
Certified Hardness vs. Randomness for Log-Space

Edward Pyne∗

MIT
epyne@mit.edu

Ran Raz†

Princeton University
ranr@cs.princeton.edu

Wei Zhan‡

Princeton University
weizhan@cs.princeton.edu

March 28, 2023

Abstract

Let L be a language that can be decided in linear space and let ϵ > 0 be any constant.
Let A be the exponential hardness assumption that for every n, membership in L for inputs
of length n cannot be decided by circuits of size smaller than 2ϵn. We prove that for every
function f : {0, 1}∗ → {0, 1}, computable by a randomized logspace algorithm R, there exists a
deterministic logspace algorithm D (attempting to compute f), such that on every input x of
length n, the algorithm D outputs one of the following:

1. The correct value f(x).

2. The string: “I am unable to compute f(x) because the hardness assumption A is false”,
followed by a (provenly correct) circuit of size smaller than 2ϵn

′
for membership in L for

inputs of length n′, for some n′ = Θ(log n); that is, a circuit that refutes A.
Moreover, D is explicitly constructed, given R.

We note that previous works on the hardness-versus-randomness paradigm give derandom-
ized algorithms that rely blindly on the hardness assumption. If the hardness assumption is
false, the algorithms may output incorrect values, and thus a user cannot trust that an output
given by the algorithm is correct. Instead, our algorithm D verifies the computation so that it
never outputs an incorrect value. Thus, if D outputs a value for f(x), that value is certified
to be correct. Moreover, if D does not output a value for f(x), it alerts that the hardness
assumption was found to be false, and refutes the assumption.

Our next result is a universal derandomizer for BPL (the class of problems solvable by
bounded-error randomized logspace algorithms)1: We give a deterministic algorithm U that
takes as an input a randomized logspace algorithm R and an input x and simulates the compu-
tation of R on x, deteriministically. Under the widely believed assumption BPL = L, the space
used by U is at most CR · log n (where CR is a constant depending on R). Moreover, for every
constant c ≥ 1, if BPL ⊆ SPACE[(log(n))c] then the space used by U is at most CR · (log(n))c.

Finally, we prove that if optimal hitting sets for ordered branching programs exist then there
is a deterministic logspace algorithm that, given a black-box access to an ordered branching
program B of size n, estimates the probability that B accepts on a uniformly random input.
This extends the result of (Cheng and Hoza CCC 2020), who proved that an optimal hitting set
implies a white-box two-sided derandomization.

Keywords: pseudorandomness, space-bounded computation

∗Supported by an Akamai Presidential Fellowship. Part of this work was done while visiting the Simons Institute
Program on Meta-Complexity.

†Supported by a Simons Investigator Award and by the National Science Foundation grant No. CCF-2007462.
‡Supported by a Simons Investigator Award and by the National Science Foundation grant No. CCF-2007462.
1Our result is stated and proved for promise-BPL, but we ignore this difference in the abstract.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 40 (2023)

1 Introduction

In a recent work, Girish, Raz and Zhan studied the power of untrusted randomness [GRZ23].
One of their main observations was that randomized logspace computations are verifiable using
only O(log n) random bits. More precisely, every problem in BPL has a streaming proof between a
randomized logspace prover and a randomized logspace verifier, where the verifier uses only O(log n)
random bits and has a read-once one-way access to the proof that is streamed by the prover. In
other words, the prover provides a polynomial-length proof that is streamed to the verifier and the
verifier can check whether the computation was performed correctly using only O(log n) random
bits.

This raises the following intriguing possibility. Try to replace the random string of the prover
by, say, the digits of π. In most cases, that should work and the computation should be performed
correctly, as the digits of π seem unrelated to most computations. In the rare cases that the
computation is not performed correctly, the verifier will figure that out, as the verification will
fail with high probability, so no harm is done. Moreover, since the digits of π can be generated
deterministically in small space, the prover is now deterministic so the verifier can fully simulate
the prover. Since the verifier uses only O(log n) random bits, the verifier can just try all possibilities
for these random bits so that the verifier is also deterministic2, and thus the entire interaction is
now simulated by a deterministic logspace algorithm.

This approach won’t derandomize all randomized logspace computations, since the digits of π
can be generated by a small space algorithm. The digits of π were not designed to fool randomized
computations. The next logical step is to try to use sequences that were designed to fool randomized
computations, namely, candidate constructions of pseudorandom generators, such as pseudorandom
generators that are based on the hardness-versus-randomness paradigm [Sha81,Yao82,BM84,NW94,
IW97, STV01, KvM02]. Such pseudorandom generators fool randomized computations, within a
certain complexity class, assuming that certain widely-believed hardness assumptions hold.

Let G be a candidate construction for a pseudorandom generator, designed to fool randomized
logspace computations, and assume that G uses logarithmic space and O(log n) random bits. We
can try to replace the random string of the prover by pseudorandom sequences that are generated
by G. Since, if we do so, both the prover and the verifier use a logarithmic number of random bits,
the verifier can simulate the entire interaction by a deterministic logspace algorithm. If one of the
poly(n) possibilities for the O(log n) random bits of the generator results in a valid proof that the
computation was performed correctly, the verifier will figure that out and accept that computation.
If all poly(n) possibilities fail, the verifier will alert that the generator failed. Thus, the algorithm
never outputs an incorrect value.

If the generator G is based on the hardness-versus-randomness paradigm, a failure of the gener-
ator implies that the hardness assumption that the generator is based on is false. Moreover, proofs
that are based on the hardness-versus-randomness paradigm are typically constructive, in the sense
that they show that if the generator fails then one can construct a circuit that refutes the hardness
assumption. If we can prove that constructing that circuit can be done in deterministic logspace
then the verifier can obtain a circuit that refutes the hardness assumption that G is based on.

We use a variant of the hardness-versus-randomness pseudorandom generator of Klivans and
van Melkebeek [KvM02] that builds on [NW94, IW97, STV01] to derandomize BPL (assuming an
exponential hardness assumption). Based on this generator, we obtain the following result.

2Derandomizing the verifier by trying all possibilities for its random bits is not possible when the prover is
randomized, or when the prover cannot be simulated by the verifier, since the verifier needs multi-access to the
output of the prover in order to do that.

1

Theorem 1.1. Let L be a language that can be decided in linear space and let ϵ > 0 be a constant.
Let A be the exponential hardness assumption that for every n, membership in L for inputs of
length n cannot be decided by circuits of size smaller than 2εn. Let f : {0, 1}∗ → {0, 1} be a
function computable by a randomized logspace algorithm R. Then, there exists a deterministic
logspace algorithm D (explicitly given from R), such that on every input x of length n, the algorithm
D outputs one of the following:

1. The correct value f(x).

2. The string: “Unable to compute f(x) because the hardness assumption A is false”, followed
by a (provenly correct) circuit of size smaller than 2εn

′
for membership in L for inputs of

length n′, for some n′ = Θ(log n); that is, a circuit that refutes A.

In other words, while the algorithms given by all previous derandomization results based on the
hardness-versus-randomness paradigm rely blindly on the hardness assumption, and may output
incorrect values if the hardness assumption is false, our algorithm D never outputs an incorrect
value: If the hardness assumption is true, D always outputs the correct value f(x). If the hardness
assumption is false D still outputs the correct value f(x), or alerts that the hardness assumption
is false, and refutes the assumption.

In particular, if the hardness assumption used in Theorem 1.1 is true (and there are several
such assumptions that are widely believed to be true), Theorem 1.1 gives a deterministic logspace
algorithm that always outputs the correct value of f(x) and that value is certified to be correct.
In that sense, if the hardness assumption is true, the algorithm given by Theorem 1.1 effectively
functions as a full derandomizer for the class BPL.

We note that in previous works, the, so called, reconstruction step, in which a circuit that refutes
the hardness assumption is constructed (when the generator fails), required the use of randomness in
multiple places and was not known to be computable in logspace. Our main technical contribution
in the proof of Theorem 1.1 is carefully designing the pseudorandom generator and proving that for
that generator, all parts of the reconstruction step can be done in deterministic logspace. We view
this result, that the reconstruction can be done in deterministic logspace, as a separate contribution
of our work.

Let us go back to the observation that every problem in BPL has a streaming proof between
a randomized logspace prover and a randomized logspace verifier, where the verifier uses only
O(log n) random bits and has a read-once one-way access to the proof that is streamed by the
prover [GRZ23]. The proof is based on a protocol where the prover computes and streams the
probability to reach each state of the branching program, underlying a randomized algorithm, and
the verifier checks that these probabilities are consistent between each two consecutive time steps.

While we can use this approach to prove Theorem 1.1, we give here a slightly different and more
direct proof, where the verification is done by verifying that the distribution of each bit that the
pseudorandom generator outputs, conditioned on reaching each state of the underlying branching
program, is close to uniform. These conditional probabilities are computed directly by checking
all possible outputs of the pseudorandom generator. This is possible because the generator uses
only a logarithmic number of random bits and hence the number of possibilities is polynomial in n.
This approach is related to the work of Nisan [Nis93], who used a similar approach to check if a
given polynomial-size set of strings is sufficiently random to simulate a randomized computation
with high accuracy, in his proof that BPL ⊂ ZP∗L (where ZP∗L is zero-error randomized logspace,
where the machine has two-way access to the random tape).

The discussion above implies that the output of a candidate pseudorandom generator G (that
uses logarithmic space and O(log n) random bits) can be verified as being sufficiently random

2

for a given randomized logspace computation. With this in mind, it is natural to try to find a
pseudorandom generator that will be sufficiently good for a given randomized logspace computation,
by an exhaustive search over all possible generators (using the fact that the generator is described
by a constant size Turing machine). The final goal is to obtain a universal derandomizer, that will
do at least as good as the best pseudorandom generator.

We explore this idea and discover that an even stronger result can be proved. We explicitly
construct a universal derandomizer U for prBPL (promise-BPL, the class of promise problems solv-
able by bounded-error randomized logspace algorithms) that runs in the best possible deterministic
space bound on prBPL.

More precisely, we give a deterministic algorithm U that takes as an input a randomized logspace
algorithm R and an input x and simulates the computation of R on x. Under the widely believed
assumption prBPL = L, the space used by U is at most CR ·log n (where CR is a constant depending
on R). More generally, for every constant c ≥ 1, if prBPL ⊆ SPACE[(log(n))c] then the space used
by U is at most CR · (log(n))c. We emphasize that the point here is that U is deterministic and is
explicitly given, rather than an existential result. We remark that a similar result is not known in
the time bounded case, and seems hard to obtain. We also remark that the best currently known
space bound on BPL is prBPL ⊆ SPACE[(log(n))1.5−o(1)] [SZ99,Hoz21].

Theorem 1.2. Let U be the deterministic algorithm that is explicitly given in Section 5, that takes
as an input a randomized logspace algorithm R and an input x. Assume that the probability that
R accepts on x is either ≤ 1/4 or ≥ 3/4. Then, if the probability that R accepts on x is ≤ 1/4,
the output of U on input R, x is 0 and if the probability that R accepts on x is ≥ 3/4, the output
of Uon input R, x is 1. Moreover, for every constant c ≥ 1, if prBPL ⊆ SPACE[(log(n))c] then the
space used by U is at most CR · (log(n))c, (where CR is a constant depending on R).

We note that one can bound the space used by U , in Theorem 1.2, also by C ·(log(N))c, where C
is a universal constant and N is an upper bound on both the length and width of the branching
program underlying the computation of R on x (under the assumption prBPL ⊆ SPACE[(log(n))c]).
(See Theorem 5.1).

Another prior work that is related to our work, as well as to [Nis93,GRZ23], is the work of Cheng
and Hoza [CH22]. Cheng and Hoza proved that an optimal hitting set generator (the one-sided
analogue of a pseudorandom generator) for logspace would imply BPL = L (whereas the direct
conclusion of such a hitting set generator would only be RL = L) [CH22]. To prove this result, they
show how to use the hitting set generator to guess (approximations of) the probability to reach each
state of a branching program, and they then check that these probabilities are consistent between
each two consecutive time steps (similarly to and prior to [GRZ23]).

The proof given by Cheng and Hoza uses the explicit description of the underlying branching
program. Our final result is an extension of their result to the case where the branching program
is not given explicitly, but rather one only has oracle access to it, that is, access as a black box.

Theorem 1.3 (Informal: formally stated and proved in Section 6). Assume that optimal explicit
hitting set generators for width n, length n ordered branching programs exist. Then optimal de-
terministic samplers for width n, length n ordered branching programs (with oracle access to the
branching program) exist.

