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Abstract

The notion of the derandomized square of two graphs, denoted as G s H, was introduced by

Rozenman and Vadhan as they rederived Reingold’s Theorem, SL = L. This pseudorandom

primitive, closely related to the Zig-Zag product, plays a crucial role in recent advancements

on space-bounded derandomization. For this and other reasons, understanding the spectral

expansion λ(G s H) becomes paramount. Rozenman and Vadhan derived an upper bound for

λ(G s H) in terms of the spectral expansions of the individual graphs, λ(G) and λ(H). They

also proved their bound is optimal if the only information incorporated to the bound is the

spectral expansion of the two graphs.

The objective of this work is to gain deeper insights into the behavior of derandomized

squaring by taking into account the entire spectrum of H, where we focus on a vertex-transitive

H. Utilizing deep results from analytic combinatorics, we establish a lower bound on λ(G s H)

that applies universally to all graphs G. Our work reveals that the key information regarding

the bound lies within the largest real solution to the polynomial equation

(d− 1)χx(H)χ′′
x(H) = (d− 2)χ′

x(H)2,

where χx(H) is the characteristic polynomial of the d-vertex graph H. Empirical evidence

suggests that our lower bound is essentially optimal for every graph H and for a typical graph

G. We support the tightness of our lower bound by showing that the bound is tight for a class

of graphs which exhibit local behavior similar to a derandomized squaring operation with H.

To this end, we make use of finite free probability theory.

In our second result, we establish a lower bound for the spectral expansion of rotating

expanders. These graphs, introduced by Cohen and Maor (STOC 2023), are constructed by

taking a random walk with vertex permutations occurring after each step. We prove that

Cohen and Maor’s construction is essentially optimal. Unlike our results on derandomized

squaring, the proof in this instance relies solely on combinatorial methods. The key insight

lies in establishing a connection between random walks on graph products and the Fuss-Catalan

numbers.
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1 Introduction

Expander graphs have played a crucial role in essentially all areas within theoretical computer

science as well as in coding theory, and cryptography, among others. Their utility stems to a

large extent from the ability to interpret expansion from various perspectives, be it combinatorial,

probabilistic, or linear algebraic. This multifaceted understanding offers a unique advantage: it

enables the otherwise challenging inference of combinatorial attributes of graphs by examining

the spectral properties of related operators.

We briefly recall the notion of spectral expansion. Let G be an undirected d-regular graph on

n vertices with adjacency matrix A. Since G is undirected, A is symmetric and so its spectrum is

real-valued. We denote the eigenvalues of A by d = λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral expansion

of G, denoted as λ(G), is given by max(λ2, |λn|). We further denote the normalized spectral

expansion of G by ω(G) = λ(G)
d ∈ [0, 1]. We alternate between the two variants–the normalized

and the unnormalized–depending on context.

An expander is a graph G with a normalized spectral expansion ω(G) that is bounded away

from 1 1. However, for a typical application of expander graphs one “pays” a cost that increases

with the degree d and has an “error” that vanishes as ω(G) → 0. This raises the question of

what is the lowest possible value of ω(G) attainable by d-regular graphs. From the Alon-Boppana

bound [Nil91], which is usually stated in terms of λ(G), it follows that for every ε > 0 there are

only finitely many d-regular graphs G with λ(G) ≤ 2
√
d− 1− ε. A d-regular graph G satisfying

λ(G) ≤ 2
√
d− 1 is called a Ramanujan graph. Over the past several decades, Ramanujan graphs

have been a focal point of research. The constructions of Ramanujan graphs and their variants

lean on profound number theoretic results [LPS88, Mar88, Mor94] (see also [Iha66]), or is rooted

in deep analytical methods and on the accompanied technique of polynomial interlacing [MSS15a,

MSS22, MSS18, Coh16, HPS18].

In their highly influential paper [RVW00], Reingold, Vadhan, and Wigderson introduced the

Zig-Zag product which enabled them to obtain a combinatorial construction of expander graphs

by elementary means. While the expanders that were constructed were not quite close to Ramanu-

jan, the fact that the construction is combinatorial and highly flexible made the Zig-Zag product

extremely useful. Indeed, no long after, Reingold [Rei08] based his breakthrough result, SL = L,

on the Zig-Zag product, not for constructing expanders per se but for the purpose of “transform-

ing” a given graph to an expander while maintaining its connected components structure. In a

subsequent work, Ben-Aroya and Ta-Shma [BATS11] put forth an improved variant of the Zig-

Zag product, dubbed the wide-replacement product, that enabled the combinatorial construction

of graphs that come quite close to Ramanujan. That variant was key in a recent breakthrough by

Ta-Shma who constructed near-optimal small-bias sets [TS17]. Several other expander construc-

tion paradigms have been put forth in the literature, e.g., [BL06, MOP22]. We refer the reader

to the excellent survey by Hoory, Linial, and Wigderson [HLW06] for a comprehensive exposition

on expander graphs.

1To be more precise, it is common to consider a family of graphs in this context. However, we will exclude this

technical detail from our discussion for simplicity.
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1.1 Derandomized squaring

Not long after the work of Reingold [Rei08], Rozenman and Vadhan [RV05] introduced a close

sibling to the Zig-Zag product, dubbed derandomized squaring, which we describe soon. This

operation can be “cleaner” than the Zig-Zag product in some settings, in particular for their red-

erivation of Reingold’s result, though the two operations are tightly connected. In the past few

years, derandomized squaring has gained significant traction in the space-bounded derandomiza-

tion literature (see, e.g., [MRSV21, AKM+20, APP+23, CHL+23]) mostly since it facilitated the

adaptation of ideas from the realm of fast Laplacian solvers into the domain of space-bounded

derandomization. For these reasons, in this paper we focus on the operation of derandomized

squaring though we are confident that our techniques can be extended to other operations such

as the Zig-Zag product and the wide-replacement product.

Squaring a graph is an easy way of improving its normalized spectral expansion. The square

of a graph G, denoted as G2, is the graph on the same vertex set that has an edge between a

pair of vertices for every length-2 path in G between the vertices. Clearly, if A is the adjacency

matrix of G then A2 is the adjacency matrix of G2. Hence, ω(G2) = ω(G)2. However, if G is

d-regular, G2 is a d2-regular graph. As a result, the degree growth associated with squaring the

graph often surpasses the advantages gained from reducing the normalized spectral expansion.

The purpose of derandomized squaring is to obtain a comparable improvement to the normalized

spectral expansion without blowing up the degree by a quadratic factor.

From the view point of a vertex v of G, in the graph G2, the neighbors of v are all connected

to each other. That is, G2 is obtained by adding copies of the complete graph with self-loops, one

copy for each vertex v, where the complete graph associated with v is placed on the neighbors of

v. Let H be a graph on d vertices, where we focus on the case in which H is vertex-transitive,

and denote the degree of a vertex in H by c. The derandomized square of G and H, denoted

as G s H, is defined by replacing each such copy of the complete graph with a copy of H. Note

that G s H is a D-regular graph where D = dc. Formally, the derandomized squaring, like the

Zig-Zag product, requires working with edge-labeled graphs, but we sidestep this technicality (see

Section 4.1). For the reader that is familiar with these intricacies, we remark that, for simplicity,

in this extended abstract we circumvent labeling issues by assuming that G is given as the union

of d perfect matchings, though this condition can be relaxed.

Given that an expander H approximates the complete graph, one is correct to expect that

the derandomized square G s H approximates G2 for every graph G. Rozenman and Vadhan

formalized this intuition with regards to the normalized spectral expansion by establishing the

bound

ω(G s H) ≤ (1− ω(H))ω(G)2 + ω(H) ≤ ω(G)2 + ω(H). (1.1)

How tight is this bound? This is a somewhat subtle question. Rozenman and Vadhan proved

that the bound is tight as a function of ω(G) and ω(H), however, it is certainly conceivable

that a superior bound might be achieved if one incorporates more information about the graphs

beyond just their spectral expansions into the bound. In particular, if we fix H and consider the

mapping λ(· s H) which maps every d-regular graph G to λ(G s H), then it is interesting to ask

how strong a bound can be obtained on this mapping as a function of the entire spectrum of H.
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Given the significance of the derandomized squaring operation, and the related Zig Zag product

as well as the wide-replacement product, a substantial improvement to the bound could profoundly

impact our understanding on several fundamental problems, including in space-bounded deran-

domization and in coding theory. For example, in the context of space-bounded derandomization

such a result may reduce the seed length of PRGs or weighted PRGs (see [BCG19, CL20, CHL+23]

and references therein). Such a result may also lead to a better construction of small-bias sets in

which the wide-replacement product is used for bias-reduction. Therefore, gaining a thorough un-

derstanding of derandomized squaring is highly motivated from the theoretical computer science

standpoint.

1.2 Two case studies

Before presenting our results, which we view as a first step towards the above goal, we wish to

highlight the gap between the Rozenman-Vadhan bound, as given in Equation (1.1), and the

“true” behavior of the derandomized squaring operation. We do so by considering two case

studies, starting with H = Kc,c, the complete c = d
2 -regular bipartite graph on d vertices.

1.2.1 Derandomized squaring with the complete regular bipartite graph

Since H = Kc,c is bipartite, ω(H) = 1, and so the bound given by Equation (1.1) becomes trivial,

ω(G s H) ≤ 1 for all d-regular graphs G. For this special case, one can get a nontrivial bound

by elementary means by incorporating some information on G. To see this, assume that G is the

union of two c-regular Ramanujan graphs on n vertices, whose adjacency matrices are denoted B

and R, respectively. That is, the adjacency matrix of G is given by A = B + R. Thus, it can

be shown that the adjacency matrix of G s H can be expressed as RB + BR 2, and so by the

Courant-Fischer Theorem,

λ(G s H) = 2 ·max
x⊥1

xTBRx

xTx
≤ 2

(
2

√
d

2
− 1

)2

≤
√

32
√
D − 1 ≈ 5.66

√
D − 1,

where D = d2

2 is the regularity of G s H.

Although the above bound on λ(G s H) certainly beats the trivial bound, D, it still seems

to undersell the typical behavior of G s H. In fact, by sampling 3 a random d-regular graph

G and evaluating λ(G s H), one can verify that for a sufficiently large d, the value of λ(G s H)

distributes around 2.35
√
D − 1. But where does the 2.35 value originate? How can this number be

determined based on our selected H? Jumping the gun, the analytical tool we introduce predicts

that the exact value, for this H, is

1

2

√
11 + 5

√
5 ≈ 2.35. (1.2)

2With regards to the edge labeling, for the last statement to hold we assume that neighbors 1, . . . , d
2

of every

vertex are those coming from B and the remaining neighbors d
2

+ 1, . . . , d are coming from R.
3Our sampling is done by taking the union of d uniformly random and independent perfect matchings, where

edges that are sampled multiple times are counted with the respective multiplicity.
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By saying that we “predict” this bound captures the true behavior of derandomized squaring

with H = Kc,c, we mean the following: First, we prove the aforementioned value to be a lower

bound on λ(G s H) for every d-regular graph G; Second, we prove the existence of infinitely many

graphs that meet this bound. These graphs exhibit a local structure resembling a derandomized

square with H. Lastly, our predictions align with every experiment we made for every graph H

and when G is sampled uniformly at random. We provide further details in Section 2, where our

results are formally presented.

1.2.2 Derandomized squaring with a Paley graph

In the aforementioned example, the Rozenman-Vadhan bound was non-informative. It is worth

noting that it is not just in these instances where the typical performance of the derandomized

square surpasses the predictions of the bound. To give one such example, consider a Paley graph

on d vertices, denoted as Pald. For a typical d-regular graph G, the limit behavior as d → ∞ of

the spectral expansion λ(G s Pald), when properly normalized, is predicted by our analytic tool

to equal

lim
d→∞

λ(G s Pald)√
D − 1

=
1 +

√
13 + 16

√
2√

8
≈ 2.46, (1.3)

where D = d(d−1)
2 is the degree G s Pald. This should be compared with a bound of 2, the

least possible value given the Alon-Boppana bound. Additionally, it should be compared with

Equation (1.1), which, irrespective of the choice of G, cannot produce a bound lower than O(D1/4).

From the preceding discussion and, in particular, the two case studies, a key question lingers:

Is there an exact formula or efficient method that enables us to compute, and more importantly,

to gain insight on the spectral expansion of the operation of derandomized squaring with H?

2 Our Results

As our case studies suggest, the spectral expansion of the graphs G and H might not adequately

represent the spectral expansion of their derandomized square. In this paper we initiate the study

of the following question:

Main Question. What is the “true” behavior of the spectral expansion

of derandomized squaring?

We turn to give a brief summary of our results. We elaborate further on each of these results

in the subsequent sections, Sections 2.1 to 2.3.

Limitations of derandomized squaring. Our first result is a lower bound on λ(G s H),

factoring in the full spectrum of H, which holds for every graph G. If we encode this spectrum

by the characteristic polynomial of H, denoted as χx(H), then our work reveals that the key

information regarding the bound lies within the largest real solution to the polynomial equation

(d− 1)χx(H)χ′′x(H) = (d− 2)χ′x(H)2.

4



Our proof leans on deep results from analytic combinatorics and the symbolic method.

Evidence for the tightness of our lower bound. Based on our empirical experiments, it

appears that our lower bound is tight in a strong sense, namely, for every vertex-transitive graphH

and for a typical graph G. However, a definitive proof of the bound’s tightness eludes us in general.

In spite of this, we have made notable progress by establishing its tightness for a class of graphs, we

term H-local graphs. This class captures the local structure of graphs obtained by derandomized

squaring with H, and include all graphs of the form G s H. For obtaining this result we make

use of finite free probability theory and the accompanied technique of interlacing. These were

instrumental in the seminal works of Marcus, Spielman, and Srivastava [MSS15b, MSS18, MSS22]

who introduced these techniques for their study of bipartite Ramanujan graphs. We elaborate on

this in Section 2.2. It is also worth noting that for some choices of H, we are able to prove that

our bound is tight.

A lower bound for rotating expanders. In the process of establishing our lower bound

on the spectral expansion of derandomized squaring, we address an open problem concerning the

spectral expansion of rotating expanders [CM23]. In this recent paper, random walks on expanders

were studied, wherein a permutation is applied to the vertices following each step. The objective

of this approach is to mitigate the inherent exponential deterioration of the spectral expansion

with respect to the length of the walk. Indeed, the authors proved that by using a carefully chosen

permutation sequence, the deterioration can be reduced from exponential to linear. The authors

left open the question of whether their construction is optimal.

In this work, we resolve this question by proving the optimality of their construction. More

generally, we prove that a graph which is constructed as a graph product is inherently far from

Ramanujan. Our key observation lies in relating the problem with the Fuss-Catalan numbers

which generalize the Catalan numbers that emerge when bounding the spectral expansion of d-

regular graphs. We elaborate on this in Section 2.3, where we also give the necessary background

on rotating expanders.

A broader perspective: beyond spectral expansion. Almost all of the numerous works

and applications of spectral expanders in theoretical computer science, indeed, the very definition

of a spectral expander G, rely on the notion of the spectral expansion, λ(G). Only a few instances

utilize the entire spectrum of G, which holds significantly more, and sometimes vital, information

about the graph. In their seminal series of works, Marcus, Spielman, and Srivastava developed

finite free probability as a framework to handle the full spectrum of a graph. As mentioned, this

enabled them to establish the existence of bipartite Ramanujan graphs of all sizes and degrees.

Our current work serves as a further exploration into analyzing graphs beyond their spectral

expansion. Instead of aiming to construct expanders, our objective is to achieve a deeper insight

into the derandomized squaring operation. While we primarily target the spectral expansion of

the derandomized square G s H, our approach involves leveraging the entire spectrum of H for

establishing our bounds. In addition to our use of finite free probability, we employ deep results

from analytic combinatorics, and the framework offered by the symbolic method. We posit that
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working with the full spectrum of a graph could yield significant results and improvements for

various problems in theoretical computer science, and we believe that the deep results we use

could be advantageous in other scenarios where analyzing the full spectrum is desired.

Related work. Already at this point, prior to delving into the formal details concerning our

results, we would like to briefly highlight some related work. Our study of the graph G s H for

a d-regular graph G is done by considering the graph Td s H, where Td is the d-ary infinite tree.

The study of graphs, which represent the quotient of a given (typically infinite) graph X, has a

long history. Of particular interest are the extreme graphs, known as X-Ramanujan graphs. The

reader is referred to [MO20, OW20] and references therein for more details. Our result supporting

the tightness of our lower bound mentioned above can also be derived from [MO20]. However,

we believe our proof to be simpler and more direct. We discuss this further after presenting the

relevant result in Section 2.2.

Regarding our lower bound result, the calculation of the spectral radius of operators associated

with infinite graphs has been extensively explored. This is particularly true when these graphs

exhibit a well-defined group-theoretic structure. Analytic combinatorics has a well-established

presence in this context [Woe00]. Finally, it is noteworthy that the Fuss-Catalan numbers are

significant in free probability theory and have known associations with the product of certain

random matrices [PŻ11].

2.1 Limitations of derandomized squaring

Let H be a vertex-transitive graph on d vertices. Recall that, throughout, c denotes the degree of

a vertex in H. In this section we state our result regarding the lower bound on λ(G s H) which

holds for every d-regular graph G. As previously suggested, our approach integrates the complete

spectrum ofH into the bound. This integration is accomplished by encoding the spectrum through

the characteristic polynomial of H-s adjacency matrix, denoted as χx(H) =
∏d
i=1 x− λi, where,

as before, c = λ1 ≥ · · · ≥ λd are the corresponding eigenvalues.

Theorem 2.1. Let H be a vertex-transitive c-regular graph on d ≥ 3 vertices, where c ≥ 1. Let

x0 be the largest real solution to the polynomial equation

(d− 1)χx(H)χ′′x(H) = (d− 2)χ′x(H)2. (2.1)

Then, for every d-regular graph G on n vertices, λ(G s H) ≥ ΛH − on(1), where

ΛH , d

(
x0 − (d− 1)

χx0(H)

χ′x0(H)

)
. (2.2)

As shown in the proof of Theorem 2.1, despite the polynomial equation from Equation (2.1)

usually yielding complex solutions, there is always at least one real solution. Experiments over-

whelmingly suggest that the bound accurately reflects the behavior of λ(G s H) for a typical

graph G. Having this in mind, we may posit that the structure of Equations (2.1) and (2.2),

namely,

(d− 1)ΦΦ′′ = (d− 2)(Φ′)2,
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and the accompanied expression d
(
x− (d− 1) Φ(x)

Φ′(x)

)
, epitomize the derandomized squaring op-

eration with a typical d-regular graph. By setting Φ = χ(H), we incorporate details about H.

