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Abstract
We show that for all ε > 0, for sufficiently large prime power q ∈ N, for all δ > 0, it is NP-hard to

distinguish whether a 2-Prover-1-Round projection game with alphabet size q has value at least 1− δ, or
value at most 1/q1−ε. This establishes a nearly optimal alphabet-to-soundness tradeoff for 2-query PCPs
with alphabet size q, improving upon a result of Chan [Cha16]. Our result has the following implications:

1. Near optimal hardness for Quadratic Programming: it is NP-hard to approximate the value of a
given Boolean Quadratic Program within factor (log n)1−o(1) under quasi-polynomial time reduc-
tions. This result improves a result of Khot and Safra [KS13] and nearly matches the performance
of the best known approximation algorithm [Meg01, NRT99, CW04] that achieves a factor of
O(log n).

2. Bounded degree 2-CSP’s: under randomized reductions, for sufficiently large d > 0, it is NP-hard
to approximate the value of 2-CSPs in which each variable appears in at most d constraints within
factor (1− o(1))d2 , improving upon a recent result of Lee and Manurangsi [LM23].

3. Improved hardness results for connectivity problems: using results of Laekhanukit [Lae14] and
Manurangsi [Man19], we deduce improved hardness results for the Rooted k-Connectivity Prob-
lem, the Vertex-Connectivity Survivable Network Design Problem and the Vertex-Connectivity
k-Route Cut Problem.

1 Introduction

The PCP theorem is a fundamental result in theoretical computer science with many equivalent formula-
tions [FGL+91, AS97, ALM+92]. One of the formulations asserts that there exists ε > 0 such that given
a satisfiable 3-SAT formula ϕ, it is NP-hard to find an assignment that satisfies at least (1 − ε) fraction of
the constraints. The PCP theorem has a myriad of applications within theoretical computer science, and of
particular interest to this paper are applications of PCP to hardness of approximation.

The vast majority of hardness of approximation result are proved via reductions from the PCP theorem
above. Oftentimes, to get a strong hardness of approximation result, one must first amplify the basic PCP
theorem above into a result with stronger parameters [Hås01, Has99, Fei98, KP06] (see [Tre14] for a survey).
To discuss these parameters, it is often convenient to view the PCP from via the problem of 2-Prover-1-
Round Games, which we define next.1

Definition 1.1. An instance Ψ of 2-Prover-1-Round Games consists of a bipartite graph G = (L ∪ R,E),
alphabets ΣL and ΣR and a collection of constraints Φ = {ϕe}e∈E , which for each edge e ∈ E specifies a
constraint map ϕe : ΣL → ΣR.

*Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA. Supported by NSF CCF award 2227876
and NSF CAREER award 2239160.

†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA. Supported by the NSF GRFP DGE-
2141064.

1Strictly speaking, the notion below is referred to in the literature as projection 2-Prover-1-Round games. We omit the more
general definition as we do not discuss non-projection games in this paper.
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1. The alphabet size of Ψ is defined to be |ΣL|+ |ΣR|.

2. The value of Ψ is defined to be the maximum fraction of edges e ∈ E that can be satisfied by any
assignment. That is,

val(Ψ) = max
AL : L→ΣL
AR : R→ΣR

|{e = (u, v) ∈ E | ϕe(AL(u)) = AR(v)}|
|E|

.

The combinatorial view of 2-Prover-1-Round Games has its origins in an equivalent, active view in
terms of a game between a verifier and two all powerful provers, which is sometimes more intuitive. The
verifier and the two provers have access to an instance Ψ of 2-Prover-1-Round Games, and the provers agree
beforehand on a strategy; after that period they are not allowed to communicate. The verifier then picks a
random edge from the 2-Prover-1-Round game e = (u, v), sends u to the first prover, v to the second prover,
gets a label from each one of them and checks that the labels satisfy the constraint ϕe. If so, the verifier
accepts. It is easy to see that the value of the 2-Prover-1-Round game is equal to the acceptance probability
of the verifier under the best provers’ strategies. This view will be useful for us later.

In the language of 2-Prover-1-Round Games, the majority of hardness of approximation results are
proved by combining the basic PCP theorem [FGL+91, AS97, ALM+92] with Raz’s parallel repetition
theorem [Raz98], which together imply the following result:

Theorem 1.2. There exists γ > 0 such that for sufficiently large R, given a 2-Prover-1-Round game Ψ with
alphabet size R, it is NP-hard to distinguish between the following two cases:

1. YES case: val(Ψ) = 1.

2. NO case: val(Ψ) ⩽ 1
Rγ .

For many applications, one only requires that the soundness of the PCP is small. Namely, that val(Ψ)
is arbitrarily small in the “NO case”. For certain applications however, more is required: not only must
the soundness be small – but it must also be small in terms of the alphabet size. The tradeoff between the
soundness of the PCP and the alphabet size of the PCP is the main focus of this paper.

With respect to this tradeoff, it is clear that the best result one may hope for in Theorem 1.2 is γ =
1 − o(1) since a random assignment to Ψ satisfies, in expectation, at least 1

R fraction of the constraints. In
terms of results, combining the PCP theorem with Raz’s parallel repetition theorem gives γ > 0 that is an
absolute, but tiny constant. Towards a stronger tradeoff, Khot and Safra [KS13] showed that Theorem 1.2
holds for γ = 1/6 with imperfect completeness (i.e., val(Ψ) ⩾ 1 − o(1) instead of val(Ψ) = 1 in the
YES case). The result of Khot and Safra was improved by Chan [Cha16], who showed (using a completely
different set of techniques) that Theorem 1.2 holds for γ = 1/2− o(1), again with imperfect completeness.

1.1 Main Results

In this section we explain the main results of this paper.

1.1.1 Near Optimal Alphabet vs Soundness Tradeoff

The main result of this work improves upon all prior results, and shows that one may take γ = 1 − o(1) in
Theorem 1.2, again with imperfect completeness. Formally, we show:
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Theorem 1.3. For all ε, δ > 0, for sufficiently large R, given a 2-Prover-1-Round game Ψ, it is NP-hard to
distinguish between the following two cases:

1. YES case: val(Ψ) ⩾ 1− δ.

2. NO case: val(Ψ) ⩽ 1
R1−ε .

Theorem 1.3 shows a near optimal tradeoff between the alphabet of a PCP and the alphabet of a PCP,
improving upon the result of Chan [Cha16]. Moreover, Theorem 1.3 has several applications to combina-
torial optimization problems, which we discuss below. We remark that most of these applications require
additional features from the instances produced in Theorem 1.3 which we omit from its formulation for the
sake of clarity. For instance, one application requires a good tradeoff between the size of the instance and the
alphabet size, which our construction achieves. Other applications require the underlying constraint graph
to be bounded-degree bi-regular graph, which our construction also achieves (after mild modifications; see
Theorem 7.1).

1.1.2 Application: NP-Hardness of Approximating Quadratic Programs

Theorem 1.3 has an application to the hardness of approximating the value of Boolean Quadratic Program-
ming, as we explain next.

An instance of Quadratic programming consists of a quadratic form Q(x) =
n∑

i,j=1
ai,jxixj where ai,i =

0 for all i, and one wishes to maximizeQ(x) over x ∈ {−1, 1}n. This problem is known to have anO(log n)
approximation algorithm [Meg01, NRT99, CW04], and is known to be quasi-NP-hard to approximate within
factor (log n)1/6−o(1) [ABH+05, KS13]. That is, unless NP has a quasi-polynomial time algorithm, no
polynomial time algorithm can approximate Quadratic Programming to within factor (log n)1/6−o(1). As a
first application of Theorem 1.3, we improve the hardness result of Khot and Safra:

Theorem 1.4. It is quasi-NP-hard to approximate Quadratic Programming to within a factor of (log n)1−o(1).

Theorem 1.4 is proved via a connection between 2-Prover-1-Round Games and Quadratic Programming
due to Arora, Berger, Hazan, Kindler, and Safra [ABH+05]. This connections requires a good tradeoff
between the alphabet size, the soundness of the PCP, and the size of the PCP. Fortunately, the construction
in Theorem 1.4 has a sufficiently good tradeoff between the alphabet size. 2

1.1.3 Application: NP-hardness of Approximating Bounded Degree 2-CSPs

Theorem 1.3 has an application to the hardness of approximating the value of 2-CSPs with bounded degree,
as we explain next.

An instance Ψ of 2-CSP, say Ψ = (X,C,Σ), consists of a set of variables X , a set of constraints C and
an alphabet Σ. Each constraint in C has the form P (xi, xj) = 1 where P : Σ × Σ → {0, 1} is a predicate
(which may be different in distinct constraints). The degree of the instance Ψ is defined to be the maximum,
over variables x ∈ X , of the number of constraints that x appears in. The goal is to find an assignment
A : X → Σ that satisfies as many of the constraints as possible.

There is a simple d+1
2 approximation algorithm for the 2-CSP problem for instances with degree at

most d. Lee and Manurangsi proved a nearly matching
(
1
2 − o(1)

)
d hardness of approximation result

2We remark that the result of Chan [Cha16] does not achieve a good enough tradeoff between the alphabet size and the instance
size due to the use of the long-code, and therefore it does not yield a strong inapproximability result for Quadratic Programming.
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assuming the Unique-Games Conjecture [LM23]. Unconditionally, they show the problem to be NP-hard to
approximate within factor

(
1
3 − o(1)

)
d under randomized reductions.

Using the ideas of Lee and Manurangsi, our main result implies a nearly matching NP-hardness result
for bounded degree 2-CSPs:

Theorem 1.5. For all η > 0, for sufficiently large d, approximating the value of 2-CSPs with degree at most
d within factor

(
1
2 − η

)
d is NP-hard under randomized reductions.

As in [LM23], Theorem 1.5 has a further application to finding independent sets in claw free graphs. A
k-clawK1,k is the (k+1) vertex graph with a center vertex which is connected to all other k-vertices and has
no other edges; a graphG is said to be k-claw free ifG does not contain an induced k-claw graph. There is a
polynomial time approximation algorithm for approximating the size of the largest independent set in a given
k-claw free graph G within factor k

2 [Ber00, TW23], and a quasi-polynomial time approximation algorithm
within factor

(
1
3 + o(1)

)
k [CGM13]. As in [LM23], using ideas from [DFRR23] Theorem 1.5 implies that

for all ε > 0, for sufficiently large k, it is NP-hard (under randomized reductions) to approximate the size
of the largest independent set in a given k-claw free graph within factor

(
1
4 + η

)
k. This improves upon the

result of [LM23] who showed that the same result holds assuming the Unique-Games Conjecture.