We remark that Cheng and Hoza [CH22] prove a version of this result for constant width
branching programs (in addition to their non-black-box result on length n, width n programs that
capture BPL). They state a black-box equivalence in the BPL vs L regime as an open question,
which we resolve. Our result complements equivalent results in the BPP vs P regime; several prior

3

results [ACR96,BF99,ACRT99,GVW11,CH22] show that a hitting set for general circuits implies
a deterministic sampler for general circuits. Thus, we close the gap in understanding between
time-bounded and space-bounded derandomization with regards to this question.

One-Sided Two-Sided

Black-Box • •

White-Box •

[Theorem 1.3]

[CH20]

We hope that our progress can eventually be used to get an equivalence in the white-box regime,
that is, that prRL = L =⇒ prBPL = L. Such a result was established in the time-bounded regime
by [BF99].

A common theme in all of our results is that our proofs exploit, and further demonstrate, the
intriguing idea that in some settings randomized logspace computations can be verified.

1.1 Related Work

There have been four decades of work attempting to derandomize randomized logspace, that is,
prove BPL = L. This work has taken (at least) two major forms: constructions of pseudorandom
generators (PRGs) and their generalizations [Nis90, INW94,NZ96,GR14,FK18,MRT19,HZ20] and
white-box derandomizations [SZ99, RR99, Rei08, RTV06, AKM+20, Hoz21]. This has resulted in
a varied landscape, with explicit constructions of PRGs that obtain highly nontrivial but (pre-
sumably) suboptimal seed lengths, white-box derandomizations, and candidate constructions. We
emphasize that these candidate constructions consist of both generators whose security follows
from a certain hardness assumption [KvM02], and candidates that are not known to follow from a
hardness assumption (for instance, the XOR of two small-bias distributions has been proposed as
a candidate by Reingold and Vadhan [LV17]).

As mentioned above, besides [KvM02], the works most relevant to ours are [Nis93,CH22,GRZ23].
All these works have an element of verification that a randomized computation was performed
correctly (in various forms and for various purposes), an idea that is also central in our work.

2 Preliminaries

We first define notation related to pseudorandom generators and branching programs.

Definition 2.1. Given a distribution D over a space [S], let x ← D represent drawing x ∈ [S]
from D. We let Un denote the uniform distribution over {0, 1}n.

Definition 2.2. Given a pseudorandom generator (PRG) G : {0, 1}s → {0, 1}n and a function
f : {0, 1}n → R, we use E[f(Un)] and E[f(G(Us)] to denote the expectation of f under uniformly
distributed inputs and pseudorandom inputs generated by G respectively, that is,

E[f] = E
x←Un

[f(x)], E
G
[f] = E

y←Us

[f(G(y))].

And we say that G ε-fools f if |E[f]− EG[f]| ≤ ε.

4

Definition 2.3. An ordered branching program (OBP) B of length n and width w is a directed
acyclic graph whose vertices (or states) are partitioned into n+1 layers V0, . . . , Vn where |Vi| ≤ w.
For each i < n and v ∈ Vi, there are two outgoing edges, labeled with 0 and 1 respectively, that
leads into Vi+1. V0 constains a single state v0 which is the starting state, and each state in Vn is
labeled with a real number as the output of the branching program. Unless otherwise specified, we
assume that the labels are either 0 or 1.

For each v ∈ Vi, σ ∈ {0, 1}k and u ∈ Vi+k, we say B[v, σ] = u if B transitions from state v to
state u following the edges labeled by the bits in σ. We can think of B as a function on {0, 1}n
such that for every x ∈ {0, 1}n, B(x) is the label on the output state B[v0, x]. For each v ∈ Vi, let
B→v be an OBP of length i and width w such that B→v(x) = 1 if and only if B[v0, x1..i] = v.

For each v ∈ Vi, let

p→v = Pr[B[vst, Ui] = v], pv→ = Pr[B[v, Un−i] = vacc].

3 Effective Hardness to Randomness

We prove Theorem 1.1 in several stages. In the first stage, we show a testing procedure that, given a
candidate PRG and an ordered branching program, either certifies that the PRG fools the branching
program, or outputs a branching program that acts as a next-bit predictor for G. We then show
how to go from such a next-bit predictor to a counterexample to the hardness assumption.

3.1 Verifiable PRGs for Logspace

We first show that there is a logspace verifier for PRGs (with logarithmic seed) against logspace
OBPs, which detects when a PRG fails and outputs an example OBP that the PRG fails to fool.
To formalize this, we recall the notion of a next-bit-predictor.

Definition 3.1. Given a function G : {0, 1}s → {0, 1}n, a branching program T : {0, 1}i → {0, 1}
for i < n is an ε-next-bit-predictor for G if Prx←Us [T (G(x)1..i) = G(x)i+1] > 1/2 + ε.

Note that the uniform distribution is 0-next-bit-predictable, even for a computationally un-
bounded distinguisher.

We prove in this section the following lemma:

Lemma 3.2. For every error function ε(n) computable in space O(log n), there is a deterministic
algorithm that, given as input an OBP B of length n and width w, and the black-box oracle access
to a PRG G : {0, 1}s → {0, 1}n, runs in space O(s+ log(nw)), and either

1. Confirms that G ε · n-fools B; Or

2. Outputs an OBP T of length at most n and width w that is an ε/2-next-bit predictor for G.

The main idea behind this proof has appeared before for different purposes [Nis93, CH22,
GRZ23], and in fact (modifications of) all these results can be used to prove Lemma 3.2. However,
we give a self-contained proof.

To prove Lemma 3.2, we first define a series of potential distinguishers, with the property that
each can be evaluated in logspace. Each distinguisher measures the bias of the next bit in the PRG
upon reaching a particular state.

5

Definition 3.3. Given an OBP B of length n, for every i < n and v ∈ Vi, let Nv : {0, 1}i+1 →
{−1, 0, 1} be the function defined as:

Nv(x) =

1 if B→v(x) = 1 and xi+1 = 1

−1 if B→v(x) = 1 and xi+1 = 0

0 otherwise.

Furthermore, Nv is computable in logspace given B and v.

When x is uniformly random, B→v(x) and xi+1 are independent, and therefore E[Nv] = 0 for
all v. Consequentially, our verifier checks that |EG[Nv]| is small for all v, where we feed the first
i+ 1 bits of the PRG output to Nv. We first show its soundness:

Lemma 3.4. Given an OBP B of length n, suppose that for every i,
∑

v∈Vi
|EG[Nv]| ≤ ε. Then

G ε · n-fools B.

Proof. As every edge from layer Vi goes into layer Vi+1, for every i < n we have∑
v∈Vi+1

∣∣∣∣E[B→v]− E
G
[B→v]

∣∣∣∣
≤
∑
v∈Vi

∑
b∈{0,1}

∣∣∣∣ Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = b]− Pr
x←G(Us)

[B→v(x) = 1 ∧ xi+1 = b]

∣∣∣∣ .
Notice that by the definition of Nv, we have

E[Nv] = Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 1]− Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 0]

= 2 Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 1]− E[B→v]

= E[B→v]− 2 Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 0],

and the above holds similarly under pseudorandomness generated by G. Therefore we further have∑
v∈Vi+1

∣∣∣∣E[B→v]− E
G
[B→v]

∣∣∣∣ ≤∑
v∈Vi

∣∣∣∣E[B→v]− E
G
[B→v]

∣∣∣∣+ ∑
v∈Vi

∣∣∣∣E[Nv]− E
G
[Nv]

∣∣∣∣
=
∑
v∈Vi

∣∣∣∣E[B→v]− E
G
[B→v]

∣∣∣∣+ ∑
v∈Vi

∣∣∣∣EG[Nv]

∣∣∣∣ .
With the assumption that

∑
v∈Vi
|EG[Nv]| ≤ ε and the fact that E[B→v0] = EG[B→v0] = 1, we

conclude that
∑

v∈Vn
|E[B→v]− EG[B→v]| ≤ ε ·n. As the output labels are binary, this means that

|E[B]− EG[B]| ≤ ε · n, i.e. G ε · n-fools B.

Proof of Lemma 3.2. For every i < n, the algorithm iterates through every v ∈ Vi and all the
possible seeds for G, computes

∑
v∈Vi
|EG[Nv]| and checks if it is at most ε. This can be done in

space O(s+ log(nw)). If all such checks pass, we have by Lemma 3.4 that G ε · n-fools B.
Otherwise, we find some i < n such that

∑
v∈Vi
|EG[Nv]| > ε. Let T be an OBP of length i that

is the same as B from layer V0 to Vi, such that the output label on each v ∈ Vi is 1 if EG[Nv] ≥ 0,

6

and 0 if EG[Nv] < 0. Such an OBP is of size at most that of B, and can be constructed in space
O(s+ log nw). We have

Pr
x←G(Us)

[T (x1..i) = xi+1]

=
∑
v∈Vi

EG[Nv]≥0

Pr
x←G(Us)

[B→v(x) = 1 ∧ xi+1 = 1] +
∑
v∈Vi

EG[Nv]<0

Pr
x←G(Us)

[B→v(x) = 1 ∧ xi+1 = 0]

=
∑
v∈Vi

1

2

(
E
G
[B→v] +

∣∣∣∣EG[Nv]

∣∣∣∣)
>

1

2
(1 + ε).

3.2 Refutable Hardness Assumptions in Logspace

Lemma 3.2 shows that, given an alleged PRG for logspace, we can use it to either successfully de-
randomize a logspace comptation, or explicitly output a counterexample to the PRG. The results of
the hardness-versus-randomness paradigm claim that PRGs exist under certain hardness assump-
tions. Combining these results with Lemma 3.2, we can derandomize logspace computations given
any alleged hard function, or determine that the hardness assumption does not hold. However,
Theorem 1.1 requires a stronger guarantee from the algorithm - if the hardness assumption does
not hold, the algorithm needs to output a small circuit that falsifies this assumption. Obtaining
this result is the primary contribution of this subsection.

We first recall the result of Klivans and van Melkebeek [KvM02].

Theorem 3.5 ([KvM02]). If there is a family of boolean functions f ∈ SPACE[n] that is not
computable by circuits of size 2εn for some ε > 0, then BPL = L.

Their proof is based on the worst-case hardness vs. randomness results by Imagliazzo and
Wigderson [IW97], and shows how to execute every step in the construction of the Imagliazzo-
Wigderson PRG can be executed in deterministic logspace. However, their proof (and all other
proofs of the hardness vs. randomness paradigm) does not show that given a branching program
(or circuit) that distinguishes the PRG from random (i.e. contradicts the original hardness assump-
tion), there is an efficient deterministic logspace algorithm to produce a circuit for the supposedly
hard function. This is for two reasons. First, the conversion from a distinguisher to a next bit pre-
dictor (which we address in Lemma 3.2). Even once we obtain such a predictor, prior approaches
used space- and randomness-inefficient probabilistic method arguments to go from a predictor to a
worst-case correct circuit for the original function. Our primary contribution in this subsection is
to carefully design the PRG and develop an efficient reconstruction procedure, given a distinguisher
for the constructed PRG.

This leads to the following theorem:

Theorem 3.6. For every family of boolean functions f ∈ SPACE[n] and ε > 0, there is a deter-
ministic algorithm that, given as the input an OBP B of length n and width w = n, runs in space
O(log n), and either

1. Outputs E[B] with 1/4 error; Or

2. Outputs a circuit C of size 2εm that computes f on {0, 1}m where m = Θ(log n).

7

Proof. Let G : {0, 1}s → {0, 1}n be the generator of Theorem 4.1 with ε = ε and f = f and let
m = m0 be the instance size of f used to construct G.

We then apply Lemma 3.2 on B and G with ε = 1/(4n). Of the two possible outcomes:

1. If it is certified that G ε · n-fools B. In this case the algorithm computes and outputs EG[B]
which approximates E[B] within additive error 1/4.

2. Otherwise we get for some i < n an explicit OBP T of length i and width w, such that
Prx←Us [T (G(x)1..i) = G(x)i+1] >

1
2(1 + ε). In other words, T is an ε/2 = 1/8n next-bit

predictor against G of size at most n2, and T can be evaluated in space O(log n). Then by
Theorem 4.1, we can construct in spaceO(log n) a circuit C for f on inputs of sizem = Θ(log n)
of size at most 2εm.

