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Abstract

We study a natural complexity measure of Boolean functions known as the (exact) rational
degree. For total functions f , it is conjectured that rdeg(f) is polynomially related to deg(f),
where deg(f) is the Fourier degree. Towards this conjecture, we show that symmetric functions
have rational degree at least deg(f)/2 and monotone functions have rational degree at least√
deg(f). We observe that both of these lower bounds are tight. In addition, we show that all

read-once depth-d Boolean formulae have rational degree at least Ω(deg(f)1/d). Furthermore, we
show that almost every Boolean function on n variables has rational degree at least n/2−O(

√
n).

In contrast to total functions, we exhibit partial functions that witness unbounded separations
between rational and approximate degree, in both directions. As a consequence, we show that
for quantum computers, post-selection and bounded-error are incomparable resources in the
black-box model.

1 Introduction

Starting with the seminal work of Minsky and Papert [MP69], a long line of research has sought to
relate various measures of Boolean function complexity. In [NS92], Nisan and Szegedy proved that
the deterministic decision tree complexity D(f) of a Boolean function f is polynomially related to
its degree deg(f) as a multilinear polynomial. The same paper posed two open questions. One of
them conjectures that the sensitivity and block sensitivity of a Boolean function are polynomially
related. This conjecture was recently proven in a breakthrough by Huang [Hua19]. Huang’s result
brought sensitivity into a “happy flock” of complexity measures on total Boolean functions that are
all polynomially related: sensitivity, degree, approximate degree, and notions of query complexity.

Another natural measure of Boolean function complexity is the minimal degree of a rational
polynomial which represents the function exactly, called the rational degree (denoted rdeg). However,
rdeg is not known to be either polynomially related to or separated from the complexity measures
mentioned above. In fact, this was the other open question posed over 30 years ago in the paper of
Nisan and Szegedy (via personal communication with Fortnow) [NS92]. This question was reiterated
by Aaronson et al. [ABDK+21] yet very little progress has been made toward its resolution.

Question 1 (Fortnow [NS92]). Does there exist c > 1 such that for all total Boolean functions f ,
deg(f) ≤ O(rdeg(f)c)?

One of the motivations for Fortnow’s question was complexity-theoretic: is the intersection of
C=P and coC=P strictly contained in PP with respect to a generic oracle [For03]? C=P and coC=P
are “counting classes” [AK] which we define later, and rational degree corresponds to the black-box
version of their intersection.
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The rational degree is also related to quantum query complexity. In particular, de Wolf defined
the non-deterministic degree ndeg(f) of a Boolean function f as the minimal degree of a polynomial
whose zero set is precisely the set of inputs on which f evaluates to false [Wol00], and related it
to the rational degree through the identity rdeg(f) = max{ndeg(f),ndeg(f̄)}. de Wolf also proved
that the non-deterministic degree ndeg(f) equals the non-deterministic quantum query complexity
up to a constant factor.

In the same manuscript, de Wolf stated the following conjecture which, together with the
inequality deg(f) ≤ D(f), would resolve Fortnow’s question in the affirmative with c = 2.

Conjecture 1 (de Wolf [Wol00]). For all Boolean functions f , D(f) ≤ O(ndeg(f) ndeg(f̄)).

Mahadev and de Wolf showed [MW15] an even tighter connection between the notion of rational
degree and quantum query complexity: denoting by rdegε(f) the minimum degree of a rational
polynomial that ε-approximates f pointwise, they showed that rdegε(f) equals (up to a constant
factor) the query complexity of a quantum algorithm with post-selection1 that computes f with
error ε. For partial functions, it can be shown that the rational degree gives a lower bound on the
query complexity of algorithms with post-selection, though the opposite direction is not known to
be true. Furthermore, this result extends to the case of ε = 0, the so-called “zero-error” setting.

1.1 Our Results

We prove lower bounds on the rational degree for certain classes of total Boolean functions. We
summarize our results according to section:

Sec 3.1 For symmetric functions we show that deg(f)/2 ≤ rdeg(f). This lower bound is tight, as
witnessed by the PARITYn function. Our technique for symmetric functions generalizes to
classes of functions including ones which are constant on many Hamming weights.

Sec 3.2 We employ the lower bound on symmetric functions to show that for depth-d Boolean
formulae, rdeg(f) ≥ Ω(deg(f)1/d). For d = 2 this is tight, as witnessed by the ANDn ◦ORn

function.

Sec 3.3 For monotone functions we prove that rdeg(f) = s(f) ≥
√

deg(f). This is also tight as
witnessed by the ANDn ◦ORn function.

Sec 3.4 Our final lower bound on total functions is extremal: we prove that almost all Boolean
functions on n bits have rational degree at least n/2−O(

√
n).

On the other hand, we show that for partial functions, the rational and approximate degrees
can be unboundedly separated in both directions. These separations also resolve an open question
of Fortnow [For03].

Sec 4.1 We give a partial function MajOrNonen on n bits with constant quantum query complexity
yet rational degree Ω(n). As a result, MajOrNonen has constant approximate degree and
Ω(n) zero-error post-selected quantum query complexity.

Sec 4.2 On the other hand, we give a partial function Imbalancen on n bits with approximate
degree Ω(n) yet constant rational degree. As a result, Imbalancen has constant zero-error
post-selected quantum query complexity and quantum query complexity Ω(n).