1.1.4 Application: NP-hardness of Approximating Connectivity Problems

Using ideas of Laekhanukit [Lae14] and the improvements by Manurangsi [Man19], Theorem 1.3 implies
improved hardness of approximation results for several graph connectivitiy problems. More specifically,
Theorem 1.3 combined with the results of [Man19] implies improvements to each one of the results outlined
in table 1 in [Lae14] by a factor of 2 in the exponent - with the exception of Rooted-k-Connectivity on
directed graphs where a factor of 2 improvement is already implied by [Man19]. We briefly discuss the
Rooted k-Connectivity Problem, but defer the reader to [Lae14] for a detailed discussion of the remaining
graph connectivity problems.

In the Rooted k-Connectivity problem there is a graph G = (V,E), edge costs c : E → R, a root vertex
r ∈ V and a set of terminals T ⊆ V \ {r}. The goal is to find a sub-graph G′ of smallest cost that for
each t ∈ T , has at least k vertex disjoint paths from r to t. The problem admits |T | trivial approximation
algorithm (by applying minimum cost k-flow algorithm for each vertex in T ), as well as an O(k log k)
approximation algorithm [Nut12].

Using the ideas of [Lae14], Theorem 1.3 implies the following improved hardness of approximation
results:

Theorem 1.6. For all ε > 0, for sufficiently large k it is NP-hard to approximate the Rooted-k-Connectivity
problem on undirected graphs to within a factor of k1/5−ε, the Vertex-Connectivity Survivable Network
Design Problem with connectivity parameters at most k to within a factor of k1/3−ε, and the Vertex-
Connectivity k-Route Cut Problem to within a factor of k1/3−ε.

We remark that in [CCK08], a weaker form of hardness for the Vertex-Connectivity Survivable Network
problem is proved. More precisely, they show an Ω(k1/3/ log k) integrality gap for the set-pair relaxation
of the problem. Our hardness result of k1/3−ε improves upon it, showing that (unless P=NP) no relaxation
can yield a better than k1/3−ε factor approximation algorithm.

1.2 Our Techniques

Theorem 1.3 is proved via a composition of an Inner PCP and an Outer PCP. Both of these components incor-
porate ideas from the proof of the 2-to-1 Games Theorem. The outer PCP is constructed using smooth par-
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allel repetition [KS13, KMS17] while the inner PCP is based on the Grassmann graph [KMS17, DKK+18,
DKK+21, KMS23].

The novelty in this current paper, in terms of techniques, is twofold. First, we must consider a Grass-
mann test in a different regime of parameters (as otherwise we would not be able to get a good alphabet
to soundness tradeoff) and in a regime of much lower soundness. These differences complicate matters
considerably. Second, our soundness analysis is more involved than that of the 2-to-1-Games Theorem.
As is the case in [KMS17, DKK+18, DKK+21, KMS23], we too use global hyperconractivity, but we do
so more extensively. We also require quantitatively stronger versions of global hypercontractivity over the
Grasssmann graph which are due to [EKL23b]. In addition, our analysis incorporates ideas from the plane
versus plane test and direct product testing [RS97, IKW12, MZ23], from classical PCP theory [KS13], as
well as from error correcting codes [GRS00]. All of these tools are necessary to prove our main technical
statement – Lemma 1.7 below – which is a combinatorial statement that may be of independent interest.

We now elaborate on each one of the components separately.

1.2.1 The Inner PCP

Our Inner PCP is based on the subspace vs subspace low degree test. Below, we first give a general overview
of the objective in low-degree testing. We then discuss the traditional notion of soundness as well as a non-
traditional notion of soundness for low-degree tests. Finally, we explain the low-degree test used in this
paper, the notion of soundness that we need from it, and the way that this notion of soundness is used.

Low degree tests in PCPs. Low degree tests have been have a vital component in PCPs since their incep-
tion, and much attention has been devoted to improving their various parameters. The goal in low-degree
testing is to encode a low-degree function f : Fn

q → Fq via a table (or a few tables) of values, in a way that
allows for local testing. Traditionally, one picks a parameter ℓ ∈ N (which is thought of as a constant and
is most often just 2) and encodes the function f by the table T of restrictions of f to ℓ-dimensional affine
subspaces of Fn

q . For the case ℓ = 2, the test associated with this encoding is known as the Plane vs Plane
test [RS97]. The Plane vs Plane test proceeds by picking two planes P1, P2 intersecting on a line, and then
checking that T [P1] and T [P2] agree on P1 ∩ P2. It is easy to see that the test has perfect completeness,
namely that a valid table of restrictions T passes the test with probability 1. In the other direction, the sound-
ness of the test – which is a converse type statement – is much less clear (and is crucial towards applications
in PCP). In the context of the Plane vs Plane test, it is know that if a table T , that assigns to each plane a
degree d function, passes the Plane vs Plane test with probability ε ⩾ q−c (where c > 0 is a small absolute
constant), then there is a degree d function f such that T [P ] ≡ f |P on at least Ω(ε) fraction of the planes.

Nailing down the value of the constant c for which soundness holds is an interesting open problem which
is related to soundness vs alphabet size vs instance size tradeoff in PCPs [MR10, BDN17, MZ23]. Currently,
the best known analysis for the Plane vs Plane test [MR10] shows that one may take c = 1/8. Better analysis
is known for higher dimensional encoding [BDN17, MZ23], and for the 3-dimensional version of it a near
optimal soundness result is known [MZ23].

Low degree tests in this paper. In the context of the current paper, we wish to encode linear functions
f : Fn

q → Fq, and we do so by the subspaces encoding. Specifically, we set integer parameters ℓ1 ⩾ ℓ2, and
encode the function f using the table T1 of the restrictions of f to all ℓ1-dimensional linear subspaces of Fn

q ,
and the table T2 of the restrictions of f to all ℓ2-dimensional linear subspaces of Fn

q . The test we consider is
the natural inclusion test:
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1. Sample a random ℓ1-dimensional subspaceL1 ⊆ Fn
q and a random ℓ2-dimensional subspaceL2 ⊆ L1.

2. Read T1[L1], T2[L2] and accept if they agree on L2.

As is often the case, the completeness of the test – namely the fact that valid tables T1, T2 pass the test
with probability 1 – is clear. The question of most interest then is with regards to the soundness of the test.
Namely, what is the smallest ε such that any two tables T1 and T2 that assign linear functions to subspaces
and pass the test with probability ε, must necessarily “come from” a legitimate linear function f?

Traditional notion of soundness. As the alphabet vs soundness tradeoff is key to the discussion herein,
we begin by remarking that the alphabet size of the above encoding is qℓ1 + qℓ2 = Θ(qℓ1) (since there are qℓ

distinct linear functions on a linear space of dimension ℓ over Fq). Thus, ideally we would like to show that
the soundness of the above test is q−(1−o(1))ℓ1 . Alas, this is false. Indeed, it turns out that one may construct
assignments that pass the test with probability at least Ω(max(q−ℓ2 , qℓ2−ℓ1)) that do not have significant
correlation with any linear function f :

1. Taking T1, T2 randomly by assigning to each subspace a random linear function, one can easily see
that the test passes with probability Θ(q−ℓ2).

2. Taking linear subspaces W1, . . . ,W100qℓ1 ⊆ Fn
q of co-dimension 1 randomly, and a random linear

function fi : Wi → Fq for each i, one may choose T1 and T2 as follows. For each L1, pick a random
i such that L1 ⊆ Wi (if such i exists) and assign T1[L1] = fi|L1 . For each L2, pick a random i such
that L2 ⊆ Wi (if such i exists) and assign T2[L2] = fi|L2 . Taking L2 ⊆ L1 randomly, one sees
that with constant probability L2 has Θ(qℓ1−ℓ2) many possible i’s, L1 has Θ(1) many possible i’s
and furthermore there is at least one i that is valid for both of them. With probability Ω(qℓ2−ℓ1) this
common i is chosen for both L1 and L2, and in this case, the test on (L1, L2) passes. It follows that,
in expectation, T1, T2 pass the test with probability Ω(qℓ2−ℓ1).

In light of the above, it makes sense that the best possible alphabet vs soundness tradeoff we may achieve
with the subspace encoding is by taking ℓ2 = ℓ1/2. Such setting of the parameters would give alphabet size
R = qℓ1 and (possibly) soundness Θ(1/

√
R). There are several issues with this setting however. First, this

tradeoff is not good enough for our purposes (which already rules out this setting of parameters). Second,
we do not know how to prove that the soundness of the test is Θ(1/

√
R) (the best we can do is quadratically

off and is Θ(1/R1/4)). To address both of these issues, we must venture beyond the traditional notion of
soundness.

Non-traditional notion of soundness. The above test was first considered in the context of the 2-to-
1 Games Theorem, wherein one takes q = 2 and ℓ2 = ℓ1 − 1. In this setting, the test is not sound in the
traditional sense; instead, the test is shown to satisfy a non-standard notion of soundness, which nevertheless
is sufficient for the purposes of constructing a PCP. More specifically, in [KMS23] it is proved that for all
ε > 0 there is r ∈ N such that for sufficiently large ℓ and for tables T1, T2 as above, there are subspaces
Q ⊆W ⊆ Fn

q with dim(Q) + codim(W ) ⩽ r and a linear function f : W → Fq such that

Pr
Q⊆L1⊆W

[T1[L1] ≡ f |L1 ] ⩾ ε′(ε) > 0.

We refer to the set
{L ⊆ Fn

q | dim(L) = ℓ1, Q ⊆ L ⊆W}
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as the zoom in of Q and zoom out of W . While this result is good for the purposes of 2-to-1 Games, the
dependency between ℓ and ε (and thus, between the soundness and the alphabet size) is still not good enough
for us.

Our low-degree test. It turns out that the proper setting of parameters for us is ℓ2 = (1 − δ)ℓ1 where
δ > 0 is a small constant. With these parameters, we are able to show that for ε ⩾ q−(1−δ′)ℓ1 (where
δ′ = δ′(δ) > 0 is a vanishing function of δ), if T1, T2 pass the test with probability at least ε, then there are
subspaces Q ⊆W with dim(Q) + codim(W ) ⩽ r = r(δ) ∈ N, and a linear function f : W → Fq such that

Pr
Q⊆L1⊆W

[T1[L1] ≡ f |L1 ] ⩾ ε′(ε) = Ω(ε).

