
Reducing Tarski to Unique Tarski (in the Black-box Model)

Xi Chen∗

Columbia University
xichen@cs.columbia.edu

Yuhao Li†

Columbia University
yuhaoli@cs.columbia.edu

Mihalis Yannakakis‡

Columbia University
mihalis@cs.columbia.edu

Abstract

We study the problem of finding a Tarski fixed point over the k-dimensional grid [n]k. We
give a black-box reduction from the Tarski problem to the same problem with an additional
promise that the input function has a unique fixed point. It implies that the Tarski problem
and the unique Tarski problem have exactly the same query complexity. Our reduction is based
on a novel notion of partial-information functions which we use to fool algorithms for the unique
Tarski problem as if they were working on a monotone function with a unique fixed point.

∗Supported by NSF grants IIS-1838154, CCF-2106429 and CCF-2107187.
†Supported by NSF grants CCF-1563155, CCF-1703925, IIS-1838154, CCF-2106429 and CCF-2107187.
‡Supported by NSF grants CCF-2107187 and CCF-2212233.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2023)

1 Introduction

We start with the definition of monotone functions and state Tarski’s fixed point theorem [Tar55]:

Definition 1 (Monotone functions). Let (L,≼) be a complete lattice. A function f : L → L is said
to be monotone if f(a) ≼ f(b) for all a, b ∈ L with a ≼ b.

Theorem 1 (Tarski). For any complete lattice (L,≼) and any monotone function f : L → L, there
must be a point x ∈ L such that f(x) = x, i.e., x is a fixed point. In fact, the fixed points form a
sublattice, with a greatest and a smallest element.

Tarski’s fixed point theorem has extensive applications in many fields, including for example
verification, semantics, game theory and economics. For example in game theory there is an impor-
tant class of games, called supermodular games (or games with strategic complementarities) which
model economic settings where a player’s best response is a monotone function (or correspondence)
of the other players’ actions [Top79, Top98, MR90]. These games always have pure equilibria (in
fact a lattice of pure equilibria) by Tarski’s theorem. Computing a pure equilibrium in such a
game corresponds to finding a Tarski fixed point. In fact, as shown in [EPRY20], finding a pure
equilibrium in supermodular games is essentially equivalent to finding a fixed point of monotone
functions.

There are several other types of games that reduce to the Tarski problem. For example, Con-
don’s simple stochastic games [Con92] have been intensely studied both in theoretical computer
science as well as in the verification field (and they subsume other well-studied problems, such as
parity games); their complexity remains a notorious open problem. The problem can be reduced
to the Tarski problem of finding a fixed point of a given monotone function f , and in fact in this
case we can even guarantee that the function has a unique fixed point. A similar property holds
for the broader class of stochastic games defined originally by Shapley [Sha53], and studied ex-
tensively since then. These games have in general irrational solutions, but it can be shown again
that approximating the solution to any desired accuracy reduces to the problem of computing a
fixed point of a monotone function that is furthermore guaranteed to have a unique fixed point (see
[EPRY20] for more details). More generally, uniqueness of solutions is a desirable property in many
applications in game theory, economics, and other fields. For sufficient conditions that ensure the
uniqueness of Tarski fixed points, see [MM19] and references therein.

Thus, these facts raise the question, how hard is it to find a fixed point of a given monotone
function? And if we know that the function has a unique fixed point, does this make the problem
easier?

In this paper, we study the deterministic query complexity of finding a fixed point of a monotone
function f over the complete lattice of a k-dimensional grid ([n]k,≼), where [n] denotes {1, . . . , n}
and ≼ denotes the natural partial order over Zk: a ≼ b if and only if ai ≤ bi for every i ∈ [k]. So
a monotone function f : [n]k → [n]k satisfies f(a) ≼ f(b) for all a, b ∈ [n]k with a ≼ b, and we
write Fix(f) to denote the set of fixed points x of f satisfying f(x) = x. In the applications, n is
typically exponential in the input size and k is polynomial. Thus, polynomial complexity in this
context means polynomial in log n and k. Under the query model, an algorithm has oracle access
to an unknown monotone function f : [n]k → [n]k. In each round, it can send a query x ∈ [n]k to
the oracle to reveal f(x), and it succeeds after making a query x that returns f(x) = x. We write
Tarski(n, k) to denote this problem.

Our understanding of the query complexity of Tarski(n, k) remains rather limited. On the
upper bound side, there are two basic algorithms. Tarski’s algorithm (or Kleene iteration in a

1

different literature) starts from the bottom element 1k of the lattice (or the top element nk) and
applies repeatedly f until it reaches a fixed point; the query complexity is Θ(nk) in the worst
case. Another algorithm by [DQY11] applies a binary search strategy in a recursive way and
has query complexity O(logk n). More recently, [FPS22] gave an algorithm for Tarski(n, k) with
O(log⌈2k/3⌉ n) queries, which was further improved to O(log⌈(k+1)/2⌉ n) in [CL22]. Both algorithms
of [FPS22] and [CL22] are based on decomposition theorems that lead to more efficient recursive
schemes for Tarski fixed points.

On the lower bound side, [EPRY20] showed that Tarski(n, 2) requires Ω(log2 n) queries. Their
lower bound uses the family of “herringbone” functions which have a unique fixed point. Therefore,
the same Ω(log2 n) lower bound also holds for the unique Tarski fixed point problem over [n]2,
where the input function is not only monotone but also promised to have a unique fixed point. Let
UniqueTarski(n, k) denote the unique Tarski problem over [n]k. Given that UniqueTarski(n, 2)
is as hard as Tarski(n, 2), is it the case for general k? or maybe UniqueTarski(n, k) is easier
than Tarski(n, k) for larger k? This was posed as an open question in [EPRY20].

Our main result is a black-box reduction from Tarski(n, k) to UniqueTarski(n, k), which
shows that the phenomenon observed in [EPRY20] between query complexities of Tarski(n, 2)
and UniqueTarski(n, 2) holds for general k.

Theorem 2. Let qT(n, k) be the query complexity of Tarski(n, k) and qUT(n, k) be the query
complexity of UniqueTarski(n, k). Then qT(n, k) = qUT(n, k).

Remark. In fact, we will show that the query complexity of Tarski(n, k) is exactly the same as
that of a seemingly even easier (more structural) problem: finding a fixed point of a monotone
function over [n]k with the promise that every slice has a unique fixed point. See Lemma 5 for more
details.

Note that the query complexity ofUniqueTarski(n, k) is trivially at most that of Tarski(n, k).
In the rest of the paper, we prove the other direction by giving a reduction from Tarski(n, k) to
UniqueTarski(n, k) via a novel framework we call partial information reductions. We believe that
this framework is of independent interest and we expect that it can be applied to a wider range of
search problems concerning their query complexities.

1.1 Sketch of the Reduction

Unlike standard reductions that map from instances to instances, our reduction transforms any
given algorithm forUniqueTarski (denoted by U) to an algorithm forTarski (our main algorithm,
Algorithm 1) while keeping the query complexity the same. To the best of our knowledge, we
have not seen such a non-standard black-box reduction before, and we view this as a conceptual
contribution of this work. We would like to highlight the following high-level roadmap: Algorithm 1
will simulate U , but provide it with modified answers to its queries to the oracle. These modified
answers are constructed adaptively on-the-fly, and depend on what previous queries U has made.
It may seem dangerous to modify the answers to the queries in the first place, but our reduction
makes sure that the answers fed to U are always safe, in the sense that they always correspond to
some monotone function with a unique fixed point, and any fixed point that is found by U must
also be a fixed point of the original monotone function. Let’s explain the reduction in more detail
next.

Let U be a deterministic query algorithm for UniqueTarski(n, k) with query complexity
q(n, k). Given any monotone function g : [n]k → [n]k that has a unique fixed point x∗, U always
finds x∗ by querying it within the first q(n, k) queries. At a high level, we would like to simulate

2

U to find a fixed point of any monotone function f : [n]k → [n]k as an input to Tarski(n, k). But
clearly we cannot run U on f directly since the latter may have multiple fixed points and it is likely
that after some queries, answers that U receives are not consistent with any monotone function
with a unique fixed point, in which case U may fail to find a fixed point within q(n, k) queries. (See
Figure 2 in Section 4 for an example.)

Instead, our reduction needs to serve as a surrogate between f and U to achieve the following
two goals that are seemingly contradictory to each other:

(i) On the one hand, we need to fool U by making sure that answers it receives during the
whole process are consistent with some monotone function that has a unique fixed point.
So from U ’s point of view, the function it interacts with can totally be a monotone function
with a unique fixed point. Let’s refer to this function, which is made up by our reduction,
by g. Given that we cannot always return f(x) to each query x of U , the true input function
f can potentially disagree significantly with the fake function g that U interacts with (see
the comparison of Figure 2b and 4d);

(ii) On the other hand, the way we answer queries to U (or the way we make up this fake
function g) needs to achieve that, whenever U finds a fixed point of the fake function g
(which always happens within q(n, k) queries if the first goal is met), the same point must
be a fixed point of the true input function f as well.

We achieve these goals using partial information functions (or PI functions in short).
A PI function p over [n]k is a map from [n]k to {−1, 0, 1,≤,≥, ⋄}k. Intuitively a PI function p

reveals some partial information of an unknown function h : [n]k → [n]k. (For example, p(x)i = 1
implies that h(x)i > xi, p(x)i =≥ implies that h(x)i ≥ xi and p(x)i = ⋄ implies no information
about h(x)i; the connection will become cleaner after we introduce the notion of simple functions
at the beginning of Section 2.) Moreover, we say a PI function p is monotone if it reveals some
partial information of an unknown monotone function so one should not be able to infer from p
any violation to monotonicity; see Definition 3.