1Post-selection is an operation that allows for projection onto an efficiently computable set of basis states for free,
even if this set accounts for an arbitrarily small fraction of the probability mass.
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Rational Degree Lower Bound Attained By

Symmetric Functions deg(f)/2 PARITYn

Monotone Functions
√

deg(f) ANDn ◦ORn

Read-once CNF/DNF Formulae Ω(
√
deg(f)) ANDn ◦ORn

Read-once Depth d Formulae Ω(deg(f)1/d) —

Almost all f : {0, 1}n → {0, 1} n/2−O(
√
n) N/A

Figure 1: A table summarizing our lower bounds on rational degree for total functions. The third
column gives an example of a function that demonstrates the tightness of our lower bound, where
applicable.

Now, employing the framework of standard complexity results such as [FSS81], we can argue that
post-selection and bounded error are incomparable resources in the black-box setting. To formalise
this, we define PostEQP as the class of decision problems which can be decided deterministically in
polynomial time by quantum computers with access to post-selection. In particular, there exists
a bidirectional separation between PostEQP and BQP with respect to generic oracles. Formally,
combining the results of Corollaries 18 and 22 we get the following statement.

Corollary 1. There exist oracles O1 and O2 such that BQPO1 ̸⊆ PostEQPO1 yet PostEQPO2 ̸⊆
BQPO2.

These complexity-theoretic consequences are summarized in Figure 2. As the figure illustrates,
these are the strongest possible separations in the black-box model.

In addition to these consequences for PostEQP, our lower bound also resolves Fortnow’s
complexity-theoretic question. We show that not only is C=P ∩ coC=P strictly contained in
PP, even RP is not in this intersection with respect to a generic oracle. The class C=P is the set
of languages decidable by an NP machine such that if the string is in the language, the number
of accepting paths is exactly equal to the number of rejecting paths. Finally, to contextualize the
power of PostEQP, we provide strong evidence that zero-error post-selection can offer advantage
over efficient classical computation, even in the non-relativized setting.

Sec 4.3 We show that PostEQP contains NP∩ coNP. We remark that NP∩ coNP is not even believed
to be contained in BPP.

2 Preliminaries

In this section we review some of the notation and definitions used in our paper. For a more
comprehensive introduction to the analysis of Boolean functions see [Sak93, O’D14]. We denote by [n]
the set {1, 2, ..., n}. Given a function f : S → R we denote by ∥f∥1 its l1 norm, ∥f∥1 =

∑
x∈S |f(x)|.

For a bitstring x ∈ {0, 1}n, we denote by |x| the Hamming weight of x: the number of indices equal
to 1. If x ∈ {−1, 1}n the Hamming weight is the number of bits that equal −1.

2.1 Boolean Functions

A (total) Boolean function is any function f : Σn → Σ where Σ is some two-element set. We will
refer to the set Σn as the Boolean hypercube. We will primarily work over the sets Σ = {0, 1} and
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Figure 2: Relevant complexity classes. We are able to obtain the strongest possible oracle
separations in this picture. An arrow A → B means A ⊆ B relative to all oracles. A dashed
arrow A 99K B means A ̸⊆ B relative to some oracle.

Σ = {−1, 1}. The mapping t 7→ (t+1)/2 maps {−1, 1} onto {0, 1}. While not all Boolean complexity
measures are left invariant by this change of representation, all of the measures considered in this
paper are preserved.

We also consider restrictions of Boolean functions to proper subsets of the Boolean cube D ⊂ Σn.
We refer to such functions f : D → Σ as partial Boolean functions. Given a Boolean function f , we
denote its negation by f̄ . We can define an inner product on the space of functions f : {−1, 1}n → R:

⟨f, g⟩ = 2−n
∑

x∈{−1,1}n
f(x)g(x).

For each S ⊆ [n] we define the character function χS on S as χS(x) =
∏

i∈S xi. The character
functions χS form an orthonormal basis under the above inner product. Thus each function over
{−1, 1}n can be uniquely expressed via its Fourier representation:

f =
∑
S⊆[n]

f̂(S) · χS ,

where we refer to f̂(S) = ⟨f, χS⟩ as the Fourier coefficient of f at S. We say an input i ∈ [n] is
relevant for f if xi appears in the Fourier expansion for f . In other words, f depends on xi in a
nontrivial manner.

2.2 Polynomials

As described above, each Boolean function can be represented uniquely as a formal multilinear
polynomial through its Fourier representation. We define the Fourier degree (or simply degree)

4



of f as deg(f) = max{|S| : f̂(S) ̸= 0}. We can extend this notion to polynomials that pointwise
approximate f :

Definition 2. Let D ⊆ {−1, 1}n and f : D → {−1, 1}. A polynomial p : {−1, 1}n → R is said
to ε-approximate f if for all x ∈ D, |p(x) − f(x)| ≤ ε and for all x ∈ {−1, 1}n, |p(x)| ≤ 1. The
ε-approximate degree of f , denoted d̃egε(f), is defined as the minimum degree of any polynomial
that ε-approximates f . The degree of f , denoted deg(f), is defined as d̃eg0(f). The approximate
degree of f , denoted d̃eg(f), is defined as d̃eg1/3(f).

In this paper, we are primarily concerned with representations of f via rational polynomials.
This gives rise to a measure known as rational degree, which is formally defined as follows.

