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Abstract
We introduce and study swap cosystolic expansion, a new expansion property of simplicial complexes.

We prove lower bounds for swap coboundary expansion of spherical buildings and use them to lower
bound swap cosystolic expansion of the LSV Ramanujan complexes. Our motivation is the recent work
(in a companion paper) showing that swap cosystolic expansion implies agreement theorems. Together
the two works show that these complexes support agreement tests in the low acceptance regime.

Swap cosystolic expansion is defined by considering, for a given complex X, its faces complex FrX,
whose vertices are r-faces of X and where two vertices are connected if their disjoint union is also a face
in X. The faces complex FrX is a derandomizetion of the product of X with itself r times. The graph
underlying FrX is the swap walk of X, known to have excellent spectral expansion. The swap cosystolic
expansion of X is defined to be the cosystolic expansion of FrX.

Our main result is a exp(−O(
√

r)) lower bound on the swap coboundary expansion of the spherical
building and the swap cosystolic expansion of the LSV complexes. For more general coboundary expanders
we show a weaker lower bound of exp(−O(r)).
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1 Introduction
Expansion of simplicial complexes, known as high dimensional expansion, has been gaining attention [Lub18;
GK23]. Two main notions are spectral expansion, and coboundary and cosystolic expansion. The first is
related to higher order random walks [KM17; DK17; KO20; Dik+18] (from r-face to r-face) and the second is
related to property testing of cohomological and topological notions [KL14; DM22]. In this work we study
a new notion of high dimensional expansion, which we call swap coboundary (cosystolic) expansion. This
notion has to do with the so-called faces complex of a given complex, which we describe next.

Given a d-dimensional simplicial complex X, and a parameter r < d, its Faces Complex, denoted by FrX
is the following complex. The vertices of FrX are the r-faces of X, and two r-faces s, s′ are connected by an
edge if they are disjoint and s ·∪ s′ ∈ X. More generally,

{s0, . . . , sk} ∈ FrX(k) iff s0 ·∪ · · · ·∪ sk ∈ X.

Thus F0X = X, but FrX for r ⩾ 1 is a new complex. One may view the faces complex as a generalization of
the Kneser graph [Kne55], which is nothing but the faces complex of the complete complex.

The spectral expansion of the 1-skeleton of FrX has been studied previously [DD19; AJT19] under the
name ‘complement walk’ or ‘swap walk’. A priori, it seems more natural to consider a walk from s to s′ such
that s, s′ intersect, but it turns out that the swap walk has much stronger spectral mixing. This already
turned out useful in applications for constraint satisfaction problems (CSPs) and for agreement tests, as we
discuss below. The transformation from X to FrX is analogous to a derandomized graph product. In a graph
product we move from a graph G to G⊗r, a new graph whose vertices are r-tuples or r-sets of the old graph.
Unlike the graph product case, in FrX the choice of which sets of vertices to consider is not an arbitrary
“take all possible r-sets”, but rather specified by the complex X itself. The number of r-sets is often much
smaller, and this potentially implies greater efficiency, justifying the term ‘derandomized’.

There is a significant body of work on graph products and their applications in theoretical computer
science, specifically as a method for hardness amplification. For example, parallel repetition [Raz98] can be
viewed as a graph product that amplifies the hardness of label cover. Hardness amplification in general is
an important direction in computational complexity, where one generates very hard instances from mildy
hard instances, usually in a black box manner by having the new instance encode several copies of the initial
instance, see [Imp+08] for example.

Derandomization, in this context, has to do with more efficient amplification, obtained by choosing a
smaller collection of r-sets. For comparison, in non-derandomized parallel repetition, an instance of size n
is mapped to a new instance whose size is nr. This means that in order to keep the instance polynomial
size, one is restricted to r = O(1). Derandomizing parallel repetition has been studied for three decades
with only limited success. There are some general known impossibility results [FK95; MRY16]. Impagliazzo
et al. [IKW12] have shown a successful derandomization of direct product tests, which are combinatorial
analogs of parallel repetition, and this was later pushed to a derandomized parallel-repetition-like PCP
theorem in [DM11]. The powering step in the gap amplification proof of the PCP theorem [Din07] is a form
of derandomized parallel repetition in which, as in FrX, the r-sets are chosen based on the topology of the
graph itself. A major shortcoming of the powering step is its failure for values below 1/2 [Bog05]. Very recent
work on derandomized direct product tests, also known as agreement tests, has highlighted the importance of
the faces complex FrX, [DD23a; BM23a]. Quite mysteriously, not only the spectral expansion of this complex
makes an appearance, but also coboundary and cosystolic expansion of FrX turn out to be crucial. This
motivates the following definition

Definition 1.1. A simplicial complex X is said to have (β, r)-swap coboundary (cosystolic) expansion if FrX
is a β coboundary (cosystolic) expander for 1-cochains.

Unpacking this definition involves two aspects. First, we explain the definition of coboundaries and
cocycles and relate them to unique games instances on X. Next, we discuss the relevant notion of expansion
and its context. Only then will we be able to describe our main results and how they relate to other work.
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1.1 Coboundaries and Unique Games Instances

Let X be a simplicial complex, let
→
X(1) be the set of oriented edges and fix Sym(ℓ) to be the group

of symmetries of ℓ elements. A 1-cochain puts a permutation on each edge. Namely, it is a function
f :

→
X(1) → Sym(ℓ) such that f(uv) = f(vu)−1. The set of 1-cochains1 is denoted C1 = C1(X, Sym(ℓ)).
Every 1-cochain can be viewed as an instance of unique games, which is a type of constraint satisfaction

problem. An instance is given by a graph (X(0), X(1)) such that the variables are X(0), and each edge
is associated with a constraint πuv ∈ Sym(ℓ). We wish to find an assignment h : X(0) → [ℓ] such that
πuv(h(u)) = h(v) for as many edges as possible. The maximal possible fraction is called the value of the
instance. We say that an instance is satisfiable if its value is 1, namely if there is an assignment that satisfies
all the edges. Every 1-cochain f ∈ C1 corresponds to a unique games instance on the underlying graph of X,
by letting πuv = f(uv) for every edge. Khot famously conjectured that it is NP-hard to approximately solve
unique games [Kho02], and we expand on this further in Section 3.

Just like 1-cochains are assignments to edges, 0-cochains are assignments to vertices, namely, functions
f : X(0) → Sym(ℓ). Every 0-cochain g : X(0) → Sym(ℓ) gives rise to a coboundary δ0g : X(1) → Sym(ℓ)
which is a 1-cochain defined by

∀uv ∈
→
X(1), δ0g(uv) = g(v)g(u)−1.

The set of 1-coboundaries is defined to be

B1 =
{

δ0g
∣∣ g ∈ C0} ⊂ C1.

Per their definition, coboundaries are cochains that correspond to strongly satisfiable unique games instances.
A strongly satisfiable instance is an instance f : X(1) → Sym(ℓ) such that there exists ℓ satisfying assignments
h1, h2, . . . , hℓ : X(0) → [ℓ] such that for any v ∈ X(0), {hi(v)}ℓ

i=1 = [ℓ]. In words, this means that given
v ∈ X(0), one can freely assign v any j ∈ [ℓ], and propagate this assignment to a satisfying solution to the
entire instance. We prove the following lemma in Section 3,

Lemma 1.2 (See Lemma 3.2 for a slightly stronger statement). Let X be a graph and let f ∈ C1. Then
f ∈ B1 if and only if the unique games instance defined by f is strongly satisfiable.

As far as unique games instances go, not every satisfiable instance is also strongly satisfiable. However,
some classes of unique games instances, including affine linear unique games, are satisfiable if and only if
they are strongly satisfiable. This is a rather popular class of unique games studied for example in [Kho+07;
Baf+21; BM23a]. Moreover, in terms of computational hardness, [Kho+07] showed that the hardness of
approximating general unique games reduces to that of approximating affine linear unique games.

Even if f is not strongly satisfiable (so, not a coboundary), it could be close to a coboundary. This would
imply an assignment satisfying most of the edges. Whereas the unique games conjecture asserts that finding
or even approximating such an assignment is hard (even for affine linear instances), it becomes tractable
when the underlying graph is a so-called coboundary expander (see Claim 3.2.1), which we define next.

1.2 Coboundary and cosystolic expansion
Suppose the graph (X(0), X(1)) also comes with a set of triangles X(2). One can check that if g ∈ C0 and
f = δ0g then for every triangle uvw ∈

→
X(2), the following “triangle equation” holds:

f(vw)f(uv) = f(uw). (1.1)

The reason is cancellations: clearly g(w)g(v)−1g(v)g(u)−1 = g(w)g(u)−1.
A coboundary satisfies all triangle equations. A coboundary expander is a complex where a robust inverse

statement also holds: any f ∈ C1 that satisfies (1.1) on most triangles is close in Hamming distance to some
1More generally, i-cochains are functions from X(i) to a group of coefficients, but in this paper we focus only on 1-cochains.
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strongly satisfiable f̃ ∈ B1. That is, X is a β-coboundary expander if for any f ∈ C1 there exists g ∈ C0

such that
β · dist(δ0g, f) ⩽ P

uvw∈X(2)
[f(vw)f(uv) = f(uw)] . (1.2)

This closeness implies that there exist assignments {h1, h2, . . . , hℓ}, that satisfy almost all edges in the unique
games instance corresponding to f .

We note that in some complexes a cochain f might satisfy all triangle equations without being a coboundary.
Such cochains are called 1-cocycles, and denoted by Z1:

Z1 =

{
f :

→
X(1) → Sym(ℓ)

∣∣∣∣ ∀uvw ∈ X(2), f(vw)f(uv) = f(uw)

}
.

By the above, B1 ⊆ Z1 ⊆ C1. The set Z1 of cocycles can be thought of as the set of unique games instances
without local contradictions. If X is a coboundary expander, this in particular implies that for X, B1 = Z1.

Coboundary expansion is a generalization of graph edge expansion to higher dimensions using cohomological
terms, see [KL14]. A similar but equally important notion is cosystolic expansion. X is a β-cosystolic expander
if for any f ∈ C1 that such that on most triangles (1.1) holds, f is close to some f̃ ∈ Z1. If Z1 = B1 this
notion becomes identical to coboundary expansion, but it has other uses even when Z1 , B1.

Cosystolic expansion turns out to be important in the proof of Gromov’s topological overlapping property
[Gro10; KKL14; DKW18], in constructions of locally testable codes and quantum LDPC codes [EKZ20;
Din+22; PK22], and even in proof complexity lower bounds [Din+; HL22]. Furthermore, the main application
that motivates this work is agreement testing that, while formulated in purely combinatorial terms, ends
up being inherently related to cosystolic expansion. The equivalence between coboundary (or cosystolic)
expansion and local testability of the set B1 of coboundaries (or Z1), with respect to the triangle test has
been discovered by [KL14], who studied the case of F2 = Sym(2). The connection was extended to all
Sym(ℓ) (and in fact, for all groups) in [DM22], who showed that this related to the testability of near-covers.

One motivation for the study of coboundary expansion is that local testability can be used as an instrument
for showing existence of a perfect solution to unique games instances, assuming that we are given an instance
that satisfies most of the triangle tests. This idea is important in recent works on agreement testing [DD23a;
BM23a], where a global function is constructed by moving, at a certain stage, from solution to a unique
games instance which is rough but satisfies most of the triangle tests, to a perfect solution.

1.3 Our contribution
The focus of this work is proving lower bounds for swap coboundary expansion. Our main result is a
sub-exponential lower bound for the swap coboundary expansion of the spherical building (see Theorem 1.4
and Theorem 1.5 below). First, we show that for a generic local spectral expander X, the coboundary
expansion of FrX is at least exponential in that of X.

Theorem 1.3. Let X be a d-dimensional simplicial complex. Let r be such that 7r + 7 ⩽ d. Assume that
for every −1 ⩽ m ⩽ r and s ∈ X(m), h1(Xs) ⩾ β and that X is a λ-two sided local spectral expander for
λ < 1

2r2 , then X is a (βO(r), r)-swap coboundary expander.

We do not know whether this theorem is tight in general. We show in Section 7 that the faces complex of
the complete complex over ⩾ 6r vertices has constant coboundary expansion. We will soon move to discuss
the spherical building, for which we show better bounds. It is interesting to understand the relation between
h1(X) and h1(FrX) in greater detail.

Our main result is a lower bound for a specific family of complexes, called the spherical buildings, for which
we show a sub-exponential lower bound. The SLn+1(Fq)-spherical building is a simplicial complex S whose
vertices are all non-trivial subspaces of Fn+1

q and whose higher dimensional faces are all {w0, w1, . . . , wm}
that form a flag, that is, that there is an ordering so that w0 ⊂ w1 ⊂ · · · ⊂ wm. We prove,
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Theorem 1.4. Let d, n be integers such that n > d5. There is some q0 = q0(n) such that the following holds.
Let q > q0 be any prime power. Let S be the SLn+1(Fq)-spherical building. Then h1(FrS) ⩾ exp(O(

√
d)),

namely S has (exp(−O(
√

d)), d)-swap coboundary expansion.

As a direct consequence of the above, via a local-to-global theorem by [EK16; DD23b], we derive a similar
theorem for any complex X whose vertex-links are isomorphic to spherical buildings. This includes the
famous Ramanujan complexes of [LSV05b; LSV05a] which are bounded-degree families of high dimensional
expanders.

Theorem 1.5. Let d, n be integers such that n > d5. There is some q0 = q0(n) such that the following holds.
Let q > q0 be any prime power. Let X be a complex whose vertex links are isomorphic to the SLn(Fq)-spherical
building. Then X has (exp(−O(

√
d)), d)-swap cosystolic expansion.

There are two parts to this paper. The first part contains general tools for lower bounding coboundary
expansion. These are developed for our main theorem, and may be of independent interest. The second part
applies these tools towards proving Theorem 1.4, and then deriving Theorem 1.5.

The proof of Theorem 1.4 relies on two reductions. First, we use a color-restriction technique showing
that we can decompose the faces complex of the spherical building into sub-complexes. We show that if
most of these sub-complexes are coboundary expanders then so is the complex itself. This extends a similar
idea from [DD23b]. These complexes are “partite”, and only consider flags with spaces in certain, specified,
dimensions. This allows us to move into an analysis of a simpler complex instead of considering the whole
complex at once.

After reducing to colors, we have a second reduction. Instead of analyzing the coboundary expansion of the
sub-complex directly, we lower bound the coboundary expansion in its links. Then we rely on a local-to-global
theorem in [DD23b] to infer coboundary expansion of the sub-complex itself. This local-to-global argument
follows the argument that was first discovered in [KKL14] and [EK16].

Finally, after these reductions it remains to lower bound the links of the sub-complexes. The reason we
reduced to links in the first place is because the links have a similar structure to a faces complex of much
lower dimension (i.e of flags of length

√
d instead of d). This allows us to use an inductive approach. This

induction gives us a lower bound of exp(−Ω(
√

d)). This is instead of a lower bound of exp(−d) which we
would get without considering links. This may seem mild, but this saving is what allows the use of the
swap-coboundary expansion in the applications described below. However, even to prove a lower bound of
exp(−

√
d) on the links turns out to be technically challenging. To do so we need to apply a variety of tools.

Let us describe the tools developed in the first part of the paper. First, we generalize cones to the
non-abelian setting. A main tool for lower bounding coboundary expansion is the cones technique discovered
by [Gro10], and further developed by [LMM16; KM18; KM19; KO21]. We generalize cones on 1-cochains to
non-abelian group coefficients. Previously, when cones were used to bound coboundary expansion, an ad-hoc
proof was needed to deal with the non-abelian case.

Let X be a simplicial complex and for now, let Γ = F2. A cone consists of three parts: a base vertex
v0 ∈ X(0), a set of paths Pu from v0 to u for every u ∈ X(0), and a set of “fillings” Tuw for the cycle
Pu ◦ (u, w) ◦ P −1

w , where P −1
w is the reverse path from w to v0). Here a filling is just a chain (i.e. set

of triangles) so that its F2-boundary is the cycle Pu ◦ (u, w) ◦ P −1
w . See Figure 1 for an illustration. It

was observed in [Gro10], that if X has a transitive symmetry group and there exists a cone such that all
fillings contain few triangles, then X is a coboundary expander. In fact, Gromov generalized this idea to
higher-dimensional coboundary expansion (see [LMM16] for a more formal proof, and [KM19] and [KO21] for
a more general setup).

This technique was generalized from F2 to other abelian groups in a straightforward manner (see [KM18]
for the spherical building and [DD23b] for the general case) but in non-abelian groups these definitions stop
making sense. In this work we generalize the notion of a “filling” so that it will fit the non-abelian setting as
well. Instead of a cochain of triangles, we require Tuw to be a contraction of Pu ◦ (u, w) ◦ P −1

w to the trivial
loop around v0. This contraction is a sequence of loops P1, P2, P3, . . . , Pm such that Pm is the trivial loop,
and every loop differs from the previous one by replacing an edge (u, w) in Pi with two edges (u, v), (v, w) so
that uvw ∈ X(2), or vice versa, i.e. replacing (u, v, w) with (u, w). The diameter of the cone is the maximal
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Figure 1: The cycle Pu ◦ (u, w) ◦ P −1
w and a filling of triangles.

size of such a sequence. See Figure 2 for an example of such a contraction and Section 4 for the formal
definitions. We prove the following lemma.

Lemma 1.6. Let X be a simplicial complex such that Aut(X) is transitive on k-faces. Suppose that there
exists a cone C with diameter R. Then X is a 1

(k+1
3 )·R

-coboundary expander.

This turns out to be the correct definition for generalizing the abelian cones theorem to the non-abelian
setting. Cones constructed in previous works for concrete complexes such as in [LMM16; DD23b] translate to
the non-abelian setting in a straightforward manner.

Another tool is based on an elegant decomposition idea by Gotlib and Kaufman [GK22], which we call the
GK-decomposition. In their work, they analyze a local test on some simplicial complex (which they call the
representation complex). They do so by decomposing it to small pieces, applying a local correction argument
on every piece separately, and finally “patching up” the corrections using some additional properties of the
decomposition. We observe that their proof is actually a proof of coboundary expansion. We abstract and
generalize it to a theorem applicable to other complexes as well (see Theorem 5.4).

Here is the main idea. We consider a simplicial complex X that is a union of many smaller sub-complexes
{Yi}i∈I , each sub-complex is itself a coboundary expander. Given a cochain f ∈ C1(X) such that wt(δf) ≈ 0
our goal is to find some g ∈ C0(X) such that f ≈ δg. We first find local corrections {gi : Yi(0) → Γ}i∈I such
that f |Yi

≈ δgi. A priori, we would like to construct a single g : X(0) → Γ by answering g(v) = gi(v) for
v ∈ Yi. The problem is that if v ∈ Yi(0) ∩ Yj(0), and gi(v) , gj(v) it is not clear how to set g(v).

To model this problem, we consider a graph of intersections. The vertices of this graph are {Yi}i∈I .
The (multi-)edges of this graph are {Yi, Yj}v such that v ∈ Yi ∩ Yj . It turns out that if the sub-complexes
{Yi}i∈I are such that this graph is itself a skeleton of a coboundary expander, then we can lower bound the
coboundary expansion of X. We give a more formal overview and the precise theorem statement in Section 5.

1.4 Motivation: Agreement testing in the low acceptance regime
In this subsection we give a brief exposition to agreement testing, and how it relates to swap cosystolic
expansion, as proven in [DD23a]. We follow the introduction in [DD23a], and point the reader there for a
more complete picture and further motivation.

A function G : [n] → Σ can be specified by a truth table, or, alternatively, by providing its restrictions
G|s1 , G|s2 , . . . for a pre-determined family of subsets s1, s2, . . . ⊂ [n]. Such a representation has built-in
redundancy which potentially can be used for amplifying distances while providing local testability. Let X
be a family of k-element subsets of [n] and let {fs : s → Σ | s ∈ X} be an ensemble of local functions, each
defined over a subset s ⊂ [n]. Is there a global function G : [n] → Σ such that fs = G|s for all s ∈ X ? An
agreement test is a randomized property tester for this question.

One such test is the V-test, that chooses a random pair of sets s1, s2 ∈ X with prescribed intersection
size and accepts if fs1 , fs2 agree on the elements in s1 ∩ s2. We denote the success probability of the test by
Agree({fs}).

There are two regimes of interest, depending on whether we assume that Agree({fs}) = 1 − ε (“high
acceptance”) or Agree({fs}) = ε (“low acceptance”). The former is known to hold for all X which are
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spectral high dimensional expanders, see [DK17; DD19]. The later is well studied in the non-derandomized
setting, where X = ([n]k ), and known as the direct product testing question.

A low acceptance agreement test theorem is a statement as follows:

Agree({fs}) > ε =⇒ ∃G : [n] → Σ, P
s
[fs

0.99
≈ G|s] ⩾ poly(ε). (∗)

Such statements are motivated by PCP questions. A major goal is to find a family X that is as sparse
as possible for which (∗) holds. This is known as derandomized direct product testing. Unlike the high
acceptance regime, the question of whether high dimensional expanders satisfy a statement such as (∗) has
remained open, despite being more interesting for PCP applications.

Two recent works [BM23a; DD23a] have studied low acceptance agreement tests on high dimensional
expanders, and have given sufficient conditions (in [BM23a] the condition is also necessary) for an agreement
theorem to hold. In this work we prove that the condition from [DD23a] is satisfied for spherical buildings and
for LSV complexes, thus deriving unconditional agreement theorems for these complexes in the low acceptance
regime. We describe this now in slightly more detail. The main result in [DD23a, Theorem 1.3] shows that
whenever X is a swap-cosystolic expander, a meaningful agreement theorem follows.

First, if we assume that X is a swap coboundary expander, then we can deduce (∗). By combining
[DD23a, Theorem 1.3] with our Theorem 1.4 we derive the following corollary:

Corollary 1.7 (Agreement for spherical buildings). Let ε > 0, and let k > exp(poly(1/ε)) be an integer.
Let d > k be sufficiently large and let X be a d-dimensional spherical building that is a 1

d2 high dimensional
expander. For any ensemble {fs}s∈X(k) that satisfies Agree({fs}) > ε, there must exist a global function
G : X(0) → Σ, such that

P
s
[fs

0.99
= G|s] ⩾ poly(ε).

Next, when X is a swap cosystolic expander (which is weaker than swap coboundary expander), [DD23a,
Theorem 1.4] shows that it satisfies an agreement theorem that is (necessarily) weaker than (∗) but still
meaningful. By combining this with our Theorem 1.5 we get:

Corollary 1.8 (Agreement for LSV complexes). Let k ∈ N, and let ε > Ω(1/ log k). Let d > k be sufficienty
large and let X be a d-dimensional λ = 1

d2 high dimensional expander, whose vertex links are spherical
buildings.

For any ensemble {fs}s∈X(k) that satisfies Agree({fs}) > ε, there must exist a poly(1/ε)-cover ρ : Y ↠ X,
and a global function G : Y (0) → Σ, such that

P
s
[fs is explained by G] ⩾ poly(ε).

Here the phrase “fs is explained by G” informally means that G|s′ ≈ fs for some s′ ∈ Y that covers s.
More formally, the covering map ρ gives a bijection from s′ ∈ Y (k) to s ∈ X(k), and by G|s′ ≈ fs we mean
that for (almost) every v ∈ s′, G(v) = fs(ρ(v)).

We do not go into the details of covers of complexes, as these are described in depth in [DD23a]. We only
point out that moving to a cover Y of X is unavoidable, as is shown in [DD23a].

1.5 Related work
Coboundary and Cosystolic expansion was defined by Linial, Meshulam and Wallach [LM06], [MW09], and
indpendently by Gromov [Gro10].

Kaufman, Kazhdan and Lubotzky [KKL14] introduced an elegant local to global argument for proving
cosystolic expansion of 1-chains in the bounded-degree Ramanujan complexes of [LSV05b; LSV05a]. This
was significantly extended by Evra and Kaufman [EK16] to cosystolic expansion in all dimensions, thereby
resolving Gromov’s conjecture about existence of bounded degree simplicial complexes with the topological
overlapping property in all dimensions. Kaufman and Mass [KM18; KM21] generalized the work of Evra and
Kaufman from F2 to all other groups as well, and used this to construct lattices with good distance.

Following ideas that appeared implicitly in Gromov’s work, Lubotzky Mozes and Meshulam analyzed the
expansion of many “building like” complexes [LMM16]. Kozlov and Meshulam [KM19] abstracted the main
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lower bound in [LMM16] to the definition of cones (which they call chain homotopies), in order to analyze
the coboundary expansion of geometric lattices and other complexes. Their work also connects coboundary
expansion to other homological notions, and gives an upper bound to the coboundary expansion of bounded
degree simplicial complexes. In [KO21], Kaufman and Oppenheim defined the notion of cones in order to
analyze the cosystolic expansion of their high dimensional expanders (see [KO18]). Techniques for lower
bounding coboundary expansion were further developed in [DD23b], removing dependencies on degree and
dimension that appeared in some previous works.

Dinur and Meshulam observed the connection between cosystolic expansion and cover-stability. Later on,
this connection was used by [GK22] to analyze the problem of list-agreement on coboundary expanders. A
companion paper [DD23a] along with independent work by [BM23a], analyzes agreement tests on sparse high
dimensional expanders as discussed above.

1.6 Open questions
We give a collection of tools for lower bounding coboundary expansion. Our main application is a lower
bound of exp(−O(

√
d)) on the coboundary expansion of the faces complex FdS of the spherical building.

Our proof is involved, yet it yields a modest bound only. Therefore, this gives rise to three questions. What
is the tightest bound for the coboundary expansion of FdS?

We also give a general bound for the coboundary expansion of the faces complex FdX for a given complex
X (provided that it and ints links are coboundary expanders)This bound decays exponentially with d. What
is the correct bound in this case?

As an intermediate step towards the general case, we suggest analyzing the faces complex of KO complexes
(high dimensional expanders constructed by [KO18]). Kaufman and Oppenheim showed these complexes are
cosystolic expanders and that their links are coboundary expanders [KO21]. Can one give a similar analysis
to their faces complex? A bound that is better than inverse-exponential could lead to new sparse agreement
expanders via the theorem in [DD23a].

In this work we also analyze partite tensor products of simplicial complexes as defined in [FI20]. We show
that a partite tensor product of a k-partite β-coboundary expander with a complete k-partite complex is also
a β · exp(−O(k))-coboundary expander. It is interesting to improve and generalize this result. Is it true that
if two k-partite complexes X and Y are βX - and βY -coboundary expanders (respectively) then their partite
tensor product is a βXβY coboundary expander?

Generalized Kneser graphs

We had mentioned above that the faces complex may be viewed as a generalization of the Kneser graph.
Indeed the Kneser graph KGn,k on ground set n is precisely the faces complex of the complete complex on n

vertices, which we later denote by Fk−1∆n. This is a very well-studied object in combinatorics, and it would
be interesing to see which of its properties continue to hold when the complete complex ∆n is replaced by a
high dimensional expander X.

2 Preliminaries

2.1 Probability distributions
The following definition quantifies absolute continuity of probability measures.

Definition 2.1. Let (P , Q) be an (ordered) pair of probability distributions supported on a set Ω. We say
that (P , Q) are (A, α)-smooth if for every v ∈ A it holds that α PP [v] ⩽ PQ [v]. We say that (P , Q) are
α-smooth if they are (Ω, α)-smooth.

The following property is easy to verify from the definitions. We omit its proof.
Claim 2.1.1. Let (P , Q) be (A, α) smooth. Then for every B ⊆ A it holds that α PP [B] ⩽ PQ [B]. □
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2.2 Expander graphs
Let G = (V , E) be a graph and let µ : E → (0, 1] be a probability distribution. The distribution on the
edges extends naturally to a distribution on the vertices where probability of a vertex is µ(v) = 1

2
∑

e∋v µ(e)
(we abuse notation and denote this distribution µ as well). Let A be the normalized adjacency operator.
This operator takes as input f : V → R and outputs Af : V → R, Af(v) = 1

2µ(v)

∑
u∼v µ(uv)f(u). This

operator is self adjoint with respect to the inner product on ℓ2(V ) = {f : V → R} given by

⟨f , g⟩ =
∑
v∈V

µ(v)f(v)g(v).

