run of ĎCor
z
piq, and let A denote the event that during the simulation of

Corpiq, an index j P N such that CorzLpjq “K is requested. Further consider as a thought

experiment a hypothetical run, this time of Corz
c

piq, and let B denote the event that an

index j P N such that CorzLpjq “K is queried. As during the run of ĎCor
z
piq, until the

first time that the simulated Corpiq requests j P N such that CorzLpjq “K, it is fed with

symbols identical to those of zc, we have that PrrAs “ PrrBs. Moreover, from the same

reason, we have that

Pr
“

ĎCor
z
piq P tci,Ku |  A

‰

“ Pr
“

Corz
c

piq P tci,Ku |  B
‰

.

Thus,

Pr
“

ĎCor
z
piq P tci,Ku

‰

“ PrrAsPr
“

ĎCor
z
piq P tci,Ku | A

‰

`Prr AsPr
“

ĎCor
z
piq P tci,Ku |  A

‰

“ PrrAs ¨ 1`Prr AsPr
“

ĎCor
z
piq P tci,Ku |  A

‰

“ PrrBs ¨ 1`Prr BsPr
“

Corz
c

piq P tci,Ku |  B
‰

ě PrrBsPr
“

Corz
c

piq P tci,Ku | B
‰

`Prr BsPr
“

Corz
c

piq P tci,Ku |  B
‰

“ Pr
“

Corz
c

piq P tci,Ku
‰

ě 1´ ε,

where the second equality follows by the fact that in the event A, ĎCor
z
piq outputs K.

The last inequality follows from the guarantee of Cor, together with Equation (5.1). We

thus have that as wanted, given that distpz, cq ď δ˚n, ĎCor
z
piq outputs a correct symbol

(in tci,Ku) with a probability at least 1 ´ ε, which concludes the correctness analysis of
ĎCor.

Relaxed-local-amplifiers exist, and can be found efficiently, as given by the following

lemma. The proof for the lemma is by a construction, and this construction resembles

that of the a AEL distance amplification [AEL95, AL96] which was adapted and shown

to preserve locality features by [KMRS17].

Lemma 5.3. There exist universal constants η0 and e0 such that the following holds. For

every set N such that |N | “ n ě η0, F a finite field, and δ, α such that 0 ď δ ď 1
2
p1´ 1

|F|q
2,
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0 ď α ď 1, there exists a linear subspace L Ď FN which is a pq, δ, αq-local-amplifier for

q ď
`

2
δα

˘e0, such that dimL ě p1´ 10H|F|p
?
δqqn. Furthermore, there exists an algorithm

that takes as input n, δ, α, and computes L, that runs time |F|polyp 1
δαq ` polypnq.

A proof for the lemma is deferred to Section 5.3.

5.2 The main theorem

We are now ready to prove our main result, Theorem 1.1. First, we give a more formal

and precise statement.

Theorem 5.4. Let F be a field of constant size.4 For every ` P N and 0 ď δ ď 1
2
p1´ 1

|F|q
2

there exists a rate-ρ pq, δ, 1
3
q-RLCC C Ď Fn of length n P r`, `2s where

q “ plog nqOplog log lognq,

ρ “ 1´ 10H|F|p
?
δq ´ op1q.

Moreover, there exists an algorithm that gets as input δ and ` and computes C, as well

as an efficient local corrector for C, in time polyp`q.

Proof. Let `0 be a sufficiently large universal constant. We assume without loss of gener-

ality that ` ě `0
5. We prove the theorem by constructing a sequence of codes C0, . . . , Cm

iteratively, and the desired code C will be constructed from the code Cm. We start by

defining a few parameters. Set

b “ 2r2 log log log `s,

δ˚ “
1

plog log `q4
,

n0 “ 2r2 log log log `s,

m “ rlog log `´ log log n0s,

n “ n0
2m .

Notice that we have that

plog log `q2 ď b “ n0 ď 2plog log `q2, (5.2)

4Taking a larger than constant field size only affects the running-time part of the theorem, as the

time to compute C is, more precisely, |F|polyplog lognq ` polypnq. Nonetheless, simple adaptations to the

construction can be made in cases where a larger field size is needed.
5Every ` ă `0 trivially satisfies the statement, as can be seen by noting that the identity code CI Ď Fr`s

is a RLCC with query complexity ` “ Op1q and correction radius 1
` “ Ωp1q.
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and

` “ n0
2log log `´log logn0

ď n ď n0
2log log `´log logn0`1

“ `2. (5.3)

Further, set

Cb “

$

&

%

v P Frbs
ˇ

ˇ

ˇ

ˇ

ÿ

iPrbs

vi “ 0

,

.