Let f : [n]k → [n]k be the input monotone function. Our main algorithm, Algorithm 1 solves
Tarski(n, k) on f by simulating U round by round as follows: During the t-th round, t = 1, 2, . . .,

1. Algorithm 1 runs U to obtain the t-th point qt ∈ [n]k that U would like to query;

2. Algorithm 1 queries f to obtain f(qt) and uses it to obtain the answer at ∈ [n]k to the
query. (As discussed earlier, at is not necessarily the same as f(qt); picking at based on
f(qt) and the query history is the part that heavily relies on the use of PI functions.)

3. Finally Algorithm 1 sends at to U as the result of its t-th query, and moves onto round
t+ 1 (unless f(qt) = qt so a fixed point of f has already been found).

Algorithm 1 picks answers at to queries of U by maintaining a monotone PI function p to connect
f with U . After receiving the t-th query qt from U , Algorithm 1 uses f(qt) to update the current
PI function and then uses the updated PI function to set the answer at to U . The design of the
updating rule for the PI function (see the main subroutine Generate-PI-Function in Section 3)
to achieve both goals (i) and (ii) discussed earlier is the most challenging part of the paper.

3

2 Partial-Information Functions

For a, b ∈ Zk with a ≼ b, we write La,b to denote the set of points x ∈ Zk with a ≼ x ≼ b.
We say a function f : [n]k → [n]k is a simple function if it satisfies |f(x)i − xi| ≤ 1 for all

x ∈ [n]k and i ∈ [k] (i.e., f(x)i−xi ∈ {−1, 0, 1}). Let sgn(a) for a number a be 1, 0,−1 respectively
if a > 0, a = 0, a < 0. We include the following folklore observations:

Observation 1. For any monotone function f : [n]k → [n]k, let g : [n]k → [n]k be defined as

g(x)i := xi + sgn(f(x)i − xi), for all x ∈ [n]k and i ∈ [k].

Then g is a monotone simple function and satisfies Fix(g) = Fix(f).

It follows that for both Tarski and UniqueTarski, we may assume without loss of generality
that the input monotone function f : [n]k → [n]k is simple.

Observation 2. A simple function f : [n]k → [n]k is monotone if and only if it satisfies the
following conditions:

(1) f(x)i = xi +1 implies f(y)i = yi +1 and f(y+ ei)i ≥ yi +1 for all y with x ≼ y and xi = yi;

(2) f(x)i = xi − 1 implies f(y)i = yi − 1 and f(y− ei)i ≤ yi − 1 for all y with x ≽ y and xi = yi;
and

(3) f(x)i = xi implies (a) f(y)i ≤ yi for all y with x ≽ y and xi = yi, and (b) f(y)i ≥ yi for all
y with x ≼ y and xi = yi.

Observation 2 provides an alternative way to check the monotonicity of a simple function. It will
mainly serve to verify the monotonicity of the following introduced partial-information functions.
All functions from [n]k → [n]k we deal with from now on are assumed to be simple; for convenience,
we will skip the word “simple” in the rest of the paper.

Now we define partial-information (PI) functions. A PI function over [n]k is a function from
[n]k to {−1, 0, 1,≤,≥, ⋄}k. Intuitively a PI function reveals some partial information on the values
of an underlying function f : [n]k → [n]k; the next definition illustrates meanings of symbols in
{−1, 0, 1,≤,≥, ⋄}:

Definition 2 (Consistency). A function g : [n]k → [n]k and a PI function p : [n]k → {−1, 0, 1,≤
,≥, ⋄}k are consistent if the following conditions hold for all x ∈ [n]k and i ∈ [k]:

• p(x)i = −1 implies g(x)i − xi = −1;

• p(x)i = 0 implies g(x)i − xi = 0;

• p(x)i = 1 implies g(x)i − xi = 1;

• p(x)i =≤ implies g(x)i − xi ∈ {−1, 0};

• p(x)i =≥ implies g(x)i − xi ∈ {0, 1}; and

• p(x)i = ⋄ implies nothing about g(x)i.

4

⋄

≤ ≥

−1 0 1

Figure 1: The information partial order. Arrow means “dominates” or “more informative”.

We introduce a natural partial order over symbols in {−1, 0, 1,≤,≥, ⋄}, illustrated in Figure 1.
We say α dominates β (or α is more informative than β, denoted by α ⇒ β), for some α,β ∈
{−1, 0, 1,≤,≥, ⋄}, if either α = β or there is a path from α to β. With this notation, we have
that g : [n]k → [n]k is consistent with a PI function p iff g(x)i − xi ⇒ p(x)i for all x ∈ [n]k and
i ∈ [k]. Given two PI functions p′, p : [n]k → {−1, 0, 1,≤,≥, ⋄}k, we say p′ dominates p (or p′ is
more informative than p, denoted by p′ ⇒ p) if p′(x)i ⇒ p(x)i for all x ∈ [n]k and i ∈ [k].

Given that we are interested in monotone functions f : [n]k → [n]k, we introduce the notion
of monotone PI functions below. Intuitively a PI function p is monotone if it reveals some partial
information of a monotone function (so one cannot infer from p any violation to monotonicity):

Definition 3 (Monotone PI Functions). A PI function p : [n]k → {−1, 0, 1,≤,≥, ⋄}k is said to be
monotone if it satisfies the following conditions: For any x ∈ [n]k and i ∈ [k],

(1) p(x)i = 1 implies p(y)i = 1 and p(y + ei)i ∈ {1, 0,≥} for all y with x ≼ y and xi = yi;

(2) p(x)i = −1 implies p(y)i = −1 and p(y − ei)i ∈ {−1, 0,≤} for all y with x ≽ y and xi = yi;

(3) p(x)i = 0 implies (a) p(y)i ∈ {0,−1,≤} for all y with x ≽ y and xi = yi, and
(b) p(y)i ∈ {0, 1,≥} for all y with x ≼ y and xi = yi;

(4) p(x)i =≤ implies p(y)i ∈ {−1,≤} for all y with x ≽ y and xi = yi;

(5) p(x)i =≥ implies p(y)i ∈ {1,≥} for all y with x ≼ y and xi = yi;

(6) If xi = 1, then p(x)i ∈ {0, 1,≥}; and

(7) If xi = n, then p(x)i ∈ {0,−1,≤}.

A PI function is weakly monotone if it satisfies (1)–(5) above, but not necessarily (6) and (7).

Note that items (6) and (7) are only about the boundary constraints. Weak monotonicity will
only appear for the simplicity of the proofs below and there are no technical details behind them.

The next lemma shows that every monotone PI function is consistent with at least one monotone
function. (Looking ahead, later in Section 3.2 we will give a sufficient condition for a monotone PI
function to be consistent with at least one monotone function with a unique fixed point.)

Lemma 1. For every monotone PI function p over [n]k, there exists a monotone function g : [n]k

→ [n]k that is consistent with p.

Proof. Given p we define g : [n]k → [n]k as follows:

g(x)i :=

xi + p(x)i if p(x)i ∈ {−1, 0, 1};
xi otherwise.

5

We will prove g is a monotone function that is consistent with p by Observation 2.
Fix any point x and coordinate i.
Suppose that g(x)i = xi + 1, then we have p(x)i = 1. Since p(x)i = 1 implies p(y)i = 1

and p(y + ei)i ∈ {1, 0,≥} for all y such that x ≼ y and xi = yi, we have g(x)i = xi + 1 implies
g(y)i = yi + 1 and g(y + ei)i ≥ yi + 1 for all y such that x ≼ y and xi = yi.

The proof of the case that g(x)i = xi − 1 is symmetric.
Suppose that g(x)i = xi, then we have p(x)i ∈ {0,≤,≥, ⋄}. This implies that (a) p(y)i ∕= 1 for

all y such that x ≽ y and xi = yi, and (b) p(y)i ∕= −1 for all y such that x ≼ y and xi = yi. So
we have (a) g(y)i ≤ yi for all y such that x ≽ y and xi = yi, and (b) g(y)i ≥ yi for all y such that
x ≼ y and xi = yi.

Given two elements α,β ∈ {−1, 0, 1,≤,≥, ⋄}, if their least upper bound (or join) in the partial
order exists, we write α ∩ β to denote it and say that α ∩ β is well defined; otherwise (when their
least upper bound does not exist), we say α ∩ β is not well defined. (For example, ≥ ∩ ≤= 0 and
≥ ∩−1 is not well defined.) Given two PI functions p1, p2 : [n]k → {−1, 0, 1,≤,≥, ⋄}k, we define
their intersection p1 ∩ p2 to be the PI function p such that p(x)i = p1(x)i ∩ p2(x)i for all x ∈ [n]k

and i ∈ [k]. The intersection p1 ∩ p2 is well defined only when p1(x)i ∩ p2(x)i is well defined for all
x ∈ [n]k and i ∈ [k].

The reason that we introduce the operation of intersections is the following lemma which we
will often use to modify a given monotone PI function:

Lemma 2. Let p1 be a monotone PI function and p2 be a weakly monotone PI function, both over
[n]k, such that p1 ∩ p2 is well defined. Then p1 ∩ p2 is also a monotone PI function and it satisfies
p1 ∩ p2 ⇒ p1.