We denote by λ(A) to be the (normalized) second largest eigenvalue of the adjacency operator of the
graph X⩽1

s . We denote by |λ|(Xs) to be the (normalized) second largest eigenvalue of the adjacency operator
of the graph X⩽1

s in absolute norm. We say that G is a λ-one sided spectral expander if for every λ(A) ⩽ λ
and say that G is a λ-two sided spectral expander if |λ|(A) ⩽ λ.

We say that G is an η-edge expander if for every subset S ⊆ V , S , ∅, V it holds that

P
uv∈E

[u ∈ S, v ∈ V \ S] ⩾ η P [S]P [V \ S] .

The following claim is well known so we omit its proof.
Claim 2.2.1. Let X be a λ-one sided spectral expander, then X is a 1 − λ-edge expander. □

Let G = (V , E, µ) be as above. Let H = (V , E′) be a subgraph of G. The distribution associated with H

is µH : E′ → (0, 1], µH(e) := µ(e)∑
e′∈E′ µ(e′)

. We say that H is has the same stationary distribution for G if

for every vertex v ∈ V , µH(v) = µ(v).
Claim 2.2.2. Let G = (V , E) with distribution µ and let H = (V , E′) be a subgraph of G that has the same
stationary distribution. Assume that P [H ] := P [e ∈ E′] ⩾ α and that H is a λ-one sided spectral expander.
Then G is a 1 − α(1 − λ)-spectral expander.

We prove this claim in Appendix A.

2.2.1 Graph homomorphisms and expansion

Let G1 = (V1, E1, µ1) and G2 = (V2, E2, µ2) be two weighted graphs. A homomorphism is a function
ρ : V1 → V2 such that for every e2 ∈ E2,

µ(e2) =
∑

e1∈E1 :ρ(e1)=e2

µ(e1).

It can be easily verified that this implies that ρ(e1) ∈ E2 for any e1 ∈ E1. For every edge e2 = {v, u} ∈ E2
one can define the bipartite Ge2

1 whose vertices are L = ρ−1(v), R = ρ−1(u) and edges are ρ−1(e2). The
distribution over Ge2

1 is

µe2(e) =
µ(e)∑

e∈ρ−1(e2)
µ(e)

.

The following claim is well known. See e.g. [Dik22] for a proof.
Claim 2.2.3. Let λ ∈ [0, 1). Let G1 = (V1, E1, µ1) and G2 = (V2, E2, µ2) be two weighted graphs. Let
ρ : V1 → V2 be a homomorphism. Assume that |λ|(G2) ⩽ λ and that for every e2 ∈ E2 λ(Ge2

1 ) ⩽ λ. Then
λ(G1) ⩽ λ.

2.3 Majority and expansion
It is well known that in expander graphs, local agreement implies agreement with a majority function. Let
G = (V , E) be a graph and let g : V → {1, 2, . . . , n} be some function. Denote by Si = {v ∈ V | g(v) = i}.
The majority assignment maj(g) ∈ {1, 2, . . . , n} is the i such that P [Si] is largest (ties broken arbitrarily).

Observe that if Pv [g(v) = maj(g)] ≈ 1 then for most edges uv ∈ E, it holds that g(v) = g(u) (since
with high probability they are both equal to maj(g). In expander graphs a converse to this statement also
holds. That is, if for most edges g(v) = g(u) then Pv [g(v) = maj(g)] ≈ 1.
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Claim 2.3.1. Let G be an η-edge expander. Let S1, S2, . . . , Sm be a partition of the vertices of V as above.
Assume that Puv∈E [∃i u ∈ Si and v < Si] ⩽ ε. Then there exists i such that P [Si] ⩾ 1 − ε

η .
Stated differently, for every g : V → {1, 2, . . . , n}, Pv [g(v) , maj(g)] ⩽ Puv∈E [g(u),g(v)]

η .
We prove this claim in Appendix A.

2.4 Local spectral expanders
Most of the definitions in this subsection are standard.

A pure d-dimensional simplicial complex X is a hypergraph that consists of an arbitrary collection of sets
of size (d + 1) together with all their subsets. The sets of size i + 1 in X are denoted by X(i). The vertices
of X are denoted by X(0) (we identify between a vertex v and its singleton {v}). We will sometimes omit
set brackets and write for example uvw ∈ X(2) instead of {u, v, w} ∈ X(2). As a convention X(−1) = {∅}.
Let X be a d-dimensional simplicial complex. Let k ⩽ d. We denote the set of oriented k-faces in X by
→
X(k) = {(v0, v1, ..., vk) | {v0, v1, ..., vk} ∈ X(k)}.

For k ⩽ d we denote by X⩽k =
⋃k

j=−1 X(j) the k-skeleton of X. When k = 1 we call this complex the
underlying graph of X, since it consists of the vertices and edges in X (as well as the empty face).

A clique complex is a simplicial complex such that if s ⊆ X(0) has that if s is a clique, that is, for every
two vertices v, u ∈ s the edge vu ∈ X(1), then s ∈ X.

For a simplicial complex X we denote by diam(X) the diameter of the underlying graph.

Partite Complexes

A (d + 1)-partite d-dimensional simplicial complex is a generalization of a bipartite graph. It is a complex X
such that one can decompose X(0) = A0 ·∪ A1 ·∪ · · · ·∪ Ad such that for every s ∈ X(d) and i ∈ [d] it holds
that |s ∩ Ai| = 1. The color of a vertex col(v) = i such that v ∈ Ai. More generally, the color of a face s is
c = col(s) = {col(v) | v ∈ s}. We denote by X [c] the set of faces of color c in X, and for a singleton {i} we
sometimes write X [i] instead of X [{i}].

We also denote by Xc, for c ⊂ [d + 1], the complex induced on vertices whose colors are in c.

Probability over simplicial complexes

Let X be a simplicial complex and let Pd : X(d) → (0, 1] be a density function on X(d) (that is,∑
s∈X(d) Pd(s) = 1). This density function induces densities on lower level faces Pk : X(k) → (0, 1]

by Pk(t) =
1

(d+1
k+1)

∑
s∈X(d),s⊃t Pd(s). We can also define a probability over directed faces, where we choose

an ordering uniformly at random. Namely, for s ∈
→
X(k), Pk(s) =

1
(k+1)! Pk(set(s)) (where set(s) is the set

of vertices participating in s). When clear from the context, we omit the level of the faces, and just write
P[T ] or Pt∈X(k) [T ] for a set T ⊆ X(k).

Links and local spectral expansion

Let X be a d-dimensional simplicial complex and let s ∈ X be a face. The link of s is the d′ = d − |s|-
dimensional complex

Xs = {t \ s | t ∈ X, t ⊇ s} .

For a simplicial complex X with a measure Pd : X(d) → (0, 1], the induced measure on Pd′,Xs
: Xs(d − |s|) →

(0, 1] is

P
d′,Xs

(t \ s) =
Pd(t)∑

t′⊇s Pd(t′)
.

We denote by λ(Xs) to be the (normalized) second largest eigenvalue of the adjacency operator of the
graph X⩽1

s . We denote by |λ|(Xs) to be the (normalized) second largest eigenvalue of the adjacency operator
of the graph X⩽1

s in absolute norm.
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Definition 2.2 (local spectral expander). Let X be a d-dimensional simplicial complex and let λ ∈ (0, 1).
We say that X is a λ-one sided local spectral expander if for every s ∈ X⩽d−2 it holds that λ(Xs) ⩽ λ. We
say that X is a λ-two sided local spectral expander if for every s ∈ X⩽d−2 it holds that |λ|(Xs) ⩽ λ.

We stress that this definition includes s = ∅, which also implies that the graph X⩽1 should have a small
second largest eigenvalue.

Walks on local spectral expanders

Let X be a d-dimensional simplicial complex. Let ℓ ⩽ k ⩽ d. The (k, ℓ)-containment graph Gk,ℓ = Gk,ℓ(X)
is the bipartite graph whose vertices are L = X(k), R = X(ℓ) and whose edges are all (t, s) such that t ⊇ s.
The probability of choosing such an edge is as in the complex X.

Theorem 2.3 ([KO20]). Let X be a d-dimensional λ-one sided local spectral expander. Let ℓ ⩽ k ⩽ d. Then
the second largest eigenvalue of Gk,ℓ(X) is upper bounded by λ(Gk,ℓ(X)) ⩽ ℓ+1

k+1 + O(kλ).

A related walk is the swap walk. Let k, ℓ, d be integers such that ℓ + k ⩽ d − 1. The k, ℓ-swap walk
Sk,ℓ = Sk,ℓ(X) is the bipartite graph whose vertices are L = X(k), R = X(ℓ) and whose edges are all (t, s)
such that t ·∪ s ∈ X. The probability of choosing such an edge is the probability of choosing u ∈ X(k + ℓ+ 1)
and then uniformly at random partitioning it to u = t ·∪ s. This walk has been defined and studied
independently by [DD19] and by [AJT19], who bounded its spectral expansion.

Theorem 2.4 ([DD19; AJT19]). Let X be a λ-two sided local spectral expander. Then the second largest
eigenvalue of Sk,ℓ(X) is upper bounded by λ(Sk,ℓ(X)) ⩽ (k + 1)(ℓ + 1)λ.

For a d-partite complex and two disjoint set of colors J1, J2 ⊆ [d] one can also define the colored swap
walk SJ1,J2 as the bipartite graph whose vertices are LX [J1], R = X [J2]. and whose edges are all (s, t) such
that t ·∪ s ∈ X [J1 ·∪ J2]. The probability of choosing this edge is PX [J1 ·∪J2] [t ·∪ s].

Theorem 2.5 ([DD19]). Let X be a d-partite λ-one sided local spectral expander. Then the second largest
eigenvalue of SJ1,J2(X) is upper bounded by λ(SJ1,J2(X)) ⩽ |J1| · |J2| · λ.

We note that this theorem also make sense even when J1 = {i}, J2 = {i′}, and the walk is between X [i]
and X [i′] that are subsets of the vertices.

We will also need the following claim on the (uncolored) swap walk on partite simplicial complexes. We
prove this claim in Appendix A.
Claim 2.4.1. Let X be a d-partite complex such that the colored swap walk is a λ-one sided spectral expander.
Let G be the graph whose vertices are X(0) and whose edges are obtained by taking two steps in the swap

walk S0,j for j ⩽ d − 2. Then λ(G) ⩽
1+max(λ, 1

d−1 )

2 .

Partitification

Let X be an n-dimensional simplicial complex and let ℓ ⩽ n. The ℓ-partitification of X is the following
ℓ-partite complex.

X†ℓ(0) = X(0) × [ℓ].

X†ℓ(ℓ − 1) = {{(v1, π(1)), (v2, π(2)), . . . , (vℓ, π(ℓ))} | {v1, v2 . . . , vℓ} ∈ X(ℓ − 1), π ∈ Sym(ℓ)} .

We choose a top-level face by choosing s ∈ X(ℓ − 1) and a uniform at random permutation (and inde-
pendent) π ∈ Sym(ℓ). As one observes, this is an ℓ-partite complex where X [i] = X(0) × {i}. For
a set s = {(v0, i0), (v1, i1), . . . , (vj , ij)} ∈ X†ℓ(j) we denote by p1(s) = {v0, v1, . . . , vj} ∈ X(j) and
p2(s) = {i0, i1, . . . , ij}.

The following claim is easy to verify.
Claim 2.4.2. Let X be an n-dimensional simplicial complex and let ℓ ⩽ n. Let s ∈ X(j) for j ⩽ ℓ − 3. Then
X†ℓ

s � Xp1(s) × Kℓ−j−1 as graphs where Kℓ−j−1 is the complete graph over ℓ − j − 1 elements.

Sketch. Observe that the choice of edges is by choosing an edge {u, v} ∈ Xs(1) and i0 , i1 in [ℓ] \ p2(s). □
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The following is easily derived from the eigenvalues of products with the complete graph.

Corollary 2.6. If X is a λ-two sided local spectral expander then X†ℓ is a λ-one sided local spectral expander.

Remark 2.7. One can define an unordered tensor product of ℓ-dimensional complexes via Z = X⊗̃Y such
that Z(j) =

{
{(v0, u0), (v1, u1), . . . , (vj , uj)}

∣∣ {v0, v1, . . . , vj} ∈ X(j), {u0, u1, . . . , uj} ∈ Y (j)
}

. With this
definition the partitification is in fact the unordered tensor product of X and the complete complex over
ℓ-vertices. A similar claim to Claim 2.4.2 can be proven in the general case. We will not explore this
construction, and we will not refer to it later in the paper so that we won’t be confused with the ordered tensor
defined in the section. The coboundary expansion and other properties of this construction are interesting
but left to future work.

The spherical building

Let d ∈ N and q be a prime power.

Definition 2.8. The spherical building (sometimes called the SLd(Fq)-spherical building), is the complex
X whose vertices are all non-trivial linear subspaces of Fd

q . It’s higher dimensional faces are all flags{
W0 ⊆ W1 ⊆ · · · ⊆ Wm

∣∣ W0, W1, . . . , Wm ⊆ Fd
q

}
.

This complex is (d − 2)-dimensional.
Claim 2.4.3 ([EK16], [DD19] for the color restriction). Let X be a SLd(Fq)-spherical building. Then X is a
O( 1√

q )-one sided local spectral expander. Moreover, X⩽k is a max{O( 1√
q ),

1
d−k }-two sided local spectral

expander. The same holds for XJ for all subsets J ⊆ [d].

2.5 Coboundary and Cosystolic Expansion
In this paper we focus on coboundary and cosystolic expansion on 1-cochains, with respect to non-abelian
coefficients. For a more thorough introduction, we refer the reader to [DD23b].

Let X be a d-dimensional simplicial complex for d ⩾ 2 and let Γ be any group. For i = −1, 0 let
Ci(X, Γ) = {f : X(i) → Γ}. We sometimes identify C−1(X, Γ) � Γ. For i = 1, 2 let

C1(X, Γ) =
{

f :
→
X(1) → Γ

∣∣∣∣ f(u, v) = f(v, u)−1
}

and

C2(X, Γ) =
{

f :
→
X(i) → Γ

∣∣∣∣ ∀π ∈ Sym(3), (v0, v1, v2) ∈
→
X(2) f(vπ(0), vπ(1), vπ(2)) = f(v0, v1, v2)

sign(π)
}

.

be the spaces of so-called asymmetric functions on edges and triangles. For i = −1, 0, 1 we define functions
δi : Ci(X, Γ) → Ci+1(X, Γ) by

1. δ−1 : C−1(X, Γ) → C0(X, Γ) is δ−1h(v) = h(∅).

2. δ0 : C0(X, Γ) → C1(X, Γ) is δ0h(v, u) = h(v)h(u)−1.

3. δ1 : C1(X, Γ) → C2(X, Γ) is δ1h(v, u, w) = h(v, u)h(u, w)h(w, v).

Let Id = Idi ∈ Ci(X, Γ) be the function that always outputs the identity element. It is easy to check that
δi+1 ◦ δih ≡ Idi+2 for all i = −1, 0 and h ∈ Ci(X, Γ). Thus we denote by

Zi(X, Γ) = ker δi ⊆ Ci(X, Γ),

Bi(X, Γ) = Imδi−1 ⊆ Ci(X, Γ),

and have that Bi(X, Γ) ⊆ Zi(X, Γ).
Henceforth, when the dimension i of the cochain f is clear from the context we denote δif by δf .
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Coboundary and cosystolic expansion is a property testing notion so for this we need a notion of distance.
Let f , g ∈ Ci(X, Γ). Then

dist(f , g) = P

s∈
→
X(i)

[f(s) , g(s)] . (2.1)

We also denote the weight of the function wt(f) = dist(f , Id).
We are ready to define coboundary and cosystolic expansion.

Definition 2.9 (Cosystolic expansion). Let X be a d-dimensional simplicial complex for d ⩾ 2. Let β > 0.
We say that X is a β-cosystolic expander if for every group Γ, and every f ∈ C1(X, Γ) there exists some
g ∈ Z1(X, Γ) such that

β dist(f , g) ⩽ wt(δf). (2.2)

In this case we denote h1(X) ⩾ β.

Definition 2.10 (Coboundary expansion). Let X be a d-dimensional simplicial complex for d ⩾ 2. Let β > 0.
We say that X is a β-coboundary expander if it is a β-cosystolic expander and in addition Z1(X, Γ) = B1(X, Γ)
for every group Γ.

Another way of phrasing coboundary expansion is the following. If X is a β-coboundary expander, then
it holds that for every f ∈ C1(X, Γ) there exists a function h ∈ C0(X, Γ) such that

β dist(f , δh) ⩽ wt(δf).

Although this definition of cosystolic and coboundary expansion related to such expansion over every
group Γ, one can also consider cosystolic expansion with respect to a specific group Γ. All the results in this
paper apply to all groups simultaneously, so we do not make this distinction.

Dinur and Meshulam already observed that cosystolic expansion (and coboundary expansion) is closely in
fact equivalent testability of covers, which they call cover stability [DM22].

2.6 The faces complex
Definition 2.11. Let X be a d-dimensional simplicial complex. Let r ⩽ d. We denote
by FrX the simplicial complex whose vertices are FrX(0) = X(r) and whose faces are all{

{s0, s1, ..., sj}
∣∣ s0 ·∪ s1 ·∪ · · · ·∪ sj ∈ X((j + 1)(r + 1) − 1)

}
.

It is easy to verify that this complex is
(

⌊d+1
r+1 ⌋ − 1

)
-dimensional and that if X is a clique complex then

so is FrX.
Let X be a d-dimensional simplicial complex, and let r < d. The distribution on the top-level faces of

FrX is given by the following. Let m =
(

⌊d+1
r+1 ⌋ − 1

)
1. Sample a d-face t = {v0, v1, . . . , vd} ∈ X(d).

2. Sample s0, s1, . . . , sm ⊆ t such that |si| = r + 1, si ∩ sj = ∅ and output {s0, s1, . . . , sm}.

It is convenient to view the faces complex as a subcomplex of the following complex.

Definition 2.12 (Generalized faces complex). Let X be a simplicial complex. The generalized faces complex,
denoted FX, has a vertex for every w ∈ X, and a face s = {w0, . . . , wi} ∈ FX iff ·∪s := w0 ·∪ w1 ·∪ · · · ·∪ wi ∈ X.

This complex is not pure so we do not define a measure over it. One can readily verify that links of the
faces complex correspond to faces complexes of links in the original complex. That is,
Claim 2.6.1. Let s ∈ FX. Then FXs = F (X∪s) where ∪s =

⋃
t∈s t. The same holds for FrXs = F r(X∪s).

□

We are therefore justified to look at generalized links of the form FX∪s,

Definition 2.13 (Generalized Links). Let w ∈ X. We denote by FXw = F (Xw). We also denote by
FrXw = FrX ∩ FXw. Note that this is not necessarily a proper link of FrX.
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2.6.1 Colors of a faces complex

Definition 2.14 (Simplicial homomorphism). Let X, Y be two simplicial complexes. A map φ : X → Y
is called a simplicial homomorphism if φ : X(0) → Y (0) is onto and for every s = {v0, . . . , vi} ∈ X(i),
φ(s) = {φ(v0), . . . , φ(vi)} ∈ Y (i).

Claim 2.6.2. Let φ : X → Y be a simplicial homomorphism. Then there is a natural homomorphism
φ : FX → FY given by φ({s0, . . . , si}) = {φ(s0), . . . , φ(si)}.

Proof. Suppose s = {s0, . . . , si} ∈ FX(i). By definition this means that ·∪s ∈ X so φ( ·∪s) ∈ Y . But
φ( ·∪s) = φ(s0 ·∪ · · · ·∪ si) = φ(s0) ·∪ · · · ·∪ φ(si) (because for a simplicial homomorphism φ : X → Y whenever
a ·∪ b ∈ X, φ(a ·∪ b) = φ(a) ·∪ φ(b) ∈ Y ). Thus {φ(s0), . . . , φ(si)} ∈ Y . □

Let Y = ∆n be the complete complex on n vertices. Recall the definition of a partite complex and observe
that X is n-partite if and only if there is a homomorphism col : X → ∆n.

We say that a complex is n colorable if its underlying graph is n colorable, namely one can partition the
vertices into n color sets such that every edge crosses between colors.
Claim 2.6.3. Let X be an n-colorable complex. Then FrX is ( n

r+1)-colorable.
We denote the set of colors of FrX by C = Fr∆(0) (supressing n from the notation). This is the set of all

subsets of [n] of size r + 1.
Fix a set J ⊂ ∆n, namely J = {c1, . . . , cm} and cj ⊂ [n] are pairwise disjoint. Let FJX =

{s ∈ FX | col(s) ⊆ J} be the sub-complex of FX whose vertex colors are in J , so FJX(0) =
⋃m

j=1 X [cj ].
We will be particularly interested in the case where J ∈ Fr∆, namely, J consists of pairwise disjoint subsets.
In this case FJX is |J |-partite and |J | − 1 dimensional. We abuse notation in this section allowing multiple
cj ’s to be empty sets. In this case X [cj ] are copies of {∅}, and every empty set set is in all top level faces of
FJX.

The measure induced on the top level faces of FJX is the one obtained by sampling t ∈ X [∪J ] and
partitioning it to t = s1 ·∪ s2 ·∪ · · · ·∪ sm such that si ∈ X [ci].

Finally, throughout the paper we use the following notation. Let J ′, J ⊆ F∆ We write J ′ ⩽ J , if
J = {c1, c2, . . . , cm} and J ′ = {c′

1, . . . , c′
m} where c′

j ⊆ cj .

2.7 Tools from [DD23b]
Theorem 2.15 ([DD23b, Theorem 1.2]). Let β, λ > 0 and let k > 0 be an integer. Let X be a d-dimensional
simplicial complex for d ⩾ k + 2 and assume that X is a λ-one-sided local spectral expander. Let Γ be any
group. Assume that for every vertex v ∈ X(0), Xv is a coboundary expander and that h1(Xv) ⩾ β. Then

h1(X) ⩾
(1 − λ)β

24 − eλ.

Here e ≈ 2.71 is Euler’s number.

Theorem 2.16 ([DD23b, Theorem 1.3]). Let ℓ, d be integers so that 3 ⩽ ℓ ⩽ d and let β, p, λ ∈ (0, 1]. Let Γ
be some group. Let X be a d-partite simplicial complex so that

P
F ∈([d]ℓ )

[
XF is a β-coboundary expander and ∀s ∈ X(0) XF

s is a λ-spectral expander
]
⩾ p.

Then X is a coboundary expander with h1(X) ⩾ p(1−λ)β
6e . Here e ≈ 2.71 is Euler’s number.

Remark 2.17.

1. Both theorems are adapted from the general case to the special case of 1-cochains. In addition, both
statements use the fact that the notion of “coboundary expansion on 0-cochains“ is equivalent to
spectral expansion. See [DD23b] for more details.

2. Theorem 2.16 is proven in [DD23b] assuming that the spectral expansion of the graph is 1 − β. This
assumption is not needed in the proof; following the same steps with a separate parameter λ gives us a
bound of h1(X) ⩾ p(1−λ)β

6e .
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2.8 Some simple coboundary expanders
Finally, we will need to make use of the coboundary expansion of some simple simplicial complexes. The
first type of complex is what we call a cone of a complex (not to be confused with the non-abelian cones in
Section 4).

Definition 2.18 (Cone of a complex). Let X be a k-partite simplicial complex. We denote by X∗ to be the
(k + 1)-partite complex where X∗(0) = X(0) ·∪ {v∗} and such that X∗(k) = {s ·∪ {v∗} | s ∈ X(k − 1)}. We
identify X [j] = X∗[j] for every j = 0, 1, ..., k − 1 and X∗[k] = {v∗}.

Claim 2.8.1. Let X be a k-partite simplicial complex for k ⩾ 2. Then h1(X∗) ⩾ k+1
3(k−1) ⩾

1
3 .

This claim is proven in Appendix A.

Definition 2.19 (Complete partite complex). Let n1, n2, ..., nk > 0 be integers. The (n1, n2, ..., nk)-complete
partite complex Kn1,n2,...,nk

is a k-partite complex whose vertices in each part are Kn1,n2,...,nk
[j] = [nj ]. The

top level faces are all possible s = {v1, v2, . . . , vk} such that vi ∈ Kn1,n2,...,nk
[i], for each i ∈ [k]

Definition 2.20 (Partite tensor). Let X, Y be two k-partite simplicial complexes. Their (partite) tensor
product X ⊗ Y is the simplicial complex whose vertices are (X ⊗ Y )(0) =

⋃k−1
i=0 X [i] × Y [i]. The top

level faces are all {(u0, v0), ..., (uk−1, vk−1)} such that {u0, ..., uk−1} ∈ X(k), {v0, ..., vk−1} ∈ Y (k). The
distribution over top level faces is by independently choosing {u0, ..., uk−1} ∈ X(k), {v0, ..., vk−1} ∈ Y (k),
and then pairing them by color.

This operation on simplicial complexes was defined by [FI20] which also observed that a link of a (k − 2)-
dimensional face {(u0, v0), ..., (uk−3, vk−3)} is the bipartite tensor product X{u0,u1,...,uk−3} ⊗ Y{v0,v1,...,vk−3}.
In particular, when X, Y are λ-one sided local spectral expanders, then so is X ⊗ Y .
Claim 2.8.2. Let k ⩾ 5. Let X be a k-partite simplicial complex, such that h1(X) ⩾ β. Assume that the
colored swap walk between vertices to triangles is an η-spectral expander. Then Y = X ⊗ Kn1,n2,...,nk

is a
coboundary expander and h1(Y ) ⩾ (1 − O(η)) exp(−O(ℓ))β where ℓ = |{i ∈ [k] | ni > 1}|.

This claim is proven in Appendix A.

Corollary 2.21. Let X be a k-partite simplicial complex, for k ⩾ 5. Assume that for every s ∈ X [{0, 1, . . . , k −
2}] and every v ∈ X [k − 1], s ·∪ {v} ∈ X(k − 1). Then h1(X) = Ω(1).

Proof. Let |X [k − 1]| = nk−1. By definition we can write X � (X [k−1])∗ ⊗ K1,1,...,1,nk−1 and use Claim 2.8.1
and Claim 2.8.2 to obtain the corollary. □

We will also need the following two claims that show that (in the cases we care about) the coboundary
expansion of the complex and its partitification are the same up to constant factors. These are also proven in
Appendix A.
Claim 2.8.3. Let X be a simplicial complex Then h1(X) = Ω(h1(X†ℓ)).
Claim 2.8.4. Let X be a λ-two sided spectral expander of dimension at least 5 and let ℓ ⩾ 7. Then
h1(X†ℓ) = Ω(h1(X)).

3 Unique games and coboundary expanders
In this section we draw out the connection between cochains and coboundaries to unique games instances
and satisfiable instances. For simplicity we assume that all groups in this section are finite.

Let X be a simplicial complex and let Γ be a group. The set C1(X, Γ) is the set of cochains f :
→
X(1) → Γ

so that f(uv) = f(vu)−1.
Suppose that Σ is a set such that Γ acts on Σ (i.e., Γ is isomorphic to a subgroup of Sym(Σ)). One can

define a unique games instance U on X whose alphabet is Σ. The constraints on the edges are πuv = f(uv),
namely, πuv(σ) = f(uv).σ via the action of Γ on Σ. We recall that by Cayley’s theorem, every group Γ
acts on itself by left multiplication, so without loss of generality there is always such a set Σ. In the other
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direction, one can also verify that every unique games instance with alphabet [n] also induces a cochain
whose group coefficients are Γ = Sym(n).