-

Ď Frbs.

Clearly Cb has rate ρb “ 1´ 1
b

and is a pqb, δb, εbq-RLCC for qb “ b, δb “
1
b

and εb “ 0. We

will maintain the invariant that at each step, namely, for every t P rms, the code Ct is of

length n2t

0 and is a pqt, δ
˚, 1

3
q-RLCC, and so, by Equation (5.3), Cm will be of a desired

length.

The base code. Set N0 “ rn0s and take C0 Ď FN0 to be the identity code. Set q0 “ n0.

By Equation (5.2), C0 is trivially a pq0, δ
˚, 1

3
q-RLCC, (since δ˚ ă 1

n0
and assuming we take

`0 ě 7), with rate ρ0 “ 1.

The iterative step. For t “ 1, . . . ,m, Ct is constructed as follows.

1. Set Nt “ Nt´1 ˆNt´1 and nt “ |Nt|, and note that nt “ n2
t´1.

2. Set Pt “ tPi | i P Nt´1u to be a set of partitions of Nt´1 into parts of size b that is

row-evasive. Such Pt exists by Claim 4.2, and note that the claim is applicable as

both b and nt´1 are powers of 2, and b “ n0 ď nt´1.

3. Set C 1t “ pCt´1q
2
Pt,Cb . By Claim 4.5, C 1t has rate at least

ρ1t “ ρt´1 ´
1

b
. (5.4)

By Proposition 4.6, C 1t is a pq1t, δ
1
t, ε

1
tq-RLCC for

q1t “ 26
pqt´1 ` bqb

1

δ˚
ď 27qt´1b

1

δ˚
ď 28

plog log `q6qt´1,

δ1t “
1

8
pδ˚q2

1

b
ě

1

16plog log `q10
,

ε1t “
5

9
`

4

9
¨

1

3
“

19

27
,

where, for these inequalities, we used Equation (5.2) and the fact that qt´1 ě q0 ě b.

Moreover, by Claim 3.7, C 1t is a pq2t , δ
1
t,

1
3
q-RLCC for

q2t “ 4q1t ď 210
plog log `q6qt´1,

as
`

19
27

˘4
ă 1

3
.
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4. Set Lt Ď FNt to be a linear subspace which is a pqLt , δLt , αLtq-local-amplifier for

δLt “ δ˚, αLt “ δ1t. By Lemma 5.3 such a subspace exists with

qLt ď

ˆ

2

δ˚δ1t

˙e0

ď

ˆ

32plog log `q10

δ˚

˙e0

“ 25e0plog log `q14e0 ,

where e0 is the constant from Lemma 5.3. Moreover, Lt satisfies

dimpLtq ě p1´ 10H|F|p
?
δ˚qqnt.

Note that the lemma is applicable since its prerequisites are met. Indeed, we have

that nt ě η0, the universal constant from the lemma, since nt ě n0 ě plog log `0q
2

as long as we choose `0 such that plog log `0q
2 ě η0. Moreover, the requirement

regarding δLt is satisfied as well as, assuming that `0 ě 16, we have that

δLt “ δ˚ “
1

plog log `q4
ď

1

plog log `0q
4
ď

1

16
ď

1

2

ˆ

1´
1

|F|

˙2

,

since |F| ě 2.

5. Set Ct “ C 1t X Lt. By Claim 3.5, the rate of Ct is at least

ρt “ ρ1t `
dimpLtq

nt
´ 1 ě ρt´1 ´

1

b
´ 10H|F|p

?
δ˚q, (5.5)

where we used Equation (5.4). By Claim 5.2, Ct is a pqt, δ
˚, 1

3
q-RLCC for

qt “ q2t qLt ď 210`5e0plog log `q6`14e0qt´1. (5.6)

The final code. The code Cm is, as argued, a pqm, δ
˚, 1

3
q-RLCC, of length nm “ n0

2m “

n. If δ ď δ˚, we set C “ Cm to be the desired code. If otherwise, we set L Ď FNm to be a

pqL, δ, δ
˚q-relaxed-local-amplifier, and by Lemma 5.3, such L exists with query complexity

qL ď

ˆ

2

δδ˚

˙e0

ď

ˆ

2

δ˚

˙2e0

“ 22e0plog log `q8e0 , (5.7)

and

dimL ě p1´ 10H|F|p
?
δqqn.
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Set C “ Cm X L. In either case, by Claim 5.2, C is a pq, δ, 1
3
q-RLCC for q “ qmqL. By

