
ar
X

iv
:2

40
2.

06
74

0v
1

 [
cs

.C
C

]
 9

 F
eb

 2
02

4

Nearest Neighbor Complexity and Boolean Circuits

Mason DiCicco*, Vladimir Podolskii†, Daniel Reichman∗

February 13, 2024

Abstract

A nearest neighbor representation of a Boolean function f is a set of vectors (anchors) labeled by 0
or 1 such that f(x) = 1 if and only if the closest anchor to x is labeled by 1. This model was introduced

by Hajnal, Liu, and Turán [2022], who studied bounds on the minimum number of anchors required to

represent Boolean functions under different choices of anchors (real vs. Boolean vectors) as well as the

more expressive model of k-nearest neighbors.

We initiate the systematic study of the representational power of nearest and k-nearest neighbors

through Boolean circuit complexity. To this end, we establish a close connection between Boolean

functions with polynomial nearest neighbor complexity and those that can be efficiently represented by

classes based on linear inequalities – min-plus polynomial threshold functions – previously studied in

relation to threshold circuits. This extends an observation of Hajnal et al. [2022]. As an outcome of

this connection we obtain exponential lower bounds on the k-nearest neighbors complexity of explicit

n-variate functions, assuming k ≤ n1−ǫ. Previously, no superlinear lower bound was known for any

k > 1.

Next, we further extend the connection between nearest neighbor representations and circuits to the

k-nearest neighbors case. As a result, we show that proving superpolynomial lower bounds for the k-

nearest neighbors complexity of an explicit function for arbitrary k would require a breakthrough in

circuit complexity. In addition, we prove an exponential separation between the nearest neighbor and k-

nearest neighbors complexity (for unrestricted k) of an explicit function. These results address questions

raised by Hajnal et al. [2022] of proving strong lower bounds for k-nearest neighbors and understanding

the role of the parameter k. Finally, we devise new bounds on the nearest neighbor complexity for several

explicit functions.

1 Introduction

The capacity of a learning model to economically represent a target function is essential in designing

machine learning algorithms. For example, the expressive power of machine learning models such as

Boolean circuits and neural networks has received considerable attention, with a recent focus on prop-

erties that allow for efficient representations Cybenko [1989], Hornik et al. [1989], Daniely et al. [2016],

Hellerstein and Servedio [2007], Eldan and Shamir [2016], Hajnal et al. [1993], Telgarsky [2016], Martens et al.

[2013]. Here, we study the nearest neighbor and k-nearest neighbors rules over the Boolean hypercube and

seek to understand which Boolean functions can be represented efficiently by these rules.

A nearest-neighbor representation of a function f is a set of vectors, called “anchors,” say S = P ∪N
such that f(x) = 1 if and only if the nearest anchor to x (under the Euclidean distance metric) belongs to P .

The set of anchors can be seen as a (disjoint) union of “positive” and “negative” examples. If S ⊆ {0, 1}n,

we refer to the representation as Boolean, and if S ⊆ Rn we call it real. This model was pioneered in

*Worcester Polytechnic Institute. [mtdicicco@wpi.edu, dreichman@wpi.edu]
†Tufts University. [vladimir.podolskii@tufts.edu]

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 25 (2024)

http://arxiv.org/abs/2402.06740v1

Hajnal et al. [2022], Kilic et al. [2023], who advocated the study of Boolean functions admitting efficient

representations. In a similar vein, Hajnal et al. [2022] also consider the k-nearest neighbors model, where

the value of f on input x is computed as a majority vote of the k nearest anchors to x.

The nearest neighbor rule is the subject of extensive research both with respect to statistical properties

and efficient algorithms Andoni and Indyk [2017], Andoni [2009], Shakhnarovich et al. [2005], Dasgupta and Kpotufe

[2020], Chaudhuri and Dasgupta [2014], Cover and Hart [1967], Clarkson [1997]. To our knowledge, much

less is known about the representational efficiency of this rule: Namely, which set of functions1 can be

represented efficiently; with polynomially many anchors.

Our approach to understanding nearest neighbor complexity is to relate it to the well-studied field of

Boolean circuit complexity, following a long tradition in computational learning theory and computational

complexity e.g., Linial et al. [1993], Jackson et al. [2002], Klivans and Servedio [2004, 2006], Williams

[2018], Vardi et al. [2021]. Our results establish both (unconditional) lower bounds and upper bounds on

the nearest neighbor complexity of explicit2 functions. We also describe efficient k-nearest neighbors rep-

resentations – for appropriate values of k – for a large class of Boolean functions for which we do not know

how to prove super-polynomial circuit lower bounds. Our proofs uncover new connections between near-

est neighbors and computational models such as linear decision lists and depth-two circuits that may be of

independent interest.

Our results To study the computational power of nearest neighbor representations, we introduce the clo-

sure of the classes NN and HNN under substitution and duplication of variables: These are subfunctions

of Boolean functions with polynomial nearest neighbor complexity (NN) as well as polynomial Boolean

nearest neighbor complexity (HNN). Note that standard complexity classes based on circuit-like models of

computation are closed under these operations. Hence, we can give a precise characterization (equality) of

the closures of NN and HNN in terms of min-plus polynomial threshold functions of polynomial complexity

(mpPTF). This adds to previous results of Hajnal et al. [2022] showing the containment of NN and HNN in

the class of mpPTFs. As a consequence, we prove (among other results) that HNN contains functions that

cannot be computed by depth-two threshold circuits with polynomial size and weight. We also observe that

the closure of HNN is closely connected to the class of functions with NN representations of logarithmic

bit-complexity.

We study the k-nearest neighbors complexity of Boolean functions for k > 1. First, we extend the

aforementioned characterization – the closure of NN in terms of mpPTF – to the closure of kNN. We use

this characterization to prove that kNN for constant k is closely related to NN and that there exists an explicit

function that requires exponential kNN complexity when k ≤ n1−ǫ (for an n-variate function).

Next, we generalize the characterization of kNN to arbitrary k by introducing a new class, kSTAT

– functions realizable by an inequality of the k-statistics of two sets of linear forms – which generalizes

mpPTF. Consequently, we establish that proving lower bounds for kNN for arbitrary k would require a

breakthrough in circuit complexity: See Theorems 6 and 8.

Finally, we present new bounds for nearest neighbor complexity of specific Boolean functions such

as disjointness, CNFs, and majority. For example, we show that CNFs with polynomially many clauses

have NN representations with polynomially-many anchors which also exhibit constant bit-complexity. In

contrast, there exist CNFs of polynomial size with exponential HNN complexity. We also establish a new

lower bound of n/2+2 on the HNN complexity of the majority function with an even number of inputs (n).

This matches the upper bound proved in Hajnal et al. [2022].

1We only deal with Boolean functions, but some results extend to the non-Boolean case as well, see Remark 6.
2By “explicit,” we mean a function that can be computed in polynomial time by a Turing machine.

2

Related work Nearest neighbor complexity (under Euclidean distance) was formalized by Hajnal et al.

[2022]. They observe that functions with polynomial nearest neighbor complexity can be simulated by

min-plus polynomial threshold functions, but it is an open question of whether or not the inclusion NN ⊆
mpPTF is proper. Relations to the class mpPTF are of interest because mpPTF has connections to circuit

complexity. For instance, Hansen and Podolskii [2015] establish that systems of mpPTF’s compute exactly

the class of AND ◦OR ◦ THR circuits.

Hajnal et al. [2022] prove that the functions THR⌊n/3⌋ and XOR both require an exponential number

of Boolean anchors but only 2 and n + 1 real anchors, respectively. In fact, the same argument proves

that THRt requires at least
(n
t

)
/
(2t
t

)
anchors for any t, which gives exponential lower bound for t bounded

away from 1/2, but is vacuous for THRn/2. It was subsequently shown in Kilic et al. [2023] that any

symmetric Boolean function f has an NN representation with I(f) anchors, where I(f) denotes the number

of intervals of f , and this bound is optimal when all intervals have the same length. This extends the result

of Hajnal et al. [2022] that every symmetric function has nearest neighbor complexity at most n+ 1.

The expressive power of k-nearest neighbors rule was also studied by Hajnal et al. [2022]. In particular,

they prove that kNN can simulate linear decision trees, which yields a linear (in n) lower bound for the

number of anchors in kNN representations of IP. They also state the open problem of proving stronger

lower bounds for the k-nearest neighbors complexity of an explicit function.