Fix a unique game instance U . An assignment is a function h : V → Σ. Its value with respect to U is

V al(U , h) = P
uv∈E

[πvu(h(u)) = h(v)] .

The value of the instance U is
V al(U) = max

h:V →Σ
V al(U , h).

If V al(U , h) = 1 we say that h satisfies U . If U has a satisfying assignment we say that U is satisfiable.
It turns out that coboundaries f ∈ B1(X, Γ) correspond to unique games instances that are satisfiable in

a strong sense, which we now define.

Definition 3.1 (Strongly satisfiable). A unique games instance U over an alphabet Σ is strongly satisfiable
if there exist satisfying assignments H = {hσ | σ ∈ Σ} so that for every vertex v ∈ X(0) and σ ∈ Σ it holds
that

{hσ(v)}σ∈Σ = Σ. (3.1)

Note that for a fixed v ∈ X(0), (3.1) holds if and only if the mapping σ 7→ hσ(v) is a permutation.
As mentioned in the introduction, not all satisfiable instances of unique games are strongly satisfiable.

However, the two are equivalent for example for the well-studied class of affine linear unique games, first
studied in [Kho+07].

3.1 Coboundaries are strongly satisfiable instances
In this subsection we show that coboundaries are equivalent to unique games that are strongly satisfiable.
Recall that an action of a group Γ on a set Σ is called faithful if every pair of distinct elements g, g′ ∈ Γ give
rise to distinct permutations on Σ.

Lemma 3.2. Let X be a connected simplicial complex and let Γ be any finite group with an action on a set
Σ, ϕ : Γ → Sym(Σ). Let f ∈ C1(X, Γ) and let U be the unique games instance that f induces over Σ. Then

1. If f ∈ B1(X, Γ) then U is strongly satisfiable.

2. If U is strongly satisfiable then ϕ(f) ∈ B1(X, ϕ(Γ)), namely, f = δg for some g ∈ C0(X, ϕ(Γ)).
Moreover, if ϕ is faithful then f ∈ B1(X, Γ).

Proof of Lemma 3.2. Let us begin with the first item. Let f ∈ B1(X, Γ), so there is some g : X(0) → Γ so
that f(uv) = g(u)g(v)−1 for all uv ∈ X(1). Let v ∈ X(0) be some arbitrary vertex. We define H = hσ to be
hσ(u) = g(u).σ. First, we note that indeed for every u ∈ X(0) it holds that the mapping σ 7→ hσ(u) = g(u).σ
is a permutation by definition of an action on Σ. Thus it is enough to show that for every σ it holds that hσ

is a satisfying assignment. Indeed, this is equivalent to f(uv).hσ(v) = hσ(u), i.e. f(uv)(g(v).σ) = g(u).σ.
By assumption, f(uv) = g(u)g(v)−1 so indeed

f(uv)(g(v).σ) = g(u)g(v)−1g(v).σ = g(u).σ.

For the second item, let us first assume that Γ ⩽ Sym(Σ) and that ϕ is the identity map. Fix some
arbitrary v ∈ X(0). Let H = {hσ | σ ∈ Σ} be the set of satisfying assignments as promised in Definition 3.1.
For every u ∈ X(0) we define g(u) ∈ Sym(Σ) to be the permutation g(u).σ = hσ(u) (recall that being
strongly satisfiable means that for every u the mapping σ 7→ hσ(u) is a permutation). Note that it may
hold that g(u) < Γ but we will fix this later; for now let us just show that f = δg. Indeed, for every
σ ∈ Σ, we use the fact that hσ is a satisfying assignment to get that f(uv)hσ(v) = hσ(u) which by
definition implies that f(uv)g(v).σ = g(u).σ. Thus, as permutations it holds that f(uv)g(v) = g(u) or
f(uv) = g(u)g(v)−1 = δg(uv).

Finally, to show that we can also find some g : X(0) → Γ (i.e. that g(u) ∈ Γ for every u ∈ X(0)), we
need the following claim, that allows us to shift permutations, and which we prove after this lemma.
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Claim 3.1.1. Let X be a simplicial complex and let Γ be a group. Let v ∈ X and let f ∈ B1(X, Γ). Then for
every γ ∈ Γ there exists g so that f = δg and so that g(v) = γ.

By Claim 3.1.1 we can take some arbitrary v ∈ X(0), and assume that f = δg′ for some g′ such that
g′(v) = Id. We prove that g′(u) ∈ Γ for every u ∈ X(0). We do so by induction on d = dist(v, u), the path
distance between u and v. The base case where u = v is clear since g′(v) = Id ∈ Γ.

Assume this is true for all vertices of distance d and let w be a vertex of distance d + 1. Let u′ be a
neighbor of w of distance d from v. Then g′(u) ∈ Γ from the induction hypothesis. In addition f(wu) ∈ Γ.
As f(wu)g′(u) = g′(w) we conclude that g′(w) ∈ Γ.

As for the “moreover” statement, it follows directly from the following, slightly more general claim, which
we state here and prove below.
Claim 3.1.2. Let f ∈ C1(X, Γ). Let ϕ : Γ → Γ′ be a group homomorphism. Then

1. If f ∈ B1(X, Γ) then ϕ(f) ∈ B1(X, Γ′).

2. If ϕ is injective, and ϕ(f) ∈ B1(X, Γ′) then f ∈ B1(X, Γ).

□

Proof of Claim 3.1.1. Let f = δg be a coboundary. For every η ∈ Γ denote by gη : X(0) → Γ to be
gη(v) = g(v)η. Then it is easy to verify that δg = δgη because η gets canceled. By setting η = g(v)−1γ we
get that f = δgη and that gη(v) = γ. □

Proof of Claim 3.1.2. Let f = δg be a coboundary. Then

ϕ(f(uv)) = ϕ(δg(uv)) = ϕ(g(u)g(v)−1) = ϕ(g(u))ϕ(g(v))−1.

Thus ϕ(g) = δϕ(g).
For the second item we note that if ϕ(f) = δg we can choose g′ so that ϕ(f) = δg′ and so that for every

vertex v ∈ X(0), g′(v) ∈ Im(ϕ). If we do so then we have that ϕ(f) = δg′ and by the first item that was
already proven we have that f = ϕ−1(ϕ(f)) = δϕ−1(g′).

Indeed, assume or simplicity that X is connected (otherwise we treat every connected component
separately). We take an arbitrary v ∈ X(0). By Claim 3.1.1 there exists some g′ : X(0) → Γ so that
ϕ(f) = δg′ and so that g′(v) = Id. Thus we just need to prove that g′(u) ∈ Im(ϕ) for every u ∈ X(0). We
do so by induction on d = dist(v, u), the path distance between u and v. The base case where u = v is clear
since g′(v) = g(v)γ = Id ∈ Im(ϕ) since the image is a subgroup.

Assume this is true for all vertices of distance d and let u be a vertex of distance d+ 1. Let u′ be a neighbor
of w of distance d from v. Then g′(w) ∈ Im(ϕ). In addition ϕ(f)(uw) ∈ Im(ϕ). As ϕ(f)(uw)g′(u) = g′(w)
we conclude that g′(w) ∈ Im(ϕ). □

3.2 Discussion
We include here a short discussion of the potential hardness of unique games on instances whose underlying
graph is a cosystolic or coboundary expander.

First, we observe that unique games on coboundary expanders are easy, when the constraints are affine
linear. The reason is that there is a simple way to check if the value of the instance is close to 1. Simply
compute its self-consistency on triangles. More formally, given an instance f ∈ C1(X), assuming X is
a coboundary expander, one can compute ε = wt(δ1f). By assumption, there is some g ∈ C0(X) such
that dist(δ0g, f) ⩽ ε/h1(X) = O(ε). This g gives us an assignment which satisfies all but ε/h1(X) of the
constraints. in the following sense. to approximate when the constraints are affine linear. To summarize, we
have shown the following easy claim,
Claim 3.2.1. Let X be a 2-dimensional coboundary expander. Let f ∈ C1(X, Γ) be a unique games instance
with affine linear constraints, given as a 1-cochain. Then V al(f) = 1 − O(wt(δ1f)). □

One might also wonder about finding the assignment (beyond the value). This can be done by a greedy
local correction algorithm, although needs to also assume that X is a local spectral expander.
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This claim above serves as one more example of a restricted family of unique games that is tractable. There
are numerous papers that investigate algorithms for unique games on restricted families of instances, such as
spectral expanders [Aro+08; MM11], perturbed random graphs [KMM11], graphs with small “threshold rank"
[Kol11; ABS15; BRS11; GS11], and certified small set expanders [Baf+21]. Also, on certified local spectral
expanders [Baf+22] and certified hyperconractive graphs [BM23b].

One would not necessarily expect a hard unique games instance to have even cosystolic expansion, but
pieces of it that correspond to gadgets might, and in fact both the long code graph as well as the Grassman
graph indeed seem so.

4 Non-abelian cones
In this section we wish to prove the following lemma.

Lemma (Restatement of Lemma 1.6). Let X be a simplicial complex such that Aut(X) is transitive on
k-faces. Suppose that there exists a cone C with diameter R. Then X is a 1

(k+1
3 )·R

-coboundary expander.

Before commencing with the proof, we must define non-abelian cones. Fix X, a simplicial complex and
some v0 ∈ X(0). We define two symmetric relations on loops around v0:

(BT) We say that P0
(BT )∼ P1 if Pi = Q0 ◦ (u, v, u) ◦ Q1 and P1−i = Q0 ◦ (u) ◦ Q1 for i = 0, 1 (i.e. going

from u to v and then backtracking is trivial).

(TR) We say that P0
(T R)∼ P1 if Pi = Q0 ◦ (u, v) ◦ Q1 and P1−i = Q0 ◦ (u, w, v) ◦ Q1 for some triangle

uvw ∈ X(2) and i = 0, 1.

Let ∼ be the smallest equivalence relation that contains the above relations (i.e. the transitive closure of
two relations)2.

We denote by P ∼1 P ′ if there is a sequence of loops (P0 = P , P1, ..., Pm = P ′) and j ∈ [m − 1] such that:

1. Pj
(T R)∼ Pj+1 and

2. For every j′ , j, Pj′
(BT )∼ Pj′+1.

I.e. we can get from P to P ′ by a sequence of equivalences, where exactly one equivalence is by (TR).
For every pair {P , P ′} such that P ∼1 P ′, we arbitrarily fix some sequence P0 = P , P1, ..., Pm = P ′ as

above. After fixing the sequence, we denote by jP ,P ′ the index in the sequence such that Pj
(T R)∼ Pj+1. We

also denote by tP ,P ′ the triangle that gives Pj
(T R)∼ Pj+1 and by QP ,P ′ the shared prefix of both Pj and

Pj+1. That is, Pj = QP ,P ′ ◦ ej ◦ Q′ and Pj+1 = QP ,P ′ ◦ e′
j ◦ Q′, where ej , e′

j are (u, w), (u, v, w) for some

uvw ∈
→
X(2). tP ,P ′ is this triangle uvw.

Finally, we also use the following notation. Let P = (u0, u1, ..., um) be a walk in X. We denote by P −1

the walk (um, . . . , u1, u0). Let f ∈ C1(X, Γ). We denote by

f(P ) := f(um−1um) . . . f(u1u2)f(u0u1) ∈ Γ.

4.1 Coboundary Expansion via Decoding Cones
Definition 4.1 (Decoding cone). A decoding cone is a triple C = (v0, {Pu}u∈X(0), {Tuw}uw∈X(1)) such that

1. v0 ∈ X(0).
2The quotient space of the space of loops with this relation is in fact π1(X, v0), the fundamental group of the simplicial

complex, when equipping π1(X, v0) with the concatenation operation (c.f. [Sur84]). However, we will not need any additional
knowledge about the fundamental group to state our theorem.
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Figure 2: A contraction for an edge uw

2. For every v0 , u ∈ X(0) Pu is a walk from v0 to u. For u = v0, we take Pv0 to be the loop with no
edges from v0.

3. For every uw ∈ X(1), Tuw is a sequence of loops (P0, P1, ..., Pm) such that:

(a) P0 = Pu ◦ (u, w) ◦ P −1
w ,

(b) For every i = 0, 1, ..., m − 1, Pi ∼1 Pi+1 and
(c) Pm is equivalent to the trivial loop by a sequence of (BT ) relations.

We call Tuw a contraction, and we denote |Tuw| = m.

See Figure 2 for an illustration of a contraction. Note that the definition of Tuw depends on the direction
of the edge uw. We take as a convention that Twu has the sequence of loops (P −1

0 , P −1
1 , . . . , P −1

m ), and notice
that P −1

0 = (Pu ◦ (u, w) ◦ P −1
w )−1 = Pw ◦ (w, u) ◦ P −1

u . Thus for each edge it is enough to define one of
Tuw, Twu.

Let C be a decoding cone and f ∈ C1 we define the decoding of f by the cone C to be the function
gf

C : X(0) → Γ defined by gf
C(v0) = Id and

∀u , v0, gf
C(u) = f(Pu).

We will omit the superscript f from the notation and just write gC .
The following claim gives a sufficient condition for f(uw) = δgC(uw) for some fixed edge uw ∈

→
X(1).
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Claim 4.1.1. Let C be a cone, let f ∈ C1 and let i ∈ [m]. Let uw ∈
→
X(1) and let Tuw = (P0, ..., Pm) be

the contraction of uw. Assume that for every i = 0, 1, . . . , m − 1 it holds that δf(tPi,Pi+1) = Id. Then
f(uw) = δgC(uw).

Proof of Claim 4.1.1. The proof of this claim follows directly from an iterated use of the following observation.
Observation 4.2. Let Pj ∼1 Pj+1. Then if δf(tPj ,Pj+1) = Id, then f(Pj) = f(Pj+1).

The proof of the observation follows from the fact that Pj and Pj+1 only differ by a segment (u, v) and
(u, w, v). If δf(tPj ,Pj+1) = Id then f(uv) = f(wv)f(uw), thus concluding that f(Pj) = f(Pj+1). We omit
the formal proof of this observation.

The proof of this claim follows from this observation, used inductively to show that f(P0) = f(P1) =
f(P2) = · · · = f(Pm). As f satisfies f(uv) = f(vu)−1 and Pm is equivalent to the trivial loop via backtracking
relations, it holds that f(Pm) = Id. We get that f(P0) = Id, that is, f(P0) = f(Pw)−1 ◦ f(u, w) ◦ f(Pu) =
Id. Moving this around we get that

f(u, w) = gC(w)gC(u)
−1 = δgC(u, w).

□

In light of Claim 4.1.1, and looking ahead to a case where most triangles uvw satisfy δf(uvw) = Id but
not all, it seems as though the fewer triangles we have in the contraction, the better. In light of this we define

diam(C) = max
uw∈

→
X(1)

|Tuw|.

4.2 Coboundary Expansion from Cones
We are now ready to prove Lemma 1.6. In fact, we prove this theorem in more generality. Let C = {Ci}i∈I

be a family of cones. The cone distribution DC is the following distribution over {u, v, w} ∈ X(2):

1. Sample an edge uw ∈
→
X(1).

2. Sample a cone Ci uniformly at random.

3. Sample some Pj ∈ Tuw.

4. Output the triangle tPj ,Pj+1 .

We denote by DC(uvw) the probability of sampling uvw according to this distribution.

Lemma 4.3. Let p ∈ (0, 1) and let R ∈ N. Let X be a simplicial complex, and denote by µX the distribution
over triangles of X. Suppose X has a family of cones C = {Ci}i∈I such that:

1. (DC , µX ) are p-smooth.

2. maxi∈I diam(Ci) ⩽ R.

Then h1
r(X) ⩾ p

R .

For example, suppose C is a cone, and Aut(X) acts transitively on k-faces of X. This means that for
any fixed triangle T0 ∈ X(2) and k-face containing it F0 ⊃ T0, when we choose a uniformly random element
ϕ ∈ Aut(X) then ϕ(F0) is a uniformly random k-face. ϕ(T0) is not necessarily distributed uniformly in X(2),
but it captures at least 1/(k+1

3 ) fraction of the probability space of triangles. Thus if C = {σ.C}σ∈Aut(X),
then DC is p = 1

(k+1
3 )

-smooth, and so Lemma 4.3 immediately implies Lemma 1.6.
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Proof of Lemma 4.3. Fix f ∈ C1. We need to find some g ∈ C0 such that dist(f , δg) ⩽ Rp−1wt(δf).
It is enough to show that Ei∈I [dist(f , δgCi

)] ⩽ Rp−1wt(f), since this in particular proves that there is
some gCi

that acheives the expectation. Indeed

E
i∈I

[dist(f , δgCi
)] = E

i∈I

 P

uv∈
→
X(1)

[f(uv) , δgCi
(uv)]


and by Claim 4.1.1 this is upper bounded by

E
i∈I

 P

uv∈
→
X(1)

[
∃Pℓ ∈ Tuw δf(tPℓ,Pℓ+1) , Id

] .

There are at most R paths in every cone, hence if there exists such a pair, the probability that we uniformly
sample such a pair is at least 1

R . Hence this expression is upper bounded by

R · E
i∈I

 P

uv∈
→
X(1),Pℓ∈Tuw

[
δf(tPℓ,Pℓ+1) , Id

] = R · P
t∼DC

[δf(t) , Id] . (4.1)

The probability of every event according to the distribution DC is at most p−1 its probability according to
the distribution of the triangles of X. Hence, (4.1) is at most

Rp−1 · P

uvw∈
→
X(2)

[δf(uvw) , Id] = Rp−1wt(δf).

The lemma follows. □

5 The GK decomposition
We describe here a very interesting technique due to recent work of Gotlib and Kaufman [GK22, Appendix A].
This technique did not appear as a theorem, rather it was used to show cover-testability of a certain complex
(referred there as the representation complex). We observe that their argument can be viewed equivalently as
coboundary expansion of another complex, related to the one they wish to analyze. Their technique can be
generalized to show lower bounds of many other situations.

Let us describe the essence of this this technique informally. Let X be a two dimensional simplicial
complex that we wish to show is a coboundary expander. Suppose that we can decompose X into many
sub-complexes that are coboundary expanders. That is, let Y1, Y2, . . . , Ym ⊆ X be sub complexes such that
X = Y1 ∪ Y2 ∪ · · · ∪ Ym, and assume that every Yi is a coboundary expander. What can we ask from this
decomposition, so that it will imply that X itself will be an coboundary expander?

For concreteness let us fix our group of coefficients to be F2. Let f : X(1) → F2 be such that wt(δf) = ε.
As a first attempt, we can look at the restrictions {f |Yi

}m
i=1 and using the coboundary expansion of the Yi’s

separately we find g1, g2, . . . , gm, where gi : Yi(0) → {0, 1} is such that

β dist(f |Yi
, δgi) ⩽ wt(δf |Yi

).

This is not enough though, since our goal is to find a single function g : X(0) → {0, 1} such that

β′ dist(f , g) ⩽ wt(δf),

for some β′ that depends on β. The problem is that possibly some of the Yi’s intersect, and it could be the
case that v ∈ Yi ∩ Yj is such that gi(v) , gj(v). To model this problem we consider the agreement graph.

At this point let us assume for simplicity that the intersection between every two Yi’s has at most one
element. The agreement graph A is the graph whose vertices are the Yi’s and Yi ∼ Yj if and only if Yi ∩ Yj , ∅.
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We also include two dimensional faces in Y , by putting {u, v, w} ∈ Y (2) whenever the three edges uv, vw, uw
are in the graph.

To continue modeling the problem, let us define the agreement function h : A(1) → {0, 1}, such that
h(Yi, Yj) = gi(v) − gj(v) where v ∈ Yi ∩ Yj . Note that h depends on v, and will later really be a function of
the labeled edge {Yi, Yj}v.

v i j

u w k

ji

k

v

wu

Figure 3: A triangle in X, in A, and in the GK decomposition

A priori, we would like h = 0 on every edge of A, or at least h ≈ 0. However, Gotlib and Kaufman
noticed that it is enough to require that h is close to a coboundary, i.e. h ≈ δℓ for some ℓ : A(0) → {0, 1}.
The reason is that if we define g̃i : Yi(0) → {0, 1} by g̃i(v) = gi(v) + ℓ(Yi) then since ℓ(Yi) is constant (the
input is the vertex v, not Yi), it holds that δg̃i = δgi. Moreover, it holds that g̃i(v) = g̃j(v) if and only if
gi(v) + gj(v) = ℓ(i) + ℓ(j), if and only if h(Yi, Yj) = δℓ(Yi, Yj). In other words,

g̃i(v) , g̃j(v) ⇔ h(Yi, Yj) , δℓ(Yi, Yj). (5.1)

Hence let ℓ : A(0) → {0, 1} be such that dist(h, ℓ) = ε′ is as small as possible. We can use these {g̃i} to
define a single function via majority g(v) = majv∈Yi

{g̃i(v)}.
Let us see how we can bound dist(f , δg) in terms of wt(f) and ε′.

dist(f , δg) = E
i
[dist(f |Yi

, δg̃i) + dist(δg̃i, δg̃)] (5.2)

⩽
1
β

wt(δf) + E
i
[dist(δg̃i, δg)] , (5.3)

where the inequality is due to β-coboundary expansion of every Yi (and taking expectation). On the other
hand, by expansion arguments we can argue that

E
i
[dist(δg̃i, δg)] ⩽ 2 dist(g̃i, g) = 2 E

v

[
P
i
[gi(v) , g(v)]

]
.

where the inequality is just by a union bound (since if g̃i, g agree on both end points of an edge they also agree on
the edge). The probability of g̃i agreeing with g is bounded by Pi,j [g̃i(v) , g̃j(v)] = Pi,j [h(Yi, Yj) , ℓ(Yi, Yj)]
by (5.1). Hence

(5.2) ⩽ 1
β

wt(δf) + 2 dist(h, δℓ) =
1
β

wt(δf) + 2ε′. (5.4)

It looks like we’ve made some progress, but we are still missing a crucial component. How do we bound
ε′? So far we haven’t required anything yet from the structure of the agreement graph. To continue bounding
ε′ we require that:

1. This agreement graph is (a skeleton of) a 2-dimensional agreement complex A.

2. This complex is a β′-coboundary expander.
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3. Moreover, we can sample a triangle {Yi, Yj , Yk} ∈ A(2) by sampling uvw ∈ X(2) and then sampling a
triangle {Yi, Yj , Yk} such that u ∈ Yi ∩ Yj , v ∈ Yj ∩ Yk and w ∈ Yk ∩ Yi.

If this is the case then it holds that

ε′ = dist(h, ℓ) ⩽
3 + β

ββ′ wt(f). (5.5)

The reason is as follows. For a triangle {Yi, Yj , Yk} we denote by {uij , ujk, uki} ∈ X(2) the triangle
such that uij ∈ Yi ∩ Yj , ujk ∈ Yj ∩ Yk and uki ∈ Yk ∩ Yi. By coboundary expansion of A, it holds that
dist(h, ℓ) ⩽ 1

β′ wt(δh), so we will actually try to bound wt(δh).
For a triangle {Yi, Yj , Yk} δh = 0 if δf(uij , ujk, uki) = 0 and for all three edges e of the triangle

{uij , ujk, uki} it holds that f(e) = δgm(e) (for m = i, j, k is the Ym that contains the edge). The reason is
that

δh(Yi, Yj , YK) = h(Yi, Yj) + h(Yj , Yk) + h(Yk, Yi)

= (gi(uij) + gj(uij)) + (gj(ujk) + gk(ujk)) + (gk(uki) + gi(uki))

= (gi(uij) + gi(uik)) + (gj(uij) + gj(ujk)) + (gk(ujk) + gk(uik))

= δgi(uij , uik) + δgj(uij , ujk) + δgk(uik, ujk)

f=δgm
= f(uij , uik) + f(uij , ujk) + f(uik, ujk)

= δf(uij , ujk, uki)

δf=0
= 0.

Thus wt(h) ⩽ 3 Ei [dist(f |Yi
, δgi)] +wt(f) ⩽

(
3
β + 1

)
wt(f) and (5.5) follows. Plugging this back in (5.4)

we get that
dist(f , δg) ⩽ Ω(1/ββ′)wt(f).

5.1 Technical aspects of the theorem
Let us go into some more technical weeds of the theorem.

The most significant deviation from the overview (and from Gotlib and Kaufman’s scope) is that we
no longer require

∣∣Yi ∩ Yj

∣∣ ⩽ 1, but instead study agreement graphs and complexes with multi edges. To
our knowledge coboundary and cosystolic expansion of complexes with multi edges were not studied, but
the definitions extend naturally to this case as well. In Section 6 we show a useful reduction that lower
bounds coboundary expansion of multi edged complexes, using the coboundary expansion of their single
edged counterpart, provided the multi edges have some expanding structure.

Another significant difference is that in the technical overview we assumed that the triangle distribution
µ2 of the simplicial complex X in defined by choosing Yi and then choosing a triangle. Moreover, it was
assumed that this same of triangles in X is used to sample a triangle in the agreement complex A. I.e. that
sampling a triangle {Yi, Yj , Yk} ∈ A(2) by sampling uvw ∈ X(2) and then sampling a triangle {Yi, Yj , Yk}
such that u ∈ Yi ∩ Yj , v ∈ Yj ∩ Yk and w ∈ Yk ∩ Yi.

It turns out that this is this assumption in too rigid to be of use in practice. For example, in [GK22], the
triangles were partitioned to two sets X(2) = T1 ·∪ T2 of relative size 1

2 . The triangles in one set T1 were used
for the first step, where we fixed f locally to gi for every Yi. The other set T2, was used to test agreement in
the agreement complex. This set of triangles was referred to as “empty triangles” in [GK22].

Hence we will compare three distributions: the actual distribution µ2 on the triangles of X, the distribution
ν used to locally correct f to gi in every Yi, and the distribution π used to sample triangles in the agreement
complex. Our actual requirement will be that marginals of these distributions will be smooth with respect to
one another as in Definition 2.1.

5.2 Definitions for this theorem
Recall that for a simplicial complex with multi-edges {u, v}i, we denote a triangle {u, v, w}i,j,k to be the
triangle whose vertices are u, v, w and whose edges are {u, v}i, {v, w}j , {w, u}k.
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Definition 5.1 (agreement complex). Let X be a 2-dimensional simplicial complex and let Y = {Yi}i∈I be
a family of sub-complexes of X. A complex X is a agreement complex with respect to X, Y if,

1. A(0) = Y.

2. A(1) ⊆
{

{Yi, Yj}v

∣∣ v ∈ Yi(0) ∩ Yj(0)
}

.

3. A(2) ⊆
{

{Yi, Yj , Yk}v1,v2,v3

∣∣ {v1, v2, v3} ∈ X(2)
}

.

Definition 5.2 (GK-decomposition). A GK-decomposition of X is a tuple (Y, A, ν, π) such that

1. Y = {Yi}i∈I , are such that Yi ⊆ X are pure sub complexes.

2. A is an agreement complex with respect to Y whose distribution over triangles is π.

3. ν is a distribution over tuples ({u, v, w}, Yi) such that {u, v, w} ∈ Yi.

For a distribution ν and i = 0, 1, 2 we define νi to be the marginal that just outputs the i-face chosen by
ν. E.g. for i = 1 we just take a random edge inside the triangle in the tuple chosen. We also denote by νi,y
the marginal that outputs the i-face chosen by ν along with the sub complex Yi. Furthermore, we denote
by νy the marginal distribution of ν over Y. Finally, we denote by ν|Yi

to be ν conditioned on Yi being the
chosen subcomplex.