Proof. The part about p1 ∩ p2 ⇒ p1 is trivial.
Note that p1 ∩ p2 satisfies (6) and (7) in Definition 3 since p1 is a monotone PI function. So in

what follows, we will verify (1)-(5) for p1 ∩ p2.
To show p1∩p2 satisfies (1), fix x ∈ [n]k and i ∈ [k]. If p1∩p2(x)i = 1, then either p1(x)i = 1 or

p2(x)i = 1. Suppose that pτ (x)i = 1 for τ ∈ {1, 2}. Then we have pτ (y)i = 1 and pτ (y+ei)i ∈ {1,≥}
for all y ≽ x and yi = xi. So we have p1 ∩ p2(y)i = 1 and p1 ∩ p2(y+ ei)i ∈ {1,≥} for all y ≽ x and
yi = xi.

Items (2)-(5) can be verified similarly.

Given a monotone function f : [n]k → [n]k and a monotone PI function p over [n]k, we define a
function f |p : [n]k → [n]k as follows: For any x ∈ [n]k and i ∈ [k], let

f |p(x)i =

xi + p(x)i if p(x)i ∈ {−1, 0, 1};
max(f(x)i, xi) if p(x)i =≥;

min(f(x)i, xi) if p(x)i =≤;

f(x)i, if p(x)i = ⋄.

Note that f |p is a function that is consistent with p (but may disagree with f in general). Look-
ing ahead, our algorithm for Tarski running on f will maintain a monotone PI function p and
(essentially) use f |p to answer the next query from an algorithm for UniqueTarski it simulates.
As it will become clear in Section 3, using f |p (with a carefully updated p) instead of f to answer
queries is crucial in making sure answers to the algorithm for UniqueTarski are consistent with a

6

monotone function with a unique fixed point (given that the input function f to Tarski can have
multiple fixed points in general).

We record the following lemma about f |p:

Lemma 3. Let f be a monotone function and p be a monotone PI function, both over [n]k. Then
f |p : [n]k → [n]k is also a monotone function and is consistent with p.

Proof. The part about f |p being consistent with p is easy, since f |p(x)i − xi = p(x)i when p(x)i ∈
{−1, 0, 1}; f |p(x)i − xi ∈ {0, 1} when p(x)i =≥; f |p(x)i − xi ∈ {0,−1} when p(x)i =≤; and
f |p(x)i − xi ∈ {−1, 0, 1} when p(x)i = ⋄.

Note that since f is a function from [n]k to [n]k and p is a monotone PI function that satisfies
the boundary conditions (6) and (7), we have 1 ≤ f |p(x)i ≤ n for all x and i.

To show f |p is monotone, given any x ∈ [n]k and i ∈ [k], we consider three cases where
f |p(x)i = xi + 1, f |p(x)i = xi − 1, and f |p(x)i = xi.

Suppose that f |p(x)i = xi + 1. Then either f(x)i − xi = 1 or p(x)i = 1. If f(x)i − xi = 1 and
p(x)i ∈ {1,≥, ⋄}, then we have (i) f(y)i − yi = 1 and f(y + ei)i ≥ yi + 1, and (ii) p(y)i ∈ {1,≥, ⋄}
and p(y+ ei)i ∕= −1 for all y ≽ x with yi = xi, which imply f |p(y)i− yi = 1 and f(y+ ei)i ≥ yi+1.
The proof is similar in the case p(x)i = 1.

The proof of the case f |p(x)i = xi − 1 is symmetric.
Suppose that f |p(x)i = xi. Then one of the following four cases meets: (1) f(x)i = xi and

p(x)i ∈ {≤,≥, ⋄}; (2) p(x)i = 0; (3) f(x)i−xi = 1 and p(x)i =≤; (4) f(x)i−xi = −1 and p(x)i =≥.
Let’s prove the first case and others are similar. Suppose that f(x)i = xi and p(x)i ∈ {≤,≥, ⋄},
then we have f(y)i ≤ yi for all y ≼ x with yi = xi and f(y)i ≥ yi for all y ≽ x with yi = xi. Since
p(x)i ∈ {≤,≥, ⋄}, we have p(y)i ∕= 1 for all y ≼ x with yi = xi and p(y)i ∕= −1 for all y ≽ x with
yi = xi. This finishes the proof.

Before moving to the main reduction, we need to introduce the notion of slices. We note that
the notion of slices was also used in the literature.

Definition 4 (Slices). A slice of [n]k is specified by a tuple s ∈ ([n] ∪ {∗})k. Given s, we write Ls

to denote the set of points x such that xi = si for all i such that si ∕= ∗.

Given a monotone PI function p and a slice s, we say a point x ∈ Ls is a postfixed point of p
on the slice s if p(x)i ∈ {1, 0,≥} for all i with si = ∗ and a point x ∈ Ls is a prefixed point of p on
the slice s if p(x)i ∈ {−1, 0,≤} for all i with si = ∗.

We use Posts(p) to denote the set of postfixed points of p on s and Pres(p) to denote the set
of prefixed points of p on s.

Lemma 4. Given a monotone PI function p, for any slice s, Posts(p) is a join-semilattice and
Pres(p) is a meet-semilattice.

Proof. Fix a slice s and consider any two points x, y ∈ Posts(p). Then we have p(x)i, p(y)i ∈
{1, 0,≥} for all i with si = ∗. Let z = x ∨ y be the join of x and y, namely, the coordinatewise
maximum of x and y. Then we have x ≼ z and y ≼ z and either zi = xi or zi = yi for all i with
si = ∗. So by the monotonicity of p, we have p(z)i ∈ {1, 0,≥}.

The proof of that Pres(p) is a meet-semilattice is similar. This finishes the proof.

Lemma 4 guarantees that the join of Posts(p) is well defined and the meet of Pres(p) is well
defined. We write Js(p) to denote the join of Posts(p) and Ms(p) to denote the meet of Pres(p).
When the context is clear, we may omit p for the simplicity of notations.

7

Proposition 1. Given a monotone PI function p, for any slice s, we have p(Js)i ∈ {0,≥} for all
i with si = ∗ and p(Ms)i ∈ {0,≤} for all i with si = ∗.

Proof. Consider any point x ∈ Posts. Suppose that there exists i with si = ∗ such that p(x)i = 1,
then we have x + ei ∈ Posts as well. This means x can not be Js. So we have p(Js)i ∈ {0,≥} for
all i with si = ∗. The proof of p(Ms) is similar.

3 The Partial-Information Reduction and Proof of Theorem 2

We prove Theorem 2 in this section. Let U be any query algorithm for UniqueTarski(n, k) with
query complexity q(n, k). We show that our main algorithm, Algorithm 1, can employ U to solve
Tarski(n, k) with the same number of queries.

Let’s continue from the sketch presented in Section 1.1 and elaborate more on how Algorithm 1
works. Algorithm 1 computes the answer at to the t-th query qt of U by maintaining a sequence of
monotone PI functions p0, p1, . . ., where p0 is the initial monotone PI function set by the boundary
conditions (see line 2 of Algorithm 1) and pt is the monotone PI function it maintains at the end
of the t-th round. During the t-th round, Algorithm 1 first continues to run U to obtain the t-th
query qt. It then queries f to obtain f(qt) and uses the latter to update the PI function pt−1 to pt.
Finally the answer at to U is set to be f |pt(qt) ∈ [n]k.

The correctness of Algorithm 1 relies on the following list of properties of pt: For every t, pt is
a monotone PI function such that

1. pt(qj) + qj = aj for all j ∈ [t] (i.e., pt agrees with answers to all queries U has made so far);

2. There is a monotone function g that is consistent with pt and has a unique fixed point;

3. Any fixed point of f |pt must be a fixed point of f .

To see that Algorithm 1 always finds a fixed point of f within q(n, k) queries, we note that item 3
above implies that qt is a fixed point of f if at = f |pt(qt) is the same as qt. So the only bad case is
that at ∕= qt for all t = 1, . . . , q(n, k). However, this cannot happen because after q(n, k) rounds, by
item 2, there is a monotone function g that is consistent with pq(n,k) and has a unique fixed point,
and by item 1, g(qj) = aj for all j ∈ [q(n, k)]. So g is a monotone function that has a unique fixed
point, on which U fails to find a fixed point (since aj ∕= qj for all j ∈ [q(n, k)]).

3.1 Subroutine Generate-PI-Function

The main challenge is about how to update the PI function pt−1 to pt during the t-th round to
maintain properties listed above for the correctness of the algorithm. This is done by making calls
to a subroutine called Generate-PI-Function (see Algorithm 1; in general it may take k calls to
Generate-PI-Function to obtain pt during the t-th round).

The subroutine Generate-PI-Function(p, q, ℓ, b) takes four inputs, namely, a PI function p, a
point q ∈ [n]k, an index ℓ ∈ [k], and a sign b ∈ {−1, 0, 1}, and returns a new PI function. Before
stating the main technical theorem about Generate-PI-Function, we need the following definition:

Definition 5. We say a monotone PI function p is safe if, for every slice s ∈ ([n] ∪ {∗})k, it
satisfies

(1) for any point x ∈ Ls and x ≺ Js(p), p(x)i ∈ {−1, 0, 1} for all i with xi < Js(p)i and p(x)i = 1
for some i with xi < Js(p)i; and

8

(2) for any point x ∈ Ls and x ≻ Ms(p), p(x)i ∈ {−1, 0, 1} for all i with xi > Ms(p)i and
p(x)i = −1 for some i with xi > Ms(p)i.

We are now ready to state our main technical theorem:

Theorem 3 (Main Technical Theorem). Given a monotone and safe PI function p, q ∈ [n]k,
ℓ ∈ [k], and b ∈ {−1, 0, 1} such that (p(q)ℓ, b) satisfies the following condition:

p(q)ℓ ∈ {≥, ⋄} if b = 1; p(q)ℓ ∈ {≤, ⋄} if b = −1; p(q)ℓ ∈ {≤,≥, ⋄} if b = 0, (1)

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisfies the following properties:

1. pr is also a monotone PI function;

2. pr ⇒ p;

3. pr(q)ℓ = b; and

4. pr remains safe.