Working in the very small soundness regime of ε ⩾ q−(1−δ′)ℓ1 entails with it many challenges, however.
First, dealing with such small soundness requires us to use a strengthening of the global hypercontractivity
result of [KMS23] in the form of an optimal level d inequality due to Evra, Kindler and Lifshitz [EKL23b].
Second, in the context of [KMS23], ε′ could be any function of ε (and indeed it ends up being a polynomial
function of ε). In the context of the current paper, it is crucial that ε′ = ε1+o(1), as opposed to, say,
ε′ = ε1.1. The reason is that, as we are dealing with very small ε, the result would be trivial for ε′ = ε1.1 and
not useful towards the analysis of the PCP (as then ε′ would be below the threshold q−ℓ1 which represents
the agreement a random linear function f has with T1).

1.2.2 Getting List Decoding Bounds

As is usually the case in PCP reductions, we require a list decoding version for our low-degree test. Indeed,
using a standard argument we are able to show that in the setting that ℓ2 = (1−δ)ℓ1 and ε ⩾ q(1−δ′)ℓ1 , there
is r = r(δ, δ′) ∈ N such that for at least q−Θ(ℓ1) fraction of subspaces Q ⊆ Fn

q of dimension r, there exists
a subspace W with co-dimension at most r and Q ⊆ W ⊆ Fn

q , as well as a linear function f : W → Fq,
such that

Pr
Q⊆L1⊆W

[T1[L1] ≡ f |L1 ] ⩾ ε′(ε) = Ω(ε). (1)

This list decoding version theorem alone is not enough. In our PCP construction, we compose the inner
PCP with an outer PCP (that we describe below), and analyzing the composition requires decoding global
linear functions (from a list decoding version theorem as above) in a coordinated manner between two
non communicating parties. Often times, the number of possible global functions that may be decoded is
constant, in which case randomly sampling one among them often works. This is not the case for us, though:
if (Q,W ) and (Q′,W ′) are distinct zoom-in and zoom-out pairs for which there are linear functions fQ,W

and fQ′,W ′ satisfying (1), then the functions fQ,W and fQ′,W ′ could be completely different. Thus, to
achieve a coordinated decoding procedure, we must:

1. Facilitate a way for the two parties to agree on a zoom-in and zoom-out pair (Q,W ) with noticeable
probability.

2. Show that for each (Q,W ) there are at most poly(1/ε) functions fQ,W for which

Pr
Q⊆L1⊆W

[T1[L1] ≡ fQ,W |L1 ] ⩾ ε′.

The second item is precisely the reason we need ε′ to be ε1+o(1); any worse dependency, such as ε′ = ε1.1

would lead to the second item being false. We also remark that the number of functions being poly(1/ε)
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is important to us as well. There is some slack in this bound, but a weak quantitative bound such as
exp(exp(1/ε)) would have been insufficient for some of our applications. Luckily, such bounds can be
deduced from [GRS00] for the case of linear functions.3

We now move onto the first item, in which we must facilitate a way for two non-communicating parties
to agree on a zoom-in and zoom-out pair (Q,W ). It turns out that agreeing on the zoom-in Q can be
delegated to the outer PCP, and we can construct a sound outer PCP game in which the two parties are
provided with a coordinated zoom-in Q. This works because in our list decoding theorem, the fraction of
zoom-ins Q that work is significant. Coordinating zoom-outs is more difficult, and this is where much of
the novelty in our analysis lies.

1.2.3 Coordinating Zoom-outs

For the sake of simplicity and to focus on the main ideas, we ignore zoom-ins for now and assume that the
list decoding statement holds with noQ. Thus, the list decoding theorem asserts that there exists a zoom-out
W of constant co-dimension on which there is a global linear function. However, there could be many such
zoom-outs W , say W1, . . . ,Wm and say all of them were of co-dimension r = Oδ,δ′(1). If the number m
were sufficiently large – say at least q−poly(ℓ1) fraction of all co-dimension r subspaces – then we would have
been able to coordinate them in the same way as we coordinate zoom-ins. If the number m were sufficiently
small – say m = qpoly(ℓ1), then randomly guessing a zoom-out would work well enough. The main issue is
that the number m is intermediate, say m = q

√
n.

This issue had already appeared in [KMS17, DKK+18]. Therein, this issue is resolved by showing that
if there are at least m ⩾ q100ℓ

2
1 zoom-outs W1, . . . ,Wm of co-dimension r, and linear functions f1, . . . , fm

on W1, . . . ,Wm respectively such that

Pr
L⊆Wi

[T [L] ≡ fi|L] ⩾ ε′

for all i, then there exists a zoom outW of co-dimension strictly less than r and a linear function f : W → Fq

such that
Pr

L⊆W
[T [L] ≡ f |L] ⩾ Ω(ε′12).

Thus, if there are too many zoom-outs of a certain co-dimension, then there is necessarily a zoom-out of
smaller co-dimension that also works. In that case, the parties could go up to that co-dimension.

This result is not good enough for us, due to the polynomial gap between the agreement between and fi’s
and F and the agreement between f an T . Indeed, in our range of parameters, ε′12 will be below the trivial
threshold q−ℓ1 which is the agreement a random linear function f has with T , and therefore the promise on
the function f above is meaningless.

We resolve this issue by showing a stronger, essentially optimal version of the above assertion still holds.
Formally, we prove:

Lemma 1.7. For all δ > 0, r ∈ N there is C > 1 such that the following holds for ε′ ⩾ q(1−δ)ℓ1 . Suppose
that F is a table that assigns to each subspace L of dimension ℓ1 a linear function, and suppose that there
are at least m ⩾ qCℓ1 subspaces W1, . . . ,Wm of co-dimension r and linear functions fi : Wi → Fq such
that

Pr
L⊆Wi

[T [L] ≡ fi|L] ⩾ ε′

3In the case of higher degree functions (even quadratic functions) some bounds are known [Gop10, BL15] but they would not
have been good enough for us.
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for all i = 1, . . . ,m. Then, there exists a zoom-out W of co-dimension strictly smaller than r and a linear
function f : W → Fq such that

Pr
L⊆W

[T [L] ≡ f |L] ⩾ Ω(ε′).

We defer a detailed discussion about Lemma 1.7 and its proof to Section 8, but remark that our proof
of Lemma 1.7 is very different from the arguments in [DKK+18] and is significantly more involved. Our
proof uses tools from [KMS17, DKK+18], tools from the analysis of the classical Plane vs Plane and direct
product testing [RS97, IKW12, MZ23], global hypercontractivity [EKL23b] as well as Fourier analysis over
the Grassmann graph.

1.2.4 The Outer PCP

Our outer PCP game is the outer PCP of [KMS17, DKK+18], which is a smooth parallel repetition of the
equation versus variables game of Hastad [Hås01] (or of [KP06] for the application to Quadratic Program-
ming). As in there, we equip this game with the “advice” feature to facilitate zoom-in coordination (as
discussed above). For the sake of completeness we elaborate on the construction of the outer PCP below.

We start with an instance of 3-Lin that has a large gap between the soundness and completeness. Namely,
we start with an instance (X,E) of linear equations over Fq in which each equation has the form axi1 +
bxi2 + cxi3 = d. It is known [Hås01] that for all η > 0, it is NP-hard to distinguish between the following
two cases:

1. YES case: val(X,E) ⩾ 1− η.

2. NO case: val(X,E) ⩽ 1.1
q .

Given the instance (X,E), we construct a 2-Prover-1-Round game, known as the smooth equation versus
variable game with r-advice as follows. The verifier has a smoothness parameter β > 0 and picks a random
equation e, say axi1 + bxi2 + cxi3 = d, from (X,E). Then:

1. With probability 1 − β the verifier takes U = V = {xi1 , xi2 , xi3} and vectors u1 = v1, . . . , ur =
vr ∈ FU

q sampled uniformly and independently.

2. With probability β, the verifier sets U = {xi1 , xi2 , xi3}, chooses a set consisting of a single variable
V ⊆ U uniformly at random. The verifier picks v1, . . . , vr ∈ FV

q uniformly and independently and
appends to each vi the value 0 in the coordinates of U \ V to get u1, . . . , ur.

After that, the verifier sends U and u1, . . . , ur to the first prover and V and v1, . . . , vr to the second prover.
The verifier expects to get from them Fq assignments to the variables in U and in V , and accepts if and only
if these assignments are consistent, and furthermore the assignment to U satisfies the equation e.

Denoting the equation versus variable game by Ψ, it is easy to see that if val(X,E) ⩾ 1 − η, then
val(Ψ) ⩾ 1 − η, and if val(X,E) ⩽ 1.1/q, then val(Ψ) ⩽ 1 − Ω(q−rβ). The gap between 1 − η and
1− Ω(q−rβ) is too weak for us, and thus we apply parallel repetition.

In the parallel repetition of the smooth equation versus variable game with advice, denoted by Ψ⊗k,
the verifier picks k equations uniformly and independently e1, . . . , ek, and picks Ui, u1,i, . . . , ur,i and Vi,
v1,i, . . . , vr,i for each i = 1, . . . , k from ei independently. Thus, the questions of the provers may be seen as
U = U1∪. . .∪Uk and V = V1∪. . .∪Vk and their advice is u⃗j = (uj,1, . . . , uj,k) ∈ FU

q for j = 1, . . . , r and
v⃗j = (vj,1, . . . , vj,k) ∈ FV

q for j = 1, . . . , r respectively. The verifier expects to get from the first prover a
vector in FU

q which specifies an Fq assignment to U , and from the second prover a vector in FV
q specifying an

9



Fq assignment to V . The verifier accepts if and only if these assignments are consistent and the assignment
of the first prover satisfies all of e1, . . . , ek. It is clear that if val(X,E) ⩾ 1− η, then val(Ψ⊗m) ⩾ 1− kη.
Using the parallel repetition theorem of Rao [Rao08] (albeit not in a completely trivial way) we argue that
if val(X,E) ⩽ 1.1

q , then val(Ψ⊗k) ⩽ 2−Ω(βq−rk). The game Ψ⊗k is our outer PCP game.