Now Theorem 1.1 follows:

Proof of Theorem 1.1. Given a randomized logspace algorithm R with error probability at most
1/10 and input x ∈ {0, 1}n, let B be the branching program representing how R uses its random
bits on input x, which can be constructed in logspace. By assumption R uses s = O(log n) bits
of space and hence at most 2s+O(1) = poly(n) random coins, and hence B has length and width
poly(n). Pad B to have length and width nc and apply Theorem 3.6 with f = L and ε := ε.
Then we either obtain an estimate of E[B] up to ±1/4 (which suffices to decide the language by
correctness of R) or a counterexample (in the form of a circuit of size at most 2εn

′
to the hardness

of L on inputs of size n′ = Θ(log nc) = Θ(log n) bits, as desired.

We prove Theorem 4.1 in the following section.

4 Efficient Reconstructive Derandomization

We first state our main theorem of this section.

Theorem 4.1. Given ε > 0, and a family of functions fm : {0, 1}m → {0, 1} ∈ SPACE[m], there is
a family of explicit generators G : {0, 1}s → {0, 1}n with s = O(log n) computable in space O(log n),
and a deterministic logspace algorithm that, given n ∈ N and a 1/(8n)-next-bit predictor B for G of
size at most n2 which is evaluable in space O(log n), outputs a circuit C of size 2ε·m0 for fm0 with
m0 = Θ(log n).

We prove this theorem in four stages. Following the framework of [IW97], we first assume that
f is a (worst-case) hard function, and construct a PRG via hardness amplifications and the Nisan-
Wigderson PRGs [NW94]. The detailed steps are slightly different from those in [IW97], and we
adapt the following strategy:

(a) From f , construct (by low-degree extension) a function f ′ that is hard-on-average on a 0.99
fraction of inputs.

(b) From f ′, construct (by derandomized XOR Lemma) a function f ′′ (with multiple bits of
output) that is hard-on-average on a 2−Ω(m) fraction of inputs.

(c) From f ′′, construct (by Goldreich-Levin) a function f ′′′ with single-bit output that is hard-
on-average on a 1/2 + 2−Ω(m) fraction of inputs.

(d) Use f ′′′ to instantiate a Nisan-Wigderson pseudorandom generator G : {0, 1}s → {0, 1}n for
s = O(m).

8

We make sure that f ′, f ′′, f ′′′ and G are all computable within O(log n) space.
Furthermore, we prove that every step can be made logspace reconstructive, in the sense that

given a counterexample to the conclusion (i.e. a small circuit that obtains some advantage) we can
produce a counterexample to the assumption in deterministic logspace. This requires modifying the
standard reconstruction algorithms for the first three steps, all of which use randomness-inefficient
applications of the probabilistic method. Over the next four subsections, we state and prove the
necessary components of the reconstructive PRG, and in Section 4.6, combine these results to
conclude Theorem 4.1.

4.1 Preliminaries

First, we recall some notation related to the advantage of circuits.

Definition 4.2. Given f : {0, 1}n → {0, 1}m and a circuit C, let SUC(C, f) = Prx←Un [C(x) = f(x)].
For m = 1, let ADV(C, f) = 2SUC(C, f) − 1. Let ADVs(f) = maxC:|C|≤s ADV(C, f) and likewise for

SUCs(f). Let ADVH , SUCH be the related notions when x is sampled from the uniform distribution
over H ⊂ {0, 1}n.

We will repeatedly make use of an averaging sampler in order to make probabilistic method
arguments randomness efficient. We first recall the definition of an averaging sampler, and then
recall the classical result in [RVW01] that there exist highly efficient averaging samplers, even with
exponentially small error.

Definition 4.3. Given m ∈ N and ε, δ > 0, we say that SAMP : {0, 1}l → ({0, 1}m)t is a t-query
(m, ε, δ)-averaging sampler with seed length l if for every g : {0, 1}m → [0, 1] we have

Pr
q1,...,qt←SAMP(Ul)

[∣∣∣∣ Ei∈[t][g(qi)]− E[g]
∣∣∣∣ ≤ ε

]
≥ 1− δ.

Proposition 4.4 ([RVW01]). Given m ∈ N and ε > 0, there exists t = poly(m/ε) and a t-query
(m, ε, 2−2m)-averaging sampler with seed length 4m. Moreover, the sampler is evaluable in space
O(m).

Another tool that is repeatedly used in our proof is the combinatorial design, which is a family
of subsets S1, . . . , Sn ⊆ [s] such that |Si| = αs for some constant α ∈ (0, 1) and all i ∈ [n], while
|Si ∩ Sj | ≤ 2α2s for all i ̸= j. The design will be used at two places: once in derandomized XOR
Lemma (Section 4.3) and once in the Nisan-Wigderson PRG (Section 4.5). While the application in
Section 4.3 only requires a linear-sized design, the application in Section 4.5 requires an exponential-
sized design that is deterministically constructible in linear pace. The later was formally given in
[KvM02], so we concurrently use it for both applications.

Proposition 4.5 ([KvM02]). For every α ∈ (0, 1), there is β ∈ (0, 1) such that for s ∈ N one can
deterministically generate in space O(s) a combinatorial design of size n = 2βs over [s], that is, a
family of subsets S1, . . . , Sn ⊆ [s] such that |Si| = αs and |Si ∩ Sj | ≤ 2α2s for all 1 ≤ i < j ≤ n.

4.2 Derandomizing the Polynomial Decoder

For step (a) in Theorem 4.1, we need to convert a worst-case hard function to one with constant
average-case hardness.

9

Lemma 4.6. Given f : {0, 1}m → {0, 1}, there is g : {0, 1}m′ → {0, 1} where m′ = Θ(m) such
that, for every circuit B such that SUC(B, g) > 0.99, there is a circuit C of size mO(1) · |B| such that

C(x) = f(x), ∀x ∈ {0, 1}m.

Moreover, when f is computable in space O(m), g is also computable in space O(m), and there is
a deterministic O(m)-space algorithm that, given the circuit B which is evaluable in space O(m),
prints C, and C is also evaluable in space O(m).

The proof for Lemma 4.6 is inspired by [STV01], where we encode f through Reed-Muller codes
and switch to boolean domain via Hadamard codes. However, since we only need the resulting
function to be average-case hard on a constant fraction of inputs, the code can be directly decoded
instead of list-decoded, and we derandomize the decoding procedure with samplers.

We need the following two facts. The first is a folklore fact on constructing low-degree extension,
whose proof can be found at [GKR15, Proposition 2.2]:

Proposition 4.7. Given a finite field F and a subset H ⊆ F, and oracle access to a function
f : Hℓ → {0, 1}, one can compute in space O(log |F| + log ℓ) an ℓ-variable polynomial p : Fℓ → F
that coincides with f on Hℓ, and the degree of p in each variable smaller than |H|.

The second fact concerns decoding Reed-Solomon codes:

Proposition 4.8. Given a finite field F with |F| = N , whose elements can be canonically listed as
a1, . . . , aN where a1 = 0, there exists a circuit DEC : FN → FN that satisfies the following: If there
exists a univariate polynomial q : F→ F of degree at most d < N , such that q(ai) = bi for at least
(N + d)/2 of i ∈ [N], then

DEC(b1, . . . , bN) = (q(a1), . . . , q(aN)).

Furthermore, DEC is of size poly(N) and depth polylog(N), and can be uniformly constructed in
space O(logN) given the arithmetics in F.

Proof. The circuit DEC instantiates the Berlekamp-Welch algorithm [WB86,GS92]. The algorithm
involves solving systems of O(N) linear equations on O(N) variables, for which Csanky’s algorithm
[Csa76] can be implemented in logspace-uniform-NC.

Proof of Lemma 4.6. We assume without loss of generality thatm is a power of 2. Let ℓ = m/ logm,
and F be a finite field of characteristic 2 and size m2. Take H ⊂ F to be a subset of size m, and
we identify the domain {0, 1}m of f with Hℓ as 2m = |H|ℓ. The arithmetics in F can be done in
time O(|F|) and space O(m), and so does the bijection between {0, 1}m and Hℓ (and its reverse).

Let p : Fℓ → F be the polynomial in Proposition 4.7, and let g : Fℓ+1 → {0, 1} be the function
defined as

g(x1, . . . , xℓ, y) = ⟨p(x1, . . . , xℓ), y⟩,

where ⟨·, ·⟩ stands for inner product in F2 when taking the binary representation of the two ar-
guments in F. It is clear that g can be computed in space O(m), and the input of g has length
(ℓ+ 1) log |F| = O(m) when represented in binary.

Now assume there is a circuit B such that SUC(B, g) > 0.99. We first construct the circuit
B′ : Fℓ → F such that the i-th bit of the output is

B′i(x1, . . . , xℓ) = MAJz∈F(B(x1, . . . , xℓ, ei + z)− B(x1, . . . , xℓ, z)).

Here ei is the element in F whose binary representation has 1 on the i-th bit and 0 elsewhere.

10

Claim 4.9. SUC(B′, p) ≥ 0.96.

Proof. Since SUC(B, g) > 0.99, there are at least a 0.96-fraction of (x1, . . . , xℓ) ∈ Fℓ such that B
coincide with g on more than 3/4 of y ∈ F, which contains both z and (ei + z) with probability
larger than 1/2 for a random z ∈ F. In such cases we have B′i(x1, . . . , xℓ) = ⟨p(x1, . . . , xℓ), ei⟩ for
every i, and thus B′(x1, . . . , xℓ) = p(x1, . . . , xℓ).

From B′, we reconstruct the circuit C : {0, 1}m → {0, 1} as follows. Let SAMP : {0, 1}8m → (Fℓ)t

be the sampler in Proposition 4.4 with ε = 0.01 and thus t = poly(m). We think of the SAMP as
sampling t random vectors v = (v1, . . . , vℓ) ∈ Fℓ, and given the input x = (x1, . . . , xℓ) ∈ Hℓ for C,
each vector v represents a line {x+ λv | λ ∈ F}. On each line, p(x+ λv) is a univariate polynomial
on λ of degree at most ℓ|H| = m2/ logm, and we use the decoder circuit DEC in Proposition 4.8
to decode the Reed-Solomon code given by B′ on the line. We let the value of C(x) to be the
most common (breaking ties arbitrarily) decoded value among the t lines. Notice that this process
depends on the seed of the sampler, and we actually go through all the seeds and choose the one
that makes C(x) correctly computes f on all x ∈ Hℓ.

Formally, we present this linear space reconstruction algorithm as Algorithm 1.

Algorithm 1: RM RECON(f,B)
1 Let SAMP : {0, 1}8m → (Fℓ)t be the sampler of Proposition 4.4 with ε = 0.01.
2 for y ∈ {0, 1}8m do
3 Let v1, . . . , vt ← SAMP(y).
4 Let C : {0, 1}m → {0, 1} be the circuit

C(x) = MAJi∈[t](DEC1((B′(x+ λvi))λ∈F)).

5 if C(x) = f(x) for all x ∈ {0, 1}m then return C
6 end

The circuit C constructed in the algorithm is of size 2t|F|2|B| + mO(1) = mO(1) · |B|, and has
additional depth polylog(m) compared to that of B. Therefore C can be evaluated in space O(m).

Now we prove that the algorithm always returns a valid circuit C. Notice that for uniformly
random v ∈ Fℓ, x+λv is also uniformly random after given x and λ ̸= 0. Since SUC(B′, p) ≥ 0.96, it
means that there are at least a 0.84-fraction of v ∈ Fℓ such that B′ coincide with p on x+λv for at
least 3/4 of λ ∈ F, λ ̸= 0. Recall that the degree of q(λ) = p(x+ λv) is at most ℓ|H| = |F|/ logm,
and therefore by Proposition 4.8 we conclude that for every x ∈ {0, 1}ℓ,

Pr
v∈Fℓ

[
DEC((B′(x+ λv))λ∈F) = (p(x+ λv))λ∈F

]
≥ 0.84,

in which case we have DEC1((B′(x+ λv))λ∈F) = p(x). Viewing this probability as an expectation of
the indicator function on v, by the guarantee of the sampler in Proposition 4.4 we have

Pr
v1,...,vt←SAMP(U8m)

[
Pr
i∈[t]

[
DEC1((B′(x+ λvi))λ∈F) = p(x)

]
≥ 0.51

]
≥ 1− 2−4m.