Although the proof of Theorem 2.1 leans on deep results from analytic combinatorics and the

symbolic method, employing the theorem remains elementary. However, as perhaps anticipated,

it is not as direct as the Rozenman-Vadhan bound from Equation (1.1), but rather it requires

finding the largest real solution to a polynomial equation.

Before proceeding further, we introduce the following notation. Recall that G s H is D-regular

where D = cd. We define κH = ΛH√
D−1

, and note that, due to the Alon-Boppana bound, κH ∈[
2, D√

D−1

]
≈
[
2,
√
D
]
.

2.1.1 Equivalent reformulations of Theorem 2.1

One can alternatively recast our procedure for finding a lower bound for λ(G s H), as given by

Theorem 2.1, in several equivalent ways, as we describe next.

Recasting the procedure using the Cauchy transform. The Cauchy transform is a useful

analytic tool which we will make an extensive use of in this paper (see Section 4.2). For a graph

H on d vertices, the Cauchy transform takes a simple form and is given by

GH(x) =
1

d
· χ
′
x(H)

χx(H)
=

1

d

d∑
i=1

1

x− λi
. (2.3)

Using the Cauchy transform we can reformulate Theorem 2.1 as follows.

Theorem 2.2 (Recasting Theorem 2.1 in terms of the Cauchy transform). Let H be a vertex-

transitive c-regular graph on d ≥ 3 vertices, where c ≥ 1. Let x0 be the unique positive real solution

to the equation
d

d− 1
GH(x)2 + G′H(x) = 0. (2.4)

Then, for every d-regular graph G on n vertices, λ(G s H) ≥ ΛH − on(1), where

ΛH = dx0 −
d− 1

GH(x0)
. (2.5)

We emphasize that, as demonstrated in the proof of Theorem 2.2, there always exists a positive

real solution to Equation (2.4) and it is unique.

Recasting the procedure as a minimization problem. By defining

ψH(x) = dx− d− 1

GH(x)
,

we can recast the procedure outlined in Theorem 2.1 as computing the value x0 > c that minimizes

ψH(x), where it can be shown that such x0 exists and is unique. That is, ΛH = minx>c ψH(x)

(see Theorem 5.9). As λ(G s H) is the solution to a maximization problem (being the largest

eigenvalue of H in absolute value, excluding λ1 = c), one way to interpret this way of recasting
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the procedure is as the following min-max result (which, we posit, should hold with equality, but

for the vanishing term, for a typical G on n vertices):

λ(G s H) = max
i>1
|λi(G s H)| ≥ min

x>c
ψH(x)− on(1).

In Section 8.4, we introduce a fourth approach, characterized by a more combinatorial perspective,

to restate Theorem 2.1. This approach serves us in studying derandomized squaring with cycle

graphs.

2.1.2 Derandomized squaring with bounded-degree graphs

An advantage of the latter formulation of Theorem 2.1 as a minimization problem is that it

allows us to find upper bounds on ΛH even in cases where it is too difficult to find the minimum

of ψH(x). Indeed, ψH(x0) serves as an upper bound on ΛH for any x0 > c. Using this, we prove

that our lower bound (which recall, we posit reflects the true behavior of derandomized squaring

with a typical d-regular graph G) on the spectral expansion of λ(G s H) gravitates towards the

Alon-Boppana bound for every vertex-transitive graph H with bounded degree. Quantitatively,

in Theorem 8.1 we prove that for every simple 4 vertex-transitive c-regular graph H on d vertices,

it holds that

κH ≤ 2 +

√
c√

d−
√
c
. (2.6)

Theorem 8.1 further asserts that the bound on κH gravitates towards 2 at a linear rate,

specifically, κH = 2 + O( cd), assuming H is triangle-free. A noteworthy application of this result

concerns the boolean hypercube on d vertices, denoted as HCd. Although an exact analysis of

κHCd is challenging, the aforementioned result readily implies that κHCd = 2 +O
(

log d
d

)
. We also

derive a stronger bound assuming H is a good spectral expander. Specifically, in Proposition 8.2,

we establish a bound of the form

κH ≤ 2 +
2√
d

(
λ(H)√

c

)3

,

applicable when c <
√
d, and a stronger bound assuming triangle-freeness.

2.1.3 A universal bound on κ for simple graphs

The bound presented in Equation (2.6) is particularly effective in the low-degree regime where

c � d. In contrast, for the high-degree regime, we introduce a second bound in Theorem 8.1

which is given by κH ≤ 2c+d√
cd

. Building on this, we establish a universal bound for κ. Specifically,

as demonstrated in Theorem 8.1, for every simple vertex-transitive graph H with at least 11

vertices, κH ≤ 3. This bound is proven to be tight using the example of the complete graph

without self-loops (see Section 8.1.2). Consequently, the game-play in determining the value of

κH falls within the interval [2, 3].

4We adhere to the conventional definition of a simple graph, which stipulates the absence of self-loops and parallel

edges.
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2.1.4 The derandomized squaring polynomial

Generally, finding the desired solution to the polynomial equation presented in Theorem 2.1

can be challenging, especially considering that the polynomial’s degree is 2d − 2. Upon closer

examination, it becomes apparent that the complexity of this task is actually determined by

the number s of distinct eigenvalues. To see this denote these distinct eigenvalues of H by

c = µ1 > µ2 > · · · > µs, where mi is the multiplicity of the eigenvalue µi. Using this notation,

Equation (2.4) can be written as

1

d

s∑
i,j=1

mimj
g(x)2

(x− µi)(x− µj)
−
(

1− 1

d

) s∑
i=1

mi
g(x)2

(x− µi)2
= 0,

where g(x) =
∏s
i=1 x− µi.

The left-hand side is evidently a polynomial of degree 2s − 2, and it can be verified that it

is monic. We refer to this polynomial as the derandomized squaring polynomial associated with

H and denote it as ∆H(x). Note that its degree depends only on the number s of distinct

eigenvalues of H, which may be much smaller than d, the number of vertices. Therefore, applying

Theorem 2.1 (or any of its alternatives) is typically simpler when s is small. For instance, strongly

regular graphs can be characterized within the family of regular graphs, spectrally, as having

s = 3 distinct eigenvalues. We analyze the derandomized squaring with strongly regular graphs

in Section 8.7.

One interesting class of graphs that is contained within the class of strongly regular graphs are

Paley graphs which were already discussed in Section 1.2.2. We illustrate the use of Theorem 2.1

with this example. As we prove in Section 8.6, the derandomized squaring polynomial of the

d-vertex Paley graph is given by

∆Pald(x) = x4 − (d− 3)x3 − d2 + 4d− 9

4
x2 +

(d+ 1)(d− 1)(d− 2)

4
x− d(d− 1)2(d− 2)

16
.

From this one can compute ΛPald for any particular d. The first values (recall d ≡4 1)

are κPal5 ≈ 2.026, κPal9 ≈ 2.203, and κPal13 ≈ 2.279. More interestingly, we can study the

limit behavior as d → ∞. To this end, it suffices to consider the following simpler polynomial

∆Pal∞(x) , x4 − dx3 − d2

4 x
2 + d3

4 x−
d4

16 , or, after homogenizing,

x4 − x3 − 1

4
x2 +

1

4
x− 1

16
.

Finding the unique positive root of ∆Pal∞(x) and substituting to Equation (2.5), we get

κPal∞ , lim
d→∞

κPald =
1 +

√
13 + 16

√
2√

8
≈ 2.46,

which aligns with Equation (1.3).

2.2 Matching the lower bound with H-local graphs

As previously discussed, we have yet to establish that the lower bound provided by Theorem 2.1 is

tight in general. However, empirical results strongly suggest its accuracy. Specifically, we believe
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this to be true for every vertex-transitive graph H on d vertices and for a typical d-regular graph

G. In light of the evidence supporting this assertion, as we discuss next, we will formulate it as

a conjecture in Section 2.4.

In order to state our analytic evidence for the tightness of our bound, we observe that from

the perspective of a vertex v in G s H, the vertex v participates in d instances of H. This is

because each of the d neighbors of v positions it within a copy of H. We call a graph that has the

above local property an H-local graph (see Definition 6.1 for the formal definition). The following

theorem formalizes the evidence we have gathered for the tightness of our lower bound.

Theorem 2.3. For every vertex-transitive graph H on d ≥ 3 vertices and for every n ≥ 1, there

exists an H-local graph XH on nd vertices such that λ2(XH) ≤ ΛH .

In addition to Theorem 2.3, we prove the optimality of our lower bound in three specific cases

of H: the clique with self-loops, which corresponds to the actual squaring operation; the clique

without self-loops, which corresponds to a non-backtracking length-2 random walk; and lastly, the

graph employed in the Rozenman-Vadhan bound’s tightness result. We provide further details on

these cases in Section 8.1.

Going back to Theorem 2.3, note that we manage to bound only the second-largest eigenvalue,

λ2(X), rather than the spectral expansion λ(X) = max(λ2(X), |λn(X)|). Graphs with such prop-

erty are termed one-sided spectral expanders. These graphs are suitable for numerous applications,

primarily due to the fact that this property alone suffices for the Alon-Chung Lemma [AC88].

The proof of Theorem 2.3 leverages finite free probability and the interlacing technique that

were developed by Marcus, Spielman, and Srivastava [MSS15b, MSS18, MSS22]. We provide a

high-level overview for the proof of Theorem 2.3 in Section 3.2, however, already here we emphasize

that the fact that our lower bound, which is based on results from analytic combinatorics, matches

our upper bound which is rooted in tools from free probably theory is an instantiation of a deep

connection between the two fields. This has to do with the fact that one combinatorial proof

for the Lagrange inversion formula–a tool used under the hood in our lower bound–makes use of

Lukasiewicz paths that in turn are tightly connected to the lattice of non-crossing partitions which

is at the heart of free probability theory. The reader is referred to Chapter 16 in the excellent

book by Nica and Speicher [NS06] to learn more about this connection, though for our purpose,

of studying the derandomized squaring operation, we give a direct and self-contained proof.

Related work. In their paper, Mohanty and O’Donnell [MO20] proved the existence of X-

Ramanujan graphs for a wide class of infinite graphs called additive product graphs. These can be

shown to include the graphs that are obtained by derandomized squaring. As a result, Theorem 2.3

can also be derived from [MO20]. We turn to give a brief comparison between the two proofs.

As in our proof, the interlacing technique is used to argue that a particular graph in the family

“behaves as well” as the expected characteristic polynomial (the reader who is unfamiliar with this

approach by MSS is referred to Section 3.2). Notably, when analyzing the expected characteristic

polynomial, Mohanty and O’Donnell adopt a different approach than our own. They consider a

generalization of the matching polynomial, which arises in the study of Ramanujan graphs. In

contrast, our approach aligns with the later works of MSS and is entirely analytical, departing
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from the combinatorial method employed in MSS’s earlier work [MSS15a]. We believe that our

proof, tailored to the case of derandomized squaring, is both simpler and more straightforward.

An interesting question we leave open is to generalize our lower bound, given by Theorem 2.1, to

the more general setting of additive product graphs.

2.3 Lower bound on the spectral expansion of rotating expanders

A “standard” length-t random walk on a graph G is analyzed by considering the power graph,

denoted as Gt, generalizing the square of the graph G2 which was discussed so far. This graph

encodes the number of length-t walks by introducing an edge for each such walk between the two

corresponding vertices. It is easy to see that if A is the adjacency matrix of G, then the matrix

At is the adjacency matrix of Gt. Consequently, the spectral expansion of Gt, which is the most

pertinent quantity when examining length-t random walks on G, is given by λ(Gt) = λ(G)t. In

particular, if G is a d-regular Ramanujan graph, then λ(Gt) = 2Ω(t)
√
D − 1, where D = dt is

the degree of Gt. Therefore, even if G is initially Ramanujan, the power graph is exponentially

distant, in t, from Ramanujan.

With an eye towards potential applications to theoretical computer science, Cohen and Maor

[CM23] proposed that permuting the vertices after each step (in a palindrome fashion to result in

an undirected graph) can circumvent this exponential deterioration. More precisely, the authors

proved that for every d-regular Ramanujan graph G with adjacency matrix A, and for every

integer t ≥ 2, there exists a sequence of permutation matrices P = (P1, . . . ,Pt−1) such that the

graph GP, whose adjacency matrix is given by

AP = APt−1 · · ·AP1A
2PT

1 A · · ·PT
t−1A,

has spectral expansion

λ(GP) ≤
(

1 +
1

t

)t
(t+ 1)

√
D + o(1), (2.7)

where D = d2t is the degree of GP and the o(1) term is a quantity that vanishes exponentially

fast with the girth of G, and should be ignored in this introductory section. Specifically, by

permuting the vertices after each step using suitable permutations, the deterioration is reduced

from exponential to linear in t.

An open problem left in [CM23] is to establish a lower bound on the spectral expansion of GP

that is applicable for any permutation sequence P. Specifically, the authors left open the question

of whether the linear dependence in t is optimal. Experimental results suggest that for a typical P,

Equation (2.7) holds with equality, up to the vanishing o(1) term. However, it is entirely plausible

that the typical behavior does not accurately represent the behavior of the optimal permutation

sequence P. The logic would be that for a graph with substantial structure, such as a Cayley

graph, a permutation sequence that takes into account the structure of the underlying group and

the set of generators may yield a superior spectral expansion. However, in this work we resolve

this open problem by proving that the bound is indeed tight.

11



Theorem 2.4. For every d-regular graph G and for every permutation sequence P = (P1, . . . ,Pt−1),

λ(GP) ≥
(

1 +
1

t

)t
(t+ 1)

√
D − o(1).

In fact, our lower bound applies to the product of any d-regular graphs, not just to isomorphic

graphs as used in the construction of GP. For t = 1, where no actual product is involved,

this essentially aligns with the Alon-Boppana bound. As suggested by Theorem 2.4 (ignoring

the o(1) term), we have λ(GP) = λ(G2) ≥ 4
√
D. However, for t = 2, the bound increases to

λ(GP) ≥ 33

22

√
D = 6.75

√
D, and for t = 3, it further deteriorates to λ(GP) ≥ 44

33

√
D ≈ 9.48

√
D.

As indicated, the gap for graph products increases linearly with the number of graphs involved,

making them inherently far from Ramanujan.

Our proof begins similarly to the proof of our lower bound for the spectral expansion of a

derandomized square, by employing the trace method. However, unlike the derandomized square,

here we are able to prove our bound by pure combinatorial means, without resorting to analytic

tools. Our key observation lies in relating the problem with the Fuss-Catalan numbers which

generalize the Catalan numbers that emerge when bounding the spectral expansion of d-regular

graphs.

2.4 Two conjectures and open problems

Given our results and the above discussion, we wish to put forth two conjectures that capture

different aspects of the tightness of our lower bound as given by Theorem 2.1. These are analog

to fundamental questions on Ramanujan graphs where Theorem 2.1 plays in this analogy the role

of the Alon-Boppana bound.

Conjecture 2.5. For every vertex-transitive graph H, λ(G s H) ≤ ΛH holds for infinitely many

graphs G.

Conjecture 2.5 is analog to the fundamental question regarding the existence of Ramanujan

graphs which has received significant attention in the literature. Resolving Conjecture 2.5 with

respect to λ2(G s H) would be interesting as well. Our second conjecture focuses on the typical

behavior, and is analogous to Friedman’s resolution [Fri08] of Alon’s conjecture [Alo86] (see also

[Bor20]). We first introduce the following notation: For an even integer n and for an integer

d, we let Mn,d denote the distribution over d-regular graphs on n vertices that are sampled by

taking the union of d uniformly random and independent perfect matchings, where edges that are

sampled multiple times are counted with the respective multiplicity.

Conjecture 2.6. For every vertex-transitive graph H on d vertices and for every ε > 0,

Pr
G∼Mn,d

[λ(G s H) ≥ ΛH + ε] = on(1).

In addition to the conjectures previously discussed, our research raises several intriguing ques-

tions. An obvious open problem is the generalization of our results to non-vertex-transitive graphs.

For potential theoretical computer science applications, it would be pertinent to identify condi-

tions that a pair of graphs G and H satisfy so that the spectral expansion λ(G s H) is close to
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our lower bound or, at a minimum, substantially improves upon the Rozenman-Vadhan bound.

Once this aspect is clearer, problems regarding the explicitness can be addressed. To give just

one additional research question, we believe that the extension of our techniques to additional

graph operations, including the Zig-Zag product and the wide-replacement product, is feasible.

We defer this exploration to future research.

Organization of the rest of the paper

In Section 3 we give a high-level proof overview of our results. The proof of Theorem 2.1 that

deals with the limitation of derandomized squaring is given in Section 5, where we also derive

its different equivalent formulations. In Section 6 we prove Theorem 2.3 which constitutes our

analytic evidence for the tightness of Theorem 2.1. Our result on rotating expanders, Theorem 2.4,

is given in Section 7. In Section 8 we apply our results to interesting graph families, and prove

our universal bound on κH for simple graphs.

3 Proof Overview

In this section, we provide an informal overview of the proofs for our results. We begin with

our lower bound for the spectral expansion of derandomized squaring, as given by Theorem 2.1

(outlined in Section 3.1). Our proof relies on the symbolic method and leverages results from

analytic combinatorics, both of which we introduce and explain in the respective sections (see

Section 3.1.1 and Section 3.1.3 for the necessary background). Additionally, we briefly outline the

proof for our evidence regarding the tightness of our lower bound, as stated in Theorem 2.3, in

Section 3.2. In that section, we provide the necessary background on finite free probability, which

is essential for understanding the proof. Finally, in Section 3.3, we give a sketch of the underlying

ideas of the proof for Theorem 2.4, which concerns the lower bound on the spectral expansion of

rotating expanders.

3.1 Limitations of derandomized squaring

As before, let G be a d-regular graph and H a vertex-transitive c-regular graph on d vertices.

In this section we sketch the proof for our lower bound on λ(G s H), as stated in Theorem 2.1.