For a distribution π supported over A(2) we also need similar notation. Let i = 0, 1, 2. The distribution
πi is the marginal distribution that outputs a i-face that is a sub face of the labels of the chosen triangle. E.g.
for i = 1, if {Yi, Yj , Yk}u,v,w ∼ π then π1 outputs one of three edges uv, vw, uw ∈ X(1). For i = 1 we denote
by π1,y the distribution that outputs (uv, Yj). That is, if {Yi, Yj , Yk}u,v,w ∼ π, then π1,y outputs a random
edge in {u, v, w}, along with the Yj such that {Yi, Yj}u, {Yj , Yk}v participate in the triangle. Finally, π0,y is
the marginal of π1,y that samples one vertex of the sampled edge uniformly at random. I.e. if (uv, Yj) ∼ π1,y
then π0,y samples either (u, Yj) or (v, Yj).

Definition 5.3 (Local graph). Let A be a agreement complex as above. For every v ∈ A(0) the local graph
Av is a graph whose vertices are all Yi ∋ v. The edges are all Yi ∼ Yj such that Yi ∩ Yj ∋ v, where we choose
an edge according to the distribution of the agreement complex, given that it was labeled by v.

Theorem 5.4. Let X be a 2-dimensional simplicial complex and let (Y , A, ν, π) be a GK-decomposition. Let
α, β, γ, η > 0. Assume that the following holds.

1. Every Yi is a coboundary expander with h1(Yi) ⩾ β, with respect to the distribution ν|Yi
.

2. h1(A) ⩾ γ.

3. Let A ⊆ X(0) be the set of vertices that are contained in at least two Yi’s. For every v ∈ A, the local
graph Av is a η-edge expander.

4. Recall that µi is the distribution of i-faces in X. Then the following relations between distributions hold:

(a) (ν2, µ2) and (π2, µ2) are α-smooth3.
(b) (µ1, ν1) are α-smooth.
(c) (ν0,y, π0,y) are (AY , α)-smooth. Here AY are all (v, Yi) such that v ∈ Yi and v ∈ A.
(d) (π1,y, ν1,y) are α-smooth.

Then X is a coboundary expander and h1(X) ⩾ α4βγη
10 .

The relations between π, ν, µ are schematically shown in Figure 4. The conditions on the distributions
quantify the quality of the decomposition. Note that in case α = 1 the distributions µ and ν are obtained
as marginals of the distribution π. In this case µi = νi. The relation between ν and π says that the global
distribution on A is compatible with the localized pieces (described by ν).

We also encourage the readers to go over examples of where this theorem is used to see examples of
decompositions that satisfy these items (such as Proposition 8.7.1, and also Claim 2.8.2, Lemma 8.7 and
Lemma 8.10), so that one will observe that these are easy to check in “practical” use cases.

3as in Definition 2.1.
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π ν µ

X(2) and A(2) X ◦ (Y1, . . . , Ym) X

Figure 4: π is the joint distribution over X × A; ν is the distribution describing the decomposition of X into
Y1, . . . , Ym; and µ is the distribution over X.

Proof of Theorem 5.4. Fix any group Γ. Let f ∈ C1(X, Γ) be such that wt(f) = ε, and we need to find some
g : X(0) → Γ such that dist(f , δg) ⩽ 10

α4βγη
ε. In particular by Claim 2.1.1, and by the fact that (ν2, µ2) are

α-smooth,
P

uvw∼ν2
[δf(uvw) , 0] ⩽ α−1 P

uvw∼µ2
[δf(uvw) , 0] = α−1ε.

Let δgi ∈ B1(Yi, Γ) be such that dist(f |Yi
, δgi) is minimal. By coboundary expansion of every Yi,

dist(f |Yi
, δgi) ⩽ β−1 P

uvw∼ν|Yi

[δf(uvw) , 0] .

So in particular

E
Yi∼νy

[dist(f |Yi
, δgi)] ⩽ β−1 E

Yi∼νy

[
P

uvw∼νYi

[δf(uvw) , 0]
]
= β−1 P

uvw∼ν2
[δf(uvw) , 0] ⩽ α−1β−1ε. (5.6)

We now turn to defining the correction function δg of f . Denote by h :
→
A(1) → Γ the agreement function

i.e.
h((Yi, Yj)v) = gi(v)

−1gj(v).

Let δℓ :
→
A(1) → Γ be a coboundary closest to h (chosen arbitrarily). Let g̃i be the functions g̃i(v) = gi(v)ℓ(Yi).

It is easy to check that
δgi = δg̃i (5.7)

More interestingly,
g̃i(v) = g̃j(v) if and only if h((Yi, Yj)v) = δℓ((Yi, Yj)v). (5.8)

The reason is that g̃i(v) = g̃j(v) can be expanded to

gi(v)ℓ(Yi) = gj(v)ℓ(Yj)

which, by multiplying by ℓ(Yj)−1 on the right and gi(v)−1 on the left, is equivalent to

ℓ(Yi, Yj) = ℓ(Yi)ℓ(Yj)
−1 = gi(v)

−1gj(v) = h((Yi, Yj)v).

We finally define g : X(0) → Γ by g(v) = majYi∋v{g̃i(v)} where the most popular assignment is with
respect to π0,y, conditioned on v being the chosen vertex. Let us analyze the distance of δg to f .

dist(f , δg) ⩽ α−1 P
uv∼ν|X(1)

[f(uv) , δg(uv)] = α−1 E
Yi∼νY

[distYi
(f |Yi

, δg)]

⩽ α−1
(

E
Yi∼νY

[distYi
(f |Yi

, δg̃i)] + E
Yi∼νY

[distYi
(δg̃i, δg)]

)
⩽ α−1

(
E

Yi∼νY

[distYi
(f |Yi

, δg̃i)] + 2 E
Yi∼νY

[distYi
(g̃i, g)]

)
= α−1

(
E

Yi∼νY

[distYi
(f |Yi

, δgi)] + 2 P
(Yi,v)∼ν0,y

[g̃i(v) , g(v)]

)
⩽ α−2β−1ε + 2α−1 P

(Yi,v)∼ν0,y
[g̃i(v) , g(v)] .
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Here the first inequality is by α-smoothness of (µ1, ν1). The second inequality follows from the triangle
inequality and the third inequality is by the fact that if g̃i and g are equal on both vertices of an edge, then
δg̃i and δg are equal on that edge. The last equality is because δg̃i = δgi and by definition of the expectation
over distance, and the last inequality is by (5.6). Altogether,

dist(f , δg) ⩽ α−2β−1ε + 2α−1 P
(Yi,v)∼ν0,y

[g̃i(v) , g(v)] . (5.9)

We move on to bound P(Yi,v)∼ν0,y [g̃i(v) , g(v)].

P
(Yi,v)∼ν0,y

[g̃i(v) , g(v)]
(1)
⩽ α−1 P

(v,Yi)∼π0,y
[g̃i(v) , g(v)]

= α−1 E
v

[
P

Yi∈Av(0)
[g̃i(v) , g(v)]

]
(2)
⩽ η−1α−1 E

v

[
P

{Yi,Yj}∼Av(1)
[g̃i(v) , g̃j(v)]

]
= α−1η−1 P

{Yi,Yj}v∼A(1)
[g̃i(v) , g̃j(v)]

(5.8)
= α−1η−1 P

{Yi,Yj}v∼A(1)
[h((Yi, Yj)v) , δℓ((Yi, Yj)v)]

= α−1η−1 dist(h, δℓ)

(3)
⩽ α−1γ−1η−1wt(δh).

Here (1) is because for every vertex, if v < A then g̃i(v) = g(v), hence the event is contained in AY and we
can use (AY , α)-smoothness and with Claim 2.1.1. The next inequality (2) is by Claim 2.3.1 and the fact
that every local graph Av is a η-expander. (3) comes from γ-coboundary expansion of A.

We conclude the proof by showing that wt(δh) ⩽ α−1ε + 3α−2β−1ε.
Let us first show that if δh({Yi, Yj , Yk}u,v,w) , 0 then either δf(uvw) , 0 or for at for one of the three

edges f(xy) , δgm(xy) (where xy in one of the edges in uvw and Ym is the sub-complex that contains this
edge, that was selected in the triangle). Otherwise,

δh({Yi, Yj , Yk}u,v,w) = h((Yi, Yj)u) · h((Yj , Yk)v) · h((Yk, Yi)w)

= (gi(u)
−1gj(u)) · (gj(v)

−1gk(v)) · (gk(w)−1gi(w))

= (gi(w)−1gi(w)) · (gi(u)
−1gj(u)) · (gj(v)

−1gk(v)) · (gk(w)−1gi(w))

f=δg
= gi(w)−1f(uv)f(vw)f(wu)gi(w)

= gi(w)−1δf(uvw)gi(w)

δf=Id
= Id.

Thus
wt(h) ⩽ P

uvw∼π2
[δf(uvw) , 0] + 3 P

(uv,Yi)∼π1,y
[f(uv) , δgi(uv)] .

By α-smoothness of (π2, µ2) it holds that Puvw∼π2 [δf(uvw) , 0] ⩽ α−1ε. By smoothness α-smoothness
of (π1,y, ν1,y), the rightmost term is bounded by

3 P
(uv,Yi)∼π1,y

[f(uv) , δgi(uv)] ⩽ 3α−1 P
(uv,Yi)∼ν1,y

[f(uv) , δgi(uv)] = 3α−1 E
Yi∼νy

[dist(f |Yi
, δgi)] .

By (5.6) we bound this by 3α−2β−1ε. Combining the above yields wt(h) ⩽ α−1ε + 3α−2β−1ε.
Putting things back together we have

dist(f , δg) ⩽ α−2β−1ε + 2α−2γ−1η−1wt(h) (5.10)
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⩽ α−1β−1ε + 2α−2γ−1η−1 (α−1 + 3α−2β−1) ε (5.11)

⩽
10

α4βγη
ε. (5.12)

□

Remark 5.5. We could have made this theorem tighter by accounting for different smoothness parameters
α1, α2, . . . instead of a single α. However, in all our examples this tightening would not have gained a
significant improvement. We stated the theorem in this generality to keep it simpler.

6 Blow-ups of simplicial complexes
We saw above that analyzing coboundary expansion via the GK decomposition naturally gives rise to simplicial
complexes with multi-edges. We show under mild conditions that coboundary expansion of a simplicial
complex with multi-edges reduces to the coboundary expansion of its non-multi-edge “flattening”.

Recall that we denote by {u, v}i an edge between vertices u and v that has label i. We also denote by
{u, v, w}i,j,k a triangle with vertices u, v, w and edges {u, v}i, {v, w}j and {w, u}k.

Let us begin with a definition of a blow-up graph. Let G, G′ be two graphs on the same vertex set V . We
say that G′ is a blow-up of G if G is a simple graph (that has no multi edges) and {u, v} ∈ E(G) if and only
if there exists an edge {u, v}i ∈ E(G′), and moreover, for every {u, v} ∈ G, the total weight of edges from u
to v in G′ equals the weight of {u, v} in G,

P
G
[{u, v}] =

∑
i: {u,v}i∈E(G′)

P
G′

[{u, v}i] .

Similarly, for simplicial complexes,

Definition 6.1 (Blow-up). Let X be a d-dimensional simplicial complex. Let X̃ be a simplicial complex
with multi-edges. We say that X̃ is an blow-up of X if X̃(0) = X(0) and such that for every face s ∈ X, the
probability of sampling a face s̃ ∈ X̃ whose vertices are s, is the probability of sampling s ∈ X.

Definition 6.2 (Label graph). Let X be a d-dimensional simplicial complex and X̃ be a blow-up of X. For
a fixed edge e = {u, v} ∈ X(1) let the label graph Ge = Ge(X̃) be the graph whose vertices are all labels of
labeled edges in X̃ between u and v, i.e.

V (Ge) = {i : {uv}i ∈ X̃}.

In order to define the edges we first consider a bipartite graph that connects a label i to a labeled triangle
{u, v, w}i,j,k that contains {u, v}i. We then let the label graph of the edge {u, v} be the two step walk on this
bipartite graph. In other words, i is connected to i′ if there are w, j, k such that the completions {u, v, w}i,j,k
and {u, v, w}i′,j,k exist.

Lemma 6.3. Let X be a β-coboundary expander with respect to coefficients Γ. Let X̃ be a blow-up of X
such that for every e = uv ∈ X(1), Ge is an η-edge expander. Then X̃ is a 1

5ηβ-coboundary expander with
respect to coefficients Γ.

Let us give some intuition for Lemma 6.3 in case Γ = F2. Fix h ∈ C1(X̃, F2), and assume δh = 0. Every
triangle t = {u, v, w}i,k,ℓ ∈ X̃(2) defines an equation

δh(t) = h({u, v}i) + h({v, w}j) + h({w, u}k) = 0. (6.1)

Let EQ be the set of all such equations (i.e. the solution space of EQ is Z1(X̃, F2)). As a warm up, we want
to make sure that Z1(X̃, F2) = B1(X̃, F2), i.e. that Z1(X̃, F2) is the set of all h : X̃(1) → F2 such that
there exists some g : X̃(0) → F2 such that

h({u, v}i) = g(u) + g(v).
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In particular, we note that for any such h, h({u, v}i) is independent of the label i, or in other words for every
i, j,

h({u, v}i) = h({u, v}j).

We learn from this that a necessary condition for X̃ to have Z1(X̃, F2) = B1(X̃, F2), is that the equations
h({u, v}i) = h({u, v}j) are spanned by EQ. For a fixed edge {u, v} ∈ X and two of its labels i, j, if there
are two triangles {u, v, w}i,k,ℓ, {u, v, w}j,k,ℓ ∈ X̃, then by adding up their two corresponding equations as in
(6.1) yields

h({u, v}i) = h({u, v}j).

Moreover, one can observe that if G{u,v} is connected, then all the equations

h({u, v}i) = h({u, v}j)

are spanned by EQ. The fact that Z1(X̃, F2) = B1(X̃, F2) is not enough to lower bound coboundary
expansion. However, this hints that a robust notion of connectivity for the G{u,v}, may be useful for proving
such a lower bound.

Indeed, Suppose that h({u, v}i) = h({u, v}j) is violated for many labels i, j. Let V0, V1 ⊆ V (G{u,v})
be such that i ∈ Vx if h({u, v}i) = x. If h({u, v}i) = h({u, v}j) is violated for many pairs of labels
i, j that are not necessarily edges, then both V0, V1 are large. If both V0 and V1 are large, then by the
expansion of G{u,v}, many edges cross between V0 and V1. Every such edge corresponds to two triangles
{u, v, w}i,k,ℓ, {u, v, w}j,k,ℓ. And because h({u, v}i) , h({u, v}j) it holds that h({u, v}i) + h({u, v}j) = 1. On
the other hand, h({u, v}i) + h({u, v}j) is the sum of equations

h({u, v}i) + h({v, w}k) + h({w, u}ℓ) = 0

and
h({u, v}j) + h({v, w}k) + h({w, u}ℓ) = 0

and if the sum is non zero, then at least one of these equations is violated.
The contra-positive argument is that if most of these equations sum up to zero, that is,

P
w,i,k,ℓ

[
δh({u, v, w}i,k,ℓ = 0

]
≈ 0,

then the cut V0, V1 must have few crossing edges. In an expander graph this implies that one of the sets
is small, or in other words, that i 7→ h({u, v}i) is almost a constant. Thus defining the majority function
Mh : X(1) → F2, Mh({u, v}) = maji h({u, v}i) we get by the discussion above that

P
{u,v}i∈X̃(1)

[h({u, v}i) = Mh({u, v})] ≈ wt(δh).

Now we use the coboundary expansion in X to correct Mh to some δg ∈ B1(X, F2). This g will have the
property that Ω(β) dist(h, δg) ⩽ wt(δh).

Proof of Lemma 6.3. Let h : X̃(1) → Γ be such that wt(δh) = ε. Let us define Mh : X̃(1) → Γ to be
Mh({u, v}j) = maji∈V (G{u,v})

{h({u, v}i}. By the triangle inequality,

dist(h, B1(X̃)) ⩽ dist(h, Mh) + dist(Mh, B1(X̃)). (6.2)

The first term in the right hand side is bounded by

dist(h, Mh) = E
uv∈X(1)

[
P
i
[h({u, v}i) ,Mh({u, v}i)]

]
⩽ η−1 E

uv∈X(1)

[
P
i,j

[h({u, v}i) , h({u, v}j)]

]
⩽ η−1 E

uv∈X(1)

[
2 P

{u,v,w}i,k,ℓ

[
δh({u, v, w}i,k,ℓ) , 0

]]
= 2η−1ε.

(6.3)
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where the first inequality follows from the definition of edge expansion, and the second inequality follows from
the fact that if h({u, v}i) , h({u, v}j) then one of the triangles {u, v, w}i,k,ℓ, {u, v, w}j,k,ℓ is not satisfied,
since the only difference between the assignment of h to the edges of these two triangles is the assignment
of h({u, v}i) and h({u, v}j). The distribution of sampling uv ∈ X(1) and then a triangle {u, v, w}i,j,k
conditioned on uv is just the distribution over triangles in X̃(2), hence the final equality with 2η−1 times the
weight of δh.

We turn to the second term on RHS of (6.2). First, we observe that

wt(δMh) ⩽ 3 P [Mh , h] + wt(δh) ⩽ 3η−1ε. (6.4)

The reason is that we can split triangles into those where there is an edge with Mh , h and those
where Mh = h on all three edges. The former are accounted for in the first term, and in the later case
δMh(t) = δh(t).

Since Mh does not depend on the label of an edge, it gives rise to h̄ ∈ C1(X) defined by choosing for
each edge {u, v} an arbitrary label i and setting h̄({u, v}) = Mh({u, v}i). Clearly distX̃ (Mh, B1(X̃)) =
distX (h̄, B1(X)) and wtX (δh̄) = wtX̃ (δMh) so using the coboundary expansion of X,

dist(Mh, B1(X̃)) = dist(h̄, B1(X)) ⩽ β−1wt(δh̄) = β−1wt(δMh) ⩽ 3β−1η−1ε. (6.5)

where the last inequality comes from (6.4). Plugging (6.5) and (6.3) into (6.2) yields the result. □

7 General expansion of the faces complex
In this section we prove a general bound on the swap coboundary expansion of coboundary expanders.

Theorem (Restatement of Theorem 1.3). Let X be a d-dimensional simplicial complex. Let r be such that
7r + 7 ⩽ d. Assume that for every −1 ⩽ m ⩽ r and s ∈ X(m), h1(Xs) ⩾ β and that X is a λ-two sided local
spectral expander for λ < 1

2r2 , then X is a (βO(r), r)-swap coboundary expander.

The following corollary follows directly from Theorem 2.15.

Corollary 7.1. Let X be an n-dimensional simplicial complex. Let r be such that 7r + 8 ⩽ n. Assume
that for every −1 < m ⩽ r and s ∈ X(m), h1(Xs) ⩾ β and that X is a λ-two sided local spectral for
λ ⩽ exp(−Ω(r log β)), then X is a (exp(−Ω(r log β)), r)-swap cosystolic expander.

We note that a tighter analysis could perhaps lose the Ω inside the expression, which would perhaps allow
us to get a sub exponential bound if one could show that most links have h1(X

{j1,j2,j3,j4,j5}
s ) ⩾ 1 − o(1).

However, as the state of the art is today, we do not know of such bounds in almost any complex and therefore
we did not try to optimize the constant.

The bounds of Theorem 1.3 can be improved for certain complexes. For example Theorem 1.4 shows a
better bound for spherical buildings with sufficiently large field size and dimension. For the complete complex
we show, in the end of this section, a constant lower bound on the swap coboundary expansion.

We first prove Theorem 1.3 for partite complexes (see Proposition 7.1.1). In Section 7.1 we give a simpler
exponential bound, and in Section 7.2 we derive an improved bound. We then use a partitification reduction
(in Section 7.3) to extend the proof to any complex.

7.1 Exponentially decaying coboundary expansion for partite complexes
In this section we prove the theorem for the important case of X being an n-partite complex. Recall
that for mutually disjoint sets of colors J = {c1, c2, . . . , cℓ} the colored faces complex FJX is the ℓ-partite
complex whose vertices are FJX(0) =

⋃ℓ
i=1 X [ci] and whose top-level faces are all s = {w1, . . . , wℓ} such

that wi ∈ X [ci] and
⋃ℓ

i=1 wi ∈ X.
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Proposition 7.1.1. Let X be a n-partite complex that is a λ-local spectral expander for λ ⩽ 1
2r2 . Let ℓ ⩾ 5

and let J = {c1, c2, . . . , cℓ} be a set of mutually disjoint colors cj ⊆ [n], |cj | ⩽ r. Denote by R =
∑ℓ

j=1 |cj |.
Let β > 0 and assume that for every I = {i1, i2, . . . , iℓ} such that ij ∈ cj and every w ∈ X∪J\I , h1(XI

w) ⩾ β.
Then h1(FJX) ⩾ βR

1 for β1 = Ωℓ(β).

Proof. Fix ℓ ⩾ 5. The proof is via induction on R (for all partite complexes X simultaneously). The base
cases are when either one of the ci = ∅ or when |c1| = |c2| = · · · = |cℓ| = 1. If one of the cj = ∅ then
h1(X) = Ω(1) by Claim 2.8.1. Otherwise all the cj = {ij}’s are singletons. In this case FJX � X{i1,i2,...,iℓ}

and h1(FJX) ⩾ β by assumption.
Now let us assume that the proposition holds for R and prove it for c1, c2, . . . , cℓ such that

∑ℓ
j=1 |cj | = R+ 1

and all cj , ∅. Fix such ci’s.
We choose some I = {i1, i2, . . . , iℓ} such that ij ∈ cj and show that

h1(FJX) ⩾ Ω(h1(XI )) · min
j∈[ℓ],v∈X [ij ]

h1(FJjXv) (7.1)

where Jj = {c′
1, c′

2, . . . , c′
ℓ} such that c′

j = cj \ {ij} and for m , j, c′
m = cm. Observe that

∑ℓ
j=1 |c′

j | = R

so if (7.1) holds then by induction h1(FJX) ⩾ Ω(β) · βR
1 ⩾ βR+1

1 . Indeed, the assumption that for every
I = {i1, i2, . . . , iℓ} such that ij ∈ cj and every w ∈ X∪J\I , h1(XI

w) ⩾ β implies that the same holds for Xv

and the c′
j ’s, so we are justified to apply an inductive argument.

We show (7.1) by applying Theorem 5.4 to the following GK-decomposition (Y, A, ν, π).

1. Let Y =
{

Yv

∣∣ v ∈ XI (0)
}

, such that Yv ⊆ FJX is the ℓ partite complex induced by vertices that either
contain v or are in FJX(0) ∩ Xv.

2. We define π so that {v1, v2, v3}w,w′,w′′ ∼ π is chosen as follows:

(a) We sample {w1, w2, . . . , wℓ} ∈ FJX(ℓ − 1).
(b) We sample a random triangle t = {w, w′, w′′} ⊆ {w1, w2, . . . , wℓ}.
(c) We sample distinct i1, i2, i3 ∈ I and t′ = {v1, v2, v3} to be such that col(vj) = ij and such that

every vj is contained in one of the w1, w2, . . . , wℓ that were sampled in the first step.
(d) We randomly reorder and output {v1, v2, v3}w,w′,w′′ .

We note that {w, w′, w′′} is distributed by the triangle distribution of X, µ2,FJX .

3. We define ν to the a marginal of π. That is, we first sample {v1, v2, v3}w,w′,w′′ ∼ π and then take one
of the three vj ’s and output (Yvj , {w, w′, w′′}).

4. We identify the unlabeled triangles and edges of A with those of XI .

Let v be a vertex of color, say, i1 ∈ c1. Then Yv � FJ1Xv. This is because Yv [c1] = {{v} ·∪ w | w ∈ Xv [c′
1]}

and for all m , j, Yv [cm] = Xv [cm]. Moreover, ν is defined such that the distribution of ν|Yv is the distribution
over triangles in FJ1Xv (up to the identification of Yv [c1] � Xv [c′

1]). It follows that

min
v

h1(Yv) = min
j∈[ℓ],v∈X [ij ]

h1(FJjXv).

Before analyzing the agreement complex, let us consider the smoothness required in Theorem 5.4 for this
decomposition. For this we note that µ2,FJX = ν2 = π2 and that µ1,FJX = ν1, π0,y = ν0,y, π1,y = ν1,y. Thus
all pairs of distributions are 1-smooth.

Now let us consider the local graphs of labels w of edges in A. Let w be of color (say) c1. The local graph
Aw is an ℓ-partite graph. The first part is the (only) v ∈ w of dimension i1. The rest of the parts are the
vertices of colors i2, i3, . . . , iℓ in Xw(0). Two vj , vj′ are connected if they belong to different parts and one of
the following holds:

1. col(vj) = 1.
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2. col(vj′) = 1.

3. {vj , vj′} ∈ Xw(1).

The edge distribution is by choosing two distinct ij , ij′ and then choosing a uniform edge in the first two
cases, or and edge in Xw[{ij , ij′}] in the third case.

This is a constant expander: Observe that there is a graph homomorphism between this graph and Kℓ

(the complete graph over ℓ vertices). Thus by Claim 2.2.3 one needs to verify that for every ij , ij′ the
bipartite graph induced by vertices of these colors is a bipartite expander. If ij = i1 or ij′ = i1 then this is
a complete bipartite graph, otherwise this is the colored swap walk between Xw[ij ] to Xw[ij′ ] which is a
λ-expander by assumption that X is a λ-local spectral.

It remains to lower bound the coboundary expansion of A. As seen above, the agreement complex A is a
blow-up of XI because every unlabeled triangle {v1, v2, v3} is chosen with the same probability as in XI .
Claim 7.1.1. Let X be a λ < 1

2r2 local spectral expander. Then for every unlabeled edge e0 = {v1, v2} ∈ XI (1),
the label graph Ge0 is an Ωℓ(1)-edge expander.

We defer the proof of Claim 7.1.1 to Appendix A since it is a straightforward calculation. Believing this
claim however we get, by Lemma 6.3, that h1(A) ⩾ Ω(h1(XI )).

By Theorem 5.4, it holds that h1(FJX) ⩾ Ω(h1(A)) · minj,v h1(F Jj Xv). We fix β1 = Ω(β) so that
h1(FJX) ⩾ β1 · minj,v h1(F Jj Xv) and get by induction that h1(FJX) ⩾ βR+1

1 . □

7.2 Improved bound

In Proposition 7.1.1 we show a bound of the form h1(FJX) ⩾ β

∑ℓ

i=1 |ci|
1 where the base of the exponent was

the worst coboundary expansion in any ℓ-colored link of X. As we shall see in Section 8, sometimes this β1
is sub-constant. However, looking closely at the proof, we can observe that the worst case link expansion
bound we use in the GK-decomposition can be replaced with a constant lower bound in all but O(1) of the
induction steps.

To be more precise, in the inductive step we get to choose some I = {i1, i2, . . . , iℓ} such that i1 ∈
c1, . . . , iℓ ∈ cℓ and using Theorem 5.4 obtain a bound of the form

h1(FJX) ⩾ Ω(h1(X{i1,i2,...,iℓ}))︸                       ︷︷                       ︸
A(X,I)

· min
j∈[ℓ],v∈X [ij ]

h1(FJjXv)︸                         ︷︷                         ︸
B(X,J ,I)

where Jj = {c′
1, c′

2, . . . , c′
ℓ} is such that c′

j = cj \ {ij} and c′
m = cm for m , j.

The first term A(X, I) is the term we bound directly. The second term B(X, J , I) is the one we bound
using induction, by recursively doing more GK-decompositions. In Proposition 7.1.1 we chose I arbitrarily
and bounded A(X, I) by the worst possible expansion of XI (and later inside the induction, this was bounded
by the worst possible coboundary expansion of XI

w for some link Xw).
The proof of Proposition 7.1.1 shows that we can try to optimize over I, that is, the bound we actually

get is
h1(FJX) ⩾ max

I
A(X, I) · B(X, J , I). (7.2)

In this case, the A(X, I) = Ω(h1(XI )) term is straightforward, but one needs to better understand what
happens to the B(X, J , I) term when we go further down the induction.