By a union bound over x ∈ {0, 1}m, there must exist a y ∈ {0, 1}8m such that C(x) = p(x) = f(x) for
all x ∈ {0, 1}m. Therefore the algorithm always returns such a circuit C. Moreover, the algorithm
can be implemented to run in space O(m), as we can enumerate over seeds to the sampler and
construct the circuit (as a function of the sampler output) in space O(m), and test if the circuit
correctly computes f in this space bound.

11

4.3 Derandomizing the Derandomized XOR Lemma

Our next step follows the approach of Impaggliazo and Wigderson [IW97], who use a derandomized
XOR lemma to produce from a function that is hard on a constant fraction of inputs, a function
that is hard on any exponentially small fraction of inputs. The construction is identical to the one
in [IW97], except that we modify the reconstruction algorithm and analysis to make the circuit C
constructible in deterministic space O(m).

Lemma 4.10. For every γ ∈ (0, 1), there is an O(m)-space computable function G : {0, 1}m′ →
({0, 1}m)m, where m′ = Θ(m/γ), that satisfies the following: Given f : {0, 1}m → {0, 1}, and a
circuit B satisfying SUC(B, fm ◦G) ≥ 2−γm, there exists a circuit C of size 2O(γm) · |B| such that

SUC(C, f) > 0.99.

Moreover, when f is computable in space O(m), there is a deterministic O(m)-space algorithm
that, given the circuit B which is evaluable in space O(m), prints C, and C is also evaluable in space
O(m).

We first give the construction of the function G, which is called a direct-product generator
in [IW97]. As in [IW97], it consists of two components: an expander walk and a combinatorial
design. For the expander walk, we need an explicit expander where the neighbors of a vertex can
be efficiently computed:

Proposition 4.11 (see e.g. [LPS88]). There is a constant λ ∈ (0, 1), such that for every m ∈ N,
there exists a 4-regular graph Em on the vertex set {0, 1}m with spectral expansion at most λ,
such that given any vertex v ∈ {0, 1}m, its neighbors can be computed in time poly(m) and space
O(logm).

Define the expander walk function EW : {0, 1}3m → ({0, 1}m)m as follows: Given the input
v ∈ {0, 1}m and d = (d1, . . . , dm) ∈ [4]m, the output is sequence of vertices v1, . . . , vm in Em

that starts with v1 = v, and take vi+1 to be the di-th neighbor of vi. On the other hand, let
S1, . . . , Sm ⊆ [s] be the first m sets in the combinatorial design from Proposition 4.5 with α = γ/2
and s = m/α. Then we defined the function G : {0, 1}3m+s → ({0, 1}m)m as:

G(r, v, d) =
(
(r|S1)⊕ EW(v, d)1, . . . , (r|Sm)⊕ EW(v, d)m

)
.

Here r|S is the part of r ∈ {0, 1}s on indices S, and ⊕ is bit-wise XOR. From the definition
we have that G can be computed in time poly(m) and space O(m). The input length of G is
m′ = 3m+ 2m/γ = O(m/γ).

Now given f : {0, 1}m → {0, 1}, assume there is a circuit B such that SUC(B, fm ◦G) ≥ 2−γm.
Before we move on and show how to reconstruct the circuit C efficiently and deterministically from
B, let us first review the reconstruction step in [IW97]. For i ∈ [m], x ∈ {0, 1}m, a ∈ {0, 1}s−m,
v ∈ {0, 1}m and d ∈ [4]m, let h(i, x, a, v, d) = (r, v, d) where r ∈ {0, 1}s such that

r|Si = x⊕ EW(v, d)i and r|Si
= a.

The function h is called the restricting function of G. Given x ∈ {0, 1}m, with i, a, v and d chosen
uniformly at random, they build a circuit F that first simulates B to compute B(h(i, x, a, v, d)) =
(y1, . . . , ym). Then it computes a number t defined as

t =
∣∣{j ̸= i | yj ̸= f

(
Gj ◦ h(i, x, a, v, d)

)}∣∣ ,
12

and outputs yi with probability 2−t, while outputting a random bit with probability 1 − 2−t. To
compute t, for each j ̸= i, f(Gj ◦ h(i, x, a, v, d)) is computed through a non-uniformly constructed
look-up table for f of size 2γm, containing the values of f(xj) for all possible j-th output xj of G◦h
with the fixed i, a, v and d.

We could not resort to non-uniformity to construct the look-up table. Nevertheless, when f is
computable in space O(m), we can compute the entire table in space O(m) and hardwire it to the
circuit. Even better, when i, a, v and d are given, each output xj of G◦h is fixed except for γm bits
(corresponding to the coordinates in Si ∩ Sj), so we only need to go through all 2γm possibilities
for these bits to compute the table.

The circuit F presented above uses a string R of |R| = O(m) random bits, including i, a, v, d
along with w ∈ {0, 1}m+1, the randomness used to decide the final output. It was proved in [IW97]
that:

Proposition 4.12 ([IW97, Theorem 15]). Suppose the SUC(B, fm ◦G) ≥ 2−γm. There exists c > 0
(that depends on γ), such that the fraction of inputs x ∈ {0, 1}m with

Pr
R
[F(x,R) = f(x)] ≥ 1/2 + 2−γm/c

is more than 0.99.

Therefore, the final circuit C takes O(m · 22γm) independent copies of F and outputs their
majority, and there exists a fixing of the randomness that provides the final deterministic circuit C.
We could not afford to store exponentially many random bits if they are independently sampled.
Instead, we employ the efficient sampler in Proposition 4.4 that uses only O(m) random bits as
the seed to generate 2O(γm) samples, and we can enumerate over all the seeds to find the one that
makes SUC(C, f) > 0.99. As shown in the proof below, such seed always exists.

Proof of Lemma 4.10. Let F : {0, 1}m+|R| → {0, 1} be the circuit described above, and c > 0 be
the constant in Proposition 4.12. We give the formal description of the linear-space algorithm for
the reconstruction procedure as Algorithm 2.

Algorithm 2: XOR RECON(f,B)
1 Let SAMP : {0, 1}4|R| → ({0, 1}|R|)t be the sampler of Proposition 4.4 with ε = 2−γm/(2c).

2 for y ∈ {0, 1}4|R| do
3 Let R1, . . . , Rt ← SAMP(y).
4 Let C : {0, 1}m → {0, 1} be the circuit

C(x) = MAJ(F(x,R1), . . . ,F(x,Rt)).

5 if SUC(C, f) > 0.99 then return C
6 end

By Proposition 4.4 we have t = poly(m/ε) = 2O(γm) for ε = 2−γm/(2c). From the description
we know that F has size |B| + 2γm ·mO(1), and therefore C has size t|F| + mO(1) = 2O(γm) · |B|.
When B is evaluable in space O(m), C is clearly also evaluable in space O(m).

By the guarantee of the averaging sampler SAMP in Proposition 4.4, for every x ∈ {0, 1}m:

Pr
R1,...,Rt←SAMP(U4|R|)

[∣∣∣∣ Ei∈[t][F(x,Ri)]− E
R
[F(x,R)]

∣∣∣∣ ≤ ε

]
≥ 1− 2−2|R|.

13

By Proposition 4.12, there exists a subset V ⊆ {0, 1}m such that |V | > 0.99 · 2m, such that for
every x ∈ V : ∣∣∣∣ER[F(x,R)]− f(x)

∣∣∣∣ ≤ 1/2− 2−γm/c = 1/2− 2ε.

Therefore for every x ∈ V , it is implied that

Pr
R1,...,Rt←SAMP(U4|R|)

[∣∣∣∣ Ei∈[t][F(x,Ri)]− f(x)

∣∣∣∣ ≤ 1/2− 2ε+ ε

]
≥ 1− 2−2|R|,

which means that

Pr
R1,...,Rt←SAMP(U4|R|)

[MAJ(F(x,R1), . . . ,F(x,Rt)) = f(x)] ≥ 1− 2−2|R| > 1− 1/|V |.

By a union bound over x ∈ V , there must exist a y ∈ {0, 1}4|R| such that C(x) = f(x) for all x ∈ V ,
which satisfies SUC(C, f) > 0.99. Therefore the algorithm always returns a valid C. Moreover, the
algorithm runs in space O(m), as it enumerates the seeds of length O(|R|) = O(m), constructs and
evaluates the circuit C and makes oracle calls to f , which all can be done in space O(m).

4.4 Derandomizing the Goldreich-Levin Theorem

Lemma 4.13. Given f : {0, 1}m → {0, 1}m, let g : {0, 1}m × {0, 1}m → {0, 1} be defined as
g(x, r) = ⟨f(x), r⟩. Then, given δ > 0, there is δ′ ≥ Ω(δ3/m) so that, for every B satisfying
ADV(B, g) > δ, there is a circuit C of size at most |B| · (m/δ)O(1) satisfying

SUC(C, f) > δ′.

Moreover, when f is computable in space O(m), there is a deterministic O(m)-space algorithm
that, given the circuit B which is evaluable in space O(m), prints C, and C is also evaluable in space
O(m).

Note that the original Goldreich-Levin theorem [GL89] does not guarantee (and in fact does
not give) an efficient deterministic reconstructor, as it is not randomness efficient. A later work of
Hoza and Klivans [HK18] achieves this, though with a significantly more involved proof. As such,
we directly show this using small-bias spaces, which we define now:

Definition 4.14. A function G : {0, 1}t → {0, 1}k is an ε-biased generator if G(Ut) is a ε-biased
probability space over {0, 1}k, which formally means that for every T ∈ {0, 1}k,

Pr
y←Ut

[⟨T,G(y)⟩ = 1] ∈ [1/2− ε, 1/2 + ε].

We recall small-bias generators exist with good seed length, and moreover these generators can
be evaluated in small space:

Proposition 4.15 ([NN93]). Given k ∈ N and ε > 0, there is an O(t)-space evaluable ε-biased
generator BIAS : {0, 1}t → {0, 1}k with seed length t = O(log(k/ε)).

We require a basic Fourier-analytic lemma, that states that a small-bias space fools the con-
junction of k parities.

14

Lemma 4.16. Let BIAS : {0, 1}t → {0, 1}k be an ε-biased generator. Then for every collection
T1, . . . , Td ∈ {0, 1}k and v1, . . . , vd ∈ {0, 1} we have∣∣∣∣∣∣ E

r←BIAS(Ut)

∧
i∈[d]

(⟨Ti, r⟩ ⊕ vi)

− E
r←Uk

∧
i∈[d]

(⟨Ti, r⟩ ⊕ vi)

∣∣∣∣∣∣ ≤ 2ε.

Proof. We have ∧
i∈[d]

(⟨Ti, r⟩ ⊕ vi) = 1− 2 · 2−d
∑
S⊆[d]

⊕
i∈S
¬ (⟨Ti, ry⟩ ⊕ vi)

= 1− 2 · 2−d
∑
S⊆[d]

(〈⊕
i∈S

Ti, r

〉
⊕
⊕
i∈S
¬vi

)

and as BIAS fools all such parities to error ε in the summation over S ⊆ [d], we have that the total
error is at most 2ε.

Proof of Lemma 4.13. If δ < 2−m, we can choose δ′ = 2−m and the lemma trivially holds for a
circuit C outputting a constant. Therefore, from now on we assume that δ ≥ 2−m. We formally
state our algorithm as Algorithm 3, with δ′ to be determined later. Note that ℓ = O(m), and
therefore in the ε-biased generator BIAS : {0, 1}t → {0, 1}ℓ×m we have t = O(log(ℓm/ε)) = O(m)
with ε = 2−4m−1, and the algorithm runs in space O(t+ ℓ+m) = O(m).

Algorithm 3: GL RECON(f,B)

1 Let ℓ← ⌈log2(128m/δ2 + 1)⌉.
2 Let BIAS : {0, 1}t → {0, 1}ℓ×m be the generator of Proposition 4.15 with ε = 2−4m−1.
3 for y ∈ {0, 1}t do
4 Let r1, . . . , rℓ ← BIAS(y).

5 for (b1, . . . , bℓ) ∈ {0, 1}ℓ do
6 Let C : {0, 1}m → {0, 1}m be the circuit that for each i ∈ [m]:

Ci(x) = MAJJ⊆[ℓ]:J ̸=∅(b
J ⊕ B(x, rJ ⊕ ei)).

7 if SUC(C, f) > δ′ then return C.
8 end

9 end

We view the output of BIAS as a tuple of ℓ vectors:

BIAS(y) = (r1, . . . , rℓ), ri ∈ {0, 1}m.

For convenience, let r⃗ := (r1, . . . , rℓ) and b⃗ := (b1, . . . , bℓ). For every J ⊆ [ℓ], let:

rJ :=
⊕
i∈J

ri, bJ =
⊕
i∈J

bi.

