
Near-Optimal Derandomization of Medium-Width Branching

Programs

Aaron (Louie) Putterman∗

Harvard University
aputterman@g.harvard.edu

Edward Pyne†

MIT
epyne@mit.edu

November 7, 2022

Abstract

We give a deterministic white-box algorithm to estimate the expectation of a read-once
branching program of length n and width w in space

Õ
(
log n+

√
log n · logw

)
. (1)

In particular, we obtain a nearly optimal space Õ(log n) derandomization of programs up to

width w = 2
√
logn. Previously, the best known space complexity for this problem was

O
(
min{log n · logw, log3/2 n+

√
log n · logw}

)
via the classic algorithms of Savitch (JCSS 1970) and Saks and Zhou (JCSS 1999), which only

achieve space Õ(log n) for w = polylog(n).
We prove this result by showing that a variant of the Saks-Zhou algorithm developed by

Cohen, Doron, and Sberlo (ECCC 2022) still works without executing one of the steps in the
algorithm, the so-called “random shift step.” This allows us to extend their algorithm from
computing the nth power of a w×w stochastic matrix to multiplying n distinct w×w stochastic
matrices with no degradation in space consumption. In the regime where w ≥ n, we also show
that our approach can achieve parameters matching those of the original Saks-Zhou algorithm
(with no loglog factors). Finally, we show that for w ≤ 2

√
logn, an algorithm even simpler than

our algorithm and that of Saks and Zhou achieves space O(log3/2 n).

Keywords: pseudorandomness, space-bounded computation

∗Supported under the Simons Investigator Fellowship of Boaz Barak, NSF grant DMS-2134157, DARPA grant
W911NF2010021, and DOE grant DE-SC0022199.

†Supported by an Akamai Presidential Fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 150 (2022)

1 Introduction

There have been over four decades of work towards derandomizing space-bounded computation, i.e.
proving BPL = L. A central, extensively studied problem that is “BPL-complete” is to estimate
the expectation of a read-once branching program of length n and width w = n. A long line of
research has attackedBPL = L via pseudorandom generators and other black-box derandomization
techniques [Nis92, INW94,NZ96,Arm98,BCG20,HZ20].

Here, however, our focus is on the white-box setting, where the problem is equivalent to comput-
ing an approximate product of n stochastic matrices M1, . . . ,Mn ∈ Rw×w, where Mi corresponds to
the transition probabilities of the branching program from layer i− 1 to layer i. From the classical
work of Savitch [Sav70] it is easy to derive a space O

(
log2 n

)
algorithm for this problem (where

w = n) via a divide and conquer approach.
In 1995, Saks and Zhou gave a breakthrough algorithm that achieved space O(log3/2 n) for the

same problem:

Theorem 1.1 ([SZ99]). There is a deterministic algorithm such that given a stochastic M1, . . . ,Mn ∈
Rw×w, the algorithm computes a 1/n-approximation to M1 · · ·Mn. The algorithm runs in space

O
(
log3/2 n+

√
log n · logw

)
.

In 2022, Cohen, Doron, and Sberlo gave an algorithm that improved on Saks and Zhou in the
case where w ≪ n, and we add the additional constraint that all the stochastic matrices are equal:

Theorem 1.2 ([CDS22]). There is a deterministic algorithm such that given a stochastic matrix
M ∈ Rw×w, the algorithm computes a 1/n-approximation to Mn. The algorithm runs in space

Õ
(
log n+

√
log n · logw

)
.

Unfortunately, Cohen et al.’s result does not seem to improve on Saks and Zhou for computing
the product of n distinct w × w stochastic matrices, and thus does not improve on the space
complexity of derandomizing branching programs. We remark that for branching programs of
width w = o(n), the restriction that all transition functions are the same is severe: there are
simple functions computable by ordered branching programs of width 2 that cannot be computed
by “single transition” ordered programs of width n/2 − 1 (see Appendix B). Thus, for estimating
the expectation of a width w, length n read-once branching program, the best space complexity
remains

O
(
min

{
log n · logw, log3/2 n+

√
log n · logw

})
from [Sav70,SZ99].

1.1 Main Result

We achieve near-optimal space complexity for derandomizing branching programs up to w =
exp(log1/2 n), and improve on known results for all w ∈ [logω(1) n, exp(log.99 n)].

Theorem 1.3. There is a deterministic algorithm such that given n,w ∈ N and a read-once
branching program B of length n and width w, the algorithm approximates the acceptance probability
of B up to error 1/n2. The algorithm runs in space

Õ
(
log n+

√
log n · logw

)
.

1

This result can be viewed as an attack on BPL vs L from a different direction. While Saks
and Zhou (with a further improvement from Hoza) [SZ99,Hoz21] decrease the space required to
derandomize a width n, length n branching program, we increase the maximum width w such that
we can near-optimally derandomize a width w, length n branching program. This can be thought
of as a white-box analogue of trying to “build up” better PRGs by starting with the constant width
regime [CHHL19,MRT19,FK18].

We state our main result in terms of computing an approximate product of stochastic matrices.
For this theorem, we without loss of generality assume w ≤ n.

Theorem 1.4. There is an algorithm A1 that, given n,w ∈ N with w ≤ n and arbitrary stochastic
matrices M1, . . . ,Mn ∈ Rw×w, returns a matrix M̃ satisfying∥∥∥M1 · · ·Mn − M̃

∥∥∥ ≤ 1/n2.

Furthermore, the space complexity of the algorithm is

O
(
(log n+

√
log n · logw) log log n

)
.

We note that where we may assume additional structure on M1, . . . ,Mn, such as them being the
random walk matrices of undirected or Eulerian graphs, we have existing near-optimal algorithms
via a line of work on the Laplacian paradigm [MRSV17,MRSV19,AKM+20].

1.2 Overview of Prior Work

As our work builds on the approach of Saks and Zhou and Cohen, Doron, and Sberlo, we give a
high-level presentation of their approaches before describing our improvements.

The Work of Saks and Zhou [SZ99] We first present the approach of [SZ99]. For simplicity
we assume we are approximating the nth power of a single stochastic matrix M ∈ Rn×n.

The insight of Saks and Zhou was to divide the problem of computing the nth power of a
stochastic matrix M into

√
log n iterations of computing the ℓ := 2

√
lognth power of matrices

M,M ℓ,M ℓ2 , In each iteration, they used the Nisan generator, which we denote NIS. NIS

has an “offline” seed h, which in this case can be of length O(log3/2 n), and an “online” seed
of length O(log n), such that for every fixed offline seed h the generator NISh can be evaluated
in space O(log n). Moreover, with high probability over h the generator NISh produces a good
approximation (in expectation over the online seed) of the ℓth power of a fixed stochastic matrix.
They then reused the offline seed throughout the

√
log n levels of recursion, at each step using NISh

to approximate the ℓth power of the previous level. Thus, the algorithm uses O(log n) bits of space
for the online seed at each of the

√
log n levels, and a single offline seed of length O(log3/2 n).

However, there is an issue with this construction as stated. The approximation M̃ ≈M ℓ output
by NISh can (of course) depend on h. But then the claim that NISh is good at approximating powers

of M̃ with high probability does not necessarily hold, as we reuse the same offline seed h. To avoid
this, between each level of recursion Saks and Zhou randomly shift and round the matrix M̃ . By
doing so, they ensure that with high probability the rounded matrix equals the relevant “true”
power, and so NISh is good for it with high probability. This results in an additional O(log n) bits
of randomness per level, which is tolerable in their regime.

2

The Work of Cohen, Doron, and Sberlo [CDS22] We now discuss the subsequent work
of [CDS22], which achieves improved space where w ≪ n and all matrices are the same. For
simplicity, assume for now that w = 2

√
logn. Their work contributed the crucial insight that one

could use the Nisan generator to approximate 2
√
lognth powers to accuracy 2−c

√
logn ≫ 1/n. This

reduced the offline seed to O(log n), and the online seed to O(
√
log n).