One can understand this term using the perspective of a two-player game on a tree, as we explain here.
First let us describe the tree.

1. The nodes of the tree correspond to (J ′, Xw) for J ′ ⩽ J and w ∈ X [∪J \ ∪J ′].

2. The leaves (i.e. basis of the induction) are all (J ′, Xw) so that either J ′ contains an empty color, or so
that all colors are singletons.

3. The root is (J , X) (i.e. X = X∅, which is consistent with ∅ ∈ X [∪J \ ∪J ]).
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4. For every non-leaf (J ′, Xw1), its children are the (J ′′, w2) such that J ′′ ⩽ J ′ and w2 = w1 ·∪ {v} for
some vertex v. (n particular this means that | ∪ J ′′| = | ∪ J ′| − 1).

The two-player game is the following, where Player 1 tries to maximize a value h, and Player 2 tries to
minimize it. The game begins at the root of the tree (X, J) with value h = h0 = 1. At the first step, Player
1 chooses some I ⩽ J as above and ‘gains’ h1(XI ), i.e. h1 = h0 · h1(XI ). Then Player 2 chooses a child
(Jj , Xv) such that ∪J \ ∪Jj ∈ I (this corrsponds to the minimum in B(X, J , I). The two players traverse to
(Jj , Xv) and the game continues. This process corresponds to the first step of the decomposition in (7.2) (for
X).

In general, when we are at a node (J ′, Xw), the first player chooses some I = {{i1}, {i2}, . . . , {iℓ}} ⩽ J ′,
and ‘gains’ h1(XI

w) (i.e. hi+1 := hi · h1(XI
w)). Then, if (J ′, Xw) is not a leaf, the second player chooses a

child (J ′′, Xw′) such that ∪J ′ \ ∪J ′′ ∈ I and the game continues on (J ′′, Xw′). If (J ′, Xw) is a leaf the game
ends and its value is the current hi+1. This step corresponds to (7.2), but for Xw instead of X. The maximal
value of the game is the largest ĥ such that for any possible Player 2, there exists a strategy of Player 1 that
attains h ⩾ ĥ at the end of the game. Modifying Proposition 7.1.1 can prove that h1(FJX) ⩾ ĥ.

Using this point of view let us see a sufficient condition on X that implies a better ĥ than the one obtained
by the minimum.

For J ′ ⩽ J let us denote by
d(J ′) =

∑
c′

j∈J ′

|c′
j |.

We observe that the i-th round of the game we are at a node (J ′, Xw) such that d(J ′) = R − i + 1.
Suppose that there are values Tq such that for every (J ′, Xw) with d(J ′) = q, there exists a choice I for

Player 1 so that they gain h1(XI
w) ⩾ Tq. In every step in the gave d(J ′) decreases by 1, and it is never less

than 1. Thus it is easy to see that ĥ ⩾
∏R

q=1 Tq.
Let us give a more mathematical description to this idea. Let q ⩽ R be an integer. Jq = Jq(J) be all the

J ′ = {c′
1, c′

2, . . . , c′
ℓ} ⩽ J such that d(J ′) = q. Let

Tq(X, J) = min
(J ′,Xw),J ′∈Jq ,w∈X [∪J\∪J ′]

(
max

i1,i2,...,iℓ s.t. ij∈c′
j

(
h1(X

{i1,i2,...,iℓ}
w )

))
.

To state this explicitly, this is the largest Tq such that Player 1 is guaranteed to get when at a node
(J ′, Xw) where J ′ ∈ Jq(J).

The following proposition follows directly from the discussion above.

Proposition 7.2.1. Let X be a partite λ-one sided local spectral expander for λ ⩽ 1
2r2 . Let J = {c1, c2, . . . , cℓ}

and let R =
∑ℓ

j=1 |cj |. Then h1(FJX) ⩾
∏R

q=1 Ωℓ(Tq(X, J)).

Proof. In the proof of Proposition 7.1.1 we showed (7.1). Now we show that (7.1) implies this proposition as
well.

By definition TR+1(X, J) is the minimum over the root only, i.e. we are only looking at (X, J) (since
J is the only set with d(J) = R + 1). Let I = {i1, i2, . . . , iℓ} be such that h1(XI ) is maximized. Then
h1(XI ) ⩾ TR+1(X, J).

By (7.1), we have that

h1(FJX) ⩾ Ω(h1(XI )) · min
j∈[ℓ],v∈X [ij ]

(h1(FJjXv) ⩾ TR+1(X, J)) · min
j∈[ℓ],v∈X [ij ]

(h1(FJjXv).

since h1(XI ) ⩾ TR+1(X, J). By applying the induction hypothesis to the second term we get

⩾ TR+1(X, J) · min
j∈[ℓ],v∈X [ij ]

R∏
q=1

Tq(Xv, Jj).

Let us show that for every j, v in the minimum,
R∏

q=1
Tq(Xv, Jj) ⩾

R∏
q=1

Tq(X, J).
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In fact we will show that for every ij and vertex v ∈ X [ij ], Tq(Xv, Jj) ⩾ Tq(X, J).
The expression for Tq(Xv, Jj) is, by definition,

Tq(Xv, Jj) = min
(J ′,Xw),J ′∈Jq(Jj ),w∈Xv [∪Jj\∪J ′]

(
max

i1,i2,...,iℓ s.t. ij∈c′
j

(
h1(X

{i1,i2,...,iℓ}
v ·∪w )

))
.

By making a change of variables w′ = v ·∪ w and observing that w ∈ Xv [∪Jj \ ∪J ′] if and only if w′ ∈
X [∪J \ ∪J ′], we can change this expression to

Tq(Xv, Jj) = min
(J ′,Xw′ ),J ′∈Jq(Jj ),v∈w′∈X [∪J\∪J ′]

(
max

i1,i2,...,iℓ s.t. ij∈c′
j

(
h1(X

{i1,i2,...,iℓ}
w′ )

))

As we can see this is the same minimum as in Tq(X, J), only that we consider less J ′ (since J ′ ⩽ Jj

implies J ′ ⩽ J) and less w′ (since in Tq(Xv, Jj) we require v ∈ w′). Thus Tq(Xv, Jj) ⩾ Tq(X, J) and the
proposition follows. □

7.3 Proof of Theorem 1.3
Recall the definition of the partitification of a complex X in Section 2.

Proof of Theorem 1.3. By Claim 2.8.3 h1(F rX) = Ω(h1((F rX)†7)) so we show coboundary expansion of
the 7-partitification (not that the assumption on the dimensions of X imply that this complex exists).

For i = 1, 2, . . . , 7 let ci = {(i − 1)r + 1, (i − 1)r + 2, . . . ir}. Note that (F rX)†7 � (X†7r)c1,c2,c3,c4,c5,c6,c7 .
For any I = {i1, i2, . . . , i7} such that ij ∈ cj , and w ∈ X†7r whose color is disjoint from I, (X†7r

w )i1,i2,...,i7 �

X†7
p1(w)

We note that the dimension of Xw is at least 5 from the assumption on the dimension of X. Thus by
Claim 2.8.4

h1((X†7r
w )i1,i2,...,i7) = h1(X†7

p1(w)
) = Ω(h1(Xp1(w))) = Ω(β).

By Proposition 7.1.1 h1((F rX)†7) = βr
1 for some β1 = Ω(β) and the theorem is proven. □

7.4 Short detour: swap coboundary expansion of the complete complex
Claim 7.4.1. Let ∆ be the complete complex on n vertices, then for any r ⩽ n

6 , h1(F r∆) ⩾ 1
5 .

The proof of this claim just follows from the fact that the faces of the complete complex has small diameter,
and that every small enough cycle in it lies in the link of some other vertex. Thus one can contract any small
cycle using the link.

Proof of Claim 7.4.1. The group Sym(n) acts transitively on F r∆(2) (which implies that Aut(F r∆) acts
transitively on the 2-faces), therefore by Lemma 1.6 it is enough to construct a cone of diameter 5. Let
v0 = {1, 2, . . . , r}. Let us begin with constructing paths. For u such that v0 ∩ u = ∅ we set Pu = (v0, u) and
otherwise we set Pu = (v0, w, u) for some w that is disjoint from v0 ∪ u (the fact that n ⩾ 3r allows us to
find such a w).

Now let us take an edge u1, u2, and consider the cycle C0 = Pu1 ◦ (u1, u2) ◦ P −1
u2 = (v0, v1, . . . , vm, v0)

where m ⩽ 5. Let A =
⋃

w∈C0
w ⊆ [n]. Then |A| ⩽ r|C0| ⩽ 5r. Recall that 6r ⩽ n and thus there exists some

x ∈ F r∆ such that x ∩ A = ∅ and in particular, for every edge {a, b} in C0, {x, a, b} ∈ F r∆(2). Thus we can
define Tu1u2 to be the sequence Ci = (v0, x, v1, x, v2 . . . , x, vi, vi+1, . . . , vm) for i = 1, 2, . . . , m. The loop Cm

is equivalent to the trivial loop (v0) since one can contract any (x, vi, x) back to (x). Thus |Tu1u2 | ⩽ 5 and
by Lemma 1.6 h1(F r∆) ⩾ 1

5 . □
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8 Coboundary expansion of the spherical building’s faces complex
In this section we apply the tools we developed in previous sections to lower bound the coboundary expansion
of the faces complex of the spherical building.

Theorem 8.1 (More general version of Theorem 1.4). Let d, n be integers such that n > d5. There is some
q0 = q0(d) such that the following holds. Let q > q0 be any prime power. Let S be either SLn+1(Fq)-spherical
building, or a link of a d-face in the SLn+1(Fq) spherical building. Let Z = FdS be its faces complex. Then
Z is a coboundary expander and h1(Z) ⩾ exp(−O(

√
d)).

From this theorem we immediately derive Theorem 1.5.

Proof of Theorem 1.5 from Theorem 8.1. Let X be a complex as in Theorem 1.5. By Theorem 2.15 and the
fact that its links are coboundary expanders (since they are isomorphic to faces complexes of links of the
spherical building), it holds that h1(X) ⩾ exp(−Ω(

√
d)) (as a cosystolic expander). □

8.1 Notation for this section

We denote by Z = FdS and Z̃ = FS.
Let S denote the spherical building of SLn(Fq). For a vertex v ∈ S(0), we denote its dimension as a

linear subspace by col(v). We can write the link of v as

Sv =
{

s′ ·∪ s′′ ∈ S
∣∣∣ s′ ∈ SB′ , s′′ ∈ SB′′

}
where

B′ = {i ∈ N | 0 < i < col(v)} , B′′ = {i ∈ N | col(v) < i < n} .
For a general face w = {v0 < v1 < · · · < vr} ∈ S, we can write the link

Sw =
{

s0 ·∪ · · · ·∪ sr ∈ S
∣∣∣ ∀i ∈ {0, . . . , r}, si ∈ SBi

}
where Bi = {i ∈ N | col(vi−1) < i < col(vi)} for 0 < i ⩽ r, and B0 = {i ∈ N | 0 < i < col(v0)}.

Recall that S is n-partite, and let c ⊂ [n] be a set of colors. The same link decomposition holds for Sc
w

with respect to a face w whose colors are disjoint from c:

Sc
w =

{
s0 ·∪ · · · ·∪ sr ∈ S

∣∣∣ ∀i ∈ {0, . . . , r}, si ∈ SBi

}
where Bi = {i ∈ c | col(vi−1) < i < col(vi)} for 0 < i ⩽ r, and B0 = {i ∈ c | 0 < i < col(v0)}.

8.2 Proof Roadmap

The proof of Theorem 8.1 proceeds by decomposing the complex Z = FdS into smaller and smaller pieces, for
which we are able to prove coboundary expansion, and so that we are able to go back up in the decomposition
and deduce coboundary expansion for the entire complex. The decomposition takes the following steps (each
based on a different technique):

1. Color restriction Z → {ZJ}J : In Section 8.3 we lower bound the coboundary expansion of Z by
the coboundary expansion of color-restricted sub-complexes ZJ , for sets J of

√
d + 1 mutually disjoint

colors. We show that if most complexes ZJ are exp(−O(
√

d))-coboundary expanders, then Z is too.
This step is similar to the proof of Theorem 2.16 which appears in [DD23b].

2. Trickling down the links ZJ → {ZJ ′
s }s : In Section 8.5 we lower bound the coboundary expansion

of ZJ by coboundary expansion of “deep” links ZJ ′
s . We take s ∈ ZJ with size |s| = |J | − 5 so

that J ′ = col(s) \ J consists of 5 colors from C, and (Zs)J ′
= ZJ ′

s is a 5-partite complex. We use
Theorem 2.15 in an inductive “trickling down” manner, to deduce coboundary expansion of ZJ from
coboundary expansion of ZJ ′

s .
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3. Tensor decomposition: In section Section 8.6 we show (Lemma 8.5) that ZJ ′
s � K ⊗

⊗r
i=0 FJiSs �

K ⊗ Z̃ J̃ where Z̃ ⊃ Z stands for FS, K is a complete five-partite complex and J̃ still has five colors
like J ′ but is typically much narrower than J ′, where the width of a color set J ′ is | ·∪ J ′| =

∑
c∈J ′ |c|.

Then by Claim 2.8.2 we show that the coboundary expansion of ZJ ′
s is at least a constant times the

coboundary expansion of Z̃ J̃
s .

4. GK decomposition: Z̃ J̃
s → {Z̃I

s }I . We use the GK decomposition (described in Section 5) to
repeatedly reduce the size of | ·∪ J̃ | by deleting an element from one of the five colors at every step.
We stop either if some cj becomes empty, or when all five colors are singletons, namely |cj | = 1 for
j = 1, . . . , 5. Each step costs us a constant multiplicative decrease, so the expansion constant loses a
factor that is exponential in the width of J̃ .

5. Spherical building: We lower bound the coboundary expansion of Z̃I
s when I =

{{i1}, {i3}, {i3}, {i4}, {i5}} is a set of singletons. We observe that Z̃I
s � S{i1,...,i5}

·∪s , so we move to
study such 5-partite restrictions of links of the spherical building S. This is done in Section 8.7 by a
combination of cones arguments and recursive GK-decomposition steps.

Notation and Parameters

Fix d, n ∈ N so that d5 ⩽ n. Fix m =
√

d + 1.
We let S denote the spherical building of SLn+1(Fq). This is an n-partite complex whose colors are

denoted [n]. We denote Z = FdS and Z̃ = FS ⊃ Z. We let C = ( [n]
d+1) be the set of possible colors of vertices

of Z.
We use u, v to denote vertices of S, and w to denote vertices of Z, which are faces of S. Faces of Z are

denoted by s. We denote subsets of colors of FS that are mutually disjoint by the letters J , I (so J , I ∈ F∆).
Let us now prove a slightly weaker statement than Theorem 8.1, that is, let us show that

h1(Z) ⩾ exp(−O(
√

d log2 d)). (8.1)

The proof of Theorem 8.1 is almost identical, but removing the log2 d in the exponent requires some more
technicalities that obscure the main ideas in the proof. We prove the stronger version below.

Proof of Theorem 8.1(weaker version). To bound h1(Z) we follow the steps of the decomposition. Let J
be the set of well-spread J ’s per Definition 8.3. By Proposition 8.4.1, at least half of the sets J are in J .
Therefore, by Lemma 8.2,

h1(Z) ⩾ O(1) · min
J∈J

h1(ZJ ) (8.2)

Fix J ∈ J . By Lemma 8.4
h1(ZJ ) ⩾ exp(−O(m)) · min

s∈ZJ (m−6)
h1(ZJ

s ) (8.3)

Fix any s ∈ ZJ (m − 6). By Corollary 8.8

h1(ZJ
s ) ⩾ const · h1(Z̃ J̃

s ) (8.4)

and by Claim 2.6.1 Z̃ J̃
s � FJ̃S∪s.

Next, denote by β = minw,I h1(SI
∪s ·∪w) where the minimum is taken over sets I consisting of five singletons

such that I ∪ col(s) ⩽ J , and w ∈ S∪s such that col(w) ⊆ ∪J and col(w) ∩ I = ∅.
By Proposition 7.1.1,

h1(Z̃ J̃
s ) ⩾ const · (β1)

R (8.5)

where β1 = Ω(β) and R =
∑

j |c̃j |. By item 3(c) of Definition 8.3, for every c̃j , the number of indices in
crowded bins is at most O

(
d log d

m log m

)
, so in total R = O

(
d log d

m log m

)
.

Finally, by Lemma 8.9,
β = min

w,I
h1(SI

∪s ·∪w) ⩾ exp(−O(log2 d)) (8.6)
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We now plug in each equation into the previous one, to get the desired bound,

h1(Z) ⩾ const · exp
(

−O

(
m +

d poly log d

m log m

))
= exp(−O(

√
d log2 d)).

□

Proof of Theorem 8.1(full version). Our starting point is (8.4) in the proof above, namely that

h1(Z) ⩾ . . . ⩾ exp(−O(m)) min
J∈J ,s∈ZJ (m−6)

h1(Z̃ J̃
s ).

Fixing J ∈ J and s, we bound h1(Z̃ J̃
s ). By Claim 2.6.1 Z̃ J̃

s � FJ̃S∪s. We wish to use Proposition 7.2.1.
Towards this, recall the definition of Tq(S∪s, J̃) as in Section 7.2. Tq(S∪s, J̃) is the largest constant such
that for every choice of J ′ = {c′

1, c′
2, . . . , c′

5} such that c′
j ⊆ c̃j and

∑5
j=1 |c′

j | = q there are indexes ij ∈ c′
j ,

such that the coboundary expansion of h1(Si1,i2,...,i5
∪s ·∪w ) ⩾ Tq(S∪s, J̃) for every face w ∈ S∪s[J̃ \ ∪J ′]. By

Proposition 7.2.1

h1(FJ̃S∪s) ⩾ exp(−O(R)) ·
R∏

q=1
Tq(S∪s, J̃)

where R =
∑5

j=1 |c̃j |. As we saw in the weaker version’s proof, R = O( d log d
m log m ). By the definition,

Tq(S∪s, J̃) ⩾ min
w,I

h1(SI
∪s ·∪w)

so by Lemma 8.9, Tq(S∪s, J̃) ⩾ exp(−O(log2 d)).
However, by Claim 8.8.1 we can obtain a tighter bound on Tq(S∪s, J̃). Let

q0 = max
B,c

|c ∩ B|

where B is a col(∪s)-bin and c ∈ J̃ . By Definition 8.3 q0 = O
(

log d
log m

)
and by Claim 8.8.1 for every q > 10q0,

Tq(S∪s, J̃) = Ω(1). Thus

FJ̃S∪s ⩾ exp(−O(R)) · exp(−O(log2 d))10q0 · exp(−O(R − 10q0)).

Plugging in m =
√

d we have that q0 = O(1) so this is at least exp(−O(R + log2 d)) = exp(−O(
√

d)). In
conclusion, we have that h1(Z) = exp(−O(

√
d)). □

8.3 From color restrictions to the entire complex

Lemma 8.2. Let J be a uniformly chosen set of m m =
√

d + 1 pairwise disjoint colors from C (namely,
J ∼ Fd∆(m − 1)). If PJ∼Fd∆(m−1)

[
h1(ZJ ) ⩾ β

]
= p, then h1(Z) = Ω(βp2).

The first step in proving Lemma 8.2, is to increase the size of J from
√

d + 1 to (d + 1)2. We do this
because later on in the proof we will need the fact that for any set of colors J and color c, the fraction of
neighbors of s ∈ Z [c1] in ZJ (0) out of all edges of s will be almost independent of c. If |J | =

√
d + 1 then

some colors c will intersect all colors c′ ∈ J non trivially (and therefore s will have no neighbors in ZJ (0)),
while other c’s won’t intersect any of the colors in J . By increasing the size of the colors to (d+ 1)2, we make
sure that for any color c, the fraction of colors c′ ∈ J that intersect c to be a negligible fraction of the colors
in J . We use more precise arguments of this form proving smoothness of some distributions in Claim 8.3.3
and Claim 8.3.4.

This is done using Theorem 2.16 as a black box.
Claim 8.3.1. Let J ∼ Fd∆((d + 1)2 − 1) of colors. Then with probability p

2 , ZJ is a Ω(βp)-coboundary
expander.
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Proof of Claim 8.3.1. The marginal of choosing J ∼ Fd∆((d + 1)2 − 1) and then choosing J ′ ⊆ J of size√
d + 1 is just the distribution of choosing J ′ ∼ Fd∆(m − 1). Hence by a Markov argument,

P
J∼Fd∆(d2−1)

[
P

J ′⊆J ,|J ′|=
√

d

[
h1(ZJ ′

) ⩾ β
]

>
p

2

]
⩾

p

2 .

For every such set of colors J ∈ Fd∆((d + 1)2 − 1), we claim that ZJ is a Ω(βp)-coboundary expander. We
prove this via Theorem 2.16. The colors of J are mutually disjoint so ZJ is (d + 1)2-partite. It is a local
spectral expander since it is a color restriction of Z and by the above, there is an Ω(p)-fraction of color
restrictions ZJ ′ that are β-coboundary expanders. By Theorem 2.16 ZJ is a coboundary expander. □

Fix J with (d + 1)2 colors. Denote by

Ej =
{

{u, v} ∈ Z(1)
∣∣∣ ∣∣∣ZJ (0) ∩ {u, v}

∣∣∣ = j
}

, j = 0, 1, 2.

In words, these are all the edges in e ∈ Z(1), such that exactly j of the vertices v ∈ e have that col(v) ∈ J .
For a fixed set of colors J we denote the following two distributions over triangles.

1. TJJn is the distribution over uvw ∈ Z(2) given that u, v ∈ ZJ (0) and w < ZJ (0).

2. TnnJ is the distribution over uvw ∈ Z(2) given that u, v < ZJ (0) and w ∈ ZJ (0).

For the rest of the proof we fix f : Z(1) → Γ. We need to find some g : Z(0) → Γ such that β dist(f , δg) ⩽
wt(δf).

First we find a set of colors J that captures the low weight of δf . More formally, we need the following
claim.
Claim 8.3.2. There exists some set J ∼ F∆((d + 1)2 − 1) colors such that:

1. All colors in J are mutually disjoint and ZJ is a Ω(βp)-coboundary expander.

2. wtZJ (δf) ⩽ O(p−1)wt(δf).

3. wtTJJn
(δf) := Puvw∼TJJn

[δf(uvw) , Id] ⩽ O(p−1)wt(δf).

4. wtTnnJ
(δf) := Puvw∼TnnJ

[δf(uvw) , Id] ⩽ O(p−1)wt(δf).

The proof is similar to the proof in [DD23b, Claim 4.3]. We prove it in the end of the subsection.
Fix J to be as in Claim 8.3.2. We define g in two steps.

1. We begin by defining g for ZJ (0). Since ZJ is an Ω(βp)-coboundary expander, there exists some g
such that Ω(βp) distZJ (f , δg) ⩽ wtZJ (δf) ⩽ O(p−1)wt(δf). We take g to be one such function.

2. Define g for Z(0) \ ZJ (0) by taking g(v) = maju∈ZJ
v (0){f(vu)g(u)} to be the most popular value (ties

broken arbitrarily). We note that ZJ
v (0) , ∅ because the color of v can intersect at most d+ 1 colors in

J because they are mutually disjoint, and this leaves at least (d + 1)2 − (d + 1) remaining colors to
choose from.

To analyze dist(f , δg) we need the following two smoothness claims regarding the different ways to choose
edges with respect to ZJ .
Claim 8.3.3. Let J be a set of (d+ 1)2 colors fixed mutually disjoint colors. Consider the following distributions
over E1:

1. D0 - The distribution where one samples an edge uv ∈ Z(1) conditioned on being in E1.

2. d - The distribution where one samples an edge by first sampling a triangle uvw ∼ TnnJ such that
u, w < ZJ (0) and v ∈ ZJ (0), and then outputting uv.

3. D2 - The distribution where one samples an edge by first sampling a triangle uvw ∼ TJJn such that
v, w ∈ ZJ (0) and u < ZJ (0), and then outputting uv.
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Then (D0, D2) and (d, D0) are 1
2 -smooth.

In particular, this claim together with Claim 2.1.1 implies that for every set A ⊆ E1 it holds that

P
D0

[A] ⩽ 2 P
D2

[A] . (8.7)

and
P
d
[A] ⩽ 2 P

D0
[A] . (8.8)

Claim 8.3.4. Let J be a set of (d + 1)2 mutually disjoint colors. Consider the following distributions over E0:

1. P0 - The distribution where one samples an edge uv ∈ Z(1) conditioned on u, v < ZJ (0).

2. P1 - The distribution where one samples an edge uv ∈ Z(1) by first sampling a triangle uvw ∼ TnnJ

such that u, v < ZJ (0) and w ∈ ZJ (0), and then outputting uv.

The (P0, P1) are 1
2 -smooth.

In particular this implies that for every set A ⊆ E0 it holds that

P
P0

[A] ⩽ 2 P
P1

[A] . (8.9)

We prove both of these claims in Appendix A.

Proof of Lemma 8.2. We already know that

distE2(f , δg) ⩽ O(
1

βp2 )wt(δf) (8.10)

since this follows from the coboundary expansion of ZJ and the fact that g was chosen to minimize this
distance. We show separately that distE1(f , δg) = O( 1

βp2 )wt(δf), and that distE0(f , δg) = O( 1
βp2 )wt(δf).

Here the distribution over Ei is the distribution over Z(1) conditioned on the edge being in Ei. As dist(f , δg)
is a convex combination of distEi

(f , δg), the proposition follows.
Let us begin with distE1(f , δg) = Puv∼D0 [f(uv) , δg(uv)]. By Claim 8.3.3 we can replace D0 with D2

and just show that
P

uv∼D2
[f(uv) , δg(uv)] ⩽ O(

1
βp2 )wt(δf). (8.11)

Fix some v ∈ Z(0) \ ZJ (0), and let εv = Pu∈XJ
v (0) [f(uv) , δg(uv)] = Pu∈XJ

v (0) [g(v) , f(uv)g(u)].
Recall that the underlying graph of XJ

v is a Θ(1)-edge expander. By the edge-expansion and Claim 2.3.1,
it holds that

P
u∈XJ

v (0)
[g(v) , f(uv)g(u)] = O( P

uw∈XJ
v (1)

[f(wv)g(w) , f(uv)g(u)]).

On the other hand, if f(vw) = δg(vw) and δf(vuw) = Id then f(wv)g(w) = f(uv)g(u) since

f(wv)g(w) = f(uv)g(u) ⇔ (8.12)
f(wv)g(w)g(u)−1f(vu) = Id ⇔ (8.13)

f(wv)f(uw)f(vu) = Id ⇔ (8.14)
δf(uvw) = Id (8.15)

where the third line follows from f(vw) = δg(vw) and last line is true by the assumption that indeed
δf(vuw) = Id. Thus,

P
uv∼D2

[f(uv) , δg(uv)] ⩽ E
v
[εv ]

= O

(
E
v

[
P

u∈XJ
v (0)

[g(v) , f(uv)g(u)]

])
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= O

(
E
v

[
P

uw∼XJ
v (1)

[δf(uvw) , 0] + P
uw∼XJ

v (1)
[δf(uw) , g(uw)]

])
= O(wtTJJn

(δf) + distE2(f , δg)),

where the last line follows from the fact that choosing v and then a triangle uw as follows amounts to the
distribution TJJn. By (8.10) distE2(f , δg) = O( 1

βp2 )wt(δf) and by Claim 8.3.2 wtTJJn
(δf) = O(p−1)wt(δf)

thus
distE1(f , δg) = O( P

uv∼D2
[f(uv) , δg(uv)]) = O(

1
βp2 )wt(δf). (8.16)

We move to show that distE0(f , δg) = Puv∼P0 [f(uv) , δg(uv)] = O( 1
βp2 )wt(δf). By Claim 8.3.4 it is

enough to show that
P

uv∼P1
[f(uv) , δg(uv)] ⩽ O(

1
βp2 )wt(δf). (8.17)

P1 is a marginal of TnnJ so

P
uv∼P1

[f(uv) , δg(uv)] = P
uvw∼TnnJ ,u,v<ZJ (0)

[f(uv) , δg(uv)] .