Note that in the original GL algorithm, all ri’s are i.i.d. uniform over {0, 1}m. We first argue that
our distribution over rJ ’s satisfies (approximately) the two properties used in the analysis of the
original algorithm:

15

Claim 4.17. The following two properties hold:

1. For every non-empty J , rJ is 2−2m-close to Um in ℓ1-distance.

2. For every non-empty J and J ′ where J ̸= J ′, (rJ , rJ
′
) is 2−2m close to U2m in ℓ1-distance.

Proof. For i ∈ [m], the i-th bit of rJ can be written as ⟨Ti,J , BIAS(y)⟩ where Ti,J indicates a
non-empty subset of bits. From Lemma 4.13 we know that for every v ∈ {0, 1}m,∣∣∣∣∣∣ Pry←Ut

[rJ = v]− Pr
r←Uℓm

 ∧
i∈[m]

(⟨Ti,J , r⟩ = vi)

∣∣∣∣∣∣ ≤ 2ε.

Notice that {Ti,J}i∈[m] are linearly independent, and thus (⟨Ti,J , r⟩)i∈[m] is uniformly distributed

over {0, 1}m. Therefore taking the sum over v ∈ {0, 1}m we have that rJ is 2ε · 2m ≤ 2−2m-close to
Um in ℓ1 distance.

When J ̸= J ′ are both non-empty, {Ti,J}i∈[m] ∪ {Ti,J ′}i∈[m] are still linearly independent. For

the same reason as above, (rJ , rJ
′
) is 2ε · 22m = 2−2m-close to U2m in ℓ1 distance.

Now recall that for i ∈ [m] the ith bit of the output of C is

Ci(x) = MAJJ :J ̸=∅(b
J ⊕ B(x, rJ ⊕ ei)).

Thus C has size |C| ≤ (|B| + O(ℓ)) · 2ℓm ≤ |B| · O(2ℓℓm) = |B| · (m/δ)O(1) as claimed. To analyze
the performance of C, let

S := {x ∈ {0, 1}m : Pr
z←Um

[B(x, z) = g(x, z)] ≥ 1/2 + δ/2}.

By a standard averaging argument, |S| ≥ (δ/2) · 2m.

Claim 4.18. For every x ∈ S and i ∈ [m],

Pr
(r1,...,rℓ)←BIAS(Ut)

[∣∣{J : B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei)}
∣∣ ≤ 1

2
(2ℓ − 1)

]
≤ 1

2m
.

Proof. For the remainder of the proof we fix x and i. Let A ⊂ {0, 1}m be the set of values r on
which B(x, r) = g(x, r). By the fact that x ∈ S we have |A| ≥ (1/2 + δ/2) · 2m. Furthermore, for
each y ∈ {0, 1}t (where y is the input to BIAS) let

ζJ(y) = I[rJ ⊕ ei ∈ A]

and observe that ζJ = 1 is equivalent to B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei), i.e. B computes the inner
product with f(x) correctly on that input. Now observe that by Claim 4.17,

E
y
[ζJ] = Pr

y
[ζJ(y) = 1] ≥ 1/2 + δ/2− 2−2m ≥ 1/2 + δ/4.

We now bound the variance of the number of such places where we compute the inner product
correctly. Let

σ2 = Var

(∑
J

ζJ

)
=
∑
J,J ′

Cov(ζJ , ζJ ′)

≤
∑
J

Var(ζJ) +
∑
J,J ′

2−2m

≤ 2ℓ + 22ℓ · 2−2m ≤ 2ℓ+1

16

where the first inequality follows from Claim 4.17. Now the result follows by Chebyshev’s inequality
and a union bound. For convenience let d = 2ℓ − 1, and the probability in the claim equals:

Pr
y

[∑
J

ζJ ≤
d

2

]
≤ Pr

y

[∣∣∣∣∣∑
J

ζJ − E[ζJ] · d

∣∣∣∣∣ ≥
(
dδ

4σ

)
· σ

]

≤ 16σ2

δ2(2ℓ − 1)2
≤ 32σ2

δ222ℓ
≤ 64

δ22ℓ
≤ 1

2m
.

Notice that when B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei) and for every j ∈ [ℓ], bj = g(x, rj), we have

bJ ⊕ B(x, rJ ⊕ ei) = g(x, rJ)⊕ g(x, rJ ⊕ ei) = g(x, ei) = fi(x).

Thus, using a union bound over i ∈ [m] on Claim 4.18, we have that for every x ∈ S,

Pr
r⃗←BIAS(Ut)

b⃗←Ul

[C(x) = f(x)] ≥ Pr
r⃗←BIAS(Ut)

[
∀i ∈ [m],

∣∣{J : B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei)}
∣∣ > 1

2
(2l − 1)

]
· Pr
b⃗←Uℓ

[
∀j ∈ [ℓ], bj = g(x, rj)

]
≥ 1

2
· Pr
b⃗←Uℓ

[
∀j ∈ [ℓ], bj = g(x, rj)

]
≥ 2−ℓ−1.

Thus, there is an assignment of y and b⃗ such that C computes f correctly on at least |S| · 2−ℓ−1 ≥
2m ·δ2−ℓ−2 inputs. Moreover, we can find such a circuit by enumerating the assignments to y and b⃗,
and verifying the success probability by evaluating C and f over all x ∈ {0, 1}m. Therefore letting

δ′ = δ2−ℓ−2 = Ω(δ3/m)

completes the proof.

4.5 Space-Efficient Nisan-Wigderson PRG

We recall the argument of [KvM02] that there is a space-efficient implementation of the Nisan-
Wigderson [NW94] PRG, using the linear-space constructible combinatorial design (Proposition 4.5).
While we rephrase their result in our notation, we make no changes to the construction, as (in con-
trast to all other steps) the existing implementation satisfies our desired reconstruction property.

Lemma 4.19. Given ρ > 0 and n ∈ N and a family of functions fm : {0, 1}m → {0, 1} ∈
SPACE[m], there exists an m = Θ(log n) and G : {0, 1}s → {0, 1}n with s = O(m) such that,
given a circuit B which is a next-bit predictor for G with advantage ε, there is a circuit C of size
|B|+O(n2ρm) satisfying

ADV(C, fm) > ε.

Moreover, there is an deterministic O(m)-space algorithm that, given the circuit B which is evaluable
in space O(m), prints C, and C is also evaluable in space O(m).

Proof of Lemma 4.19. Fix α ∈ (0, 1) such that α ≤ ρ/2, and let β ∈ (0, 1) be the constant in
Proposition 4.5. Choose s = O(log n) such that 2βs = n, and let m = αs. Let S = (S1, . . . , Sn)
be the design of Proposition 4.5 over [s] with parameter α, and let fm : {0, 1}m → {0, 1} be the
function on inputs of size m = O(log n).

17

We let G(x) := f(xS1)f(xS2) . . . f(xSn). Now suppose B is an ε-next-bit predictor for bit i of
G, i.e.

Pr
x←Us

[B(G(x)1..i) = G(x)i+1] >
1

2
+ ε.

Then let S := Si+1 and T := [s] \ Si+1 and write the above inequality as

Pr
(xS ,xT)←Us

[B(G(xS ∪ xT)1..i) = f(xS)] >
1

2
+ ε.

For each fixing of xT , we let the circuit C to be C(xS) = B(G(xS ∪ xT)1..i). Then we have

E
xT

[ADV(C, fm)] > ε.

Thus, the algorithm can enumerate over all possible assignments to xT in space |T | = O(m), and
for each assignment check the advantage of C. Once the algorithm has found the fixing of xT such
that the restricted circuit has advantage at least ε, for every j ≤ i, the j-th bit of the output of
G(xS ∪xT), which is f(xSj), depends on |S ∩Sj | ≤ 2α2s = ρm bits of xS , and hence we can output
a (O(m)-space constructible) circuit for f(xSj) size at most O(2ρm), and hence the total size of C
is at most |B|+O(n2ρm).

4.6 Putting It All Together

Proof of Theorem 4.1. Given ε, we first do the construction steps. For each m ∈ N:

1. Let f ′ : {0, 1}m1 → {0, 1} be the function g of Lemma 4.6 applied to fm.

2. Let f ′′ : {0, 1}m2 → {0, 1}m1 be the function f ′m1 ◦G of Lemma 4.10 applied to f ′m1
with the

constant γ to be chosen later.

3. Let f ′′′ : {0, 1}m3 → {0, 1} be the function g of Lemma 4.13 applied to f ′′m2
with the constant

δ to be chosen later.

4. Let G : {0, 1}s → {0, 1}n be the function of Lemma 4.19 applied to f ′′′m3
and B with the

constant ρ to be chosen later.

Notice that m1,m2,m3 and s are all Θ(m), and the functions f ′, f ′′, f ′′′ and G are all computable
in space O(m).

Suppose now we are given a 1/(8n) next-bit predictor B for G of size n2. As n is given, we decide
the value of m3 = Θ(log n) through Lemma 4.19, which in turn decides the value of m = Θ(log n).
The reconstruction steps go as follows:

4. By Lemma 4.19, we can construct in space O(m) a circuit C3 such that ADV(C3, f ′′′m3
) > 1/(8n),

and C3 has size s3 = n2 +O(n2ρm3) ≤ 2c3ρm for some constant c3 > 0.

3. By Lemma 4.13, where we now set δ = 1/(8n), we can construct in space O(m) a circuit C2
such that SUC(C2, f ′′m2

) > Ω(δ3/m2) ≥ 2−c2ρm, and C2 has size s2 = s3 · (m2/δ)
O(1) ≤ 2c2ρm

for some constant c2 > 0.

2. By Lemma 4.10, where we now set γ = c2ρ, we can construct in space O(m) a circuit C1 such
that SUC(C1, f ′m1

) > 0.99 and C1 has size s1 = s2 · 2O(γm1) ≤ 2c1ρm for some constant c1 > 0.

1. By Lemma 4.6, we can construct in space O(m) a circuit C such that C(x) = fm(x) for every
x ∈ {0, 1}m, and C has size s = s1 ·mO(1) ≤ 2c0ρm for some constant c0 > 0. By choosing
ρ = ε/c0, we obtain the final result.

18

5 Universal Derandomization of BPL

Here we state the main theorem of this section, that there exists a universal derandomizer for
logspace computation.

Theorem 5.1. There is a deterministic machine UnivDerand such that:

• On input 1n and an OBP B of length and width at most n, outputs δ := UnivDerand(1n, B)
satisfying |δ − E[B]| < n−1.

• For every space-constructible function S : N→ N satisfying S(n) ≥ log n, UnivDerand runs
in space O(S(n)) if and only if prBPL ⊆ SPACE[O(S(n))].

We first give the intuitive explanation of the algorithm executed by the machine UnivDerand.
It enumerates over Turing machines ⟨i⟩ and space bounds j. At each step, UnivDerand runs ⟨i⟩
on input (1n, B→v) for every v, where B→v for v ∈ Vi is the program that is identical to B in the
first i layers, then accepts if the program reaches state v. If ⟨i⟩ ever touches more than j spaces on
the work tape, UnivDerand halts and increments i or j. Otherwise, we have a set of estimates
{p̃→v} := {⟨i⟩(1n, B→v)} (and note we can generate these estimates on the fly in space O(j+log n)).
We then submit these estimates to the local consistency test of Cheng and Hoza [CH22], and if the
test passes, we return the estimate of the probability of reaching the accepting state.

Theorem 5.2 ([CH22]). There is a deterministic logspace algorithm LCTest that takes as input
1n and an OBP B with length and width at most n and the estimates {p̃→v}v∈V . If for every v,
|p̃→v−p→v| ≤ n−3, the algorithm accepts, and moreover if the algorithm accepts, |p̃→v−p→v| ≤ n−1

for every v.

Note that the true probabilities p→v only appear in the statement of the theorem, and are not
part of the input to the testing algorithm. We can now give the formal description of the algorithm
as Algorithm 4. By soundness of the test LCTest, if UnivDerand returns a value, the value
must be a good approximation of the acceptance probability, so it suffices to show this occurs (and
occurs in the desired space bound).

Algorithm 4: UnivDerand(1n, B)

1 for j ← 0, 1 . . . , do
2 for i← 0, 1, . . . , j do
3 for r ← 1 · n−5/2, 2 · n−5/2, . . . , 2n2 · n−5/2 do
4 Compute b← LCTest(1n, B, {⟨i⟩(1n, B→v, r)}v∈V (B));

5 whenever ⟨i⟩ uses more than j space or more than 2j time do
6 Abort the simulation of ⟨i⟩ and pass to the next r.
7 end
8 if b = 1 then return ⟨i⟩(1n, B, r).

