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Abstract

We introduce a new topological argument based on the Borsuk-Ulam theorem to prove a
lower bound on sign-rank.

• This result implies the strongest possible separation between randomized and unbounded-
error communication complexity. More precisely, we show that for a particular range of
parameters, the randomized communication complexity of the Gap Hamming Distance
problem is O(1) while its unbounded-error communication complexity is Ω(log(n)).

Previously, it was unknown whether the unbounded-error communication complexity could
be asymptotically larger than the randomized communication complexity.

• In connection to learning theory, we prove that, despite its learnability properties, the
class of large margin half-spaces in Rd is genuinely high-dimensional, i.e., it cannot be
embedded in Rd−1. This result is closely related to a recent conjecture of Alon, Hanneke,
Holzman, and Moran (FOCS 2021) about the VC dimension of this class.

• Our final application is to the theory of dimension reductions. The Johnson-Lindenstrauss
theorem implies that any set of N unit vectors is embeddable in dimension O(γ−2 logN)
without altering the signs of those pairwise inner products that have absolute values at
least γ > 0. Our result establishes the tightness of this bound, which answers a question
of Linial, Mendelson, Schechtman, and Shraibman (Combinatorica, 27(2007)) in the case
of partial functions.

1 Introduction

Our main result, which is a geometric fact about the two notions of margin and dimension, has
different formulations and consequences in communication complexity, learning theory, and the
theory of metric dimension reductions.

In communication complexity, we study the relation between the (shared randomness) bounded-
error randomized communication complexity, denoted by R(·), and the unbounded-error communi-
cation complexity, denoted by U(·).

The unbounded-error model allows the error probability to be arbitrarily close to 1
2 , and this

relaxed requirement makes it more powerful than any of the usual communication models. There-
fore, lower bounds against this model are highly desirable as they apply to many other models and
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problems. However, this additional power naturally means that proving such lower bounds is often
difficult and requires richer mathematics.

In comparison, the bounded-error model is generally much weaker even though it has access
to shared randomness. An extensive collection of tools for proving lower bounds against this
model exist, and in fact, all the known lower bound techniques against U(M), such as the counting
argument of [AFR85], the Vapnik-Chervonenkis (VC) dimension lower bound of [PS86], or Forster’s
method [For02] and its extensions, also imply strong lower bounds against R(M).

These considerations raise an interesting question: whether there exists any communication
problem that is easier for the bounded-error model than for the unbounded-error model.

Naturally, proving a positive answer to this question requires a lower bound technique against
U(·) that would not apply to R(·). In the present paper, we use a novel topological argument based
on the Borsuk-Ulam theorem to achieve this goal.

There is a (partial) Boolean matrix M2n×2n with R(M) = O(1), but U(M) = Ω(logn).

It follows from Newman’s theorem [New91] that this is the best possible separation.
Next, we discuss the connection to learning theory. Binary classification is one of the most

widely studied problems in machine learning. Its goal is to learn a model that can distinguish
between positive and negative examples. The algorithm receives training data, a collection of fully
labelled samples, and it must produce a model that can make low-error predictions for the labels
of the unseen data points.

The geometric representation of concepts as half-spaces is central to binary classification. In-
deed, many standard approaches, such as support vector machines, embed complex concept classes
in half-spaces and afterward apply efficient learning algorithms for half-spaces.

Dimension is arguably the most critical attribute of these representations as it corresponds to the
number of parameters in the model. The smallest possible dimension where such a representation
is possible is called the dimension complexity of the concept class. The dimension complexity is
equal to the so-called sign-rank of the matrix representing the concept class (see Definition 1.1).

The curse of dimensionality refers to a commonly observed phenomenon in which the per-
formances of many algorithms deteriorate exponentially as the number of parameters increases.
However, a widely used class of learning algorithms, called support vector machines, can overcome
high dimensionality challenges by requiring extra assumptions about the data. Regardless of the
dimension, these algorithms have strong success guarantees when we confine the learning task to
the data points separated from the decision boundary by a non-negligible margin γ > 0.

To be more rigorous, let the unit sphere Sd−1 ⊂ Rd represent the set of data points. Fix a
parameter γ ∈ (0, 1), and define Gd

γ to be the class of all partial concepts hy : Sd−1 → {−1, 1, ∗}
for y ∈ Sd−1 where

hy : x 7→


1 ⟨x, y⟩ > γ

−1 ⟨x, y⟩ < −γ
∗ otherwise

. (1)

The success of support vector machines in dealing with high-dimensional data is due to the fact
that their sample complexity in learning Gd

γ does not depend on the dimension d.

The fact that Gd
γ evades some aspects of the curse of dimensionality raises the question of

whether it is genuinely high-dimensional. Perhaps surprisingly, in Theorem 1.5, we prove that the
answer is yes in the following sense.
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For every γ ∈ (0, 1), the dimension complexity of Gd
γ is exactly d.

This result is also closely related to a recent conjecture of Alon, Hanneke, Holzman, and
Moran [AHHM22] about the VC dimension of Gd

γ . We will elaborate on these connections in
Section 1.4.1.