Additionally, if f : [n]k → [n]k is a monotone function such that Fix(f |p) ⊆ Fix(f) and f |p(q)ℓ =
qℓ + b, then we have Fix(f |pr) ⊆ Fix(f |p) ⊆ Fix(f).

We prove Theorem 3 in the rest of the section. An important property of safe, monotone PI
functions is given in the following lemma which we prove in the next subsection.

Lemma 5. If p is a monotone and safe PI function, then there is a monotone function g that is
consistent with p and has a unique fixed point in every slice s. In particular, g has a unique fixed
point in the whole lattice.

We can use Theorem 3 and Lemma 5 to prove the main theorem:

Proof of Theorem 2. Let f be the input function. We first note that every time Algorithm 1 obtains
p(t,i) from p(t,i−1), either p(t,i) is the same as p(t,i−1) or p(t,i) is set to be

Generate-PI-Function

p(t,i−1), q, i, b

for some q, i, b that satisfy b = f |p(t,i−1)(q)i − qi and (1):

p(t,i−1)(q)i ∈ {≥, ⋄} if b = 1; p(t,i−1)(q)i ∈ {≤, ⋄} if b = −1; p(t,i−1)(q)i ∈ {≤,≥, ⋄} if b = 0,

Given that p(1,0) = p0 is monotone and safe, it follows directly from an induction using Theorem 3
that every PI function p in the following list:

p(1,0), . . . , p(1,k), p(2,0), . . . , p(2,k), . . . , p(t,0), . . . , p(t,k), . . .

is monotone and safe, and satisfies Fix(f |p) ⊆ Fix(f). Furthermore, every PI function p in the list
dominates all of its predecessors and p(t,i)(qt)i ∈ {−1, 0, 1} for all t, i. Combining the latter with
at = f |pt(qt), as well as that pt = p(t,k) dominates all of its predecessors, we have at − qt = pt(qt).
It follows that aj − qj = pt(qj) for all j ≤ t.

Let N = q(n, k). Consider the following two cases:

9

Algorithm 1: Algorithm for Tarski(n, k) via the algorithm U for UniqueTarski(n, k)

1 Let U be an algorithm for UniqueTarski(n, k).
2 Let p0 be an empty PI function with the initial boundary conditions, i.e., p0(x)i =≥ if

xi = 1; p0(x)i =≤ if xi = n; and p0(x)i = ⋄ otherwise for all x ∈ [n]k and i ∈ [k].
3 Let t ← 1 be the round number.
4 do
5 Let qt be the point queried by U and make one query to get f(qt).

6 Let p(t,0) ← pt−1.
7 for each i from 1 to k do

8 If p(t,i−1)(qt)i ∈ {−1, 0, 1}, let p(t,i) ← p(t,i−1).

9 Otherwise, let p(t,i) ← Generate-PI-Function(p(t,i−1), qt, i, f |p(t,i−1)(qt)i − qti).

10 Let pt ← p(t,k) and use at ← f |pt(qt) as the answer to the algorithm U .
11 If qt = at, then return qt as the fixed point and terminate.
12 Else, let t ← t+ 1.

13 while;

1. If at = qt for some t ∈ [N], then given that at = f |pt(qt) and Fix(f |pt) ⊆ Fix(f), we have
that qt is a fixed point of f . In this case Algorithm 1 succeeds within q(n, k) queries;

2. Otherwise, we have at ∕= qt for all t ∈ [N]. In this case, given that pN is both monotone and
safe, Lemma 5 implies that there exists a monotone function g that is consistent with pN

and has a unique fixed point. However, given that aj − qj = pN (qj) for all j ≤ N , we have
that qj ∕= aj = g(qj) for all j ∈ [N]. As a result, U fails to find a fixed point of g within its
N queries q1, . . . , qN , which it should given that g is a monotone function with a unique
fixed point, a contradiction.

This finishes the proof of the theorem.

Subroutine 2: Generate-PI-Function(p, q, ℓ, b)

1 If b = 1, then return Generate-PI-Function-Plus(p, q, ℓ).
2 If b = −1, then return Generate-PI-Function-Minus(p, q, ℓ).
3 If b = 0, then return Generate-PI-Function-Zero(p, q, ℓ).

3.2 Consequences of PI Function Being Safe

The motivation to focus on Definition 5 is that they have nice properties given in the following
lemmas.

Lemma 6. Suppose that a PI function p is monotone and safe, then we have

1. Js(p) ≼ Ms(p) for all slices s; and

2. g(x) ∕= x for any monotone function g that is consistent with p and any x such that there
exists s with x ∕∈ LJs,Ms.

10

Subroutine 3: Generate-PI-Function-Plus(p, q, ℓ)

1 Initialize p′ ← p.
2 Let p′(x)ℓ ← 1 and p′(x+ eℓ)ℓ ← p′(x+ eℓ)ℓ∩ ≥ for all x such that x ≽ q and xℓ = qℓ.
3 Initialize p+(x)i ← ⋄ for all x and i as a weak PI function.

4 for each x ∈ [n]k and each i ∈ [k] do
5 if there exists y such that (a) x ≼ y; (b) xi < yi; and (c) xj = yj for all j with

p′(y)j ∕∈ {1, 0,≥} then
6 If p′(x)i ∈ {1,≥, ⋄}, let p+(x)i ← 1 and p+(x+ ei)i ← p+(x+ ei)i∩ ≥.
7 If p′(x)i ∈ {0,≤}, let p+(x)i ←≥.

8 Let pr ← p′ ∩ p+.
9 return pr.

Subroutine 4: Generate-PI-Function-Minus(p, q, ℓ)

1 Initialize p′ ← p.
2 Let p′(x)ℓ ← −1 and p′(x− eℓ)ℓ ← p′(x− eℓ)ℓ∩ ≤ for all x such that x ≼ q and xℓ = qℓ.
3 Initialize p−(x)i ← ⋄ for all x and i as a weak PI function.

4 for each x ∈ [n]k and each i ∈ [k] do
5 if there exists y such that (a) x ≽ y; (b) xi > yi; and (c) xj = yj for all j with

p′(y)j ∕∈ {−1, 0,≤} then
6 If p′(x)i ∈ {−1,≤, ⋄}, let p−(x)i ← −1 and p−(x− ei)i ← p−(x− ei)i∩ ≤.
7 If p′(x)i ∈ {0,≥}, let p−(x)i ←≤.

8 Let pr ← p′ ∩ p−.
9 return pr.

Subroutine 5: Generate-PI-Function-Zero(p, q, ℓ)

1 Initialize pr ← p.
2 If qℓ > 1 and p(q − eℓ)ℓ ∕= 1, let pr ← Generate-PI-Function-Plus(pr, q − eℓ, ℓ).
3 If qℓ < n and p(q + eℓ)ℓ ∕= −1, let pr ← Generate-PI-Function-Minus(pr, q + eℓ, ℓ).
4 return pr.

Proof. We will prove the following claim, by which we will deduce this lemma.

Claim 1. Given the PI function p is monotone and safe, we have

(a) for any point x ∈ Ls and x ∕≼ Ms(p), there exists i with si = ∗ and p(x)i = −1; and

(b) for any point x ∈ Ls and x ∕≽ Js(p), there exists i with si = ∗ and p(x)i = 1.

Proof. We will show that the first item in Definition 5 implies item (b), and the second item in
Definition 5 implies item (a). Fix a slice s, a point x ∈ Ls and x ∕≽ Js(p). We will prove there
exists i with si = ∗ and p(x)i = 1. The proof for the item (a) is similar.

11

Construct a sub-slice s′ as follows:

s′i :=

si si ∕= ∗;
xi si = ∗ and xi ≥ Js(p

r)i;
∗ otherwise (si = ∗ and xi < Js(p

r)i).

Then we have s′i = ∗ implies si = ∗ and x ∈ Ls′ . Let z be the join of x and Js(p). Note that
z ∈ Ls′ as well. In addition, we have xi < zi for all i with s′i = ∗.

We will prove that z ∈ Posts′(p), so we will have z ≼ Js′(p), which implies xi < Js′(p)i for all i
with s′i. Since p is safe, we conclude that there exists i with s′i = ∗ and p(x)i = 1. Such an i also
satisfies si = ∗.

The statement z ∈ Posts′(p) follows from the observation that whenever s′i = ∗, we have si = ∗
and zi = Js(p)i. Since p(Js)i ∈ {≥, 0}, we have p(z)i ∈ {1, 0,≥}.

We show that each of items (a) and (b) is strong enough to deduce the first item (Js(p) ≼ Ms(p)
for all s). (This will be used in the proof of Lemma 9 below). Take item (b) as an example: Given
any point x ∈ Ls such that x ∕≼ Ms(p), since there exists i with si = ∗ and p(x)i = −1, we have
x ∕∈ Pres(p) by definition. So Js(p) must be somewhere that is ≼ Ms(p).

For the second item, consider any point x such that there exists s with x ∕∈ LJs,Ms . Then we
know either x ∕≼ Ms(p) or x ∕≽ Js(p). Since there exists i with p(x)i = −1 or p(x)i = 1, we have
g(x) ∕= x as long as g is a monotone function that is consistent with p.

We also present the proof of Lemma 5 in this subsection.

Proof of Lemma 5. We will refine p to a more informative monotone PI function p′ such that every
monotone function that is consistent with p′ has in each slice s only one fixed point, Ms(p).