While this larger error would degrade too much if we let it accumulate over the
√
log n levels,

they instead used Richardson Iteration to reduce the error back to 1/n between each level. Richard-
son Iteration is a method for improving the accuracy of an approximate power with near-optimal
space complexity that has seen several recent applications in the space bounded regime [AKM+20,
PV21,CDR+21,CDS22].

Unfortunately, their approach seems to require that we are approximately powering a single
w × w matrix, and thus cannot be used to derandomize read-once branching programs of width
w ≪ n and length n. The reason for this relates to the random shifts used in the construction.
Cohen et al. prove that the random shifts can be sampled with O

(√
log n+ logw

)
bits per level.

Intuitively, this is because for the ith level, there are w2 distinct values in the true power M ℓi , and
we must ensure that with high probability our rounding threshold does not lie near one of these
values. But if instead there are n distinct base matrices, there could be nw2 “bad” values per level
and so we must invest O(log n) bits per level in the shift, leading to an eventual space consumption
of O(log3/2 n).1

The other approach to dealing with distinct transition matrices, the one taken in the original
paper of Saks and Zhou and other works [SZ99,AKM+20,PV21,CDR+21], is that given the w×w
transition matrices M1, . . . ,Mn, first embed them as the off-diagonal elements in a nearly nw×nw
matrix:

M =

0 M1 0 . . . 0

0 0
. . .

...
0 . . . 0 Mn−1 0
0 0 Mn

0 . . . 0

 (2)

Then the (1, n+1) block of Mn equals M1 · · ·Mn, so an approximate nth power of M can be used
to read off an approximation to the product. However, we are unable to take advantage of this
method for computing the product of n distinct w × w matrices when w = no(1). This is because
this block matrix will necessarily be of size at least n × n, and thus result in space consumption
O(log3/2 n).

1.3 Our Approach

We obtain Theorem 1.4 by showing that the random shift step can be eliminated from the algorithm
of [CDS22]. The reason for random rounding in [SZ99,CDS22] is the approximate product M̃ ≈M ℓ,
even at iteration 1, can depend on the offline seed h to the Nisan PRG, and so we cannot say that
NISh is good for powering this new matrix with high probability. The solution of prior works is to
randomly shift M̃ before rounding, such that is is exactly equal to (the shifted and rounded version
of) M ℓ, and then apply NISh. Since M ℓ is defined without reference to h, we can say that NISh is
good for it with high probability.

We take a different approach, by developing a more sophisticated analysis of the error incurred
when using NISh to approximate powers. Given a stochastic matrix M ∈ Rw×w, we feed M through

1They also gave an algorithm based on the Cayley Hamilton theorem that likewise does not seem to generalize to
distinct matrices.

3

a canonicalizer Ct that outputs a branching program B such that walks on B are approximately
distributed according toM . We can then estimate walk probabilities using a suitable pseudorandom
generator (in this case, NISh). More precisely, from state v ∈ [w] the canonicalizer assigns the edge
with label σ ∈ [2t] to the state k such that

k−1∑
j=1

Mv,j ≤ 2−t · σ <
k∑

j=1

Mv,j .

We observe that given M,M ′ that are close (say, within γ in ℓ∞ distance), their canonicalizations
B := Ct [M] , B′ := Ct [M

′] are close as labeled branching programs. In particular, from every state
v, most of the edges from state v have exactly the same destination in B and B′. Moreover, the
only edges that differ must be those assigned in places where the partial sums of rows of M and
M ′ differ. These locations can be (roughly) determined knowing only the partial sums of M and
a bound on the ℓ∞ distance of M ′ to M . Thus, there is is a set of roughly 2tγ “boundary” edges
from each state such that for every M ′ such that ∥M −M ′∥ ≤ γ/w, every difference between B
and B′ := Ct [M

′] will occur on these edges. Note that this set depends only on M and γ, and not
on the specific M ′. Thus, letting E be the program that accepts if we traverse a boundary edge,
a generator NISh that fools B and E must also fool B′ = Ct [M

′], even for M ′ that depend on the
offline seed seed h. We give the formal statement of this result here, and prove it in Section 3.1:

Theorem 1.5. Fix t ∈ N and γ ≥ 2−t and let M1, . . . ,Mℓ ∈ Rw×w be sub-stochastic matrices.
Suppose GEN : {0, 1}d → [2t]ℓ is ε-good for Ct [M1, . . . ,Mℓ] and E, where E is defined in Lemma 3.5

only in terms of M1, . . . ,Mℓ and t and γ. Then for every sub-stochastic M̃1, . . . , M̃ℓ ∈ Rw×w where∥∥∥Mi − M̃i

∥∥∥ ≤ γ for every i, GEN is ρ := 6wℓγ + 2ε-good for Ct

[
M̃1, . . . , M̃ℓ

]
.

Since an ℓ∞ error of magnitude γ can shift the value of all w partial sums by γ (and hence a
w ·γ fraction of edges could be allocated differently from each vertex), we obtain the promise that if
M,M ′ are γ close, we fool Ct [M

′] up to error roughly γ ·w. While this is too much for the original
algorithm of Saks and Zhou (except in the small-width regime, see Theorem 1.8), we can use the
idea of Cohen, Doron, and Sberlo [CDS22] to reduce the error back to O(γ) using Richardson
iteration. In fact, we prove that their exact algorithm with the random shift step deleted computes
a good approximation. This results in a particularly simple analysis of the final algorithm, which
we view as an advantage of our approach.

Remark 1.6. We remark that our canonicalizer can be viewed as truncating the matrix to t bits
of precision, then locally monotonizing the edges from each vertex (in that the state reached from
vertex v is a non-decreasing function of the edge label σ, for every v). This local monotonization
procedure has found several applications in the black box setting, both in analyzing PRGs and
bounding the advantage of programs on the coin problem [BV10,CHRT18,MRT19,BGZ21]. While
previous results used local monotonization in the analysis, we take advantage of the white-box
setting to actually construct a locally monotone branching program and apply the PRG on it. In
Theorem 1.8, we give a space O(log3/2 n) algorithm for derandomizing programs of width up to
exp(log1/2 n) for which this is the only non-black-box operation in the algorithm.

Decreasing the Failure Probability We must make one final modification to the algorithm
of [CDS22] to handle distinct matrices. They use the Nisan PRG [Nis92] to approximate powers.
Interestingly, our result does not seem to work with the Nisan PRG – we instead use the Nisan
PRG combined with the “sampler trick” of Armoni [Arm98]. This is because we require the failure

4

probability δ of the generator to be polynomially small in n (over the offline randomness), not
merely w as in [CDS22], because there are nw distinct subprograms to approximate. For Nisan,
this would force an online seed of length O(log n), which would require too much space.

To obtain an online seed of length O
(√

log n+ logw
)
, we compose Nisan with an averaging

sampler with doubly logarithmic dependence on δ in the online component. We note that evalu-
ating the averaging sampler on an online seed (of length O

(√
log n+ logw

)
) now takes workspace

O(log n+
√
log n · logw). However, since this workspace is purely used to produce the sampler out-

put (and hence we do not read the input while using it) we can reuse a fixed O(log n+
√
log n · logw)

bits of workspace for these evaluations across all levels of recursion.
Interestingly, our argument relies on the sampler (and initial PRG) being an averaging sampler,

because we use a sandwiching argument. The original argument of Saks and Zhou (and Cohen et al.)
works more generally for a weighted PRG, and this was crucial for Hoza’s improved derandomization
of BPL [Hoz21]. We view whether our approach works for weighted PRGs to be an interesting
open question.

We give a sketch of the our algorithm in the case that M1 = M2 = · · · = Mn. For the formal
description, see Algorithm 2.

Algorithm 1: Algorithm sketch

1 Draw a random seed h and let NISh be the generator with offline seed h.

2 Set M̃0 = M1.
3 for i = 1, . . .

√
log n do

4 Canonicalize M̃ i−1 to a degree 2c
√
logn branching program denoted Ct1

[
M̃ i−1

]
.