Finally, we discuss the connection to dimension reductions. The Johnson–Lindenstrauss lemma
states that every finite set of points in any Euclidean space can be embedded into a Euclidean
space of low dimension in such a way that distances between the points are nearly preserved. In
particular, every set of N unit vectors is embeddable into RO(log(N)) in such a way that the pairwise
inner products between the points are approximately preserved. Such an approximation will not
alter the signs of those inner products that are bounded away from zero by a large margin. It
follows that [AV06, LMSS07] any set of N unit vectors is embeddable in dimension O(γ−2 logN)
without altering the signs of those pairwise inner products that have magnitude at least γ > 0.
Linial, Mendelson, Schechtman, and Shraibman [LMSS07] asked whether the dependency on N is
necessary1. In Theorem 1.11, we essentially resolve their question by proving a lower bound of
Ω(γ−2 logN).

In the remaining sections of the introduction, we formally state our results and elaborate on
their applications.

1.1 Notation

We will use the standard computer science asymptotic notations [CLRS01] of O(·), Ω(·), Θ(·), o(·),
and ω(·). The inner product of x = (x1, · · · , xd) ∈ Rd and y = (y1, · · · , yd) ∈ Rd is ⟨x, y⟩ :=∑d

i=1 xi · yi. This defines the Euclidean norm ∥x∥ :=
√
⟨x, x⟩ =

√∑d
i=1 x

2
i .

We denote the (d − 1)-dimensional unit sphere by Sd−1 = {x ∈ Rd : ∥x∥ = 1}. Given a
parameter δ ∈ (0, 1), a δ-net for Sd−1 is a finite subset T ⊂ Sd−1 such that for all x ∈ Sd−1 there
is a t ∈ T with ∥x− t∥ ≤ δ.

Throughout the article, we sometimes identify a matrix AX×Y with the corresponding function
on X × Y, defined as (x, y) 7→ Ax,y.

1.2 Background

A sign matrix is a matrix with ±1 entries. A partial sign matrix is a matrix with {−1, 1, ∗} entries
where ∗’s represent “invalid” entries. When there is ambiguity, we will use the term total sign
matrix to differentiate sign matrices from partial sign matrices.

The sign-rank of a sign matrix AX×Y , denoted by rk±(A), is the smallest rank of a real matrix
BX×Y such that the entries of B are nonzero and have the same signs as their corresponding entries
in A. Note that the definition of sign-rank naturally extends to partial matrices, where for invalid
entries of A, the corresponding entry in B could be any real number.

Sign-rank is a fundamental notion in learning theory [BDES02, KS07, She08a, SS05, Fel17,
FGV21], communication complexity [PS86, CM18, She08b, HHL22], and discrete geometry [AFR85,
FGL+12, FPS+17, Suk16, EMRPS14]. It also arises naturally as a lower bound tool in circuit
complexity [RS10, BT16, SW19] and the theory of metric dimension reductions [Mat96, Nao18].

1To be more precise, [LMSS07] assumes that all the initial pairwise inner products have magnitude at least γ > 0.

3



Geometrically, sign-rank is the smallest dimension in which the matrix has a realization as
points and half-spaces, and for this reason, sign-rank is sometimes called the dimension complexity.
For the record, we will state the definition of sign-rank in this terminology.

Definition 1.1 (Sign-rank). The sign-rank of a partial sign matrix AX×Y is the smallest d such
that there exist unit vectors ux, vy ∈ Rd with Axy = sgn(⟨ux, vy⟩) for all valid (x, y) ∈ X × Y.

The unit vectors in Definition 1.1 represent A as points and half-spaces in the d-dimensional
space: Axy = 1 if and only if the point ux belongs to the half-space {z : ⟨z, vy⟩ > 0}.

There is a second geometric parameter that is associated with the representations of a sign
matrix as points and half-spaces. The quantity minx,y |⟨ux, vy⟩| is called the margin of such a
representation; it measures the smallest distance between the point ux and the hyperplanes defined
by vy.

Definition 1.2 (Margin). The margin of a partial sign matrix AX×Y is

m(A) := supmin
x,y

|⟨ux, vy⟩| ,

where the minimum is over all valid (x, y) ∈ X × Y, and the supremum is over all d ∈ N and unit
vectors ux, vy ∈ Rd with Axy = sgn(⟨ux, vy⟩) for all valid (x, y) ∈ X × Y.

Linial and Shraibman [LS09] proved that for total matrices, the margin is equivalent to the
well-studied notion of discrepancy in communication complexity:

disc(A) ≤ m(A) ≤ 8 disc(A).

1.3 Communication Complexity

Every sign matrix AX×Y corresponds to a communication problem in the standard two-party model,
where one player receives x ∈ X , and the other receives y ∈ Y. Their objective is to determine
Ax,y by exchanging as few bits of communication as possible. In communication complexity, it is
common to assume that the rows and columns are indexed by n-bit strings, i.e. X = Y := {−1, 1}n.
We refer to those problems as n-bit communication problems.

Many natural problems in communication complexity are promise problems where the input is
promised to belong to a particular subset of all possible inputs. Equivalently, one can allow invalid
inputs but assume that −1 and 1 are both acceptable outputs in case the players receive an invalid
input. We represent these problems by partial sign matrices.