Consider a slice s, and let Ms = Ms(p) be the lowest prefixed point of p in the slice. By
Claim 1, for every point x ∈ Ls, if x ∕≼ Ms, there exists i with si = ∗ and p(x)i = −1. Consider
a point x ∈ Ls where x ≼ Ms, x ∕= Ms. If i is a coordinate with si = ∗ and xi = (Ms)i then
p(x)i ∈ {0,−1,≤} since p(Ms)i ∈ {0,−1,≤}. Since Ms is the lowest prefixed point in Ls, there is
a coordinate i such that si = ∗ and p(x)i ∕∈ {0,−1,≤}, therefore p(x)i ∈ {1,≥, ⋄} and xi < (Ms)i.

Define p′ as follows. Initialize p′(x) = p(x) for all x ∈ [n]k. For each slice s and every point
x ∈ Ls where x ≼ Ms, x ∕= Ms, and each coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄}, set
p′(x)i = 1, and for every y ≽ x with yi = xi set p

′(y)i = 1 and p′(y + ei)i = p′(y + ei)i∩ ≥. (Note
that p′(y + ei)i may be also updated due to other points x′, including possibly being set to 1.)

We first claim that p′ is a well defined PI function and dominates (is more informative than) p.
Note that p′ changes the value of p(z)i for some points z and some coordinates i by either setting
the value to 1 or taking the join with ≥. Thus, to show the claim it suffices to show that (i) p′

does not set the value to 1 for any point z and coordinate i such that p(z)i ∈ {−1, 0,≤}, and (ii) it
does not take the join with ≥ for any z and i such that p(z)i = −1. To see this, consider any slice
s, a point x ∈ Ls with x ≼ Ms, x ∕= Ms, and a coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄}.
Since p(x)i ∈ {1,≥, ⋄}, the new value p′(x)i = 1 dominates p(x)i. Consider any other point y ≽ x
with yi = xi. If p(y)i was in {−1, 0,≤}, then p(x)i would also be in {−1, 0,≤} by Definition 3. We
infer therefore that p(y)i ∈ {1,≥, ⋄}, thus p′(y)i = 1 dominates p(y)i. Also, if p(y + ei)i was −1
then p(x)i would be in {−1, 0,≤}. We infer therefore that p(y + ei)i ∕= −1, thus the join with ≥
exists, it dominates p(y+ ei)i, and is not −1. We conclude that p′ is well defined and dominates p.

We then claim that p′ is monotone. Consider any slice s, a point x ∈ Ls with x ≼ Ms, x ∕= Ms,
and a coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄}. Then we know p′(x)i = 1. Consider

12

any other point y ≽ x with yi = xi, we have p(y)i ∈ {1,≥, ⋄}, so p′(y)i would also be 1. Also,
since p(y + ei)i is not −1, we conclude that p′(y + ei)i ⇒ p(y + ei)i∩ ≥. Since p′(y + ei)i is well
defined, we infer therefore that p′(y + ei)i ∈ {≥, 0, 1}. For other points x and coordinates i, we
have p′(x)i = p(x)i and p′(x)i satisfying Definition 3 follow from the monotonicity of p and p′ ⇒ p.
We conclude that p′ is monotone.

The PI function p′ has the property that for every slice s and for every point x ∈ Ls with
x ∕= Ms, there exists a coordinate i such that either p′(x)i = −1 (this is the case if x ∕≼ Ms) or
p′(x)i = 1 (this is the case if x ≼ Ms). We conclude that any monotone function that is consistent
with p′ has only one fixed point in each slice s, namely, Ms. Since p′ dominates p, any such
monotone function is also consistent with p. In particular, there exists at least one such monotone
function, as constructed in Lemma 1.

3.3 Preserving Monotonicity and Safety

In this subsection, we will prove items (1) - (4) of Theorem 3.

Lemma 7 (Monotonicity Preserving of Subroutine 3). Given a monotone PI function p, a point
q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ {≥, ⋄} (which implies qℓ < n), we have the PI
function pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains monotone. Furthermore, we
have pr ⇒ p.

Proof. We start by proving the monotonicity of p′ on line 2. Since p(q)ℓ ∈ {≥, ⋄}, we have p(x)ℓ ∈
{1,≥, ⋄} and p(x+ eℓ)ℓ ∈ {0, 1,≤,≥, ⋄} for all x such that x ≽ q and xℓ = qℓ. So p(x+ eℓ)ℓ∩ ≥ is
well defined. The monotonicity of p′ follows from the observation that we changed p′(q)ℓ ← 1 and
maintained the consequences it should imply. Clearly, p′ ⇒ p.

After that, we will maintain a new function p+ from line 3 to line 7. Note that we will update
pr ← p′ ∩ p+ on line 8 and return it. So by Lemma 2, it suffices for us to prove p+ is a weakly
monotone PI function, and p′(x)i ∩ p+(x)i is well defined for all x and i at the end of the for loop.

To this end, we will prove that, at the end of the for loop, item (1) in Definition 3 is true for
every point x and coordinate i such that p+(x)i = 1; and item (5) in Definition 3 is true for every
point x and coordinate i such that p+(x)i =≥. Before getting into details, we first provide a clearer
picture of the condition of if on line 5.

Claim 2. Given a coordinate i and two points x ≼ x′ such that xi = x′i, if the if condition on
line 5 is true for x and i, then the if condition on line 5 is also true for x′ and i.

Proof. By definition, we know there exists y such that (a) x ≼ y; (b) xi < yi; and (c) xj = yj for all
j with p′(y)j ∕∈ {1, 0,≥}. Now we explicitly show there also exists such a y′ for x′. Let y′ be the join
of x′ and y (i.e., y′j = max(x′j , yj) for all j). Then obviously we have (a) x′ ≼ y′. Since xi = x′i, we
have (b) y′i = yi > xi = x′i. For the last property (c), note that y ≼ y′. By the monotonicity, as long
as y′j = yj and p′(y)j ∈ {1, 0,≥}, we have p′(y′)j ∈ {1, 0,≥}. The contrapositive tells us for every j
such that p′(y′)j ∕∈ {1, 0,≥}, either y′j ∕= yj (then y′j = max(x′j , yj) = x′j) or p

′(y)j ∕∈ {1, 0,≥} (then
xj = yj , so y′j = max(x′j , yj) = max(x′j , xj) = x′j), which is the statement of (c).

This finishes the existence of y′ for x′ and i.

We divide the proof into two cases:
Case 1: item (1) in Definition 3. Fix a coordinate i and two points x ≼ x′ such that

xi = x′i. Suppose that p+(x)i = 1 (which means p′(x)i ∈ {1,≥, ⋄}). By monotonicity, we have
p′(x′)i ∈ {1,≥, ⋄} as well. Since the if condition on line 5 is true for x, by Claim 2, we know that the

13

if condition is also true for x′. Combining with p′(x′)i ∈ {1,≥, ⋄}, we know that p+(x′)i ← 1 and
p+(x′+ei)i is updated by p+(x′+ei)i∩ ≥ on line 6, which means p+(x′)i = 1 and p+(x′+ei)i ∈ {1,≥}
at the end of the for loop.

Case 2: item (5) in Definition 3. Fix a coordinate i and two points x ≼ x′ and xi = x′i.
Suppose that p+(x)i =≥. We will prove p+(x′)i ∈ {1,≥} at the end of the for loop. There are two
possibilities: p+(x)i is updated on line 6 or line 7. If p+(x)i is updated on line 6, then we have
p+(x′− ei)i = 1 and p+(x′)i ∈ {1,≥}. If p+(x)i is updated on line 7 (which means p′(x)i ∈ {0,≤}),
then we have p′(x′)i ∕= −1. Meanwhile, by Claim 2, we know that the if condition on line 5 is true.
So p+(x′)i will be updated by either 1 or ≥.

This finishes the proof that p+ is a weakly monotone PI function before line 8.
The final step is to show that p′(x)i∩p+(x)i is well defined for all x and i, which follows from the

observation that p+(x)i = 1 only if p′(x)i ∈ {1,≥, ⋄} and p+(x)i =≥ only if p′(x)i ∈ {0, 1,≤,≥, ⋄}
for all x and i.

Symmetrically, we conclude the following lemma.

Lemma 8 (Monotonicity Preserving of Subroutine 4). Given a monotone PI function p, a point
q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ {≤, ⋄} (which implies qℓ > 1), we have the
function pr returned by Generate-PI-Function-Minus(p, q, ℓ) remains monotone. Furthermore,
we have pr ⇒ p.

Lemma 9 (Safety Preserving of Subroutine 3). Given a monotone and safe PI function p : [n]k →
{−1, 0, 1,≤,≥, ⋄}k, a point q and a coordinate ℓ such that p(q)ℓ ∈ {≥, ⋄}, we have the PI function
pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains safe.

Proof. Since p(q)ℓ ∈ {≥, ⋄}, we know that pr returned by Generate-PI-Function-Plus(p, q, ℓ) is
also monotone and pr ⇒ p by Lemma 7.

Note that in the subroutine Generate-PI-Function-Plus, pr is obtained by only adding 1 and
≥ on the function p. So we have Ms(p

r) = Ms(p) for every slice s. By the same reason, p is safe,
and pr ⇒ p, we have for any point x ∈ Ls with x ≻ Ms(p

r), pr(x)i ∈ {−1, 0, 1} for all i with
xi > Ms(p

r)i and pr(x)i = −1 for some i with xi > Ms(p
r)i for all slices s. As a corollary, we have

Js(p
r) ≼ Ms(p

r) for all s, derived from the proof of Lemma 6. (This corollary will be used in this
proof later).