Our starting point is standard, relying on the trace method which asserts that λ(G s H) is lower

bounded by roughly c`(G s H)1/` for every ` > 0, where c`(G s H) is the number of length-` cycles

that originate at some fixed vertex v of G s H (see Section 4.3). Thus, the task at hand is to

compute, or at least lower bound c`(G s H), where we will choose ` to be sufficiently large. A

common strategy for this is to consider a suitable infinite cover of the graph of interest, G s H

in our case, which we take to be Td s H, where Td is the d-regular infinite tree. Indeed, for every

`, every length-` cycle in Td s H that originated at some fixed vertex induces a unique cycle in

G s H, initiated at some fixed vertex, and so c`(G s H) ≥ c`(Td s H).

We obtain an accurate estimate on c`(Td s H) by first expressing the combinatorial class of

cycles in Td s H using the symbolic method, from which we immediately derive a functional equa-
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tion that is satisfied by the corresponding generating function. We then use results from analytic

combinatorics to get the desired estimate on the coefficients of the latter. The symbolic method,

a prominent combinatorial theory, allows one to deduce a functional equation that is satisfied

by the class’s generating function straight from its specification. Given its lesser prominence in

theoretical computer science, we begin with a brief overview of the symbolic method, and as a

preliminary exercise, we determine a lower bound for c`(Td) (see Section 3.1.1), which explains

the familiar 2
√
d− 1 bound on the spectral expansion of d-regular graphs. Following this, in

Section 3.1.2, we utilize the symbolic method to define the cycle class in Td s H and from there,

derive a functional equation that is satisfied by the associated generating function.

With the functional equation in hand, our objective is to deduce estimates of its coefficients.

While straightforward for simpler instances like Td, the task becomes more complex for our graph,

Td s H. To achieve the sought-after estimate, we employ deep results from analytic combinatorics.

These treat the functional equation as a meromorphic function, considering its singularities to

determine the bound. We provide the essential context and outline our derivation for the estimates

in Sections 3.1.3 and 3.1.4. For a comprehensive treatment of the symbolic method and analytic

combinatorics, we refer the reader to the excellent book by Flajolet and Sedgewick [FS09], though,

our presentation is meant to be self-contained.

3.1.1 The symbolic method: a swift overview

The symbolic method provides a technique to convert a specification of a combinatorial class by

means of certain combinatorial constructs into a functional equation that is satisfied by its associ-

ated generating function. In more technical terms, a combinatorial class A consists of a collection

of combinatorial objects paired with a designated size function | · | : A → N. The associated (ordi-

nary) generating function for this class is the formal power series A(z) =
∑

a∈A z
|a| =

∑
k∈NAkz

k,

where Ak is the number of objects in A of size k, which we always assume is finite.

Set theoretic operators on the combinatorial classes reflect in their associated generating func-

tions. For instance, when two combinatorial classes, A and B, are combined in a disjoint union,

denoted as A + B, the corresponding generating function becomes the sum of their individual

generating functions, A(z)+B(z). When considering the Cartesian product A×B, it corresponds

to the multiplication of their generating functions. In this context, the size of an element (a, b)

from A×B is given by |a|+ |b|. This concept of the Cartesian product can be extended to multiple

classes. Another valuable concept is the sequence of a class, denoted as SEQ(A). This represents

the disjoint union of the Cartesian products across all finite lengths n ≥ 0. The generating

function for SEQ(A) is given by 1
1−A(z) .

We make use of standard shorthand notations: For an integer ` ≥ 1 and a class A, we let `A
denote the sum of ` copies of A. We similarly write A` for the Cartesian product of ` copies of

A. The class denoted Z refers to the class containing a single element of size 1. Its generating

function is, of course, z. The elements of size 1 in a combinatorial class A are called atoms, all of

which are considered distinct. An element of size 0, denoted as ε, is called a neutral object.

For instance, the class of binary strings can be constructed as SEQ({0} + {1}) where both

elements 0, 1 in their corresponding sets are atoms. Note that we can also write the class more
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succinctly as SEQ(Z + Z) or SEQ(2Z) as indeed 2Z is a combinatorial class that consists of

two atoms. For the purpose of counting elements, these descriptions are equivalent, or isomor-

phic, though the second is less informative. From this, the corresponding generating function is

immediately obtained, 1
1−2z =

∑∞
k=0 2kzk.

To give another example, consider the class of rooted trees where the sequence order of a node’s

children matters, meaning they are arranged from left to right. This class can be formulated using

the recurrence A = • × SEQ(A), where • symbolizes an atom denoting a node. In this context,

the size function corresponds to the number of vertices in the tree. To elaborate, a tree consists of

a node, contributing a size of 1, followed by a sequence of trees. The related generating function

satisfies the functional equation A(z) = z
1−A(z) , or equivalently A(z)2−A(z) + z = 0. Using basic

methods, it can be shown that the coefficients of A(z) are the Catalan numbers.

A preliminary example: counting cycles in Td. To illustrate the symbolic method with

a fairly straightforward example which is related to our problem, let us determine the number

of cycles in Td that originate at the root. Denote the corresponding class by C, where the size

function is the cycle’s length. To simplify the problem slightly, we truncate one branch from the

root. As it turns out, this has no affect on the asymptotic behavior, and is anyhow valid if one

aims for proving a lower bound. The recursive specification of a cycle yields

C = SEQ ({1, 2, . . . , d− 1} × C× ↑) , (3.1)

where the elements 1, 2, . . . , d− 1 and ↑ are atoms.

To see this, observe that within the SEQ construct, we specify the class of cycles that originate

at the root and revisit it only upon cycle completion. Specifically, we have d− 1 options for the

first step, each of length 1. This is followed by a cycle in the infinite d-ary tree originating from

the node we transitioned to. The concluding atom ↑ represents the move from that node back to

the root. An equivalent, more succinct, formulation is given by C = SEQ
(
((d− 1)Z2)× C

)
. As an

immediate consequence, the associated generating function C(z) satisfies the functional equation

C(z) =
1

1− (d− 1)z2C(z)
. (3.2)

From this point one can proceed to extract the coefficients of C(z) by elementary means es-

pecially since the problem’s simplicity permits such an approach. However, when applying the

symbolic method to analyze the derandomized squaring operation, directly determining the coef-

ficients might be an insurmountable challenge. We thus resort to approximating the coefficients

using results from analytic combinatorics. We will also do that for this running example later

on, and so for comparison, we briefly recall the standard derivation for the exact coefficients by

elementary means: By Equation (3.2), C(z) =
1−
√

1−4(d−1)z2

2(d−1)z2
, and since

√
1− w =

∞∑
n=0

(−1)n
(1

2

n

)
wn = −

∞∑
n=0

2

4nn

(
2n− 2

n− 1

)
wn,
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we have that

C(z) =
1

2(d− 1)z2
·
∞∑
n=1

2

4nn

(
2n− 2

n− 1

)
(4(d− 1)z2)n =

∞∑
n=0

1

n+ 1

(
2n

n

)
(d− 1)nz2n.

Hence, for an even k, the coefficient of zk in C(z) is given by[
zk
]
C(z) ≈ k−3/2 · (2

√
d− 1)k. (3.3)

By using the trace method, which involves taking the k-th root of the above expression, we see

the (or a) reason for the 2
√
d− 1 bound on the spectral expansion of d-regular graphs.

Substitutions. In order to devise the specification of the class of cycles in Td s H, analog to the

derivation in Equation (3.1) for the cycles in Td, we introduce one more construct of combinatorial

classes called substitution. For two classes A,B, the combinatorial class, denoted as A ◦ B, is

obtained by replacing in each object of A each atom by an element of B. For example, we revisit

the class of cycles in Td and observe that an alternative specification for the one that was obtained

in Equation (3.1) is given by

C = (SEQ ({1, 2, . . . , d− 1})) ◦ (↓ ×C × ↑) . (3.4)

To see this, observe that for describing a cycle, one first needs to define the order in which the

root visits its sons. For each instance of a son i ∈ {1, . . . , d − 1} in the sequence, we substitute

it with a step towards the son, symbolized by the atom ↓. This is followed by a cycle at the

tree originating from the son, and then a return step, represented by the atom ↑. Generally, if

the generating functions for two combinatorial classes A and B are denoted as A(z) and B(z)

respectively, then the generating function for A ◦ B can be expressed as the composition A(B(z)).

This offers an alternate validation for Equation (3.2).

3.1.2 The functional equation for derandomized squaring

Let H be a vertex-transitive graph on d vertices. Define CTd s H as the combinatorial class of cycles

in Td s H that originate at the root. As previously mentioned, the size function corresponds to

the cycle’s length. To prevent double-counting, we exclude the empty cycle from this class.

When expressing the class using the symbolic method, we use SH to represent the combinatorial

class of nonempty cycles in H that only revisit the originating vertex upon completing the cycle.

Consequently, as detailed below, after truncating one branch of the root as was done when we

studied Td, the class CTd s H satisfies to the recursive relation

CTd s H = {1, . . . , d− 1} ×
(
SH ◦

(
→ ×

(
CTd s H + ε

)))
. (3.5)

Here, → symbolizes an atom, which we interpret as a step within a cycle in H.

To see this, remember that each son of the root positions the root within a copy of H. There-

fore, when describing a non-empty cycle originating at the root, we first select one of its d − 1

sons, which determines the copy of H in which the root is involved. Now, consider any cycle
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within that copy of H starting at the root, v1 → v2 → · · · → v` = v1. This cycle corresponds to a

cycle in Td s H that begins at the root in the following manner: After each step vi → vi+1 on the

cycle, we examine the copy of Td s H rooted at vi+1 and attach a cycle from that copy of Td s H.

When we return to vi+1, we proceed with vi+1 → vi+2. Note that attaching an empty cycle

is permissible, even though it is not included in CTd s H , leading to the addition of the neutral

element ε in Equation (3.5). Furthermore, after the final step v`−1 → v` = v1, we attach another

(potentially empty) copy of CTd s H to account for cycles that visit the root more than twice. This

rationale underpins our definition of SH , which is designed to prevent over-counting that would

have otherwise occur.

Equation (3.5) directly implies that the generating function, CTd s H(z), associated with the

class CTd s H satisfies

CTd s H(z) = (d− 1)SH

(
z
(
CTd s H(z) + 1

))
, (3.6)

where SH(z) is the generating function corresponding to the class SH . On its own, this result

does not provide much insight, as the functional equation u = (d − 1)SH(z(u + 1)) tends to be

intricate, hindering our ability to extract the coefficients of CTd s H(z). For instance, even in the

simple case of a length-4 cycle, H = C4, in which case SC4(z) = 2z2

1−2z2
, Equation (3.6) takes the

form

2z2c(z)3 + 10z2c(z)2 + (14z2 − 1)c(z) + 6z2 = 0,

where the term c(z) is a shorthand for CTd s C4
(z), resulting in a complicated expression for c(z).

To address this challenge, we leverage a deep result from analytic combinatorics. We will

first provide the essential background in the following section, Section 3.1.3. Subsequently, in

Section 3.1.4, we will outline our approach to estimating the coefficients of CTd s H(z) using

Equation (3.6) as our starting point.

3.1.3 A brief introduction to analytic combinatorics

The symbolic method classifies combinatorial classes into schemes based on their shared struc-

tures. This approach aims to consolidate solutions to these problems and highlight their interrela-

tions. A notable schema within this framework is termed smooth inverse-function schema. These

are classes whose generating function ζ(z) satisfies the functional equation u = z · φ(u), namely,

ζ(z) = z · φ(ζ(z)), for some “well-behaved” function φ(u). By manipulating Equation (3.6), we

see that CTd s H is tightly connected to this schema. Indeed, letting ζH(z) = z
(
CTd s H(z) + 1

)
,

we have that ζH(z) = z · φH(ζH(z)), where

φH(u) = 1 + (d− 1)SH(u). (3.7)

Analytic combinatorics provides a method to estimate the coefficients of the generating func-

tion for smooth inverse-function schema. This approach is applicable under certain technical

conditions on φ(u), which we hide under the rug in this informal proof overview. The key require-

ment though is that there is a real positive solution to the characteristic equation φ(u) = u ·φ′(u)

within φ-s analytic domain around the origin (see Definition 5.2). With this, we have the following

theorem which is informally stated here (see Theorem 5.6 for the formal statement).
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Theorem 3.1. Let ζ(z) belong to the smooth inverse-function schema. Then, with τ the positive

root of the corresponding characteristic equation φ(u) = u · φ′(u), one has([
zk
]
ζ(z)

) 1
k ≈ φ′(τ). (3.8)

The proof of Theorem 3.1 relies on results from complex analysis though, unfortunately, we

are unable to say much about the proof. As mentioned, the reader is referred to the excellent

book by Flajolet and Sedgewick [FS09] to learn more about this fascinating topic.

Back to the example of cycles in Td. Let us illustrate Theorem 3.1 using our ongoing

example. Given that there are no cycles of odd length in Td, all coefficients of C(z) corresponding

to odd powers of z vanish, and so we can rewrite Equation (3.2) as D(z) = 1
1−(d−1)zD(z) , where

D(z2) = C(z). By multiplying by z and introducing the generating function E(z) = zD(z), we

get E(z) = z · φ(E(z)), with φ(z) = 1
1−(d−1)z . It is straightforward to confirm that τ = 1

2(d−1)

satisfies the characteristic equation, i.e., φ(τ) = τ ·φ′(τ). As φ′(τ) = 4(d−1), Theorem 3.1 implies

that
([
zk
]
E(z)

)1/k ≈ 4(d − 1), leading to the conclusion
([
zk
]
C(z)

)1/k ≈ 2
√
d− 1, which aligns

with the result obtained by elementary means, Equation (3.3).

3.1.4 Proof sketch of Theorem 2.1

With Theorem 3.1 in hand, and by the discussion above that led us to Equation (3.7), we are

ready to sketch the proof of Theorem 2.1. In fact, it will be more convenient to consider the

variant using the Cauchy transform as given by Theorem 2.2. Since CH = SEQ(SH), we have

that SH(z) = 1 − 1
CH(z) . It can also be shown that CH(z) = 1

zGH(1
z ) (see Claim 5.4), and so

Equation (3.7) takes on the form

φH(z) = d− (d− 1)z

GH
(

1
z

) .
Through some algebraic manipulations, it becomes evident that the characteristic equation,

φH(u) = u · φ′H(u), transforms into the form presented in Equation (2.4) from Theorem 2.2 when

z is substituted with its reciprocal. Upon further analytical exploration, one can deduce the

existence of a unique real positive solution τ to the characteristic equation within φ-s analytic

domain around the origin. This allows us to apply Theorem 3.1 and derive the sought-after

estimate.

3.2 Matching the lower bound with H-local graphs

As briefly discussed in Section 2.2, the proof of Theorem 2.3 makes use of finite free probability.

Thus, to start with, in Section 3.2.1 we give a brief account of this elegant theory. Then, in

Section 3.2.2 we sketch the proof of Theorem 2.3.

3.2.1 Finite free probability

Free probability is a branch of mathematics, initiated by Voiculescu, that extends classical prob-

ability theory into the non-commutative setting. In classical probability, random variables are
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analyzed using their joint distribution, which encodes the correlations or lack of between them. In

contrast, free probability introduces the abstract notion of “freeness” to represent the absence of

correlations, appropriately defined, among non-commutative random variables. Free probability

theory provides, in particular, tools to analyze the spectrum of the sum and product of two op-

erators, given that these operators are free, using knowledge of their individual spectra. Freeness

is an infinite-dimensional phenomena in the sense that a pair of finite-dimensional operators can

only be free from one another if one of them is constant. As a result, operators associated with

finite graphs cannot be studied directly by free probability theory.

In response to this limitation, Marcus, Spielman, and Srivastava, in their groundbreaking series

of works [MSS15b, MSS18, MSS22], introduced the theory of finite free probability along with the

associated technique of interlacing. This enabled them to extend some results of free probability

to the finite-dimensional setting, especially regarding the spectra of matrix sums and products.

While finite free probability may not capture all details of the latter spectra, it provides a one-

sided bound on its support. Finite free probability does not depend on the abstract concept of

freeness or any analogous notion. Rather, it demonstrates that conjugating a finite operator, A,

with an orthogonal matrix—sampled according to the Haar measure on this group—effectively

“frees” A from other operators. We consider a specific application of this principle in the context

of operator addition.

Definition 3.2 (Definition 2.4 in [MSS18]). Let A,B be d × d real symmetric matrices, with

characteristic polynomials a(x) and b(x), respectively. The additive convolution of a(x) and b(x)

is defined as

a(x)�d b(x) = E
Q
χx

(
A + QBQT

)
, (3.9)

where the expectation is taken over random orthogonal matrices Q sampled according to the Haar

measure on the group of n-dimensional orthogonal matrices.

We note that, while it may not be immediately apparent, the right-hand side of Equation (3.9)

depends only on the spectra of A and B. Consequently, the additive convolution is well-defined.

It was also proved in [MSS22] that a(x)�d b(x) is real-rooted itself, hence a discussion of bounding

its roots is sensible. When d is clear from context, we omit the subscript d in �d.

The analytic machinery that will allow us to study the additive convolution is the Cauchy

transform and its max-inverse (see Section 4.2 for details). More precisely, the Cauchy transform

of a real-rooted degree d polynomial p(t) ∈ R[t], whose roots are λ1 ≥ λ2 ≥ · · · ≥ λd, is defined as

Gp(x) = 1
d

∑d
i=1

1
x−λi . Clearly, for an undirected graph H, the Cauchy transform GH(x) as defined

in Equation (2.3) can be expressed as Gp(x) where p(t) = χt(H) is the characteristic polynomial

of H.

Note that when the Cauchy transform of a polynomial p(t) is restricted to the domain to

the right of its rightmost pole, (λ1,∞), its range is (0,∞). Additionally, Gp(x) is monotonically

decreasing within this domain. With this in mind, one can define Kp : (0,∞)→ (λ1,∞) to be the

inverse of Gp(x) when restricted to the latter domain. In other words, Kp is the max-inverse of

Gp. Particularly, for every y ∈ (0,∞), Kp(y) provides an upper bound on the largest root, λ1, of

p(t). The key feature of the K-transform is that it behaves very-well under additive convolution.
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Theorem 3.3 (Theorem 1.12 in [MSS22]). For all d × d real symmetric matrices A,B with

characteristic polynomials a(x), b(x), respectively, and for every y > 0, it holds that

Ka�b(y) ≤ Ka(y) +Kb(y)− 1

y
.