The randomized communication complexity of A, denoted by R(A), is the smallest cost of a
probabilistic communication protocol that computes A in the shared randomness model with error
probability at most 1/3 on every valid input [KN97, Definition 3.12]. The particular choice of 1/3 is
unimportant as long as one is concerned with a fixed error probability in (0, 1/2). In this case, the
error can be reduced to any desired constant by running the protocol a few times and outputting
the majority answer.

In the unbounded-error model of communication, the players have access to their private sources
of randomness. Their objective is only to outperform a random guess: for every valid input (x, y) ∈
X×Y, they must correctly produce the value of Ax,y with a probability strictly larger than 1/2. The
unbounded-error communication complexity of A, denoted by U(A), is the smallest protocol cost
that computes A in this model. We emphasize that the unbounded-error communication complexity
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must be defined with private randomness since in the shared randomness model, achieving the error
probability less than 1/2 is always possible using 2 bits of communication.

Paturi and Simon [PS86] proved that sign-rank provides an elegant characterization of the
unbounded-error communication complexity:

log rk±(A) ≤ U(A) ≤ 2 + log rk±(A). (2)

It is straightforward to verify that this characterization is true for partial sign matrices as well.
The unbounded-error model is one of the most powerful models of communication, and the

unbounded-error communication complexity provides lower bounds for many other notions of com-
plexity. Nevertheless, we prove a separation that shows that the unbounded-error communication
complexity could be asymptotically larger than the randomized communication complexity. The
example giving this separation is the well-known Gap Hamming distance problem.

Definition 1.3. For ε ∈ (0, 1) and n ∈ N, the gap Hamming distance is defined on {−1, 1}n ×
{−1, 1}n as

GHDn
1−ε(x, y) =


1 ⟨x, y⟩ > (1− ε)n

−1 ⟨x, y⟩ < −(1− ε)n

∗ otherwise

.

The communication complexity of the gap Hamming distance problem is well-studied in the
regime of ε = 1−Θ( 1√

n
), where Chakrabarti and Regev [CR11] (see also [She12]) showed that the

bounded-error randomized communication complexity is Θ(n). However, here we are interested in
a different regime, namely when ε is bounded away from 1.

Theorem 1.4 (Communication complexity of Gap Hamming Distance). For ε ∈ (0, 19), and n ∈ N,
we have

(i) R(GHDn
1−ε) = 2.

(ii) U(GHDn
1−ε) = log(n)−O

(
log
(
ε−1
))
.

The upper bound in Theorem 1.4 (i) is easy. A formal proof is given in Section 4. The difficulty
in proving the theorem lies in establishing (ii), which requires proving a strong lower bound on the
sign-rank of the gap Hamming distance problem. This is achieved in Theorem 1.11.

The tightness of the separation of Theorem 1.4 follows from Newman’s theorem [New91], which
implies that for every (total or partial) n-bit communication problem A, we have

U(A) ≤ R(A) +O(log(n)). (3)

Theorem 1.4 shows that, at least for partial matrices, the logarithmic additive term in Eq. (3) is
necessary.

1.4 Learning theory

In learning theory, sign matrices represent binary concept classes, which correspond to statistical
binary classification problems. Every column y ∈ Y of a sign matrix AX×Y corresponds to an
object in some domain. A classification algorithm receives, as input, a training set consisting of
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labelled samples (y1, Ax,y1), . . . , (ym, Ax,ym) for an unknown x ∈ X , and its task is to predict Ax,y

for other values of y.
Characterizing learnability is the primary subject matter in learning theory. The fundamental

theorem of statistical learning states that a binary (total) concept class is learnable if and only if
its VC dimension is finite. However, most known learning algorithms do not rely on explicit upper
bounds on the VC dimension; instead, they use ‘low-complexity’ geometric representations of the
concept classes. The data points are represented by real-valued feature vectors and the concepts
are modelled by real-valued parameters. The learning algorithm uses the training data to navigate
this geometric space to find a setting of the parameters that represents a good hypothesis. This
broad description encompasses many standard learning algorithms.

Dimension, perhaps, is the most natural way to measure the complexity of these geometric
representations. It corresponds to the number of features describing the data points and the
number of parameters the algorithm uses to model hypotheses.

Margin is another notion that arises in the context of many common learning algorithms. It
corresponds to the distance between the data points and the decision boundaries, which are the
hypersurfaces in the classification model that partition the underlying space into positive and
negative points.

While the notions of dimension and margin, in these general terms, appear in the context of
many different learning algorithms, e.g., neural networks, in this article, we are interested in the
setting of linear classifiers. In this setting, points and half-spaces represent concept classes as in
Definition 1.1. The minimum possible choice for the dimension is called the dimension complexity
of the concept class, and it is equal to the sign-rank of the corresponding matrix.

The notion of margin, introduced in Definition 1.2, quantifies how well the large margin classi-
fiers such as support vector machines can learn the class. To be more precise, every finite partial
sign matrix A with m(A) = γ is a submatrix of Gd

γ in some dimension d. Moreover, the sample

complexity of the support vector machines in learning Gd
γ depends only on γ−1 and is independent

of the dimension [SSBD14, Theorem 15.4, Theorem 26.13]. In fact, even the classical perceptron
algorithm of Rosenblatt [Ros58] is guaranteed to make at most γ−2 mistakes, regardless of the value
of d [SSBD14, Theorem 9.1].