Remark 1.8. We remark that in the case of the Quadratic Programming application, we require a hardness
result in which the completeness is very close to 1 in the form of Theorem 2.1. The differences between
the reduction in that case and the reduction presented above are mostly minor, and amount to picking the
parameters a bit differently. There is one significant difference in the analysis; we require a much sharper
form of the “covering property” used in [KMS17, DKK+18], as elaborated on in Section 1.2.6

1.2.5 Composing the Outer PCP and the Inner PCP Game

To compose the outer and inner PCPs, we take the outer PCP game, only keep the questions U to the first
prover and consider an induced 2-Prover-1-Round game on it. The alphabet is F3k

q , that given a question
U specifies an Fq assignment to the variables of U . There is a constraint between U and U ′ if there is a
question V to the second prover such that V ⊆ U ∩ U ′. Denoting the assignments to U and U ′ by sU and
sU ′ , the constraint between U and U ′ is that sU satisfies all of the equations that form U , sU ′ satisfies all of
the equations that form U ′, and sU , sU ′ agree on U ∩ U ′.

The composition amounts to replacing each question U with a copy of our inner PCP. Namely, we
identify between the question U and the space FU

q , and then replace U by a copy of the ℓ2, ℓ1 sub-spaces
graph of FU

q . The answer sU is naturally identified with the linear function fU (x) = ⟨sU , x⟩, which is then
encoded by the sub-spaces encoding via tables of assignments T1,U and T2,U .

The constraints of the composed PCP must check that: (1) side conditions: the encoded vector sU
satisfies the equations of U , and (2) consistency: sU and sU ′ agree on U ∩ U ′.

The first set of constraints is addressed by the folding technique, which we omit from this discussion.
The second set of constraints is addressed by the ℓ1 vs ℓ2 subspace test, except that we have to modify it so
that it works across blocks U and U ′. This completes the description of the composition step of the other
PCP and the inner PCP, and thereby the description of our reduction.

1.2.6 The Covering Property

We end this introductory section by discussing the covering property. The covering property is an important
feature of our outer PCP construction which enables the composition step to go through. The covering
property first appeared in [KS13] and later more extensively in the context of the 2-to-1 Games [KMS17,
DKK+18]. To discuss the covering property, let k ∈ N be thought of as large, let β ∈ (0, 1) be thought of
as k−0.99 and consider sets U1, . . . , Uk consisting of distinct element, each Ui has size 3 (in our context, Ui

will be the set of variables in the ith equation the verifier chose). Let U = U1 ∪ . . . ∪ Uk, and consider the
following two distributions over tuples in FU

q :

1. Sample x1, . . . , xℓ ∈ FU
q uniformly.

2. For each i independently, take Vi = Ui with probability 1− β and otherwise take Vi ⊆ Ui randomly
of size 1, then set V = V1 ∪ . . . ∪ Vk. Sample x1, . . . , xℓ ∈ FV

q uniformly and lift them to points in
FU
q by appending 0’s in U \ V . Output the lifted points.

In [KMS17] it is shown that the two distributions above are q3ℓβ
√
k close in statistical distance, which

is good enough for the purposes of Theorem 1.3. However, this is not good enough for Theorem 1.4.
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4 Carrying out a different analysis, we are able to show that the two distributions are close with better
parameters and in a stronger sense: there exists a set E of ℓ tuples which has negligible measure in both
distributions, such that each tuple not in E is assigned the same probability under the two distribution up to
factor (1 + o(1)). We are able to prove this statement provided that k is only slightly larger than q2ℓ.

The issue with the above two distributions is that they are actually far from each other if, say, k = q1.9ℓ.
To see that, one can notice that the expected number of i’s such that each one of x1, . . . , xℓ has the form
(a, 0, 0) ∈ F3

q on coordinates corresponding to Ui is very different. In the first distribution, this expectation
is Θ(q−2ℓk) which is less than 1, whereas in the second distribution it is at least βk ⩾ k0.01.

To resolve this issue and to go all the way through in the Quadratic Programming application, we have
to modify the distributions in the covering property so that (a) they will be close even if k = q1.01ℓ, and (b)
we can still use these distributions in the composition step in our analysis of the PCP construction. Indeed,
this is the route we take, and the two distributions we use are defined as follows:

1. Sample x1, . . . , xℓ ∈ FU
q uniformly.

2. For each i independently, take Vi = Ui with probability 1− β and otherwise take Vi ⊆ Ui randomly
of size 1, then set V = V1 ∪ . . . ∪ Vk. Sample x1, . . . , xℓ ∈ FV

q uniformly, and let wi = 1Ui ∈ FU
q

be the vector that has 1 on coordinates of Ui and 0 everywhere else. Lift the points x1, . . . , xℓ to

x′1, . . . , x
′
ℓ ∈ FU

q by appending 0’s in U \V and take yj = xj +
k∑

i=1
αi,jwi where αi,j are independent

random elements from Fq. Output y1, . . . , yℓ.

We show that a suitable chose of k and β gives that these distributions are close even in the case that
k = q1.01ℓ. 5 Indeed, as a sanity check one could count the expected number of appearances of blocks of
the form (0, a, 0) ∈ F3 and see they are very close (q−2ℓk versus (1 − β)q−2ℓk + βkq−ℓ). In this setting
of parameters, k is roughly equal to the alphabet size – which can be made to be equal (logN)1−o(1) under
quasi-polynomial time reductions – it is sufficient to get the result of Theorem 1.4.

Remark 1.9. We remark that a tight covering property is crucial for obtaining the tight hardness of ap-
proximation factor in Theorem 1.4. In the reduction from 2-Prover-1-Round games to Quadratic Programs,
which is due to [ABH+05], the size of the resulting instance is exponential in the alphabet size and the
soundness remains roughly the same. In our case the alphabet size is roughly k hence the instance size is
dominated by N = 2Θ(k1+o(1)). If our analysis required k = qCℓ, then even showing an optimal soundness
of q−(1−o(1))ℓ for the 2-Prover-1-Round game would only yield a factor of (logN)1/C−o(1) hardness for
quadratic programming.

2 Preliminaries

2.1 The Grassmann Graph

In this section we present the Grassmann graph and some Fourier analytic tools on it that are required for
our analysis of the inner PCP. Throughout this section, we fix parameters n, ℓ with 1≪ ℓ≪ n, and a prime
power q.

4The reason is that letting N be the size of the instance we produce, it holds that k is roughly logarithmic logN and qℓ is the
alphabet size. To have small statistical distance, we must have k ⩽ q6ℓ, hence the soundness could not go lower than (logN)−1/6.

5More speifically, one takes a small c > 0 and chooses β = k2c/3−1, k = q(1+c)ℓ.
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2.1.1 Basic Definitions

The Grassmann graph Grassq(n, ℓ) is defined as follows.

• The vertex set corresponds to the set of ℓ-dimensional subspaces L ⊆ Fn
q .

• The edge set corresponds to all pairs (L,L′) of ℓ-dimensional subspacesL,L′ ⊆ Fn
q such that dim(L∩

L′) = ℓ− 1.

At times we will have a vector space V over Fq, and thus we may identify V with Fn
q and work with the

Grassmann graph on the ℓ-dimensional subspaces L ⊆ V . We may also use Grassq(V, ℓ) to denote this
graph, which is isomporphic to Grassq(n, ℓ) if dim(V ) = n. Abusing notation, we also use Grassq(n, ℓ) to
denote the set of all ℓ-dimensional subspaces in Fn

q . Throughout, we denote by L2(Grassq(n, ℓ)) the set of

complex valued functions F :

[
Fn
q

ℓ

]
q

→ C.

The number of ℓ-dimensional subspaces of Fn
q is counted by the Gaussian binomial coefficient,

[
n
ℓ

]
q

.

The following standard fact gives a formula for the Gaussian binomial coefficients, and we omit the proof.

Fact 2.1. Suppose 1 ⩽ ℓ ⩽ n
2 , then the number of vertices in Grassq(n, ℓ) is given by[

n
ℓ

]
q

=
ℓ−1∏
i=0

qn − qi

qℓ − qi
.

Abusing notations, we denote by
[
V
ℓ

]
q

the set of ℓ dimensional subspaces of V .

Zoom ins and Zoom outs. A feature of the Grassmann graph is that it contains many copies of lower
dimensional Grassmann graphs as induced subgraphs. These subgraphs are precisely the zoom-ins and and
zoom-outs referred to in the introduction, and they play a large part in the analysis of our inner PCP and
final PCP. For subspaces Q ⊆W ⊆ Fn

q , let

Zoom[Q,W ] = {L ∈ Grassq(n, ℓ) | Q ⊆ L ⊆W}.

We refer to Q as a zoom-in and W as a zoom-out. When W = Fn
q , Zoom[Q,W ] is the zoom-in on Q, and

when Q = {0}, Zoom[Q,W ] is the zoom-out on W .

2.1.2 Pseudo-randomness over the Grassmann graph

One notion that will be important to us is (r, ε)-pseudo-randomness, which measures how much F can
deviate from its expectation on a zoom-in/zoom-out restrictions of “size r”. For all of our applications, F
and G will both be indicator functions of some sets of vertices, so it will be helpful to think of this case for
the remainder of the section. 6 Let µ(F ) = EL∈Grassq(n,ℓ)[F (L)] (for indicator functions, this is simply the
measure of the indicated set). For subspaces Q ⊆W ⊆ Fn

q , define

µQ,W (F ) = E
L∈Grassq(n,ℓ)

[F (L) | Q ⊆ L ⊆W ].

6We remark that the results we state have more general versions that apply to wider classes of functions. We refrain from stating
them in this generality for sake of simplicity.
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Definition 2.2. We say that a Boolean function F : G(n, ℓ) → {0, 1} is (r, ε)-pseudo-random if for all
Q ⊆W ⊆ Fn

q satisfying dim(Q) + codim(W ) = r, we have

µQ,W (F ) ⩽ ε.

We will often say that a set S ⊆ Grassq(n, ℓ) is (r, ε)-pseudo-random if its indicator function is. Because
the Grassmann graph is not a small-set expanders, there are small sets in it that do not look “random”
with respect to some combinatorial counting measures (such as edges between sets, expansion and so on).
Intuitively, a small set S which is highly pseudo-random will exhibit random-like structure with respect to
several combinatorial measures of interest, and the two lemmas below are instantiations of it required in our
proof. The proof proceed by reducing them to similar statements about the Bi-linear scheme, which can
then be proved directed by appealing to global hypercontractivity results of [EKL23a, EKL23b].