Equation (5.5) and Claim 3.5, C has rate ρ which satisfies

ρ ě ρm ´ 10H|F|p
?
δq

ě ρ0 ´
m

b
´ 10mH|F|p

?
δ˚q ´ 10H|F|p

?
δq

“ 1´
m

b
´ 10mH|F|

ˆ

1

plog log `q2

˙

´ 10H|F|p
?
δq

ě 1´
1

log log `
´ 10plog log `qH|F|

ˆ

1

plog log `q2

˙

´ 10H|F|p
?
δq

“ 1´ 10H|F|p
?
δq ´ op1q,

where the last equality holds by Fact 3.1. As for the query complexity, by Equation (5.6)

and Equation (5.7), we have that

q “ qm ¨ qL

ď p210`5e0plog log `q6`14e0q
mq0 ¨ 2

2e0plog log `q8e0

“ plog log `qOplog log `q

“ plog `qOplog log `q

“ plog nqOplog lognq,

where in the third equality we used that q0 ď 2plog log `q2 and m ď log log `, and the last

equality holds as n P r`, `2s by Equation (5.3).

Explicitness. It remains to verify that there exists an efficient algorithm that computes

C and an efficient local corrector for C. The code C is constructed by taking C “ CmXL

(or C “ Cm if δ ă δ˚). By Lemma 5.3, there exists an algorithm with running-time

|F|polyp 1
δ˚
q
` polypnq “ |F|polyplog lognq

` polypnq “ polypnq

that computes L. Thus, to show that there exists an algorithm that computes C (namely,

a parity-check matrix for C) in polynomial time, it suffices to show that Cm can be

computed efficiently. Recall that the base code C0 is the identity code, and the code Cb

used through the construction is a simple parity code - both of which, clearly, can be

computed efficiently. For every t P rms, the code Ct is constructed by computing Pt,
pCt´1q

2
Pt,Cb and Lt, and by performing few other minor operations that are clearly done

in time polypntq. The row-evasive sets of partitions Pt are achieved by Claim 4.2, and the

claim’s proof contains an explicit construction which clearly can be implemented in time

polypntq. The relaxed-local-amplifier Lt, by Lemma 5.3, can be computed in time

|F|
poly

ˆ

1
δ˚δ1t

˙

` polypntq “ |F|polyplog lognq
` polypntq.
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It can be readily verified, by Definition 4.4, that there exists an algorithm, that given

the result of the computation of Ct´1 and Cb, and given Pt, computes pCt´1q
2
Pt,Cb , and

runs in time polypntq. Therefore, in total, the time it takes to compute Ct given Ct´1

is |F|polyplog lognq ` polypntq. Thus, the sequence C1, . . . , Cm can be computed in time

mp|F|polyplog lognq ` polypnqq “ polypnq. We conclude that there exists an algorithm that

computes C of the stated properties, which runs in time polypnq. That there is an efficient

corrector for C readily follows by inspecting the construction.

5.3 Proof for Lemma 5.3

In this section we provide a proof for Lemma 5.3. We require some preliminaries.

Theorem 5.5 (The Gilbert-Varshamov bound, [Gil52, Var57]). For any n P N, a field F
of size q, and 0 ď δ ď 1 ´ 1

q
, there exists a linear code C Ď Frns, with relative distance δ

and rate 1´ Hqpδq ´
2
n

.

Claim 5.6. For every field F of size q, there exists an algorithm that takes as input n P N
and δ ď 1´ 1

q
, and computes a code C Ď Frns with distance δ and rate 1´Hqpδq´

2
n

. The

running-time of the algorithm is qOpn
2q.6

Proof. Since the codes considered by Theorem 5.5 are linear, for each such code C Ď Frns,
one can consider the parity-check matrix, P P Fpn´kqˆn, where k is the dimension of

C. Recall that the parity-check matrix satisfies C “ tv P Fn | Pv “ 0u. There are

qpn´kqn ď qn
2

such matrices, and for every matrix P , the distance of the code it induces

can be checked simply by going over all of the vectors in the corresponding code and

compute the hamming weight. This can be done in time qOpnq.

The proof of Lemma 5.3 relies on special graphs called samplers, which we now define.