Nearest-neighbor complexity with respect to non-Euclidean distance measures has been studied before

by Globig [1996], Satoh [1998]. The former studies the problem of optimizing the distance metric itself

to enable polynomial-size NN representations for a given class of Boolean functions. The latter defines

“nearest” with respect to a partial ordering based on the set of differing coordinates between anchors and, in

this case, proves that CNFs and DNFs have polynomial-size representations. Salzberg et al. [1995] studies

the minimum number of anchors required to represent geometric concepts in Rn. As real functions are

considered, the techniques and results in Salzberg et al. [1995] are markedly different than our work which

studies Boolean functions.

It was shown in Kilic et al. [2023] that (the aforementioned) NN representations for symmetric functions

have logarithmic bit-complexity, and that this is tight for some functions. It is left as an open problem to

characterize NN representations of threshold functions in terms of bit-complexity. Other works have studied

the role of bit-complexity in approximate nearest neighbor search; where we wish to find an anchor whose

distance is minimal to a query point, up to a factor of (1 + ǫ). For example, Indyk and Wagner [2018]

provide tight bounds (in terms of bit-complexity) on the size of data structures performing approximate

nearest neighbor search. This setting is quite different from our focus on exact classification of Boolean

vectors.

The bit-complexity of the weights in polynomial-size threshold circuits has been studied extensively

(see, e.g., surveys Razborov [1992], Saks [1993]). For example, it was proved by Goldmann et al. [1992],

Goldmann and Karpinski [1998] that arbitrarily large weights can be reduced to have logarithmic bit-complexity

by slightly increasing the depth of the circuit (along with a polynomial blow-up in size).

Constructions of Boolean circuits computing nearest neighbor classification are known. Murphy [1992]

constructs the “canonical” OR ◦ AND ◦ THR circuit computing any function with an m-anchor NN rep-

resentation in size O(m2). (See Appendix B). A very similar depth-three construction for kNN, also with

size O(m2), was found by Chen et al. [1995]. Note that the weights of the above circuits are bounded by a

polynomial in n.

There is extensive research on the learning complexity – in particular, statistical parameters such as sam-

ple complexity – of real nearest neighbor representations (e.g., Devroye et al. [2013]). There is evidence

that increasing k in the k-nearest neighbors rule can decrease its estimation error Devroye [1981]. In addi-

tion, the algorithmic complexity of nearest neighbors was considered by Wilfong [1991], who establishes

NP-hardness of finding a set of anchors with minimal cardinality within some ground set (i.e., the consistent

3

subset problem).

Organization Section 2 outlines basic definitions required in subsequent sections. Section 3 establishes

the equivalence between HNN,NN and min-plus polynomial threshold functions, then discusses some of the

consequences. Section 4 generalizes mpPTF to a new class, kSTAT, and proves that a similar equivalence

holds with kNN. Here, we also derive several connections to circuit classes such as SYM ◦MAJ. Section

5 contains several new results (upper and lower bounds) for the nearest neighbor complexity of explicit

Boolean functions. Many proofs are relegated to Appendix A due to space constraints. Appendix B contains

some direct constructions of threshold circuits computing HNN, one of which has depth two.

2 Preliminaries

The use the following notation throughout the paper:

Vectors are written in bold (i.e. x = (x1, · · · , xn)).
The k’th statistic of x, denoted x(k), is the k’th smallest element of x.

— In particular, x(k) = xσ(k) ⇐⇒ xσ(1) ≤ · · · ≤ xσ(n) for some σ ∈ Sn

∆(x,y) := ||x− y||22 denotes the distance between x,y.

〈x,y〉 denotes the real inner product (dot product), x1y1 + · · ·+ xnyn.

poly(n) refers to an arbitrary polynomial in the variable n.

1[P] denotes the Boolean function whose value is 1 if and only if P holds.

Note that the (squared) Euclidean distance between two Boolean vectors is equal to their Hamming

distance, ∆(x,y) =
∑

i≤n 1[xi 6= yi], so the Hamming weight of a Boolean vector p is denoted ∆(p) :=

∆(p,0) = ||p||22.

2.1 Boolean functions

Definition 1. A threshold gate is a Boolean function f : {0, 1}n → {0, 1} defined by a weight vector

w ∈ Rn and a threshold θ ∈ R such that

f(x) = 1 ⇐⇒ 〈w,x〉 ≥ θ. (1)

A threshold circuit is a sequence (f1, · · · , fs) of s ≥ n gates such that the first n gates are equal to the

input variables (i.e., fi = xi for i ≤ n) and subsequent gates are threshold gates whose inputs are some

subset of the previous gates. The output of the circuit is equal to the output of the final gate(s). The size of

the circuit is equal to s− n.

A threshold circuit can be viewed as a directed acyclic graph. Nodes with fan-in 0 correspond to inputs,

and other nodes correspond to threshold gates applied to the values of the preceding nodes. Nodes with

fan-out 0 correspond to output nodes. The depth of the circuit is the length of the longest path from an input

node to an output node.

Remark 1. It is well known that we may assume that the weights (and the threshold) are integers without

loss of generality: Since the domain of a threshold gate is finite, we may approximate each weight by a

rational number and multiply by a common denominator. See Jukna [2012] for a comprehensive introduction

to circuit complexity.

Definition 2. A Nearest Neighbor (NN) representation of a Boolean function f : {0, 1}n → {0, 1} is

defined by two disjoint sets of positive and negative anchors P,N ⊆ Rn such that

4

• f(x) = 1 if there exists a p ∈ P with ∆(x,p) < ∆(x, q) for all q ∈ N .

• f(x) = 0 if there exists a q ∈ N with ∆(x, q) < ∆(x,p) for all p ∈ P .

A Hamming Nearest Neighbor (HNN) representation is defined identically for Boolean anchors.

Definition 3. A k-Nearest Neighbors (kNN) representation of a function f : {0, 1}n → {0, 1} is defined by

two disjoint sets of positive and negative anchors P,N ⊆ Rn and an integer k such that

f(x) = 1 ⇐⇒ there exists an A ⊆ P ∪N with the following properties:

1. |A| = k

2. |A ∩ P | ≥ |A ∩N |

3. ∆(x,a) < ∆(x, b) for all a ∈ A, b 6∈ A.

A kHNN representation is defined identically for Boolean anchors.

Definition 4 (Hansen and Podolskii [2015]). A min-plus polynomial threshold function (mpPTF) is a Boolean

function f : {0, 1}n → {0, 1} defined by two sets of linear forms with integer coefficients3 {L1, · · · , Lℓ1}∪
{R1, · · · , Rℓ2} satisfying

f(x) = 1 ⇐⇒ min
i≤ℓ1

Li(x) ≤ min
j≤ℓ2

Rj(x) (2)

The number of terms in an mpPTF is equal to ℓ1 + ℓ2, and the maximum weight is equal to the largest

absolute value of the coefficients of any form.

Definition 5 (Rivest [1987]). A linear decision list (LDL) representation of a Boolean function f is a se-

quence of instructions “if fi(x) = 1, then output ci” for 1 ≤ i ≤ m, followed by “output 0.” Here,

f1, · · · , fm are threshold gates and c1, · · · , cm ∈ {0, 1}. Exact linear decision lists (ELDL) are defined sim-

ilarly using exact threshold functions – threshold gates where the inequality in (1) is replaced with equality.

The length of an LDL or ELDL is the number of gates, m, and its maximum weight is equal to the largest

coefficient of any fi.

Definition 6. We consider the following well-known Boolean functions.

The majority function, MAJ(x1, · · · , xn) = 1[x1 + · · · + xn ≥ n/2]
The disjointness function, DISJ(x,y) = 1[〈x,y〉 = 0]
The inner product mod 2 function, IP(x,y) = 〈x,y〉 mod 2
The odd-max-bit function, OMB(x1, · · · , xn) = max{i : xi = 1} mod 2

2.2 Function classes

First, we define classes of Boolean circuits whose inputs may be variables, their negations, or the constants 0

and 1. AND, OR, THR, and SYM are the classes of polynomial-size4 depth-one circuits composed of AND,

OR, threshold gates, and symmetric functions (i.e., Boolean functions which depend only on the Hamming

weight of the input) respectively. MAJ ⊂ THR is the set of threshold gates with polynomial weights5. AC0

is the class of constant-depth circuits consisting of a polynomial number of AND, OR, and NOT gates.

For two circuit classes C1, C2, the class of circuits consisting of a circuit from C1 whose inputs are (the

outputs of) a polynomial number of circuits from C2 is denoted by C1 ◦ C2. (e.g., THR ◦ THR refers to

depth two threshold circuits of polynomial size.)