For the analysis of the inner PCP, we require the following lemma, which bounds the number of edges
between L ⊆ Grassq(n, 2ℓ) and Grassq(n, 2(1− δ)ℓ) when L is (r, ε)-pseudo-random.

Lemma 2.3. Let F : Grassq(n, 2ℓ)→ {0, 1} and G : Grassq(n, 2(1− δ)ℓ)→ {0, 1} be Boolean functions
such that EL[F (L)] = α, ER[G(R)] = β, and suppose that F is (r, ε) pseudo-random. Then for all t ⩾ 4
that are powers of 2,

⟨T F,G⟩ ⩽ qOt,r(1)β(t−1)/tε2t/(2t−1) + q−rδℓ
√
αβ.

Proof. Deferred to Section A

We also need the following lemma, asserting that if a not-too-small set S is highly pseudo-random, then
its density remains nearly the same on all zoom-ins.

Lemma 2.4. For all ξ > 0, the following holds for sufficiently large ℓ. Suppose that ℓ′ ⩾ ξ
3ℓ, δ2 =

ξ
100 , and

let V ⋆ be a subspace such that dim(V ⋆) ⩾ ℓ′2. Let L⋆ ⊆ Grassq(V
⋆, ℓ′) have measure µ(L⋆) = η ⩾ q−2ℓ

and set Z = {z ∈ V ⋆ | |µz(L⋆)− η| ⩽ η
10}. If L⋆ is (1, qδ2ℓ/100)-pseudo-random, then

|Z| ⩾
(
1− q

ℓ′
2

)
|V ⋆|.

Proof. The proof is deferred to Appendix A.4

At times we will also use the term global to refer to sets whose indicator functions are pseudo-random.
That is, we say that a set is (r, ε)-global if its indicator is (r, ε)-pseudo-random.

2.2 Hardness of 3LIN

In this section we cite several hardness of approximation results for the problem of solving linear equations
over finite fields, which are the starting point of our reduction. We begin by defining the 3Lin and the
Gap3Lin problem.

Definition 2.5. For a prime power q, an instance of 3Lin is (X,Eq) which consists of a set of variables X
and a set of linear equations Eq over Fq. Each equation in Eq depends on exactly three variables in X ,
each variable appears in at most 10 equations, and any two distinct equations in Eq share at most a single
variable.
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The goal in the 3Lin problem is to find an assignment A : X → Fq satisfying as many of the equations
in E as possible. The maximum fraction of equations that can be satisfied is called the value of the instance.
We remark that usually in the literature, the condition that two equations in E share at most a single variable
is not included in the definition of 3Lin, as well the the bound on the number of occurences of each variable.

For 0 < s < c ⩽ 1, the problem Gap3Lin[c, s] is the promise problem wherein the input is an instance
(X,E) of 3Lin promised to either have value at least c or at most s, and the goal is to distinguish between
these two cases. The problem Gap3Lin[c, s] with various settings of c and s will be the starting point for our
reductions.

To prove Theorem 1.3, we shall use the classical result of Håstad [Hås01]. This result says that for gen-
eral 3Lin instances (i.e., without the additional condition that two equations share at most a single variable),
the problem Gap3Lin[1 − ε, 1/q + ε] is NP-hard for all constant q ∈ N and ε > 0. This result implies the
following theorem by elementary reductions:

Theorem 2.1. There exists s < 1 such that for every constant η > 0 and prime q, Gap3Lin [1− η, s] is
NP-hard.

To prove Theorem 1.4 we will need a hardness result for 3Lin with completeness close to 1, and we
will use a hardness result of Khot and Ponnuswami [KP06]. Once again, their result does not immediately
guarantee the fact that any two equations share at most a single variable, however once again this property
may be achieved by an elementary reduction.

Theorem 2.2. There is a reduction from SAT with size n to a Gap3Lin[1 − η, 1 − ε] instance with size N
over a field Fq of characteristic 2, where,

• Both N and the running time of the reduction are bounded by 2O(log2 n)

• η ⩽ 2−Ω(
√
logN).

• ε ⩾ Ω
(

1
log3 N

)
.

3 The Outer PCP

In this section, we describe our outer PCP game. In short, our outer PCP is a smooth parallel repetition of
the variable versus equation game with advice. This outer PCP was first considered in [KS13] without the
advice feature, and then in [KMS17] with the advice feature.

3.1 The Outer PCP construction

Let ε1 < ε2 be parameters that determine the completeness and the soundness our Gap3Lin. Our reduction
starts with the Gap3Lin[1 − ε1, 1 − ε2] problem, and we fix an instance of it (X,E) for the rest of this
section. Our presentation is gradual, and we begin by presenting the basic Variable versus Equation Game.
We then equip it with the additional features of smoothness and advice.

3.1.1 The Variable versus Equation Game

We first convert the instance (X,E) into an instance of 2-Prover-1-Round Games, and it will be convenient
for us to describe it in the active view with a verifier and 2 provers.
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In the Variable versus Equation game, the verifier picks an equation e ∈ E uniformly at random, and
then chooses a random variable x ∈ e. The verifier sends the question e, i.e. the three variables appearing in
e, to the first prover, and sends the variable x to the second prover. The provers are expected to answer with
assignments to their received variables, and the verifier accepts if and only if the two assignments agree on
x and the first prover’s assignment satisfies the equation e. If the verifier accepts then we also say that the
provers pass. This game has the following completeness and soundness, which are both easy to see (we omit
the formal proof):

1. Completeness: If (X,E) has an assignment satisfying 1 − ε-fraction of the equations, then the
prover’s have a strategy that passes with probability at least 1− ε.

2. Soundness: If (X,Eq) has no assignment satisfying more than 1 − ε-fraction of the equations, then
the prover’s can pass with probability at most 1− ε

3 .

3.1.2 The Smooth Equation versus Variable Game

We next describe a smooth version of the Variable versus Equation game. In this game, the verifier has a
parameter β ∈ (0, 1], and it proceeds as follows:

1. The verifier chooses an equation e ∈ E uniformly, and lets U be the set of variables in e.

2. With probability 1 − β, the prover chooses V = U . With probability β, the prover chooses V ⊆ U
randomly of size 1.

3. The verifier sends U to the first prover, and V to the second prover.

4. The provers respond with assignments to the variables they receive, and the verifier accepts if and
only if their assignments agree on V and the assignment to U satisfies the equation e.

The smooth Variable versus Equation game has the following completeness and soundness property, which
are again easily seen to hold (we omit the formal proof).

1. Completeness: If (X,E) has an assignment satisfying 1−ε fraction of the equations, then the provers
have a strategy that passes with probability at least 1− ε.

2. Soundness: If (X,Eq) has no assignment satisfying more than 1 − ε fraction of the equations, then
the provers can pass with probability at most 1− βε

3 .

3.1.3 The Smooth Equation versus Variable Game with Advice

Next, we introduce the feature of advice into the smooth Variable versus Equation Game. This “advice”
acts as shared randomness which may help the provers in their strategy; we show though that it does not
considerably change the soundness. The game is denoted by Gβ,r for β ∈ (0, 1] and r ∈ N, and proceeds as
follows:

1. The verifier chooses an equation e ∈ E uniformly, and lets U be the set of variables in e.

2. With probability 1− β, the verifier chooses V = U . With probability β, the verifier chooses V ⊆ U
randomly of size 1.
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3. The verifier picks vectors v1, . . . , vr ∈ FV
q uniformly and independently. If U = V the verifier

takes ui = vi for all i, and otherwise the verifier takes the vectors u1, . . . , ur ∈ FU
q where for all

i = 1, . . . , r, the vector ui agrees with vi on the coordinate of V , and is 0 in the coordinates of U \V .

4. The verifier sends U and u1, . . . , ur to the first prover, and V and v1, . . . , vr to the second prover.

5. The provers respond with assignments to the variables they receive, and the verifier accepts if and
only if their assignments agree on V and the assignment to U satisfies the equation e.

Below we state the completeness and soundness of this game:

1. Completeness: If (X,E) has an assignment satisfying 1−ε fraction of the equations, then the provers
have a strategy that passes with probability at least 1− ε. This is easy to see.

2. Soundness: If (X,Eq) has no assignment satisfying more than 1 − ε fraction of the equations, then
the provers can pass with probability at most 1− q−rβε

3 . Indeed, suppose that the provers can win the
game with probability at least 1 − η. Note that with probability at least βq−r it holds that U ̸= V
and all the vectors u1, . . . , ur and v1, . . . , vr are all 0, in which case the provers play the standard
equation versus variable game. Thus, the provers’ strategy wins in the latter game with probability at
least 1− η

q−rβ
> 1− ε

3 , and contradiction.

3.1.4 Parallel Repetition of the Smooth Equation versus Variable Game with Advice

Finally, our Outer PCP is then the k-fold parallel repetition of Gβ,r, which we denote by G⊗k
β,r. Below is a

full description of it:

1. The verifier chooses equations e1, . . . , ek ∈ E uniformly and independently, and lets Ui be the set of
variables in ei.

2. For each i independently, with probability 1 − β, the verifier chooses Vi = Ui. With probability β,
the verifier chooses Vi ⊆ Ui randomly of size 1.

3. For each i independently, the verifier picks a vectors vi1, . . . , v
i
r ∈ FV

q uniformly and independently.
If Ui = Vi the verifier takes uij = vij for j = 1, . . . , r, and otherwise the verifier takes the vectors
ui1, . . . , u

i
r ∈ FU

q where for all j = 1, . . . , r, the vector uij agrees with vij on the coordinate of Vi, and
is 0 in the coordinates of Ui \ Vi.

4. The verifier sets U =
⋃k

i=1 Ui and uj = (u1j , . . . , u
k
j ) for each j = 1, . . . r, and V = ∪ki=1Vi and

vj = (v1j , . . . , v
k
j ) for each j = 1, . . . , r. The verifier sends U and u1, . . . , ur to the first prover, and

V and v1, . . . , vr to the second prover.

5. The provers respond with assignments to the variables they receive, and the verifier accepts if and
only if their assignments agree on V and the assignment to U satisfies the equations e1, . . . , ek.

Next, we state the completeness and the soundness of the game G⊗k
β,r, and we begin with its completeness.