5 Use NISh to approximate Ct1

[
M̃ i−1

]2√logn

up to error 2−c
√
logn.

6 Use Õ(1) applications of the space efficient Richardson Iteration algorithm to reduce
the error of the previous matrix to 1/nc and call the matrix resulting from this step

M̃ i. This reduces the error sufficiently such that we can apply Nisan’s generator on
M̃ i despite the fact that this resulting matrix depends on h.

7 end

8 return M̃
√
logn.

1.4 Other Results

Our approach allows us to eliminate the random shifts in the Saks-Zhou algorithm in a range of
regimes, which we explicate here. First, by applying Richardson iteration to Theorem 1.4, we can
boost our main result to arbitrarily low error:

Corollary 1.7. Given w, n ∈ N with w ≤ n and ε > 0 and arbitrary stochastic matrices M1, . . . ,Mn ∈
Rw×w, there is an algorithm A′1 that returns a matrix M̃ satisfying∥∥∥M1 · · ·Mn − M̃

∥∥∥ ≤ ε.

Furthermore, the space complexity of the algorithm is

O
(
(log n+

√
log n · logw) log log(n) log log(1/ε) + log2 log(1/ε)

)
.

5

Furthermore, we show that for matrices that are not too wide, the naive approach of itera-
tively applying the Nisan generator (with 1/poly(n) error) and canonicalizing works, even without
Richardson Iteration. This does not improve on Savitch, but we include it as the resulting algorithm
is particularly simple. In particular, the only non-black-box step is the canonicalization operation.

Theorem 1.8. There is an algorithm A2 that, given n ∈ N and arbitrary stochastic matrices
M1, . . . ,Mn ∈ Rw×w where w ≤ 2

√
logn, returns a matrix M̃ satisfying∥∥∥M1 · · ·Mn − M̃

∥∥∥ ≤ 1/n2.

Furthermore, the space complexity of the algorithm is O
(
log3/2 n

)
.

Finally, we show that we can achieve space complexity matching Saks-Zhou (with no loglog
factors) without random shifts, by interleaving approximate powers with a constant number of
Richardson iterations.

Theorem 1.9. There is an algorithm A3 that, given n,w ∈ N and a stochastic matrix M ∈ Rw×w,
returns a matrix M̃ satisfying ∥∥∥Mn − M̃

∥∥∥ ≤ 1/w2.

Furthermore, the space complexity of the algorithm is O
(
log3/2 n+

√
log n · logw

)
.

1.5 Organization

In Section 2 we define terms and recall the Nisan generator (with a modification to decrease its
failure probability) and space-efficient Richardson iteration. In Section 3 we formally define the
canonicalizer and prove Theorem 1.5. In Section 4 we apply Theorem 1.5 to prove our main result.
In Section 5 we show that for small widths, an algorithm without shifts or Richardson iteration
can achieve space O(log3/2 n). In Section 6 we show that we can achieve space matching that of
Saks and Zhou for large widths, by replacing random shifts by a constant number of Richardson
iterations per level.

2 Preliminaries

We first define several terms that we will use in the proofs.

• Let M ∈ Rw×w
≥0 be a stochastic (resp. sub-stochastic) matrix if every row sum is equal

(resp. at most) 1. In the language of Markov chains, Mi,j is the transition probability from
state i to state j.

• Let ∥ · ∥ denote the ℓ∞ matrix norm. We remark that none of our results are sensitive to the
precise choice of norm.

• Let US denote the uniform distribution over elements of the set S. For n ∈ N let Un be the
uniform distribution over {0, 1}n.

We recall the property that products of substochastic matrices approximate each other:

6

Claim 2.1. Given sub-stochastic A1, . . . , Aℓ ∈ Rw×w and B1, . . . , Bℓ ∈ Rw×w, if ∥Ai −Bi∥ ≤ δ for
every i, then

∥A1 · · ·Aℓ −B1 · · ·Bℓ∥ ≤ ℓ · δ.

We now formally define branching programs. We define them without reference to a distin-
guished start or accept state, as we will always require approximations of the walk probability from
every state in layer 1 to every state in layer n.

Definition 2.2. A (read-once) branching program B of width w and length n with alphabet
Σ consists of n functions Bi : [w] × [Σ] → [w]. We define the composition of branching programs
B := B1 · · ·Bn in the natural way. For x ∈ Σn we define

B[i, x] = (B1 · · ·Bn)[i, x] := Bn[Bn−1[. . . B2[B1[i, x1], x2] . . .], xn−1], xn].

We view the expectation of a branching program as a stochastic matrix. Let E [B] be the matrix
where

(
E [B]

)
i,j

= Pr[B[i, UΣn] = j]. For a function GEN : {0, 1}s → Σn, let GEN [B] = E [B ◦ GEN].
We say a function GEN : {0, 1}s → Σn is ε-good for a branching program B if for every

subprogram Bi..j we have (truncating the output of GEN to its j − i bit prefix):∥∥GEN [Bi..j]− E [Bi..j]]
∥∥ ≤ ε.

2.1 Averaging Samplers and Error Reduction Primitives

We recall the family of pseudorandom generators to be used in our construction. We use the
Nisan PRG composed with an averaging sampler. We use a formulation of Chattopadhyay and
Liao [CL20].

Theorem 2.3 ([Nis92,RVW02,CL20]). Given n,w, |Σ| ∈ N and ε, δ > 0, there exists a generator
NIS : {0, 1}m × {0, 1}d → Σn such that for every length n, width w branching program B we have:

Pr
h←Um

[∥∥∥NIS(h, ·)[B]− E [B]
∥∥∥ ≤ ε

]
≥ 1− δ

and m = O(log(n) log(nw|Σ|/ε)+ log(n/δ)) and d = O(log(nw|Σ|/ε)+ log log(n/δ)). Equivalently,
for every branching program B, with probability 1 − δ over h NISh := NIS(h, ·) is ε-good for B.
Furthermore, NISh(x) can be evaluated in space O(m) given two-way read-only access to the offline
seed h.

For completeness, we provide a proof of this in Appendix A.
We can transform this generator into a space-efficient algorithm for approximating walks in

branching programs, and this is the formulation we will use in the proof:

Lemma 2.4 ([Nis92,CL20,CDS22]). Given n,w, |Σ| ∈ N and ε, δ > 0, there exists an algorithm
NISh,ε,δ that gets as (read only) input a branching program B := B1 · · ·Bn : Σn → {0, 1}w×w of width
w, accuracy and confidence parameters ε, δ > 0, and h ∈ {0, 1}m where m = O(log(n) log(nw|Σ|/ε)+
log(n/δ)). Furthermore:

• The algorithm runs in space O(log(nw|Σ|/ε)+log log(n/δ)), plus an additional O(m+log(n/δ))
space for producing the output of the sampler, during which it does not touch the input or
output tapes.

7

• The algorithm outputs {
NIS
i→j

[B]

}
i,j∈[n]

where NIS
i→j

[B] is a substochastic matrix. For every i < j and u, v ∈ [w],

(
NIS
i→j

[B]

)
u,v

is

the fraction of outputs of NISh,ε,δ(x) that reach state v in layer j from state u in layer i. If

Bi = Bj for all i, j we assume without loss of generality the algorithm returns

{
NIS
1→k

[B]

}
k∈[n]

.

• For every branching program B, with probability 1 − δ over h ← Um we have that for every
i < j, ∥∥∥∥NISi→j

[B]− E [Bi · · ·Bj]

∥∥∥∥ ≤ ε.

We say that NISh,ε,δ is ε-good for B if this holds.

Likewise, we recall the space-efficient Richardson Iteration algorithm used in prior work.