3As for threshold gates, there is no loss of generality in the assumption that weights of mpPTFs are integers.
4“polynomial” in this context is always with respect to the input size, n.
5We abuse the notation denoting by MAJ both specific function and a class of function. The meaning of our notation will be

also clear from the context.

5

Definition 7. NN is the class of Boolean functions that have nearest neighbor representations with polynomially-

many anchors. HNN is the same class where anchors are Boolean. kNN and kHNN are defined in the same

manner for a positive integer k.

Definition 8. mpPTF(∞) is the class of min-plus polynomial threshold functions with a polynomial number

(in terms of the number of inputs) of terms and unbounded maximum weight. mpPTF(poly(n)) is the same

class with polynomially-bounded maximum weight.

Definition 9. LDL is the class of Boolean functions representable by linear decision lists with polynomial

length. L̂DL is the same class with polynomially-bounded maximum weight. ELDL and ÊLDL are defined

similarly for exact linear decision lists.

3 Min-plus PTFs vs. nearest neighbors

In this section, we introduce the closure operation and derive an equivalence between (the closure of) NN,

HNN and mpPTF.

Definition 10. Define a substitution of variables as a function v : {0, 1}n {0, 1}ñ where duplicates

variables or adds constant variables (e.g., x1x2 x1x1x2x2x20). Then, a Boolean function f : {0, 1}n →
{0, 1} is a subfunction of g : {0, 1}ñ → {0, 1} if ñ = poly(n) and there exists a substitution of variables v
such that f(x) = g(v(x)) for all x ∈ {0, 1}.

Subfunctions may equivalently be obtained from g : {0, 1}ñ → {0, 1} by identifying variables (e.g.,

x1 = x2) and assigning variables to constants (e.g., x1 = 0).

Definition 11. For any function class C , let C denote the closure of C: The set of subfunctions derived

from the elements of C6.

In particular, we say that a Boolean function f has an “NN representation” if it is a subfunction of some

g ∈ NN.

Theorem 1.

NN = mpPTF(∞), HNN = mpPTF(poly(n))

Theorem 1 and some consequences are proved in Appendix A. Namely, we observe that any n-variate

function in NN is a sub-function of an (n + 1)-variate NN representation, and that mpPTF(poly(n)) cap-

tures precisely the power of NN representations with bit-complexity O(log n). Then, using the results of

Hajnal et al. [2022] and Hansen and Podolskii [2015], we immediately establish the following two corollar-

ies.

Corollary 1. HNN (HNN

Corollary 2. NN representations of IP, fn(x,y) :=
∧n

i=1

∨n2

j=1(xi,j ∧ yi,j) require 2Ω(n) anchors.

Theorem 1 also yields lower bounds for the circuit complexity of functions belonging to HNN. (A direct

construction in Appendix B shows that HNN ⊆ THR ◦MAJ.)

Theorem 2.

HNN 6⊆ MAJ ◦MAJ

More precisely, there is a Boolean function with an HNN representation with n + 1 anchors which cannot

be computed by a depth-two majority circuit with poly(n) gates.

6Note that classes based on circuits are already closed under this operation.

6

Proof. First, we claim that OMB ◦ AND2 ∈ HNN. Indeed, f is computed by an mpPTF with n+ 1 terms:

min{L1(x,y), L3(x,y), · · · } ≤ min{−1, L2(x,y), L4(x,y), · · · }

where Lk(x,y) = (k+1) · (1−xi− yi). Note that if xi = yi = 1, then Li(x,y) = −(i+1) and otherwise

Li(x,y) ≥ 0. Hence, the minimum is obtained at the maximum index j where xj = yj = 1. The claim

follows from Theorem 1.

Second, it is known that OMB ◦ AND2 6∈ MAJ ◦MAJ by Buhrman et al. [2007], Hajnal et al. [1993].

Thus, if HNN was in MAJ ◦ MAJ, then we could use the HNN representation described above to get a

MAJ ◦MAJ circuit computing OMB ◦ AND2, which is a contradiction.

Finally, we observe a connection between mpPTFs and linear decision lists. This provides additional

proof techniques for HNN and helps to relate a question of separation of HNN and NN to the similar question

for linear decision lists. The following lemma is proved in Appendix A.

Lemma 1.

mpPTF(poly(n)) ⊆ L̂DL.

More precisely, any mpPTF with m terms and maximum weight W is equivalent to a linear decision list

with length and maximum weight O(m2W).

Remark 2. This lemma enables another technique to prove lower bounds for HNN apart from sign-rank.

More specifically, it is known that any function without large monochromatic rectangles must have a large

linear decision list by Chattopadhyay et al. [2020].

Lemma 2. LDL ⊆ mpPTF(∞).

Proof. It was shown in [Hansen and Podolskii, 2015, Lemma 22] that OMB ◦ THR ⊆ mpPTF(∞). Our

lemma follows since OMB is complete for the class of decision lists – See [Hansen and Podolskii, 2015,

Lemma 22].

It is open whether L̂DL and LDL are equal by Chattopadhyay et al. [2020]. Lemmas 1 and 2 immediately

allow us to relate this problem to the problem of separating HNN and NN.

Corollary 3. If L̂DL 6= LDL, then HNN 6= NN.

Proof. From Theorem 1 and Lemmas 1, 2, we have the following sequence of inclusions.

HNN = mpPTF(poly) ⊆ L̂DL ⊆ LDL ⊆ mpPTF(∞) = NN,

If HNN = NN, then the whole sequence of inclusions collapses and, in particular, L̂DL = LDL.

4 kNN vs. Circuits

In this section, we give a circuit-style characterization of kNN and provide connections to known circuit

classes. From these results, we obtain a separation between kNN and NN. Additionally, our results imply

complexity theoretic barriers for proving superpolynomial lower bounds for kNN representations of explicit

functions.

7

4.1 Characterization for small k

Here, we use the connection to mpPTF representations to get our first results on k-nearest neighbors com-

plexity. In particular, we establish connection of k-nearest neighbors representations for constant k > 0 to

NN and prove a lower bound on k-nearest neighbors complexity for sublinear k.

Theorem 3. Any Boolean function with an m-anchor kNN representation is computed by an mpPTF with(
m
k

)
terms.

Proof. We prove only the first statement as both arguments are identical. As noted in the proof of Theorem

1, the distances from anchors to a query point x are linear forms L1(x), · · · , Lm(x). Assign each linear

form a label ℓ1, · · · , ℓm ∈ {1,−1} where a positive label indicates placement on the left-hand side of the

mpPTF and vice versa.

Then, consider the collection A+(x) = {Li1(x) + · · · + Lik(x) | ℓi1 + · · · + ℓik ≥ 0} and the com-

pliment A−(x) = {Li1(x) + · · · + Lik(x) | ℓi1 + · · · + ℓik < 0}. The resulting mpPTF with
(m
k

)
terms,

1[minA+(x) ≤ minA−(x)], realizes the original kNN representation: The minimum is attained by groups

of k-nearest neighbors and if any such group has a positive majority then the inequality holds.

It follows that Boolean functions with m-anchor kNN representations can be represented in NN with(m
k

)
anchors. These results generalize to both weighted kNN and to non-Boolean inputs. See Appendix A

for a discussion.

As a consequence of Theorem 3, sign-rank lower bounds (e.g., Corollary 2) also apply to kNN. In

particular, we get an exponential lower bound for kNN with k = O(n1−ǫ) for constant ǫ > 0. This addresses

an open question posed in Hajnal et al. [2022] regarding k-nearest neighbors complexity.

Corollary 4. Any kNN representation of IP or fn(x,y) :=
∧n

i=1

∨n2

j=1(xi,j ∧ yi,j) requires 2Ω(n/k) an-

chors7.

Proof. Assume that IP (or fn) has a kNN representation with m anchors. By Theorems 1 and 3 , IP has

an NN representation with
(m
k

)
≤ mk anchors. By Corollary 2, we have mk ≥ 2Ω(n) and thus m ≥

2Ω(n/k).

4.2 Characterization for arbitrary k

In this section, we generalize the ideas of Theorem 1 to the closure of kNN, yielding further connections be-

tween nearest neighbors and circuit complexity. All proofs and further discussion can be found in Appendix

A.

Definition 12. Define by kSTAT the class of functions f : {0, 1}n → {0, 1} representable by an inequality

between k-statistics of two sets consisting of a polynomial number of linear forms: Given {L1, · · · , Lℓ1} ∪
{R1, · · · , Rℓ2} and integers kl and kr,

f(x) = 1 ⇐⇒ (L1(x), · · · , Lℓ1(x))(kl) < (R1(x), · · · , Rℓ2(x))(kr) (3)

and ℓ1 + ℓ2 is bounded by a polynomial in n.