In the definition we will use the following notation. For a bipartite graph G “ pU, V,Eq

and u P U we denote by Npuq the set tv P V | pu, vq P Eu.

Definition 5.7. Let 0 ă β, γ ă 1. A bipartite graph G “ pU, V,Eq is called an pα, γq-

sampler if for every subset P Ď V , for all but γ-fraction of vertices u P U it holds that

ˇ

ˇ

ˇ

ˇ

|Npuq X P |

|Npuq|
´
|P |

|V |

ˇ

ˇ

ˇ

ˇ

ă β.

6We remark that in fact such codes can be found in time |F|Opnq (by performing an exhaustive search

on a limited family of matrices, see [GRS12]), but the bound |F|Opn2
q suffices for the purposes of this

work.
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We will make use of the following explicit samplers (see [KMRS17] Lemma 2.12 and

references therein).

Lemma 5.8 ([KMRS17]). There exist universal constants `0, d0 such that the following

holds. For every 0 ă β, γ ă 1 and ` ě `0 there exists a bipartite d-regular graph G`,α,γ “

pU, V,Eq for |U | “ |V | “ ` with

d “ dpβ, γq ď

ˆ

1

βγ

˙d0

,

such that G`,β,γ is a pβ, γq-sampler. Furthermore, there exists an algorithm that takes as

input n, β, γ, and a vertex w of G`,β,γ, and computes the list of its neighbors in the graph

in time poly
´

log `
βγ

¯

.

We are now in a position to prove the Lemma 5.3.

Proof of Lemma 5.3. Set e0 “ 2d0 log `0 and η0 “ `2
0 where d0 and `0 are the universal

constants from Lemma 5.8.

The subspace construction. We start by setting up some intermediate objects. Set

β “
b

δ
2

and γ “ α. Let G “ G`,β,γ “ pU, V,Eq be a bipartite d-regular graph which is a

pβ, γq-sampler, whose existence is guaranteed by Lemma 5.8, for d “ dpβ, γq and ` “ n
d
.

We will assume without loss of generality that ` ě `0, and so Lemma 5.8 is applicable.

Since, if otherwise it is the case that n ă d`0, we can simply take the subspace L to be

equal to a code C Ď FN with distance ∆ “ 2δ and rate at least 1 ´ H|F|p∆q ´
2
n
, whose

existence is promised by Theorem 5.5. In such case, C is trivially an pn, δ, 0q-relaxed-

local-amplifier, and since n ă d`0, its query complexity is small enough. It can be readily

verified that in this case C possesses all of the claimed properties. Indeed, the rate is at

least

1´ 2H|F|pδq ´
2

n
ě 1´ 4H|F|pδq

(assuming without loss of generality that δ ě 1
n

and using Fact 3.2), and the query

complexity is bounded above by

dpβ, γq`0 ď

ˆ

1

βγ

˙d0

`0 “

˜

1
a

δ{2α

¸d0

`0 ď

ˆ

2

δα

˙e0

.

Further, there exists an algorithm that computes C and runs time |F|Opn2q “ |F|polyp 1
δα
q,

by Claim 5.6.

Thus, we proceed with the sampler G “ pU, V,Eq as defined above, under the assump-

tion that ` ě `0. Note that |E| “ n, and let f : E Ñ N be an arbitrary fixed bijection.
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For every w P U Y V , denote by Dw the set tfpeq | e P E,w P eu and let gw : Dw Ñ rds

be an arbitrary fixed bijection. Further let Cd Ď Frds be a code of length d, with relative

distance

∆d “
?

2δ (5.8)

and rate

ρd ě 1´ H|F|p∆dq ´
2

d
. (5.9)

The existence of such a code Cd follows from Theorem 5.5, and notice that per our

assumption that δ ď 1
2
p1 ´ 1

|F|q
2, its perquisite is met. Define for every w P U Y V the

code Cw Ď FDw to be tc ˝ gw | c P Cdu. We argue that the following subspace

L “
 

y P FN | @w P U Y V yDw P Cw
(

is of the claimed properties.

