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Abstract

In the Random Oracle Model (ROM) all parties have oracle access to a common random
function, and the parties are limited in the number of queries they can make to the oracle. The
Merkle’s Puzzles protocol, introduced by Merkle [CACM ’78], is a key-agreement protocol in
the ROM with a quadratic gap between the query complexity of the honest parties and the
eavesdropper. This quadratic gap is known to be optimal, by the works of Impagliazzo and
Rudich [STOC ’89] and Barak and Mahmoody [Crypto ’09].

When the oracle function is injective or a permutation, Merkle’s Puzzles has perfect com-
pleteness. That is, it is certain that the protocol results in agreement between the parties.
However, without such an assumption on the random function, there is a small error probabil-
ity, and the parties may end up holding different keys. This fact raises the question: Is there a
key-agreement protocol with perfect completeness and super-linear security in the ROM?

In this paper we give a positive answer to the above question, showing that changes to the
query distribution of the parties in Merkle’s Puzzles, yield a protocol with perfect completeness
and roughly the same security.

Keywords: Key-Agreement, Random Oracle, Merkle’s Puzzles, Perfect Completeness

1 Introduction

Key-Agreement ([DH76]) is a fundamental primitive in modern cryptography. Key-Agreement
protocols allow two parties, Alice and Bob, to agree on a secret key that is hidden from any
eavesdropper, just by publicly communicating with each other. While the above is one of the most
important tasks in cryptography, still there are a respectively small number of assumptions from
which we know how to construct such protocols ([RSA78; Rab79; DH76; ElG84; McE78; AD97;
Reg09; BCNHR22; Ale03; ABW10; Sho99]). Moreover, these assumptions are more structured
compared to the assumptions which are used to base private-key cryptography, making them more
vulnerable to attacks, and arguably less reliable.

The Random Oracle Model. An important alternative to such assumptions is the use of key-
agreement protocols with proven security in the Random Oracle Model (ROM). In this model we
assume that the parties (and the eavesdropper) have oracle access to an idealized hash function -
a perfectly random function F : [N ] → [M ]. Then, the efficiency of the eavesdropper is measured
with respect to the number of oracle calls it needs to make in order to break the security.
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Unfortunately, while we usually want the gap between the running time of the honest parties in
the protocol and the running time of the adversary to be exponential (or at least super-polynomial),
this cannot be achieved in the random oracle model. Indeed, as shown by Impagliazzo and Rudich
[IR89] and Barak and Mahmoody [BM09], any protocol in which the honest parties make ℓ queries
can be broken by an adversary that makes O(ℓ2) queries. Yet, while this quadratic gap is not ideal,
in the lack of other reliable protocols it may be sufficient (see for example [HMORY19]).

Merkle’s Puzzles. The above quadratic gap is achievable, using a very elegant and simple
protocol, called Merkle’s Puzzles [Mer78]. In this protocol, Alice and Bob each choose ℓ random
queries, (x1, . . . , xℓ) and (y1, . . . , yℓ) respectively, from a domain of size O(ℓ2). Then, Alice and Bob
use the images of the queries to find an intersecting query (which exists with high probability due
to the birthday paradox). Specifically, Alice sends F (x1), . . . , F (xℓ); Bob then search for indexes j
and k such that F (xj) = F (yk), and sends j to Alice; Lastly, Alice outputs xj and Bob outputs yk
as as their keys.

For security, it is not hard to see that an eavesdropper that wants to learn Alice’s output needs
to invert the function F on a random image F (xj), and thus essentially needs to query all the O(ℓ2)
elements in the domain of the function.

When the function F is a random function with a large enough range, the probability that the
protocol succeeds, that is, results in an agreement between Alice and Bob, is approaching to 1.
Indeed, an error can occur only when two distinct queries have the same image. Moreover, when
using a more structured function, such as a permutation or any injective function, it follows that
Merkle’s Puzzles has perfect agreement probability. Yet, it is an interesting question whether there
exists such a key-agreement protocol without assuming any structure on the oracle function. That
is:

Is there a key-agreement protocol with perfect agreement and super-linear security in the
ROM?