As usual, we can assume that all coefficients in the linear forms are integers. Define the subclass k̂STAT

where all coefficients are bounded by a polynomial in n8.

7The constant in Ω-notation does not depend on k or n.
8mpPTF can be viewed as a special case of kSTAT in which kl = kr = 1.

8

Note that we can reduce Definition 12 to the case of kl = kr with only a linear increase in the size. This

can be done by adding “dummy” linear forms that are always smaller than all others.

Theorem 4.

kNN = kSTAT, kHNN = k̂STAT.

Next, we provide another equivalent form of kSTAT that is sometimes more convenient.

Theorem 5. The class kSTAT consists exactly of functions f : {0, 1}n → {0, 1} for which there exist linear

forms {L1, · · · , Lp} with p = poly(n), a positive integer k, and a labelling function label : {1, · · · , p} →
{0, 1}, such that for all x,

f(x) = 1 ⇐⇒ (L1(x), · · · , Lp(x))(k) = Li(x) for some i with label(i) = 1. (4)

The class k̂STAT consists exactly of functions with the same representation with polynomial-size coefficients

in the linear forms.

Now we show that some well-known circuit classes, for which we do not have any known lower bounds,

are computable by kHNN.

Theorem 6. SYM ◦MAJ ⊆ k̂STAT.

Using the same strategy, we can embed a large complexity class into kNN directly:

Theorem 7. SYM ◦ AND ⊆ kNN.

Remark 3. Note that SYM◦AND ⊆ SYM ◦MAJ and SYM◦AND is known to simulate the whole class of

ACC0 within quasi-polynomial size Beigel and Tarui [1994]. Related classes are of interest in the context of

obtaining lower bounds through circuit satisfiability algorithms [Vyas and Williams, 2023, Conjecture 1].

As a result of Theorem 7, if we prove for some explicit function f that f /∈ kNN, it will follow that f /∈
SYM◦AND, and this would be a major breakthrough in circuit complexity. Also note that IP ∈ SYM◦AND
and thus, by Theorem 7, IP ∈ kNN. Together with Corollary 2, this gives a separation between NN and

kNN. This also shows that in Corollary 4 we cannot get rid of k in the lower bound.

Theorem 8. ELDL ⊆ kSTAT, ÊLDL ⊆ k̂STAT.

Remark 4. The class ELDL is known to be contained in THR ◦ THR and proving super-polynomial lower

bounds for ELDL is an open problem (See Dahiya et al. [2024]).

5 New bounds for the nearest neighbor complexity of Boolean functions

In this section, we derive several bounds on the nearest neighbor complexity of Boolean functions.

5.1 Nearest neighbor complexity of CNFs

We first show that any CNF admits an efficient NN representation.

Theorem 9. Any CNF or DNF with m clauses has an NN representation with m+ 1 anchors and constant

bit-complexity.

9

Proof. It suffices to prove the statement for DNFs as any CNF can be converted to a DNF by negation.

Let N = {q := (12 , · · · ,
1
2)} and note that d(x, q) = n/4 for every input x ∈ {0, 1}n (where d is the

squared Euclidean distance. For each clause, say C(x) = (x1 ∧ · · · ∧ xk), introduce a positive anchor

pC =

(
5

4
, · · · ,

5

4︸ ︷︷ ︸
k

,
1

2
, · · · ,

1

2︸ ︷︷ ︸
n−k

)
.

If any variable is negated, replace the corresponding 5
4 with −1

4 .

If C(x) = 1, then d(x,pC) = n
4 − k

16 < d(x, q). Otherwise, d(x,pC) ≥ n−1
4 + 25

16 > d(x, q).
Therefore the entire DNF, say C1 ∨ · · · ∨Cm, is satisfied if and only if some pCi

is a nearest neighbor of x.

The compact representation above does not generalize to deeper AC0 circuits of depth larger than 2.

For instance, Corollary 2 exhibits a function computable by a depth-three De Morgan circuit of polynomial

size which does not belong to NN. For the well studied disjointness function (that admits a compact CNF

representation) we can get an efficient HNN representation:

Theorem 10.

DISJ ∈ HNN

The disjointness function (in 2n dimensions) has an HNN representation with 3n anchors.

Proof. Consider anchors P = {(e1,e1), · · · , (en,en)} and N = {e1, · · · ,e2n} where ei denotes the i’th
standard basis vector and (ei,ei) their concatenation.

Let x,y ∈ {0, 1}n and suppose xi = yi = 1 for some i. Then, for all j it holds that ∆((x,y), (ei,ei)) ≤
∆((x,y),ej) − 1 with equality when i = j. Otherwise, ∆((x,y), (ei,ei)) ≥ ∆((x,y),ej) + 1 for all

i, j.

Remark 5. It can be shown that the number of anchors in Theorem 10 is nearly tight; based on the Ω(n)
lower bound for DISJ of Razborov [1990], a simple argument proves that NN representations of disjointness

require Ω(n/ log n) anchors. We omit the details.

Proceeding, we show that some CNFs with polynomially many clauses have exponential Boolean nearest

neighbor complexity.

Definition 13. The Hamming cube graph is an undirected graph with vertices V = {0, 1}n and edges

E = {(u,v) ∈ V : ∆(u,v) = 1}. The components of a Boolean function f are the connected components

of the subgraph of the Hamming cube graph induced by the vertex set f−1(1).

Lemma 3. If a Boolean function f has m components then any HNN representation of f has at least m
anchors.

Proof. Consider some component C of f and let δ(C) denote the vertex boundary of C: Vertices in {0, 1}n\
C with a neighbor in C . Note that δ(C) ⊆ f−1(0).

Suppose f has HNN representation P ∪N and let p ∈ P be the nearest anchor to some x ∈ C . Assume

for contradiction that p 6∈ C . Note that ∆(x,p) is equal to the length of the shortest path from x to p in

the Hamming cube graph, which by assumption must contain some y ∈ δ(C). (In particular, ∆(x,p) =
∆(x,y) + ∆(y,p).) Thus, there must exist some negative anchor q ∈ N with ∆(y, q) < ∆(y,p). By the

triangle inequality,

∆(x, q) ≤ ∆(x,y) + ∆(y, q) < ∆(x,y) + ∆(y,p) = ∆(x,p)

which contradicts the minimality of p. Thus, each component contains an anchor.

10

Using the previous results, another separation between HNN and NN follows from the existence of a

CNF (over n-variables) with poly(n) clauses and exponentially (in n) many components. (See Appendix

A.)

Theorem 11. For any k > 0, there exists a k-CNF over n variables with poly(n) clauses for which any

HNN representation has 2Ω(n) anchors.

5.2 A new lower bound for majority

We now discuss the disparity between the HNN complexity of the majority function in [Hajnal et al., 2022,

Theorem 4]: In particular, when n is even, the best upper bound is n
2 +2 anchors, whereas 2 anchors suffices

when n is odd. Note that if ties were allowed (won by positive anchors) in Definition 2, then P = {1n} and

N = {0n} would suffice as an HNN representation for MAJ for all n.

Theorem 12. For even n, any HNN representation of MAJ requires n
2 + 2 anchors.

Proof. Suppose P ∪ N is an HNN representation of MAJ for even n. We claim that for each x ∈ {0, 1}n

satisfying ∆(x) = n/2, there is a positive anchor p 6= 1 with x ≤ p in coordinate-wise order:

It follows from Hajnal et al. [2022] that the nearest anchor p to x satisfies x ≤ p. Indeed, for some i it

holds that xi = 1, so suppose for contradiction that pi = 0. Then, construct y = x− ei and let q ∈ N be

the nearest anchor to y. This yields ∆(x,p) = ∆(y,p) + 1 > ∆(y, q) + 1, contradicting the fact that

∆(x,p) < ∆(x, q) ≤ ∆(y, q) + 1. (5)

A similar argument shows that q ≤ y. Hence, ∆(y, q) ≤ n
2 − 1, and (5) becomes ∆(x,p) < n

2 which

implies that ∆(p) ≤ n− 1, proving the claim.

For contradiction, assume that |P ∪N | ≤ n
2 + 1. Since there must be at least one negative anchor, we

have |P | ≤ n
2 . Then, we can construct x ∈ {0, 1}n with ∆(x) = n

2 for which there is no positive anchor

p 6= 1 with x ≤ p, leading to a contradiction: For each p ∈ P \ 1, arbitrarily select some i where pi = 0
and set xi = 1, ensuring x 6≤ p. After this process, ∆(x) ≤ |P | ≤ n

2 . Arbitrarily fixing more coordinates

of x to 1 so that ∆(x) = n
2 completes the construction.