So we will focus on proving the first item in Definition 5 for pr, namely, we will prove for any
point x ∈ Ls with x ≺ Js(p

r), pr(x)i ∈ {−1, 0, 1} for all i such that xi < Js(p
r)i and pr(x)i = 1 for

some i with xi < Js(p
r)i.

We first prove the first part: for any point x ∈ Ls and x ≺ Js(p
r), pr(x)i ∈ {−1, 0, 1} for

all i such that xi < Js(p
r)i. Fix arbitrarily a slice s, a point x ∈ Ls such that x ≺ Js(p

r)
and i such that xi < Js(p

r)i. We will show that the if condition on line 5 is true for x and i.
(Note that we need to show there exists a point y such that (a) x ≼ y; (b) xi < yi; and (c)
xj = yj for all j with p′(y)j ∕∈ {1, 0,≥}. One may try to directly use Js(p

r) to serve as that y.
But note that the definition of Js(p

r) only guarantees that xj = yj for all j with pr(y)j ∕∈ {1, 0,≥}
instead of what we need in (c) (which concerns p′(y)). So extra effort is needed here.)

Let Y := {y | there exists i′ such that Js(p
r)− ei′ ≼ y, (Js(p

r)− ei′)i′ < yi′ and (Js(p
r)− ei′)j =

yj for all j with p′(y)j ∕∈ {1, 0,≥}}. Let y∗ be the join of Y∪{Js(pr)}. Then we prove the following
claim.

Claim 3. y∗ could serve as the y for the if condition on line 5 for x and i.

14

Proof. Since x ≼ Js(p
r) and xi < Js(p

r)i, we have x ≼ y∗ and xi < y∗i . So in what follows, we will
show p′(y∗)j ∈ {1, 0,≥} for all j such that xj < y∗j .

If Y = ∅, then we know that p+(Js(p
r))i = ⋄ for all i (since any y ∈ Y along with the i′ should

active the condition on line 5, which will update (Js(p
r))i′). So we have pr(Js(p

r))i = p′(Js(p
r))i

for all i, which implies xj = Js(p
r)j for all j with p′(Js(p

r))j ∕∈ {1, 0,≥}. This means y∗ = Js(p
r)

itself could serve as the y for the if condition on line 5 for x and i.
Now let’s consider the case Y ∕= ∅ and let j be such that xj < y∗j . Let y ∈ Y be such that yj = y∗j

(which must exist since Js(p
r) ≼ y for all y ∈ Y). Since Js(p

r)j ≤ y∗j , we have (Js(p
r)− ej)j < yj .

So we have p′(y)j ∈ {1, 0,≥}, which implies p′(y∗)j ∈ {1, 0,≥} as well.
This finishes the proof.

Claim 3 tells us that y∗ could serve as the y for the if condition on line 5 for x and i. So
we know that p+(x)i ∈ {1,≥}. Furthermore, p+(x)i =≥ only if p′(x)i ∈ {0,≤}, which implies
pr(x)i ∈ {−1, 0, 1}.

We then prove the second part: for any point x ∈ Ls and x ≺ Js(p
r), pr(x)i = 1 for some i

with xi < Js(p
r)i. Fix arbitrarily a slice s and a point x ∈ Ls such that x ≺ Js(p

r). Assume for
the sake of contradiction that pr(x)i ∈ {−1, 0} for all i with xi < Js(p

r)i. Then construct a new
slice s′ as follows:

s′i :=

si si ∕= ∗;
xi si = ∗ and xi = Js(p

r)i;
∗ otherwise (si = ∗ and xi < Js(p

r)i).

Then clearly x, Js(p
r) ∈ Ls′ and xi < (Js(p

r))i for all i with s′i = ∗. Note that pr(Js(p
r))i ∈ {≥, 0}

for all i with s′i = ∗. However, we have pr(x)i ∈ {−1, 0} for all i with s′i = ∗ by assumption. This
means Js′(p

r) ∕≼ Ms′(p
r), which leads to a contradiction.

This finishes the proof.

Again, symmetrically, we conclude the following lemma.

Lemma 10 (Safety Preserving of Subroutine 4). Given a monotone and safe PI function p : [n]k →
{−1, 0, 1,≤,≥, ⋄}, a point q and a coordinate i such that p(q)i ∈ {≤, ⋄}, we have the PI function
pr returned by Generate-PI-Function-Minus(p, q, i) remains safe.

Before proving the analogs for Generate-PI-Function-Zero, we first derive a simple but crucial
characterization for any 1-dimensional slice s from the safety.

Claim 4. Given a monotone and safe PI function p, and any 1-dimensional slice s with its free
coordinate j, we have

• p(x)j = 1 for all x ∈ Ls and x ≺ Js; and

• p(x)j = −1 for all x ∈ Ls and x ≻ Ms.

In addition, if Js = Ms then p(Js)j = p(Ms)j = 0; otherwise (Js ≺ Ms), we have

• p(x)j = ⋄ for all Js ≺ x ≺ Ms; and

• p(Js)j =≥ and p(Ms)j =≤.

15

Proof. Note that in 1-dimensional slice, for any point x ∈ Ls, x ∕≽ Js is actually equivalent to
x ≺ Js. So by the first item of the Definition 5, we have p(x)j = 1 for all x ∈ Ls and x ≺ Js.
Symmetrically, we also have p(x)j = −1 for all x ∈ Ls and x ≻ Ms.

Given that Js ≼ Ms by Lemma 6, we divide the proof into two simple cases.
Case 1: Js = Ms. Note that by Proposition 1, we have p(Js)j ∈ {0,≥} and p(Ms)j ∈ {0,≤}.

Take the intersection then we have p(Js)j = p(Ms)j = 0;
Case 2: Js ≺ Ms. Given s is a 1-dimensional slice and Js(p) ≺ Ms(p), for any point Js(p) ≺

x ≺ Ms(p), the only way that is consistent with the definition of Js(p) and Ms(p) is to have
p(x)j = ⋄.

Then we move to p(Js)j . By Proposition 1, we have p(Js)j ∈ {0,≥}. Since Js ≺ Ms, we know
that p(Js)j =≥. Symmetrically, we have p(Ms)j =≤.

Now we are ready to present the analogs for Generate-PI-Function-Zero.

Lemma 11 (Monotonicity and Safety Preserving of Subroutine 5). Given a monotone and safe PI
function p : [n]k → {−1, 0, 1,≤,≥, ⋄}, a point q, and a coordinate ℓ such that p(q)ℓ ∈ {≤,≥, ⋄}, we
have the PI function pr returned by Generate-PI-Function-Zero(p, q, ℓ) remains monotone and
safe. Furthermore, we have pr ⇒ p.

Proof. We first prove two easy cases.
Case 1: p(q)ℓ =≥. We note that in this case, line 2 (the call of Generate-PI-Function-Plus)

will be skipped, since we have either qℓ = 1 or p(q − eℓ)ℓ = 1 given p is safe. So when we run
line 3, either it is also skipped then nothing gets changed or this lemma can be deduced directly
by Lemma 8 and Lemma 10, whose conditions can be verified easily.

Case 2: p(q)ℓ =≤. This case follows from a similar reason. It is easy to show line 3 (the
call of Generate-PI-Function-Minus) will be skipped and this lemma can be deduced directly by
Lemma 7 and Lemma 9.

The following claim essentially proves the last trickier case.

Claim 5. Suppose that we are given a monotone and safe PI function p : [n]k → {−1, 0, 1,≤,≥, ⋄},
a point q and a coordinate ℓ such that 1 < qℓ < n and p(q)ℓ = ⋄. Let pr be the PI function returned
by Generate-PI-Function-Plus(p, q−eℓ, ℓ), then we have pr(q)ℓ =≥ (so that pr(q+eℓ)ℓ ∈ {≤, ⋄}).

Proof. Note that p′(q)ℓ =≥ at the end of line 2. So it suffices for us to prove that p+(q)ℓ ∕= 1 at
the end of for loop.

Assume that p+(q)ℓ = 1 for the sake of contradiction. Then we know there exists y such that
(a) q ≼ y; (b) qℓ < yℓ; and (c) qj = yj for all j with p′(y)j ∕∈ {1, 0,≥}. Since qℓ < yℓ, we
have p′(y)j = p(y)j for all j. So we have (a) q ≼ y; (b) qℓ < yℓ; and (c) qj = yj for all j with
p(y)j ∕∈ {1, 0,≥}. Define the slice s as follows:

sj :=

yj qj = yj ;
∗ otherwise .

Then we have q, y ∈ Ls and y ∈ Posts(p). Since q ≼ y and qℓ < yℓ, by the first property in
Definition 5, we know that p(q)ℓ ∕= ⋄, which contradicts the condition that p(q)ℓ = ⋄.

This finishes the proof.

Case 3: p(q)ℓ = ⋄. This implies that 1 < qℓ < n. At the end of line 2, by Lemma 7 and
Lemma 9, we have pr remains monotone and safe. Furthermore, pr ⇒ p. Now by Claim 5, we know
that pr(q)ℓ =≥, which means pr(q + eℓ) ∈ {≤, ⋄} by Claim 4.

16

So at the end of line 3, by Lemma 8 and Lemma 10 (which need the condition of pr(q + eℓ) ∈
{≤, ⋄}), we have pr remains monotone and safe. Furthermore, pr ⇒ p.

This finishes the proof.

Lemma 12. Given a monotone and safe PI function p, a point q ∈ [n]k, a coordinate ℓ ∈ [k], and
b ∈ {−1, 0, 1} such that (p(q)ℓ, b) satisfies the following condition:

p(q)ℓ ∈ {≥, ⋄} if b = 1; p(q)ℓ ∈ {≤, ⋄} if b = −1; p(q)ℓ ∈ {≤,≥, ⋄} if b = 0,

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisfies pr(q)ℓ = b.