Lemma 2.5 ([AKM+20, CDR+21, PV21, CDS22]). There exists an algorithm R that, given sub-

stochastic M1, . . . ,Mn ∈ Rw×w and
{
M̃i,j

}
i<j

and k ∈ N such that for all i < j,
∥∥∥Mi · · ·Mj − M̃i,j

∥∥∥ ≤
1/5n returns a sub-stochastic matrix R({Mi}i, {M̃i,j}i,j , k) where each entry is represented by at
most t bits of precision satisfying∥∥∥R({Mi}i, {M̃i,j}i,j , k

)
−M1 · · ·Mn

∥∥∥ ≤ 2nw2 · 2−k.

Furthermore, R runs in space O(log2 k+log(k) log(nT)) where T is the maximum bit complexity

of {Mi}, {M̃i,j} In the case that Mi = M for all i, we drop the i subscript without loss of generality.

3 The Canonicalizer

We first formally define the canonicalizer. Informally, the canonicalizer is an algorithm that converts
a substochastic matrix to a branching program, so that we can approximate its expectation using a
pseudorandom generator. Our construction crucially relies on how the canonicalizer assigns edges,
which we detail below:

Definition 3.1. Given t ∈ N, there exists a t-canonicalizer Ct that takes in a sub-stochastic
matrix M ∈ Rw×w with each entry represented by at most s bits and returns a branching program
Ct [M] on w + 1 states2 with alphabet Σ = [2t]. Furthermore, for i, j, σ ∈ [w] × [w] × [2t] the
canonicalizer assigns Ct [M] [i, σ] = j if and only if

j−1∑
k=1

Mi,k ≤ σ · 2−t <
j∑

k=1

Mi,k.

Furthermore, Ct can be computed in spaceO(log(wts)). We define Ct [M1, . . . ,Mℓ] = Ct [M1] · · · Ct [Mℓ]
for substochastic matrices M1, . . . ,Mℓ in the natural way, where now the canonicalizer outputs a
branching program of width w + 1 and length ℓ and the space complexity is O(log(wtsℓ)).

2Since in all cases this additional state will be immaterial, we implicitly pad M to be a (stochastic) (w+1)×(w+1)
matrix and treat the transformation as width preserving.

8

We collect some basic properties of the canonicalizer. In particular, as shown in prior work the
expectation of the branching program obtained from canonicalizing M is a close approximation to
M .

Claim 3.2 ([SZ99,CDS22]). For every t ∈ N and sub-stochastic matrix M ∈ Rw×w, we have∥∥E [Ct [M]]−M
∥∥ ≤ w2−t.

This extends to canonicalizing a sequence of substochastic matrices:

Claim 3.3. For every t ∈ N and sub-stochastic matrices M1, . . . ,Mℓ ∈ Rw×w, we have∥∥E [Ct [M1, . . . ,Mℓ]]−M1 · · ·Mℓ

∥∥ ≤ wℓ2−t.

Proof. Deferred to Appendix A.

We can further extend this to show “canonicalizations of similar matrices are similar”.

Lemma 3.4. Given sub-stochastic M1, . . . ,Mℓ and M̃1, . . . , M̃ℓ in Rw×w, if ∥Mi − M̃i∥ ≤ γ for
every i, then for every t ∈ N,∥∥∥E [Ct [M1, . . . ,Mℓ]]− E

[
Ct

[
M̃1, . . . , M̃ℓ

]]∥∥∥ ≤ 2ℓw2−t + ℓγ.

Proof. Deferred to Appendix A.

Note that this shows the expectations of the canonicalizations are close, but does not show
the canonicalizations are close as labeled branching programs. Proving this stronger result is the
primary contribution of the section.

3.1 Proof of Theorem 1.5

We now state the main lemma, which proves that canonicalizations of close matrices have similar
structures as branching programs. In particular, the edges on which they differ are rare, and can
be predicted in advance given only M .

Lemma 3.5. Given t ∈ N and sub-stochastic M1, . . . ,Mℓ ∈ Rw×w and γ ≥ 2−t, there exists an
ordered branching program E of width w + 2 and length ℓ and alphabet [2t] such that:

1. For every j ∈ [w],

Pr
[
E
[
j, U[2t]ℓ

]
= vacc

]
≤ 3wℓ · γ.

2. For every M̃1, . . . , M̃ℓ satisfying
∥∥∥Mi − M̃i

∥∥∥ ≤ γ for every i, we have that for every state

j ∈ [w] and every input x ∈ [2t]ℓ,

Ct [M1, . . . ,Mℓ] [j, x] ̸= Ct

[
M̃1, . . . , M̃ℓ

]
[j, x] =⇒ E[j, x] = vacc.

Proof. For every i ∈ [ℓ] and state j ∈ [w], let sk :=
∑k

l=1(Mi)j,l for every k ∈ [w]. Define the
boundary set BD(Mi)j ⊂ [2t] of edges for state j in layer i as σ for which

BD(Mi)j :=

{
σ : σ · 2−t ∈

w⋃
k=1

[sk − γ, sk + γ]

}
.

9

Let E be the program (with w+2 states) that has identical states and transitions to Ct [M1, . . . ,Mℓ]
except it transitions to state vacc if and only if the input ever traverses such an edge (and once it
reaches vacc always stays at this state). Observe that for every state j and every layer i, a random
edge from j lies in the boundary set with low probability. In particular,

Pr
σ←U[2t]

[Ct [Mi] [j, σ] ∈ BD(Mi)j] ≤ 2γ · w +
w

2t
≤ 3γw

and so a union bound over steps proves (1).

Now fix M̃1, . . . , M̃ℓ satisfying
∥∥∥Mi − M̃i

∥∥∥ ≤ γ for every i. Observe that the boundary sets and

error test program have been defined without reference to M̃ .

Claim 3.6. For every i ∈ [ℓ] and j ∈ [w], BD(Mi)j contains all edges σ on which Ct [Mi] [j, σ] ̸=
Ct

[
M̃i

]
[j, σ].

Proof. Fixing i, j, for each k ∈ [w] let

s̃k :=
k∑

l=1

(M̃i)j,l,

and recall sk is defined analogously. We have that for every k,

|sk − s̃k| =

∣∣∣∣∣
k∑

l=1

(M̃i)j,l −
k∑

l=1

(Mi)j,l

∣∣∣∣∣ ≤
k∑

l=1

∣∣∣(M̃i)j,l − (Mi)j,l

∣∣∣ ≤ ∥∥∥M̃i −Mi

∥∥∥ ≤ γ.

Thus for every k,
[sk, s̃k] ⊂ [sk − γ, sk + γ].

By definition of the canonicalizer, for every σ such that Ct [Mi] [j, σ] ̸= Ct

[
M̃i

]
[j, σ], we must have

σ · 2−t ∈ [sk, s̃k] ⊂ [sk − γ, sk + γ] for some k, and so σ ∈ BD(Mi)j as claimed.

Then we observe that for every j, x such that Ct [M1, . . . ,Mℓ] [j, x] ̸= Ct

[
M̃1, . . . , M̃ℓ

]
[j, x],

there is i such that v := Ct [M1, . . . ,Mi] [j, x1..i] = Ct

[
M̃1, . . . , M̃i

]
[j, x1..i] and Ct

[
M̃i+1

]
[v, xi+1] ̸=

Ct [Mi+1] [v, xi+1], since otherwise x would make identical transitions in both programs. But then

the edge labeled xi+1 from v must have received different labels in Ct [Mi+1] and Ct

[
M̃i+1

]
and

thus lie in BD(Mi+1)j by Claim 3.6, and so by definition of E we must have E[j, x] = vacc. Note
that it could have been the case that x transited a boundary edge before layer i+1, but this likewise
causes E[j, x] to reach state vacc on input x.

We can then prove Theorem 1.5 using Lemma 3.5.

Theorem 1.5. Fix t ∈ N and γ ≥ 2−t and let M1, . . . ,Mℓ ∈ Rw×w be sub-stochastic matrices.
Suppose GEN : {0, 1}d → [2t]ℓ is ε-good for Ct [M1, . . . ,Mℓ] and E, where E is defined in Lemma 3.5

only in terms of M1, . . . ,Mℓ and t and γ. Then for every sub-stochastic M̃1, . . . , M̃ℓ ∈ Rw×w where∥∥∥Mi − M̃i

∥∥∥ ≤ γ for every i, GEN is ρ := 6wℓγ + 2ε-good for Ct

[
M̃1, . . . , M̃ℓ

]
.