6 Conclusion

We have studied nearest neighbor representations of Boolean functions, proving new lower and upper

bounds and devising connections to circuit complexity. There are several questions we did not pursue.

Can we find new connections between nearest neighbor complexity and other complexity measures of

Boolean functions? For what classes of Boolean functions does polynomial nearest neighbor complexity

translate to efficient learning algorithms? Similar ideas for establishing NP-hardness results of learning

depth-two neural networks Blum and Rivest [1988] can be shown to imply that properly learning Boolean

functions representable by three real anchors is NP-hard. Devising efficient learnability results for near-

est neighbor representations that circumvent worst-case barriers could be of interest. Finally, studying

representations of Boolean functions using the well developed theory of approximate nearest neighbor

search Indyk and Motwani [1998], Kushilevitz et al. [1998] could lead to new insights and more compact

representations avoiding the curse of dimensionality.

7 Acknowledgements

The second and third authors thank the Simons Institute for the Theory of Computing for their hospitality.

Their collaboration on this project began during the Meta-Complexity workshop at the institute.

11

References

Alexandr Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD thesis, Massachusetts

Institute of Technology, 2009.

Alexandr Andoni and Piotr Indyk. Nearest neighbors in high-dimensional spaces. In Handbook of Discrete

and Computational Geometry, pages 1135–1155. Chapman and Hall/CRC, 2017.

Richard Beigel and Jun Tarui. On ACC. Comput. Complex., 4:350–366, 1994. doi: 10.1007/BF01263423.

URL https://doi.org/10.1007/BF01263423.

Avrim Blum and Ronald Rivest. Training a 3-node neural network is NP-complete. Advances in neural

information processing systems, 1, 1988.

Harry Buhrman, Nikolay Vereshchagin, and Ronald de Wolf. On computation and communication with

small bias. In Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07), pages

24–32. IEEE, 2007.

Arkadev Chattopadhyay, Meena Mahajan, Nikhil S. Mande, and Nitin Saurabh. Lower

bounds for linear decision lists. Chic. J. Theor. Comput. Sci., 2020, 2020. URL

http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html.

Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor classification. Ad-

vances in Neural Information Processing Systems, 27, 2014.

Yan Qiu Chen, Mark S Nixon, and Robert I Damper. Implementing the k-nearest neighbour rule via a

neural network. In Proceedings of ICNN’95-International Conference on Neural Networks, volume 1,

pages 136–140. IEEE, 1995.

Kenneth L Clarkson. Nearest neighbor queries in metric spaces. In Proceedings of the twenty-ninth annual

ACM symposium on Theory of computing, pages 609–617, 1997.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on information

theory, 13(1):21–27, 1967.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals

and systems, 2(4):303–314, 1989.

Yogesh Dahiya, K. Vignesh, Meena Mahajan, and Karteek Sreenivasaiah. Linear threshold functions in

decision lists, decision trees, and depth-2 circuits. Inf. Process. Lett., 183:106418, 2024. doi: 10.1016/J.

IPL.2023.106418. URL https://doi.org/10.1016/j.ipl.2023.106418.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The power

of initialization and a dual view on expressivity. Advances in neural information processing systems, 29,

2016.

Sanjoy Dasgupta and Samory Kpotufe. Nearest neighbor classification and search, 2020.

Luc Devroye. On the asymptotic probability of error in nonparametric discrimination. The Annals of

Statistics, 9(6):1320–1327, 1981.

Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition, volume 31.

Springer Science & Business Media, 2013.

12

https://doi.org/10.1007/BF01263423
http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html
https://doi.org/10.1016/j.ipl.2023.106418

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference on

learning theory, pages 907–940. PMLR, 2016.

Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication complexity.

Journal of Computer and System Sciences, 65(4):612–625, 2002.

Christoph Globig. Case-based representability of classes of boolean functions. In Proceedings of ECAI’96,

pages 117–121, 1996.

Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority circuits. SIAM Journal

on Computing, 27(1):230–246, 1998.

Mikael Goldmann, Johan Håstad, and Alexander Razborov. Majority gates vs. general weighted threshold

gates. Computational Complexity, 2:277–300, 1992.

András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold circuits of

bounded depth. Journal of Computer and System Sciences, 46(2):129–154, 1993.

Péter Hajnal, Zhihao Liu, and György Turán. Nearest neighbor representations of boolean functions. Infor-

mation and Computation, 285:104879, 2022.

Kristoffer Arnsfelt Hansen and Vladimir V Podolskii. Polynomial threshold functions and boolean threshold

circuits. Information and Computation, 240:56–73, 2015.

Lisa Hellerstein and Rocco A Servedio. On PAC learning algorithms for rich boolean function classes.

Theoretical Computer Science, 384(1):66–76, 2007.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366, 1989.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimen-

sionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604–613,

1998.

Piotr Indyk and Tal Wagner. Approximate nearest neighbors in limited space. In Conference On Learning

Theory, pages 2012–2036. PMLR, 2018.

Jeffrey C Jackson, Adam R Klivans, and Rocco A Servedio. Learnability beyond AC0. In Proceedings of

the thiry-fourth annual ACM symposium on Theory of computing, pages 776–784, 2002.

Stasys Jukna. Boolean function complexity: advances and frontiers, volume 5. Springer, 2012.

Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. On the information capacity of nearest neighbor

representations. In 2023 IEEE International Symposium on Information Theory (ISIT), pages 1663–1668,

2023.

Adam R Klivans and Rocco A Servedio. Learning DNF in time 2O(n1/3). Journal of Computer and System

Sciences, 2(68):303–318, 2004.

Adam R Klivans and Rocco A Servedio. Toward attribute efficient learning of decision lists and parities.

Journal of Machine Learning Research, 7(4), 2006.

Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate nearest neighbor in

high dimensional spaces. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,

pages 614–623, 1998.

13

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform, and learnabil-

ity. Journal of the ACM (JACM), 40(3):607–620, 1993.

James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On the representational efficiency

of restricted boltzmann machines. Advances in Neural Information Processing Systems, 26, 2013.

O Murphy. Nearest neighbor pattern classification perceptrons. Neural Networks: Theoretical Foundations

and Analysis, pages 263–266, 1992.

Edward A Patrick and Frederic P Fischer III. A generalized k-nearest neighbor rule. Information and

control, 16(2):128–152, 1970.

Alexander A Razborov. On the distributional complexity of disjointness. In International Colloquium on

Automata, Languages, and Programming, pages 249–253. Springer, 1990.

Alexander A Razborov. On small depth threshold circuits. In Scandinavian Workshop on Algorithm Theory,

pages 42–52. Springer, 1992.

Alexander A Razborov and Alexander A Sherstov. The sign-rank of AC0. SIAM Journal on Computing, 39

(5):1833–1855, 2010.

Ronald L Rivest. Learning decision lists. Machine learning, 2:229–246, 1987.

Michael E. Saks. Slicing the hypercube, page 211–256. London Mathematical Society Lecture Note Series.

Cambridge University Press, 1993.

Steven Salzberg, Arthur L. Delcher, David Heath, and Simon Kasif. Best-case results for nearest-neighbor

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):599–608, 1995.

Ken Satoh. Analysis of case-based representability of boolean functions by monotone theory. In Algorithmic

Learning Theory: 9th International Conference, ALT’98 Otzenhausen, Germany, October 8–10, 1998

Proceedings 9, pages 179–190. Springer, 1998.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in learning and vision:

theory and practice, volume 3. MIT press Cambridge, MA, USA:, 2005.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pages 1517–1539.

PMLR, 2016.

Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation in approximating

benign functions with neural networks. In Conference on Learning Theory, pages 4195–4223. PMLR,

2021.

Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse symmetric functions of ACC circuits:

Expanding the reach of #SAT algorithms. Theory Comput. Syst., 67(1):149–177, 2023. doi: 10.1007/

S00224-022-10106-8. URL https://doi.org/10.1007/s00224-022-10106-8.

Gordon Wilfong. Nearest neighbor problems. In Proceedings of the seventh annual symposium on Compu-

tational Geometry, pages 224–233, 1991.

Richard Ryan Williams. Limits on representing boolean functions by linear combinations of simple func-

tions: Thresholds, relus, and low-degree polynomials. In 33rd Computational Complexity Conference

(CCC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

14

https://doi.org/10.1007/s00224-022-10106-8

A Omitted proofs

A.1 Proof of Theorem 1

We break the proof of this theorem into two separate lemmas.