9 end

10 end

11 end

To do so, we rely on the promise search problem fc with parameter c ∈ N (which we define as
a function outputting a value in [0, 1] for convenience) defined as follows. Given 1n, an ordered

19

branching program B of length and width at most n, and a rounding threshold r with the promise
that ∣∣E[B]− k · n−c+2 + r

∣∣ > n−c

6
, ∀k ∈ Z,

i.e. E[B] + r is polynomially bounded away from every multiple of n−c+2, the problem asks to
output a (pseudo-deterministic) number fc(1

n, B, r) that is within n−c+2 distance of E[B]. The
presence of the rounding value, inspired by the approach of Saks and Zhou [SZ99], is because when
E[B] are very close to a threshold, it becomes hard to determining whether the expectation is above
or below the cutoff.

We prove in Proposition 5.3 that the task of computing fc is promise-BPL complete for every
c ∈ N. Therefore, if prBPL ⊆ SPACE[S(n)], there is a machine ⟨i⟩ that computes fc in space
j = O(S(n)). Finally, to accommodate the presence of the rounding threshold, UnivDerand
additionally enumerates over a polynomial number of choices for r. We show that there exists
a proper c ∈ N such that for every B, a good r that satisfies the promise of fc exists. This is
essentially proved via the argument of Saks and Zhou [SZ99]. Hence, the algorithm will always find
a tuple (i, j, r) such that we obtain good estimates of E[B→v] for every v, and thus the machine
will halt and return the correct value.

Proposition 5.3. For every c ∈ N, let fc be the problem where, given 1n and an ordered branching
program B of length and width at most n, and r ∈ [0, 1] such that for every k ∈ Z,∣∣E[B]− k · n−c+2 + r

∣∣ > n−c

6
,

return with probability at least 2/3 the same number δ that satisfies |E[B]− δ| ≤ n−c+2. Then fc
is prBPL-complete under L reductions.

Proof Sketch. Fix arbitrary c ∈ N. We first prove fc ∈ prBPL. Let R(1n, B, r) be an algorithm
that takes n2c+1 random walks from vst over B, and let γ be the fraction of these walks which
reach vacc. Let k ∈ Z be the largest value such that γ + r ≥ k · n−c+2, and return δ = k · n−c+2.
Since this algorithm clearly runs in randomized logspace, it suffices to show that, for B and r that
satisfy the promise, there is some fixed k that R identifies with probability over 2/3. Note that by
the promise, we have that for some k0 ∈ Z,

k0 · n−c+2 +
n−c

6
< E[B] + r < (k0 + 1) · n−c+2 − n−c

6
.

On the other hand, using concentration bounds we can show that with probability at least 2/3,

|(E[B] + r)− (γ + r)| = |E[B]− γ| ≤ n−c

6
.

In this case R always identifies k = k0 since k0 · n−c+2 < γ + r < (k0 + 1) · n−c+2.
We now prove that fc is prBPL-hard. We recall the standard prBPL-complete problem: Given

an OBP B of length and width n, determine if E[B] < 1/3 or E[B] > 2/3, where the promise is
that one of these cases holds. We reduce this problem to fc as follows. Let TB : {0, 1}dn → {0, 1}
be the OBP defined as

TB(x1, . . . , xd) = MAJ(B(x1), . . . , B(xd))

where d = O(c log n) such that if E[B] < 1/3 then E[TB] < n−c/6, and if E[B] > 2/3 then
E[TB] > 1 − n−c/6. Observe that TB has length and width N = poly(n) and is constructible
in deterministic logspace given B. Thus, let the input to fc be (1N , TB, n

−c), which satisfies the
promise of fc, and hence if the answer is less than 1/2 we determine that E[B] < 1/3, and otherwise
determine that E[B] > 2/3.

20

We first prove that the values the machine returns are accurate (assuming the machine returns
a value).

Lemma 5.4. For every B, |UnivDerand(1n, B)− E[B]| ≤ n−1.

Proof. This follows from Theorem 5.2 applied to p̃→v = ⟨i⟩(1n, B→v, r).

We next prove the machine halts in the claimed space bound.

Lemma 5.5. For every space-constructible function S : N → N with S(n) ≥ log n, UnivDerand
runs in space O(S(n)) if prBPL ⊆ SPACE[O(S(n))].

Proof. We prove that UnivDerand(1n, B) halts and returns a value with i + j ≤ c · S(n) for
an absolute constant c (in particular, i, j < ∞), which suffices to establish the lemma by the
composition of space-bounded algorithms.

By Proposition 5.3, there is a Turing machine ⟨i⟩ deciding the language f5 in SPACE[O(S(n))].
We now show that there exists r ∈ {1 · n−5/2, 2 · n−5/2, . . . , 2n2 · n−5/2} such that∣∣E[B→v]− k · n−3 + r

∣∣ > n−5/6 (⋆)

for every k and v. There are n2 different values E[B→v] over v in the vertex set V (B) of the
branching program, and for each v, there is at most one assignment to r such that (⋆) fails to hold
for some k ∈ Z. As there are 2n2 possible values for r, there must be one such that (⋆) holds for
all k and v.

Finally, let j = O(S(|B|)) be such that ⟨i⟩(1n, B→v, r) halts using at most j space for ev-
ery v. Such a j exists per assumption and the fact that the input (1n, B→v, r) satisfies the
promise of Proposition 5.3 for every v. Thus, upon reaching the tuple (i, j, r), the set of esti-
mates p̃→v = ⟨i⟩(1n, B→v, r) must satisfy |p̃→v − E[B→v]| ≤ n−3 for every v ∈ V (B). Then running
LCTest(1n, B, {p̃→v}v∈V (B)) (where we wait for the test to request a particular value p̃→v and
then recompute it from ⟨i⟩, avoiding the need to store all n2 values) will result in LCTest ac-
cepting, and hence UnivDerand halts in the claimed space bound. Moreover, the returned value
δ = ⟨i⟩(1n, B, r) satisfies that |δ − E[B]| ≤ n−1.

We finally prove the converse.

Lemma 5.6. For every space-constructible function S : N → N satisfying S(n) ≥ log n, prBPL ⊆
SPACE[O(S(n))] if UnivDerand runs in space S(n).

Proof. By Proposition 5.3 it suffices to solve f3 using a logspace reduction to UnivDerand.
Given (1n, B, r) as the input (where r is the rounding threshold, which we will ignore), let δ :=
UnivDerand(1n, B) be the value returned by UnivDerand on B. By Lemma 5.4 we have
|δ − E[B]| < n−1, and hence δ is a desired deterministic output for f3.

We can then conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. Let UnivDerand be the algorithm as defined above. Theorem 5.1 follows
from Lemma 5.4 (and the fact that it returns a value follows from Lemma 5.5). The if direction of
Theorem 5.1 follows from Lemma 5.5, and the only if direction follows from Lemma 5.6.

Finally, we conclude the proof of Theorem 1.2.

21

Proof of Theorem 1.2. Let U be the algorithm that, given the description of a randomized logspace
algorithm R and an input x where |x| = n, constructs (in deterministic logspace) the ordered
branching program B := R(x, ·) of length and width at most m = poly(n) that represents the action
of R over its random bits. Then let U call UnivDerand(1m, B), and if the value returned is less
than 1/2 return 0, and otherwise return 1. By the promise on R we have either Pr[B(Un) = 1] > 3/4
or Pr[B(Un) = 1] < 1/4, and as in both cases we estimate the expectation of B up to error 1/n
by Theorem 5.1, we correctly decide which case we are in, and the space consumption follows from
that of Theorem 5.1.

6 Black Box Testing

We now prove that hitting sets imply black-box two-sided derandomization of ordered branching
programs. To do so, we first formally define hitting sets and deterministic samplers:

Definition 6.1. Given a class of functions F = {f : {0, 1}n → {0, 1}}, an ε-hitting set generator
(HSG) H : {0, 1}s → {0, 1}n for F satisfies that for every f ∈ F with E[f] ≥ ε, there exists
y ∈ {0, 1}s where f(H(y)) = 1. We say H is explicit if there is a uniform algorithm that computes
H(x) in space O(s) given 1n and x.

Definition 6.2. Given a class of functions F = {f : {0, 1}n → {0, 1}}, an ε-(deterministic) sampler
SAMP with space complexity s(n) for F is a deterministic algorithm that runs in space s(n) and,
given oracle access to f ∈ F , makes queries to f and outputs an estimate δ satisfying |δ−E[f]| ≤ ε.

A deterministic sampler captures the idea of a derandomization algorithm that only accesses
the branching program in a black-box fashion, and such a notion has been explored before in the
context of small-space derandomization [HU22,CH22,PV22].

We now give a formal statement of Theorem 1.3. We state it in terms of dependence on the seed
length of the HSG, as our result generically converts a hitting set to a sampler with comparable
space complexity.

Theorem 6.3. Suppose there is a uniformly constructible family H = {H1, . . . , } where Hn :
{0, 1}s(n) → {0, 1}n is an explicit 1/2-hitting set with seed length s(n) for width n, length n OBPs.
Then there is a uniformly computable deterministic ε-sampler with space complexity O(s(nw/ε))
for width w, length n OBPs.

We prove this by developing a local consistency test that can be implemented given black-box
access to a branching program.

6.1 Proof Overview

The proof of Theorem 6.3 relies on developing a local consistency test that can be implemented
given black-box access to a branching program (whereas all previous tests required access to the
internal states of the program). We first describe how we can access the internal states of the
program in a black-box manner.

Given a branching program B : {0, 1}n → {0, 1} and a hitting set H : {0, 1}s → {0, 1}n, for
each seed x ∈ {0, 1}s and layer i ∈ [n], the program reaches some state v on input H(x)1..i. We
can index this state in a black-box fashion by writing down (x, i). However, as potentially many
seeds may reach the same state v, we would like to collapse these duplicates back together. Since
we cannot examine layer i of the program, we can instead attempt to test if x and x′ reach the
same state, by plugging in every HSG output and see if the programs starting from (x, i) and (x′, i)
behave differently.

22

Definition 6.4 (Informal statement of Definition 6.9). For x, x′ ∈ {0, 1}s and i ∈ [n], tuples (x, i)
and (x′, i) are indistinguishable if for every y ∈ {0, 1}s,

B(H(x)1..iH(y)1..n−i) = B(H(x′)1..iH(y)1..n−i).

It is not the case that indistinguishable tuples always reach the same state. However, Cheng
and Hoza were able to show the following:

Lemma 6.5 ([CH22] (Informal)). Suppose states v and v′ are reached by indistinguishable tuples.
Then the probability of accepting in B starting from v is similar to that of accepting starting from
v′.

Thus, the states have similar behavior from layer i onward. Unfortunately, it is not the case
that indistinguishable states always have indistinguishable out-edges. Thus, a naive attempt to
learn the program using query access would print both out-edges and output a nondeterministic
branching program, a model that is provably NL-hard to derandomize. It is likewise unclear how
to select a single edge to print in a way that maintains the acceptance probability of the program.
In the constant-width regime, Cheng and Hoza [CH22] circumvented this by remembering O(log n)
bits of information about every state in layer i + 1 while constructing layer i, allowing them to
choose a good out-edge. However, this does not seem feasible for super-constant width. Instead,
we develop a local consistency test that can tolerate conflating indistinguishable states.

Suppose for every tuple (x, i) we are given an estimate p̃x,i, which is supposedly close to the
true probability of accepting from v := B[vst, H(x)1..i].

Definition 6.6 (Black-Box Local Consistency Test (Informal)). Given black-box access to an
ordered branching program B : {0, 1}n → {0, 1} and a hitting set H : {0, 1}s → {0, 1}n and
estimates {p̃x,i}x∈{0,1}s,i∈[n], verify that the following conditions hold:

1. For every pair of indistinguishable tuples (x, i), (x′, i), we have |p̃x,i − p̃x′,i| ≤ O(ε).

2. For every tuple (x, i), let (x0, i+1) and (x1, i+1) be arbitrary tuples that are indistinguishable
from B[vst, H(x)1..i0] and B[vst, H(x)1..i1] respectively. Then∣∣∣∣p̃x,i − p̃x0,i+1 + p̃x1,i+1

2

∣∣∣∣ ≤ O(ε).