On the other hand, if δf(uvw) = Id, f(vw) = δg(vw) and f(uw) = δg(uw) then

δf(uvw) = Id ⇔
f(uv) = f(wv)f(uw) ⇔

f(uv) = δg(wv)δg(uw) ⇔
f(uv) = g(u)g(v)−1 = δg(uv).

Thus

P
uv∼P1

[f(uv) , δg(uv)] ⩽

P
uvw∼TnnJ

[δf(uvw) , Id] + 2 P
uw∼d

[f(uw) , δg(uw)] ⩽

P
uvw∼TnnJ

[δf(uvw) , Id] + 4 P
uw∼D0

[f(uw) , δg(uw)] ⩽

wtTnnJ
(δf) + 4 distE1(f , δg) = O(

1
βp2 )wt(δf).

Where the third line follows from Claim 8.3.3 and the last line follows from Claim 8.3.2 and (8.16). □

Proof of Claim 8.3.1. Let h(uvw) be the indicator that δf(uvw) , Id. Then Euvw∼Z(2)
[
1δf,Id

]
= wt(δf).

We define three random variables. The first is A0(J) = Puvw∼ZJ (2) [δf(uvw) , Id] = Euvw∼ZJ (2) [h(uvw)].
Obviously EJ [A(J)] = wt(δf). The other two random variables will also have the same expectation.

Let AJJn(J) = wtTJJn
(δf). Consider the following distribution R:

1. Sample J ∼ Fd∆(d2 − 1).

2. Sample t ∼ TJJn and t2 ∼ TnnJ .

3. Output (J , t).

The marginal over t is the distribution over triangles in Z.
Its expectation is equal to

E
J
[AJJn(J)] = E

J

[
E

t∼TJJn

[h(t)]

]
(8.18)

= E
(J ,t)∼RJJn

[h(t)] (8.19)
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= E
t∼Z(2)

[h(t)] (8.20)

= wt(δf). (8.21)

Similarly for AnnJ (J) = wtTnnJ
(J), EJ [AnnJ (J)] = wt(δf). Thus

E
J
[A0(J) + AnnJ (J) + AJJn(J)] ⩽ 3wt(δf).

The fraction of J ∼ Fd∆(d2 − 1) such that ZJ is a Ω(βp)-coboundary expander is at least p
2 . Thus the

expectation of A0(J) + AnnJ (J) + AJJn(J) over this set so J ’s is at most 2
p · 3wt(δf). Thus there exists

some fixed J such that ZJ0 is a Ω(βp)-coboundary expander, and whose value is less than the expectation,
i.e. that A0(J) +AnnJ (J) +AJJn(J) ⩽

6
pwt(δf). In particular, A0(J), AnnJ (J), AJJn(J) ⩽

6
pwt(δf). This

J is the set of colors we need. □

8.4 Well-spread colors
We define a well-spread color to have good pseudo-random properties, that is, all indices are roughly equally
spaced, and interlaced with one another so that many colors will be isolated. This will facilitate the lower
bounds in the next sections

Let J ⊆ C. Recall that ·∪J =
⋃

c∈J c.

Definition 8.3 (Well-spread subsets of colors). Let J be a set of m colors in C. We say that J is well-spread
if the following properties hold.

1. Every c1, c2 ∈ J are disjoint.

2. For every ℓ1, ℓ2 ∈ (∪J) ∪ {0, n} it holds that |ℓ1 − ℓ2| ⩾ n
(m(d+1))3 .

3. For every J ′ ⊆ J of size |J ′| = 5 and J ′ = J \ J ′:

(a) For every ℓ ∈ ∪J ′ ∪ {0} there exists some ℓ′ ∈ ∪J ′ ∪ {n} such that 1 < ℓ′ − ℓ ⩽ 100n log(d+1)
(d+1)m .

(b) For every c ∈ J ′, the number of colors i ∈ c that are in J ′-crowded J ′-bins is at most
100(d+1) log(d+1)

m log m .

(c) For every c ∈ J ′ and every J ′-bin B, it holds that |B ∩ c| ⩽ 20 log(d+1)
log m .

We denote by J ⊂ Fd∆ the set of well-spread color sets.

Proposition 8.4.1. Let d, n be such that n ⩾ d5. Let 6 ⩽ m ⩽ (d + 1). The probability that m uniformly
chosen colors are well-spread tends to 1 whenever n ⩾ d5 and d → ∞.

The proof of Proposition 8.4.1 is just a bunch of elementary probabilistic lower bounds. We prove it in
full in Appendix A.

8.5 Trickling Down
Lemma 8.4. Let J ∈ J be a well-spread set of m colors, −1 ⩽ i ⩽ m − 6,

h1(ZJ ) ⩾ exp(−O(i)) · min
s∈ZJ (i)

h1(ZJ
s ).

Proof. We proceed by induction on the dimension of s, until we reach dim(s) = m − 6. For i = −1 the claim
holds trivially. So we assume the claim is true for i and show it for faces i + 1.

Let us assume that for every s ∈ X(i), h1(ZJ
s ) ⩾ β and show that h1(ZJ ) ⩾ β exp(−Ci) (for a large

enough constant C > 0).

39



By the induction hypothesis,

h1(ZJ ) ⩾ exp(−C(i − 1)) · min
t∈ZJ (i−1)

h1(ZJ
t ) (8.22)

By assumption, for every t ∈ ZJ (i − 1) and v ∈ ZJ
t (0), (ZJ

t )v = ZJ
{t ·∪{v}}, so all links of vertices in ZJ

t are
β-coboundary expanders. Moreover, recall that ZJ

t and its links are a partite complexes (since the colors
in J are mutually disjoint), and the walk from every two parts is a swap walk in (a link of) the spherical
building. It follows that ZJ

t is also a local spectral expander, that is, Z is a λ-one side spectral expander for
a small enough λ. It then holds by Theorem 2.15 that

h1(Zt) ⩾ β · 1 − λ

24 − eλ ⩾ β exp(−C).

(We assume that λ is small enough so that the last inequality holds). Unfortunately, this only shows that
ZJ

t is a cosystolic expander. However we need to argue that it is a coboundary expander, that is, that the
cohomology vanishes.
Claim 8.5.1. Let J be a well-spread set of colors. Then for every −1 ⩽ i ⩽ m − 6 and every t ∈ ZJ (i), it
holds that Z1(Zt, Γ) = B1(Zt, Γ) for every group Γ. This means that cosystolic expansion and coboundary
expansion are the same for Zt.

Plugging this expression back in the minimum in (8.22) gives us h1(ZJ ) ⩾ β exp(−Ci). □

We end this section with the proof of Claim 8.5.1. However we can use Proposition 7.1.1 to get weaker
bounds on the coboundary expansion of every link. These bounds show that the cohomology vanishes
therefore the cosystolic expansion we get here is actually coboundary expansion.

Proof of Claim 8.5.1. Fix a link ZJ
t . By Proposition 7.1.1 it is enough to show coboundary expansion of

every ZI
∪s ·∪w. This gives us some positive bound on coboundary expansion that in particular implies that the

cohomology is empty. This holds by Lemma 8.10 proven later in this section. □

8.6 A tensor decomposition of a generalized link
Given w ∈ S let c∗ = col(w) ⊂ [n] and write c∗ = {j1, . . . , jr}. Define r + 1 bins Bi =
{j ∈ [n] | ji < j < ji+1} for 0 < i < r and also B0 = {j < j1} and Br = {j > jr}.

We first show that the link of the spherical building S itself has a product structure.
Claim 8.6.1. For any color c ⊆ [n] and any flag w ∈ S, Sw[c] = Sw[c0]× · · · × Sw[cr], where we let ci = c ∩ Bi

for i = 0, . . . , r.

Proof. Let w′ ∈ Sw[c]. Since col(w′) = c and w′ ·∪ w ∈ S one can clearly write w′ = w′0 ·∪ · · · ·∪ w′r where the
color of w′i is c ∩ Bi = ci, namely w′i ∈ Sw[ci]. It is also easy to see that the map w′ ↔ (w′0, . . . , w′r) is a
bijection. □

Next, let J = {c1, . . . , cℓ} ∈ F∆(ℓ − 1) be a set of pairwise disjoint colors cj ⊆ [n], and assume they are
also disjoint from c∗. (In our application, we will have |J | = ℓ = 5). We move on to the structure of a
generalized link Z̃J

w,

Lemma 8.5. Z̃J
w � ⊗r

i=0Z̃Ji
w where Ji = {cj ∩ Bi}ℓ

j=1.

Let us denote ci
j = cj ∩ Bi. Before proving the lemma we remark that Z̃Jiw is an ℓ-partite complex with

the j-th part being Z̃w[ci
j ]. So when we define the tensor product of two such complexes, we naturally pair

the j-th parts with each other, as per Definition 2.20.

Proof. By definition , FJSw is ℓ-partite with the j-th part consisting of vertices FJSw[cj ]. Viewed as faces of
S these are exactly Sw[cj ] which equals Sw[c0

j ] × · · · × Sw[cr
j ] by the previous claim. We can therefore write

each w′
j ∈ Z̃J

w[cj ] uniquely as w′
j = w′0

j ∪ · · · ∪ w′r
j with w′i

j ∈ Sw[ci
j ]. We view w′i

j as the projection of w′
j

to the i-th coordinate, and have a bijection between w′
j ↔ (w′0

j , . . . , w′r
j ). This is progress because w′

j is a
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generic vertex of Z̃J
w and the RHS is a generic vertex of

∏r
i=0 Z̃Ji

w , so we have a bijection between the vertex
set of the two complexes.

Fix now two vertices w1, w2 ∈ Z̃J
w(0), and observe that they are connected by an edge iff for all i, the

i-th coordinate is connected by an edge, namely {wi
1, wi

2} ∈ Z̃Ji
w (1). More generally, {w1, w2, . . . , wℓ} ∈ Z̃J

w if
and only if for all i and {wi

0, wi
1, . . . , wi

r} ∈ Z̃Ji
w . One can verify that as measured complexes, both complexes

have the same measure on the top level faces, and the lemma is proven. □

8.6.1 A refined decomposition

We now show that we can in fact ignore some of the bins in the decomposition above, simplifying the complex
we need to analyze. We continue with the notation of w ∈ S and J = {c1, . . . , cℓ} where the cj ’s are disjoint
subsets of [n] as before. We also denote I = col(w) ⊂ [n], and recall that by assumption I is mutually
disjoint from the sets in J . Recall that ci

j = cj ∩ Bi.

Definition 8.6 (Crowded Bin). A bin Bi crowded if Ji = (ci
1, . . . , ci

ℓ) has more than one coordinate for
which ci

j , ϕ. It is lonely if there is exactly one such coordinate, and otherwise it is empty.

When a bin is lonely or empty the corresponding component in the tensor decomposition becomes trivial,
Claim 8.6.2.

1. Let i be an index of lonely bin. Then Z̃Ji
w is isomorphic to Kn1,1,...,1.

2. Let i is an index of an empty bin then Z̃Ji
w � K1,1,...,1.

This allows us to derive a significantly simplified form for Z̃J
w,

Lemma 8.7. Let R be the indices of all crowded bins,

Z̃J
w � K ⊗

⊗
i∈R

Z̃Ji
w (8.23)

where K is some complete ℓ-partite simplicial complex.

Proof of Claim 8.6.2. Suppose the i-th bin is lonely. Then Ji = (ci
1, . . . , ci

ℓ) is a tuple where all but one of
the colors ci

j ∈ Ji are empty. Thus all but one of the ℓ parts in Z̃Ji
w have a single vertex (distinct copies of the

empty face). Let ci
j ∈ Ji be the non-empty set, and set n1 = |Z̃Ji

w [ci
j ]|. Indeed for every wj ∈ Z̃Ji

w [ci
j ] there is

a top-level face containing wj in the j-th part, and all the copies of the empty face in the other coordinates
of Z̃Ji

w . This is Kn1,1,1,...,1.
If the bin is empty then all sets in Ji are empty. Thus Z̃Ji

w has a single vertex in every part, and a single
top level face. This is K1,1,...,1. □

Proof of Lemma 8.7. By Lemma 8.5 we can decompose

Z̃J
w �

⊗
i∈R

Z̃Ji
w ⊗

⊗
i<R

Z̃Ji
w .

It is enough to show that
⊗

i<R Z̃Ji
w is a complete partite complex. By Claim 8.6.2 every component in this

tensor is itself a complete partite complex. The lemma follows from the observation that a partite tensor
product of complete partite complexes is again a complete partite complex. □

By this lemma and Claim 2.8.2 we derive, recalling that ℓ = 5,

Corollary 8.8. There is some constant β = βm > 0 such that

h1(Z̃J
w) ⩾ β · (h1(Z̃ J̃

w))

Where J̃ = {c̃1, c̃′
2, . . . , c̃ℓ} and c̃j =

{
i ∈ cj

∣∣ i is not in a lonely or empty bin
}

. □
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8.7 Expansion of colored spherical buildings
Recall Definition 8.3 of the set J of well-spread color sets, and let J = {c1, . . . , cm} ∈ J and recall that we
write J ′ ⩽ J , if J ′ = {c′

1, . . . , c′
m} where c′

j ⊆ cj .

Lemma 8.9. Let I = {{i1}, . . . , {i5}}, and let s ∈ Z be such that |s| = m − 5 and there is a well-
spread set of colors J ∈ J such that I ∪ col(s) ⩽ J . Let w′ ∈ S∪J

∪s be such that col(w′) ∩ I = ∅. Then
h1(SI

∪s ·∪w′) ⩾ exp(−O(log2(d))).

Proof of Lemma 8.9. Let us denote by w = ∪s ·∪ w′. Fix some I as above, and let I ′ = {i0 < i1 < i2 < i3}
be any four indexes inside I. By Theorem 2.16, if we show that SI′

w is a β-coboundary expander, then it
holds that h1(SI′

w ) ⩾ Ω(β). So from now on we let I = {i0 < i1 < i2 < i3}.
The coboundary expansion h1(SI

w) depends on I and w. We address first the easier “direct” cases, and
then move to the general case which is gradually reduced to the easier cases, via decomposition steps.

We begin by considering the case where the indices of I are in more than one col(w)-bin. Assume for
example that i0 is separate from i1, i2, i3 (the rest of the cases follow from the same argument). In this case,
by Claim 8.7.1 we will have that h1(SI

w) ⩾ Ω(1/diam(S{i1,i2,i3}
w )). If i1, i2, i3 are not in all the same bin,

then the diameter is constant (since you can traverse from any subspace of dimension i1 to any subspace
of dimension i3). Otherwise, they are in the same bin. Let [k0, k1] be the col(w)-bin that contains i1, i2, i3.
Let ĩj = ij − k0. Let us write down explicitly who are the subspaces in Si1,i2,i3

w′ . Let v0, v1 ∈ w be the
subspaces of dimension k0 and k1 respectively. Then S{i1,i2,i3}

w contains all spaces that contain v0 and are
contained in v1 of dimensions I. It is easy to see that SI

w′ is isomorphic to a 3-partite colored complex
whose ambient space is F

k1−k0
q , with parts corresponding to dimensions ĩ1, ĩ2, ĩ3. By Claim 8.7.2, we have

that diam(S{i1,i2,i3}
w ) = O(ĩ3/(ĩ3 − ĩ1)). We have that ĩ3 ⩽ k1 − k0 ⩽

100n log d
dm , where this inequality is

by the well-spreadedness. To state this explicitly, the fact that s ∈ Z(m − 6) implies that any col(∪s)-bin
has length ⩽ 100n log d

dm by 3a in Definition 8.3. The col(w)-bins cannot be longer since ∪s ⊆ w. Moreover,
by item 2 in Definition 8.3, the distance between every two colors in J is at least n

(md)3 , so in particular

ĩ3 − ĩ1 = i3 − i1 ⩾
n

(md)3 . Thus we have that diam(S{i1,i2,i3}
w′ ) ⩽ O(poly(d)) and in this case we have that

h1(SI
w′) = Ω(1/ poly(d)) = exp(−O(log d)).

Next, consider the case where all indexes of I are in the same bin. Similar to before, let us denote by
[k0, k1] be the col(w′)-bin that contains I ′. As before let Ĩ = {ĩj}3

j=0 where ĩj = ij − k0 and as before SI
w

is isomorphic to the four-partite complex S Ĩ whose ambient space is F
k1−k0
q , with parts corresponding to

dimensions Ĩ.
The proof of this case is the main challenge, and is encapsulated in Lemma 8.10, which shows that h1(S Ĩ

w) ⩾

exp(−O(log( ĩ3
ĩ1−ĩ0

) log( ĩ3
ĩ0
))). The calculation is similar to the first case: by item (3a) in Definition 8.3,

every bin has size O(n log d
dm ) so ĩ3 ⩽ O(n log d

dm ). On the other hand, by item 2 in Definition 8.3, the
distance between every two colors in J (and therefore in I) is at least n

(md)3 . In particular this implies that
ĩ0 = i0 − k0 ⩾

n
(md)3 and so is ĩ1 − ĩ0 = i1 − i0 ⩾

n
(md)3 . Thus h1(S Ĩ

w) ⩾ exp(−O(log2(d))). To conclude,
h1(SI

w) ⩾ exp(−O(log2(d))). □

8.7.1 Direct bounds

In this section we bound h1(SI
w) in two cases which allow a direct bound. We note that our bounds in this

section are more general than what we require in Lemma 8.9. Hencefourth we assume that w ∈ S is any face,
including the empty face (unless the claim states that w is not empty).

The first bound is when not all i ∈ I are in the same bin. Namely, there is some v ∈ w such that
i0 < dim(v) < i3. Recall our notation: SI

w = (Sw)I , so in case v ∈ w and dim(v) = i ∈ I, the complex is
still 4-partite, but there is only one vertex in Sv [i], namely v.
Claim 8.7.1 (Similar to [DD23b]). Let I = {i0 < i1 < i2 < i3}, let w ∈ S be such that col(w) ∩ I = ∅ and let
v ∈ w be i0 ⩽ dim(v) ⩽ i3.
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1. If i0 ⩽ dim(v) ⩽ i1 then h1(SI
w) ⩾ Ω(1/diam(S{i1,i2,i3}

w )) and if i2 ⩽ dim(v) ⩽ i3 then h1(SI
v ) ⩾

Ω(1/diam(S{i0,i1,i2}
w )).

2. If i1 < dim(v) < i2 then h1(SI
v ) = Ω(1/d) where d = min{diam(S{i1,i2}

v ), diam(S{i3,i4}
v )}.

This claim is proven in Appendix A using the cone machinery developed in Section 4. It relies on the
following bound for the diameter,
Claim 8.7.2. Let I ⊆ [n], |I| ⩾ 2. Then diam(SI

w) = O( max I
max I−min I ).

Proof of Claim 8.7.2. We note that diam(SI
w) ⩽ 2+mini1<i2∈I diam(S{i1,i2}) since for any pair v, v′ ∈ SI

w(0)
we can construct a path between v, v′ by first moving from v to some u ∈ S[i1], from v′ to u′ ∈ Sw[i2] (by
using two steps), and constructing a path P in S{i1,i2}

w from u to u′. The resulting path v ◦ P ◦ v′ has length
at most 2 + diam(Si1,i2

w ). Hence we prove that diam(S{i1,i2}
w ) = O( i2

i2−i1
) for any i1 < i2.

Fix some i1 < i2. Let v, v′ ∈ S{i1,i2}
w (0) and without loss of generality assume that v, v′ ∈ S[i2] (we

can do this by taking two steps as above. This again adds another constant that in taken into account
in the O notation). Fix A = {a1, a2, . . . aℓ} to be a basis for v ∩ v′ (or A = ∅ if they intersect trivially).
Extend it to a basis for v B = A ·∪ B′ where B′ = {b1, b2, . . . , bℓ}, and to a basis for v′, C = A ·∪ C ′

where C ′ = {c1, c2, . . . , cℓ}. By taking two steps in S{i1,i2}
w we can go from v to a subspace v′′ such that

dim(v ∩ v′′) ⩾ i1. In other words, we can take i2 − i1 vectors from B′ and replace them with vectors in C ′

(e.g. if i2 − i1 = m we can go from v to v′′ = span(A ·∪ D) where D = {c1, c2, . . . , cm, bm+1, bm+1, . . . , bℓ}.
After at most i2

i2−i1
we can traverse this way to v′. □

The second direct case is when all i ∈ I are in the same bin, but they have good gaps between them. In
this case, constant coboundary expansion was already proven in [DD23b]. We reprove it again in Appendix A
since the proof in the previous paper used separate arguments for abelian and non-abelian groups. Our cone
machinery gives a more compact proof of this claim (and a better quantitative bound).
Claim 8.7.3. Let I = {i0 < i1 < i2 < i3} such that i1 ⩾ 2i0, i2 ⩾ i1 + i0 and i3 ⩾ i2 + 2i1. Then h1(SI

w) ⩾
1
36 .

8.7.2 Decomposing

In this section we lower bound h1(SI
w) for an arbitrary set I consisting of 4 colors. We gradually decompose

this complex into smaller pieces. Each piece is of the form SI′
{w ·∪w′} for some I ′, and some subspace w′ ∈ Sw.

Some of the pieces fall into the easy cases as above, and the remainder is then further decomposed until at last
we are able to bound everything. In this subsection we suppress w (and reuse the letter in notation elsewhere)
as it does not affect any of the calculations and claims (but we stress that the following Lemma 8.10 applies
for Sw as well by the exact same proof). Our main lemma is this,

Lemma 8.10. Let I = {i0 < i1 < i2 < i3} such that i3 > 21 and such that ij − ij−1 ⩾ 3. Then

h1(SI ) ⩾ exp
(

−O

(
log
(

i3
i1 − i0

)
· log

(
i3
i1

)))
.

Before going in further, it will be useful to describe a general GK-decomposition that we will apply to SI

in many situations.

Definition 8.11 (GK(S, I, I ′) decomposition). Let I = {i0, i1, i2, i3}, let ij ∈ {i0, i1, i2, i3}, let i′
j <

{i0, i1, i2, i3} and let I ′ = (I \ {ij}) ∪ {i′
j}. Let GK(S, I, I ′) = (Y, A, ν, π) be as follows.

1. Y = {Yv | dim(v) ∈ I ′} are the following.

(a) When dim(v) = i′
j then Yv = SI

v .

(b) When dim(v) , i′
j then Yv is the complex induced by {v} ∪ SI\{dim(v)}

v (0). We note that in this
case Yv � (SI\{dim(v)}

v )∗, because every face in SI\{dim(v)}
v is connected to v.
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2. Let A(0) = SI′
(0) (technically A(0) = {Yv} but it is shorter to identify Yv ∈ A(0) with v). An edge

{v, v′}v′′ ∈ A(1) if and only if v , v′ and the spaces {v, v′, v′′} sit together in a flag (either they form a
triangle or it could be that v′′ = v or v′′ = v′). Similarly a triangle {v1, v2, v3}v4,v5,v6 ∈ A(2) if and
only if {v1, v2, v3}, {v4, v5, v6} ∈ S(2) and {v1, v2, v3, v4, v5, v6} is contained in a flag (note that some
of these spaces may be equal).

3. We define π as follows. We choose {u1, u2, u3}u4,u5,u6 by:

(a) We sample w = (v1, v2, v3, v4, v5) ∈ SI∪{i′
j}(4).

(b) We sample w′ = {u1, u2, u3} ⊆ w uniformly given that col(w′) ⊆ I ′. We randomly reorder w′.
(c) We sample w′′ = {u4, u5, u6} ⊆ w uniformly given that col(w′′) ⊆ I, independent from the previous

step. We randomly reorder w′′.
(d) We randomly output {u1, u2, u3}u4,u5,u6 .

4. We define ν to be a marginal of π. In particular, after sampling {u1, u2, u3}u4,u5,u6 ∼ π we choose
v ∈ {u1, u2, u3} uniformly at random and output (Yu1 , {u4, u5, u6}).

The following proposition describes the main method by which we apply this decomposition.

Proposition 8.7.1. Let I, i′
j and I ′ be as above. Let β = minv∈S(0), dim(v)=i′

j
h1(SI

v ). Let γ = h1(SI′
).

Then h1(SI ) ⩾ Ω(βγ).

Proof of Proposition 8.7.1. We use the decomposition GK(S, I, I ′) in order to apply Theorem 5.4. Let us
calculate the parameters.

– Coboundary expansion of every Yv. Fix v. If dim(v) ∈ I then Yv is a partite complex such that one
part has only one vertex, i.e. v itself, since v is the only subspace compatible with itself of dimension
dim(v). It follows from Claim 2.8.1 that h1(Yv) = Ω(1). The other case is when dim(v) = i′

j , in which
case its coboundary expansion is β = h1(SI

v ) since Yv � SI
v . Thus the expansion of every sub complex

is min{β, Ω(1)} = Ω(β).

– The expansion of A. It is easy to see that A is a blow-up of SI′ because ignoring the labels, π just
samples a triangle from SI′

(2) uniformly at random. We define γ = h1(SI′
). If we show that for every

(unlabeled) edge {v1, v2} ∈ SI′
(1), the label graph is a constant edge expander, it will follow from

Lemma 6.3 that h1(A) = Ω(γ). Indeed fix any {v1, v2} of colors (say) {i1, i2}. The labels of this edge
are all u such that there is a flag that contains both u and v1, v2 (including the case that u equals one
of v1, v2).
Consider the following 5-partite complex Z that corresponds to the distribution π conditioned on v1, v2.
The parts are

Z[1] = {v1}, Z[2] = {v2}, Z[3] = Sv1,v2 [i3], Z[4] = Sv1,v2 [i4], Z[5] = Sv1,v2 [i5]4

The top level faces are all {v1, v2, v3, v4, v5} ∈ SI∪I′
(4) (with the same distribution). Note that every

labeled triangle {v1, v2, u3}u4,u5,u6 that contains v1, v2 corresponds to a flag {v1, v2, u3, u5} in SI∪I′
(4).

We note that Z is a local spectral expander because Si3,i4,i5
v1,v2 is a local spectral expander, per Claim 2.4.3.

Given u, we traverse to another u′ by first selecting a triangle {v1, v2, v3}u,u2,u3 (where v1, v2 and u are
fixed). Then we select a triangle {v1, v2, v3}u′,u2,u3 (where all but u′ are fixed). This is the same as
doing two steps in the vertex vs triangle swap walk in Z, i.e. S0,2(Z). By Claim 2.4.1 this is a constant
spectral expander.
We conclude that h1(A) = Ω(γ).

4Meticulously speaking, there are five sides, one for every i ∈ I ∪ I′. The side corresponding to i1, i2 are singletons and the
rest correspond to Sv1,v2 [i].
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– The expansion of the local graphs Au. First we note that in this case the set of elements that
appear in the intersection is actually A = SI (0). For every u ∈ A the vertices in Au are all SI′

u (0),
with edges sampled according to the distribution of SI′

u (1). By Claim 2.4.3 this graph has δ = Θ(1)
expansion.

– Smoothness of distributions. We note that π2 = ν2 = µ2,SI so all three are 1-smooth. Moreover,
the distributions ν1,y = π1,y and ν0,y = π0,y so they are also 1-smooth. All five items of smoothness
follow.

Hence we apply Theorem 5.4 to GK(S, I, I ′) with parameters α = 1, Ω(β), Ω(γ), δ = Ω(1) which shows
that h1(SI ) ⩾ Ω(βγ) as required. □

Now that we have the main tool for this sub section, let us put it to good use.