Definition 3. Let D ⊆ {−1, 1}n and f : D → {−1, 1}. If p : D → R and q : D → R are polynomials
such that |f(x)− p(x)/q(x)| ≤ ε for all x ∈ D, we say that p/q is an ε-approximate rational
representation of f . The ε-approximate rational degree of f , denoted rdegε(f), is defined as the
minimum value of max{deg(p),deg(q)} such that p/q is an ε-approximate rational representation of
f . The rational degree of f , denoted rdeg(f), is defined as rdeg0(f).

Unlike in the definition of approximate degree, there is no requirement for an approximate
rational representation to be bounded outside of D. Whether or not such a boundedness condition
is imposed matters significantly for the degree (see [BKT20]) but not for the rational degree (see
Appendix A).

2.3 Sensitivity and Certificate Complexity

We now define some useful combinatorial measures of Boolean function complexity. Let f be a
Boolean function, x ∈ {−1, 1}n, and B ⊆ [n]. We say that B is a sensitive block of f at x if
f(x) ̸= f(xB) where xB denotes the bitstring obtained by flipping all bits of x indexed by B. We
define, and denote by bsf (x), the block sensitivity of f at x as the maximum number of disjoint
blocks that are all sensitive at x. By restricting our attention to sensitive blocks that are singletons
we obtain the analogous notion of the sensitivity of f at x, denoted sf (x). The block sensitivity of
f is defined as bs(f) = maxx bsf (x). Similarly the sensitivity of f is defined as s(f) = maxx sf (x).
For b ∈ {0, 1}, we also write s(b)(f) = maxx∈f−1(b) sf (x).

A partial assignment is some function ρ : [n] → {−1, 1, ⋆}. We define, and denote by |ρ|, the
size of the partial assignment ρ as cardinality of the set {i ∈ [n] : ρ(i) ̸= ⋆}. We say that a partial
assignment ρ is consistent with some x ∈ {−1, 1}n if xi = ρ(i) for all i with ρ(i) ̸= ⋆. Given a
Boolean function f we denote by f |ρ the restriction of f to the set of inputs x ∈ {−1, 1}n that are
consistent with ρ. Given b ∈ {−1, 1}, we say that a partial assignment ρ is a b-certificate for f if
f |ρ(x) = b for all x ∈ Dom(f |ρ). The b-certificate complexity of f is defined as

Cb(f) = max
x∈f−1(b)

min{|ρ| : ρ is a b-certificate for f consistent with x}.

The certificate complexity of f is defined as C(f) = maxb∈{−1,1}Cb(f).

2.4 Sign and Non-Deterministic Degree

For a Boolean function f we say that a polynomial p : {−1, 1}n → R is a (strong) sign representation
if sgn(p(x)) = f(x) for all x ∈ {−1, 1}n and p(x) ̸= 0 on the entire hypercube. The (strong) sign
degree of f is defined as the minimum degree of any polynomial that strongly sign represents f .
Alon [Alo93] and Anthony [Ant95] have shown that all but a negligible fraction of n-bit Boolean
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functions have sign degree at least n/2. Later, O’Donnell and Servedio proved [OS08] that almost
every Boolean function has sign degree at most n/2 +O(

√
n log n).

A less common but somewhat similar notion is that of a non-deterministic polynomial introduced
by de Wolf [Wol00]. In this context, it is customary to consider Boolean functions using the
{0, 1}n → {0, 1} representation.

We say that p : {0, 1}n → R is a non-deterministic polynomial for f : {0, 1}n → {0, 1} if p(x) = 0
if and only if f(x) = 0. An easy calculation establishes the following relationship between the
rational and non-deterministic degrees

rdeg(f) = max{ndeg(f),ndeg(f̄)}.

As mentioned in the introduction de Wolf conjectured that D(f) ≤ O(ndeg(f) ndeg(f̄)) for all
total Boolean functions. By showing that ndeg(f) ≤ C1(f), de Wolf also established the inequality
rdeg(f) ≤ C(f) [Wol00].

2.5 Quantum Query Complexity and Post-selection

We assume basic familiarity with concepts in quantum information. While we review some of these,
we direct the reader to, e.g. [NC11], for background.

Consider a Boolean function f over a domain D. We say an ε-error quantum algorithm computes
f if it outputs a bit a(x) such that for all x ∈ D, Pr[a(x) = f(x)] ≥ 1 − ε. BQP is the class of
problems that have efficient (polynomial-time) quantum algorithms with error 1/3 and EQP is the
analogous class of zero-error algorithms. We can also define complexity classes corresponding to
quantum algorithms augmented with the power of post-selection.

Definition 4. PostBQP is the set of languages decidable by a polynomial time quantum algorithm
that outputs two bits a, b such that for all inputs x ∈ {0, 1}n

(i) Pr[a(x) = 1] > 0.

(ii) If x ∈ L, then Pr[b(x) = 1|a(x) = 1] ≥ 2/3.

(iii) If x ̸∈ L, then Pr[b(x) = 1|a(x) = 1] ≤ 1/3.

PostEQP is the corresponding class of zero-error algorithms with post-selection.