If all such conditions hold, output the estimate p̃0,0, and otherwise reject.

We think of all our tests as having a completeness and soundness component, where com-
pleteness means that a set of estimates which are sufficiently close to the true probabilities are
gauranteed to pass, and soundness means that the test passing implies the returned estimate is
close to the true value (where the precise parameters are discussed later).

It is not too difficult to the tests of Definition 6.6 in space O(s+ log n) given H and black-box
access to B, as we can enumerate over the seeds of the hitting set and layers in the program, and all
such tests are “local”, in the sense that they deal with at most two layers and a constant number
of seeds.

If every state is distinguishable from every other, and H hits every state in the program, the
test of Definition 6.6 is equivalent to the following white-box local consistency test:

Definition 6.7 (White-Box Local Consistency Test (Informal)).

1. For every v, all estimates of the accepting probability from v must be within ε of each other.

23

2. For every v, estimates of the accepting probability from v, v0 := B[v, 0], and v1 := B[v, 1]
(which we denote p̃v, p̃v0 , and p̃v1) must satisfy p̃v ≈ (p̃v1 + p̃v0)/2.

If all such conditions hold, output an arbitrary estimate p̃vst , and otherwise reject.

The test of Definition 6.7 clearly accepts if the estimates are exactly (or within ε/2 of) the true
probabilities of accepting from each vertex. Likewise, soundness is not difficult to show. However,
this idealized version of the test in Definition 6.6 not exactly happen, for two reasons:

1. We may impose Item (1) checks between tuples that reach different, yet indistinguishable,
states, and likewise for the 0 and 1 states of Item (2).

2. We may fail to impose Item (2) checks between v and B[v, 0] and B[v, 1] if no string output
by the hitting set reaches one of the latter states.

Issue (1) must be dealt with in the proof of completeness (as we add some tests not in the white-
box tester) and (2) in the proof of soundness (as we sometimes fail to impose tests that should
be present). Issue (1) is the easier of the two to deal with. Since indistinguishable states have
similar probability of accepting by Lemma 6.5, good estimates for the accepting probabilities of
indistinguishable vertices will still be within O(ε) of each other. Issue (2), in contrast, seemingly
presents a real issue for the soundness. For state v := B[vst, H(x)1..i] where there is no seed x′

where B[vst, H(x′)1..i+1] = B[v, 0], we could run no local consistency test to verify p̃x,i. In fact,
the estimate of the probability of accepting from v could be arbitrarily wrong, and we would have
no ability to detect it. However, we observe that every such v has low probability of being reached
from the start state. This is because if no (ε-)HSG output reaches B[v, 0], v must have probability
of being reached from the start state at most 2ε. But then a very bad estimate of the probability
of accepting from v only changes the overall probability of accepting by at most O(ε) (and such an
argument can be run for all non-verified states simultaneously). Ultimately, we are able to show
that the lack of these checks can only increase the overall error by O(ε), which is tolerable.

Putting it all together, we show a black-box tester that, given estimates p̃x,i for the probability of
accepting from B[vst, H(x)1..i] for every x and i, either outputs an approximation of the expectation
of the program or rejects the input. To conclude, we use an idea of Cheng and Hoza to find
a good set of estimates p̃x,i using a hitting set. First, to obtain a better result for nontrivial
yet suboptimal hitting set generators, we slightly modify the tester to take in n · w estimates,
corresponding (essentially) to an estimate for the acceptance probability from every state in the
original branching program. Then we show (essentially using the argument of [CH22]), that there
is a branching program T of length poly(nw/ε) and width poly(nw/ε) that divides its input into
n×w blocks, and uses the block labeled with v as a long random string to estimate p̃v for every state
v in the program, and accepts if all these estimates are within ε of the true acceptance probability.
The program uses the true probabilities to check if the empirical average of the samples is within
ε of the true values, but we do not need to explicitly construct it - we only need that it exists, and
hence our HSG family will contain some string hitting it. Finally, we argue that we can compute
the associated empirical averages with oracle access to B, rather than T . A string that hits T will
produce good estimates p̃v for every v, and our black-box tester will accept on these estimates.
Then we can simply enumerate over hitting set strings, and return the first accepted estimate.

6.2 Black-Box Local Consistency Tests

We now formally state the black-box local consistency test:

24

Theorem 6.8. There is a deterministic space O(s+log n) algorithm that, given an explicit ε-HSG
H : {0, 1}s → {0, 1}n for length n, width w2 branching programs, oracle access to an OBP B of
width w and length n, and estimates {p̃x,i}x∈{0,1}s,i∈[n], either outputs a value or rejects. Moreover:

1. If for every x, we have |pv→ − p̃x,i| ≤ 2ε where v = B[vst, H(x)1..i] for every i < n and
p̃x,n = B(H(x)), then the algorithm outputs a value.

2. If the algorithm outputs δ, then |E[B]− δ| ≤ 6εn.

We remark that, despite this result being a black-box test versus the white-box local consistency
test of Cheng and Hoza, it obtains an improved soundness loss (of εn rather than εnw), which is
relevant in the regime where the branching program has width much larger than length. This is
notable as obtaining optimal error samplers in the Nisan-Zuckerman regime [NZ96] (where optimal-
error hitting sets are already known) is a well known open question. Unfortunately, we do not obtain
this result, as the argument that we can obtain good accepting probability estimates using a hitting
set (Lemma 6.20) requires a hitting set for ordered programs of length nw ≫ n.

We first define notation related to using H to traverse the branching program:

Definition 6.9. For every x ∈ {0, 1}s and i ∈ [n], let

vi(x) := B[vst, H(x)1..i].

Note that this implies vi(x) = vi(x
′) if B[vst, H(x)1..i] = B[vst, H(x′)1..i], i.e. the two seeds reach

the same vertex in layer i. For convenience, we write px,i := pvi(x)→. Moreover, for states u, u′ ∈ Vi

we write u ∼ u′ if the two states are indistinguishable under H, i.e. for all y,

B[u,H(y)1..n−i] = B[u′, H(y)1..n−i].

We can now define the consistency test implemented by the algorithm.

Definition 6.10 (Local Consistency Test). Given B and H and the estimates p̃x,i, let the test be
as follows:

1. For every x, i ∈ {0, 1}s × [n] and for every x0, x1 ∈ {0, 1}s such that B[vi(x), 0] ∼ vi+1(x0)
and B[vi(x), 1] ∼ vi+1(x1), require∣∣∣∣p̃x,i − p̃x1,i+1 + p̃x0,i+1

2

∣∣∣∣ ≤ 5ε.

2. For every x, x′ ∈ {0, 1}s and i ∈ [n] such that vi(x) ∼ vi(x
′), require |p̃x,i − p̃x′,i| ≤ 5ε.

3. For every x ∈ {0, 1}s, require p̃x,n = B(H(x)).

Note that given H and oracle access to B and the estimates p̃x,i, we can compute all such tests
in space O(s+ log n). We first show this test is complete:

Lemma 6.11. Suppose for every x, |p̃x,i − px,i| ≤ 2ε for i < n and p̃x,n = B(H(x)). Then the test
of Definition 6.10 passes.

To show this we require the following, which follows from arguments about the mass of the set
difference.

Claim 6.12 (Lemma 3.2 [CH22]). If v ∼ v′, then |pv→ − pv′→| ≤ ε.

25

We can then prove completeness.

Proof of Lemma 6.11. Consider an arbitrary Item 1 test:∣∣∣∣p̃x,i − p̃x1,i+1 + p̃x0,i+1

2

∣∣∣∣
Let v := vi(x) and for b ∈ {0, 1} let vb := B[v, b] be the state actually reached following edge b
from state v. Then for b ∈ {0, 1} let ub := vi+1(xb) be the state reached by xb in layer i+ 1. Note
that ub does not necessarily equal vb, as we could be conflating different states in layer i + 1, but
ub ∼ vb. Thus:∣∣∣∣p̃x,i − p̃x1,i+1 + p̃x0,i+1

2

∣∣∣∣ ≤ 4ε+

∣∣∣∣pv→ − pu0→ + pu1→
2

∣∣∣∣ (Assumption)

≤ 5ε+

∣∣∣∣pv→ − pv0→ + pv1→
2

∣∣∣∣ (Claim 6.12)

= 5ε.

The proof of Item 2 is analogous, again using Claim 6.12, and Item 3 is immediate.

We now show soundness. The key issue is dealing with states v such that no x satisfies v = vi(x),
because we cannot guarantee consistency for these states. However, these states are precisely those
that the HSG fails to hit, which must mean they have low probability of being reached from the
start vertex, and hence their estimates being wrong does only a small amount of harm.

Lemma 6.13. Suppose the test of Definition 6.10 passes with estimates p̃x,i. Then |p̃0,0−pvst→| ≤
6εn.

To prove Lemma 6.13, we first define states that are not verified:

Definition 6.14. For every x ∈ {0, 1}s and i < n, let v = vi(x) be an unverified state if there is
some b ∈ {0, 1} such that there is no x′ ∈ {0, 1}s satisfying B[v, b] = vi+1(x

′), and otherwise let v
be verified. Let vn(x) be verified for every x. Note that for an unverified state there still could be
x′ such that B[v, b] ∼ vi+1(x

′), but we do not use this in the proof of soundness.

We first show that the probability of reaching an unverified state is small.

Lemma 6.15. Let T be the event of reaching an unverified state in B. Then Pr[T (Un) = 1] < 2ε.

Proof. Let R be the width w + 1 program that is the same as B except it accepts if and only if
we reach a state not hit by the HSG. We have Pr[R(Un) = 1] < ε by the goodness of the HSG.
Furthermore, conditioned on reaching an unverified state in B, we have probability at least 1/2 of
reaching a state the HSG does not hit. Thus, ε > Pr[R(Un) = 1] ≥ Pr[T (Un) = 1]/2.

We now construct a branching program such that the estimates for unverified states are consis-
tent with the true probabilities of these states.

Lemma 6.16. There exists an ordered branching program Q : {0, 1}n → {0, 1} on a superset of the
vertices of B such that:

1. |E[Q]− E[B]| ≤ 2ε.

2. Q is identical to B when restricted to edges between verified states, and edges from verified
states to unverified states.

26

3. For every unverified state v in B, for every x ∈ {0, 1}s such that v = vi(x), we have |p̃x,i −
qv→| ≤ 5ε, where qv→ is the probability of accepting from v in Q.

Proof. We first construct Q. Let N be the set of unverified states of B. For every v ∈ N in layer i,
note that for every x, x′ ∈ {0, 1}s satisfying v = vi(x) = vi(x

′) we have |p̃x,i− p̃x′,i| ≤ 5ε by Item 2.
Let qv→ be a number satisfying |qv→ − p̃x,i| ≤ 5ε for every such x. We now modify B by wiring
both edges from v to a new (arbitrarily complex) set of states such that v now has probability
of accepting exactly qv→,3 and we do this for every unverified v. Let Q be this new branching
program. It is clear by construction that Q satisfies Property 2. Furthermore, by Lemma 6.15 we
have Property 1.

We now prove Lemma 6.13 by showing that the estimates p̃x,i are consistent with the modified
program Q.

Lemma 6.17. Let Q be defined as in Lemma 6.16. Then for every v in B and every x such that
v = vi(x), we have |p̃x,i − qv→| ≤ 5ε · (n− i). In particular, |p̃0,0 − qvst→| ≤ 5εn.

Proof. The case i = n holds by Item 3 of Definition 6.10 (and the fact that all final layer states are
unmodified). Now assume this holds for layer i + 1. Then for every v = vi(x) in layer i, we have
two possibilities:

• Case 1: v is unverified. In this case, |p̃x,i − qv→| ≤ 5ε by Lemma 6.16.

• Case 2: v is verified. For b ∈ {0, 1}, let vb := B[v, b] and let xb be such that vb = vi+1(xb)
(and note that such x0, x1 exist because we are not in Case 1). Then:

|p̃x,i − qv→| =
∣∣∣∣p̃x,i − qv0→ + qv1→

2

∣∣∣∣
≤ 5ε+

∣∣∣∣ p̃x0,i+1 + p̃x1,i+1

2
− qv0→ + qv1→

2

∣∣∣∣ (Item 1)

≤ 5ε+
1

2
|qv0→ − p̃x0,i+1|+

1

2
|qv1→ − p̃x1,i+1|

≤ 5ε · (n− i) (Induction.)

We now conclude the proof of Lemma 6.13.