Proof. When b = 1, we have p′(q)ℓ = 1 at the end of line 2. Since pr ⇒ p′, we have pr(q)ℓ = 1 as
well. The case of b = −1 is similar.

If qℓ = 1, qℓ = n, or p(q)ℓ ∕= ⋄, then pr(q)ℓ = 0 can be derived by previous cases since at
most one of Generate-PI-Function-Plus and Generate-PI-Function-Minus is called. For the
case 1 < qℓ < n and p(q)ℓ = ⋄, by Claim 5, we have both Generate-PI-Function-Plus and
Generate-PI-Function-Minus are called and pr(q − eℓ)ℓ = 1 and pr(q − eℓ)ℓ = −1, which forces
pr(q)ℓ = 0 since p is monotone.

3.4 Not Creating New Fixed Points

Lemma 13 (Fixed Points of Subroutine 3). Given a monotone function f : [n]k → [n]k, a PI
function p, a point q and a coordinate ℓ such that

• p is monotone and safe;

• p(q)ℓ ∈ {≥, ⋄};

• f |p(q + eℓ)ℓ ≥ qℓ + 1; and

• Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Plus(p, q, ℓ) satisfies Fix(f |pr) ⊆ Fix(f |p) ⊆
Fix(f).

Proof. Note that whenever we have pr(x)i ∕= p(x)i for some x and i, it must be the case that
pr(x)i = 1 or pr(x)i = p(x)i∩ ≥. If pr(x)i = 1, then we have f |pr(x) ∕= x, which means x is not a
fixed point of f |pr . So we only need to analyze the case that p(x)i ∕= pr(x)i = p(x)i∩ ≥.

Fix arbitrary z and i such that p(z)i ∕= pr(z)i = p(z)i∩ ≥. First consider the updating rule on
line 2, in which case i = ℓ and z = x + eℓ for some x ≽ q and xℓ = qℓ, then we have f |p(z)ℓ ≥ zℓ
by the third condition. Note that it suffices for us to know f |p(x)i ≥ xi, since it implies that either
f |p(x)i = f |pr(x)i or f |pr(x)i = xi + 1 since pr(x)i ∈ {0, 1,≥} given that pr(x)i = p(x)i∩ ≥.

Next, we consider the case that p+(z)i is updated on line 6 and 7, where we will show f |pr(x) ∕= x.
Let y be such that (a) z ≼ y; (b) zi−1 < yi (zi ≤ yi); and (c) zj = yj for all j with p(y)j ∕∈ {1, 0,≥}
on line 5. Define a slice s as follows:

sj :=

yj p(y)j ∕∈ {1, 0,≥};
∗ otherwise.

Then we have z, y ∈ Ls and z ≼ Js(p) (given that z ≼ y and y ≼ Js(p)). Further note that
z ∕= Js(p), otherwise we have p(z)i = pr(z)i = p(z)i∩ ≥. So it suffices for us to argue f |p(z) ∕= z
for all z ≺ Js(p), which follows from that p is safe and Lemma 6.

This finishes the proof.

17

We conclude the analog for Generate-PI-Function-Minus.

Lemma 14 (Fixed Points Preserving of Subroutine 4). Given a monotone function f : [n]k → [n]k,
a PI function p, a point q and a coordinate ℓ such that

• p is monotone and safe;

• p(q)ℓ ∈ {≤, ⋄};

• f |p(q − eℓ)ℓ ≤ qℓ − 1; and

• Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Minus(p, q, ℓ) satisfies Fix(f |pr) ⊆ Fix(f |p) ⊆
Fix(f).

Lemma 15 (Fixed Points of Subroutine 5). Given a monotone function f : [n]k → [n]k, a PI
function p, a point q and a coordinate ℓ such that

• p is monotone and safe;

• p(q)ℓ ∈ {≤,≥, ⋄};

• f |p(q)ℓ = qℓ; and

• Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Zero(p, q, ℓ) satisfies Fix(f |pr) ⊆ Fix(f |p) ⊆
Fix(f).

Proof. Let us consider the non-trivial case where both subroutines Generate-PI-Function-Plus
and Generate-PI-Function-Minus are called. Otherwise, this lemma can be derived by either
Lemma 13 or Lemma 14 (given that f |p(q)ℓ = qℓ).

Suppose that both subroutines are called, then we have 1 < qℓ < n and p(q)ℓ = ⋄. Since
f |p(q)ℓ = qℓ, we have f(q)ℓ = qℓ.

By Claim 5, we know that at the end of line 2, we have pr(q)ℓ =≥ and pr(q+ eℓ)ℓ ∈ {≤, ⋄}. At
this time, we still have f |pr(q)ℓ = qℓ as well as other properties in the condition of this lemma by
Lemmas 7, 9 and 13. So this lemma can be derived by Lemmas 8, 10 and 14.

This finishes the proof.

4 An Illustrating Example

In this section, we illustrate how our reduction works in one concrete but tricky example. Recall
that we have to make sure our Algorithm 1 works for any monotone function and any algorithm
solving UniqueTarski. For simplicity, we pick the following 2D example: a monotone function
f : [6]2 → [6]2 with f(3, 4) = (4, 3) and f(4, 3) = (3, 4) as shown in Figure 2a, as well as an
algorithm U for UniqueTarski, which will first query (3, 4), given the answer f(3, 4) = (4, 3),
then query (4, 3).

Note that the function (actually partial function) in Figure 2a does not violate monotonicity.
But clearly, no monotone function that is consistent with Figure 2a has a unique fixed point. This
is because the partial information derived from f(3, 4) = (4, 3) and f(4, 3) = (3, 4) is sufficient

18

(a) A monotone function f : [6]2 → [6]2 with
f(3, 4) = (4, 3) and f(4, 3) = (3, 4).

(b) The standard partial information derived by
(3, 4) and (4, 3), described in the light blue color.
The solid arrows mean −1 or 1 and the dashed
arrows mean ≤ or ≥ (the same rule applies below).

Figure 2: A 2D example for which after two queries the algorithm U for UniqueTarski will fail.

(a) The partial information by adding f(3, 4)1 = 4. (b) The safe PI function constructed by Algorithm 1.
The new information is described in the green color
(the same rule applies below).

(c) The partial information by adding f(3, 4)2 = 3. (d) The safe PI function constructed by Algorithm 1.

Figure 3: The evolution of PI function when adding f(3, 4)1 = 4 and f(3, 4)2 = 3.

19

to conclude the existence of fixed points in both the bottom left corner and top right corner, as
shown in Figure 2b. Observe that if the algorithm U is not fooled, it could immediately reject
the function f and return “the underlying function has multiple fixed points” once it gets the true
answer f(4, 3) = (3, 4).

Perhaps surprisingly, our reduction will modify the answer the algorithm U gets when querying
(3, 4), by creating safe PI functions p that satisfy Fix(f |p) ⊆ Fix(f) (the formal statement is in
Theorem 3).

We show how the PI function evolves step by step in Figure 3 and 4. The figures on the left-
hand side are obtained by adding one piece of information (namely, f(3, 4)1 = 4, f(3, 4)2 = 3,
f(4, 3)1 = 3, and f(4, 3)2 = 4). The figures on the right-hand side are obtained by the Subroutine
Generate-PI-Function. Note that in the last step after Figure 4b, we will try to add the last
piece of information f(4, 3)2 = 4. However, since p(4, 3)2 =≤ already, the algorithm U will get
f |p(4, 3)2 = 3.

It is easy to verify that all PI functions of the figures on the right-hand side are safe and satisfy
Fix(f |p) ⊆ Fix(f). In particular, for Figure 4d, every point outside the bottom left corner is
certainly not a fixed point of f |p, and the fixed point(s) in the bottom left corner is not affected.

(a) The partial information by adding f(4, 3)1 = 3. (b) The safe PI function constructed by Algorithm 1.

(c) The partial information by adding f(4, 3)2 = 4. (d) The safe PI function constructed by Algorithm 1.

Figure 4: The evolution of PI function when adding f(4, 3)1 = 3 and f(4, 3)2 = 4.

20

5 Promise Problem versus TFNP Version

The problems Tarski(n, k) and UniqueTarski(n, k) are promise problems. In the former, we want
to compute a fixed point of the given function under the promise (condition) that it is monotone;
in the latter the function is promised to be monotone and have a unique fixed point.

From a promise problem, one can define a total search problem, where on any given arbitrary
input one seeks either a desired solution as in the promise problem, or a violation certificate
showing that the input does not satisfy the promise. The total search version of the Tarski problem
is formally the following search problem.

Definition 6 (Total search version of Tarski(n, k)). Given a function f : [n]k → [n]k, find one of
the following:

• a point x ∈ [n]k such that f(x) = x; or

• two points x, y ∈ [n]k such that x ≼ y and f(x) ∕≼ f(y).

In the black box setting, the function f is given by a black box (an oracle). In the white box setting,
the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates and k ∗ ⌈log n⌉
output gates.

The total search version of Tarski in the white box setting is in TFNP, in fact it is PLS ∩
PPAD. Any algorithm for the total search version of a promise problem (whether in the white box
or the black box setting) can be obviously used also to solve the promise problem, so the total
version is always at least as hard as the promise problem. In general the converse may not hold,
since in the total search version, the algorithm is not allowed to simply fail if the input does not
satisfy the promise, but it must provide a violation certificate (and in general the complexity of
the total problem may depend on the type of certificate that is required). In the case of the Tarski
problem in the black box setting however it is easy to see that the total version is no harder than
the promise problem. This is because of the following property.