Each of these computational complexity classes has an associated query measure. Formally,
we say a function has query access to a string w if it has black-box access to a unitary s.t.
U |i⟩ |b⟩ = |i⟩ |b⊕ wi⟩. When the input w encodes the truth table of a Boolean function f , we
will often write this as U |x⟩ |b⟩ = |x⟩ |b⊕ f(x)⟩, where x ∈ {0, 1}n. The number of calls an
algorithm makes to the unitary U is its query complexity. By Qε(f) and QE(f) we denote the query
complexities of ε-error and zero-error quantum algorithms, respectively. PostQε(f) and PostQE(f)
are defined analogously for quantum algorithms with post-selection. For simplicity of notation, Q(f)
and PostQ(f) are understood to correspond to ε = 1/3.

A seminal result by Beals et al. gives a lower bound quantum query complexity using polynomials
[BBC+01]. Formally, we have Qε(f) ≥ d̃egε(f)/2 for all (possibly partial) Boolean functions f . As a
special case, QE(f) ≥ deg(f)/2. This result gave rise to the so-called polynomial method for quantum
query lower bounds. Similarly, it was shown by Mahadev and de Wolf that PostQε(f) = Θ(rdegε(f))
and PostQE(f) = Θ(rdeg0(f)) for total functions f [MW15]. It is not difficult to extend this result
for partial functions, see Appendix A. Nonetheless, it is surprising that the result does still hold for
partial functions since the analogous result for quantum query complexity and approximate degree
was recently shown to be false in [AB23].
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3 Rational Degree Lower Bounds

In this section, we present rational degree lower bounds for certain classes of Boolean functions.
Our results constitute progress towards showing that rational degree is polynomially related to
Fourier degree for total functions.

First, we establish the tight lower bound deg(f)/2 ≤ rdeg(f) for symmetric functions. This
result then becomes key in proving a rational degree lower bound for read-once Boolean formulae,
which is tight for formulae of depth 2. Next, we prove that the rational degree equals the sensitivity
for monotone functions, which implies that

√
deg(f) ≤ rdeg(f) for monotone functions. This lower

bound is also tight. Finally, we show that almost all Boolean functions f : {−1, 1}n → {−1, 1} have
rational degree at least n/2−O(

√
n).

3.1 Symmetric Functions

Our first lower bounds are for (possibly partial) functions which are constant on a large number of
Hamming slices. Of course, this subsumes the class of symmetric functions. This lemma will later
be useful in obtaining an unbounded separation of rational degree from quantum query complexity
(and thus approximate degree) in the case of partial functions.

Lemma 5. Let f be a (possibly partial) nonconstant Boolean function over input domain D ⊆ {0, 1}n
and define S0 = {k ∈ [n] : |x| = k =⇒ f(x) = 0}, S1 = {k ∈ [n] : |x| = k =⇒ f(x) = 1}. Then
rdeg(f) ≥ max(|S0|, |S1|).

We use the Minsky-Papert symmetrization technique, which converts a multivariate polynomial
over {0, 1}n to a univariate polynomial over R [MP69]. Formally, given p : {0, 1}n → R we define
P (k) := E|x|=k[p(x)].

Proof. Since rdeg(f) = rdeg(f̄), we can assume without loss of generality that |S0| ≥ |S1|. It suffices
to show that rdeg(f) ≥ |S0|. Indeed, let f = p/q be a rational representation of f . Applying the
Minsky-Papert symmetrization technique to p(x) we obtain a univariate polynomial P (k) such that
deg(p) ≥ deg(P ) and P (k) = 0 for any k ∈ S0. On the other hand, there exists at least one k ∈ [n]
such that P (k) ̸= 0, since f is nonconstant. Thus deg(p) ≥ deg(P ) ≥ |S0|. Since this holds for every
rational representation of f , the result follows.

Of course, a special case of this result is a strong lower bound for symmetric total functions.

Corollary 6. If f : {0, 1}n → {0, 1} is symmetric then rdeg(f) ≥ deg(f)/2.

3.2 Read-Once Formulae

We now turn our attention to a generalized version of read-once Boolean formulae, where each gate
is an arbitrary nonconstant symmetric gate. The key observations behind the lower bound are that
these formulae can be written as compositions of symmetric gates, and that any depth d tree must
contain a node with branching factor ≥ n1/d.

Lemma 7. Let f : {0, 1}n → {0, 1} and gi : {0, 1}ni → {0, 1} be Boolean functions where every
variable in each function is relevant. Defining h : {0, 1}

∑
ni → {0, 1} to be h(x1, . . . , xn) =

f(g1(x
1), . . . , gn(x

n)), we have that

rdeg(h) ≥ max{rdeg(f), rdeg(g1), . . . , rdeg(gn)}.
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Proof. Since every variable is relevant for each gi, we know there exists restrictions ρi to all but
1 variable in each xi such that gi|ρi(xi) = xiki or (1− xiki) for some 1 ≤ ki ≤ ni. Considering the

restriction ρ = ρ1 ∪ · · · ∪ ρn, it is evident that h|ρ(x) = f(x1k1 , . . . , x
n
kn
) up to negations. Therefore,

rdeg(h) ≥ rdeg(h|ρ) ≥ rdeg(f). (1)

Now pick an arbitrary i. Since, by assumption, every variable of f is relevant, there exists
an assignment xj = zj for all j ̸= i such that f(z1, . . . zi−1, xi, zi+1, . . . , zn) = xi or xi. Since gi is
nonconstant, it follows that there exists an assignment to the variables (xj)j ̸=i such that each gj(x

j)
is fixed to zj .