It is a curious fact that the partial concept class Gd
γ , despite its high dimensional representation,

is easy to learn. This might raise the suspicion that Gd
γ has a low dimensional linear representation.

But in the following theorem, we show that this is not true, and in fact, Gd
γ cannot be realized even

in a (d− 1)-dimensional Euclidean space.

Theorem 1.5 (Sign-rank of Gap Inner Product). For every γ ∈ (0, 1) and every d ∈ N, the
sign-rank of the Sd−1 × Sd−1 gap inner product

Gd
γ(x, y) =


1 ⟨x, y⟩ > γ

−1 ⟨x, y⟩ < −γ
∗ otherwise

.

is exactly d. For γ = 1, the sign-rank is 1.

We present the proof of Theorem 1.5 in Section 2. The proof uses the following version of the
Borsuk-Ulam theorem.

Theorem 1.6 (Borsuk-Ulam). For every continuous f : Sd → Rd, there is x ∈ Sd such that
f(x) = f(−x).
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We refer the reader to the excellent book of Matoušek [Mat03] for more applications of this
fascinating theorem.

1.4.1 The VC theory

Recall that the VC dimension of a total sign matrix A is the largest d such that A contains a
2d×d submatrix with distinct rows. The fundamental theorem of PAC learning asserts that a total
concept class is PAC-learnable if and only if its VC dimension is bounded.

In a recent paper, Alon, Hanneke, Holzman, and Moran [AHHM22] initiated a theory of PAC
learning for partial concept classes. One of the examples that motivated their study is the learn-
ability of Gd

γ . They proposed the following conjecture [AHHM22, Question 21] to show that the

learnability of Gd
γ does not follow from the standard VC dimension considerations.

Conjecture 1.7 ([AHHM22]). The smallest possible VC dimension of any completion of Gd
γ into

an Sd−1 × Sd−1 total concept class tends to infinity as d grows.

Remark 1.8. It follows from the analysis of the Perceptron algorithm that the VC dimension of
every total submatrix of Gd

γ is at most 1/γ2, which does not depend on d.

Conjecture 1.7 is the VC dimension analogue of Theorem 1.5. In fact, the two statements are
more concretely related since the smallest possible VC dimension of a completion of Gd

γ into a total

concept class is a lower bound for the sign-rank of Gd
γ .

In the following theorem, we show that, unlike sign-rank, the VC dimension of completions of
Gd

γ can be much smaller than d.

Theorem 1.9. There is a completion of Gd
γ to a total matrix G that has at most O(d log d · γ−d)

distinct rows, therefore,
VC(G) ≤ O(d · log

(
γ−1

)
+ log d).

Consequently, for γ = 1− 1
d ,

VC(G) ≤ O(log d).

Theorem 1.9 shows that Theorem 1.5 (i.e., rk±(Gd
γ) = d) does not follow from a lower bound

on the VC dimensions of arbitrary completions of Gd
γ . However, it still could be the case that all

“geometric” completions of Gd
γ have VC dimension d. That is, completions that are of the form

M(x, y) = sgn⟨ϕ(x), ψ(y)⟩ for some arbitrary choice of maps ϕ, ψ : Sd−1 → Rn and n ≥ d. We
prove this statement when ϕ and ψ are continuous.

Theorem 1.10. Fix d ∈ N and γ ∈ (0, 1), and suppose that the two maps ϕ, ψ : Sd−1 → Sd−1 are
continuous and satisfy

sgn⟨ϕ(x), ψ(y)⟩ =

{
1 ⟨x, y⟩ > γ

−1 ⟨x, y⟩ < −γ
. (4)

Then the matrix MSd−1×Sd−1, with entries M(x, y) = sgn⟨ϕ(x), ψ(y)⟩, has VC dimension d.

Note that the matrix M in Theorem 1.10 is a completion of Gd
γ into a total sign matrix. Also

observe that if one proves a generalization of Theorem 1.10 for arbitrary maps ϕ, ψ : Sd−1 → Sd−1,
then it will immediately imply Theorem 1.5
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1.5 Johnson–Lindenstrauss in bounded margin regime

The Johnson–Lindenstrauss lemma implies that (as it was shown in [LMSS07] and [AV06]) that
every N × N sign matrix A with margin Ω(1) has a realization in dimension O(log(N)). More
precisely,

rk±(A) ≤ O(m(A)−2 · log(N)). (5)

Linial, Mendelson, Schechtman, and Shraibman [LMSS07] asked whether this dependency on
N is necessary. We prove the following theorem in Section 3, which answers this question in the
case of partial matrices, and shows that Eq. (5) is tight.

Theorem 1.11 (Sign-rank of Gap Hamming Distance). For ε ∈ (0, 12) and n ∈ N,

(i) The margin of GHDn
1−ε is 1− ε.

(ii) For the sign-rank of GHDn
1−ε, we have

Ω

(
εn

log(ε−1)

)
≤ rk±(GHDn

1−ε) ≤ ⌈εn⌉.

Remark 1.12. The case of ε = 0 corresponds to the Equality function, which has sign-rank 3.

Remark 1.13. Theorem 1.11 provides an example of a partial N × N sign matrix with margin
Θ(1) and sign-rank Θ(log(N)). In the converse direction, [HHL22] uses sum-product type ideas to
construct a total sign matrix AN×N with sign-rank 3 and margin Θ(N−Ω(1)). In particular, this
matrix corresponds to an n-bit communication problem with U(A) = O(1) and R(A) = Θ(n).