Explicitness. By Lemma 5.8, there exists an algorithm that computes the adjacency

list of each w P U Y V and runs in time poly
´

log `
βγ

¯

“ polypnq. By Claim 5.6, the exists

an algorithm that computes Cd and runs in time |F|Opd2q “ |F|polyp 1
δαq. Thus, a parity-

check matrix for L can be efficiently computed in the following manner. First compute a

parity-check matrix for Cd whose rows are o1, . . . , otd P Frds. Then, for every w P U Y V ,

compute its adjacency list and from it the set Dw (using the bijection f). Then, construct

the functions o1 ˝ gw, . . . , otd ˝ gw P FDw and expand them to functions hw1 , . . . , h
w
td

in FN

(hwj piq “ 0 for every i R Dw). The rows of the desired parity-check matrix for L are given

by thw1 , . . . , h
w
td
| w P U Y V u, and so we output the set of these functions (which were

computed during the iterations).

By the account given regarding the time to compute Cd and each adjacency list,

the total running-time is |F|polyp 1
δαq ` polypnq, since it is straightforward that all other

operations, during each iteration, can be performed in time polypnq – and there are less

than 2n iterations.

Dimension analysis. We assume without loss of generality that ∆d ě
1
d
, as otherwise

we can simply take Cd “ Frds, and get that dimL “ n. By Equation (5.9) we have that

ρd ě 1´ H|F|p∆dq ´
2

d

ě 1´ H|F|p∆dq ´ 2∆d

ě 1´ 3H|F|p∆dq,
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where the last inequality follows by Fact 3.2. Plugging in Equation (5.8), and using

Fact 3.3, it follows that

ρd ě 1´ 3H|F|p
?

2δq ě 1´ 5H|F|p
?
δq.

To conclude that its dimension is as stated, notice that L is defined by at most

2 ¨
n

d
¨ p1´ ρdqd

constraints, and thus

dimL ě p2ρd ´ 1qn ě p1´ 10H|F|p
?
δqqn.

The corrector. We turn to describe a corrector Cor in order to show that L is a pq, δ, αq

relaxed-local-amplifier. On input i P N and oracle access to z P FN , Corpiq proceeds as

follows:

1. Set e “ pu, vq “ f´1piq;

2. Query zu , zDu ; If zu R Cu, halt and output K;

3. For every v1 P Npuq query zv1 , zDv1 and if zv1 R Cv1 , halt and output K;

4. Output zi.

Correctness. First, the number of queries that Cor makes is exactly q “ d2. Therefore,

q “ dpβ, γq2 ď

ˆ

1

βγ

˙2d0

“

˜

1
a

δ{2α

¸2d0

ď

ˆ

2

δα

˙e0

.

Secondly, it is immediate that for every i P N , y P L, Corpiq “ yi, as the every check that

Cor makes must follow through in this case, by L’s definition. Thirdly, it remains to show

that for every i P N and y P L and z P FN such that distpz, yq ď δn, Corpiq P tyi,Ku for

at least p1 ´ αq-fraction of the indices i P N . Towards that, let y P L and z P FN such

that distpz, yq ď δn. Let

B “ tv P V | distpzDv , yDvq ě ∆ddu .

By an averaging argument, we have that

|B| ď δn

∆dd
“

δ

∆d

|V |.
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As G is a pβ, γq-sampler, we have that for at least p1´ γq-fraction of the vertices u P U ,

|Npuq X B| ă d

ˆ

δ

∆d

` β

˙

“ d∆d. (5.10)

Let

A “ tu P U | u satisfies Equation (5.10)u .

Let i P N such that fppu, vqq “ i and suppose that zi ‰ yi. Then, given that zDu P Cu, as

verified by Step (2), it must be that

t , dist pzDu , yDuq ě ∆dd.

Let v1, . . . , vt P Npuq be such that for every r P rts, zfppu,vrqq ‰ yfppu,vrqq. Given that for

every r P rts, zDvr P Cvr , as verified by Step 3 of Corpiq, it must be that for every r P rts

distpzDvr , yDvr q ě ∆dd, i.e., vr P B. Therefore, since u has t ě ∆dd neighbors vr P Npuq

which are in B, u R A.

It follows that for every i P N such that fppu, vqq “ i for u P A, either zi “ yi or one

of the checks that Corpiq makes is resulted with K. In either case, for such i, we have that

Corpiq P tyi,Ku. Finally, since

|A| ě p1´ γq|U | “ p1´ αq|U |

it follows that I “ ti P N | i “ fppu, vqq for u P Au satisfies |I| ě p1 ´ αqn, since every

u P A corresponds to exactly d indices i P I and n “ d|U |. Thus, the fraction of indices

i P N which satisfy Corpiq P tyi,Ku is at least 1´ α, as required.
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