Let τ be the restriction induced by this partial assignment. Then

h|τ (x) = f(z1, . . . zi−1, gi(x
i), zi+1, . . . zn) = gi(x

i) or gi(xi).

Consequently,

rdeg(h) ≥ rdeg(h|τ ) ≥ rdeg(gi). (2)

Combining Equations (1) and (2) gives the desired result.

Lemma 8. Let f be written as a read-once formula with symmetric gates where the maximum
branching factor of any node is w. Then rdeg(f) = Ω(w).

Proof. Let p/q be a rational representation of f . We can assume without loss of generality that f is
monotone (i.e. only the literals xi, and not xi appear in the formula).

Now consider the node G with branching factor w. Let F be the subformula with top gate G
and let F1, . . . , Fw be the read-once subformulas below G. Each Fi is nonconstant, which implies the
existence of a restriction ρi of all but 1 variable in each Vi such that toggling the sole live variable
(say xki) toggles the value of Fi (i.e. Fi|ρi = xj or xk for some k). As the Vi are disjoint (as f is read-
once), these restrictions together define a unified restriction ρ such that F |ρ(x) = G(xk1 , . . . , xkw)
up to negations. Inductively using Lemma 7 on the formula f |ρ by starting at the top node and
going down the path to G, it follows that

rdeg(f) ≥ rdeg(f |ρ) ≥ rdeg(F |ρ) = rdeg(G) ≥ w/2, (3)

where the last inequality follows from Lemma 5.

Now we can prove polynomial rational degree lower bounds on read-once formulae.

Corollary 9. Let f be written as a depth-d read-once formula with symmetric gates. Then
rdeg(f) = Ω(deg(f)1/d).

Proof. The result follows from Lemma 8 and a simple contradiction argument: if all nodes have
branching factor strictly less than n1/d then there must be strictly fewer than n literals. Note that
n ≥ deg(f) so the lower bound Ω(n1/d) is stronger.

This lower bound is tight for d = 2, as witnessed by the AND-of-ORs function f = AND√
n ◦OR√

n.

Indeed, rdeg (f) ≤ C(f) = n1/2 =
√
deg(f). However, for larger depth d > 2, it is unclear whether

a depth-d read-once AC0 formula with rational degree O(n1/d) exists or if the lower bound can be
improved. It can be shown that there exist arbitrary-depth read-once formulae with rational degree
at most

√
n (see Figure 3. We leave as an open question whether the bound Ω(deg(f)1/d) is tight.
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Figure 3: A depth-d AND-OR tree with certificate complexity
√
n, and thus rational degree at

most
√
n. Indeed, setting all input wires to 1 for AND functions and a single input wire to 1 for OR

functions along a single path to root gives a 1 certificate, and setting all input wires to 0 for OR
functions and a single input wire to 0 for AND functions gives a 0-certificate. One can easily verify
that both of these certificates are of size

√
n.

3.3 Monotone Functions

A Boolean function f : {0, 1}n → {0, 1} is said to be monotone if ∀x, y ∈ {0, 1}n, x ≤ y implies
f(x) ≤ f(y) where x ≤ y is taken pointwise. In this subsection we prove that rdeg(f) = s(f) for
monotone Boolean function f . We note that it suffices to prove that s(f) ≤ rdeg(f). This is because
the certificate complexity of a monotone Boolean functions f equals its sensitivity C(f) = s(f)
[Nis91]. Combining this with the fact that rdeg(f) ≤ C(f) we can already conclude the other
inequality.

Claim 10. For monotone Boolean functions f : {0, 1}n → {0, 1}, s(f) ≤ rdeg(f).

Our proof is similar to the proof that for all monotone Boolean functions s(f) ≤ deg(f) as
presented in [BW02, Proposition 4].

Proof. Suppose without loss of generality that f is monotone increasing. We prove the claim by
showing that

s0(f) ≤ ndeg(f̄) and s1(f) ≤ ndeg(f). (4)

We only prove the first inequality as the second can be proven analogously. Let x be such that
s0(f) = sf (x). All sensitive variables must be 0 in x since f is monotone increasing. Moreover,
setting any sensitive variable to 1 changes the value of f from 0 to 1. Therefore, fixing all variables
in x except for the s0(f) many sensitive variables yields the ORm function on m := s0(f) variables.
Since ndeg(ORm) ≥ m, ndeg(f̄) ≥ s0(f).

Since s(f) = C(f) and
√

deg(f) ≤ s(f) for monotone functions, we have the following corollary.

Corollary 11. For monotone Boolean functions f , rdeg(f) = s(f). In particular,
√

deg(f) ≤
rdeg(f).
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Note that this bound is tight, as witnessed by the AND-of-ORs function, f = ANDn ◦ORn, on
n2 bits, which has rdeg (f) ≤ C(f) = n =

√
deg(f). We remark that Claim 10 cannot be extended

to all Boolean functions, as evidenced by the Kushilevitz function Km : {0, 1}6m → {0, 1} [NW95].
Indeed, Km has full sensitivity, but its degree is 3m.

3.4 Random Functions

As our final piece of evidence that rational degree is polynomially related to degree, we prove that
all but a negligible fraction of Boolean functions f : {−1, 1}n → {−1, 1} have rational degree at
least n/2−O(

√
n).

As mentioned in the introduction Alon [Alo93] and Anthony [Ant95] used counting arguments
to show that all but a negligible fraction of n-bit Boolean functions have sign degree at least n/2.
Below we restate a variant of the function counting theorem used by Athony.