Claim 3.1. If (X,E) has an assignment satisfying at least 1− ε of the equations, then the provers can win
G⊗k

β,r with probability at least 1− kε.
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Proof. Let A be an assignment that satisfies at least 1 − ε fraction of the equations in E, and consider
the strategy of the provers that assigns their variables according to A. Note that whenver each one of
the equations e1, . . . , ek the verifier chose is satisfied by A, the verifier accepts. By the union bound, the
probability this happens is at least 1− kε.

Next, we establish the soundness of the game G⊗k
β,r.

Claim 3.2. If there is no assignment to (X,E) satisfying at least 1 − ε of the equations, then the provers
can win G⊗k

β,r with probability at most 2−Ω(ε2q−rβk).

Proof. We appeal to the parallel repetition theorem for projection games of Rao [Rao08], but we have to
do so carefully. That theorem states that if Ψ is a 2-Prover-1-Round game with val(Ψ) ⩽ 1 − η, then
val(Ψ⊗k) ⩽ 2−Ω(η2k). We cannot apply the theorem directly on Gβ,r (as the square is too costly for us).

Instead, we consider the game Ψ = G
qr

β

β,r and note that it has value bounded away from 1.
Write val(Ψ) = 1−η. Note that probability at least 0.1 there exists at least a single coordinate i in which

Ui ̸= Vi and all of the advice vectors vi1, . . . , v
i
r and ui1, . . . , u

i
r are all 0. Thus, there exists a coordinate i and

a fixing for the questions of the provers outside i so that the answers of the players to the ith coordinate win
the standard equation versus variable game with probability at least 1−10η. It follows that 1−10η ⩽ 1− ε

3 ,
and so η ⩾ ε

30 .
We conclude from Rao’s parallel repetition theorem that

val(G⊗k
β,r) = val(Ψ

⊗ k
qr/β ) ⩽ 2−Ω(ε2q−rβk).

Viewing the advice as subspaces. Due to the fact that each variable appears in at most O(1) equations,
it can easily be seen that with probability 1−O(k2/n), all variables in e1, . . . , ek are distinct. In that case,
note that the r vectors of advice to the second prover, v1, . . . , vr ∈ FV

q , are uniform, and the second prover
may consider their span QV . Note that the distribution of QV is that of a uniform r dimensional subspace of
FV
q . As for the second prover, the vectors u1, . . . , ur ∈ FU

q are not uniformly distributed. Nevertheless, as
shown by the covering property from [KS13, KMS17] (and presented below), the distribution of u1, . . . , ur
is close to uniform over r-tuple of vectors from FU

q . Thus, the first prover can also take their span, call it
QU , and think of it as a random r-dimensional subspace of FU

q (which is highly correlated to QV ).

4 The Composed PCP Construction

In this section we describe the final PCP construction, which is a composition of the outer PCP from Sec-
tion 3 with the inner PCP based on the Grassmann consistency test.

4.1 The Underlying Graph

Our instance of 2-Prover-1-Round Games starts from an instance (X,Eq) of Gap3Lin. Consider the game
G⊗k

β,r from Section 3, and let U denote the set of questions asked to the first prover. Thus U consists of all
k-tuples of equations U = (e1, . . . , ek) ∈ Eqk from the Gap3Lin instance (X,Eq). For e ∈ Eq let ve ∈ FX

q

denote the indicator vector on the three variables appearing in e.
It will be convenient to only keep the U = (e1, . . . , ek) that satisfy the following properties:

• The equations e1, . . . , ek are distinct and do not share variables.
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• For any i ̸= j and pair of variables x ∈ ei and y ∈ ej , the variables x and y do not appear together in
any equation in the instance (X,Eq).

The fraction of U = (e1, . . . , ek) that do not satisfy the above isO(k2/n) which is negligible for us, and
dropping them will only reduce our completeness by o(1). This will not affect our analysis, and henceforth
we will assume that all U = (e1, . . . , ek) satisfy the above properties. We now describe the 2-Prover-1-
Round Games instance Ψ = (A,B, E,Σ1,Σ2,Φ). All vertices in the underlying graph will correspond to
subspaces of FX

q .

4.1.1 The Vertices

For each question U = (e1, . . . , ek), let HU = span(ve1 , . . . , vek), where vei is the vector with ones
at coordinates corresponding to variables appearing in ei. We can think of the vei’s as vectors from an
underlying space FU

q . By the first property described above, dim(HU ) = k and dim(FU
q ) = 3k. The

vertices of Ψ are:

A = {L⊕HU | U ∈ U , L ⊆ FU
q , dim(L) = 2ℓ, L ∩HU = {0}},

B = {R | ∃U ∈ U , s.t. R ⊆ FU
q ,dim(R) = 2(1− δ)ℓ}.

In words, the vertices on the side A are all 2ℓ-dimensional subspaces of some FU
q for some U ∈ U . For

technical reasons, we require them to intersect HU trivially (which is the case for a typical 2ℓ-dimensional
space) and add to them the space HU .7 The vertices on the side B are all 2(1 − δ)ℓ dimensional subspaces
of FU

q .

4.1.2 The Alphabets

The alphabets Σ1,Σ2 have sizes |Σ1| = q2ℓ and |Σ2| = q2(1−δ)ℓ. For each vertex L ⊕ HU ∈ A, let
ψ : HU −→ Fq denote the function that satisfies the side conditions given by the equations in U . Namely, if
ei ∈ U is the equation ⟨x, hi⟩ = bi for x ∈ FU

q , then ψ(hi) = bi. We say a linear function f : L⊕HU → Fq

satisfies the side conditions of U if f |HU
≡ ψ. In this language, for a vertex L⊕HU we identify Σ1 with

{f : L⊕HU −→ Fq | f is linear function satisfying the side conditions of U}.

As L ∩HU = {0} and dim(L) = 2ℓ, it is easy to see that the above set indeed has size q2ℓ. For each right
vertex R, we identify Σ2 with

{f : R −→ Fq | f is linear}.

4.1.3 The Edges

To define the edges, we first need the following relation on the vertices inA. Say that (L⊕HU ) ∼ (L′⊕HU ′)
if

L⊕HU ⊕HU ′ = L′ ⊕HU ⊕HU ′ .

Recall that all subspaces above are in FX
q hence the direct sums and equality above are well defined. The

relation described is in fact an equivalence relation and thus partitions the vertices in A into disjoint equiv-
alence classes. It is clear that the relation is reflexive and symmetric, so we need only show that it is also
transitive.

7This has the effect of collapsing L and L′ such that L⊕HU = L′ ⊕HU to a single vertex.
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Lemma 4.1. If L1 ⊕HU1 ⊕HU2 = L2 ⊕HU1 ⊕HU2 , and L2 ⊕HU2 ⊕HU3 = L3 ⊕HU2 ⊕HU3 , then

L1 ⊕HU1 ⊕HU3 = L3 ⊕HU1 ⊕HU3 .

Proof. We “add” HU1 to the second equation to obtain,

L2 ⊕HU1 ⊕HU2 ⊕HU3 = L3 ⊕HU1 ⊕HU2 ⊕HU3 .

Next, write HU2 = A ⊕ B, where A is the span of all vectors ve for equations e in U2 that are also in
U1 or U3, while B is the span of all vectors ve for equations e ∈ U2 that are in neither U1 nor U3. It
follows that A ∩ B = {0}. Now note that any equation e ∈ B has at most one variable that appears in an
equation in U1, and at most one variable that appears in an equation in U2. Thus, each e ∈ B, has a “private
variable”, and as the equations in B are over disjoint sets of variables, this private variable does not appear
in U1 ∪ U3 ∪ (U2 \ e). It follows that

B ∩ L1 ⊕ L3 ⊕HU1 ⊕HU3 = {0} ⊂ FX
q .

Indeed, by the above discussion any nonzero vector in B ⊆ FX
q is nonzero on at least one coordinate of X

(corresponding to a private variable), and no vector in FU1
q or FU2

q is supported on this coordinate.
Substituting HU2 = A⊕B into the original equation yields,

L1 ⊕ (HU1 ⊕HU3 ⊕A)⊕B = L3 ⊕ (HU1 ⊕HU3 ⊕A)⊕B.

Since A ⊂ HU1 ⊕HU3 , this equivalent to

L1 ⊕HU1 ⊕HU3 ⊕B = L3 ⊕HU1 ⊕HU3 ⊕B.

As B ∩ L1 ⊕ L3 ⊕HU1 ⊕HU3 = {0}, it follows that

L1 ⊕HU1 ⊕HU3 = L3 ⊕HU1 ⊕HU3 ,

as desired.

By Lemma 4.1 the relation∼ is indeed an equivalence relation and we may partitionA into equivalence
classes, [L⊕HU ]. We call each class a clique and partition A into cliques:

A = Clique1 ⊔ · · · ⊔ Cliquem.

The actual number of cliques, m, will not be important, but it is clear that such a number exists. The edges
of our graph will be between vertices L⊕HU and R if there exists L′⊕HU ′ ∈ [L⊕HU ] such that L′ ⊇ R.
The edges will be weighted according to a sampling process that we describe in the next section, which
also explains the constraints on Ψ. For future reference, the following lemma will be helpful in defining the
constraints:

Lemma 4.2. Suppose L ⊕HU ∼ L′ ⊕HU ′ and that f : L ⊕HU −→ Fq is a linear function satisfying the
side conditions. Then there is a unique linear function f ′ : L′ ⊕HU ′ −→ Fq that satisfies the side conditions
such that there exists a linear function g : L ⊕HU ⊕HU ′ −→ Fq satisfying the side conditions (of both U
and U ′) such that

g|L⊕HU
= f and g|L′⊕HU′ = f ′.

In words, g is a linear extension of both f and f ′.

Proof. Note that there is only one way to extend f to L ⊕ HU ⊕ HU ′ in a manner that satisfies the side
conditions given by U ′. Let this function be g. We take f ′ to be g|L′⊕HU′ .
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4.1.4 The Constraints

Suppose that T1 is an assignment to A that assigns, to each vertex L ⊕HU , a linear function T1[L ⊕HU ]
satisfying the side conditions. Further suppose that T2 is an assignment that assigns to each vertex R ∈ B a
linear function on R. The verifier performs the following test, which also describes the constraints of Ψ:

1. Choose U uniformly at random from U .

2. Choose L⊕HU uniformly, where dim(L) = 2ℓ and L∩HU = {0}, and choose R ⊆ L of dimension
2(1− δ)ℓ uniformly.

3. Choose L′ ⊕HU ′ ∈ [L⊕HU ] uniformly

4. As in Lemma 4.2, extend T1[L′⊕HU ′ ] to L′⊕HU ′ ⊕HU in the unique manner that respects the side
conditions and let T̃1[L⊕HU ] be the restriction of this extension to L⊕HU .