It is worth noting that in free probability, the analog statement to Theorem 3.3 in the infinite

dimensional case holds with equality.

3.2.2 Proof sketch of Theorem 2.3

The main idea in proving Theorem 2.3 is to randomly construct an H-local graph in a very

intuitive way: since we want each vertex v to appear in d instances of H, we place v in d such

instances, choosing the neighbors uniformly at random. Formally, we define a matrix H consisting

of disjoint copies of H, and sum d random permutations of this matrix. This results in the matrix

XP(H) =

d∑
i=1

PiHPT
i ,

where P = P1, . . . ,Pd are permutation matrices. The proof for the existence of an H-local graph

whose second largest eigenvalue meet our lower bound incorporates two parts:

1. Bounding the second largest root of the expected characteristic polynomial, EP χx (XP(H)),

where the permutations are sampled uniformly and independently at random.

2. Relating the roots of EP χx (XP(H)) to roots of a particular choice for P, resulting in finding

a good permutation, which induces a graph.

On first sight, it is not clear how to relate the expectation polynomial from Part 1 with the

aforementioned tools of finite free probability. Definition 3.2 uses an expectation over the Haar

measure, and together with Theorem 3.3 (applied d − 1 times) enables us to establish an upper

bound on the largest root of the expected characteristic polynomial, derived as the “free sum”

of d of identical matrices. More precisely, a corollary from Theorem 3.3, together with the above

discussion, yields

maxroot
(
χx(A)�d

)
≤ min

x>λ1

(
dx− d− 1

GA(x)

)
, (3.10)

where λ1 is the largest eigenvalue of A. When taking A to be the matrix H, the RHS of Equa-

tion (3.10) resembles Equation (2.5) from Theorem 2.2. However, the relevance of the LHS of

the above equation remains unclear, as the expectation hidden in the � operation is over the

Haar measure and not over permutations. For bridging this gap, as well as for establishing Part

2, we follow MSS and proceed in two steps: quadrature and interlacing. While our proof makes

a black-box use of these techniques we believe that the unfamiliar reader will benefit from this

short account.
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Quadrature. Quadrature refers to a general technique by which an integral is written as a finite

sum. In our context, we make use of the result showing that finite free additive convolution can

be expressed using the finite subgroup of permutation matrices of the unitary group. Specifically,

Theorem 3.4 (Theorem 4.1 in [MSS18]). Let A,B be symmetric d × d matrices with A1 = a1

and B1 = b1. Let χx(A) = (x− a)a(x) and χx(B) = (x− b)b(x). Then,

E
P
χx

(
A + PBPT

)
= (x− (a+ b)) · a(x)�d−1 b(x),

where P is a uniformly random permutation matrix.

Assume that A is the adjacency matrix of a c-regular graph, and let p(x) = χx(A)
x−c . As a direct

corollary of Theorem 3.4, we get that

E
P1,...,Pd

χx

(
d∑
i=1

PiAPT
i

)
= (x− dc) · p�d(x).

Consequently, by taking A = H, the upper bound on the max-root of the convolution polyno-

mial, derived using Equation (3.10), directly establishes a bound on the max-root of the expected

characteristic polynomial appearing on the LHS. The advantage is that we are now considering

an expectation over a finite distribution, and more importantly, each element in the support of

the distribution is an H-local graph. The final step of interlacing permits us to conclude that an

element exists within this distribution for which the same upper bound holds.

Interlacing. So far, we have discussed how to obtain a bound on the largest root of the expected

characteristic polynomial (excluding the trivial root), where the expectation is over the group of

permutation matrices. It is generally incorrect to assert that a bound on the largest root of the

expectation of polynomials can be utilized to infer a bound on the largest root of one of the

polynomials involved in the expectation. A key observation by MSS concerning this issue is that

such an result holds if the polynomials participating in the expectation form an interlacing family.

In fact, for any choice of k, this structure suffices to deduce a bound on the k-th largest root of

at least one polynomial in the family, given that we are able to bound the k-th largest root of the

expected characteristic polynomial.

3.3 Lower bound on the spectral expansion of rotating expanders

In this section we sketch the ideas underlying the proof of Theorem 2.4. For simplicity, we focus

on the simplest case, t = 2. Specifically, suppose we have two d-regular graphs, denoted as G1

and G2, on the same vertex set with adjacency matrices A1 and A2, respectively. It is possible to

construct a d4-regular graph whose adjacency matrix is A1A
2
2A1. Recall that the symmetrization

is necessary to ensure that the resulting product remains an undirected graph. Combinatorially,

this is the graph that encodes length-4 walks, where the first and last steps are according to G1

and the two middle steps are done according to G2. As before, for proving a lower bound on the

spectral expansion of the above product graph, we employ the trace method. Consequently, we
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will need to argue about the number of cycles in the graph product. Interestingly, the number of

such cycles is closely tied to the Fuss-Catalan numbers.

A length-k cycle in the product graph can be divided into 4k steps, 2k of which are from G1

and the rest are from G2. In this walk, step 1 occurs in G1, steps 2 and 3 occur in G2, steps 4

and 5 take place in G1, and so on, until the last step, which is in G1. Let us assume that such a

length-k walk from a vertex v forms a cycle c, where m denotes the first step (out of a total of

4k steps) at which the walk revisits vertex v. In other words, the length-m prefix of c takes the

form v → v1 → · · · → vm−1 → vm = v.

If we assume that there are only tree-like cycles in G1 and G2 (meaning there are no cycles

in G with a length smaller than 2k), and no nontrivial “relations” between the two graphs, it

becomes evident that vm−1 = v1. This implies that v1 → · · · → vm−1 forms a cycle (which may

not necessarily close only once), with the first and last edges originating from G2. This condition

holds recursively, meaning that such cycles are embedded within each other, and do not cross. By

saying that there are no “relations” between the two graphs, we mean that we assume nothing

about the edge sets of the two graphs, and so a backwards step in one graph cannot correspond to

a forward step in the other. These two assumptions are, of course, perfectly valid for the purpose

of proving a lower bound.

To calculate the number of such cycles, similarly to the approach in Equation (3.1), where we

either moved away from or returned toward the root of the tree, we consider each step as either an

opening or a closing bracket, with an associated color representing the graph. Figure 1 illustrates

the three possible options for opening and closing such colored brackets, without any “crossings”,

representing the assumption regarding no nontrivial relations between the two graphs.

Before delving into the number of options for each forward step, we describe the permissible

combinations of non-crossing steps away from and back toward the root in a recursive manner.

We refer to such a combination as a configuration. We start by selecting the position of the

backward step corresponding to the first forward step, and then proceed to fill in the gaps in

between (which may be empty). In Figure 1, for instance, the choices for returning to the root

corresponding to step 1 are either at step 4, as depicted in the first illustration, or at step 8, as

depicted in the second and third ones. Our key observation is that calculating the options for this

recursive process can be achieved using the recursive formula

Bk =
∑

a+b+c=k−1

BaBbBc, (3.11)

where B0 = 1, and a, b, c ≥ 0 are the gaps to be filled after the choices of backward steps: a is

the one between the opening and the closing of the first G2 step, b is the gap between closing

G2 and closing G1, and c is the remaining walk after returning to the root. It is important to

observe a subtlety in the correctness of Equation (3.11): the structure of the smaller instance to

be solved might not resemble the original structure, as exemplified in Bb of the second illustration

in Figure 1. However, following a cyclic rotation, it appears identical, and the non-crossing nature

of the pairings remains unaffected by such rotations.

The formula mentioned above bears a resemblance to the recursive formula for the Catalan
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Figure 1: All configurations for length k = 2 closed walks in the graph G = G1G
2
2G1. The blue

circles represent the steps from G1, and the red squares represent G2. Each opening of a pair is a

step away from the root, where a closing is a step back towards it. The first 4 steps are the first

step in G split into steps in the original graphs, and similarly for the second step. The numbers

a, b, c correspond to the ones in Equation (3.11).

numbers, Ck =
∑

a+b=k−1CaCb. In fact, the sequence (Bk)k corresponds to a generalized version

of the Catalan numbers, known as the Fuss-Catalan numbers. While the well-known closed form

for the k-th Catalan number is typically expressed as Ck = 1
k+1

(
2k
k

)
, we can write it in a slightly

unorthodox manner as Ck = 1
2k+1

(
2k+1
k

)
to emphasize the connection with the generalization.

Specifically, the closed form for Bk is given by Bk = 1
3k+1

(
3k+1
k

)
. In general, for values of t greater

than 2, the analysis of rotating expanders, and graph products in general, is intimately linked to

the Fuss-Catalan numbers with an appropriate parameter t, and can be expressed as 1
pk+1

(
pk+1
k

)
,

where p = t+ 1.

Having determined the number of configurations, our attention now shifts to the analysis of

the number of cycles corresponding to any given configuration. The relationship between the

number of cycles and the specific configuration is complex, rendering an exact count challenging.

This complexity is reminiscent of the difficulties encountered when counting the number of cycles

in Td (see Section 3), although there it was to a lesser extent. To manage this in our previous

discussion, we presumed the possibility of d − 1 forward steps, disregarding instances—such as

when tracing back to the root—where d options are actually available. This approximation

introduced a negligible error in the asymptotic analysis.

In a similar vein, for the current analysis, we posit a lower bound on the choices available

at each recursive step. Given that the graphs are d-regular, typically one would have d options

to choose a forward neighbor. However, if two consecutive steps occur within the same graph

(as depicted in the third configuration in Figure 1), the number of options is reduced to d − 1.
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Therefore, at each recursive step, we consider a product of d(d − 1), leading to an overall lower

bound of (d(d− 1))k for the number of cycles per configuration. This lower bound, combined

with a precise estimate of the Fuss-Catalan numbers, culminates in the proof of Theorem 7.1.

4 Preliminaries

In this short section we give a formal treatment for the operation of derandomized squaring

(see Section 4.1), and cover the essential background on the Cauchy transform (see Section 4.2).

Finally, in Section 4.3 we discuss the trace method.

4.1 Derandomized squaring

Consider an edge-labeled d-regular graph G on n vertices, and let H be a c-regular graph over

the vertex set {1, 2, . . . , d}. The derandomized square of G and H, denoted G s H, is a cd-regular

graph on the same vertex set as G. It is defined as follows: let u, v, and w be vertices in G. If u

is the i-th neighbor of v, and w is the j-th neighbor of u, then the edge (v, w) exists in G s H if

and only if {i, j} is an edge in H. In simpler terms, the edges in G s H represent length-2 walks

in G, where the first step is arbitrary, but the second step is constrained by the first step and the

structure of H. This results in the edges being a subset of those in G2, with G s H equal to G2

when H is Jd, the complete graph on d vertices with self-loops.

Is should be noted that G s H is not necessarily undirected. This depends on how the edges

in G are labeled. By an “edge-labeled graph”, we simply mean that each vertex in G assigns

numbers {1, 2, . . . , d} to its neighbors. For instance, a vertex v might be the first neighbor for

all its connecting vertices. This leads to the concept of consistent labeling, where each vertex

receives d distinct incoming labels. Under consistent labeling, G s H is in-regular. On the other

hand, undirected labeling occurs when the labels for an edge {u, v} are identical from both u and

v’s perspectives. In this case, G s H forms an undirected graph. This paper assumes undirected

labeling for all graphs, though our results can extend to the consistent labeling scenario. We

conclude by noting that G has an undirected labeling exactly when it is the union of d perfect

matchings, each uniquely labeled.

4.2 The Cauchy transform

Let p(x) be a degree n real-rooted polynomial with roots α1 ≥ α2 ≥ · · · ≥ αn. The Cauchy

transform of p(x) is defined as the function

Gp(x) =
1

n

n∑
i=1

1

x− αi
=

1

n
· p
′(x)

p(x)
.

In many settings it is instructive to study the Cauchy transform as a function whose domain is

C+. However, we will consider the Cauchy transform as a function on R, where we evaluate the

Cauchy transform to the right of its rightmost pole, at x > α1.

With p(x) we associate the distribution µp that is uniform over its roots, namely, to sample

from µp one first samples i ∈ [n] uniformly at random and then returns αi. The Cauchy transform
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is closely related to the moments of this distribution. Indeed, it is easy to see that if mr(p) is the

r-th moment of µp, then for every x > α1 we have

Gp(x) =
∞∑
r=0

mr(p)

xr+1
. (4.1)

The reader is referred to Remark 2.19 in [NS06] for more details. Note that the Cauchy transform

is defined for general distributions and not only for polynomials, but we will not need the general

definition in this paper.

For a real symmetric matrix A, we denote by GA(x) the Cauchy transform of the characteristic

polynomial χx(A). In case where AG is the adjacency matrix of a graph G, we write GG(x) for

GAG
(x). In this context, the roots of χx(A) are the eigenvalues of A, and we may write

GA(x) =
∞∑
r=0

mr(A)

xr+1
, (4.2)

where mr(A) = 1
dTr(A

r).

4.3 The trace method

In this short section, for completeness, we give a self-contained proof of the trace method, as

used in our proofs. This is a standard tool that has numerous applications, including in the

proofs of Friedman’s theorem ([Fri08], [Bor20]). Our presentation closely follows the proof of the

Alon-Boppana Theorem in Chapter 5 of [HLW06].

Lemma 4.1. Let G be a regular graph on n vertices with diameter ∆(G), and let k < ∆(G)
2 .

Assume that for every vertex v in G there are Ck(G) cycles of length k originating at v. Then,

λ(G) ≥ C2k(G)
1
2k . (4.3)

Proof. Let A be the adjacency matrix of G, and let u and v be vertices in G of distance D = ∆(G).

Denote x = ev−eu√
2

, where ei is the vector with 1 at the i-th entry and is otherwise 0. Note that

x has unit length and is orthogonal to the all 1-s vector, denoted as 1. Therefore, the spectral

theorem implies that

λ(G2k) ≥ xTA2kx =
1

2

(
(A2k)uu + (A2k)vv − 2(A2k)uv

)
.

Since k < ∆(G)
2 the last summand is 0. Note that (A2k)ww counts the number of cycles of length

2k in G which start and end at a vertex w, so we conclude that λ(G2k) ≥ C2k(G). The proof then

follows as λ(G2k) = λ(G)2k.

For an application of the above, we will assume that a lower bound on Ck(G) is known, and

that it has a specific form, dominated by an exponential component, which will turn out to be

the most crucial ingredient for lower bounding the spectral expansion.
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Lemma 4.2. Let F be a family of d-regular graphs such that for every graph G ∈ F and every

k ≥ 0 we have that (C2k(G))
1
2k ≥ ρ (1− ok(1)) for some constant ρ > 0 that is independent of G

and k. Then, for every G ∈ F ,

λ(G) ≥ (1− on(1)) ρ, (4.4)

where n is the number of vertices of the graph G.

Proof. By Lemma 4.1, we have that for k = ∆(G)−1
2 ,

λ(G) ≥ (C2k(G))
1
2k ≥ (1− ok(1)) ρ.

We know that for an n-vertex graph, the diameter is at least logd n. Hence ∆(G)→∞ as n→∞,

which means that by picking k(G) = ∆(G)−1
2 we get λ(G) ≥ (1− on(1)) ρ.

Using Lemma 4.2, one can lower bound the spectral expansion of the general family of d-

regular graphs. Indeed, since the infinite d-ary tree Td is a universal cover for any such graph, the

number of cycles originating at any vertex is lower bounded by the number of cycles originating

at the root in Td. Using our analysis from Section 3.1.1, in particular Equation (3.3), one gets

the Alon-Boppana bound, as ρ = 2
√
d− 1.

5 Limitations of Derandomized Squaring

In this section we prove our lower bound result for derandomized squaring, as presented in The-

orem 2.1. In fact, we will prove its equivalent form, which is stated using the Cauchy transform,

Theorem 2.2. From this, we will deduce the former as well as the recasting of the theorem as a

minimization problem. The proof of Theorem 2.2 is structured around two primary components:

Initially, in Section 5.1, we deduce the symbolic relation, paving the way to a functional equation

that the associated generating function satisfies. Subsequently, in Section 5.2, we apply analytic

combinatorics to approximate the generating function’s coefficients. Finally, in Section 5.3, we

establish the theorem’s equivalent reformulations.

5.1 Deriving the symbolic relation

Recall that throughout, H is a c-regular vertex-transitive graph on d vertices, where c ≥ 1 and

d ≥ 3. In order to formulate the symbolic construction, we start by considering the combinatorial

class SH of cycles in H originating in some fixed vertex v of H that only revisit v upon completing

a cycle. We exclude the empty cycle from the class.

As discussed in Section 3.1.1, where we counted cycles in Td, the symbolic method handles the

infinite tree with one pruned branch more straightforwardly than it does the full infinite tree. Let

us designate a root, denoted as v, for Td. To specify a symbolic construction of cycles from v to

itself, we want each vertex to have d− 1 options for moving away from the root. This holds true

for all vertices except the root itself, which has d such options. Therefore, we remove a single edge

adjacent to the root, disconnecting the infinite tree but merely reducing the number of cycles from
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v to itself. The class of cycles in this graph can be characterized using the symbolic constructions

outlined in Equation (3.1) and Equation (3.4).

In our graph Td s H, we employ a similar technique. We designate a root, also denoted as

v, for Td s H, where, like all vertices, it participates in d copies of H. We initiate the process

by removing the edges from a single copy of H that are connected to v, disconnecting the graph

Td s H and reducing the number of cycles from v to itself (Similar to the case of Td, we expect

this change to be negligible as the cycle lengths increase. Indeed, our bound will prove to be

asymptotically tight, as shown in Section 6). We abuse notation slightly and use the notation

Td s H for both the derandomized squaring of Td and H, as well as for the truncated version

described above, where the correct interpretation will always be clear from context. We count

cycles in the truncated version and subsequently derive our lower bound for the non-truncated

version. With the truncated version of Td s H and the generating function of SH at hand, we

have all we need for the description of the class CTd s H of non-empty cycles in Td s H.

Lemma 5.1. The class CTd s H of non-empty cycles originate at the root of Td s H satisfies the

symbolic relation

CTd s H = {1, . . . , d− 1} ×
(
SH ◦

(
→ ×

(
CTd s H + ε

)))
.