Proof of Lemma 6.13. We have:

|E[B]− p̃0,0| ≤ 2ε+ |E[Q]− p̃0,0| (Lemma 6.16)

≤ 2ε+ 5εn (Lemma 6.17).

We now conclude Theorem 6.8.

Proof of Theorem 6.8. Given H : {0, 1}s → {0, 1}n and the estimates {p̃x,i}x∈{0,1}s,i∈[n], we run
the tests as specified in Definition 6.10. All such tests can be implemented in space O(s + log n),
as we now explain. Given x ∈ {0, 1}s and b ∈ {0, 1}, we can determine if x′ ∈ {0, 1}s satisfies
B[vst, H(x)1..ib] ∼ vi+1(x

′) by enumerating over y ∈ {0, 1}s and computing∧
y∈{0,1}s

I[B(H(x)1..i(x)bH(y)1..n−i−1) = B(H(x′)1..i+1H(y)1..n−i−1)].

3Technically this may not be possible without making Q a probabilistic branching program. However, this con-
struction purely exists to analyze the probabilities qv→, so we ignore this minor complication.

27

This can be implemented in space O(s + log n) given black-box access to B, and hence we can
determine which Item 1 tests to run in the desired space bound, and similar reasoning applies to
the Item 2 and Item 3 tests.

Finally, if all such tests pass, output p̃0,0. By Lemma 6.11 we have that the completeness
condition holds, and by Lemma 6.13 we have that the soundness condition holds.

6.3 Putting It All Together

We now prove Theorem 6.3 from Theorem 6.8. It remains to show that we can generate a good
set of estimates {p̃x,i} using a hitting set. We first show that we can modify Theorem 6.8 to only
take in nw estimates, rather than n · 2s. This is not required for Theorem 1.3, but it improves the
parameters in the case that H is a highly nontrivial yet non-optimal hitting set.

To do so, we first observe that the indistinguishably relation induces a set of equivalence classes
on the seeds:

Definition 6.18. Given an OBP B of width w and length n and H : {0, 1}s → {0, 1}n, for every i
let C1,i, . . . , Cw,i ⊂ {0, 1}s be the equivalence classes (with possibly some empty) of {0, 1}s under the
indistinguishably relations x ∼i x

′ iff vi(x) ∼ vi(x
′). Let yj,i ∈ {0, 1}s be the lexicographically first

element of Cj,i, and WLOG assume y1,i < y2,i < . . . < yw,i for every i. Moreover, let vj,i := vi(yj,i).
Note that given B and H, yj,i (and hence an HSG output that reaches vj,i) is constructible in space
O(s+ log n) given i, j.

Corollary 6.19. There is a deterministic space O(s+log n) algorithm that, given an explicit ε-HSG
H : {0, 1}s → {0, 1}n for length n, width w2 branching programs, oracle access to an OBP B of
width w and length n, and estimates {p̃j,i}j∈[w],i∈[n−1], either outputs a value or rejects. Moreover:

1. If |pvj,i→− p̃j,i| ≤ ε for every j, i, where vj,i is as defined in Definition 6.18, then the algorithm
outputs a value.

2. If the algorithm outputs δ, |E[B]− δ| ≤ 6εn.

Proof. The tester simply takes in the estimate p̃j,i for pvj,i→, copies it to be the estimate for
every seed in the jth equivalence class for layer i, perfectly computes px,n := B(H(x)) for every
x ∈ {0, 1}s, and runs Theorem 6.8. Clearly if the tester outputs a value it is within 6εn of δ, as we
simply restrict the inputs to Theorem 6.8. Furthermore, note that for an arbitrary v := vi(x) in
equivalence class Cj,i, we have by Claim 6.12:

|pv→ − p̃j,i| ≤ ε+ |pvj,i→ − p̃j,i| ≤ 2ε

and hence if |pvj,i→ − p̃j,i| ≤ ε is satisfied for all i and j we satisfy the completeness condition of
Theorem 6.8, and so the tester will return a value.

We now argue that there is a hitting set string that can be used to produce good estimates
for pvj,i→, where vj,i is as defined in Definition 6.18. The argument that such an output exists is
a straightforward modification of the proof in Cheng and Hoza [CH22] that there exists an HSG
output inducing estimates that satisfy their local consistency test.

Lemma 6.20 ([CH22]). For every OBP B of length n and width w and H : {0, 1}s → {0, 1}n and
ε > 0, there exists t = O(log(nw)/ε2) and an OBP EST : {0, 1}n×w×tn → {0, 1} of length and width
poly(nw/ε) defined as follows:

EST(z1,1, . . . , zw,n) =
∧

i∈[n],j∈[w]

ESTj,i(zj,i)

28

where ESTj,i(zj,i) computes as follows. It interprets zj,i as t samples of length n, and computes

ESTj,i(s1, . . . , st) = I
[
Pr
k∈[t]

[B[vj,i, sk] = vacc] ∈ [pvj,i→ − ε, pvj,i→ + ε]

]
.

where vj,i is as defined in Definition 6.18 in terms of H). Then E[EST] > 1/2, and for every z
such that EST(z) = 1, for every j, i, using the samples in block zj,i of z to estimate the acceptance
probability from vj,i produces an estimate with at most ε additive error.

Proof Sketch. It is clear that ESTj,i can be computed by an ordered branching program of the
claimed length and width, by duplicating the subprogram of B starting from vj,i and counting the
number of satisfied trials using an additional O(log(t)) bits of memory, and accepting if the final
count is within the specified range. Thus the conjunction EST can be computed in the claimed
space bound. We then choose t sufficiently large such that a random input satisfies all these checks
with overwhelming probability. We note that EST is defined in terms of the exact probabilities of
acceptance, which the tester does not have, but we only need that the program exists, not that we
can construct it.

Then the proof of Theorem 6.3 follows.

Proof of Theorem 6.3. By a standard reduction (see e.g. [CH22]), H implies an explicit family of
ε-hitting sets for length n, width w OBPs with seed length s(poly(nw/ε)) = O(s(nw/ε)) (where
the final equality follows as for any s(n) = Ω(log2 n) the theorem is trivial by the fact that the
Nisan PRG exists, so we may assume this is not the case).

Let H be a ε/6n-HSG for length n and width w2 OBPs with seed length O(s(nw/ε)). Let H2

be a 1/3-HSG for length n2wt = poly(nw/ε), width (nw/ε)c OBPs, where t is as in Lemma 6.20
with ε := ε/6n. By choice of parameters, H2 has seed length s2 := O(s(nw/ε)). The sampler
enumerates over every z ∈ {0, 1}s2 . For every such z, the sampler calls the tester of Corollary 6.19,
and when an estimate p̃j,i for pvj,i→ = Er∼R{0,1}n−i [B[vj,i, r]] is required by the tester, we use the j, i
block of H2(z) (as done by ESTj,i in Lemma 6.20) to compute the estimate. Note that we can find
yj,i, the lexicographically first seed in equivalence class j in layer i, in logspace, and by definition
vj,i = vi(yj,i). Thus, we can compute p̃j,i by enumerating over the samples s1, . . . , st in block j, i
in H2(z) and returning

E
k∈[t]

[B(H(yj,i)1..isk)] = E
k∈[t]

[B[vj,i, sk]].

If the tester accepts, return the value that the tester outputs, and otherwise increment z. The
space complexity is O(log(n) + s2) by composition of space-bounded algorithms.

Now suppose the sampler returns a value. By Item 2 of Theorem 6.8, the returned estimate is
within (ε/6n)6n = ε of the true expectation. To show the sampler returns a value, note that by
Item 1 of Theorem 6.8 it suffices to argue that we give the tester a series of inputs {p̃j,i} such that
|pvj,i→ − p̃j,i| ≤ (ε/6n) for every i, j. But these are precisely the estimates generated by a string x
such that EST(x) = 1, and H2 hits this program by choice of parameters, so we conclude.

References

[ACR96] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. Hitting sets
derandomize BPP. In Friedhelm Meyer auf der Heide and Burkhard Monien, editors,
Automata, Languages and Programming, 23rd International Colloquium, ICALP96,
Paderborn, Germany, 8-12 July 1996, Proceedings, volume 1099 of Lecture Notes in
Computer Science, pages 357–368. Springer, 1996.

29

[ACRT99] Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim, and Luca Tre-
visan. Weak random sources, hitting sets, and BPP simulations. SIAM J. Comput.,
28(6):2103–2116, 1999.

[AKM+20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron
Sidford, and Salil P. Vadhan. High-precision estimation of random walks in small space.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1295–1306.
IEEE, 2020.

[BF99] Harry Buhrman and Lance Fortnow. One-sided versus two-sided error in probabilistic
computation. In Christoph Meinel and Sophie Tison, editors, STACS 99, 16th Annual
Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 4-6,
1999, Proceedings, volume 1563 of Lecture Notes in Computer Science, pages 100–109.
Springer, 1999.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudorandom bits. SIAM J. Comput., 13(4):850–864, November 1984.

[CH22] Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of
small space. Theory of Computing, 18(21):1–32, 2022.

[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Comput., 5(4):618–623,
1976.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branch-
ing programs, in any order. In Mikkel Thorup, editor, 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pages 946–955. IEEE Computer Society, 2018.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:
interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Comput-
ing, STOC ’89, page 25–32, New York, NY, USA, 1989. Association for Computing
Machinery.

[GR14] Anat Ganor and Ran Raz. Space pseudorandom generators by communication com-
plexity lower bounds. In APPROX-RANDOM, volume 28 of LIPIcs, pages 692–703.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[GRZ23] Uma Girish, Ran Raz, and Wei Zhan. Is untrusted randomness helpful? In 14th
Innovations in Theoretical Computer Science Conference, ITCS, 2023.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Infor-
mation processing letters, 43(4):169–174, 1992.

[GVW11] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. Simplified derandomization of
BPP using a hitting set generator. In Oded Goldreich, editor, Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Computation
- In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser,

30

Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca
Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture
Notes in Computer Science, pages 59–67. Springer, 2011.

[HK18] WilliamM. Hoza and Adam R. Klivans. Preserving randomness for adaptive algorithms.
In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume 116 of
LIPIcs, pages 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-
bounded computation. In Mary Wootters and Laura Sanità, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Wash-
ington, USA (Virtual Conference), volume 207 of LIPIcs, pages 28:1–28:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[HU22] William M. Hoza and Chris Umans. Targeted pseudorandom generators, simulation
advice generators, and derandomizing logspace. SIAM J. Comput., 51(2):17–281, 2022.

[HZ20] William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success
RL. SIAM J. Comput., 49(4):811–820, 2020.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada, pages 356–364. ACM, 1994.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor,
editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of
Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput.,
31(5):1501–1526, 2002.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combina-
torica, 8(3):261–277, 1988.

[LV17] Chin Ho Lee and Emanuele Viola. Some limitations of the sum of small-bias distribu-
tions. Theory Comput., 13(1):1–23, 2017.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-
3 branching programs. In Moses Charikar and Edith Cohen, editors, Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pages 626–637. ACM, 2019.

[Nis90] Noam Nisan. Psuedorandom generators for space-bounded computation. In Harriet Or-
tiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA, pages 204–212. ACM, 1990.

31

[Nis93] Noam Nisan. On read-once vs. multiple access to randomness in logspace. Theor.
Comput. Sci., 107(1):135–144, 1993.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49(2):149–167, October 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, 1996.

[PV22] Edward Pyne and Salil P. Vadhan. Deterministic approximation of random walks via
queries in graphs of unbounded size. In Karl Bringmann and Timothy Chan, editors,
5th Symposium on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference,
January 10-11, 2022, pages 57–67. SIAM, 2022.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded
computation. In Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson
Leighton, editors, Proceedings of the Thirty-First Annual ACM Symposium on The-
ory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 159–168. ACM, 1999.

[RTV06] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Pseudorandom walks on regular
digraphs and the RL vs. L problem. In Jon M. Kleinberg, editor, Proceedings of the
38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23,
2006, pages 457–466. ACM, 2006.

[RVW01] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of Mathematics, 155(1), January
2001.

[Sha81] Adi Shamir. The generation of cryptographically strong pseudo-random sequences.
In CRYPTO, page 1. U. C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE
Report No 82-04, 1981.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSpace(S) ⊆ DSPACE(S3/2). J. Comput. Syst.
Sci., 58(2):376–403, 1999.

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes,
December 30 1986. US Patent 4,633,470.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In FOCS, pages 80–91. IEEE Computer Society, 1982.

32
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