1.1 Our Results

In this paper, we give a positive answer to the above question. More specifically, by changing the
distribution of queries in the Merkle’s Puzzles protocol, we get a protocol with perfect agreement
and roughly the same security.

Theorem 1.1 (Main theorem, informal). There exists a ℓ-query key-agreement protocol with perfect
agreement in the random oracle model, secure against all o(ℓ2)-query adversaries.

See Theorem 3.1 for the formal statement. As mentioned above, we get this result by changing
the query distribution of Merkle’s Puzzles. The main observation is that in our distribution, the
parties always have a single query in common. Then, by verifying that the sets of images of the
parties only intersect in (exactly) one point, the parties can be sure that the outputs are equal.1

1Choosing a distribution such that Alice and Bob always have an intersection is not hard. Indeed, for F : [ℓ]×[ℓ]→
[M ], consider the distribution in which Alice samples a random index i ← [ℓ], and query F (i, 1), . . . , F (i, ℓ), while
Bob queries F (1, j), . . . , F (ℓ, j) for a random j ← [ℓ]. It is not hard to see that F (i, j) is always in the intersection.
However, if the parties continue as in Merkle’s Puzzles (namely, Alice sends F (i, 1), . . . , F (i, ℓ), and Bob finds the
intersection), an eavesdropper can learn all the queries made by Alice, just by simulating Bob. Finding such a
distribution for which the protocol remains secure is the main challenge.
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The protocol. We next describe the query distribution we consider. For simplicity, we think of
F as a function over the domain [ℓ]× [ℓ]. To choose her queries, Alice samples ℓ uniformly random
points x1, . . . , xℓ ∈ [ℓ]. Then, Alice queries (1, x1), . . . , (ℓ, xℓ). On the other side, Bob chooses a
random index j ∈ [ℓ], and queries (j, 1), . . . , (j, ℓ). This distribution guarantees that (j, xj) is a
(unique) intersection between Alice’s and Bob’s queries.

The protocol proceeds similarly to Merkle’s Puzzles: Alice sends F (1, x1), . . . , F (ℓ, xℓ) to Bob,
but in a random order. Bob then searches for an intersection between F (1, x1), . . . , F (ℓ, xℓ) and
his own images, F (j, 1), . . . , F (j, ℓ). Crucially, if Bob finds more than one intersection, he notifies
Alice and they both output 0. Otherwise, he sends the intersection and both parties output its
preimage, (j, xj).

Security. While the agreement of this protocol follows immediately by the fact that there is
always an intersection, the security is a bit less obvious. Indeed, an adversary that tries to invert z =
F (j, xj) can learn some information on j by observing the other images sent by Alice. Specifically,
if the adversary finds a query (a, b) such that F (a, b) ̸= z appears in the communication from Alice
to Bob, she learns that j ̸= a. This can potentially rule out ℓ possible preimages. Nevertheless, we
are able to show by a simple reduction that this cannot help too much.

To prove the above we consider a balls and boxes game, defined as follows. There are ℓ2 boxes
ordered in ℓ rows and ℓ columns. In each row, we chose a box uniformly at random and place one
ball in it (all other boxes are left empty). All the balls are blue, except exactly one random ball
which is red. The goal of the player is to find the red ball, by opening as few boxes as possible.

The security of Merkle’s Puzzles corresponds to a similar game, in which there is only one red
ball within a single random row, and there are no other (blue) balls. In this case, it is not hard
to see (by the union bound) that any player that opens q boxes, succeeds in probability at most
q/ℓ2 in finding the red ball. To prove that our protocol is secure we first show that the security of
the protocol is equivalent to the hardness of the above box and balls game. Then, we show that
the presence of the blue balls cannot help the player too much. This is done by observing a simple
reduction between the games with and without the blue balls. Specifically, we show that any player
that opens q boxes, cannot win with probability larger than 2q/ℓ2.

Comparison with Merkle’s Puzzles. Similarly to Merkle’s Puzzles, the above protocol is
a two-message protocol, and has non-adaptive queries. Both protocols also have near-optimal
communication complexity for protocols with these properties [HMORY19] (and can be generalized
to get other possible tradeoffs between communication and security).