Lemma 4.

NN ⊆ mpPTF(∞), HNN ⊆ mpPTF(poly(n))

More precisely, any NN representation with m anchors is equivalent to an mpPTF with m terms, and

any HNN representation with m anchors in ñ dimensions is equivalent to an mpPTF with m terms and

maximum weight ñ.

Proof. The distance from x ∈ {0, 1}n to an anchor p ∈ Rn is a linear form in variables x:

∑

i

(xi − pi)
2 =

∑

i

[
x2i − 2pixi + p2i

]

=
∑

i

[
(1− 2pi)xi + p2i

]

= 〈1− 2p,x〉+ ||p||22.

We can observe that NN representations essentially compute 1[minp∈P ∆(x,p) ≤ minq∈N ∆(x, q)],
which is an mpPTF. subfunctions merely multiply coefficients and add constants to each linear form –

For example, d(x1x10, p1p2p3) = 2 · (1− 2p1)x1 + (p23 + 2p21).
In the case of HNN, we have for all anchors that p ∈ {0, 1}n and ∆(x,p) is a linear form with ±1

coefficients and positive constants bounded (in absolute value) by n. As a result, the weights in mpPTF are

bounded by n as well.

Lemma 5.

mpPTF(∞) ⊆ NN, mpPTF(poly(n)) ⊆ HNN

More precisely, any mpPTF with m terms has an NN representation with m anchors in n + 1 dimensions.

Any mpPTF with m terms and maximum weight W has an HNN representation with m anchors in ñ =
O(nW) dimensions.

Proof. We start with the mpPTF(poly(n)) case. Let 1[mini≤ℓ1 L1i(x) ≤ minj≤ℓ2 L2j(x)] be an arbitrary

mpPTF(poly(n)). First make some pre-processing steps. First, multiply each linear form by 2 and add

one to the right-hand side, so that ties are won by the left-hand side. Second, we would like to make all

coefficients positive. For this, while there exists a negative term −aijkxk (or constant −θij), just add xk
(or 1) to every linear form until all negative terms are eliminated. No coefficient (or constant) will increase

by more than W . Third, we make all coefficients even by multiplying all linear forms by two. Finally,

we add the same constant Θ (to be decided later) to all linear forms. Then, every linear form is equal to

Lij(x) = aij1x1 + · · ·+ aijnxn + θij +Θ, for positive, even constants aijk, θij ≤ 8W .

Define n block sizes t1, · · · , tn by tk := maxi,j aijk (i.e., the maximum coefficient of xk in any linear

form). Also define C = Θ + maxi,j θij and let ñ := t1 + · · · + tn + C . Inputs x ∈ {0, 1}n are mapped

() to query points x̃ ∈ {0, 1}ñ and linear forms Lij are mapped to anchors p̃ij ∈ {0, 1}ñ such that

∆(x̃, p̃ij) = Lij(x). In particular,

x̃ := x1 · · · · · · x1︸ ︷︷ ︸
t1 many

· · · xn · · · · · · xn︸ ︷︷ ︸
tn many

· 1 · · · 1︸ ︷︷ ︸
C many

15

and

p̃ij = 0 · · · · · · 0︸ ︷︷ ︸
(t1+aij1)/2

1 · · · · · · 1︸ ︷︷ ︸
(t1−aij1)/2

· · · 0 · · · · · · 0︸ ︷︷ ︸
(tn+aijn)/2

1 · · · · · · 1︸ ︷︷ ︸
(tn−aijn)/2

· 0 · · · · · · 0︸ ︷︷ ︸
zij

1 · · · · · · 1︸ ︷︷ ︸
C−zij

where zi will be chosen momentarily. (Let P = {p̃1j}j≤ℓ1 and N = {p̃2j}j≤ℓ2 .) The distance between x̃

and p̃ij is equal to

∆(x̃, p̃ij) = zij +
∑

k

(
tk + aijk

2

)
xk +

(
tk − aijk

2

)
(1− xk)

= zij + 〈aij,x〉+
∑

k

(
tk − aijk

2

)

Now let zij = Θ+ θij −
∑

k

(
tk−aijk

2

)
so that ∆(x̃, p̃ij) = 〈aij,x〉+Θ+ θij. This is valid (i.e., zij is

a non-negative integer) if we choose a large enough value for Θ: The minimal value of Θ such that zij ≥ 0
for all i, j is

Θ = max
i,j

(∑

k

(
tk − aijk

2

)
− θij

)
≤
∑

k

tk
2

≤ 4nW.

Thus, for Θ = 4nW , we may always choose 0 ≤ zij ≤ Θ + θij ≤ C . Observe that x x̃ by

duplicating each xi at most 8W times and introducing at most 4nW + 8W constant variables. Thus, the

original mpPTF is equivalent to a subfunction of an HNN representation with m anchors at most 4nW+8W
dimensions.

For the mpPTF(∞) case, the same method applies, only now we do not need to increase the dimension

that much. All coefficients can be realized by choosing anchors pij = (1− aij)/2 and all constants θij can

be corrected using one additional dimension.

From this we can also deduce the following:

Theorem 13. Any function with an m-anchor NN representation with bit-complexity O(log n) is equivalent

to an mpPTF(poly(n)) with m terms. Any function of n inputs with mpPTF(poly(n)) representation with

m terms is equivalent to a subfunction of a function of n + 1 inputs with an m-anchor NN representation

with bit-complexity O(log n).

Proof. Observe that in Lemmas 4 and 5 – for NN and mpPTF(∞) – the bit-complexity of NN and the

logarithms of weights of mpPTF are linearly related.

A.2 Proof of Corollary 1

Proof. It is shown in Hajnal et al. [2022] that XOR has a unique HNN representation with 2n anchors.

Furthermore, it is established in Hansen and Podolskii [2015] that XOR ∈ mpPTF(poly(n)): In particular,

XOR(x) = 1 if and only if min {L0(x), L2(x), · · · } ≤ min {L1(x), L3(x), · · · } where Li(x) = i2 − 2i ·
(x1 + · · ·+ xn).

A.3 Proof of Corollary 2

Proof. It was shown by Hajnal et al. [2022] that the NN complexity of a Boolean function f is bounded

below by the sign-rank of f , and this can be easily extended to NN through Theorem 1: The number of

terms in an mpPTF computing f is also bounded below by the sign-rank of f , by Hansen and Podolskii

[2015].

Forster [2002] and Razborov and Sherstov [2010] respectively establish that the sign rank of IP is equal

to 2n/2 and the sign rank of fn is 2Ω(n).

16

A.4 Proof of Lemma 1

Proof. Consider a function f ∈ mpPTF(poly(n)) and let 1[mini≤ℓ1 L1i(x) ≤ minj≤ℓ2 L2j(x)] be its

representation. We can assume that all possible values of all linear forms are distinct. For this it is enough

to multiply all forms by ℓ1 + ℓ2 and to add to each form it’s own unique remainder modulo ℓ1 + ℓ2.

Observe that all linear forms obtain only polynomially many variables (since there output is polyno-

mially bounded in absolute value). Denote possible values of the form Lij by aij1, · · · , aijt for some t
polynomially bounded in n. Note that, for different linear forms, the number of the values obtained might

be not the same. To simplify the notation we assume that we add several equal values to the list to make

them all of equal size t.
Now we are ready to produce the decision list. Let c1 = 1 and c2 = 0. We consider each aijk in

increasing order and query if Lij(x) ≤ aijk. If so, we output ci. If not, we proceed to the next aijk.

This decision list computes f since we are just looking for the minimal value of a linear form among all

possible values of the forms.

A.5 Consequences of Theorem 3

Corollary 5. Any Boolean function with a kNN representation with m anchors has an NN representation

with
(
m
k

)
anchors. (Similarly, Boolean function with a kHNN representation with m anchors has an HNN

representation with
(
m
k

)
anchors.)

Remark 6. Theorem 3 and Corollary 5 can be extended to non-Boolean inputs. More precisely, the same

statements are true over any finite domain D ⊆ Rn. For this we can express (squared) distances to anchors as

quadratic forms, for each subset of distances of size k consider the average of these distances and represent

them as a distance to a new anchor. We still need to add an extra dimension to absorb constant terms.

Remark 7. Theorem 3 and Corollaries 5 and 4 can be extended to the case of weighted kNN. Indeed, in

Theorem 3, instead of sums of linear forms we will have weighted sums. This will require
(m
k

)
·k! = m!