Proof. En route to the symbolic relation, one needs the following observation: for every non-

empty cycle in Td s H starting at v, one can identify uniquely a neighbor ui of v in Td, and a

cycle in H, from which the cycle begins (see example in Figure 2). That is, if the first step is

v → w, it means that there exists a vertex ui ∈ Td such that the edges {v, ui} and {ui, w} are in

Td. Moreover, in order to get back to v for the first time, one has to complete a cycle in the copy

of H which is induced by the vertex ui. In order to identify this cycle uniquely, this has to be a

cycle returning to its root exactly once.

There are d− 1 choices to pick the vertex ui (and the copy of H surrounding it), and the class

SH described at the beginning of this section represents the cycles returning to the root only upon

completion. Once ui and the cycle c in H were chosen, there are still many options for closing

cycles in Td s H: after each step in c, which is represented by the atom →, there is an option

to start a nested cycle from the vertex within the copy of H. As we have truncated one copy

of H from the original vetrex when defining CTd s H , and due to vertex transitivity, the nested

cycle can also be described as CTd s H . Therefore, the composition of SH is with either CTd s H ,

which is defined to be non-empty, or with ε, representing the choice of not going through a nested

cycle.
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Figure 2: Cycles in T4 s C4. The black edges represent the edges of T4, while the red edges repre-

sent those of T4 s C4. Dashed red edges indicate the truncated edges. Edges that are irrelevant to

the cycles of v (e.g., (u1, x1)) have not been included in the figure. The blue cycle within T4 s C4

corresponds to the cycle (v → w1 → w2 → w3 → v) within the copy of H centered around vertex

u1. In this cycle, the first, second, and last steps are substituted with the pair (→, ε), while the

third step is substituted with the pair
(
→, c

)
, where c represents a nested cycle from CTd s H

(specifically, c = (w3 → y1 → y2 → y3 → w3)).

5.2 Coefficients approximation via analytic combinatorics

Using the symbolic construction in Lemma 5.1, we immediately derive a functional equation that

is satisfied by the generating function of CTd s H , namely,

CTd s H(z) = (d− 1)SH

(
z
(
CTd s H(z) + 1

))
. (5.1)

By introducing the functions

ζH(z) = z
(
CTd s H(z) + 1

)
,

φH(z) = 1 + (d− 1)SH(z),

we can write Equation (5.1) as

ζH(z) = z · φH(ζH(z)). (5.2)

The next step in the proof goes through asymptotic coefficients estimation of ζH(z), and hence

of CTd s H(z). For this, we introduce a deep result from analytic combinatorics. We start by
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giving the formal definition of smooth inverse-function schema which was informally discussed in

Section 3.1.3.

Definition 5.2 (Definition VII.3 in [FS09]). A function ζ(z) that is analytic at 0 is said to belong

to the smooth inverse-function schema if there exists a function φ(u) analytic at 0 such that in

the neighborhood of 0 one has ζ(z) = z · φ (ζ(z)) , and φ(u) satisfies the following conditions:

1. The function φ(u) is such that φ(0) 6= 0, [un] φ(u) ≥ 0 for all n ∈ N, and φ(u) is not of the

form φ0 + φ1u.

2. Within the open disc of convergence of φ at 0, |z| < R, there exists (a necessarily unique 5)

positive solution to the characteristic equation, φ(u) = u · φ′(u).

A combinatorial class whose generating function satisfies these conditions is also said to belong

to the smooth inverse-function schema.

Our main technical work, captured by Claim 5.3 below, is in establishing that ζH(z) belongs

to the above schema.

Claim 5.3. The function ζH(z) belongs to the smooth inverse-function schema.

To prove Claim 5.3 we first establish the following claim which relates the Cauchy transform

of H with the generating function of SH .

Claim 5.4. The generating function of SH , denoted as SH(z), satisfies

SH(z) = 1− 1
1
zGH(1

z )
.

Proof. The combinatorial class CH of arbitrary cycles originate at some fixed vertex v of H is

related to the class SH by CH = SEQ(SH). Indeed, any nonempty cycle is a sequence of cycles

returning to v exactly once, and the empty cycle is correctly captured by the SEQ construct. The

relation between the generating functions of CH and SH is thus given by CH(z) = 1
1−SH(z) , or

equivalently, SH(z) = 1 − 1
CH(z) . Therefore, it suffices to prove that CH(z) = 1

zGH(1
z ). To this

end, note that CH(z) can also be written as

CH(z) = eTv (I− zH)−1ev =
1

d
Tr
(

(I− zH)−1
)
,

where ev denotes the vector satisfying (ev)u = 0 for all u 6= v and (ev)v = 1. Now,

GH(x) =
1

d

d∑
i=1

1

x− λi
=

1

d
Tr
(

(xI−H)−1
)

=
1

xd
Tr
((

I− x−1H
)−1
)
.

Substituting x = 1
z , we see that CH(z) = 1

zGH(1
z ), which completes the proof.

5The uniqueness of the solution to the characteristic equation, if it at all exists, can be proven in general and

the definition we state here utilizes this result. We also make use of this general result, which “hides” under the

definition (or more accurately, definition-theorem). It should be noted that in our specific case, the uniqueness can

be directly proven with some effort.
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Proof of Claim 5.3. For condition (2), we need to show that φH(u) is analytic at a neighborhood of

0, and has a convergence radius, denoted R, in which the characteristic equation, φH(u) = u·φ′H(u)

has a solution. To do so, we combine the definition of φH(u) with Claim 5.4 to get

φH(u) = 1 + (d− 1) ·

(
1− 1

1
uGH( 1

u)

)
= d− d(d− 1)∑d

i=1
1

1−uλi

.

Observe that the radius of convergence of φH(u) hinges on the poles and zeros of the denomi-

nator’s expression appearing on the RHS, f(u) =
∑d

i=1
1

1−uλi . Starting with the poles, by the

Perron–Frobenius Theorem, and since H is c-regular, maxi(|λi|) = λ1 = c. Consequently, f(u)

has no poles in (−1
c ,

1
c ). As for the zeros of f(u), note that f vanishes at a point u0 if and only if

GH( 1
u0

) = 0. Since GH(w) = 1
d ·

χ′H(w)

χH(w) and as the zeros of the derivative χ′H(w) interlace with the

zeros of χH(w), all zeros of GH(w) are in the interval [λd, λ1] ⊆ [−c, c]. Therefore, if GH( 1
u0

) = 0

then
∣∣∣ 1
u0

∣∣∣ ≤ c, hence |u0| ≥ 1
c , and so f(u) does not vanish in (−1

c ,
1
c ). The above leads to the

conclusion that φH(u)-s radius of converges is R = 1
c .

We wish now to prove that there exists a positive solution to the characteristic equation

φH(u) = u · φ′H(u) within this radius of convergence, namely, a solution in (0, 1
c ). Working out

the derivatives, the characteristic equation takes the form

d− (d− 1)u

GH( 1
u)

= −(d− 1)
uGH( 1

u) + G′H( 1
u)

GH( 1
u)2

.

As we wish to find a solution u ∈ (0, 1
c ) to the above equation, and since it has been established

that GH( 1
u) does not vanish within this interval, an equivalent task is to find a value u in this

interval such that

dGH
(

1

u

)2

+ (d− 1)G′H
(

1

u

)
= 0.

Substituting x = 1
u , it suffices to find a solution x0 ∈ (c,∞) to the equation

d

d− 1
GH(x)2 + G′H(x) = 0. (5.3)

Rewriting Equation (5.3) using the definition of the Cauchy transform, we get(
d∑
i=1

1

x− λi

)2

= (d− 1)

d∑
i=1

1

(x− λi)2
. (5.4)

Assume that the eigenvalue λ1 = c appears in the spectrum of H with multiplicity r. For every

ε ≥ 0 define

∆1(ε) =
d∑

i=r+1

1

c+ ε− λi
,

∆2(ε) =

d∑
i=r+1

1

(c+ ε− λi)2
,

30



and denote ∆1 = ∆1(0) and ∆2 = ∆2(0). With this, scaling Equation (5.4) by ε2 and substituting

x = c+ ε, we have that

ε2

(
d∑
i=1

1

c+ ε− λi

)2

= (r + ε∆1(ε))2 ,

and

ε2(d− 1)
d∑
i=1

1

(c+ ε− λi)2
= (d− 1)

(
r + ε2∆2(ε)

)
.

Now,

lim
ε→0+

(r + ε∆1(ε))2 = r2,

and

lim
ε→0+

(d− 1)
(
r + ε2∆2(ε)

)
= (d− 1)r.

We will argue next that r < d − 1. With this in mind, for a sufficiently small ε > 0, the LHS of

Equation (5.4) is strictly smaller than the RHS.

On the other hand, using a similar argument it can be shown that as x→∞, the LHS of Equa-

tion (5.4) is strictly larger than the RHS. Indeed, for a large x, the LHS is roughly ( dx)2 whereas

the RHS is roughly d(d−1)
x2

. Thus, as the functions that appear on both sides of Equation (5.4)

are continuous in the domain (c,∞), there exists x0 ∈ (c,∞) satisfying Equation (5.3).

To complete the proof, we show that r < d − 1. To see this note that per our assumption

c ≥ 1, the graph H contains at least one edge and so, due to the additional assumption of vertex

transitivity, the number of connected components is at most d
2 . It is well-known that the number

of connected components equals to the multiplicity r of the largest eigenvalue, c. Hence, r ≤ d
2 .

The proof then follows as the latter is bounded by d− 1 per our assumption d ≥ 3.

Remark. We record here the fact that, by the above proof, the solution x0 to Equation (5.3)

satisfies x0 > c. This will be used when we will come to deduce Theorem 2.1 in Section 5.3.

Now that we have established that ζH(z) conforms to the smooth inverse-function schema,

we are almost ready to invoke Theorem 5.6 which is stated below. There is only one additional

technical assumption regarding the periodicity of φH(u) which we need to handle.

Definition 5.5 (Definition IV.5 in [FS09]). For a sequence (fn) with a generating function f(z),

the support of f , denote Supp(f), is the set of all integers n ≥ 0 such that fn 6= 0. The sequence

(fn) as well as its generating function f(z), is said to admit a span d if for some r, it holds that

Supp(f) ⊆ r + dN = {r, r + d, r + 2d, . . .}.

The largest span, p, is the period, all other spans being divisors of p. If the period is equal 1, the

sequence and its generating function are said to be aperiodic.

Theorem 5.6 (Theorem VII.2 in [FS09]). Let ζ(z) belong to the smooth inverse-function schema

and the associated φ(u) be aperiodic. Then, with τ the positive root of the characteristic equation

φ(u) = u · φ′(u), one has

[
zk
]
ζ(z) =

(
1 +O

(
1

k

))√
φ(τ)

2π · φ′′(τ)
· φ
′(τ)k√
k3

. (5.5)

31



The issue with applying Theorem 5.6 to our situation arises from the possibility that our

function φH(u) might exhibit periodic behavior. Recall that φH(u) = 1+(d−1)SH(u), where the

coefficients of SH(u) enumerate cycles of H. Consequently, the only nontrivial periodicity that

φH(u) could possess is 2, which occurs whenever the graph H is bipartite. In Corollary 5.7 below,

we demonstrate a method to circumvent this issue specifically for functions with a period of 2.

Nevertheless, the provided proof can be easily extended to any period p ≥ 2.

Corollary 5.7. Let ζ(z) belong to the smooth inverse-function schema with respect to a func-

tion φ(u). Assume that φ(u) has periodicity at most 2. Let τ be the positive solution to the

characteristic equation φ(u) = u · φ′(u). Then,([
zk
]
ζ(z)

) 1
k

= (1− ok(1))φ′(τ). (5.6)

Proof. If φ(u) is aperiodic, this is a direct implication of Theorem 5.6. Hence we are left with

the case of periodicity 2. According to Definition 5.5, a function with period 2 can be written as

φ(u) = ur · ψ(u2), for some aperiodic function ψ(u) and integer r ≥ 0. Taking into account our

additional condition φ(0) 6= 0, we have that φ(u) = ψ(u2).

Define Φ(u) = ψ(u)2 and let Z = z2. We wish to look at the functional equation

U = Z · Φ(U) (5.7)

in the undetermined U . Recall that ζ(z) is a solution to the function equation u = z · φ(u), and

so U = ζ(z)2 is a solution to the functional equation given by Equation (5.7). Indeed,

ζ(z)2 = z2 · φ (ζ(z))2 = Z · ψ
(
ζ(z)2

)2
= Z · Φ

(
ζ(z)2

)
.

Since Equation (5.7) is a functional equation of power series in the variable Z, we conclude that

ζ(z)2 can be written as a power series in Z. We denote this power series by Y (Z) = ζ(z)2.

As ψ(u) is aperiodic and since it has non-negative coefficients and a non-zero constant term,

we have that Φ(U) is also aperiodic. Our next step is to invoke Theorem 5.6, while using the

pair of functions Y (Z) and Φ(U) rather than ζ(z) and φ(u). For doing so, we need to assert

that the pair Y (Z), Φ(U) satisfies the conditions for the smooth inverse-function schema as well.

Asserting that Φ(U) has only non-negative coefficients, does not vanish at 0 and is not of the form

Φ0 + Φ1U , is immediate from its definition and the fact that φ(u) satisfies the same conditions.

Hence, we are left with showing that there exists a solution ρ > 0 to the characteristic equation

Φ(U) = U · Φ′(U) (5.8)

within Φ(U)-s radius of convergence. Given that τ > 0 is a solution for the original characteristic

equation φ(u) = u · φ′(u), we claim that ρ = τ2 solves Equation (5.8). Before proceeding to

showing that, we note that since τ is within φ(u)-s radius of convergence, then ρ is within Φ(U)-s

radius of convergence. Now, using the definition of Φ(U) we have that solving Equation (5.8) is

equivalent to solving

ψ(u) = 2u · ψ′(u). (5.9)
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Since τ solves the original characteristic equation, and

φ′(τ) =
d

du
ψ(u2)

∣∣∣
τ

= 2τ · ψ′(τ2), (5.10)

we have that

ψ(τ2) = φ(τ) = τ · φ′(τ) = τ · 2τ · ψ′(τ2) = 2τ2 · ψ′(τ2), (5.11)

namely, τ2 is a solution to Equation (5.9).

We can now proceed by invoking Theorem 5.6 to conclude that

[
Zk
]
Y (Z) =

(
1 +O

(
1

k

))√
Φ(ρ)

2π · Φ′′(ρ)
· Φ′(ρ)k√

k3
, (5.12)

where ρ = τ2. Following a similar argument, we get that Φ′(ρ) = φ′(τ)2. Indeed,

Φ′(ρ) = 2ψ(ρ)ψ′(ρ) = 4ρ · ψ′(ρ)2 = φ′(τ)2,

where the penultimate equality follows by Equation (5.9) and the last equality follows by Equa-

tion (5.10). Thus, we can rewrite Equation (5.12) as[
Zk
]
Y (Z) = Θ

(
1√
k3

)
· φ′(τ)2k.

As Y (Z) = ζ(z)2 and since Z = z2, we have that
[
z2k
]
ζ(z)2 = c2k · φ′(τ)2k, where c2k = Θ

(
1√
k3

)
.

Furthermore, as ζ(z)2 = Y (Z) = Y (z2), the coefficient of every odd power, c2k+1, in ζ(z)2

vanishes.

To conclude the proof, we need to argue about the coefficients of ζ(z) given our knowledge

on the coefficients of ζ(z)2. This calls for the application of a (discrete) Fourier transform. The

somewhat technical Claim 5.8 that follows will finalize our proof.

Claim 5.8. [zk] ζ(z) = Θ(φ′(τ)k).

Proof. We start by recalling some basic results on discrete Fourier transform. Given an integer

N and a sequence t0, t1, . . . , tN we define, for k = 0, 1, . . . , N ,

t̂k =

N∑
n=0

tn · e−
2πi
N+1

kn. (5.13)

It is well-known that for every n = 0, 1, . . . , N ,

tn =
1

N + 1

N∑
k=0

t̂k · e
2πi
N+1

kn. (5.14)

Moreover, one has the convolution theorem which when applied to the same sequence t as above

yields t̂ ∗ t = t̂ 2. Returning to our proof, let fk = [zk] ζ(z) and write fk as xk · φ′(τ)k. With this,

it suffices to prove that xk = Θ(1). We have that for every N ≥ 0,

cN · φ′(τ)N = [zN ] ζ(z)2 =

N∑
k=0

(xk · φ′(τ)k) · (xN−kφ′(τ)N−k),
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and so, as φ′(τ) 6= 0, cN =
∑N

k=0 xkxN−k. Put differently, the sequences c = (c0, c1, . . . , cN ) and

x = (x0, x1, . . . , xN ) satisfy c = x ∗ x, therefore ĉ = x̂2. By Equation (5.13), for every N ≥ 0,

ĉN =
N∑
n=0

cn · e−
2πi
N+1

nN =
N∑
n=0

cn · e
2πi
N+1

n = Θ

(
N∑
n=1

1√
n3
· e

2πi
N+1

n

)
.

As the RHS, thought of as a sequence indexed by N , converge absolutely, it approaches some

universal constant as N → ∞, and so in particular, x̂N =
√
ĉN = Θ(1). This, together with

Equation (5.14), implies that xN = Θ(1), completing the proof.

This concludes the proof of Corollary 5.7 for the case of φ(z) with period 2.

Now that we have the symbolic characterization of cycles in the derandomized squaring oper-

ation (Section 5.1), as well as the analytic tools to analyze them (Section 5.2 so far), we are ready

to tie it all together and prove Theorem 2.2.

Proof of Theorem 2.2. As shown in Lemma 5.1, the generating function CTd s H(z) describing the

cycles in Td s H is the one satisfying Equation (5.1). Its coefficients lower bound the number of

cycles in G s H for every d-regular graph G. Let x0 be the solution to Equation (5.3), and recall

that z0 = 1
x0

. By Corollary 5.7, and noting that by definition CTd s H(z) = ζH(z)
z − 1, the k-th

root of the number of cycles of length-k is bounded from below by (1− ok(1)) ΛH , where

ΛH = φ′H(z0) =
φH(z0)

z0
= x0 · φH

(
1

x0

)
= dx0 −

d− 1

GH(x0)
.

Applying the trace method as given in Lemma 4.2 we have that λ(G s H) > ΛH − on(1), n being

the number of vertices in G.

5.3 Proof of the statements equivalent to Theorem 2.1

We conclude this section by deriving Theorem 2.1 and our reformulation of that theorem as a

minimization problem, which is formally stated in Theorem 5.9 below.