2 Proof of Theorem 1.5

We recall Theorem 1.5.

Theorem 1.5 (Sign-rank of Gap Inner Product). For every γ ∈ (0, 1) and every d ∈ N, the
sign-rank of the Sd−1 × Sd−1 gap inner product

Gd
γ(x, y) =


1 ⟨x, y⟩ > γ

−1 ⟨x, y⟩ < −γ
∗ otherwise

.

is exactly d. For γ = 1, the sign-rank is 1.

Proof. First, we show that for γ = 1, the sign-rank of Gd
γ is 1. We need to find ϕ, ψ : Sd−1 → {−1, 1}

such that

sgn⟨ϕ(x), ψ(y)⟩ =

{
1 x = y

−1 x = −y
.

This is easily achieved by defining ϕ(x) = ψ(x) ∈ {−1, 1} to be the sign of the first non-zero
coordinate of x.
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Next, we turn to the case γ ∈ (0, 1). Suppose, contrary to the statement of the theorem, that
there are ϕ, ψ : Sd−1 → Sd−2 such that for all x, y ∈ Sd−1,

sgn⟨ϕ(x), ψ(y)⟩ =

{
1 ⟨x, y⟩ > γ

−1 ⟨x, y⟩ < −γ
. (6)

First, assume that at least one of the maps, say ϕ, is continuous. Later on, we will remove the
continuity assumption.

Continuous setting. By the Borsuk-Ulam theorem, there exists x ∈ Sd−1 such that ϕ(x) =
ϕ(−x). Pick any y ∈ Sd−1 such that ⟨x, y⟩ > γ. By Eq. (6), we have

0 < ⟨ϕ(x), ψ(y)⟩.

Then ⟨ϕ(−x), ψ(y)⟩ = ⟨ϕ(x), ψ(y)⟩ > 0 while ⟨−x, y⟩ < −γ, which shows that Eq. (6) is not satisfied
for −x and y.

General setting. Suppose ϕ is an arbitrary map and not necessarily continuous. We modify ϕ
into a continuous map at the cost of slightly increasing γ. Let δ > 0 be a small constant to be
determined later. Let T be a finite δ-net for Sd−1, which means that for every x ∈ Sd−1, there
exists t ∈ T such that ∥x− t∥ < δ. Let ρ : R → [0, 1] be the continuous function

ρ(z) =


1 z ≤ δ

2− z
δ z ∈ (δ, 2δ)

0 z ≥ 2δ

,

and define ϕ̃ : Sd−1 → Rd−1 as

ϕ̃ : x 7→
∑
t∈T

ρ(∥x− t∥)ϕ(t).

It follows from the continuity of ρ that ϕ̃ is continuous. Here, ϕ̃(x) is a weighted sum of ϕ(t) over
all t ∈ T that assigns a zero weight to the points that are in distance at least 2δ from x. We will
show that for all x, y ∈ Sd−1,

sgn⟨ϕ̃(x), ψ(y)⟩ =

{
1 ⟨x, y⟩ > γ + 2δ

−1 ⟨x, y⟩ < −(γ + 2δ)
.

Consider x, y with ⟨x, y⟩ ≥ γ + 2δ. Every t ∈ T with ∥x− t∥ < 2δ satisfies

⟨t, y⟩ ≥ ⟨x, y⟩ − ∥x− t∥ > ⟨x, y⟩ − 2δ ≥ γ,

and thus by Eq. (6), it must satisfy ⟨ϕ(t), ψ(y)⟩ > 0. Consequently,

⟨ϕ̃(x), ψ(y)⟩ =
∑
t∈T

ρ(∥x− t∥)⟨ϕ(t), ψ(y)⟩ > 0.

Similarly, one can show that if ⟨x, y⟩ < −(γ + 2δ), then ⟨ϕ̃(x), ψ(y)⟩ < 0.
We can pick any δ > 0 small enough so that γ + 2δ < 1 and let γ′ := γ + 2δ. To get a

contradiction, we apply the continuous case to the pair ϕ̃, ψ with parameter γ′ instead of γ.
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3 Proof of Theorem 1.11

We first recall Theorem 1.11.

Theorem 1.11 (Sign-rank of Gap Hamming Distance). For ε ∈ (0, 12) and n ∈ N,

(i) The margin of GHDn
1−ε is 1− ε.

(ii) For the sign-rank of GHDn
1−ε, we have

Ω

(
εn

log(ε−1)

)
≤ rk±(GHDn

1−ε) ≤ ⌈εn⌉.

3.1 Upper bound

Claim 3.1. Let ε ∈ [0, 1]. Then rk±(GHDn
1−ε) ≤ ⌈εn⌉.

Proof. Let k := ⌈εn⌉ and let ϕ : {−1, 1}n → {−1, 1}k be the projection to the first k coordinates.
For every x, y ∈ {−1, 1}n,

⟨x, y⟩ > (1− ε)n =⇒ ⟨ϕ(x), ϕ(y)⟩ ≥ ⟨x, y⟩ − (n− k) > 0

and
⟨x, y⟩ ≤ −(1− ε)n =⇒ ⟨ϕ(x), ϕ(y)⟩ < ⟨x, y⟩+ (n− k) < 0,

which shows that rk±(GHDn
1−ε) ≤ k as desired.