(m−k)!
terms in the mpPTF representation. If the weights in the weighted kNN representation are small and the

bit-complexity of anchors is small, this results in a HNN representation and if there are no restrictions of

weights and bit-complexity, we get NN representation. The proof of Corollary 4 still works despite the

increase of the number of anchors to m!
(m−k)! .

A.6 Proof of Theorem 4

We first make the following general observation: Patrick and Fischer III [1970] show that finding the k’th

nearest positive anchor and k’th nearest negative anchor and classifying based on which is closest is equiv-

alent to computing a (2k − 1)-nearest neighbors representation. This fact can be generalized, considering

the closure of kNN.

Lemma 6. Let A and B be two sets of numbers and let S be the k smallest elements of A ∪B. Then,

|A ∩ S| ≥ |B ∩ S| ⇐⇒ A(t) < B(t)

where t =
⌊
k+1
2

⌋
. (As in kNN, we assume S exists and is unique).

Proof. A contains a majority of the elements in S if and only if |A∩S| ≥ t. This happens if and only if the

t’th smallest element in A is smaller than the t’th smallest element in B.

We now proceed with the proof of Theorem 4.

17

Proof. For the inclusion kNN ⊆ kSTAT, consider any function f in kNN. It is a subfunction of some

function g with a kNN representation P ∪N . As in Lemma 4, the distances between x and each anchor are

linear forms A = {L1(x), · · · , L|P |(x)} and B = {R1(x), · · · , R|N |(x)} which we assume have integer

coefficients by the usual finite precision argument. By definition g(x) = 1 if and only if the set S of k-

nearest neighbors satisfies |P ∩ S| ≥ |N ∩ S|. By Lemma 6, this happens if and only if A(t) < B(t), taking

t =
⌊
k+1
2

⌋
. Hence, g ∈ kSTAT. As kSTAT is closed under taking subfunctions, f ∈ kSTAT as well.

For the inclusion kSTAT ⊆ kNN, assume that f has a kSTAT representation. By adding dummy linear

forms we can have kl = kr. By Lemma 6, the inequality (3) holds if and only if the 2kl − 1 smallest linear

forms consist of more linear forms from the left-hand side than the right. Representing each inequality by

an anchor, we obtain a representation of the same function in kNN.

The case of kHNN and k̂STAT is analogous.

A.7 Proof of Theorem 5

Proof. Suppose a Boolean function f has a representation {L1, · · · , Lp} satisfying (4) for some function

label and integer k. We will show that f ∈ kSTAT. First, we assume that all coefficients in all linear form

are integers and ensure that all values of all linear forms are distinct and even. For this, multiply all forms

by 2p and shift each form by its own even remainder modulo 2p.

For each i ≤ p, we add one linear form to each side of (3). If label(i) = 1, then place the form Li(x) on

the left-hand side and Li(x)+1 on the right. If label(i) = 0, put the Li(x) on right-hand side and Li(x)+1
on the left. It is easy to see that the k’th statistics in the left and right-hand sides of the resulting kSTAT

representation are Li(x) and Li(x) + 1 (not necessarily in that order), where Li(x) is the k’th statistic of

the original representation. Hence, the inequality in (3) holds if and only if label(i) = 1.

For the other direction, assume we have a function f ∈ kSTAT given by (3). We again assume that

all coefficients are integers and all values of all linear forms are distinct. Now we construct the required

representation of f . For each form Li we add to the representation the forms

Lij(x) := Li(x) +
j

kl + kr

for all j ∈ {0, 1, · · · , kl + kr − 1}, and for each form Ri we add to the representation the forms

Rij(x) := Ri(x) +
j

kl + kr + 1

for all j = {0, 1, · · · , kl + kr}. (That is, we have kl + kr copies of each form Li and kl + kr + 1 copies

of each form Ri). To each Lij , Rij we assign the label 0 if j < kl, and 1 if j ≥ kl. Finally, we set

k = (kl + kr − 1)(kl + kr + 1) + 1.

Now, observe that the inequality (3) holds if and only if, among the kl+kr−1 smallest forms, there are at

least kl forms Li. Assume that there are precisely a forms Li and b forms Ri. In particular, a+b = kl+kr−1.

Then, in the new representation, these linear forms give us

a(kl + kr) + b(kl + kr + 1) = (a+ b)(kl + kr + 1)− a = (kl + kr − 1)(kl + kr + 1)− a

smallest forms. By construction, the next smallest forms are either Li0 ≤ · · · ≤ Li(kl+kr) or Ri0 ≤ · · · ≤
Ri(kl+kr+1) for some i. Thus, the k’th smallest form is either Lia or Ria and its label is 1 if and only if

a ≥ kl as desired.

18

A.8 Proof of Theorem 6

Proof. Suppose we are given a function f ∈ SYM ◦ MAJ and a circuit computing it. We are going to

construct a k̂STAT representation of f in the form given by Theorem 5.

We can assume that all MAJ gates in the circuit have the same threshold t = 0. For this we can just

add dummy variables and fix them to constants. Denote the linear forms for MAJ gates by L1, · · · , Ls (all

weights are integers) and denote by g : {0, 1}s → {0, 1} the symmetric function at the top of the circuit.

Here, s is the size of the circuit. Now, construct a k̂STAT representation with the following linear forms:

(s+ 2)L1(x), · · · , (s+ 2)Ls(x), 1, 2, · · · , s+ 1. (6)

That is, we multiply each linear form by (s+2) and add (s+1) constant linear forms with values 1, · · · , s+1.

We let k = s+ 1.

It is easy to see that the k’th statistic of (6) is always one of the constant linear forms. It is the form i if

and only if i − 1 of the linear forms among L1, · · · , Ls are positive. We assign label 1 to the form i if and

only if g(x) = 1 for inputs of weight i − 1. As a results we get the desired representation for f and show

that f ∈ k̂STAT.

Remark 8. The well-known argument that shows MAJ ◦THR = MAJ ◦MAJ (see Goldmann et al. [1992])

can be straightforwardly adapted to show that SYM ◦ THR = SYM ◦MAJ. Thus, SYM ◦ THR ⊆ k̂STAT

follows from Theorem 6 as well.

A.9 Proof of Theorem 7

Proof. First, as a warm-up, we show that IP ∈ kNN. Recall that IP(x,y) =
⊕n

i=1(xi ∧ yi). Denote by

a = (12 , · · · ,
1
2) an 2n-dimensional vector with 1

2 in each coordinate. Note that ∆(a, (x,y)) = n
2 for all

(x,y) ∈ {0, 1}2n .

For each i = 1, · · · , n and j = 0, 1 introduce an anchor pij = a + (12 − j
4)(ei + ei+n). If for some

(x,y) we have xi = yi = 1, then

∆((x,y),pij) ≤
n

2
− 2

(
1

4
−

1

16

)
=

n

2
−

3

8
.

If, on the other hand, xi = 0 or yi = 0, then

∆((x,y),pij) ≥
n

2
−

(
1

4
−

1

16

)
−

(
1

4
−

9

16

)
=

n

2
+

1

8
>

n

2
.

For each i = 1, · · · , n + 1 and j = 0, 1 and l = 0, 1 introduce an anchor qi,j,l = a + (−1)l 2i+j
8n e1. For

(x,y) with x1 = 1 it is not hard to see that

n

2
−

3

8
<∆((x,y), qn+1,1,0) < ∆((x,y), qn+1,0,0) < · · · <

<∆((x,y), q1,1,0) < ∆((x,y), q1,0,0) <
n

2

and ∆((x,y), qi,j,1) >
n
2 for all i, j. The situation is symmetric for x1 = 0. We assign label j to the anchor

pij . We assign label 1 to the anchor qijl iff i+ j is odd. We let k = 2n+ 1.

It is easy to see that for a given (x,y) among the k closest anchors we have all pairs of anchors pi0,pi1

for all i such that xi = yi = 1. Denote the number of such i by t. Also among the k closest anchors we

will have pairs of anchors qi,0,l, qi,1,l for an appropriate l and for i = n + 1, . . . , t + 2. In each of these

19

pairs the labels of anchors are opposite and they cancel out when we compute the majority. Finally, one

last anchor we will have among the k closest anchors is qt+1,1,l. The label of this anchor determines the

majority among the k closest anchors and it is 1 iff t is odd. As a result, we get the desired representation

for IP with 6n+ 4 anchors.