Proof of Theorem 2.1. Recall that GH(x) = 1
d
χ′x(H)
χx(H) . Working out the derivatives, Equation (2.4)

takes the form
(d− 1)χ′′x(H)χx(H)− (d− 2)χ′x(H)2

χx(H)2
= 0.

By the remark following the proof of Claim 5.3, the above equation has a solution x0 > c.

Since χx(H) does not vanish in the domain (c,∞), we have that x0 is a real positive root of the

polynomial appearing in the enumerator, namely, it is a solution to Equation (2.1). The proof then

follows since ΛH as given in Equation (2.2) is equal to its definition as given in Equation (2.5).
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Theorem 5.9 (Recasting Theorem 2.1 as a minimization problem). Let H be a vertex-transitive

c-regular graph on d ≥ 3 vertices, where c ≥ 1. Then,

ΛH = min
x>c

dx− d− 1

GH(x)
.

Proof. Letting ψH(x) = dx− d−1
GH(x) , we have that

ψ′H(x) = d+ (d− 1)
G′H(x)

GH(x)2
.

Using the fact that GH(x) does not vanish in (c,∞), which was established in the proof of

Claim 5.3, this expression vanishes exactly at the solutions of Equation (2.4). Hence, by The-

orem 2.2, there is a unique positive solution x0 to the equation ψ′H(x) = 0. By the remark

following the proof of Claim 5.3, we have that x0 > c. To see that x0 is in fact a minimizer of

ψH(x) note that GH(x) and its first two derivatives are continuous in the domain (c,∞) and that

G′H(x) strictly increases in the interval (c,∞). On the other hand, GH(x)2 strictly decreases in

that interval, hence ψ′H(x) strictly increases in (c,∞) and so ψ′′H(x0) > 0.

6 Matching the Lower Bound with H-Local Graphs

Let H be a c-regular graph on d ≥ 3 vertices, where c ≥ 1. In this section, we prove Theorem 2.3,

which establishes the existence of an infinite family of cd-regular H-local graphs. The spectra of

these graphs are upper bounded by the same bound as outlined in Theorem 2.1.

Definition 6.1. Let H be a c-regular graph on d ≥ 3 vertices, where c ≥ 1. A cd-regular graph

G = (V,E) is said to be H-local if for every vertex v ∈ V , there exist subgraphs {Gvi = (V v
i , E

v
i )}di=1

of G such that for every i ∈ [d], v ∈ V v
i and Gvi is isomorphic to H, and for every i 6= j ∈ [d],

Evi ∩ Evj = ∅.

Informally, this definition can be thought of as saying that every vertex participating in a local

view of d instances of H. As mentioned in Section 2, all graphs of the form G s H are H-local,

however there are H-local graphs which are not a result of a derandomized square operation.

Theorem 6.2 (Restatement of Theorem 2.3). Let c ≥ 1 and d ≥ 3 be integers. For every c-regular

vertex-transitive graph H on d vertices, and for every integer n ≥ 1, there exists an H-local graph

Xn on nd vertices such that

λ2(Xn) ≤ min
x>c

(
dx− d− 1

GH(x)

)
. (6.1)

To prove Theorem 6.2, we introduce a suitable distribution over dc-regular graphs. This

distribution allows us to apply finite free probability techniques, as outlined in Section 3.2, along

with the method of polynomial interlacing. Our approach is inspired by [MSS18], where these

techniques were initially developed to establish the existence of bipartite Ramanujan graphs of

every size and every degree. Our proof can be viewed as a fairly straightforward generalization

of this earlier result. To prove Theorem 6.2, we define the graph H, which is constructed from
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disjoint copies of the graph H. This serves an analogous role to the perfect matching graph

used in [MSS18]. The latter can be considered a special case when H is a single-edge graph,

corresponding to d = 2 and c = 1.

6.1 Bounding the roots of the expected characteristic polynomial

We recall some general tools for the analysis of the Cauchy transform Gp(x) and its max-inverse,

Kp(x) as defined in Section 3.2. With the definitions and notations from that section, we state

the following theorem which generalizes Theorem 3.3 slightly to general polynomials.

Theorem 6.3 (Theorem 1.12 in [MSS22]). For real-rooted polynomials p and q of the same degree,

and for any y > 0,

Kp�q(y) ≤ Kp(y) +Kq(y)− 1

y
.

We deduce the following corollary which slightly generalizes a technique used in Chapter 5 of

[MSS18].

Corollary 6.4. Let p be a degree d real-rooted polynomial with largest root λ1. Assume that the

multiplicity of λ1 in p is at most d
2 . For an integer r ≥ 3 let p�r be the additive convolution of p

with itself r times. Then,

maxroot
(
p�r
)
≤ min

x>λ1

(
rx− r − 1

Gp(x)

)
.

Proof. By invoking Theorem 6.3 for r − 1 times we get that for every y > 0,

Kp�r(y) ≤ rKp(y)− r − 1

y
.

Since any value of Kp�r(y) is an upper bound on the roots of p, we have that

maxroot
(
p�r
)
≤ inf

y>0

(
rKp(y)− r − 1

y

)
.

Recall that Kp : (0,∞)→ (λ1,∞) is the max-inverse, under composition, of Gp, and observe it is

onto. Thus, given y > 0 there is an x > λ1 such that y = Gp(x), and so we can write the above

equation as

maxroot
(
p�r
)
≤ inf

x>λ1

(
rKp(Gp(x))− r − 1

Gp(x)

)
= inf

x>λ1

(
rx− r − 1

Gp(x)

)
.

To complete the proof, we show that the infimum appearing on the RHS is in fact a minimum.

Let f(x) = rx − r−1
Gp(x) be the function appearing in the infimum. Since f(x) is continuous in

(λ1,∞), it suffices to show that in a small right-neighborhood of λ1, the function f(x) decreases,

and that limx→∞ f(x) = ∞. We provide only a sketch of the proof here, though the details can

be completed in a manner similar to the formal argument presented in the proof of Claim 5.3.

In a small neighborhood to the right of λ1, Gp(x) is approximated by m
d

1
x−λ1 , where m denotes

the multiplicity of λ1 as a root of p. Thus, f(x) is approximated by(
r − (r − 1)d

m

)
x+

(r − 1)λ1d

m
.
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Per our assumption, m ≤ d
2 and so, together with the hypothesis r ≥ 3, the coefficient of x in the

above expression is negative, and so in a sufficiently small right-neighborhood of λ1, the function

f(x) decreases. On the other extreme, as x → ∞, the Cauchy transform Gp(x) is approximated

by 1
x and so f(x) is approximated by x, establishing that limx→∞ f(x) =∞.

As previously mentioned, we make use of a graph denoted as H, which we define next. Let H

be a c-regular graph with d vertices. The graph H is formed by taking n disjoint copies of H, one

on each of the vertex sets id+ {1, . . . , d} for i = 0, 1, . . . , n− 1. The final graph that we construct

is obtained by taking the summation of d copies of H where in each copy the vertex labels are

shuffled according to some permutation. In matrix form,

XP(H) =

d∑
i=1

PiHPT
i ,

where P = (P1, . . . ,Pd) is a sequence of (nd) × (nd) permutation matrices. We will now use a

result from [MSS18] to express the expected characteristic polynomial of XP(H) using the finite

free additive convolution, where the sequence P is chosen uniformly at random.

Theorem 6.5 (Corollary 4.9 from [MSS18]). Let A1, . . . ,Ad be symmetric m × m matrices

satisfying Ai1 = αi1. For i ∈ [d], let pi(x) be the polynomial satisfying χx(Ai) = (x − αi)pi(x).

Let P1, . . . ,Pd be independent and uniformly chosen random m×m permutation matrices. Then,

E
P1,...,Pd

χx

(
d∑
i=1

PiAiP
T
i

)
=

(
x−

d∑
i=1

αi

)
p1(x)� · · ·� pd(x).

As briefly mentioned in Section 3.2, a key ingredient in the proof for Theorem 6.5 is the quadra-

ture result. We utilize this result as a black-box and refer readers interested in further details to

the original paper. Additionally, the corresponding result for the multiplicative convolution can

be found in Chapter 5 of [CM23]. The following is an immediate application of Theorem 6.5,

applied with all instances of Ai being the adjacency matrix of the graph H.

Corollary 6.6. Let p(x) be the polynomial satisfying χx(H) = (x− c)p(x), and let P1, . . . ,Pd be

independent and uniformly chosen random nd× nd permutation matrices. Then,

E
P1,...,Pd

χx (XP(H)) = (x− dc) p�d(x).

The combination of the results above give us our desired bound, which at this point will apply

only to the expected characteristic polynomial.

Corollary 6.7. Let d ≥ 3 and c ≥ 1 be integers. Then, for every c-regular graph H on d vertices,

λ2

(
E
P
χx(XP(H))

)
≤ min

x>c

(
dx− d− 1

GH(x)

)
,

where P is a uniformly chosen length-d sequence of nd× nd permutation matrices.
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Proof. Let p(x) be the polynomial satisfying χx(H) = (x− c)p(x). By Corollary 6.6, it is enough

to bound the largest root of p�d(x). Per our assumption c ≥ 1, the graph H contains at least

one edge and so, due to the additional assumption of vertex transitivity, the number of connected

components is at most d
2 . It is well-known that the number of connected components equals to

the multiplicity of the largest eigenvalue, c. Thus, we may invoke Corollary 6.4 with r = d to

conclude that the largest root of p�d(x) is upper bounded by

min
x>c

(
dx− d− 1

Gp(x)

)
.

To complete the proof we observe that GH(x) > Gp(x) for every x > c. To see this note that

both GH(x) and Gp(x) are averages of terms of the form 1
x−αi , where the αi-s are the roots of

the respective polynomials, and GH(x) is averaging over one additional term compared to Gp(x),

that term being 1
x−c which is the largest. Therefore GH(x) > Gp(x) for every x > c. As H was

constructed of n disjoint copies of H, clearly χx(H) = χx(H)n, thus GH(x) = GH(x), completing

the proof.

6.2 Interlacing: from random permutations to a concrete graph

In the previous section we analyzed the expected characteristic polynomial of XP(H), where the

expectation is taken over a uniform choice of the permutation matrix sequence P = (P1, . . . ,Pd).

In order to show that there is a specific graph satisfying the same bound as the expectation, we

cite the following theorem from [MSS18].

Theorem 6.8 (Theorem 3.4 in [MSS18]). Suppose A1, . . . ,Ad are symmetric m × m matrices

and P1, . . . ,Pd are independent uniform random m ×m permutation matrices. Then, for every

k ≤ m there exists a specific choice of permutations Π1, . . . ,Πd such that

λk

(
χx

(
d∑
i=1

ΠiAiΠ
T
i

))
≤ λk

(
E

P1,...,Pd
χx

(
d∑
i=1

PiAiP
T
i

))
. (6.2)

Theorem 6.8 is a deep result which skillfully leverages the structure of permutation matrices

to recursively construct a tree of polynomials. Each polynomial in this tree represents a partial

expectation over the space of permutation matrices. These polynomials collectively form what is

known as an interlacing family of polynomials.

Proof of Theorem 6.2. For proving the existence of the graph stated, we first observe that XP(H)

is H-local for every choice of P = (P1, . . . ,Pd), hence it is enough to show that there exists a

permutation sequence Π = (Π1, . . . ,Πd) such that XΠ(H) satisfies the desired property. By

applying Theorem 6.8 with k = 2, and plugging the result from Corollary 6.7 to the RHS of

Equation (6.2), we get that there exists a sequence Π such that

λ2 (XΠ(H)) ≤ min
x>c

(
dx− d− 1

GH(x)

)
.
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7 Lower Bound for the Spectral Expansion of Rotating Expanders

In this section, we address the following question

Question. How good can the spectral expansion of a graph product be?

Specifically, one can ask whether a graph product can be Ramanujan. We prove that the answer

to the latter question is negative. In fact, our result implies that the construction of rotating

expanders [CM23] achieves optimal expansion among graph products. We start by stating the

main result of this section, which is the full and formal version of Theorem 2.4.

Theorem 7.1. For every sequence of n-vertex d-regular graphs G1, . . . , Gt, the product graph

G = G1G2 · · ·G2
t · · ·G2G1 satisfies

λ(G) ≥ (t+ 1)t+1

tt
· (d− 1)dt−1 − on(1).

As discussed in Section 3.3, the proof of Theorem 7.1 makes use of the Fuss-Catalan numbers.

Definition 7.2 (Fuss-Catalan numbers). For integers p ≥ 2 and k ≥ 0, the (p, k) Fuss-Catalan

number, denoted as C
(p)
k , is given by

C
(p)
k =

1

pk + 1

(
pk + 1

k

)
.

Note that the ordinary Catalan numbers are obtained by setting p = 2. As for Catalan

numbers, for every p ≥ 2, Fuss-Catalan numbers also satisfy a recurrence relation which is given

by

C
(p)
k+1 =

∑
a1+a2+···+ap=k

p∏
i=1

C(p)
ai .

As in Section 5, we employ the trace method to establish our lower bound on the spectral

expansion. Consequently, we will need to argue about the number of cycles in a graph product.

Let A1,A2, . . . ,At be the adjacency matrices of d-regular graphs, and let

Bt = A1A2 · · ·At−1A
2
tAt−1 · · ·A2A1

be the adjacency matrix of the corresponding product graph, denoted as Gt. Note that Gt is D-

regular forD = d2t. The following is the main technical result underlying the proof of Theorem 7.1.

Proposition 7.3. Let v be any vertex in Gt as defined above. Then, for every k ≥ 0, the number

of length-k cycles that originate at v is at least C
(t+1)
k ·

(
(d− 1)dt−1

)k
.

Proof. As was done for the case of two graphs in Section 3.3, we consider a length-k cycle in

Gt and partition it into ` = 2kt steps, 2k in each of the graphs Gi taking part in the product,

according to their order. Let m ≤ ` be the first time the cycle revisits v, so that there is a prefix

of the cycle of the form v → v1 → · · · → vm−1 → vm = v.
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For the purpose of proving a lower bound on the number of cycles, we do not assume any

nontrivial relations between the graphs, and do not assume cycles of any length within the graphs

(as discussed in Section 3.3, such relations or cycles can only increase the count). This leads

to the conclusion that in order to return to the origin v at step m, the first and last edges in

this prefix have to come from G1, and therefore v1 = vm−1. We apply the same approach from

counting cycles in Td in Section 3.1.1, of moving away from or returning towards v. Hence, there

are two sub-cycles already induced: one starting at v1 and ending at vm−1, in which the first and

last edges are from G2, and the second is the cycle from vm = v back to v` = v (which may be an

empty cycle, if m = `), and these induce more such smaller cycles recursively.

The key observation is that the above process has a clear bijection with alternating colors

non-crossing pairing in the length 2kt sequence

a
(1)
1 ··· a

(1)
t a

(2)
t ··· a

(2)
1 · · · · · · · · · a

(2k−1)
1 ··· a(2k−1)

t a
(2k)
t ··· a(2k)

1 ,

where each a
(j)
i can only be paired with a letter having the same color, namely a

(j′)
i for some j′.

By non-crossing, we mean that there are no four indices i1 < i2 < i3 < i4 such that both (i1, i3)

and (i2, i4) are paired. In this bijection, every opening of a pair represents a step forward in the

corresponding graph, where the closing represents a backward step. The non-crossing condition

ensures that a cycle is actually closed under no assumption of non-trivial relations between the

different graphs. We also note that non-crossing partitions are closed under cyclic rotations, that

is, a non-crossing partition of a sequence (c1, c2, . . . , cm−1, cm) is also non-crossing as a partition

of (cm, c1, . . . , cm−1).

We observe that if a
(1)
1 is paired with a

(j)
1 then j must be even, otherwise there will be an odd

number of a1-s between them and no non-crossing pairing will be possible. Moreover, for ensuring

that the pairing remains non-crossing, a
(1)
2 has to be paired with a

(j′)
2 for some j′ ≤ j. Applying

these observations recursively, we can look at the first instances of a1, . . . , at and where they are

paired, and construct a non-crossing pairing using the following algorithm (see Figure 3):

1. Pick integers l1, l2, . . . , lt such that k ≥ l1 ≥ l2 ≥ · · · ≥ lt ≥ 1.

2. Pair each ai to the ai at location mi = 2t · li − i+ 1.

3. Continue recursively from step 1 for the gaps g1, g2, . . . , gt+1 between the mi-s.

Notice that the choice of integers in steps 1 and 2 ensures that the pairings do not cross. Moreover,

every non-crossing pairing induces the choice of integers in step 1 by looking at which indices

were matched to the first t elements. The gaps are of sizes gi = mi−1 −mi − 1 = 2t(li−1 − li),
with g1 = 2t(k − l1) is the gap between the last paired a1 and the end of the sequence and

gt+1 = mt − t− 1 = 2t(lt − 1) is the gap between the first instance of at and its paired element.

By the choices for the li-s, it is clear that g1 +g2 + · · ·+gt+1 = 2t(k−1) and each is a multiple

of 2t. Recall that the opening of a pairing represents a step away from v, and we have d possible

steps for each such graph, with the exception of the first: had the previous step been an opening

as well, in order to not close the pair there are just d − 1 options. Therefore we can write the
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Figure 3: Recursively finding a non-crossing pairing for the case t = 2 and k = 4. The blue

circles represent the graph G1, and the red squares represent G2. In the notations of the proof

of Proposition 7.3, we have l1 = 3, l2 = 2, representing the relevant copy of Gt picked for closing

the pair.

recursive formula for the number of closed walks W
(t)
k as

W
(t)
k = (d− 1)dt−1

∑
a1+···+at+1=k−1

W (t)
a1 · · ·W

(t)
at+1

,

which matches the recursive formula for
(
(d− 1)dt−1

)k
C

(t+1)
k , given that W

(t)
0 = 1.

Proof of Theorem 7.1. It can be easily verified that

C
(p)
k =

(
1

k

)Θ(1)( pp

(p− 1)p−1

)k
.

Combining this with Proposition 7.3 and with Lemma 4.2, we have that for every graph Gt with

n vertices constructed as a product of t d-regular graphs,

λ(Gt) ≥
(t+ 1)t+1

tt
(d− 1)dt−1 − on(1).