Given a finite set X and a mapping ϕ : X → Rd, we say that a ϕ-separable dichotomy of X is a
partition of X into subsets X+ ∪X− such that there exists some w ∈ Rd for which w · ϕ(x) > 0 for
all x ∈ X+ and w · ϕ(x) < 0 for all x ∈ X−.

Theorem 12 (Function counting theorem, [Cov65]). Let ϕ : S → Rd. Let X = {x1, . . . , xN} ⊆ S.
If a ϕ-surface (i.e., a set of the form {x ∈ S : w · ϕ(x) = 0} for some w ∈ Rd) contains a set
of points Y = {y1, y2, . . . , yk} ⊆ S, where ϕ(yi) are linearly independent for all i, and where the
projection of ϕ(x1), . . . , ϕ(xN ) onto the orthogonal subspace to the space spanned by the ϕ(yi)’s is in
general position, then there are C(N, d− k) many ϕ-separable dichotomies of X, where

C(N, d) = 2
d−1∑
i=0

(
N − 1

i

)
.

We consider the following adaptation of the above theorem. Consider a set of N points
S = {v1, . . . , vn} in RD. Given a 2-coloring of the points f : [N ] → {−1, 1}, we say that the coloring
f is separable by two hyperplanes if there exist hyperplanes Hj = {v : αj · v = 0} for j = 1, 2 such
that

∀i ∈ [N ] : f(i) = sgn((α1 · vi)(α2 · vi)).

Corollary 13. Given N points in RM , the number of two colorings f : [N ] → {−1, 1} that are
separable by two hyperplanes is at most C(N,M)2.

Proof. Let S ⊂ RM be given and suppose that f is a coloring that is separated by the hyperplanes
H1 and H2. Then there exist colorings f1, f2 that are separated by the hyperplanes H1 and H2

respectively. Since there are at most C(N,M) choices for each of f1 and f2, the number of such
colorings f is bounded by C(N,M)2.

Lemma 14. Let m ≤ n be two positive integers. The number of Boolean functions f : {−1, 1}n →
{−1, 1} with rational degree at most m is at most C(2n,

(
n

≤m

)
)2.

Proof. Let M =
(

n
≤m

)
. For each x ∈ {−1, 1}n define vx ∈ CM by letting (vx)S = χS(x) for S ⊆ [n],

|S| ≤ m. Suppose p/q is a rational representation of f of degree at most m. Then

f(x) = sgn(p(x)/q(x)) = sgn(p(x)q(x)) = sgn((p̂ · vx)(q̂ · vx)).

Thus the coloring given by f is separated by the hyperplanes defined by p̂ and q̂. The result follows
by Corollary 13.

10



We can now state and prove our extremal lower bound on rational degree.

Corollary 15. All but a negligible fraction of Boolean functions on n variables have rational degree
at least n/2−O(

√
n).

Proof. Write m = n/2 −
√
cn for some constant c, and let N = 2n. Then by Corollary 13 there

are at most C
(
N,

(
n

≤m

))2
Boolean functions on n variables of rational degree less than m. By the

Chernoff bound
(

n
≤n/2−λ

)
< 2ne−2λ2/n and the Hamming bound, we have that the proportion of

Boolean functions with rational degree strictly less m is bounded above by

C
(
N,

(
n

≤m

))2
2N

≤ C(N,Ne−2c)2

2N
≤ O

(
2N(2h2(e−2c)−1)

)
,

where h2(·) denotes the binary entropy function. Solving the inequality h2(e
−2c) < 1/2 numerically

we find that for c ≥ 1.104, the above bound tends to 0.

4 Applications in Complexity Theory

In this section, we give two functions: one whose rational degree is unboundedly higher than its
approximate degree and one which has approximate degree unboundedly higher than its rational
degree. These examples in turn give bidirectional separations between BQP and PostEQP with respect
to generic oracles. We conclude the section by giving evidence that zero-error quantum computation
with post-selection gives advantage over bounded-error randomized algorithms, providing context to
our results.

4.1 Post-Selection can be a Weak Resource

In this subsection, we give an oracle which witnesses that BQP ̸⊆ PostEQP (in fact, even RP ̸⊆
PostEQP). This is accomplished by constructing a partial function which has constant 1-sided error
randomized query complexity but maximal PostQE . In fact, this problem also demonstrates that
the rational degree can be arbitrarily higher than the approximate degree for partial functions.

Problem 16 (Majority or None). The MajOrNonen function is defined as a partial Boolean
function on the set of bitstrings x ∈ {0, 1}n that have Hamming weight either 0 or at least n/2. The
function MajOrNonen takes value 0 in the former case, and takes value 1 otherwise.

Theorem 17. The MajOrNonen function can be decided by a quantum algorithm using constantly
many queries, yet its rational degree is at least Ω(n). Consequently, MajOrNonen witnesses the
following separations:

d̃eg(MajOrNonen) ≤ O(1) yet rdeg(MajOrNonen) ≥ Ω(n),

Q(MajOrNonen) ≤ O(1) yet PostQE(MajOrNonen) ≥ Ω(n).