5. Accept if and only if T̃1[L⊕HU ]|R = T2[R].

This finishes the description of our instance Ψ. It is clear that the running time and instance size is nO(k)

and that the alphabet size is O(q2ℓ).
Before arguing about the completeness and soundness, we will present some necessary tools. As is

usually the case, showing completeness is relatively easy, and all of the tools presented are for the much
more complex soundness analysis.

5 Tools for Soundness Analysis

In this section we will present all of the tools needed to analyze the soundness of our PCP.

5.1 The 2ℓ versus 2ℓ(1− δ) subspace agreement test

We begin by discussing the 2ℓ versus 2ℓ(1− δ) test and our decoding theorem for it. In our setting, we have
a question U ∈ U for the first prover, and we consider the 2ℓ versus 2ℓ(1 − δ) test inside the space FU

q . In
our setting this test passes with probability at least ε ⩾ q−2ℓ(1−δ′) (where δ′ is, say δ′ = 1000δ) and we will
want to use this fact to devise a strategy for the first prover. Below, we first state and prove a basic decoding
theorem, and then deduce from it a quantitative better version that also incorporates the side conditions.

Let T1 be a table that assigns, to each L ∈ Grassq(FU
q , 2ℓ), a linear function T1[L] : L −→ Fq, and let T2

be a table assigning to each R ∈ Grassq(FU
q , 2(1 − δ)ℓ) a linear function T2[R] : R → Fq. We recall that

|U | = 3k ≫ 2ℓ. In this section, we show that if tables T1 and T2 are ε-consistent, namely

Pr
L∈Grassq(FU

q ,2ℓ)

R∈Grassq(FU
q ,2(1−δ)ℓ)

[T1[L]|R = T2[R] | R ⊆ L] ⩾ ε.

for ε ⩾ q−2ℓ(1−1000δ), then the table T1 must have non-trivial agreement with a linear function on some
zoom-in and zoom-out combination of constant dimension. To prove that, we use Lemma 2.3 along with an
idea from [BKS19].

Theorem 5.1. Suppose that tables T1 and T2 are ε-consistent where ε ⩾ q−2ℓ(1−1000δ). Then there exist
subspaces Q ⊂W and a linear function f :W −→ Fq such that:
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1. codim(Q) + dim(W ) = 10
δ .

2. f |L ≡ T1[L] for Ω(ε′)-fraction of 2ℓ-dimensional L ∈ Zoom[Q,W ],

where ε′ = q−2ℓ(1−1000δ2).

Proof of Theorem 5.1. Consider the bipartite graph G whose sides are the vertices of Grassq(n, 2ℓ) and
Grassq(n, (1 − δ)2ℓ), and its set of edges E consists of pairs (L,R) such that L ⊇ R. Consider the
normalized adjacency operator T : L2(Grassq(n, 2ℓ)) −→ L2(Grassq(n, 2(1 − δ)ℓ)) of G, and let T ∗ be its
adjoint operator.

Choose a linear function f : Fn
q −→ Fq uniformly at random and define the (random) sets of vertices

SL,f = {L ∈ Grassq(n, 2ℓ) | f |L ≡ T1[L]} and SR,f = {R ∈ Grassq(n, 2(1− δ)ℓ) | f |R = T2[R]}.

Denote by E(SL,f , SR,f ) the set of edges with endpoints in SL,f and SR,f . We lower bound the expected
size of E(SL,f , SR,f ) over the choice of f . Note that for each edge (L,R) ∈ E such that T1[L]|R ≡ T2[R],
we have that (L,R) ∈ E(SL,f , SR,f ) with probability q−2ℓ. Indeed, with probability q−2ℓ we have that
T1[L] ≡ f |L, and in that case we automatically get that T2[R] = T1[L]|R ≡ (f |L)|R = f |R. As the number
of edges (L,R) such that T1[L]|R ≡ T2[R] is at least ε|E|, we conclude that

E
f
[|E(SL,f , SR,f )|] ⩾ εq−2ℓ|E|.

Note that we also have that

E
f
[µ(SR,f )] = E

f

[
|SR,f |
|R|

]
= q−2ℓ(1−δ).

Using Linearity of Expectation, we get that

E
f

[
|E(SL,f , SR,f )| −

1

2
εq2δℓµ(SR,f )|E|

]
⩾

1

2
εq−2ℓ|E|,

thus there exists f for which the random variable on the left hand side is at least 1
2εq

−2ℓ|E|, and we fix f so
that

|E(SL,f , SR,f )| ⩾
1

2
εq2δℓµ(SR,f )|E|+

1

2
εq−2ℓ|E|. (2)

We claim that SL,f is not (r, ε′)-pseudo-random for r = 10
δ and ε′ = q−2ℓ(1−1000δ2). Suppose for the

sake of contradiction that this is not the case, and that SL,f is (r, ε′)-pseudo-random. Denote α = µ(SL,f )
and β = µ(SR,f ). By Lemma 2.3 for any t ⩾ 4 that is a power of 2 we have

1

|E|
|E(SL, SR)| ⩽ qOt,r(1)β

t−1
t ε′

t−1
t + 5q−2rδℓ

√
αβ ⩽ qOt,r(1)β

t−1
t ε′

t−1
t . (3)

In the last inequality, we used the fact that by (2)

β|E| = |SR,f |
|E|
|R|

⩾ |E(SL,f , SR,f )| ⩾
1

2
εq−2ℓ|E|,

so β ⩾ 1
2εq

−2ℓ ⩾ q−4ℓ, and thus the second term on the middle of (3) is negligible compared to the first
term there. Combining (2) and (3) gives us that

1

2
εq2δℓβ ⩽ qOt,r(1)β

t−1
t ε′

t−1
t .
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Simplifying, using the definition of ε′, the fact that ε ⩾ q−2ℓ(1−1000δ) and the fact that β ⩾ q−4ℓ we get

1

2
q2δℓ ⩽ qOt,r(1)q

4ℓ
t q(

2
t
+2000(δ2 t−1

t
−δ))ℓ.

Investigating the second two exponents of q, we have that for t ⩾ 1
δ−δ2

⩾ 2,(
4

t
+

2

t
+ 2000

(
δ2
t− 1

t
− δ
))

ℓ ⩽ −1994(δ − δ2)ℓ.

This implies that
1

2
q2δℓ ⩽ qOδ(1)q1994ℓ(δ

2−δ) < 1,

and contradiction. It follows that SL,f is not (r, ε′)-pseudo-random, and unraveling the definition of not
being pseudo-random gives the conclusion of the theorem.

5.1.1 Finding a Large Fraction of Successful Zoom-Ins

Theorem 5.1 asserts the existence of a good pair of zoom-in and zoom-out (Q,W ) on which the table T1
has good agreement with a global linear function. As discussed in the introduction, our argument requires a
quantitatively version asserting that there is a good fraction of zoom-ins that work for us. Below, we state a
strengthening of Theorem 5.1 achieving this; it easily follows from Theorem 5.1, and we defer the proof to
Section B.

Theorem 5.2. Suppose that tables T1 and T2 are ε-consistent for ε ⩾ q−2ℓ(1−1000δ). Then there exist
positive integers r1 and r2 satisfying r1 + r2 = r = 10

δ , such that for at least q−5ℓ2-fraction of the r1-
dimensional subspaces Q, there exists a subspace W ⊇ Q of codimension r2 and a linear function gQ,W

such that
Pr

L∈Grassq(FU
q ,2ℓ)

[gQ,W |L = T1[L] | Q ⊆ L ⊆W ] ⩾ q−2ℓ(1−1000δ2).

Proof. The proof is deferred to Section B.

5.1.2 Incorporating Side Conditions for Zoom-Ins

Next, we require a version of Theorem 5.2 which also takes the side conditions into account.

Theorem 5.3. Let U be a question to the first prover, let T1 the first prover’s table, including the side
conditions, and suppose that

Pr
L∈Grassq(FU

q ,2ℓ),L∩HU={0}
R∈Grassq(FU

q ,2(1−δ)ℓ)

[T1[L⊕HU ]|R = T2[R] | R ⊆ L] = ε ⩾ q−2(1−1000δ)ℓ.

Then there are parameters r1 and r2 such that r1 + r2 ⩽ 10
δ , such that for at least q−6ℓ2 fraction of the

r1-dimensional subspaces Q ⊆ FU
q , there exists W ⊆ FU

q of codimension r2 containing Q ⊕ HU , and a
global linear function gQ,W :W −→ Fq that respects the side conditions on HU such that

Pr
L
[gQ,W |L⊕HU

= T1[L⊕HU ] | Q ⊆ L ⊆W ] ⩾
q−2(1−1000δ2)ℓ

5
.
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Proof. For any 2k-dimensional subspace A such that HU ⊕ A = FU
q , let TA be the table given by TA[L] =

T1[L⊕HU ]|L for all 2ℓ-dimensional subspaces L ⊆ A. We can choose a 2ℓ-dimensional subspace L such
that L ∩HU = {0} by first uniformly choosing A such that HU ⊕ A = FU

q , and then choosing L ⊆ A of
dimension 2ℓ uniformly. Thus, defining

p′(A) = Pr
L⊆A,R⊆L

[TA[L]|R = T2[R]],

we have
E
A
[p′(A)] = Pr

L:dim(L)=2ℓ,L∩HU={0},R⊆L
[T1[L⊕HU ]|R = T2[R]] ⩾ ε.

In particular, for at least ε
4 -fraction of A’s, we have p′(A) ⩾ ε

4 . For such A’s, by Theorem 5.2, there exist
positive integers r1 and r2 such that for at least q−5ℓ2-fraction of r1-dimensional zoom-ins Q, there exists a
zoom-out W ′ ⊃ Q of co-dimension r2 and a linear function gQ,W ′ such that,

Pr
Q⊆L⊆W

[TA[L] = gQ,W |L] ⩾
q−2(1−1000δ2)

4
.

Let W = W ′ ⊕ HU and let gQ,W : W −→ Fq be the unique extension of gQ,W ′ to W satisfying the side
conditions. We claim that

Pr
L:L∩HU={0}

[gQ,W |L⊕HU
= T1[L⊕HU ] | Q ⊆ L ⊆W ] ⩾

q−2(1−1000δ2)

5
.