As mentioned in Section 2.3, Cohen and Maor [CM23] proved that for every d-regular Ra-

manujan graph G with adjacency matrix A, and for every integer t ≥ 2, there exists a sequence

of permutation matrices P = (P1, . . . ,Pt−1) such that the graph GP, whose adjacency matrix is

given by

AP = APt−1 · · ·AP1A
2PT

1 A · · ·PT
t−1A,

has spectral expansion

λ(GP) ≤ (t+ 1)t+1

tt
(d− 1)dt−1 + o(1) < e(t+ 1)

√
D − 1 + o(1), (7.1)

where the o(1) term is a quantity that vanishes exponentially fast with the girth of G. The main

motivation of [CM23] was to reduce the deterioration of the expansion from exponential in t,

which is the case when considering the graph Gt, to linear. In our current context it is clear that
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the upper bound on the spectral expansion shown in Equation (7.1) matches, up to a vanishing

term, the lower bound of Theorem 7.1. The immediate conclusion is that the lower bound is

tight up to an o(1) additive term, and that the construction of [CM23] is essentially optimal. It

is worth noting that our lower bound holds in a more general form, where the graphs G1, . . . , Gt

can be arbitrary, whereas in Equation (7.1) they are all isomorphic.

8 Derandomized Squaring with Interesting Graphs

In this section we apply our results to some interesting graph families, starting with graphs which

demonstrate the tightness of our lower bound (see Section 8.1). Our general bound on bounded-

degree graphs is given in Section 8.2 and the stronger bound assuming good spectral expansion

is given in Section 8.3. Cycle graphs are analyzed using the symbolic method in Section 8.4, and

the complete bipartite graph is studied in Section 8.5. The remaining sections deal with Paley

graphs (see Section 8.6) and, more generally, strongly regular graphs (see Section 8.7), as well as

some specific interesting graphs in Section 8.8.

8.1 Three tight examples

In this short section we analyze some basic choices for the graph H, for which we know what

behavior to expect and compare against our bound. We prove that for these instances, our lower

bound given by Theorem 2.2 is tight, up to an additive vanishing term, for every Ramanujan

graph G.

8.1.1 The true square

Let G be a d-regular graph, where d ≥ 3, and let Jd denote the complete graph on d vertices,

self-loops included. That is, Jd is the graph whose adjacency matrix is the all-ones d× d matrix,

typically denoted as J. Note that G s Jd = G2. Our lower bound on λ(G s Jd) obtained in

Theorem 2.2 holds for all graphs G in the sense that ΛJd is independent of G. Therefore, it is

sensible to expect that if the lower bound is tight for this choice of H = Jd then it is matched by

taking G to be a d-regular Ramanujan graph. In such case, the spectral expansion λ(G s Jd) =

λ(G2) can be computed directly and is equal to λ(G)2 =
(
2
√
d− 1

)2
= 4(d− 1). As we will now

show, it is indeed the case that ΛJd = 4(d− 1), establishing that our lower bound is tight for this

choice of H.

The Cauchy transform of Jd is given by

GJd(x) =
1

d

(
d− 1

x
+

1

x− d

)
=
x− d+ 1

x(x− d)
.

Substituting to Equation (2.4) and simplifying, we see that the derandomized squaring polynomial

associated with Jd is given by ∆Jd(x) = x2 + (2 − 2d)x. The unique real positive root of ∆Jd(x)

is, of course x0 = 2d− 2. Substituting to Equation (2.5) yields ΛJd = 4(d− 1).
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8.1.2 Non-backtracking random walks

A second example for the tightness of our bound is given by the clique, denoted as Kd, namely the

complete graph without self-loops. It is easily seen combinatorially that G s Kd corresponds to

the graph of non-backtracking length-2 walks in G, which we denote by G(2). The corresponding

adjacency matrix is given by A(2) = A2 − dI. Hence, for a Ramanujan graph G, the best value

we can hope for coming from the analysis is

λ(A(2)) = λ(A2)− d = 4(d− 1)− d = 3d− 4.

This bound is indeed what results from our analysis. To see this, note that the Cauchy

transform of Kd is

GKd(x) =
1

d

(
d− 1

x+ 1
+

1

x− d+ 1

)
=

x− d+ 2

(x+ 1)(x− d+ 1)
.

Substituting to Equation (2.4) and simplifying, we see that the derandomized squaring polynomial

associated with Kd is given by

∆Kd(x) = x2 + (4− 2d)x+ 3− 2d.

The unique real positive root of ∆Kd(x) is x0 = 2d− 3. Substituting to Equation (2.5) yields the

desired bound, ΛKd = 3d− 4.

It is instructive to compare our bound with the upper bound obtained by the Rozenman-

Vadhan bound, Equation (1.1) for a Ramanujan graph G. The second largest (normalized)

eigenvalue of Kd in absolute value is 1
d−1 , leading to an overall bound of ≈ 5d compared to

the true behavior of ≈ 3d.

8.1.3 The graph achieving the Rozenman-Vadhan bound

In [RV05], Rozenman and Vadhan proved that the bound that is given in Equation (1.1) is tight

in a strong sense, namely, for every rational µ, there exists a graph RVµ with ω(RVµ) = µ, such

that for every graph G it holds that ω(G s RVµ) = (1 − µ)ω(G2) + µ. For ease of notation, we

write RV instead of RVµ from hereon. The graph RV is constructed as follows: assume µ = s
r for

some integers r, s ≥ 1, then RV is a graph on d vertices which is rd-regular, consisting of r − s
copies of the complete graph Jd, and additional sd self-loops on each vertex. The combinatorial

analysis shows that a step in the rd2-regular graph G s RV amounts to staying at the same vertex

with probability µ or taking a step in G2 with probability 1− µ, leading directly to the tightness

of the bound.

Assume once again that G is Ramanujan, hence λ(G) ≤ 2
√
d− 1. In this case, by Equa-

tion (1.1), we get that

λ(G s RV) = ω(G s RV) · rd2

=

((
1− s

r

) 4(d− 1)

d2
+
s

r

)
· rd2

= 4(d− 1)r + (d− 2)2s.
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As in the above two examples, we use the Cauchy transform of RV which is given by

GRV(x) =
1

d

(
d− 1

x− sd
+

1

x− rd

)
=
x− (d− 1)r − s
(x− dr)(x− ds)

.

Applying Theorem 5.9, we get

ψRV(x) =
d3rs− d2rs− d2sx+ 2dsx− x2

dr − r + s− x
,

which has a minimum at x0 = 2(d− 1)r − (d− 2)s, resulting in

ΛRV = ψRV(x0) = 4(d− 1)r + (d− 2)2s,

as in the Rozenman-Vadhan bound.

8.2 Bounded-degree graphs and a universal bound on κ

In this section we prove that derandomized squaring with a simple vertex-transitive graph of

bounded degree results with a graph that gravitates towards Ramanujan as the number of vertices

in H increases. Moreover, we establish a universal bound on κH which holds for all simple vertex-

transitive graphs.

Theorem 8.1. Let H be a simple vertex-transitive c-regular graph on d vertices, where d ≥ 3 and

c ≥ 1. Then,

κH ≤ 2 +

√
c√

d−
√
c
.

Moreover, for every d ≥ 11 it holds that κH ≤ 3. Lastly, if H is triangle-free then

κH ≤ 2 +
c

d
· 1

1−
√

c
d

.

Proof. Let A be the adjacency matrix of H. Recall Equation (4.2) which states that GH(x) =∑∞
r=0

mr(H)
xr+1 , where mr(H) = 1

dTr(A
r). Clearly, m0(H) = 1, and since H has no self-loops,

m1(H) = 0. Note further that for every r ≥ 2 it holds that mr(H) ≤ cr−1. Indeed, since H

is simple, each step on a length-r cycle that originate at some fixed vertex of H has at most c

choices, and the last step is determined, returning to that vertex. Therefore, for every x > 0,

GH(x) ≤ 1

x
+

c

x3

∞∑
r=0

( c
x

)r
=

1

x
+

c

x2(x− c)
.

Thus,

ψH(x) = dx− d− 1

GH(x)
≤ x(x2 − cx+ cd)

x2 − cx+ c
.

Recall Theorem 5.9 which states that ΛH = minx>c ψH(x), and so to upper bound ΛH , and hence

κH after a suitable normalization, we may take any x0 > c and evaluate, or upper bound, ψH(x0).

A good choice for the case c� d would be x0 =
√
cd, which yields the bound

κH ≤
√

cd

cd− 1
· 2d−

√
cd

d+ 1−
√
cd
≤ 2 +

√
c√

d−
√
c
.
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As for the moreover part, by substituting x0 = c+ d, we get

κH ≤
ψH(c+ d)√
cd− 1

≤ 1√
cd− 1

· d(c+ d)(2c+ d)

cd+ c+ d2
.

It can be verified that for d ≥ 11 and c ≥ d
4 , the RHS of the above equation is bounded by

1√
cd
· d(c+ d)(2c+ d)

cd+ d2
=

2c+ d√
cd

.

From here, it straightforward to verify that for every d ≥ 11 and 1 ≤ c ≤ d− 1,

κH ≤ min

(
2 +

√
c√

d−
√
c
,
2c+ d√
cd

)
≤ 3.

To conclude the proof, consider a triangle-free graph H. Under this additional assumption,

m3(H) = 0, and so

GH(x) ≤ 1

x
+

c

x3
+
c3

x5

∞∑
r=0

( c
x

)r
=
x4 − cx3 + cx2 − c2x+ c3

x4(x− c)
.

Using an argument as the one above, taking again x0 =
√
cd, we conclude that

κH ≤
ψH(
√
cd)√

cd− 1
≤ d√

cd− 1
· 2d
√
cd− c(2d−

√
cd)

c+ (d+ 1)(d−
√
cd)
≤ 2 +

c

d
· 1

1−
√

c
d

.

8.3 Spectral expanders

In this section we prove a stronger bound on κH than the one obtained in Theorem 8.1, which

recall holds for general bounded-degree graphs, assuming that H is a good spectral expander.

The proof follows the same argument as in the proof of Theorem 8.1 though takes into account

the bound on the spectral expansion.

Proposition 8.2. Let H be a simple vertex-transitive c-regular graph on d vertices. Assume that

10 ≤ c <
√
d. Then,

κH ≤ 2 +
3√
d

(
λ(H)√

c

)3

.

Furthermore, if H is triangle-free then

κH ≤ 2 +
4

d

(
λ(H)√

c

)4

.

Proof. Denote λ = λ(H) and let A be the adjacency matrix of H. Recall Equation (4.2) which

states that GH(x) =
∑∞

r=0
mr(H)
xr+1 where mr(H) = 1

dTr(A
r). Clearly, m0(H) = 1 and as H has no

self-loops, m1(H) = 0. Since H is a simple c-regular graph, we have that m2(H) = c, and per our

assumption on the spectral expansion of H, for every r ≥ 3 it holds that

mr(H) =
1

d
Tr(Ar) ≤ cr + (d− 1)λr

d
≤ cr

d
+ λr.
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Therefore, for every x > 0,

GH(x) ≤ 1

x
+

c

x3
+

∞∑
r=3

1

xr+1

(
cr

d
+ λr

)
=

1

x
+

c

x3
+

c3

dx4
· 1

1− c
x

+
λ3

x4
· 1

1− λ
x

≤ 1

x
+

c

x3
+

1

x3

(
c3

d
+ λ3

)
1

x− c
,

where we used the fact that λ ≤ c for the last inequality. Per our assumption 10 ≤ c <
√
d and

since the inequality λ ≥
√
c holds in general, we have that(

c3

d
+ λ3

)
1√
cd− c

≤ 2λ3

√
cd
,

and so

GH(
√
cd) ≤ 1√

cd
+

1√
cd3

+
2λ3

(cd)2
.

Therefore,

ψH(
√
cd)√

cd− 1
=

1√
cd− 1

(
d
√
cd− d− 1

GH(
√
cd)

)
≤
√

cd

cd− 1
· 2(cd)3/2 + 2λ3d

(cd)3/2 + 2λ3

≤ 2 +
3√
d

(
λ√
c

)3

.

As for the moreover part, since there are no triangles, m3(H) = 0 and so similarly to the above

derivation, we get that

GH(x) ≤ 1

x
+

c

x3
+
∞∑
r=4

1

xr+1

(
cr

d
+ λr

)
≤ 1

x
+

c

x3
+

(
c4

d
+ λ4

)
1

x4(x− c)

≤ 1

x
+

c

x3
+

2λ4

x4(x− c)
,

where the last inequality is per our assumption d > c2 and using again the fact that λ ≥
√
c.

Substituting x =
√
cd as before, we get that

GH(
√
cd) ≤ 1√

cd
+

1√
cd3

+
2λ4

(cd)2(
√
cd− c)

.

Therefore,

ψH(
√
cd)√

cd− 1
≤
√

cd

cd− 1
· 2(cd)3 − 2c3.5d2.5 + 2λ4cd2

(cd)3 + c3d2 − c3.5d1.5 + 2λ4cd− c3.5d2.5

≤
√

cd

cd− 1
· 2e+ 2λ4cd2

e+ c3d2 − c3.5d1.5 + 2λ4cd
,
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where e = (cd)3 − c3.5d2.5. It can be verified that the RHS of the above equation is bounded by

2 +
3λ4cd2

e
≤ 2 +

4λ4cd2

(cd)3
= 2 +

4

d

(
λ√
c

)4

.

8.4 Cycles

We now focus on the spectral expansion in the context of derandomized squaring with the length-d

cycle graph, denoted by Cd. Ideally, we could leverage the known eigenvalues of Cd. However, this

method proves to be excessively intricate, involving complex trigonometric expressions that are

impractical to handle. Instead, the objective of this section is to introduce a combinatorial strategy

to establish a lower bound for the spectral expansion resulting from derandomized squaring.

For this purpose, we explore an alternative formulation of Theorem 2.1 that adopts a more

combinatorial perspective, enabling the use of the symbolic method to determine the generating

function for the cycle graph. The reader should keep in mind that Theorem 8.1 has already

established that κCd ≤ 2 + 4
d for all d ≥ 11.

For an integer ` ≥ 0, denote the number of length-` cycles that originate at some fixed arbitrary

vertex v by c`(H). If we denote by H the adjacency matrix of H then the corresponding generating

function is given by

CH(x) =
∞∑
`=0

c`(H)x` =
∞∑
`=0

(eTvH`ev)x
` = eTv (I− xH)−1ev.

As follows from Equation (4.1), the connection between the generating function CH(x) and the

Cauchy transform is given by CH(x) = 1
xGH( 1

x). Using this relation, we can recast Theorem 2.1

in terms of CH(x) as follows: Let x0 be the real positive solution to the equation

d

d− 1
CH(x)2 = CH(x) + xC′H(x). (8.1)

Then,

ΛH =
1

x0

(
d− d− 1

CH(x0)

)
. (8.2)

Instead of going through the spectrum of Cd, we will once again employ the symbolic method,

this time to describe SCd(x) which, recall, is the combinatorial class that consists of nonempty

cycles that start at a fixed vertex v of Cd and revisit v only upon completing the cycle. Using

the symbolic method, in the following lemma, we give a closed form for the generating function

of SCd(x).

Lemma 8.3. For every d ≥ 3,

SCd(z) = 2z2 · z
d−2 + bd−2(z)

bd−1(z)
,

where, for every ` ≥ 1,

b`(z) =
1

2`+1∆

(
(1 + ∆)`+1 − (1−∆)`+1

)
, (8.3)

and ∆ =
√

1− 4z2.
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Recall that since an element of CH is a sequence of elements in SH , we have that CH(z) =
1

1−SH(z) . The first couple of values are given by

CC3(z) =
z − 1

(z + 1)(2z − 1)
,

CC4(z) =
1− 2z2

1− 4z2
,

CC5(z) =
z2 + z − 1

(1− 2z)(z2 − z − 1)
,

and so the corresponding values of κ are κC3 =
√

5 ≈ 2.236 as expected, being a special case of

a clique, see Section 8.1.2; and κC4 =

√
59+11

√
33

2
√

7
≈ 2.089 which, of course, is consistent with our

result on K2,2 from Section 8.5. The next value, κC5 ≈ 2.026 is consistent with the result from

Section 8.7 on strongly regular graphs.

Proof of Lemma 8.3. Two types of cycles are included in SCd , those in which the first node in the

cycle, following the fixed vertex v, is also the last node visited before returning to v, and those

cycles that revisit v from its other neighbor. We partition the class SCd into two types of classes:

Ld−1 and Pd−1 (L stands for loops and P for paths). Note that each type appears twice in SCd
as in both cases we can start the cycle from any of the two neighbors of v. Using the symbolic

method we summarize this succinctly as

SCd = 2Z2 (Ld−1 + Pd−1) . (8.4)

We start by expressing, using the symbolic method, the class L`, for ` > 1, in terms of L`−1.

We can think of L` as the class of cycles on the length-` path that start and end at the leftmost

node on the path. The cycle can visit the latter node any number of times, and so

L` = SEQ (→ ×L`−1× ←) .

To see this, note that within the sequence construct, we consider nonempty cycles from the

leftmost node to itself that revisit the latter only upon completing the cycle. Indeed, any such

cycle begins by taking a right step, symbolized by the atom →, followed by a cycle on the length

`− 1 path obtained by excluding the leftmost node, and then return by taking a left step.

As a direct implication we get the following recursive relation, with respect to `, on the

generating functions of L`,
L`(z) =

1

1− z2L`−1(z)
.

It will be useful to express L`(z) as the quotient of two polynomials L`(z) = a`(z)
b`(z)

in the following

way. We have that

L`(z) =
1

1− z2 · a`−1(z)
b`−1(z)

=
b`−1(z)

b`−1(z)− z2a`−1(z)
.

By the above recurrence relation, we get that a`(z) = b`−1(z) and

b`(z) = b`−1(z)− z2b`−2(z), (8.5)
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where b1(z) = 1 and b2(z) = 1− z2. That is,

L`(z) =
b`−1(z)

b`−1(z)− z2b`−2(z)
. (8.6)

We turn to consider the combinatorial class P`. We can think of this class as the class of paths

in the length-` path that start at the leftmost vertex and end at the rightmost vertex, where

any vertex can be revisited any number of times. Observe that every such path can be described

using a path of the same type though from the leftmost vertex to the node that is adjacent to the

rightmost vertex, followed by a right step, which gives the first time we visit the rightmost vertex.