10

Proof. By Lemma 3.5 applied with γ = γ and t = t we have∥∥∥GEN [Ct [M1, . . . ,Mℓ]]− GEN
[
Ct

[
M̃1, . . . , M̃ℓ

]]∥∥∥
≤ max

j

{
Pr

x←U{0,1}d
[Ct [M1, . . . ,Mℓ] [j, GEN(x)]] ̸= Ct [M1, . . . ,Mℓ] [j, GEN(x)]]

}

≤ max
j

{
Pr

x←U{0,1}d
[E[j, GEN(x))] = vacc]

}
(Property 2)

≤ 3wℓ · γ + ε

where the final line follows from Property 1 and GEN being ε-good for E.
Furthermore, since by assumption GEN is ε-good for Ct [M1, . . . ,Mℓ]:∥∥GEN [Ct [M1, . . . ,Mℓ]]− E [Ct [M1, . . . ,Mℓ]]

∥∥ ≤ ε

and by Lemma 3.4,∥∥∥E [Ct [M1, . . . ,Mℓ]]− E
[
Ct

[
M̃1, . . . , M̃ℓ

]]∥∥∥ ≤ 2ℓw2−t + ℓγ ≤ 3ℓwγ.

Thus, applying the triangle inequality we conclude that∥∥∥GEN [Ct [M̃1, . . . , M̃ℓ

]]
− E

[
Ct

[
M̃1, . . . , M̃ℓ

]]∥∥∥ ≤ 6wℓγ + 2ε.

We note that in the regime w = n, applying this result directly in the original framework of
Saks and Zhou [SZ99] does not allow us to eliminate the random rounding step. This is because our
error degrades with a factor of w per application, which could give a final error of w

√
logn = nω(1).

However, we can use the approach of Cohen et al. to repair the loss at each level.

4 Proof of Theorem 1.4

We now apply Theorem 1.5 to prove Theorem 1.4. The analysis of our resulting algorithm is
cleaner than prior approaches due to the absence of random rounding. In particular, we directly
argue that the approximation at level i is close to the 2i·

√
lognth true power, rather than comparing

to a shifted and rounded version of such. As we make the same parameter choices3 as Cohen,
Doron, and Sberlo (and the components of our algorithm are a strict subset of theirs), the space
complexity follows essentially from their analysis, though we must be careful to avoid incurring an
overhead of O(log n) bits per level for tracking indices or evaulating the sampler. We analyze the
space complexity in Lemma 4.3.

We are now prepared to analyze the algorithm. Given n,w as specified in the upcoming theorem
(where we may assume n ≥ w without loss of generality, as otherwise apply Theorem 1.9), we set
parameters as follows:

r1 = r2 =
√

log n, t2 = 20 log n, t1 = 2r1 + logw + 4, ε = 2−r1−4, δ = 2n−5, R1 = 2r1 .

Let NISh,ε,δ be the family of online-offline samplers from Lemma 2.4 with n = R1, w = w + 2,Σ =
[2t1], ε = ε and δ = δ. We remark that the offline seed has length

m = O
(
r1 log(R1w2

t1/ε) + log(1/δ) + log(1/ε)
)
= O

(
log n+

√
log n · logw

)
.

3With the exception of δ, which we must take to be order 1/n to survive a bound over the test programs.

11

Furthermore, the online seed has length

d = O
(
log(R1w2

t1/ε) + log log(1/δ)
)
= O

(√
log n+ logw

)
.

We give the formal description of the algorithm in Algorithm 2.

Algorithm 2: SZ(M1, . . . ,Mn, h)

1 Given h ∈ {0, 1}m, let NIS := NISh,ε,δ be the sampler with parameters set above.
2 return IMM(

√
log n, 0, NIS).

Algorithm 3: IMM(i, j, NIS)

1 if i = 0 then
2 return M0

j ;

3 end
4 for l ∈ [j, j +R1] do

5 Let M̃ i−1
l := IMM(i− 1, R1 · j + l, NIS).

6 end
7 Let {

M̃k,l

}
k,l∈[R1]

:=

{
NIS
k→l

[
Ct1

[
M̃ i−1

j , . . . , M̃ i−1
j+R1

]]}
k,l∈[R1]

8 Set

M̃ i
j := R

({
M̃ i−1

j+l

}
l∈[R1]

,
{
M̃k,l

}
k,l∈[R1]

, t2

)
9 return M̃ i

j .

We now show Algorithm 2 works with high probability over the outer seed h.

Theorem 4.1. Given n,w ∈ N with w ≤ n and arbitrary sub-stochastic matrices M1, . . . ,Mn ∈
Rw×w, Algorithm 2 returns with probability 1 − n2δ over the outer seed h ← {0, 1}m a matrix

M̃ = SZ(M1, . . . ,Mn, h) satisfying ∥∥∥M1 · · ·Mn − M̃
∥∥∥ ≤ 1/n3.

Moreover, SZ(M1, . . . ,Mn, h) runs in space

O
((

log n+
√

log n · log(w)
)
log log(n)

)
We first define the true powers that we wish to approximate, and their corresponding canoni-

calizations.

Definition 4.2. Given n,w, t1 ∈ N and sub-stochastic M0
1 , . . . ,M

0
n ∈ Rw×w, define

M i
j = M i−1

j·R1
·M i−1

j·R1+1 · · ·M
i−1
j·R1+R1−1

and let P =
{
Ct1

[
M i

j , . . . ,M
i
j+R1

]}
∪E where E is the family of error testers of Lemma 3.5 applied

with t = t1 and γ = γ (for γ to be globally chosen later) to every subproduct M i
j , . . . ,M

i
j+R1

.

12

Note that we have M r2
1 = M0

1 · · ·M0
n by definition. We first prove the correctness, then analyze

the space consumption.

Proof of Correctness of Theorem 4.1. We condition on the event that NIS := NISh,ε,δ is ε-good for
the set of programs P as defined in Definition 4.2. This occurs with probability at least 1 − n2δ
by Lemma 2.4 and the fact that there are at most nw ≤ n2 such programs. Subsequent to this
assumption (which requires a union bound over nw bad events, rather than w), the proof does not
change if we assume all base matrices are equal, so we do so for clarity. We maintain the following
invariant at level i of the algorithm: ∥∥∥M̃ i −M i

∥∥∥ ≤ 22i·r1

n10

Ensuring this invariant holds certainly suffices to complete the proof. Assuming the invariant holds
for level i, we now verify that the conditions of Theorem 1.5 are satisfied for t = t1 and ℓ = R1

and ε = ε and γ := 2−t1 and M = M i and M̃ = M̃ i. We have that NIS is ε-good for M i and the
associated error tester by assumption. Furthermore by the invariant we have∥∥∥M̃ i −M i

∥∥∥ ≤ 1

n2
≤ γ.

Therefore by Theorem 1.5 applied to the generator NIS, we obtain for every j ∈ [R1],∥∥∥∥E [Ct1 [M̃ i, . . . , M̃ i
]]
− NIS

1→j

[
Ct1

[
M̃ i, . . . , M̃ i

]]∥∥∥∥ ≤ 6wR1γ + 2ε ≤ 1

10 ·R1

And thus by Claim 3.3 for every j ∈ [R1],∥∥∥∥(M̃ i)j − NIS
1→j

[
Ct1

[
M̃ i, . . . , M̃ i

]]∥∥∥∥ ≤ 1

10 ·R1
+ wR12

−t1 ≤ 1

5 ·R1
.