To compare the security of Merkle’s Puzzles and the protocol given in this work, recall that
to have an intersection with 1 − o(1) probability, the parties in Merkle’s Puzzles should query ℓ
queries each from a domain D of size at most o(ℓ2). Thus, an q-query adversary can learn the key
with probability q/|D| = ω(q/ℓ2). In this case, we are able to get a slightly better security due to
the fact that, in the protocol presented here, there is an intersection with probability 1, when the
domain of the function is of size (exactly) ℓ2.

Perspective and Additional Related Work

Perfect primitives in the ROM. Being an idealized hash function, the random oracle model
is used to prove black-box separation between cryptographic primitives. Notably, Kahn, Saks, and
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Smyth [KSS00] prove a black-box separation between one-way permutations and one-way functions,
showing that it is impossible to construct a one-way permutation from random oracles alone.

As mentioned above, Impagliazzo and Rudich [IR89] prove that there is no key-agreement with
super-polynomial security in the ROM, and Barak and Mahmoody [BM09] prove a tight quadratic
bound on the security of key-agreement protocols in the ROM. The latter result was generalized by
Haitner, Omri, and Zarosim [HOZ16] to hold for any semi-honest, no-input, two-party task. Prior
to the work of [BM09], Brakerski, Katz, Segev, and Yerukhimovich [BKSY11] proved a similar
quadratic bound on the security of any key-agreement protocol with perfect completeness in the
ROM. However, as mentioned by Barak and Mahmoody [BM09], before the work presented here,
it was conceivable that every key-agreement protocol with perfect completeness in the ROM can
be broken with a linear number of queries to the oracle.

Public-key encryption with perfect completeness. A long line of work is dedicated to the
task of eliminating errors in public-key encryption schemes (or, equivalently, two-message key-
agreement) and in other cryptographic primitives [GGH97; DNR04; HR05; LT13; BV17]. As
mentioned in [DNR04; BV17], even a small decryption error in a public-key encryption scheme can
be problematic for some uses. Moreover, as demonstrated by Proos [Pro03] and Boneh, DeMillo,
and Lipton [BDL01], such decryption error can be used by an adversary to attack the cryptographic
system.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets and distributions, uppercase for random variables, and
lowercase for values and functions. When unambiguous, we will naturally view a random variable
as its marginal distribution. For a set S, let x← S denote that x is drawn uniformly from S. For
n ∈ N, let [n] = {1, . . . , n}. For two sets A,B, let A× B = {(a, b) : a ∈ A, b ∈ B}.

2.2 Interactive Protocols and Oracle-Aided Protocols

A no-input, two-party protocol Π = (A,B) is simply a pair of probabilistic interactive algorithms.
The interaction between the parties A and B is carried out in rounds, where in each round one
party is active and the other is idle. In the j-th round of the protocol, the active party sends a
message to the other party, according to its partial view (its randomness and the messages sent
in the protocol so far). The transcript of a given execution of the protocol is the list of messages
exchanged between the parties in the execution of the protocol.

For a protocol Π, we use (trans, outA, outB) ← Π to denote that (trans, outA, outB) is a triplet
sampled according to the joint distribution induced by Π, which contains a transcript of the pro-
tocol, an output of party A, and an output of party B in a random execution of Π.

An oracle-aided no-input two-party protocol Π = (A,B) is a pair of interactive oracle-aided
algorithms. For a function f , we use Πf = (Af ,Bf ) to denote the protocol Π when using f as the
oracle function. Such a protocol Π = (A,B) is a ℓ-query protocol, if for every function f , each party
always queries f on at most ℓ points during the interaction between Af and Bf .
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2.3 Key-Agreement Protocols

We now define key-agreement protocols with respect to a function family F . In the random oracle
model, we choose F to be the all-function family, over some fixed domain and range.

Definition 2.1 (Key-agreement protocol). A no-input oracle-aided two-party protocol (A,B) is a
(q, α, γ) key-agreement protocol with respect to a function family F if the following holds:

1. Agreement:
Prf←F ,(trans,outA,outB)←Πf [outA = outB] ≥ 1− α.

2. Security: For every algorithm E, making at most q queries, it holds that

Prf←F ,(trans,outA,outB)←Πf

[
Ef (trans) = outA

]
≤ γ.