3.2 Lower bound

First, we prove the following lemma that embeds the Gap Inner Product function of Theorem 1.5
in the Gap Hamming Distance function of Theorem 1.11.

Lemma 3.2. Let δ ∈ (0, 12) be a parameter. There exist n = O
(

d√
δ
log(1/δ)

)
and a map ξ :

Sd−1 → {−1, 1}n such that for all u, v ∈ Sd−1, we have

⟨u, v⟩ > 1− δ =⇒ ⟨ξ(u), ξ(v)⟩ > n(1− 6
√
δ)

and
⟨u, v⟩ < −(1− δ) =⇒ ⟨ξ(u), ξ(v)⟩ < −n(1− 6

√
δ).

Proof. Let T be a δ
2 -net of size at most (O(1/δ))d = 2O(d log(1/δ)) in Sd−1. The upper bound of

(O(1/δ))d follows from a greedy procedure where one picks as many disjoint balls of radius δ
4 as

possible and takes the center of those balls as the δ
2 -net. We show the existence of the desired

ξ : Sd−1 → {−1, 1}n by a probabilistic argument. Let n ∈ N to be determined later. Pick
w1, . . . ,wn ∈ Sd−1 independently and uniformly at random, and define a corresponding random
function η : T → {−1, 1}n as

η : x 7→ (sgn⟨x,wi⟩)ni=1 . (7)

Fix i ∈ [n] and u, v ∈ T such that ⟨u, v⟩ > 1−2δ. Since the angle between u and v is arccos(⟨u, v⟩),
we have

Pr [sgn⟨u,wi⟩ ≠ sgn⟨v,wi⟩] =
arccos(⟨u, v⟩)

π
<

arccos(1− 2δ)

π
≤

√
2δ.
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To see the last inequality, note that for δ = 0, we have

arccos(1− 2δ)

π
=

√
2δ = 0,

and for every δ ∈ [0, 1/2], we have

d

dδ

(√
2δ − arccos(1− 2δ)

π

)
=

2√
2δ

(
1

2
− 1

π
√
2− 2δ

)
≥ 2√

2δ

(
1

2
− 1

π

)
≥ 0.

For i = 1, . . . , n, define Xi := Xi(u, v) ∈ {0, 1} as Xi(u, v) := 1 iff sgn⟨u,wi⟩ ≠ sgn⟨v,wi⟩.
The variables Xi are i.i.d. Bernoulli random variables with Pr[Xi = 1] ≤

√
2δ. Hence, by Chernoff

bound2,

Pr

[∑
i=1

Xi ≥ 2n
√
2δ

]
≤ e−n

√
2δ/3.

By Eq. (7), we have

⟨η(u),η(v)⟩ = n− 2

(
n∑

i=1

Xi

)
,

and thus

Pr
[
⟨η(u),η(v)⟩ ≤ n(1− 6

√
δ)
]
≤ Pr

[
⟨η(u),η(v)⟩ ≤ n(1− 4

√
2δ)
]
≤ e−n

√
2δ/3.

Similarly, for u, v ∈ T with ⟨u, v⟩ < −(1− 2δ), we have

Pr
[
⟨η(u),η(v)⟩ ≥ −n(1− 6

√
δ)
]
≤ e−n

√
2δ/3.

Choose n := O
(

d√
δ
log(1/δ)

)
so that |T |2e−n

√
2δ/3 < 1 and apply the union bound to the above

probabilities over all pairs u, v ∈ T . We conclude that there exists η : T → {−1, 1}n such that for
all u, v ∈ T , we have

⟨u, v⟩ > 1− 2δ =⇒ ⟨η(u), η(v)⟩ > n(1− 6
√
δ),

and
⟨u, v⟩ < −(1− δ) =⇒ ⟨η(u), η(v)⟩ < −n(1− 6

√
δ).

Finally, let f : Sd−1 → T map each point in Sd−1 to the closest point in T , breaking the ties
arbitrarily, and define ξ : Sd−1 → {−1, 1}n as ξ := η ◦ f . For u, v ∈ Sd−1 with ⟨u, v⟩ > 1 − δ, we
have

⟨f(u), f(v)⟩ = ⟨u, v⟩+ ⟨f(u)− u, v⟩+ ⟨f(u), f(v)− v⟩ > 1− δ − δ

2
− δ

2
≥ 1− 2δ.

Hence, as desired, we have

⟨ξ(u), ξ(v)⟩ = ⟨η(f(u)), η(f(v))⟩ ≥ n(1− 6
√
δ).

The case ⟨u, v⟩ < −(1− δ) is similar.

2Chernoff bound implies that the sum of i.i.d. random variables Xi with expectation µ := E[
∑

Xi] satisfies
Pr[

∑
Xi ≥ 2µ] ≤ e−µ/3.

11



Finally, we use Lemma 3.2 to complete the proof of Theorem 1.11.

Claim 3.3. For ε ∈ (0, 12),

rk±(GHDn
1−ε) = Ω

(
εn

log(ε−1)

)
.