Therefore, recalling

M̃ i+1 := R

(
M̃ i,

{
NIS
1→j

[
Ct

[
M̃ i, . . . , M̃ i

]]}
j

, t2

)
by Lemma 2.5 we have ∥∥∥M̃ i+1 − (M̃ i)R1

∥∥∥ ≤ 2 ·R1w
22−t2 ≤ 1

n10
. (3)

Thus, ∥∥∥M̃ i+1 −M i+1
∥∥∥ ≤ ∥∥∥M̃ i+1 − (M̃ i)R1

∥∥∥+ ∥∥∥(M̃ i)R1 −M i+1
∥∥∥

≤ 1

n10
+
∥∥∥(M̃ i)R1 − (M i)R1

∥∥∥ (3)

≤ 2

n10
+R1 ·

∥∥∥M̃ i −M i
∥∥∥ Claim 2.1

≤ 22(i+1)·r1

n10

which maintains the invariant for the next level.
Note that since that i ≤

√
log n, this means that our error is bounded with

22i·r1

n10
≤ 22

√
logn·

√
logn

n10
≤ 1

n8
.

13

Lemma 4.3. SZ(M1, . . . ,Mn, h) runs in space

O
(
(log n+

√
log n · log(w)) log log(n)

)
.

Proof. We note that at no point do we explicitly write down the matrix M̃ i
j , which would require

w2 log(nw) bits. Instead, whenever IMM(i + 1, j) requests a bit of M̃ i
j′ , we recurse on IMM(i, j′)

and determine only this bit, then return control to level i + 1. This process is formalized as the
composition of space-bounded algorithms in Lemma A.2.

We look at the individual space complexities of the components of our algorithm:

1. First, we note that the seed length for the generator requires space (paid once)

O
(
log n+

√
log n · logw

)
.

2. Each function IMM(i, j) produces w2t2 = O(w2 log n) bits of output, and so by Lemma A.2 we
require O(logw + log log n) bits per level to track the index of the bit to be output.

3. The online space for NIS requires space (paid once per level)

O
(√

log n+ logw
)
.

4. By Lemma 2.4, we require space O(log n+
√
log n · logw) to evaluate NISh(x) on online input

x, and as we do not touch the input or output during this time, this space can be reused
between levels and so only needs to be paid for once.

5. Richardson iteration requires space (paid once per level)

O
(
log2 t2 + log t2 · log(R1wt1)

)
= O

(
(log log n)2 + log log n ·

(
logw +

√
log n

))
.

6. The canonicalizer requires space (paid once per level)

O(log(t1t2wR1)) = O(
√
log n+ logw + log log n).

7. Specifying which matrices on the input tape should be multiplied can be done withO(logR1) =
O(
√
log n) bits per level of recursion.

To justify the last statement above, we see that if we assume the algorithm stores the index of
which subproblem is currently being solved in each level, it can directly compute which matrices
are supposed to be multiplied at any given step. Each index takes space O(logR1), and is stored
only once for each level in the call tree. Bringing this together, we note that the maximum re-
cursion depth of our algorithm is r2 =

√
log n, and the space complexity of each recursive level is

O(logw log log n+
√
log n log logn). This means in total, the space required for the call tree is

O
(√

log n · logw · log logn+ log n · log log n
)
,

and this complexity does not change when we account for the offline seed of Nisan’s generator.

14

Finally, we can use Theorem 4.1 to prove Theorem 1.4. We note that Cohen et al. [CDR+21]
obtain a 1/n approximation by taking the median of each entry over the offline randomness (as
their algorithm fails with probability 1/w ≫ 1/n over h), but we obtain failure probability 1/n
over h, so we take the average for simplicity.

Proof of Theorem 1.4. By our choice of δ, with probability at least 1 − 1/2n3 over the outer seed

we obtain a final matrix M̃ satisfying ∥M̃ −M1 · · ·Mn∥ ≤ n−3. For a bad h, we receive a matrix
with distance at most w ≤ n in ℓ∞ distance, and so the theorem follows from letting A1 be the
algorithm that returns the average of Algorithm 2 over h.

By applying a final layer of Richardson iteration, we can obtain an arbitrary low-accuracy
estimate at mild additional cost in space. We use a more precise statement of Richardson iteration,
but we defer its statement to Section 6, where we use it as part of the inner loop of an algorithm.

Proof of Theorem 1.7. Let Algorithm A′1 be the algorithm that applies Lemma 6.1 to M1, . . . ,Mn

and {M̃i,j}i,j∈[n] with error ε, where for i, j, M̃i,j is the output of Theorem 1.4 applied toMi, . . . ,Mj .
The correctness is direct from the correctness of Theorem 1.4, and the space complexity follows
from Lemma 6.1 and the composition of space bounded algorithms (Lemma A.2).

5 Naive Saks-Zhou For Small Width

In this section we prove that the naive Saks-Zhou algorithm succeeds without random shifts as long
as w = O(2

√
logn). We remark that this gives a space O(log3/2 n) algorithm for derandomizing width

exp(log1/2 n) branching programs whose only white-box step is repeatedly locally monotonizing
subprograms (see Remark 1.6). For the remainder of the section, let

t = 20 log n, ε = n−10, δ = n−6, r1 = r2 =
√
log n, R1 = 2r1 .

Let NISh,ε,δ be the family of online-offline samplers from Lemma 2.4 with n = R1, w = w + 2,Σ =
[2t], ε = ε and δ = δ. We remark that the offline seed has length

m = O
(
r1 log(r1w2

t/ε) + log(1/δ) + log(1/ε)
)
= O

(
log3/2 n

)
.

Furthermore, the online seed has length

d = O
(
log(r1w2

t/ε) + log log(1/δ)
)
= O (log n) .

We now formally state this algorithm.

Algorithm 4: SZN(M1, . . . ,Mn, h)

1 Given h ∈ {0, 1}m, let NIS := NISh,ε,δ be the sampler with parameters set above.
2 return NaiveIMM(

√
log n, 0, NIS).

We then state the theorem showing it is correct with high probability over the outer seed:

Theorem 5.1. Given n ∈ N and w ≤ 2
√
logn and any sub-stochastic M1, . . . ,Mn ∈ Rw×w,

Algorithm 4 returns with probability 1 − n2δ over the outer seed h ← {0, 1}m a matrix M̃ =
SZN(M1, . . . ,Mn, r1, r2, h) satisfying∥∥∥M1 · · ·Mn − M̃

∥∥∥ ≤ 1/n3.

Moreover, SZN(M1, . . . ,Mn, h) runs in space O
(
log3/2 n

)
.

15

Algorithm 5: Algorithm NaiveIMM(i, j, NIS)

1 if i = 0 then
2 return M0

j

3 end
4 for l ∈ [j, j +R1] do

5 let M̃ i−1
l := NaiveIMM(i− 1, R1 · j + l, NIS).

6 end

7 return NIS
1→R1

[
Ct1

[
M̃ i−1

j , . . . , M̃ i−1
j+R1

]]
.

We construct the true powers identically to Definition 4.2 (with t1 = t and γ1, . . . , γr2 to be
chosen later, where the choice depends on the recursion level and nothing else). Furthermore, the
space complexity directly follows from the analysis in the prior section, where we no longer pay
for Richardson iterations. The remainder of the proof consists of setting parameters and walking
through the same analysis.

Proof of Theorem 5.1. We condition on the event that NIS := NISh is ε-good for P as defined in
Definition 4.2, which occurs with probability at least 1 − n2δ as claimed. As in the prior case,
subsequent to this assumption the proof does not change if we assume all base matrices are equal,
so we do so for clarity. We maintain the following invariant at the start of the ith iteration of the
loop: ∥∥∥M̃ i −M i

∥∥∥ ≤ (8wR1)
iRi

1

n10

Ensuring this invariant holds certainly suffices to complete the proof. We now verify that the
conditions of Theorem 1.5 are satisfied for t = t and ε = ε and γi := (8wR1)

iRi
1/n

10 and M = M i

and M̃ = M̃ i. We have that NIS is ε-good for the relevant programs by assumption. Furthermore
by the invariant we have ∥∥∥M̃ i −M i

∥∥∥ ≤ γi.