Note that the above security definition requires that the adversary will not be able to guess the
key, but the adversary may know some partial information on the output of A (for example, the first
bit). Given such a security guarantee, the parties can amplify it to get a stronger security notion, in
which the key is (somewhat) indistinguishable from random in the eyes of the eavesdropper. This
can be done by either extracting randomness from the outputs (for example, using the Goldreich-
Levin hardcore predicate [GL89]), or using the random oracle, by querying the common output
and using its image as the key.2

Let D and R be two sets, and let F = {f | f : D → R} be the all-function family over the
domain D and the range R. When |D| = Ω(ℓ2), and |R| >> ℓ2, the Merkle’s Puzzles protocol,
mentioned in the introduction, is a ℓ-query, (q, 0.01, O(q/ℓ2)) key-agreement protocol with respect
to F , and for every q ∈ N.

3 The Key-Agreement Protocol

We now describe our key-agreement protocol. Let ℓ,M ∈ N be two parameters, and let Fℓ,M ={
f | f : [ℓ2]→ [M ]

}
be the family of all functions from [ℓ2] to [M ]. For simplicity, we think of the

domain of every f ∈ Fℓ,M as [ℓ]× [ℓ]. Namely, we think of every f ∈ Fℓ,M as f : [ℓ]× [ℓ]→ [M ].

Theorem 3.1. The following holds for every ℓ,M ∈ N. There exists an ℓ-query two-party protocol,
which is a (q, 0, 2(q+1)

ℓ2
+ 2ℓ2

M ) key-agreement protocol with respect to to Fℓ,M , for every q ∈ N.

The protocol is as follows.

Protocol 3.2.

Parameters: ℓ,M ∈ N.
Common function: f : [ℓ]× [ℓ]→ [M ].

Operation:

1. Party A samples x1, . . . , xℓ ← [ℓ] uniformly and independently at random, and queries (1, x1), . . . , (ℓ, xℓ).
Let ai = f(i, xi) for every i ∈ [ℓ].

2A problem can occur in the last approach if the image of the key is used in the protocol, as happens in Merkle’s
Puzzles. In this case, the parties can, for example, use only the prefix of the images in the protocol, and use the
suffix as the secret key.
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2. Party B samples an index j ← [ℓ] uniformly at random, and queries (j, 1), . . . , (j, ℓ). Let bi =
f(j, i) for every i ∈ [ℓ].

3. A sends a1, . . . , aℓ in a random order.

4. B checks if the number of different images in {a1, . . . , aℓ, b1, . . . , bℓ} is exactly 2ℓ − 1 (that is,
if there is exactly one collision). If not, B notifies A, and both parties output 0. Otherwise, B
finds the unique z ∈ {a1, . . . , aℓ} ∩ {b1, . . . , bℓ}, and sends z to A.

5. Party A outputs (i, xi) for the unique i ∈ [ℓ] for which f(i, xi) = z. B outputs (j, k) for the
unique k ∈ [ℓ] for which f(j, k) = z.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We turn to analyze the agreement and security of Protocol 3.2. Towards this, fix the parameters
M and ℓ, and let F = Fℓ,M . Let F ← F be a random variable representing a random function from
F , and let OA and OB be the outputs of A and B, respectively, in a random execution of Protocol 3.2
using the function F . Finally, Let T be the transcript of the protocol in this execution. Theorem 3.1
is a direct implication of the following two claims. The first states that Protocol 3.2 has perfect
agreement.

Claim 3.3 (Agreement).
Pr[OA = OB] = 1.

The second claim establishes the security of the protocol.

Claim 3.4 (Security). For every q-query algorithm E, it holds that

Pr
[
EF (T ) = OA

]
≤ 2(q + 1)

ℓ2
+

2ℓ2

M
.

We prove Claims 3.3 and 3.4 below, but first let us conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. The proof follows by Claims 3.3 and 3.4, together with the observation that
the parties in Protocol 3.2 make ℓ queries each. □

3.1 Agreement - Proving Claim 3.3

We start by showing that Protocol 3.2 has perfect agreement.