Claim 8.7.4. Let I = {i0 < i1 < i2 < i3} be such that i3 ⩾ 21i0 and i1 ⩾ 2i0, then h1(SI ) = Ω(max(i1−2i0,i0)
i3−2i0

).

Proof of Claim 8.7.4. If i3 ⩾ 7i1 then we are done by the following sub-claim,
Claim 8.7.5. Let I = {i0 < i1 < i2 < i3} be such that i3 ⩾ 7i1 and i1 ⩾ 2i0, then h1(SI ) = Ω(1).

Proof of Claim 8.7.5. If i1 + i0 ⩽ i2 ⩽ 5i1 then by Claim 8.7.3 we are done. Otherwise, we “shift” i2 to i′
2 =

i1 + i0. We let I ′ = (I \ {i2}) ∪ {i′
2}. By Proposition 8.7.1 it holds that h1(SI ) ⩾ Ω(minv h1(SI

v ) · h1(SI′
))

(where v is any space of dimension i′
2). By Claim 8.7.3 h1(SI′

) = Ω(1), so let us verify that h1(SI
v ) is also

constant. Note that dim(v) = i0 + i1 ⩾ i0, i1 so by Claim 8.7.1 h1(SI
v ) ⩾ Ω(1/D) where D is either the

diameter of Si0,i1 or the diameter of Si0,i1,i2 . In both cases this is a constant because i1 ⩾ 2i0 (hence both
diameters are ⩽ 4). □

If i3 < 7i1, it follows that i1 ⩾ 3i0 since 7i1 > i3 and i3 ⩾ 21i0 (by assumption), so i1 − 2i0 ⩾ i0 and we
need to show that h1(SI ) = Ω( i1−2i0

i3−2i0
).

Let i′
1 = 2i0 and let I ′ = (I \ {i1}) ∪ {i′

1}. By Proposition 8.7.1 we have that h(SI ) ⩾ Ω(h1(SI′
) ·

h1(SI
v )) for some v of dimension dim(v) = 2i0. By Claim 8.7.5, h1(SI′

) = Ω(1). By Claim 8.7.1 it
holds that h1(SI

v ) ⩾ Ω(1/diam(Si1,i2,i3
v )). We note that Si1,i2,i3

v � Si1−2i0,i2−2i0,i3−2i0 so by Claim 8.7.2
Ω(1/diam(Si1,i2,i3

v )) = Ω( i1−2i0
i3−2i0

). The claim follows. □

We describe the main idea of the proof of Lemma 8.10. Our goal is to recursively decompose SI , via
Proposition 8.7.1. The basic step moves from I = {i0, i1, i2, i3} to I ′ = {i′

0, i1, i2, i3} until i0 becomes small
enough to bound h1(SI ) directly via Claim 8.7.4. Each basic step must take i′

0 large enough to bound h1(SI
v )

directly via Claim 8.7.4.
We define a function T : N → N, by

T (x) = ⌈max{2x − i1, 21
20x − 1

20 i3, 1}⌉ (8.24)

and show that

Proposition 8.7.2. For every I = {i0, i1, i2, i3}, it holds that

h1(S{i0,i1,i2,i3}) ⩾ c · h1(S{T (i0),i1,i2,i3}). (8.25)

where c = 2−O(log( i3
i1

)).

This T will decrease i0, i.e., i′
0 = T (i0) < i0. Let n(I) be the minimal number of applications of T needed

such that i′′
0 = T n(I)(i0) satisfies the requirements of Claim 8.7.4, namely that 2i′′

0 ⩽ i1 and 2i′′
0 ⩽ i3. Then

by an iterated use of (8.25) we get that

h1(S{i0,i1,i2,i3}) ⩾ c ·h1(S{T (i0),i1,i2,i3}) ⩾ c2 ·h1(S{T 2(i0),i1,i2,i3}) ⩾ ... ⩾ cn(I)h1(S{i′′
0 ,i1,i2,i3}) = Ω(cn(I)+1).
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Finally, to conclude we show that n(I) = O
(

log
(

i3
i1−i0

))
.

Let T1(x) = 2x − i1, T3(x) = 21
20x − 1

20 i3 so that T (x) = ⌈max{T1(x), T3(x), 1}⌉. For now, note that
T (i0) ⩽ i0 whenever 1 ⩽ i ⩽ i1 − 1 because T1(x) < x and T3(x) < x whenever x < i1. We now show a
stronger shrinking property for T ,

Claim 8.7.6. Let m = 2 log
(

i3
i1−i0+1

)
, then T m(i0) = T ◦ T ◦ · · · ◦ T︸              ︷︷              ︸

m times
(i0) ⩽ 1 and in particular n(I) ⩽ m.

The proof is an exercise in calculus, and can be found in Appendix A.

Proof of Proposition 8.7.2. We intend to use Proposition 8.7.1. Let I = {i0, i1, i2, i3}, let i′
0 = T (i0) and

let I ′ = (I ∪ {i′
0}) \ {i0}. By Proposition 8.7.1 it holds that h1(SI ) ⩾ Ω(h1(SI′

) · h1(SI
v )) for some w

of dimension T (i0) ⩾ 2i0 − i1, 21
20 i0 − 1

20 i3. To conclude the proposition we need to show that h1(SI
v ) ⩾

2−O(log( i3−2i0
max(i0,i1−2i0)

)). Indeed, for j = 0, 1, 2, 3 let ĩj = ij − i′
0. Observe that SI

v � S ĩ0,ĩ1,ĩ2,ĩ3 . We observe
that ĩ1 ⩾ 2ĩ0 since unraveling the definitions of ĩ0, ĩ1 this is the same as i1 − T (i0) ⩾ 2i0 − 2T (i0). Moving
things around this equation is equivalent to T (i0) ⩾ 2i0 − i1 which is a true statement since T (i0) is the
maximum of 2i0 − i1 and other expressions.

In addition, ĩ3 ⩾ 21ĩ0. This is equivalent to i′
0 = T (i0) ⩾

21
20 i3 − 1

20 i0 by the same reasoning as in the

previous case. By Claim 8.7.4 it holds that h1(SI
v ) ⩾ 2−O(log( i3−2i0

max(i0,i1−2i0)
))
⩾ 2−O(log( i3

i1
)) and the proposition

follows. □

Proof of Lemma 8.10 (given Claim 8.7.6 and Proposition 8.7.2). We prove that h1(S{i0,i1,i2,i3}) ⩾ cn(I)+1

for c = 2−O(log( i3
i1

)). We do so by induction on n = n(I) for all sets of indexes I such that n(I) = n at once.
The base case for n(I) = 0 is by Claim 8.7.4. Assume the claim is true for n, and show for n + 1. Let I be
such that n(I) = n + 1. By Proposition 8.7.2 it holds that

h1(S{i0,i1,i2,i3}) ⩾ c · S{T (i0),i1,i2,i3}.

It is obvious that n({T (i0), i1, i2, i3}) = n hence by induction

h1(S{i0,i1,i2,i3}) ⩾ cn+2.

By Claim 8.7.6, n(I) ⩽ 2 log
(

i3
i1−i0+1

)
and we are done. □

8.8 An improved bound for large sets of colors
We prove the following claim,
Claim 8.8.1. Let J ⊆ F∆(4). Let w ∈ S be such that col(w) ∩ (∪J) = ∅. Let

q0 = max
B,c

|c ∩ B|

where B is a col(w)-bin and c ∈ J . Then for all q > 10q0, Tq(Sw, J) = Ω(1).
Note that when J is well spread, and w = ∪s for s ∈ ZJ (m − 6), then q0 = O(1).

Proof. To bound Tq(Sw, J) we need to show that there for every J ′ = {c′
1, c′

2, . . . , c′
5} ∈ Jq and for all w′ ∈ Sw

whose color is disjoint from I we can find 5 colors I = {i1, i2, i3, i4, i5} such that ij ∈ c′
j and such that

h1(SI
w ·∪w′) = Ω(1).

Fix q > 10q0 and J ′ = {c′
1, c′

2, . . . , c′
5} ∈ Jq. Let us prove that there exists some set I = {i1, i2, . . . , i5}

as above with the property that there exists a col(s)-bin B with |B ∩ I| = 1. The reason we use such a
set is because in this case SI

w ·∪w′ is a complex as in Corollary 2.21. That is, if B ∩ I = {i5}, then for any
w′′ ∈ Sw ·∪w′ [{i1, i2, i3, i4}] and any v ∈ S∪s ·∪w[i5], w′′ ·∪ {v} ∈ SI

w ·∪w′ (i5 sits in a different bin so the space v
which is compatible with w ·∪ w′ should also be compatible with the flag w′′ that is contained in different
bins). By Corollary 2.21 this implies that h1(SI

w ·∪w′) = Ω(1).
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By assumption q > 10q0 so there exists a color c′
j such that |c′

j | > 2q0. Without loss of generality let us
assume this is c′

5. We begin by choosing I ′ = {i1, i2, i3, i4} arbitrarily. If there are three bins B1, B2, B3 so
that Bi ∩ I ′ , ∅, then at least two bins have that |Bi ∩ I ′| = 1. In this case no matter how we complete I ′ to
I = I ′ ·∪ {i5}, there will still be a bin Bi such that |Bi ∩ I ′| = 1. There are at most two bins B1, B2 with
Bi ∩ I ′ , ∅. By the definition of q0 |c5 ∩ Bi| ⩽ q0 but |c5| > 2q0 so there exists i5 ∈ c5 \ (B1 ∪ B2) which we
can choose. □
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A Outstanding Proofs
Proof of Claim 2.2.2. Let H ′ = (V , E \ E′) be the complement subgraph. It is easy to verify that the
stationary distribution of H ′ is also equal to that of G. Let α = P [H ]. Then it is easy to verify that

1. AG = αAH + (1 − α)AH′ where AG, AH , AH′ are the respective adjacency operators.

2. If f is perpendicular to the largest eigenvector of AG, then it is perpendicular to the largest eigenvector
of AH and AH′ . This follows from the fact that AG, AH , AH′ are all self adjoint with respect to the
same inner product, and they all share the same first eigenvector which is the constant function.

Let f be of norm 1 such that AGf = λ(G)f . Then

λ(G) = ⟨AGf , f⟩ = α⟨AHf , f⟩ + (1 − α)⟨AH′f , f⟩.

The rightmost term is upper bounded by ⟨AH′f , f⟩ ⩽ ⟨f , f⟩ = 1. By λ expansion of AH the leftmost term is
bounded by ⟨AHf , f⟩ ⩽ λ⟨f , f⟩ = λ. Thus λ(G) ⩽ αλ + (1 − α) = 1 − α(1 − λ). □

Proof of Claim 2.3.1.

ε ⩾ P
uv∈E

[∃i u ∈ Si and v < Si]

=
m∑

i=1
P

uv∈E
[u ∈ Si, v < Si]
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⩾ η

m∑
i=1

P [Si] (1 − P [Si])

⩾ η(1 −
m∑

i=1
P [Si]

2).

Where the second inequality is by edge expansion. Moving things around we have
m∑

i=1
P [Si]

2 ⩾ 1 − ε

η
.

We can bound
∑m

i=1 P [Si]
2 ⩽ maxi P [Si] ·

∑m
i=1 P [Si] ⩽ maxi P [Si] and the claim is proven. □

Proof of Claim 2.4.1. Sampling an edge in this walk can be done by first sampling s ∈ X(j) and then
sampling two independent vertices v1, v2 ∈ Xs(0). Thus the probability that v1, v2 are in the same part Xs[i]
is at most 1

d−j−1 ⩽
1
2 . Consider the subgraph H of G that contains all edges that go from vertices of different

color. It is easy to see that the stationary distribution of H is the same as the stationary distribution of
G, since for every face s ∈ X(j), the marginal distributions of v1, v2 ∈ Xs are the same for sampling them
independently, or sampling them conditioned on v1, v2 having different colors.

By the aforementioned P [e ∈ H ] ⩾ 1
2 thus by Claim 2.2.2, the proof will follow if we show that H is a

max(λ2, 1
d−1 )-spectral expander.

Notice that col : X(0) → [d] is a graph homomorphism from G to the complete graph on d vertices. It is
well known that this is a 1

d−1 -spectral expander, thus it is enough to show that the bipartite graph induced
by L = X [i], R = X [i′] is a λ2-spectral expander. For any i and i′, the bipartite adjacency operator of this
graph is the following convex combination

A =
1

(d−2
j )

∑
J⊆[d]\{i,i′}

S{i},JS∗
{i′},J

where S{i},J is the bipartite adjacency operator for the {i} vs J colored swap walk. These are all λ2-spectral
expanders so the claim follows. □

Proof of Claim 2.8.1. We define g : X∗(0) → Γ to be g(v∗) = Id and g(u) = f(v∗u). We note that
f(v∗u) = g(u)g(v∗)−1 = δg(v∗u) by definition. For other edges, f(uw) = g(w)g(u)−1 ⇔ δf(v∗uw) = e.
Thus

dist(f , δg) =
k − 1
k + 1 P

uw∈X(1)
[f(uw) , δg(uw)] =

k − 1
k + 1 P

uw∈X(1)
[δf(v∗uw) , 0] .

We notice that
P

uw∈X(1)
[δf(v∗uw) , 0] ⩽ 3 P

uwx∈X(2)
[δf(uwx) , 0] .

This is because if δf(uwx) , 0 then at least one of the three triangles v∗uw, v∗ux, v∗wx is also not satisfied.
In particular,

dist(f , δg) ⩽ 3 k − 1
k + 1wt(δf).

□

Proof of Claim 2.8.2. We prove this by induction on ℓ. When ℓ = 0 then Y = X ⊗ K1,1,...,1 � X and the
claim is clear.

Assume the claim holds for ℓ and prove for ℓ + 1. Without loss of generality n0 > 1. It is enough to
show that if h1(X) ⩾ β, then h1(X ′) ⩾ Ω(β) where X ′ is the following simplicial complex. Its vertices are
X ′[0] = X(0) × [n0] and X ′[i] = X(i) for i ⩾ 1. The top level faces, X ′(k), are

X ′(k) = {{(v0, i), v1, v2, ..., vk} | {v0, v1, ..., vk} ∈ X(k)}

We sample a face by first sampling i ∈ [n0], and then independently sampling {v0, v1, ..., v4} ∈ X(4).

51



The reason this is enough is because

X ⊗ Kn0,n1,...,nk
� (X ⊗ Kn0,1,1,...,1) ⊗ K1,n1,n2,...,nk

� X ′ ⊗ K1,n1,n2,...,nk
,

so once we know that h1(X ′) ⩾ Ω(β) we can continue by induction.
Indeed we intend to use Theorem 5.4. Let us use the following GK-decomposition (Y, C, ν, π).

1. Y = {Yi} where Yi complex induced by (X(0) × {i}) ∪ (X ′(0) \ X ′[0]).

2. ν is given by sampling a top-level face s = {(v0, i0), v1, . . . , vk} ∈ X ′(k), and outputting (Yi0 , t) where
t ⊆ s is chosen uniformly at random.

3. The agreement complex C is has C(0) = [n0] (technically it is {Yi}i∈[n0] but we identify the vertices
with [n0] to shorten notation). For every two distinct i, j and v ∈ Yi ∩ Yj there is a labeled edge {i, j}v.

4. Note that a vertex appears in the intersection if and only if col(v) , 0. Denote by I ′ = [k] \ {0} and by
A = XI′

(0) the set of vertices that appear on a label.

5. The distribution π is given by choosing (u, v, w) ∈
→

XI′
(2), independently choosing three distinct i, j, k

(uniformly at random) and outputting {i, j, k}u,v,w.

Towards using Theorem 5.4, let us observe the following properties of this decomposition.

1. The distribution ν|Yi
is the same distribution as X’s triangle distribution (identifying every (v, i) ∈ X ′[0]

with v ∈ X [0]). It follows that every Yi is a coboundary expander with h1(Yi) ⩾ β.

2. For every v ∈ A the local graph Cv is the complete graph, which is a constant edge expander.

3. We also note that the set

AY = {(v, Yi) | v ∈ A, v ∈ Yi} = XI′
(0) × {Yi}.

4. Let us verify that all the smoothness relations hold.

(a) ν2 = µ2,X′ , and in particular (ν2, µ2,X′) are 1-smooth.
(b) The same holds for the pair (µ1,X′ , ν1).
(c) We need to show that (ν0,y, π0,y) are (AY , α)-smooth for a constant α. For every (v, Yi) ∈ AY it

holds that
P

π0,y
[(v, Yi)] =

1
n0

P
XI′ (0)

[v] =
k

k − 1
1
n0

P
X′

[v] =
k

k − 1 P
ν0,y

[(v, Yi)] .

In particular (ν0,y, π0,y) are (AY , 1)-smooth.
(d) Similarly π2 chooses a random triangle given that it doesn’t intersect X ′[0], so (π2, µ2) are

2
5 -smooth.

(e) Similarly also to item (c), (π1,y, ν1,y) are 3
5 -smooth.

To conclude we must show that C is an γ = Ω(1)-coboundary expander. we notice that C is a blow-up of
the complete complex (all possible (unlabeled) triangles appear with uniform distribution). The complete
complex is a β = 1-coboundary expander [LMM16]. We therefore need to verify that the local graphs of
every i, j are edge expanders. If this holds then by Lemma 6.3 C is a Ω(1)-coboundary expander.

Indeed for every {i, j}, the agreement graph is just two steps in the colored swap walk of XI′ between
vertices and edges. While in partite complexes this walk doesn’t have an optimal spectral gap, it has a
constant gap when X is a good enough 1-sided spectral expander by Claim 2.4.1.

Hence by Lemma 6.3 C is a Ω(1)-coboundary expander, and by Theorem 5.4 we conclude that X ′

is a Ω(β)-coboundary expander (Since besides β, the rest of the parameters α, γ, η is the theorem are
constants). □
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Proof of Claim 2.8.3. Let X be such that h1(X†ℓ) = β and let Γ be any group. Let f ∈ C1(X, Γ). We will
show that dist(f , B1(X, Γ) ⩽ O(β)wt(δf).

Let f̃ ∈ C1(X†ℓ , Γ) be f̃((v, i), (u, j)) = f(vu) for every (v, i) ∈ X†ℓ [j] and (u, j) ∈ X†ℓ [j]. By
coboundary expansion there exists some g̃ ∈ C0(X†ℓ) such that

dist(f̃ , δg̃) ⩽ β−1wt(δf̃) = β−1wt(δf). (A.1)

Let g : X(0) → Γ be g(u) = maj(u,i)∈X†ℓ (0)g̃(u, i). Then

dist(f , δg) = P
uv∈X(1)

[f(uv) , δg(uv)] (A.2)

⩽ P
uv∈X(1),i,j∈[ℓ]

[f(uv) , δg̃((u, i), (v, j))] + P
uv∈X(1)

[δg̃((u, i), (v, j)) , δg(uv)] (A.3)

⩽ P
(u,i),(v,j)∈X†ℓ (1)

[
f̃((u, i), (v, j)) , δg̃((u, i), (v, j))

]
+ 2 P

v∈X(0),i∈[ℓ]
[g(v) , g̃(v, i)] (A.4)

= dist(f̃ , δg̃) + 2 P
v∈X(0),i∈[ℓ]

[g(v, i) , g̃(v, i)] . (A.5)

The first inequality is the triangle inequality. The second inequality is because f(uv) = f̃((u, i), (v, j))
and because if (g̃(u, i) = g(u) and g̃(v, j) = g(v) then δg̃((u, i), (v, j)) = δg(uv). If we show
thatPv∈X(0),i∈[ℓ] [g(v) , g̃(v, i)] ⩽ 2 dist(f̃ , δg̃) then the claim will follow from (A.1).

Indeed, the probability of disagreeing with the majority is upper bounded by the probability that g assigns
different values to two random (v, i1), (v, i2), i.e.

P
v∈X(0),i∈[ℓ]

[g(v) , g̃(v, i)] ⩽ P
v∈X(0),i1,i2∈[ℓ]

[g̃(v, i1) , g̃(v, i2)] .

If g̃(v, i1) , g̃(v, i2), then for every (u, j) such that vu ∈ X(1), δg̃((v, i1)(u, j)) , δg̃((v, i2)(u, j)). In
particular, this means that either f((v, i1), (u, j) , δg̃((v, i1)(u, j)) or f((v, i2), (u, j) , δg̃((v, i2)(u, j)).
Thus

P
v∈X(0),i1,i2∈[ℓ]

[g̃(v, i1) , g̃(v, i2)] ⩽ 2 P
vu∈X(1),i,j∈[ℓ]

[
δg̃((v, i), (u, j)) , f̃((v, i), (u, j))

]
⩽ 2 dist(f̃ , g̃).

We are done. □

Proof of Claim 2.8.4. Let X a simplicial complex. We use the following GK-decomposition (Y, A, ν, π).

1. The subcomplexes Y = {Yv | v ∈ X(0)} where Yv is the complex induced by {(v, i)} ·∪
{(u, j) | u ∈ Xv(0)}.

2. A will be a blow up of X. Edges {u1, u2}(v,j) ∈ A(1) if v ∈ Xu1u2(0) and triangles are all
{u1, u2, u3}(u4,j4),(u5,j5),(u6,j6) ∈ A(2) such that {u1, u2, u3, u4, u5, u6} ∈ X(5) and j4, j5, j6 are distinct.

3. π is given by:

(a) Sampling s ∈ X†ℓ(5).
(b) Sampling two triangles independently t1, t2 ⊆ s. t1 = {(u1, i1), (u2, i2), (u3, i3)}, t2 =

{(u4, i4), (u5, i5), (u6, i6)}.
(c) Randomly ordering the vertices of t1, t2 and outputting {u1, u2, u3}(u4,j4),(u5,j5),(u6,j6).

4. ν is given by the marginal of π, that is, given {u1, u2, u3}(u4,j4),(u5,j5),(u6,j6) ∼ π we choose a v ∈
{u1, u2, u3} uniformly at random and output ({(u4, j4), (u5, j5), (u6, j6)}, Yv).

Let us show that we can apply Theorem 5.4 to this decomposition.

1. Recall the definition of Y ∗ for some complex Y as in Definition 2.18. The distribution ν|Yv gives that
Yv � ((Xv)∗)†ℓ since every face in Yv is connected to some (v, i). We will show that this implies that
every Yv is a constant coboundary expander below since this requires yet another GK-decomposition.
Let us deffer the following claim for later.
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Claim A.0.1. Let Z = Y ∗ for some complex Y . Then h1(Z†ℓ) = Ω(1).

Given this claim h1(Yv) = Ω(1).

2. Every (v, i) appears in an intersection of two sub-complexes Therefore A = X†ℓ(0).

3. The local graph A(v,i) is (isomorphic to) (X̃v)∗ where X̃ is the skeleton of 5-skeleton of X. This is
because given (v, i), ({Yu2 , Yu3}, (v, i)) ∼ π1,y by choosing some s ∋ (v, i), and in this case, Yu2 , Yu3
are either chosen such that u2u3 ∈ Xv(1) (with probability 2

3 ) or such that one of u2, u3 is equal to v
and the other is in Xv(0). This is a constant expander whenever X is a λ-local spectral expander.

4. Let us verify that all the smoothness relations hold.

(a) ν2 = π2 = µ2,X†ℓ , and in particular (ν2, µ2,X ), (π2, µ2,X ) are 1-smooth.

(b) As ν is a marginal of π, ν0,y = π0,y, ν1,y = π1,y and the smoothness relations hold as well for these
two.

5. A is a blow-up of X. If we show that for every {u1, u2} ∈ X(1), the label graph is a constant
edge-expander, it will follow that h1(A) = Ω(h1(X)). Fix {u1, u2} ∈ X(1). The vertices of the label
graph for {u1, u2} are all V = {(w, k) | w ∈ Xvu(0)} ·∪ ({u1, u2} × [ℓ]). Consider a set S ⊆ V such
that S , ∅, V . We need to show that P [E(S, V \ S)] ⩾ c P [S]P [V \ S] for some constant c (here
E(S, V \ S) is the probability of sampling a directed edge (((v1, j1), (v2, j2)) such that (v1, j1) ∈ S and
(v2, j2) < S).
We note that for every v , u1, there is a constant probability c > 0 to traverse from (v, k) to
some (u1, k′). A similar claim holds for u2. This is because in the label graph we traverse from
(v, k) to any triple (u3, (u5, j5), (u6, j6)) such that {u1, u2, u3}(v,k),(u5,j5),(j6,j6) and then take a second
(independent) step from the (u3, (u5, j5), (u6, j6)) back to (v′, k′) by re completing it it a triangle
{u1, u2, u3}(v′,k′),(u5,j5),(u6,j6). If u5, u6 , u1 (which happens with constant probability) then the
probability that the completing label (v′, k′) is such that v′ = u1 is a constant from the definition of
the distribution.
Thus for every j ∈ [ℓ], P [(u1, j)] ⩾ c′ for some constant c′ (and the same is true for u2). Thus fix some
subset S and assume without loss of generality that (u1, 1) < S (or otherwise consider the complement):

(a) If P [S \ {(u1, j) | j ∈ [ℓ]}] ⩾ c′ P [S] then

P [E(S, V \ S)] ⩾ P
((v,k),(v′,k′))

[
(v, k) ∈ S, (v′, k′) = (u1, 1)

]
⩾ c′ P

((v,k),(v′,k′))
[(v, k) ∈ S \ {(u1, j) | j ∈ [ℓ]}] · c

⩾ cc′ P [S]

⩾ cc′ P [S]P [V \ S] .

(b) Otherwise (u2, j) < S for any j ∈ [ℓ] since P [(u2, j)] > P [S \ {(u1, j) | j ∈ [ℓ]}]. In this case
similarly

P [E(S, V \ S)] ⩾ P
((v,k),(v′,k′))

[
(v, k) ∈ S, v′ = u2

]
⩾ c P [[] ((v, k), (v′, k′))]S

⩾ c P [S]P [V \ S] .

By Theorem 5.4 h(X†ℓ) = Ω(h1(X)). □

Proof of Claim A.0.1. Fix Y and let Z = Y ∗. Denote the vertex that participates in all faces by v∗ (if there
is more than one we choose one arbitrarily). We use the following GK decomposition (Z = {Zi}ℓ

i=1, A, ν, π).

1. Zi is the complex induced by {(v∗, i)} ·∪ {(u, j) | j , i}.
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2. A is a blow up of the complete complex over ℓ vertices. for every i1, i2 ∈ [ℓ] the edges are all {i1, i2}(u,i3)
such that i3 < {i1, i2} and u , v∗. The triangles are all {i1, i2, i3}(v,i4),(u,i5),(w,i6) such that i1, i2, . . . , i6
are all distinct and {u, v, w} ∈ Y (2) (and in particular none of them are equal to v∗).

3. The distribution ν is given by choosing a top level face in s ∈ Z†ℓ , and then taking (Yi, t) such that
(v∗, i) ∈ s and t ⊆ s is a triangle chosen uniformly at random. We note that the marginal of this
distribution is equal to the distributions over triangles in Z†ℓ .

4. The distribution π is given by:

(a) Sampling a triangle {u, v, w} ∈ Y .
(b) Independently sampling a tuple of six distinct indexes (i1, i2, . . . , i6) from [ℓ].
(c) Outputting {i1, i2, i3}(u,i4),(v,i5),(w,i6).

We note the marginal of this distribution over the labels is the distribution over Y †ℓ(2), or equivalently,
the distribution over triangles in Z†ℓ conditioned on not containing any (v∗, j).

1. The distribution ν|Zi
gives that Zi � (X†ℓ−1)∗. This is because whenever a triangle is chosen in Zi, it

is because a top-level face is chosen that contains (v∗, i). Thus by Claim 2.8.1 h1(Yi) = Ω(1).