Therefore by Theorem 1.5, recalling that

M̃ i+1 := NIS
1→R1

[
Ct

[
M̃ i, . . . , M̃ i

]]
we obtain ∥∥∥E [Ct [M̃ i, . . . , M̃ i

]]
− M̃ i+1

∥∥∥ ≤ 6wR1γi + 2ε ≤ (7wR1)γi.

and thus by Claim 3.3,∥∥∥(M̃ i)R1 − M̃ i+1
∥∥∥ ≤ (7wR1)γi + wR12

−t ≤ (8wR1)γi. (4)

16

Thus, ∥∥∥M̃ i+1 −M i+1
∥∥∥ ≤ ∥∥∥M̃ i+1 − (M̃ i)R1

∥∥∥+ ∥∥∥(M̃ i)R1 −M i+1
∥∥∥

≤ (8wR1)γi +
∥∥∥(M̃ i)R1 − (M i)R1

∥∥∥ (4)

≤ (8wR1)γi +R1 · ∥M̃ i −M i∥ Claim 2.1

≤ (8wR1)
i+1Ri

1

n10
+

(8wR1)
iRi+1

1

n10

≤ (8wR1)
i+1Ri+1

1

n10
.

which maintains the invariant for the next level. Note that since that i ≤
√
log n, this means that

our error is bounded with

(8wR1)
iRi

1

n10
≤ n2 · (8w)

√
logn

n10
=

(8w)
√
logn

n8
.

Hence, we see that when w ≤ 2
√
logn, the original algorithm of Saks and Zhou works without

random shifting. The proof of Theorem 1.8 from Theorem 5.1 is exactly analogous to that of
Theorem 1.4 from Theorem 4.1, so we omit it.

6 Saks-Zhou With Constant Richardson Iterations

To obtain space complexity matching Saks-Zhou without random rounding (with no loglog factors),
we state a more precise version of Richardson iteration that utilizes stronger guarantees on the initial
error:

Lemma 6.1 ([AKM+20,CDR+21,PV21,CDS22]). There exists an algorithm R that, given t, k ∈ N
and sub-stochastic M ∈ Rw×w and

(
M̃i

)
i∈[n]

and k ∈ N such that for all i ∥M i − M̃i∥ ≤ 1/(nw)2

returns a substochastic matrix R(M, (M̃i)i, t, k) where each entry is represented by at most t bits of
precision satisfying ∥∥∥R(M,

{
M̃i

}
i
, t, k

)
−Mn

∥∥∥ ≤ (nw)−k.

Furthermore, R runs in space O(log2 k+log(k) log(tnT)) where T is the maximum bit complexity

of M and {M̃i}.

Note that the above lemma implies that with only O(1) Richardson iterations, we can reduce
the error from 1

wc back down to 1
wc′ for arbitrary constants c < c′, and this consumes O(log nw)

space per level.
As we are now in the regime where we may assume w ≥ n without loss of generality, we appeal

to identity 2 and assume we are computing the nth power of a single w×w stochastic matrix. For
the remainder of the section let

t = 20 log(w), ε = w−10, δ = w−6, r1 = r2 =
√

log n, R1 = 2r1 .

Let NISh,ε,δ be the family of online-offline samplers from Lemma 2.4 with n = R1, w = w + 2,Σ =
[2t], ε = ε and δ = δ. We remark that the offline seed has length

m = O
(
r1 log(R1w2

t/ε) + log(1/δ) + log(1/ε)
)
= O

(
log3/2 n+

√
log n · logw

)
.

17

Furthermore, the online seed has length

d = O
(
log(R1w2

t/ε) + log log(1/δ)
)
= O (log nw) .

We formally describe the inner loop as Algorithm 6.

Algorithm 6: Algorithm SZC(M,h)

1 Given h ∈ {0, 1}m, let NISh,ε,δ be the sampler with parameters set above.

2 Set M̃0 := M .
3 for i = 1, . . . r2 do
4 Let {

M̃k

}
k∈[R1]

:=

{
NIS
1→k

[
Ct1

[
M̃ i−1

1 , . . . , M̃ i−1
R1

]]}
k∈[R1]

.

5 Set

M̃ i := R

(
M̃ i−1,

{
M̃k

}
k∈[R1]

, t, 10

)
.

6 end

7 return M̃ r2

We then show Algorithm 6 is correct with high probability over the outer seed:

Theorem 6.2. Given n,w ∈ N with w ≥ n and any stochastic M ∈ Rw×w, Algorithm 6 returns
with probability 1− w2δ over the outer seed h← {0, 1}m a matrix M̃ = SZC(M,h) satisfying∥∥∥Mn − M̃

∥∥∥ ≤ 1/w3.

Moreover, SZC(M,h) runs in space

O
(
log3/2 n+

√
log n · logw

)
.

We construct the true powers identically to Definition 4.2 (with t1 = t). The rest of the proof is
analogous to Theorem 4.1, except that we set γ to be 1/wc and so require only a constant number of
Richardson iterations per level. The space complexity follows from Lemma 6.1, as we now require
O(log nw) space per level for the Richardson iterations (and the online seed).

7 Acknowledgements

We thank Salil Vadhan and David Zuckerman for their insightful comments during the writing of
this paper.

References

[AKM+20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron
Sidford, and Salil P. Vadhan. High-precision estimation of random walks in small
space. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1295–1306, 2020.

18

[Arm98] Roy Armoni. On the derandomization of space-bounded computations. In Random-
ization and approximation techniques in computer science (Barcelona, 1998), volume
1518 of Lecture Notes in Comput. Sci., pages 47–59. Springer, Berlin, 1998.

[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions
with near-optimal error for read-once branching programs. SIAM J. Comput., 49(5),
2020.

[BGZ21] Mark Braverman, Sumegha Garg, and Or Zamir. Tight space complexity of the coin
problem. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1068–1079. IEEE, 2021.

[BV10] Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for branching
programs. In Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 30–39, 2010.

[CDR+21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error Re-
duction for Weighted PRGs Against Read Once Branching Programs. In Proceedings
of the 36th Computational Complexity Conference (CCC), pages 22:1–22:17, 2021.

[CDS22] Gil Cohen, Dean Doron, and Ori Sberlo. Approximating large powers of stochastic
matrices in small space. Electron. Colloquium Comput. Complex., TR22-008, 2022.

[CHHL19] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudo-
random generators from polarizing random walks. Theory Comput., 15:1–26, 2019.

[CHRT18] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved
pseudorandomness for unordered branching programs through local monotonicity. In
Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 363–375. ACM, 2018.

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for read-
once branching programs. In Proceedings of the 35th Computational Complexity Con-
ference (CCC), pages 25:1–25:27, 2020.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branch-
ing programs, in any order. In Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 946–955, 2018.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-bounded
computation. In Proceedings of the 25th International Conference on Randomization
and Computation (RANDOM), pages 28:1–28:23, 2021.

[HZ20] William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success
RL. SIAM J. Comput., 49(4):811–820, 2020.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada, pages 356–364. ACM, 1994.

19

[MRSV17] Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. Derandomization
beyond connectivity: Undirected laplacian systems in nearly logarithmic space. In 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 801–812, 2017.

[MRSV19] Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. Deterministic approx-
imation of random walks in small space. In Dimitris Achlioptas and László A. Végh,
editors, Proceedings of the 23rd International Conference on Randomization and Com-
putation (RANDOM ‘19), volume 145 of LIPIcs, pages 42:1–42:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3
branching programs. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 626–637. ACM, 2019.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, February 1996.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions That Beat All Pseudorandom
Generators (Extended Abstract). In Proceedings of the 36th Annual Computational
Complexity Conference (CCC), pages 33:1–33:15, 2021.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of Mathematics, 155(1), January
2002.

[RVW04] Omer Reingold, Salil Vadhan, and Avi Wigderson. A note on extracting randomness
from santha–vazirani sources. Unpublished manuscript, September 2004.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4:177–192, 1970.