Proof of Claim 3.3. Claim 3.3 follows immediately by the query distribution of the parties. Specif-
ically, observe that for every sampling of the ℓ points of A, x1, . . . , xℓ, and for every sampling of
j, A and B have a common query, (j, xj). Thus, the parties have at least one common image. If
further there are no other collisions in the union of the two sets of images, then OA = OB = (j, xj).

On the other hand, when there are other collisions in the union of the sets, OA = OB = 0.
Overall, we get that OA = OB, with certainty, as wanted. □

3.2 Security - Proving Claim 3.4

In this part we prove that Protocol 3.2 has roughly the same security as Merkle’s Puzzles. We do it
by defining simplified security games, and showing a reduction between the security of Protocol 3.2
and these games.
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Balls and Boxes games. To analyze the security of Protocol 3.2, in the following we define two
“balls and boxes” games, to which we refer as the “unique-ball” game, and the “multi-ball” game.
Intuitively, breaking the security of Merkle’s Puzzles is equivalent to winning the unique-ball game,
and, on the other hand, we will show that breaking the security of Protocol 3.2 is equivalent to
winning the multi-ball game. In the following we define these two games, and show that every
strategy for the multi-ball game is an (almost) as good strategy for the unique-ball game. This will
imply that Protocol 3.2 has security similar to the security of Merkle’s Puzzles.

We start with defining the unique-ball game.

Definition 3.5 (The unique-ball game). Let ℓ, q ∈ N be two parameters. In the (ℓ, q)-unique-ball
game, there are ℓ2 boxes ordered in ℓ rows and ℓ columns. All the boxes are empty, except for one
box, chosen uniformly at random, that contains a red ball in it.

The player is allowed to (adaptively) open up to q boxes. The player wins the game if it finds
the ball.

It is not hard to see that for every strategy of the player, the probability of finding the ball is
at most q/ℓ2. We now define the multi-ball game.

Definition 3.6 (The multi-ball game). Let ℓ, q ∈ N be two parameters. In the (ℓ, q)-multi-ball
game, there are ℓ2 boxes ordered in ℓ rows and ℓ columns. In each row, there is a single box chosen
uniformly and independently at random, that contains a ball in it. All the other boxes are empty.
The ball in one row, chosen uniformly at random, is red, and the other balls are blue.

The player is allowed to (adaptively) open up to q boxes. The player wins the game if it finds
the red ball.

That is, as in the unique-ball game, the goal of the player is to find the box that contains the
red ball, out of ℓ2 possible boxes. However, this time when the player finds a blue ball, it knows
that the red ball is not in this row, and thus can stop opening boxes in this row. Intuitively, this
corresponds to the images A sends in Protocol 3.2, which can help the adversary to rule out some
possible indices. The connection between the security of Protocol 3.2 to the multi-ball game is
stated in the following claim.

Claim 3.7. Assume there exists a q-query algorithm E such that Pr
[
EF (T ) = OA

]
= p. Then there

exists a player P that wins the (ℓ, q + 1)-multi-ball game with probability at least p− 2ℓ2

M .

We prove Claim 3.7 in Section 3.3, but first let us use it to prove Claim 3.4. To do so, we need
to prove an upper bound on the winning probability of every strategy for the multi-ball game. This
is done by showing that every strategy to the multi-ball game can be used in the unique-ball game
with roughly the same success probability. Formally,

Claim 3.8. Assume there exists a strategy for the (ℓ, q)-multi-ball game that wins with probability
p. Then there exists a strategy for the (ℓ, q)-unique ball game with winning probability p/2.

Proof of Claim 3.8. Let P be a player for the (ℓ, q)-multi-ball game, that wins with probability p.
We show how to use P to construct P′ that wins in the (ℓ, q)-unique-ball game with probability
p/2.