Then, to accommodate for the fact that we can revisit the later node any number of times, we

follow the later path by an element of L`, exchanging the left and right directions. This gives the

relation

P` = P`−1× → ×L`,

and so P`(z) = zP`−1(z)L`(z). Using Equation (8.6) we get that P`(z) = z`−1

b`(z)
, and so, using

Equation (8.4), we conclude that

SCd(z) = 2z2 · z
d−2 + bd−2(z)

bd−1(z)
.

To complete the proof, we find a closed form for b`(z). By Equation (8.5), we have that

b`(z)− b`−1(z) + z2b`−2(z) = 0,

and so

b`(z) = A

(
1−∆

2

)`
+B

(
1 + ∆

2

)`
,

where, recall, ∆ =
√

1− 4z2. Using the initial conditions, b1(z) = 1, b2(z) = 1 − z2 we can

compute A,B. The result, A = 1
2(1− 1

∆), B = 1
2(1 + 1

∆) then yeilds the desired closed form.

8.5 Complete bipartite graphs

In this section we consider the operation of derandomized squaring with the complete bipartite

graph on d vertices, for an even integer d ≥ 4. This is, of course, a c = d
2 regular graph which we

denote as Kc,c. It is easy to see that Kc,c has eigenvalues ±c, each with multiplicity 1, and the

remaining eigenvalues are all 0. Therefore, the corresponding Cauchy transform, which for ease

of notation we denote by Gc,c, is given by

Gc,c(x) =
4x2 − d(d− 2)

(4x2 − d2)x
.

From here one can compute the derandomized squaring polynomial

∆c,c(x) = x4 − d(2d− 3)

2
x2 − (d− 2)d3

16
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whose unique positive root x0 =
√
md
2 , where m = 2d− 3 +

√
(d− 1)(5d− 9). One can verify that

G(x0) = m−d+2
x0(m−d) . Substituting this to Equation (2.5), we get

ΛKc,c = x0

(
m+ d

m− d+ 2

)
=

√
md

2

(
m+ d

m− d+ 2

)
.

The resulted graph is D = d2

2 -regular, and so we normalize by dividing by
√
D − 1 to get

κKc,c =

√
md

2d2 − 4

(
m+ d

m− d+ 2

)
.

From here one can compute the first couple of values, κK2,2 ≈ 2.089 which, of course, matches the

bound we computed for the length-4 cycle, and κK3,3 ≈ 2.157. Considering the limit behavior as

d→∞ we have that m ≈ γd where γ = 2 +
√

5, and so

κK∞,∞ , lim
c→∞

κKc,c =

√
γ

2
· γ + 1

γ − 1
=

1

2

√
11 + 5

√
5 ≈ 2.355.

8.6 Paley graphs

Let q = 4r+ 1 be a prime power. The Paley graph, denoted as Palq, has vertex set corresponding

to the finite field Fq with the vertices adjacent if and only if their difference is a nonzero square in

Fq. As q ≡ 1 modulo 4, we have that −1 is a square in Fq, and so Palq is undirected. Note that

Palq is a 2r-regular graph on q vertices. It is well-known that the corresponding characteristic

polynomial is χx(Palq) = (x − 2r) (x− α)2r (x− β)2r , where α =
−1−√q

2 and β =
−1+

√
q

2 . Note

that α+ β = −1 and αβ = −r. Hence, the Cauchy transform associated with Palq is given by

GPalq(x) =
1

q

(
1

x− 2r
+

2r

x− α
+

2r

x− β

)
=
x2 + x− r + 2r(x− 2r)(2x+ 1)

qM
,

where M = (x− 2r)(x2 + x− r). Now,

G′Palq(x) = −1

q

(
1

(x− 2r)2
+

2r

(x− α)2
+

2r

(x− β)2

)
= −1

q
·

(x2 + x− r)2 + 2r(x− 2r)2
(
2x2 + 2x+ 2r + 1

)
M2

.

For invoking Theorem 2.2, we wish to find the positive solution to Equation (2.4) which, after

some manipulations leads us to the derandomized squaring polynomial

∆Palq(x) = x4 − (4r − 2)x3 − (4r2 + 6r − 1)x2 + 2r(2r + 1)(4r − 1)x− r2(4r − 1)(4r + 1). (8.7)

Evaluating the LHS at x = c = 2r and at x = 5r yields a negative and a positive value,

respectively. Hence, the desired root lies in (2r, 5r]. Therefore, for the purpose of approximating

the root in the limit, as r → ∞, the above polynomial equation can be approximated by the

equation

x4 − 4rx3 − 4r2x2 + 16r3x− 16r4 = 0.
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More precisely, the solution to the original equation, Equation (8.7), which lies in (2r, 5r], when

divided by r is approximated by the solution to the latter equation when divided by r. The

solution to the latter equation is given by x0 = γr, where γ = 1 +
√

5 +
√

32. Now,

GPalq(x0) =
γ2r2 + x− r + 2r(x− 2r)(2x+ 1)

qM
=

γ2r − 2γr + γ − 1

r(γ − 2)(γ2r + γ − 1)
.

Thus, by Theorem 2.2, the lower bound one obtains is

qx0 −
q − 1

GPalq(x0)
= γr +

8(γ − 1)r2

(γ2 − 2γ)r + γ − 1
.

In the limit as r →∞, the above expression converges to(
γ +

8(γ − 1)

γ2 − 2γ

)
r =

(
1 +

√
13 + 16

√
2

)
r.

Recall that q = 4r + 1 ≈ 4r and that D ≈ q2

2 ≈ 8r2. Thus, r ≈ 1√
8

√
D and so the bound above

implies that

κPal∞ , lim
q→∞

κPalq =
1 +

√
13 + 16

√
2√

8
≈ 2.464.

8.7 Strongly regular graphs

A c-regular graph on d vertices with no self-loops is called strongly regular with parameters λ, µ 6

if 0 < c < d (namely, the graph is neither complete nor edgeless) and the following hold:

1. For each pair of adjacent vertices there are λ vertices adjacent to both.

2. For each pair of nonadjacent vertices there are µ vertices adjacent to both.

Strongly regular graphs include dozens of interesting graphs such as the Peterson graph, the

Hoffman-Singelton graph (see Section 8.8), and the symplectic graphs (see Section 8.7.2), as well

as all Paley graphs which we analyzed in Section 8.6. It is a well-known fact that strongly regular

graphs have two eigenvalues other than the trivial eigenvalue c, denoted r, s, with the convention

r > s. This is, in fact, a spectral characterization of strongly regular graph among regular graphs.

The multiplicity of these eigenvalues are denoted by f, g, respectively. In the following we compute

the derandomized squaring polynomial of a strongly regular graph.

Proposition 8.4. Let H be a c-regular strongly regular graph on d ≥ 3 vertices with parameters

λ, µ. Let α = λ − µ and e = c − d + 1. Then, the derandomized squaring polynomial associated

with H is given by

∆H(x) = x4 − 2(α+ c)x3 +Ax2 +Bx+ C,

6It is customary to denote these parameters by λ and µ and so, despite our use of λ for denoting the spectral

expansion, we proceed with this standard notation.
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where

A = 2µ+ 4αc+ α2 + ce,

B = −2αµ+ 2c
(
c− ce− α2 − µ

)
,

C = (µ− c) (µ+ 2αc+ c) + c3e.

For proving Proposition 8.4, we make use of the fact that the different parameters of a strongly

regular graph are, of course, not independent of each other. In the following theorem we gather

the well-known relations we make use of. For a proof, and for an in-depth exposition to strongly

regular graphs, the reader is referred to Chapter 10 in [GR01].

Theorem 8.5. Let G be a c-regular graph on d vertices which is strongly regular with parameters

λ, µ. Then, with the notation above,

1. c(c− 1− λ) = µ(d− c− 1)

2. rs = µ− c

3. r + s = λ− µ

4. f + g = d− 1

5. fr + gs+ c = 0

6. fg(r − s)2 = dc(d− c− 1)

Proof of Proposition 8.4. For ease of notation, we begin the proof by writing C as a shorthand

for x− c, and similarly R for x− r and S for x− s. Then, the Cauchy transform corresponding

to H is given by

GH(x) =
1

d

(
1

C
+
f

R
+
g

S

)
=
RS + fCS + gCR

dCRS
.

After some straightforward manipulations, Equation (2.4) takes the form

(RS + fCS + gCR)2 = (d− 1)
(
(RS)2 + f(CS)2 + g(CR)2

)
. (8.8)

We write the LHS as (RS)2 + f2(CS)2 + g2(CR)2 + 2T, where

T = RSC(fS + gR) + fgC2RS. (8.9)

Returning to Equation (8.8), we get

2T = (d− 2)(RS)2 + ((d− 1)f − f2)(CS)2 + ((d− 1)g − g2)(CR)2.

But (d− 1)f − f2 = (d− 1− f)f = gf, and similarly (d− 1)g − g2 = (d− 1− g)g = gf. Thus,

2T = (d− 2)(RS)2 + fgC2(R2 + S2).
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Substituting for T according to Equation (8.9), we get

2RSC(fS + gR) = (d− 2)(RS)2 + fgC2(R2 + S2 − 2RS)

= (d− 2)(RS)2 + fgC2(r − s)2.

By Theorem 8.5, fg(r − s)2 = dc(d− c− 1), and so the above equation takes the form

2RSC(fS + gR) = (d− 2)(RS)2 + dc(d− c− 1)C2.

Therefore,

2(x− r)(x− s)(x− c)((d− 1)x− (fs+ gr)) = (d− 2)((x− r)(x− s))2 + dc(d− c− 1)(x− c)2.

Recall that α = λ−µ = r+s, where the last equality is due to Theorem 8.5. Let β = rs. Invoking

Theorem 8.5 once again, we get that

fs+ gr = (d− 1− g)s+ (d− 1− f)r = c+ α(d− 1),

and that (x− r)(x− s) = x2 − αx+ β. Hence,

2(x2 − αx+ β)(x− c)((d− 1)(x− α)− c) = (d− 2)(x2 − αx+ β)2 + dc(d− c− 1)(x− c)2,

or, equivalently,

x4 − 2(α+ c)x3 +Ax2 +Bx+ C = 0, (8.10)

where

A =
2(β + c2 − αc)

d
+ c2 − cd+ 4αc+ c+ α2,

B =
2α(αc− c2 − β)

d
+ 2c

(
cd− c2 − c− α2 − β

)
,

C =
2β
(
c2 − αc+ β

)
d

+ c3(c− d+ 1) + 2αβc− β2.

The LHS in Equation (8.10) is indeed the derandomized squaring polynomial of H. We turn

to simplify A,B and C. The expression c2−αc+β
d appears in all three parameters. As it turns out,

it is in fact an integer. To see this, recall that by Theorem 8.5, c(c − 1 − λ) = µ(d − c − 1) and

so αc = c(c− 1)− (d− 1)µ. Therefore,

c2 − αc+ β = β + c+ (d− 1)µ = dµ.

Hence, we can simplify A,B,C to

A = 2µ+ c2 − cd+ 4αc+ c+ α2

B = −2αµ+ 2c
(
cd− c2 − c− α2 − β

)
C = 2βµ+ c3(c− d+ 1) + 2αβc− β2

Recall that µ = c+ rs = c+ β, and so B = −2αµ+ 2c
(
cd− c2 − α2 − µ

)
. Lastly,

C = (µ− c) (µ+ 2αc+ c) + c3(c− d+ 1).

The proof then follows by the definition of e.
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Figure 4: The dependence of κH of a strongly regular graph H satisfying λ� c as a function of

γ = c
d .

8.7.1 Asymptotic behavior when λ� c

In Proposition 8.4, we have streamlined the derivation of the derandomized squaring polynomial

for a strongly regular graph as much as we could, and we will apply this result in the forthcoming

examples. Nonetheless, the affect of the various parameters on the polynomial—and consequently,

on the bound—remains opaque. In this section, we focus on strongly regular graphs where the

parameter λ � c, namely, the number of mutual neighbors of two adjacent vertices is negligible

in relation to their degree. Specifically, this class includes triangle-free strongly regular graphs,

characterized by λ = 0. As usual, we consider the limit behavior, as d→∞, and write c = γd.

Recall from Theorem 8.5 that c(c−1−λ) = µ(d−c−1). Thus, when λ� c and as d→∞, we

have that µ ≈ c2

d−c = γ2

1−γd. Therefore, the coefficients of the derandomized squaring polynomial

corresponding to H can be approximated by

2(α+ c) ≈
(

2γ − 4γ2

1− γ

)
d

A ≈
γ
(
6γ3 − 7γ2 + 3γ − 1

)
(γ − 1)2

d2

B ≈ 2γ2(1− 2γ)(γ2 − γ + 1)

(1− γ)2
d3

C ≈ γ3(γ − 1)d4.

Although it is technically possible to formulate a closed expression for the positive root of the

relevant derandomized squaring polynomial, the complexity of this expression makes it difficult

to derive meaningful insights from it. However, in Figure 4, we present a graphical representation

of the corresponding κ value as it relates to γ.
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8.7.2 The symplectic graphs

An interesting sub-family of strongly regular graphs are the so-called symplectic graphs. Let r ≥ 1

be an integer. The symplectic graph Sp(2r) is the graph whose vertex set consists of all nonzero

vectors in F2r
2 . Two vertices x, y are adjacent whenever xTNy = 1, with all calculations over F2,

where N is the (2r)× (2r) block diagonal matrix with r blocks of the form ( 0 1
1 0 ). It is well-known

that Sp(2r) is a strongly regular graph with λ = µ = 22r−2. Setting t = 22r − 2, the polynomial

whose unique positive solution we wish to compute is given by

x4 − 4tx3 + t(6− 4t)x2 + 4t2(4t− 3)x− t2(16t2 − 16t+ 3),

which we approximate by x4 − 4tx3 − 4t2x2 + 16t3x− 16t4. The positive root of this polynomial

is given by x0 = γt, where γ = 1 +
√

5 + 4
√

2. Now,

GSp(2r)(x) =
1

4t− 1

(
1

x− 2t
+

2t−
√
t− 1

x−
√
t

+
2t+

√
t− 1

x+
√
t

)
=

x2 + t− 2tx

(x− 2t)(x2 − t)
.

Substituting to Equation (2.5) gives the lower bound

(4t− 1)γt− (4t− 2)(γt− 2t)(γ2t2 − t)
γ2t2 + t− 2γt2

=
(γ3 − 2γ2 + 8γ − 8)t2 + (4− 3γ)t

(γ2 − 2γ)t+ 1
.

As t→∞, the above is approximated by

γ3 − 2γ2 + 8γ − 8

γ(γ − 2)
t =

(
1 +

√
13 + 16

√
2

)
t.

Now,
√
cd ≈

√
8t and so, the limit behavior of κ(Sp(2r)) as r →∞ satisfies

lim
r→∞

κ(Sp(2r)) =
1 +

√
13 + 16

√
2√

8
≈ 2.464.

Interestingly, though not unexpectedly, this limit behavior is also shared by Paley graphs (see

Section 8.6).

8.8 Some specific graphs

In this section we consider some specific interesting graphs.

The Petersen graph. The Petersen graph is a 3-regular vertex-transitive graph on 10 vertices.

It is strongly regular with parameters λ = 1 and µ = 0, and so according to Section 8.7, its

derandomized squaring polynomial is given by

∆Pet(x) = x4 − 4x3 − 27x2 + 116x− 158.

Substituting its unique positive root to Equation (2.5), we get that ΛPet ≈ 10.908, or, κPet ≈ 2.025.
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The Heawood graph. The Heawood graph is a 3-regular vertex-transitive graph on 14 vertices

having girth 6. It is interesting in our context as no 3-regular graph with fewer vertices have such

high girth. The characteristic polynomial for the Heawood graph is (x− 3)(x+ 3)(x2− 2)6, hence

the corresponding derandomized squaring polynomial is given by

∆Hea(x) = x6 − 55x4 + 454x2 − 1872.

Plugging the latter’s unique positive root to Equation (2.5), we conclude that ΛHea ≈ 12.835, or

equivalently, κHea ≈ 2.004.

The Hoffman-Singelton graph. This graph was constructed for the classification of Moore

graphs, and is the largest known Moore graph. The Hoffman-Singelton graph is a 7-regular vertex-

transitive graph on 50 vertices. Its girth is 5, which is the highest possible given the number of

vertices and it being 7-regular. The Hoffman-Singelton graph is strongly regular with λ = 0 and

µ = 1. Using our general result for strongly regular graphs, Proposition 8.4, the derandomized

squaring polynomial associated with the Hoffman-Singelton graph is given by

∆HS(x) = x4 − 12x3 − 319x2 + 4188x− 14370.

Substituting its unique positive root to Equation (2.5) yields ΛHS ≈ 37.497, or κHS ≈ 2.007.

The Biggs-Smith graph. This is another example of a 3-regular graph, though on 102 vertices,

having girth 9. Its characteristic polynomial is given by

(x− 3)(x− 2)18x17(x2 − x− 4)9(x3 + 3x2 − 3)16,

from which it follows that κBS ≈ 2.000000016. Note that this is significantly closer to 2 than what

is guaranteed by Theorem 8.1.

Conway’s 99-graph. We conclude by discussing our possibly useful yet failed attempt at solv-

ing an intriguing unsolved problem. The Conway’s 99-graph problem asks about the existence

of a 99-vertex graph where each edge is part of a unique triangle and each pair of non-adjacent

vertices is diagonally opposite in a unique 4-cycle. It has been deduced that such a graph, if it

exists, would be 14-regular and is in fact a strongly regular graph with parameters λ = 1 and

µ = 2. Although this brief exposition omits the historical context and significance of the problem,

which the reader can easily find in the literature, we note that Conway proposed a $1000 reward

for resolving this problem.

One might speculate that disproving the existence of such a graph is achievable by analyzing

its action on known constructs, specifically through its application in derandomized squaring. If

the derandomized squaring constant, κConway, were to be strictly less than 2, it would negate the

graph’s existence. Regrettably, our endeavors do not merit the prize. Indeed, the corresponding

derandomized squaring polynomial would be

∆Conway(x) = x4 − 26x3 − 1227x2 + 33240x− 230352.
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Its unique positive root is x0 ≈ 39.496. As the corresponding Cauchy transform is given by

GConway(x) =
x2 − 13x− 12

(x− 14)(x− 3)(x+ 4)
,

Equation (2.5) yields that κConway ≈ 2.041.
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