Lemma 16. Let Q = {q1, . . . , qm} be a set of query points in [n]k and A = {a1, . . . , am} the
corresponding answers of the black box. There is a monotone function f that is consistent with all
the answers (i.e such that f(qi) = ai for all i ∈ [m]) if and only if there is no pair i, j such that
qi ≼ qj and ai ∕≼ aj.

Proof. If there is a pair i, j such that qi ≼ qj and ai ∕≼ aj then clearly there is no monotone function
f that is consistent with the answers. Suppose now that there is no such pair. Define the function
f as follows: For every point x ∈ [n]k and every coordinate i, set f(x)i = min{aji | x ≼ qj}; if the
set on the right-hand side is empty then set f(x)i = n. We have to show that f is monotone and
is consistent with the answers.

Consider any two points x ≼ y and any coordinate i. Then y ≼ qj implies x ≼ qj , thus
f(x)i = min{aji | x ≼ qj} ≤ f(y)i = min{aji | y ≼ qj}. Therefore, f is monotone.

By the definition of f , for any query point qt and coordinate i, f(qt)i = min{aji | qt ≼ qj} ≤ ati.

If f(qt)i < ati then there is another query point qj such that qt ≼ qj and aji < ati, hence a
t ∕≼ aj .

Corollary 1. In the black-box setting, suppose that Tarski(n, k) (the promise problem) can be
solved in q(n, k) queries and t(n, k) time, then total search version of Tarski(n, k) can be solved
in q(n, k) queries and O(t(n, k) + q(n, k)2 · k) time.

21

Proof. Run the algorithm for the promise problem. Either the algorithm will find a fixed point
within the query and time complexity of the promise problem, or two of the query points provide
a violation certificate.

We showed that Tarski(n, k) reduces to UniqueTarski(n, k) with the same query complexity.
Therefore, we have.

Corollary 2. Any black-box algorithm for UniqueTarski(n, k) (the promise problem) can be used
to solve also the total search version of Tarski(n, k) with the same query complexity.

We can define a total search version of UniqueTarski(n, k) that includes as a possible answer
also a violation certificate of uniqueness. One way to define it is as follows.

Definition 7 (Total search version of UniqueTarski(n, k)). Given a function f : [n]k → [n]k,
find one of the following:

• a point x ∈ [n]k such that f(x) = x; or

• two points x, y ∈ [n]k such that x ≼ y and f(x) ∕≼ f(y); or

• two points x, y ∈ [n]k such that x ≼ f(x), y ≽ f(y) and x ∕≼ y.

In the black box setting, the function f is given by a black box (an oracle). In the white box setting,
the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates and k ∗ ⌈log n⌉
output gates.

Note that if f is monotone and x ≼ f(x) then f has a fixed point in Lx,nk , and if y ≽ f(y)
then f has a fixed point in L1k,y. If x ∕≼ y then L1k,y and Lx,nk are disjoint, and hence f has at
least two fixed points. Clearly, the total search version of Tarski(n, k) is at least as hard as that
of UniqueTarski(n, k), both in the white box and the black box setting, since the latter includes
one more option for an acceptable output. It is not much harder however. Let T-Tarski(n, k) and
T-UniqueTarski(n, k) denote the total search versions of the two problems, as defined above.

Theorem 4. If T-UniqueTarski(n, k) can be solved in q(n, k) queries in the black box setting,
then T-Tarski(n, k) can be solved in q(n, k) queries. If T-UniqueTarski(n, k) can be solved in
time t(n, k) in the black box (respectively, white box) setting, then T-Tarski(n, k) can be solved in
time O(t(n, k) ∗ (k · log n)) in the black box (resp. white box) setting.

Proof. The statement in the first sentence follows from Corollary 2. Next, we show the statement
in the second sentence.

Given a black-box or white-box algorithm U for T-UniqueTarski(n, k), the algorithm for
T-Tarski(n, k) in the same setting is as follows. Use the algorithm U to find a solution of
T-UniqueTarski(n, k). If the solution is a fixed point (i.e., a point x ∈ [n]k such that f(x) = x) or
a violation certificate of monotonicity (i.e., two points x, y ∈ [n]k such that x ≼ y and f(x) ∕≼ f(y))
then we are done, since they are also solution of T-Tarski(n, k). Otherwise, we find a solution
that is a violation certificate of uniqueness (i.e., two points x, y ∈ [n]k such that x ≼ f(x), y ≽ f(y)
and x ∕≼ y). Then there exists i such that xi > yi, which means either xi > n/2 or yi ≤ n/2.
If xi > n/2, then we shrink the search space to Lx,nk and recursively call U to find a solution in
Lx,nk ; If yi ≤ n/2, then we shrink the search space to L1k,y and recursively call U to find a solution
in L1k,y. The function f may map a point q in the reduced space to a point outside the space; in

22

that case the point q together with either the top or the bottom point of the reduced space form a
violation certificate for monotonicity. In the black box setting, if the algorithm ever queries such a
point q then we immediately get a violation of monotonicity and can terminate. In the white box
setting, when we recurse to the reduced space, we replace the circuit for f with a modified circuit
for a function f ′ which restricts the coordinates of the output point to lie in the reduced space.
When the recursive call returns a solution to T-Tarski for the reduced space, i.e. either a fixed
point x of f ′ or a pair of points x, y that certify that f ′ is not monotone, then we test if f and
f ′ have the same value on these points. If they do, then they constitute a solution for f in the
original space; if one of them does not, then that point with the bottom or the top element provide
a certificate for the violation of monotonicity of f .

The search space goes down by a factor of two after each call of U . So after at most k · log n
many rounds, we can find a solution of T-Tarski(n, k).

6 Discussion and Open Problems

Our results resolve an open question in [EPRY20] and could potentially shed new light on the upper
bounds and lower bounds of the query complexity of Tarski(n, k). As we showed, Tarski(n, k)
is no harder, with respect to query complexity, than the special case of monotone functions that
have a unique fixed point in the lattice, and even further, have a unique fixed point in every slice
of the lattice. There is a lot of structure in such monotone functions. In a function f with a
unique fixed point, the least fixed point and the greatest fixed point coincide. There is a path
connecting the bottom element 1k of the lattice with the top element nk, the fixed point lies on
this path, and the function f on all points in this path point in the direction of the fixed point.
The same structure holds for every slice if the function has a unique fixed point on all slices. This
structure may well be useful in helping to design an algorithm with low complexity. On the lower
bound side, it may also provide a useful framework; indeed the lower bound constructions for two
dimensions in [EPRY20] use this structure. Can we use uniqueness to improve the bounds on the
query complexity of Tarski?

A second question concerns the time complexity of the algorithms in the black box setting.
Our reduction involves the maintenance of a partial information function p that is defined over
the whole lattice. A straightforward implementation would take of course exponential time. Note
however that we do not need to compute p on the whole domain; we only need to be able to
compute p on demand on specific points, namely the query points of the Unique Tarski algorithm.
Is it possible to implement the algorithm so that it runs in polynomial time in the number of
queries? More generally, does the black-box time complexity of Tarski(n, k) reduce also to that
of UniqueTarski(n, k)?

Regarding the white-box complexity, we know that the total search version of Tarski(n, k)
is in PLS ∩ PPAD [EPRY20] and thus by the results of [FGHS21, GHJ+22], it is in the classes
CLS (Continuous-Local-Search) and EOPL (End-of-Potential-Line). Is the total search version of
UniqueTarski in the class UEOPL (Unique-EOPL) [FGMS20]? Is it hard for UEOPL?

7 Acknowledgement

We would like to thank anonymous CCC reviewers for their helpful comments to improve the
presentation of the paper.

23

References

[CL22] Xi Chen and Yuhao Li. Improved upper bounds for finding tarski fixed points. In
Proceedings of the 23rd ACM Conference on Economics and Computation, pages
1108–1118, 2022. 1

[Con92] Anne Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992. 1

[DQY11] Chuangyin Dang, Qi Qi, and Yinyu Ye. Computational models and complexities of
tarski’s fixed points. Technical report, Stanford University, 2011. 1

[EPRY20] Kousha Etessami, Christos Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis.
Tarski’s theorem, supermodular games, and the complexity of equilibria. In 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020. 1, 6

[FGHS21] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The
complexity of gradient descent: CLS = PPAD ∩ PLS. In STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 46–59. ACM, 2021. 6

[FGMS20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of
potential line. J. Comput. Syst. Sci., 114:1–35, 2020. 6

[FPS22] John Fearnley, Dömötör Pálvölgyi, and Rahul Savani. A faster algorithm for finding
tarski fixed points. ACM Transactions on Algorithms (TALG), 18(3):1–23, 2022. 1

[GHJ+22] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Further collapses in TFNP. In 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume
234 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. 6

[MM19] Massimo Marinacci and Luigi Montrucchio. Unique tarski fixed points. Math. Oper.
Res., 44(4):1174–1191, 2019. 1

[MR90] Paul Milgrom and John Roberts. Rationalizability, learning, and equilibrium in games
with strategic complementarities. Econometrica: Journal of the Econometric Society,
pages 1255–1277, 1990. 1

[Sha53] L. Shapley. Stochastic games. Proc. Nat. Acad. Sci., 39(10):1095–1100, 1953. 1

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics, 5(2):285–309, 1955. 1

[Top79] Donald M Topkis. Equilibrium points in nonzero-sum n-person submodular games.
Siam Journal on control and optimization, 17(6):773–787, 1979. 1

[Top98] Donald M Topkis. Supermodularity and Complementarity. Princeton University Press,
1998. 1

24 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