Given ℓ2 boxes, P′ samples x1, . . . , xℓ ← [ℓ] uniformly and independently at random. Informally,
P′ will “plant” a blue ball in the box at location (i, xi) for every i ∈ [ℓ], and then run P. More
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formally, P′ simulates the game for P. Every time P chooses to open a box (i, j), P′ opens the same
box. If this box contains the red ball, P′ wins. If this box is empty and j = xi, P

′ reports to P that
the box contains a blue ball. Otherwise, P′ reports to P that the box is empty.

Observe that P′ wins if and only if P finds the red ball in the simulated game.3 To see that P
wins the simulated game with probability at least p/2, first observe that in the simulated game,
there is one row i∗ that contains two balls (one red ball and one blue ball, possibly at the same
box), and all the other rows contain exactly one (blue) ball. Notice that if both of the balls in row
i∗ were red, the winning probability of P in the simulated game was at least p (as we only added a
red ball to the grid). That is, P finds (at least) one ball on row i∗ with probability at least p. By
symmetry, the probability that the first ball in row i∗ found by P is indeed the true red ball is 1/2.
Thus, the winning probability of P is at least p/2, as stated. □

As a direct corollary from Claim 3.3 and the fact that there is no strategy for the unique-ball
game with a winning probability better than q/ℓ2, we get that every strategy for the (ℓ, q)-multi-ball
game wins with probability at most 2q/ℓ2.

Corollary 3.9. The winning probability of any strategy for the (ℓ, q)-multi-ball game is at most
2q/ℓ2.

We can now conclude Claim 3.4.

Proof of Claim 3.4. Immediately follows by Corollary 3.9 and Claim 3.7. □

3.3 Proving Claim 3.7

Lastly, we show that an adversary E that makes q queries to F and breaks Protocol 3.2 with
probability p, can be used to win the (ℓ, q + 1)-multi-ball game with roughly the same probability.

To prove Claim 3.7, consider the following player P that plays the multi-ball game by simulating
E on a random function F and transcript T . In the following, assume without loss of generality
that E never asks the same query twice. Moreover, at the cost of one additional query, assume that
E always queries F on its output.

Algorithm 3.10 (P).

Parameters: ℓ,M ∈ N.
Operation:

1. P samples a1, . . . , aℓ ← [M ] uniformly and independently at random, and j ← [ℓ].

2. P simulates E on the transcript trans = ((a1, . . . , aℓ), z = aj). Every time E makes a query (i, j),
P opens the box at location (i, j). P answers to E’s query as follows:

• If the box contains a red ball, P wins and halts.

• If the box is empty, P answers with a random element from [M ].

• If the box contains a blue ball, P answers with a random element from {a1, . . . , aℓ} \ {aj} that
was not in use before.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3notice that P may find ℓ blue balls in the simulated game, and this cannot happen in the real multi-ball game.
However, this event is not counted as a win
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We are now ready to prove Claim 3.7.

Proof of Claim 3.7. Let E be a (q + 1)-query algorithm that, given the transcript of Protocol 3.2,
queries the function F on the output OA of A with probability at least p. Let P be Algorithm 3.10.

We start with considering a modified version of Protocol 3.2 (which cannot be implemented as
a protocol), in which B does not notify A in step 4 in case B sees a collision in the function f .
Instead, in this case we assume that B sends the correct image z = f(j, xj), and that A outputs
the correct intersection (j, xj).

As the above modified version and Protocol 3.2 differ only in the case that there is a collision
in f , it is not hard to see that in this modified version, E guesses the output of party A with
probability at least

p− Pr
[
F (q) = F (q′) for two distinct queries q ̸= q′ of A and B

]
≥ p−

(
2ℓ

2

)
· 1

M

≥ p− 2ℓ2

M
,

where the first inequality holds by the union bound, since every two queries have probability 1/M
to collide, and there are at most 2ℓ queries made by the parties.

To see that the success probability of Algorithm 3.10 is p− 2ℓ2

M , note that it readily follows by
inspection that the distribution seen by E in a random execution of Algorithm 3.10 on a random
multi-ball game, is exactly the same distribution seen by E in a random execution of the above
modified protocol. Moreover, Algorithm 3.10 finds the red ball in the multi-ball game if and only
if E queries the secret key in the modified protocol. The claim follows. □
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