Now we extend this argument to any function in SYM◦AND. Consider a function f(x) = g(f1(x), · · · , fs(x)),
where each fi has the form

fi(x) =

∧

i∈Si

xi

 ∧

∧

i∈Ti

¬xi

for some disjoint Si, Ti ⊆ [n].
For each fi we let ǫi1 > ǫi0 > 0 be a couple of parameters to be fixed later. We introduce a pair of

anchors pi1,pi0 in the following way: we let the jth coordinate of pij to 1
2 if i /∈ Si∪Ti, to 3

2−ǫij for i ∈ Si

and to −1
2 + ǫij for i ∈ Ti. It is easy to see that for x such that fi(x) = 1 we have ∆(pij,x) =

n
4 − |S ∪

T |(ǫij−ǫ2ij) and for x such that fi(x) = 0 we have ∆(pij,x) ≥
n
4−(|S ∪ T | − 1) (ǫij−ǫ2ij)+1 for ǫij <

1
2 .

We fix ǫij in such a way that n
4 −|S ∪T |(ǫij − ǫ2ij) <

n
4 −

1
2 and n

4 − (|S ∪ T | − 1) (ǫij − ǫ2ij)+1 > n
4 +

1
2 .

We set label(pij) = j.

We construct anchors qijl for i = 1, · · · , s+1 and j = 0, 1 the same way as above and assign label(qi1l)
to be equal to g(y) for y of weight i − 1 and label(qi0l) to be the opposite. We let k = 2s + 1. The same

argument as for IP shows that we get the desired representation of f with 6s+ 4 anchors.

A.10 Proof of Theorem 8

Proof. Consider a function f ∈ ELDL and suppose the linear forms in its representation are L1, · · · , Ls.

Here Li corresponds to the i’th query. As in the proof of Theorem 6, we can assume that all thresholds in

all linear forms are 0.

We are going to construct a representation for f of the form provided by Theorem 5. We add to this

representation the following linear forms:

(s+ 1)L1,−(s + 1)L1, (s+ 1)L2 + 1,−(s + 1)L2 − 1, · · · , (s + 1)Ls + s− 1,−(s + 1)Ls − s+ 1.

That is, for each form Li in ELDL representation, we add the two forms (s + 1)Li + (i − 1) and −(s +
1)Li − (i− 1). We set k = s.

Assume that for some x we have Li(x) = 0 and all previous linear forms are non-zero. We than

have that (s + 1)Li(x) + i − 1 = i − 1. It is not hard to see that for j < i we have that among forms

(s + 1)Lj(x) + j − 1 and −(s + 1)Lj(x) − j + 1 exactly one is greater than i − 1: it is the first one if

Lj(x) > 0 and the second one if Lj(x) < 0. For j > i in a similar way we can see that among the forms

(s + 1)Lj(x) + j − 1 and −(s + 1)Lj(x) − j + 1 exactly one is greater than i − 1: it is the first one if

Lj(x) ≥ 0 and the second one if Lj(x) < 0. As a result there are exactly s − 1 forms that are greater than

(s + 1)Li(x) + i − 1. We assign to this form the same label Li(x) has in ELDL. From this it follows that

the constructed representation computes the same function.

Clearly, the coefficients in the constructed form are polynomially related to the coefficients in the original

forms. Thus, the same proof gives ÊLDL ⊆ k̂STAT.

Remark 9. Note that decision lists are computable in AC0 and thus can be computed by quasi-polynomial-

size SYM ◦ AND circuits. As a result, ELDL can be computed by quasi-polynomial-size circuit in SYM ◦
AND ◦ ETHR = SYM ◦ ETHR = SYM ◦MAJ, where the second equality follows since ETHR is closed

under AND operation. Still, Theorem 8 gives a polynomial reduction that translates to the case of small

coefficients.

20

A.11 Proof of Theorem 11

Such constructions are likely known; we outline a simple one for completeness.

Lemma 7. For any even integer k > 0, there exists a CNF with n variables and n2k−ok(k)/k clauses with

2(1−ok(1))n components.

Proof. Assume k divides n. Divide the set of variables to n/k disjoint sets S1, · · · , Sn/k of size k. For each

set Si, define a CNF Ci which evaluates to 1 if and only if exactly half of the variables in S are equal to 1.

This can be achieved with
(k
k/2

)
= 2k−ok(k) clauses.

Then, the CNF C = C1 ∧ · · · ∧ Cn/k has exactly
(k
k/2

)n/k
= 2(1−ok(1))n satisfying assignments, and

the Hamming distance between any two of such assignments is at least 2. Thus, each of them constitutes a

component.

Hence, Theorem 11 follows from Lemmas 3 and 7 by taking k to be a constant independent of n. It is

easy to extend the construction above to odd k. We omit the simple details.

B Circuits computing nearest neighbors

In this section we describe a straightforward construction of a depth-three circuit computing HNN and then

compress it to depth-two at the cost of exponential weights. The folklore result of Murphy [1992] is that any

NN representation with m anchors can be computed by a depth three threshold circuit with size O(m2). A

short proof can be found in Kilic et al. [2023].

Theorem 14 (Murphy [1992]).

• NN ⊆ OR ◦ AND ◦ THR, AND ◦ OR ◦ THR

• HNN ⊆ OR ◦ AND ◦MAJ, AND ◦ OR ◦MAJ

Namely, every NN (HNN) representation is computed by a depth-three AC0 ◦ THR (MAJ) circuit with size

|P ||N |+min{|P |, |N |} + 1.

Note that the only difference between the circuits for HNN and NN is that the first-level threshold gates

are guaranteed to have polynomial weights (in the case of HNN). It turns out that the size of the HNN circuit

can be improved (when n ≪ |P |+ |N |).

Lemma 8.

HNN ⊆ OR ◦ AND ◦MAJ

In particular, every HNN representation with m anchors is computed by an OR ◦ AND ◦ THR circuit with

size (n+ 1)m+ (n+ 1)|P |+ 1.

Proof. Note that 1[∆(x,p) ≤ i] is computed by a threshold gate fp
≤i(x) defined by w = p − p and

θ = ∆(p)− i. (And similarly 1[∆(x,p) ≥ i].) Suppose f has an HNN representation P ∪N . Then,

f(x) =
∨

i≤n
p∈P

fp

≤i(x) ∧
∧

q∈N

fq
≥i(x)

21

Note that the threshold circuits from Theorem 14 and Lemma 8 have size O(m2) and O(mn) respec-

tively. In fact, the latter circuit can be compressed to a depth-two threshold circuit with exponential weights.

Theorem 15.

HNN ⊆ THR ◦MAJ.

Namely, every HNN representation with m anchors is computed by a threshold of 2nm majority gates.

Proof. The first level will consist of 2mn gates fp
≤i, f

p
≥i which output 1 if and only if ∆(x,p) ≤ i and

∆(x,p) ≥ i, respectively, for 1 ≤ i ≤ n. Define the sum

gpi (x) := fp
≤i(x) + fp

≥i(x)− 1

and note that gpi (x) = 1[∆(x, p) = i]. We can then write the output gate as

h(x) = 1

 ∑

p∈P,i≤n

m3(n−i)+1gpi (x)−
∑

q∈N,i≤n

m3(n−i)gqi (x) ≥ 0

 .

If some positive anchor is at distance at most j and all negative anchors are at distance at least j to x,

then ∑

p∈P,i≤n

m3(n−i)+1gpi (x) ≥ m3(n−j)+1 ≥
∑

q∈N,i≤n

m3(n−i)gqi (x).

Conversely, if some negative anchor is at distance at most j and all positive anchors are at distance at least

j + 1, then

∑

p∈P,i≤n

m3(n−i)+1gpi (x) ≤ m3(n−j)−1 < m3(n−j) ≤
∑

q∈N,i≤n

m3(n−i)gqi (x).

Remark 10. Theorem 15 can be obtained through Theorem 1, as a consequence of the following result

derived from Hansen and Podolskii [2015]. We include the direct construction to avoid the slight increase

in circuit size.

Lemma 9.

mpPTF(poly(n)) ⊆ THR ◦MAJ

Every mpPTF with ℓ terms and maximum weight W is computed by a linear threshold of at most 4·Wℓ log ℓ
majority gates.

Proof. Let PTF1,2 refer to Boolean functions (over {1, 2}) equal to the sign of an n-variate polynomial.

Hansen and Podolskii [2015] prove that any PTF1,2 with ℓ terms and degree at most d is computed by a

linear threshold (with exponential weights) of at most 2ℓd majority gates (replacing {1, 2} with {0, 1}), and

any mpPTF with ℓ terms and maximum weight W can be represented by a PTF1,2 with ℓ terms and degree

at most 2W log ℓ.

Remark 11. It is not hard to see that the circuits constructed in this section are polynomial-time uniform;

they can be generated by a Turing machine given the set of anchors in polynomial time.

22
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