Proof. Denote k := rk±(GHDn
1−ε). Then there are maps ϕ, ψ : {−1, 1}n → Rk such that

⟨x, y⟩ > (1− ε)n =⇒ ⟨ϕ(x), ψ(y)⟩ > 0

and
⟨x, y⟩ < −(1− ε)n =⇒ ⟨ϕ(x), ψ(y)⟩ < 0.

Let δ :=
(
ε
6

)2
. By applying Lemma 3.2 to parameter δ, we get d = Ω

(
εn

log(ε−1)

)
and ξ : Sd−1 →

{−1, 1}n so that
⟨u, v⟩ > 1− δ =⇒ ⟨ξ(u), ξ(v)⟩ > 1− ε

and
⟨u, v⟩ < −(1− δ) =⇒ ⟨ξ(u), ξ(v)⟩ < −(1− ε),

for every u, v ∈ Sd−1. By considering the composed functions ϕ ◦ ξ and ψ ◦ ξ, for every u, v ∈ Sd−1,
we have

⟨u, v⟩ > 1− δ =⇒ ⟨ξ(u), ξ(v)⟩ > 1− ε =⇒ ⟨ϕ ◦ ξ(u), ψ ◦ ξ(v)⟩ > 0

and
⟨u, v⟩ < −(1− δ) =⇒ ⟨ξ1(u), ξ2(v)⟩ < −(1− ε) =⇒ ⟨ϕ ◦ ξ1(u), ψ ◦ ξ2(v)⟩ < 0.

Therefore, we must have rk±(Gd
1−δ) ≤ k. But by Theorem 1.5, we have rk±(Gd

1−δ) ≥ d =

Ω
(

εn
log(ε−1)

)
.

4 Proof of Theorem 1.4

In this section we present the proof of Theorem 1.4.

Theorem 1.4 (Communication complexity of Gap Hamming Distance). For ε ∈ (0, 19), and n ∈ N,
we have

(i) R(GHDn
1−ε) = 2.

(ii) U(GHDn
1−ε) = log(n)−O

(
log
(
ε−1
))
.

Proof. We first prove part (i), namely R(GHDn
1−ε) = 2 when ε ∈ (0, 19).

The two parties use their shared randomness to sample a uniform random v ∈ Sn−1. Then
Alice sends the bit sgn⟨v, x⟩ to Bob. Bob checks if sgn⟨v, x⟩ = sgn⟨v, y⟩, in which case the output
of the protocol is 1. Otherwise the output is −1.

We show that the error probability of the protocol is at most 1
3 . Suppose that GHDn

1−ε(x, y) = 1,
namely, ⟨x, y⟩ > (1 − ε)n. The output of the protocol is incorrect if sgn⟨v, x⟩ ≠ sgn⟨v, y⟩. Similar
to the proof of Lemma 3.2, one can see that

Pr
v∈Sn−1

[sgn⟨v, x⟩ ≠ sgn⟨v, y⟩] =
arccos

(
⟨ x
∥x∥ ,

y
∥y∥⟩

)
π

<
arccos(1− ε)

π
≤

√
ε ≤

√
1

9
=

1

3
.
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The case of GHDn
1−ε(x, y) = −1 is similar.

Part (ii) immediately follows from the sign-rank bound

Ω

(
εn

log(ε−1)

)
≤ rk±(GHDn

1−ε) ≤ ⌈εn⌉

of Theorem 1.11 and the fact that

log rk±(A) ≤ U(A) ≤ 2 + log rk±(A).

5 VC dimension of Gd
γ

In this section, we present the proofs of Theorem 1.9 and Theorem 1.10. We will use the following
classical result.

Theorem 5.1 (Rogers [Rog63]). There is an absolute constant c, such that for γ < 1 and d ≥ 2,
the d-dimensional unit sphere can be covered by less than cd(log d)γ−d balls of radius γ.

Proof of Theorem 1.9. We define the matrix G based on a suitable partition P of Sd−1 in such a
way that G(x, ·) = G(x′, ·) if x and x′ belong to the same part in P, i.e.,

∀P ∈ P ∀x, x′ ∈ P ∀y ∈ Sd−1 G(x, y) = G(x′, y). (8)

We show how to choose the partition P and define G. By Theorem 5.1, there exists a partition
P of Sd−1 into at most O(d log d · γ−d) parts such that each part is contained in a ball of radius γ.

For P ∈ P and y ∈ Sd−1, if there exists x ∈ P with ⟨x, y⟩ > γ, then let G(x′, y) := 1 for all
x′ ∈ P ; otherwise let G(x′, y) := −1 for all x′ ∈ P .

The matrix G clearly satisfies Eq. (8), and it remains to show that it is a completion of Gd
γ . To

this end, note that if there is x ∈ P with ⟨x, y⟩ > γ, then no x′ ∈ P that can satisfy ⟨x′, y⟩ ≤ −γ.
This is because ∥x− x′∥2 ≤ 2γ and thus

⟨x′, y⟩ ≥ ⟨x, y⟩ − ∥x− x′∥2 > γ − 2γ = −γ. (9)

Similarly if ⟨x, y⟩ < −γ, then no x′ ∈ P satisfies ⟨x′, y⟩ ≥ γ. Hence, indeed G is a completion of
Gd

γ as desired.
Finally, note that G has at most |P| distinct rows and therefore,

VC(G) ≤ log2 |P| ≤ O(d · ln
(
γ−1

)
+ log d).