Proof. The MajOrNonen function even has constant RP query complexity. Indeed, we may simply
query a constant number of random bits and output 1 if any of them are 1. Therefore, MajOrNonen
has constant quantum query complexity, which in turn implies a constant approximate degree. We
show via a rational degree lower bound that PostQE(MajOrNonen) = Ω(n). In particular, we
show that rdeg(MajOrNonen) = Ω(n). Using the notation of Lemma 5, for MajOrNonen we
have |S1| ≥ n/2, giving us

PostQE(MajOrNonen) ≥ rdeg(MajOrNonen) = Ω(n).

11



The complexity classes Q and PostQE are the query complexity equivalents of BQP and PostEQP,
respectively. As such, our unbounded separation between these complexity measures gives a
separation of BQP and PostEQP with respect to a generic oracle.

Corollary 18. There exists an oracle O such that RPO ̸⊆ PostEQPO.

4.2 Post-Selection can be a Strong Resource

On the other hand, we can give an oracle which witnesses PostEQP ̸⊆ BQP. We do this by
constructing a promise problem f for which PostQE(f) = O(1) but Qε(f) ≥ Ω(n). This problem
also witnesses the fact that approximate degree can be unboundedly larger than rational degree.

Problem 19 (Imbalance). Let n = 4m + 2 for some positive integer m. Define the functions
L,R : {−1, 1}n → R as L(x) = x1 + x2 + . . .+ x2m+1 and R(x) = x2m+2 + . . .+ x4m+2. Then the

Imbalance : {−1, 1}n → R function is defined as Imbalance(x) = L(x)
R(x) .

Note that we assumed 4 ∤ n to ensure that the denominator R(x) cannot be 0.

Problem 20 (Boolean Imbalance). Let m and n be as in the above problem. We define the Boolean
Imbalance BIn function as the restriction of Imbalance to the union S− ∪ S+ where we let

S+ = {(xL, xR) : |xL| = |xR| = m},
S− = {(xL, xR) : |xL|+ |xR| = 2m+ 1 and |xL|, |xR| ≥ m}.

Note that BIn(x) = 1 for any x ∈ S+ since the numerator and denominator evaluate to the
same quantity. On the other hand, for any x ∈ S− we have that BIn(x) = −1 since both L(x) and
R(x) must be ±1 but they must be different.

By a generalisation of the equivalence of Mahadev and de Wolf (Lemma 25) we have an upper
bound of 2 on PostQE(BIn). We now show that it has a linear lower bound on the approximate
degree.

Lemma 21. The BIn function can be decided by a postselected quantum algorithm using only 2
queries, yet its rational degree is at least Ω(n). Consequently, BIn witnesses the following separations:

rdeg(BIn) ≤ O(1) yet d̃eg(BIn) ≥ Ω(n),

PostQE(BIn) ≤ O(1) yet Q(BIn) ≥ Ω(n).

Proof. Note that BIn is defined on inputs of Hamming weight 2m and 2m+1. By a result of Nayak
and Wu any function which is constant on Hamming slices l, l+1 and flips its value has approximate
degree Ω(max{l, n− l}) [NW99]. In this case, since the function value flips on Hamming weights
2m, 2m+ 1 we get a lower bound of Ω(max{2m+ 1, 2m}) = Ω(n).

Finally, just like in the previous section, this separation between complexity measures allows us
to construct an oracle relative to which PostEQP is not contained in BQP.

Corollary 22. There exists an oracle O such that PostEQPO ̸⊆ BQPO.

Our unbounded separation of rational degree and approximate degree gives a generic oracle
separation of PostEQP and BQP. Combined with Corollary 18, this tells us that zero-error post-
selection and bounded error are “incomparable” resources in the black-box model: one is not stronger
than the other.

12



4.3 Post-Selection and Non-Determinism

To conclude the section, we provide more context to our results by giving evidence that zero-error
quantum computation with post-selection gives advantage over efficient classical computation.

Claim 23. NP ∩ coNP ⊆ PostEQP.

Proof. Let L ∈ NP ∩ coNP. Since L ∈ NP, there is an efficient algorithm M1 and a polynomial
p1 such that for every x ∈ L, there exists u1 ∈ {0, 1}p1(|x|) such that M1(x, u1) = 1 and for every
x ̸∈ L and u ∈ {0, 1}p1(|x|) we have M1(x, u) = 0. Similarly since L ∈ coNP there is an efficient
algorithm M2 and polynomial p2 such that for every x ̸∈ L, there exists u2 ∈ {0, 1}p2(|x|) such that
M2(x, u2) = 1 and for every x ∈ L and u2 ∈ {0, 1}p2(|x|) we have M2(x, u2) = 0.

Now, given x, our quantum computer can generate a uniform superposition over all the possible
certificates for both M1 and M2 (concatenated together), and post-select on the event that either
M(x, u1) = 1 or M2(x, u2) = 1. Then, the quantum algorithm can measure all registers and simulate
both M1(x, u1) and M2(x, u2) and see which one is 1. By definition, only one of M1 and M2 will
accept, and whichever one accepts tells us if x ∈ L or not.

It is widely believed that NP∩ coNP is not contained in P or even BPP. As such, there is reason
to believe that zero-error quantum algorithms with post-selection can offer advantage over efficient
classical computation.

5 Open Questions

In this paper, we considered the problem of lower bounding the rational degree of Boolean functions
in terms of their Fourier degree. While we could not answer this question in its full generality, we
showed that the square root of the degree lower bounds the rational degree for both monotone and
symmetric Boolean functions. We conjecture that this lower bound extends to all total Boolean
functions.