2. The set of vertices that appear in an intersection between two Zi’s are

A = {(u, i) | i ∈ [ℓ], u ∈ Y (0)} .

That is, all vertices such that the left coordinate is , v∗.
The local graph Av is the complete graph over [ℓ − 1] vertices, which is a constant edge expander.

3. We also denote by AZ = {((u, j), Zi) | (u, j) ∈ A, i , j}.

4. Let us verify that the smoothness relations in Theorem 5.4 hold.

(a) ν2 = µ2,Z†ℓ so they are 1-smooth. The same holds for (µ2,Z†ℓ , ν1).

(b) π2 is the distribution over Z†ℓ conditioned on not containing any (v∗, j). This event happens with
probability 1 − 3

ℓ ⩽
4
7 . Therefore (π2, µ2,Z†ℓ ) are 4

7 -smooth.

(c) Let us show that (ν0,y, π0,y) are (AZ , 1)-smooth for a constant α. Fix ((u, j), Zi) ∈ AZ and recall
that u , v∗.

P
ν0,y

[((u, j), Zi)] = P
Z†ℓ (0)

[(u, j)]
ℓ − 1

ℓ
,

where the ℓ−1
ℓ is because conditioned on (u, j), Zi is chosen by choosing any j , i uniformly at

random.
For the other distribution, the expression is similar

P
π0,y

[((u, j), Zi)] = P
Z†ℓ (0)

[(u, j) | u , v∗]
ℓ − 1

ℓ
,

The conditioning only increases the probability of u thus (ν0,y, π0,y) are 1-smooth.
(d) Finally let us see that (π1,y, ν1,y) are α-smooth for a constant α. For every edge ({(u, i), (v, j)}, Zk),

if this edge contains (v∗, m) for some m, its probability under π1,y is 0. Otherwise, Its probability
is

P
π1,y

[({(u, i), (vj)}, Zk)] = P
Z†ℓ (1)

[
{(u, i), (vj)}

∣∣ u, v , v∗
] ℓ − 2

ℓ
,

Where the ℓ−2
ℓ is the probability of choosing Zk which in this case is just the probability of

choosing k , i, j.
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The probability of this event under ν1,y is

P
ν1,y

[({(u, i), (vj)}, Zk)] = P
Z†ℓ (1)

[{(u, i), (vj)}]
ℓ − 2

ℓ
,

The event we are conditioning on occurs with probability 1 − 2
ℓ ⩾

5
7 . Therefore (π1,y, ν1,y) are

5
7 -smooth.

5. The vertices of the label graph for i, j are all (v, k) such that k , i, j. We traverse from vertex to
vertex via two steps in the colored swap walk from vertices to triangles of Z†ℓ [[ℓ] \ {i, j}]. The complex
Z†ℓ [[ℓ] \ {i, j}] is a λ-one sided and partite local spectral expander for constant λ so this two step walk
is a constant expander by Claim 2.4.1.

By Theorem 5.4 Z†ℓ is a Ω(1)-coboundary expander. □

Proof of Proposition 8.4.1. We bound the probability of every item in Definition 8.3 not occurring by a
quantity that goes to zero.

1. The probability that i ∈ c1, j ∈ c2 are the same is 1
n . There are at most (m(d + 1))2 such pairs, so by

union bound the probability that there exists such i ∈ c1 ∩ c2 is at most (m(d+1))2

n ⩽ 1
d+1 .

2. Fix ℓ ∈ (∪J) ∪ {0, n}. The probability that another ℓ′ , ℓ doesn’t violate this event, i.e. is sampled
such that |ℓ′ − ℓ| ⩾ n

(m(d+1))3 is (1 − 2
(m(d+1))3 ). A priori, when we sample all other ℓ′ ∈ (∪J), they are

not independent of one another (since they must be distinct). However, even when we condition on
sampling some k ⩽ m(d + 1) other ℓ′’s into (∪J), the probability of sampling the next ℓ′′ such that
|ℓ′′ − ℓ| ⩾ n

(m(d+1))3 is always at least (1 − 2
(m(d+1))3

n
n−m(d+1) ) ⩾ (1 − 3

m(d+1)3 ) since n ⩾ d5.

To summarize, for every ℓ, the probability that there exists some ℓ′ ∈ ∪J such that |ℓ′ − ℓ| < n
(m(d+1))3

is upper bounded by 1 − (1 − 3
(m(d+1))3 )

m(d+3). By Bernoulli’s inequality this is at most

⩽ 1 − (1 − 4
(m(d + 1))2 ) =

4
(m(d + 1))2 .

Union bounding for all m(d + 1) + 2 elements in (∪J) ∪ {0, n} gives us the desired bound.

3. To bound the probabilities that 3a, 3b and 3c are violated we will calculate a bound on the probability
of a single subset J ′ ⊆ J violating these events that will be o(m−5). Then we union bound over all
possible J ′ ⊆ J (a union bound over ⩽ m5 events). We get that all subsets J ′ will not violate the events.
Let us indeed fix some J ′ ⊆ J and bound the probability that one of 3a, 3b or 3c doesn’t hold.

(a) For ℓ ∈ ∪J ′ ∪ {0}, the probability that there is no ℓ′ ∈ ∪J ′ ∪ {n} so that 1 < ℓ′ − ℓ ⩽ 100n log(d+1)
(d+1)m

is at most
(1 − 100 log(d + 1)

(d + 1)(m − 5) )
(d+1)(m−5) ⩽ e−50 log(d+1) =

1
(d + 1)50 .

The explanation to this probability is similar to the proof of item 2.
(b) Fix some c1 ∈ J ′. Let us look more closely on the way we sample J . We can sample J by first

sampling (d + 1)m colors into ∪J = {i0 < i1 < ... < i(d+1)m−1}. Then we sample the (d + 1)-
colors that go c1. Afterwards, out of the rest of ∪J \ c1 we sample the other colors c2, c3, c4, c5
that go into J ′. Finally we partition the rest of indexes sampled in to colors that go inside J ′.
We call sequence of maximal consecutive indexes in ∪J , that were all sampled into c1 a segment
of length r + 1. I.e. a set {ij < ij+1 < ... < ij+r} ⊆ c1 such that ir−1, ij+r+1 < c1 (when j = 1
there is no ij−1 so this is vacuously true, and similarly when r + j = (d + 2)m − 1). We note that
the probability that there exists segment of length r = 6 + log(d+1)

log m is at most

(d + 1) · P [i1, i2, ..., ir ∈ c1] ⩽
d + 2
mr

= o(m−5). (A.6)
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We explain. (d + 1) is an upper bound on the number of possible starting points of a segment.
Fixing a segment that starts at i1 (for example), for every 1 ⩽ ℓ ⩽ r it holds that

P [iℓ ∈ c1 | i1, i2, . . . , iℓ−1 ∈ c1] =
d + 1 − ℓ

(d + 2)m − (ℓ − 1) ⩽
1
m

.

This equality follows from the fact that the even we condition on is that c1 contains ℓ − 1
other indexes. Thus there are d − ℓ remaining indexes to sample inside c1, out of a total of
(d + 1)m − (ℓ − 1). Multiplying all these probabilities given d+2

mr in (A.6) (note that in this
calculation we didn’t even take into account the fact that some indexes were supposed to be outside
of c1, but this could only decrease the bound further).
Next we bound the probability that more than 10(d+2)

m of the segments appear in a J ′-crowded
J ′-bin. If a segment {ij < ij+1 < ... < ij+r} is in a J ′-crowded J ′-bin, then either ij−1 ∈

⋃5
ℓ=2 cℓ

or ij+r+1 ∈
⋃5

ℓ=2 cℓ: if both ij−1 and ij+r+1 are not in
⋃5

ℓ=2 cℓ then this means that these indexes
are both in J ′, which means that the bin is lonely (a similar argument holds in the edge cases
where j + r is the last index or j = 1). Thus we bound the number of segments where this occurs.
We will show how to bound the number of segments such that ij+r+1 ∈

⋃5
ℓ=2 cℓ, the other event

will be bounded similarly. Let R be the random variable that counts the number of such “bad”
segments. We will bound the probability that R is large using a Chernoff bound for negatively
correlated random variables:
Denote by R =

∑
ℓ Rℓ where Rℓ is the indicator that the ℓ-th segment has that ij+r+1 ∈

∪(J ′ \ {c1}). It is easy to see that E[Rℓ] =
4(d+2)

(d+2)(m−1) and there are at most (d + 2) segments so

E[R] ⩽ 4(d+2)
m−1 ⩽

5(d+1)
m . Moreover,

E[Rℓ1 · Rℓ2 · ... · Rℓp ] ⩽

⩽
4(d + 2)

(d + 2)(m − 1) · 4(d + 2) − 1
(d + 2)(m − 1) − 1 · ... · 4(d + 2) − p + 1

(d + 2)(m − 1) − p + 1

⩽

(
4(d + 2)

(d + 2)(m − 1)

)p

=

(
4

(m − 1)

)p

This is true because conditioned on Rℓ1 , Rℓ2 , . . . , Rℓq = 1, the probability that Rℓq+1 = 1 only
decreases from the unconditional probability, we are only conditioning previous colors to be in
J ′. More formally, there are 4(d + 2) − q colors we still need to choose into c2, . . . , c5 (since the
first q colors were already chosen), from a total of (d + 2)(m − 1) − q colors. Hence we can use
Chernoff’s bound for negatively correlated random variables and get that

P

[
R >

10(d + 1)
m

]
⩽ exp

(
−Ω

(
(d + 1)

m

))
= o(m−5).

If indeed every segment has at most log(d+1)
log m + 6 elements, then when all these events hold, the num-

ber of i ∈ c1 that are in a J ′-crowded J ′-bin is at most 10(d+1)
m

(
log(d+1)

log m + 6
)
⩽ 100(d+1) log(d+1)

m log m .
A union bound for all five c1, c2, c3, c4, c5 gives us the claim.

(c) We will show something stronger: that the number of colors in ∪J ′ in a single J ′-bin B is no
larger than 20 log(d+1)

log m . As before, when we choose J and J ′ we first choose (d + 1)m colors
∪J = {i0 < i1 < · · · < idm−1}. Then we decide which 5(d + 1) out of ∪J go into ∪J ′, and which
go to ∪J ′ (we do not care which index goes to which color inside this partition). In this context, let
a segment of length r + 1 be a maximal sequence of consecutive indexes in ∪J , that were chosen
into ∪J ′. That is some {ij < ij+1 < . . . ij+r} ⊆ ∪J ′ such that both ij−1, ij+r+1 < ∪J ′ (as before,
if j = 0, (d + 1)m − 1 the index doesn’t exist and the statement is vacuously true). We need to
show that there are no segments of length 20 log(d+1)

log m with high probability. As in the previous
item, the probability that there exists segment of length r = 20 log(d+1)

log m in ∪J ′ is at most

(5d + 5) · P [i1, i2, ..., ir ∈ c1] ⩽
(d + 1)

mr
= o(m−5).
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The item follows.

□

Proof of Claim 8.7.1. Let us show the case where i1 ⩽ dim(v) ⩽ i2. The other two cases are similar; the
same cone we define here will work in the other cases as well. Assume without loss of generality that the
diameter of Si0,i1

w is the minimal diameter. The automorphism group of SI
w acts transitively on SI

w(3), so
by Lemma 1.6 if we construct a cone C with diameter diam(C) = O(diam(Si0,i1

w )), this will imply that
h1(SI

w) ⩾ Ω(1/diam(Si0,i1
w )).

Fix any base vertex v0 ∈ Si0,i1
w . For u ∈ Si0,i1

w (0) we set Pu to be an arbitrary shortest path between v0
and u. We are guaranteed that |Pu| ⩽ diam(Si0,i1

w ). For u ∈ Si2,i3
w we note that v0u ∈ SI

w(1) so we just set
Pu = (v0, u).

Now for an edge ux ∈ SI
w(1) let us give a contraction Tux. Let P0 = Px ◦ (x, u) ◦ P −1

u .

1. If ux ∈ Si2,i3
w (1) then P0 = (v0, x, u, v0) where uxv0 ∈ SI

w(2). In this case we just take P1 = (v0, w, v0)
and Tux = (P0, P1).

2. If u ∈ Si0,i1
w (0) and x ∈ Si2,i3

w (0) then P0 = (v0, x, u) ◦ P −1
u . Denote by P −1

u = (vm = u, vm−1, . . . , v0).
We define a contraction Tux = (P0, P1, . . . , Pm, ). Here Pi = (v0, x) ◦ (vm−i, vm−i−1, . . . , v0). Indeed
we note that Pi ∼1 Pi+1 where the triangle tPi,Pi+1 is xvm−ivm−i−1 (it is a triangle because vmivm−i−1
is an edge, and for every edge e ∈ Si0,i1

w there is a triangle {x} ∪ e ∈ SI
w(2)).

3. Finally, if ux ∈ Si0,i1
w then P0 is a cycle contained in Si0,i1

w , so let us just denote it P0 =
(v0, v1, v2, . . . , vm, v0). Let y ∈ Si2,i3

w (0) be an arbitrary vertex. For every edge e in this cycle, it
holds that e ∪ {y} ∈ SI

w. Therefore we can define Tux = (P0, P1, . . . , Pm+1) where

Pi = (v0, y, v1, y, v2, y, . . . , y, vi, vi+1, vi+2, . . . , vm, v0).

Indeed the triangle yvi−1vi is the triangle that allows us to traverse from Pi to Pi+1. Finally, we
note that Pm+1 = (v0, y, v1, y, v2, y, . . . , vm, y, v0) and by a sequence of backtracking relations taking
(y, vi, y) to (y) it is equivalent to the trivial loop.

In all cases we see that the number of Pi’s in the contractions depends only on the length of P0, which is
always at most twice the diameter of Si0,i1

w . The claim follows. □

Proof of Claim 8.7.3. The group of automorphisms acts transitively on the 3-faces of SI
w so the claim will

follow from existence of a cone of diameter ⩽ 10 and Lemma 1.6. Fix any v0 ∈ Sw[i0]. For every u ∈ Sw

there exists a path Pu of length ⩽ 3 such that every u′ ∈ Pu \ {u} is in Si0,i1
w . This path is constructed by

taking some u1 ⊆ u of color i0, and then taking two steps (v, u0, u1, u) for u0 ⊇ v + u1 (here we use the fact
that i1 ⩾ 2i0 to promise that there exists such a u0. Let {Pu}u∈Sw be a set of such paths.

Let {u, u′} be an edge and let C = C0 = Pu ◦ (u, u′) ◦ P −1
u . Without loss of generality assume that u ⊆ u′.

Let us first do the case where u, u′ < Sw[i3] then one can check that the sum of spaces in the cycle,
∑

x∈C0
x

has dimension (or color) ⩽ i2 + 2i1: For example, assume that col(u) = i1, col(u′) = i2. Then our cycle is
composed of

Pu = (v0, u0, u1, u)

P −1
u′ = (u′, u′

1, u′
0, v0).

We observe that u1 ⊆ u ⊆ u′, that u0, u1 ⊆ u0 and that u′
1 ⊆ u′

0. Thus the sum of spaces is equal to
u′ + u0 + u′

0 which has dimension at most i2 + 2i1. The other cases are similar.
Thus there is a subspace x ∈ Sw[i3] that this sum, and therefore x ⊇ v0, u1, u1, u, u′, u′

1, u′
0, v0. In

particular, every edge in the path is contained in a triangle together with x. By a similar sequence of cycles
as in Claim 8.7.1 we can move from C0 to

Cm = (v0, x, u0, x, u1, x, u, x, u′, x, u′
1, x, u′

0, x, v0)

where m ⩽ 7 is the number of edges. This cycle contracts to the trivial cycle by backtracking relations.
Therefore the diameter of Tuu′ is ⩽ 7 in this case.
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We move to the case where (say) u′ ∈ Sw[i3] and claim that we can use at most three additional triangle
relations to reduce to the previous case.

Indeed, start with the path C0 = Pu ◦ (u, u′) ◦ P −1
u as above. If u < Sw[i0] then the cycle is composed of

Pu = (v0, u0, u1, u)

P −1
u′ = (u′, u′

1, u′
0, v0).

In this case u′ ⊇ u, u1, u′
1. let y ∈ Sw[i1] be such that y ⊇ u′

1 + u1 (these subspaces are of dimension i0 so by
assumption that i1 ⩾ 2i0 there exists such a y). Using the triangle (u′, u, u1), (u′, y, u1) and (u, y, u′

1) we can
contract C0 to

C3 = (u, u0, u1, y, u′
1, u′

0, u0).

We contract C3 as in the previous case, by another 6 triangles. In this case Tuu′ has diameter 9. The case
where u ∈ Sw[i0] is similar (and in fact requires one less triangle).

Thus the diameter of this cone is at most 9. □

Proof of Claim 8.7.6. Let S1(x) = 2x − i1 + 1, S3(x) =
21
20x − 1

20 i3 + 1 and let S(x) = max{S1(x), S3(x)}.
It is obvious that for any n, T n(x) ⩽ Sn(x) hence it is enough to show that in m steps it holds that Sm(i0) ⩽ 1.
The reason we do so, is that we wish to use possibly non-integral values in the analysis. It is easy to verify
that when x ∈ [0, i0] it holds that Si(x) is monotone increasing and that Si(x) ⩽ x. Moreover, we claim that
for any n, it holds that S2n(x) ⩽ max{Sn

1 (x), Sn
3 (x)}:

1. There exists some v̄ ∈ {1, 3}2n such that

S2n(x) = Sv2n ◦ ... ◦ Sv2 ◦ Sv1(x). (A.7)

2. If the number of 3-s in the sequence v̄ is ⩾ n then S2n(x) ⩽ Sn
3 (x) since removing S1 from the expression

in (A.7), only increases the function (since S1 of the inner expression is less or equal to the expression,
and the outer function is monotone).

3. A similar argument holds if the number of 1-s is ⩾ n, showing in this case that S2n(x) ⩽ Sn
1 (x).

Thus it is enough to show that Sm/2
i (i0) ⩽ 1 for both i = 1, 3. Take S1 for instance. Solving a recursion

relation shows that Sn
1 (i0) = (i0 − i1 − 1)2n + (i1 + 1). Obviously Sn

1 (i0) ⩽ 1 if 2n ⩾ i1
i1−i0+1 , which obviously

holds when m
2 = n ⩾ log( i3

i1−i0
). A similar argument holds for S3. □

Proof of Claim 7.1.1. Fix e0 = {v1, v2} ∈ XI of colors (say) i1, i2. For this proof we denote by c′
1 =

c1 \ {i1}, c′
2 = c2 \ {i2} and for all j ⩾ 3, c′

j = cj . Let us describe the vertices of its label graph Ge0 :

1. Faces w ∈ Xv1,v2 [c
′
3] ·∪ Xv1,v2 [c

′
4] ·∪ · · · ·∪ Xv1,v2 [c

′
ℓ].

2. Faces w ∈ Xv2 [c1] that contain v1. These correspond to faces w̃ ∈ Xv1,v2 [c
′
1].

3. Faces w ∈ Xv1 [c2] that contain v2. These correspond to faces w̃ ∈ Xv1,v2 [c
′
2].

Let us denote the vertices by V , and partition them into ℓ parts such that for j ⩾ 3 Vj = Xv1,v2 [c
′
j ] and for

j = 1, 2 Vj =
{

{vj} ·∪ w′ ∈ X [cj ]
∣∣∣ w′ ∈ Xv1,v2 [c

′
j ]
}
� Xv1,v2 [c

′
j ].

Let us define a graph H to be a complete graph on ℓ vertices V ′ = {1, 2, . . . , ℓ} with self loops. Its weight
function is µH({t, j}) = Pe∈Ce0 [e ∈ E(Vt, Vj)]. Here E(Vt, Vj) is the set of edges between Vt and Vj , and
for clarity we state that this formula is also for the case of self loops, i.e. j = t.

By definition the map ρ : V → V ′ given by ρ(v) = j for all v ∈ Vj is a homomorphism. Hence by
Claim 2.2.3 if we argue that the subgraphs E(Vt, Vj) and H are λ < 1 spectral expanders then it follows that
the label graph is also a spectral expander.

Let us begin with H. Note that H is connected and non-bipartite since all edges between different j, t
have positive weight. Moreover Pe∈Ce0 [e ∈ E(Vt, Vj)] only depends on j, t and ℓ - not on v1, v2 or the colors
ci. Thus H is a single graph that is connected and non-bipartite, and thus|λ|(H) < 1.

Moving on to the subgraphs E(Vj , Vt). There are five cases to consider.
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1. j = t ∈ {1, 2}.

2. j = t ∈ {3, 4, . . . , ℓ}.

3. j , t, j ∈ {1, 2} and t ∈ {3, 4, . . . , ℓ} (or vice versa).

4. j = 1, t = 2 (or vice versa).

5. j , t, j, t ∈ {3, 4, . . . , ℓ}.

In all these cases we can partition the graph E(Vj , Vt) to (a subset of) the following subgraphs with the
intention of using Claim 2.2.2.

1. Hv3∈w = (Vj , Vt, Ej,t,v3∈w), the graph induced by edges {w, w′} such that w ∈ Vj , w′ ∈ Vt, that come
from traversing through triangles t1 = {v1, v2, v3}w,w2,w3 and t2 = {v1, v2, v3}w′,w2,w3 such that v3 ∈ w.

2. Hv3∈w′ = (Vj , Vt, Ej,t,v3∈w′), the graph induced by edges {w, w′} such that w ∈ Vj , w′ ∈ Vt, that
come from traversing through triangles t1 = {v1, v2, v3}w,w2,w3 and t2 = {v1, v2, v3}w′,w2,w3 such that
v3 ∈ w′.

3. Hv3<w,w′ = (Vj , Vt, Ej,t,w<w,w′), the graph induced by edges such that v3 < w, w′.

With respect to the cases above for j and t, the first graph appears as a subgraph whenever j < {1, 2}, the
second appears whenever t < {1, 2}. The third graph appears in all cases.

Let us verify that we can indeed use Claim 2.2.2. In all cases, we observe that the stationary distribution
of all graphs is the same: if j , t it is just the distribution of the bipartite graph between Xv1,v2 [c

′
j ] and

Xv1,v2 [c
′
t] in X, and if j = t it is the distribution over Xv1,v2 [c

′
j ].

We show that is a spectral expander and that for any j, t, Pe∈E(Vj ,Vt)

[
e ∈ Hv3<w,w′

]
is lower bounded

by a constant (independent of the colors). Indeed, we note that in this case, traversing from w to w′ is
done by first sampling w2, w3, v3 ∈ Xv1,v2 , and then independently sampling w ∈ Xu[c′

j ], w′ ∈ Xu[c′
t] where

u = {v1, v2, v3} ∪ s2 ∪ s3. This is a convex combination of two steps in colored swap walks, and there for a
spectral expander by the assumption that X is a 1

2r2 local spectral expander. We note that this is a convex
combination of swap walks and not just one swap walk since, the colors of w2 and w3 are sometimes not
determined, and in addition in some cases v3 ∈ w2 ·∪ w3 and some times it is not, but all this doesn’t matter
for the analysis.

Let us argue that Hv3<w,w′ appears with constant probability for any j, t. For any j, t, there is constant
probability that w2 or w3 are in

⋃ℓ
m=3 Vm and that v3 ∈ w2 ·∪ w3. This implies that E(Vj , Vt) is a constant

expander by Claim 2.2.2. □

Proof of Claim 8.3.3. Fix uv ∈ Ω1. Note that we can describe all three probability distributions by first
choosing the colors of the vertices u, v and then choosing the vertices themselves uniformly at random
given those colors. Thus, if we denote by Bc1,c2 the set of edges between colors c1 and c2, we have that
PDi

[uv] = 1
|Bcol(u),col(v)|

PDi

[
Bcol(u),col(v)

]
. Hence it is enough to show for every two colors c1 ∈ J , c2 < J

that
P
D0

[Bc1,c2 ] ⩽ 2 P
D2

[Bc1,c2 ] and P
d
[Bc1,c2 ] ⩽ 2 P

D0
[Bc1,c2 ] .

If c1 ∩ c2 , ∅ then all probabilities in question are 0. Otherwise, we calculate and bound. First,

P
D0

[Bc1,c2 ] = d−2
((

n − (d + 1)
(d + 1)

)
− ((d + 1)2 − 1)

)−1

Since (d+ 1)−2 is the probability of choosing c1 ∈ J and (n−(d+1)
(d+1) )− ((d+ 1)2 − 1) are the number of choices

for c2 < J that is disjoint from c1. Let us consider D2. Here for choosing the triangle uvw ∼ D2 we choose
mutually disjoint colors c1, c′, c2 such that c1, c′ ∈ J and c2 < J (uniformly from all such triples). Thus,

P
D2

[Bc1,c2 ] ⩾ d−2(1 − (d + 1)
(d + 1)2 − 1 )

((
n − 2(d + 1)

(d + 1)

)
− ((d + 1)2 − 2)

)−1
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Since the probability of choosing c1 is (d + 1)−2, the probability of choosing c′ ∈ J such that c′ , c1 and
c′ ∩ c2 = ∅ is at least (1 − (d+1)

(d+1)2−1 ) (c2 intersects at most (d + 1) colors in J since |c2| = d + 1 and by

mutual disjointness). Finally, (n−2(d+1)
(d+1) )− ((d+ 1)2 − 2) is the number of colors outside of J that are disjoint

from both c1, c′. It is easy to verify that provided that n ⩾ (d + 1)3 we have that PD0 [Bc1,c2 ]
PD2 [Bc1,c2 ]

⩽ 2 for all d

large enough.
Now let us consider D1. Here for choosing the triangle uvw ∼ D1 we choose mutually disjoint colors

c1, c′, c2 such that c1 ∈ J and c′, c2 < J (uniformly from all such triples). Thus,

P
d
[Bc1,c2 ] ⩽ d−2

((
n − 2(d + 1)

(d + 1)

)
− ((d + 1)2 − 1)

)−1

since (d + 1)−2 is the probability of choosing c1, the probability of choosing some c′ that is disjoint from c1

is at most 1 (so we ignore it in the expression), and given c1, c′ the number of possible colors is (n−2(d+1)
(d+1) ) −

((d + 1)2 − 1).
It is easy to see that in this case PD1 [Bc1,c2 ]

PD0 [Bc1,c2 ]
⩽ 2 for all d large enough, as well. □

Proof of Claim 8.3.4. Similar to the proof of Claim 8.3.3 the claim will follow if we show that for every two
c1, c2 < J it holds that

P
P0

[Bc1,c2 ] ⩽ 2 P
P1

[Bc1,c2 ]

First we note that

P
P0

[Bc1,c2 ] ⩽

((
n

d + 1

)
− (d + 1)2

)−1((n − (d + 1)
(d + 1)

)
− (d + 1)2

)−1
.

This is because choosing c1 happens with probability one over the number of colors not in J , i.e. ( n
(d+1)) −

(d + 1)2. Given c1 the probability of choosing c2 is at least (n−(d+1)
(d+1) ) − (d + 1)2 since this is the minimal

number of colors disjoint from c1 that are not in J . On the other hand, choosing the colors of uvw ∼ TnnJ is
choosing c′, c1, c2 such that they are all mutually disjoint and such that c′ ∈ J , c1, c2 < J . Thus,

P
P1

[Bc1,c2 ] ⩾ (1 − 2(d + 1)
(d + 1)2 − 1 )

(
n − 3(d + 1)

(d + 1)

)−2

since choosing some c′ ∈ J disjoint from c1, c2 is with probability at least (1 − 2(d+1)
(d+1)2−1 ), and given such a

c′ ∈ J , choosing a pair c1, c2 that are disjoint is at least (n−3(d+1)
(d+1) )

−2
.

For large enough d and any n ⩾ d3, it holds that PP0 [Bc1,c2 ] ⩽ 2 PP1 [Bc1,c2 ] as required. □
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