By taking γ = 1− 1
d and using the inequality lnx ≤ x− 1 for x > 0, we get

VC(G) ≤ O(log d).
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Proof of Theorem 1.10. We first show that both maps ϕ and ψ have to be surjective. Suppose that,
say, ϕ is not surjective and there is a ∈ Sd−1 such that a /∈ ϕ(Sd−1). Let Pa be the stereographic
projection3 Pa : Sd−1\{a} → Rd−1. Then the map ϕ′ = Pa ◦ ϕ : Sd−1 → Rd−1 is continuous. By
Borsuk-Ulam, Theorem 1.6, there is x′ ∈ Sd−1 with ϕ′(x′) = ϕ′(−x′). Since Pa is a one-to-one map,
there must exist x ∈ Sd−1 with ϕ(x) = ϕ(−x). Pick an arbitrary y ∈ Sd−1 with ⟨x, y⟩ > γ. Then

0 < ⟨ϕ(x), ψ(y)⟩ = ⟨ϕ(−x), ψ(y)⟩ < 0,

which is a contradiction.
Now suppose both ϕ and ψ are surjective. Let {e1, · · · , ed} be the standard basis for Rd. For

each S ⊂ [d], let x′S = 1√
d

(∑
i∈S ei −

∑
j /∈S ej

)
. By surjectivity of ϕ, there are xS ∈ Sd−1 with

ϕ(xS) = x′S . Similarly by surjectivity of ψ, there are y1, . . . , yd ∈ Sd−1 with ψ(yi) = ei for all
i ∈ [d].

Note ⟨ϕ(xS), ψ(yi)⟩ = ⟨x′S , ei⟩, which is positive if i ∈ S and negative otherwise. It follows that
the matrix M restricted to rows xS ’s and columns yi’s has VC dimension d.

6 Concluding remarks

The main question left open by this work is whether the separations of Theorem 1.4 and Theo-
rem 1.11 are true for total functions.

Question 6.1. Are there total sign matrices A with m(A) = Ω(1) and rk±(A) = ω(1)?

Remark 6.2. Question 6.1 can be rephrased in terms of disc(A) or R(A) since (see [HHP+])

m(A) = Ω(1) ⇔ disc(A) = Ω(1) ⇔ R(A) = O(1).

One natural candidate for answering Question 6.1 is the “sign adjacency matrix” of the hyper-
cube as it is known that R(Qn) = O(1).

Conjecture 6.3 (Sign-rank of hypercube graphs [HHP+]). Let Qn be the {0, 1}n × {0, 1}n sign
matrix with Qn(x, y) = −1 if and only if x and y differ in exactly one coordinate. Then

lim
n→∞

rk±(Qn) = ∞.

We believe Question 6.1 and Conjecture 6.3 are important questions because, in a sense, they
capture an important limitation of all known techniques for proving lower bounds for sign-ranks
of explicit matrices. Indeed, one can summarise the known methods for proving such lower bounds
as the following three inequalities.

VC(A) ≤ rk±(A), mavg(A)−1 ≤ rk±(A),
log2

(
rect(A)−1

)
2

− 1 ≤ rk±(A). (10)

The first inequality is immediate from the geometric definition of sign-ranks in Definition 1.1.
In the second inequality, which captures Forster’s method [For02], mavg(A) refers to a notion of
“average” margin. In the third inequality,

rect(A) := inf
µ

max
R

µ× ν(R),

3Stereographic projection from the north pole p = (0, · · · , 0, 1) is defined by Pp : Sd−1\{p} → Rd−1 :
(x1, · · · , xd) 7→ 1

1−xd
(x1, · · · , xd−1).
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where the infimum is over all product probability measures on the entries of A, and the maximum
is over all monochromatic rectangles in A. We refer the reader to [HHP+] for more details, where
it is also shown that √

VC(A) ≤ mavg(A)−1 ≤ rect(A)−1. (11)

It is conjectured [CLV19] that every sign matrix A with m(A) = Ω(1) satisfies rect(A)−1 = O(1).
If true, then all the lower bounds in Eq. (10) are O(1) for every A with m(A) = Ω(1), and thus
these methods cannot resolve Question 6.1 in the positive.

It was conjectured in [GKPW19] that there are matrices that satisfy rect(A)−1 = O(1) and
rk±(A) = ω(1). This was resolved in [HHP+] using a counting argument, which showed that

there are N × N sign matrices A with rect−1(A) = O(1) and rk±(A) ≥ N
1
3
−o(1). However,

since for explicit matrices, there are no available tools beyond Eq. (10), no explicit example with
rect(A)−1 = O(1) and rk±(A) = ω(1) is known.

Problem 6.4 ([HHP+]). Construct an explicit sequence of matrices An such that rect(An)
−1 =

O(1) and
lim
n→∞

rk±(An) = ∞.

The above-mentioned limitations of Eq. (10) signify the importance of discovering new methods
for proving lower bounds on sign-rank. Since our results are about partial matrices, we cannot
concretely compare the strength of our proof method to Eq. (10). Obviously, it will be very
interesting to use the Borsuk-Ulam method, or any new approach for that matter, to resolve the
above open problems.
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