Conjecture 2. For all Boolean functions f : {−1, 1}n → {−1, 1},
√

deg(f) ≤ rdeg(f).

Answering this conjecture in the affirmative would place rational degree within a plethora of
Boolean function complexity measures all of which are polynomially related. Recall that for partial
functions, we have unbounded separations between the rational and approximate degrees in both
directions.

In this work, we showed that a hypothetical total function that witnesses any such separation
must lack a certain level of structure: in particular, it cannot be symmetric, monotone, or expressible
by a low-depth read-once Boolean formula. In this direction, an easier question is whether there are
other classes of functions for which rational degree cannot be separated from Fourier degree. Some
candidates that may be amenable to current techniques include unate and transitive-symmetric
functions. In particular, showing that unate functions have polynomial rational degree would, in
turn, imply polynomial rational degree lower bounds for read-once TC0 circuits by adapting our
result for read-once Boolean formulae with symmetric gates.

We also proved that almost all Boolean functions f : {−1, 1}n → {−1, 1} have rational degree at
least n/2−O(

√
n). As mentioned in the preliminaries O’Donnell and Servedio proved [OS08] that

almost all Boolean functions f : {−1, 1}n → {−1, 1} have sign degree at most n/2 +O(
√
n log n). It

would be interesting to know if an analogous result can be established for the rational degree.

Conjecture 3. All but a negligible fraction of Boolean functions f : {−1, 1}n → {−1, 1} have
rational degree at most n/2 + o(n).
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A Rational Degree and Query Complexity with Post-Selection

In this appendix, we show that the main theorem of [MW15], stated for total Boolean functions, in
fact also holds for partial ones. We do so simply by observing that the proof given in [MW15] also
works for partial Boolean functions.

Theorem 24. For any (possibly partial) Boolean function f on n variables and ε ∈ [0, 1/2),
rdegε(f) = Θ(PostQε(f)).

First we show that rational degree lower bounds quantum query complexity with post-selection.

Lemma 25. Let D ⊆ {0, 1}n and consider f : D → {0, 1}. Then rdegε(f) ≤ PostQε(f).

Proof. Suppose there is a T -query post-selected ε-error algorithm for f . As in Definition 4 let a(x)
be the random variable corresponding to the measurement of the post-selected qubit and b(x) the
random variable corresponding to the measurement of the output qubit. We have that

|Pr[b(x) = 1|a(x) = 1]− f(x)| ≤ ε.

Now, by [BBC+01], the amplitudes of a quantum algorithm after T oracle queries are polynomials
in x1, . . . , xn of degree at most 2T . It immediately follows that Pr[a(x) ∧ b(x) = 1] and Pr[a(x) = 1]
are polynomials of degree at most 2T : call them p and q respectively. Thus we have∣∣∣∣p(x)q(x)

− f(x)

∣∣∣∣ = |Pr[b(x) = 1|a(x) = 1]− f(x)| ≤ ε,

which gives us the desired rational approximation of f .

Now, we show that, up to a constant factor, the rational degree upper bounds quantum query
complexity with post-selection. The proof is Fourier analytic, and so we switch to the {−1, 1} basis.

Lemma 26. Let D ⊆ {−1, 1}n and consider f : D → {−1, 1}. Then PostQε(f) ≤ 2 rdegε(f).

Proof. Suppose f : D → {−1, 1}n has an ε-approximate rational representation p/q such that
max{deg(p), deg(q)} = d. Considering the Fourier expansions of p, q, we can construct the state∑

S⊆[n]

p̂(S) |0⟩ |S⟩+ q̂(S) |1⟩ |S⟩ ,

where |S⟩ is the basis state that corresponds to the indicator bitstring for the set S. For simplicity,
we have left out normalizing constants. Then, using max{deg(p),deg(q)} = d queries to x, we can
construct the state ∑

S⊆[n]

p̂(S)χS(x) |0⟩ |S⟩+ q̂(S)χS(x) |1⟩ |S⟩ .

Now we apply an n-qubit Hadamard to the second register, obtaining the state

|0⟩

 ∑
S⊆[n]

p̂(S) |0n⟩+ ...

+ |1⟩

 ∑
S⊆[n]

q̂(S) |0n⟩+ ...


after which we postselect on the second register being equal to 0n. This gives us the (again,
unnormalized) state

|0⟩

 ∑
S⊆[n]

p̂(S) |0n⟩

+ |1⟩

 ∑
S⊆[n]

q̂(S) |0n⟩

 = (p(x) |0⟩+ q(x) |1⟩) |0n⟩ .
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After discarding the second register and normalizing, we are left with

p(x)

p(x)2 + q(x)2
|0⟩+ q(x)

p(x)2 + q(x)2
|1⟩ .

We measure this state in the Hadamard basis and interpret the result as having value in {−1, 1}. If
f(x) = −1, then p(x)/q(x) ∈ [−1− ε,−1 + ε]. The probability of measuring |−⟩ is

(q(x)− p(x))2

2(p(x)2 + q(x)2)
=

(1− p(x)/q(x))2

2((p(x)/q(x))2 + 1
≤ ε2

2(1 + (1− ε)2)
≤ ε.

Note that in the proof of Lemma 25 we get a rational polynomial which is bounded outside of
the promise. Therefore, as a consequence we have that imposing this boundedness condition only
increases the ε-approximate rational degree by at most a factor of 2.
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