[SZ99] Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

A Deferred Proofs

We collect proofs of claims regarding the accuracy of various truncation and rounding procedures.
In all cases, our results are insensitive to polynomial losses in the length and width of the relevant
subprograms, and constant factors in terms of the bit complexity (i.e. the parameters t1, t2).

We first extend Claim 3.2 to canonicalizations of sequences of matrices.

Claim 3.3. For every t ∈ N and sub-stochastic matrices M1, . . . ,Mℓ ∈ Rw×w, we have∥∥E [Ct [M1, . . . ,Mℓ]]−M1 · · ·Mℓ

∥∥ ≤ wℓ2−t.

20

Proof. We have∥∥E [Ct [M1, . . . ,Mℓ]]]−M1 · · ·Mℓ

∥∥ =
∥∥E [Ct [M1]] · · ·E [Ct [Mℓ]]−M1 · · ·Mℓ

∥∥
≤ ℓw2−t

where the second step uses Claim 2.1 with Ai = E [Ct [Mi]] and Bi = Mi and δ = w2−t from
Claim 3.2.

We observe that this easily implies that the expectations of canonicalizations of similar matrices
are similar.

Lemma 3.4. Given sub-stochastic M1, . . . ,Mℓ and M̃1, . . . , M̃ℓ in Rw×w, if ∥Mi − M̃i∥ ≤ γ for
every i, then for every t ∈ N,∥∥∥E [Ct [M1, . . . ,Mℓ]]− E

[
Ct

[
M̃1, . . . , M̃ℓ

]]∥∥∥ ≤ 2ℓw2−t + ℓγ.

Proof. We have∥∥∥E [Ct [M1, . . . ,Mℓ]]− E
[
Ct

[
M̃1, . . . , M̃ℓ

]]∥∥∥
≤
∥∥E [Ct [M1, . . . ,Mℓ]]−M1 · · ·Mℓ

∥∥+ ∥∥∥M1 · · ·Mℓ − M̃1 · · · M̃ℓ

∥∥∥+ ∥∥∥M̃1 · · · M̃ℓ − E
[
Ct

[
M̃1, . . . , M̃ℓ

]]∥∥∥
≤ 2wℓ2−t + ℓγ

where the final line uses Claim 3.3 and Claim 2.1.

We recall the formal statement of the composition of space-bounded algorithms:

Lemma A.1 ([CDS22]). Let f1, f2 : {0, 1}∗ → {0, 1}∗ be computable in space s1, s2 : N→ N, where
s1(n), s2(n) ≥ log n. Then, f1 ◦ f2(x) can be computed in space

O(s1(ℓ2(n)) + s2(n)),

where ℓ2(n) is a bound on the length of the output of f2(x) on inputs of length n.

We can apply this lemma to the case of a single function being composed with itself many times:

Lemma A.2 ([CDS22]). Let f : {0, 1}∗ → {0, 1}∗ be computable in space s : N → N, where
s(n) ≥ log n. Then, g(x, k) = f ◦ f ◦ · · · ◦ f(x) can be computed in space

O

(
k−1∑
i=0

s(ℓi(n))

)
,

where ℓi(n) is a bound on the length of the output of g(x, i) on inputs of length n.

A.1 Samplers With Low Failure Probability

We prove that there exists a generator with our required properties. We first recall the statement:

21

Theorem 2.3 ([Nis92,RVW02,CL20]). Given n,w, |Σ| ∈ N and ε, δ > 0, there exists a generator
NIS : {0, 1}m × {0, 1}d → Σn such that for every length n, width w branching program B we have:

Pr
h←Um

[∥∥∥NIS(h, ·)[B]− E [B]
∥∥∥ ≤ ε

]
≥ 1− δ

and m = O(log(n) log(nw|Σ|/ε)+ log(n/δ)) and d = O(log(nw|Σ|/ε)+ log log(n/δ)). Equivalently,
for every branching program B, with probability 1 − δ over h NISh := NIS(h, ·) is ε-good for B.
Furthermore, NISh(x) can be evaluated in space O(m) given two-way read-only access to the offline
seed h.

We construct this in a standard fashion via the sampler trick. First, we recall both the original
Nisan PRG, and a space-efficient averaging sampler.

Theorem A.3 ([Nis92]). Given n,w, |Σ| ∈ N and ε > 0, there is a function GEN : {0, 1}s → Σn

with m = O(log n log(nw|Σ|/ε) that can be evaluated in space O(s) such that for every ordered
branching program B : [w]× Σn → [w] of length n and width w,∥∥GEN [B]− E [B]

∥∥ ≤ ε.

Theorem A.4 ([RVW04,CL20]). For every ε, δ > 0 and s ∈ N, there exists an averaging sampler
f : {0, 1}m × {0, 1}d → {0, 1}s such that d = O(log(1/ε) + log log(1/δ)) and m = s+O(log(1/δ) +
log(1/ε)). Formally, for every function g : {0, 1}s → {0, 1}, we have

Pr
h←Um

[∣∣∣∣ E
x←Ud

[g(f(h, x)]− E
y←Us

[g(y)]

∣∣∣∣ ≤ ε

]
≥ 1− δ.

By combining these two ingredients we can construct the generator.

Proof of Theorem 2.3. Let GEN : {0, 1}s → Σn be the function of Theorem A.3 with n = n,w =
w, |Σ| = |Σ| and ε = ε/2. Observe that for every ordered branching program B of length n and
width w, we have ∥∥E [B ◦ GEN]− E [B]

∥∥ ≤ ε/2.

Now let f : {0, 1}m × {0, 1}d → {0, 1}s be the function of Theorem A.4 with δ = δ/w, ε = ε/2w.
For every function B ◦ GEN (where we choose a distinguished start and accept vertex and later take
a union bound over ε and δ) we have

Pr
h←Um

[∣∣∣∣ E
x←Ud

[B ◦ GEN(f(h, x))]− E
y←Us

[B ◦ GEN(y)]
∣∣∣∣ ≤ ε/2w

]
≥ 1− δ/w.

and thus
Pr

h←Um

[∥∥∥GEN ◦ f(h, ·)[B]− E [B]
∥∥∥ ≤ ε/2 + ε/2

]
≥ 1− δ

so letting NIS(h, ·) = GEN ◦ f(h, ·) we obtain the desired generator.

B Bounds Against Single Transition Branching Programs

To illustrate the added power obtained from derandomizing products M1 · · ·Mn of stochastic ma-
trices M1, . . . ,Mn ∈ Rw×w versus derandomizing powers Mn of a stochastic matrix M ∈ Rw×w,
we observe that the latter model corresponds to derandomizing ordered branching programs with
a single fixed transition function for every layer. We show via a short combinatorial argument that
this limitation can be severe:

22

Lemma B.1. For every even n, the function f : {0, 1}n → {0, 1} given by f(x) = xn/2 cannot be
computed by a single-transition ordered branching program of width n/2− 1.

We remark that f (and any parity on any subset of variables) can easily be computed by an
ordered branching program (with distinct transition functions) of width 2.

Proof. Let B be a single-transition branching program of width w computing f , and let v0 be the
start state and A ⊂ [w] be the set of states marked as accept in the final layer.

Claim B.2. For arbitrary u, v ∈ [w], if there exists σ ∈ {0, 1}∗ such that B[v, σ] = u, there exists
τ ∈ {0, 1}≤w such that B[v, τ] = u.

Proof. This follows from the fact that if an s − t path exists in a directed graph of size w, there
must be an s− t path of length at most w.

Now assume for contradiction that w ≤ n/2 − 1. Let u := B[v0, 0
n/2−11]. We first claim that

for any σ ∈ {0, 1}∗, B[u, σ] ∈ A. This follows from Claim B.2 and the fact that B must accept
all strings of the form B[v0, 0

n/2−11σ]. But then there is τ ∈ {0, 1}≤w such that B[v0, τ] = u, and
hence B[v0, τ0

n−|τ |] ∈ A, and as n− |τ | > n/2 this is a contradiction to the fact that B computes
f .

23
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