Indeed, for each Q ⊆ L′ ⊆ W ′ there are an equal number of L such that Q ⊆ L ⊆ W and L′ ⊕HU =
L⊕HU , so

Pr
L:L∩HU={0}

[gQ,W |L⊕HU
= T1[L⊕HU ] | Q ⊆ L ⊆W ]

⩾ Pr
Q⊆L⊆W

[TA[L] = gQ,W |L]− Pr
Q⊆L⊆W

[L ∩HU ̸= {0}]

⩾
q−2(1−1000δ2)

5
.

To conclude, we see that sampling A and then Q ⊆ A of dimension r1, we get that there is a zoom-out
W and a function gQ,W satisfying the conditions in the theorem with probability at least ε

4q
−5ℓ2 . As the

marginal distribution over Q is q−Ω(k)-close to uniform over all r1-dimensional subspaces the conclusion
follows.

5.2 The Covering Property

In this section, we present the so called “covering property”, which is a feature of our PCP construction
that allows us to move between the first prover’s distribution over 2ℓ-dimensional subspaces of FU

q and the
second prover’s distribution over 2ℓ-dimensional subspaces of FV

q . Similar covering properties are shown
in [KS13, KMS17]; however, obtaining the optimal quadratic-programming hardness result in Theorem 1.4
requires a stronger analysis that goes beyond the covering properties of [KS13, KMS17]. We are able to
obtain a covering property with the following parameters:

k = q2(1+c)ℓ , β = q−2(1+2c/3)ℓ, (4)

where c > 0 is a constant arbitrarily small relative to δ.
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5.2.1 The Basic Covering Property

To start, we state a basic form of the improved covering property that is required in our analysis and de-
fer its proof to Appendix C. Fix a question U = (e1, . . . , ek) to the first prover and recall that HU =
span(xe1 , . . . , xek) where xei is the vector that is one at coordinates corresponding to variables in ei and 0
elsewhere. The covering property we show will relate the following two distributions:
D :

• Choose x1, . . . , x2ℓ ∈ FU
q uniformly.

• Output the list (x1, . . . , x2ℓ).

D′ :

• Choose V ⊆ U according to the Outer PCP.

• Choose x′1, . . . , x
′
2ℓ ∈ FV

q uniformly, and lift these vectors to FU
q by inserting 0’s into the missing

coordinates.

• Choose w1, . . . , w2ℓ ∈ HU uniformly, and set xi = x′i + wi for 1 ⩽ i ⩽ 2ℓ.

• Output the list (x1, . . . , x2ℓ).

With these two definitions, the covering property used in prior works asserted that the distribution D is
statistically close to a variant of the distribution D′. This closeness is not good enough for us, as we will
want to consider events of rather small probability under D and still assert that their probability is roughly
the same in D′. First, in these earlier works, the distribution D′ was generated by a similar process to the
above without the addition of the random vectors w1, . . . , w2ℓ from HU . As explained in the introduction
however, this distribution is not good enough for the purpose of Theorem 1.4, and we must consider the
distribution D′ above. Second, the notion of statistical closeness is too rough for us, and we show that in
fact, almost all inputs x are assigned the same probability under these two distributions up to factor 1+o(1).

More precisely, set η = q−100ℓ100 throughout this subsection. Our covering property is the following
statement:

Lemma 5.4. Let η be a parameter such that q−100ℓ100 ⩽ η ⩽ 1/2. There exists a small set E ⊆
(
FU
q

)2ℓ
such that both D(E) and D′(E) are at most η40, and for all (x1, . . . , x2ℓ) /∈ E we have

0.9 ⩽
D(x1, . . . , x2ℓ)

D′(x1, . . . , x2ℓ)
⩽ 1.1.

Proof. The proof is deferred to Appendix C.1.

5.2.2 The Covering Property with Zoom-ins

Lemma 5.4 represents the most basic form of the covering property, and for out application we require a
version of it that incorporates zoom-ins and advice. Namely, we will actually interested in the case where
D and D′ are conditioned on some r1-dimensional zoom-in Q, for an arbitrary dimension r1 ⩽ 10

δ . To
make notation simpler, let us write x = (x1, . . . , x2ℓ) and use spanr1(x) to denote span(x1, . . . , xr1).
Additionally, define

DQ(L) = D(x ∈ L | spanr1(x) = Q) =
D({x ∈ L | spanr1(x) = Q})
D({x | spanr1(x) = Q})

.
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From Lemma 5.4 we can conclude that for any L ⊆ (FU
q )

2ℓ that is not too small, the measure D′
Q(L) is

within at least a constant factor of DQ(L) for nearly all Q.

Lemma 5.5. For any L ⊆ (FU
q )

2ℓ, we have

Pr
Q

[
D′

Q(L) ⩾ 0.8 · DQ(L)− η20
]
⩾ 1− 2η20,

where Q is the span of r1 uniformly random vectors in FU
q .

Proof. Throughout the proof all of the expectations and probabilities over Q choose Q as in the lemma
statement. Let E be the small set of points from Lemma 5.4. By assumption we have

E
Q
[DQ(E)] ⩽ η40 and E

Q
[D′

Q(E)] ⩽ η40.

Thus, by Markov’s inequality, we have that with probability at least 1 − 2η20, we have DQ(E),D′
Q(E) ⩽

η20. In this case we have,∑
spanr1 (x)=Q

D(x) ⩾
∑

spanr1 (x)=Q,x∈E

D(x) ⩾
∑

spanr1 (x)=Q,x∈E

0.9 · D′(x)

= 0.9 ·

 ∑
spanr1 (x)=Q

D′(x)−
∑

spanr1 (x)=Q,x∈E

D′(x)

 ,

where we applied Lemma 5.4 in the second transition. Dividing both sides by
∑

spanr1 (x)=QD′(x) gives
that ∑

spanr1 (x)=QD(x)∑
spanr1 (x)=QD′(x)

⩾ 0.9(1−D′
Q(E)) ⩾ 0.9(1− η20) ⩾ 0.89. (5)

It follows that

D′
Q(L) =

∑
x∈L,spanr1 (x)=QD′(x)∑

spanr1 (x)=QD′(x)

⩾
0.89

∑
x∈L∩E,spanr1 (x)=QD′(x)∑
spanr1 (x)=QD(x)

⩾
0.9 · 0.89 ·

∑
x∈L∩E,spanr1 (x)=QD(x)∑

spanr1 (x)=QD(x)

⩾ 0.8 · DQ(L)−

∑
spanr1 (x)=Q,x∈E D(x)∑

spanr1 (x)=QD(x)

= 0.8 · DQ(L)−DQ(E)

⩾ 0.8 · DQ(L)− η20,

where we apply Equation (5) in the second transition and the assumptionDQ(E) ⩽ η20 in the last transition.
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5.2.3 The Covering Property for the Advice

We will also need a similar, and simpler, version of the above lemma that applies to r1-dimensional sub-
spaces for some constant r1 = O(δ−1). This is to handle the fact that the zoom-in Q is sampled uniformly
from FV

q after V is chosen according to the outer PCP, and then lifted to a subspace over FU
q , instead of uni-

formly from FU
q . Formally, let D′

r1 denote the former distribution over r1-dimensional subspaces Q ⊆ FU
q

and let Dr1 denote the latter distribution over r1-dimensional subspaces Q ⊆ FU
q . These are the same as

the distributions D and D′ of the previous subsection except over
(
FU
q

)r1 instead of
(
FU
q

)2ℓ. We show the
following.

Lemma 5.6. Let Q be a set of r1-dimensional subspaces in FU
q satisfying Dr1(Q) ⩾ q−10ℓ10 . Then,

D′
r1(Q) ⩾ 0.8 · Dr1(Q).

Proof of Lemma 5.6. Take E from Lemma 5.4, and define

L = {(x1, . . . , x2ℓ) ∈
(
FU
q

)2ℓ | span(x1, . . . , xr1) ∈ Q}.
Then Dr1(Q) = D(L), D′

r1(Q) = D
′(L) and

D′
r1(Q) = D

′(L) ⩾
∑
x∈L
x/∈E

D′(x) ⩾ 0.9 ·
∑
x∈L
x/∈E

D(x) ⩾ 0.9 · D(L)−D(E) ⩾ 0.8 · D(L) = 0.8 · Dr1(L).

where we use Lemma 5.4 in the second transition, and the fact that D(E) ⩽ η and D(L) = Dr1(Q) ⩾
q−10ℓ10 in the penultimate transition.

5.3 The Number of Maximal Zoom-Outs is Bounded

In Theorem 5.2, we showed that the two provers can agree on a zoom-in with reasonable probability using
their advice. The same cannot be said for zoom-outs however, and to circumvent this issue we must develop
further tools. In this section, we define the notion of maximal zoom-outs and show that for a fixed zoom-in
Q, the number of maximal zoom-outs is bounded.

5.3.1 Generic Sets of Subspaces

One of our primary concerns with respect to zoom-outs is that it is possible for a prover to have many good
zoom-outs to choose from (so that independent sampling doesn’t work) but not enough to allow for advice-
type solution. To deal with large collections of zoom-outs we define a special property of zoom-outs that
is called “genericness”. To motivate it, note that if W1,W2 ⊆ V are distinct subspaces of co-dimension r,
then W1 ∩W2 is a subspace whose co-dimension is between 2r and r + 1. For a typical pair of subspaces
the intersection W1 ∩W2 has dimension 2r, in which case we say they are generic. Genericness is useful
probabilistically, since ifW1,W2 are generic then the event that a randomly chosen 2ℓ-dimensional subspace
is contained in W1, and the event it is contained in W2, are almost independent. Below is a more general
and formal definition:

Definition 5.7. We say that a set S = {W1, . . . ,WN} of codimension r subspaces of V is t-generic with
respect to V if for any t-distinct subspaces, say Wi1 , . . . ,Wit ∈ S , we have codim(

⋂
1⩽j⩽tWij ) = t · r.

When the ambient space V is clear from context we simply say that S is t-generic.

26



We remark that any set of subspaces that is t-generic with respect to V is also t′-generic with respect to
V for any t′ < t. In this section, we will show a couple of results regarding generic sets of subspaces that
will be used to bound the number of maximal zoom-outs in Section 8.

The result we need is a sunflower-type lemma, stating that any large set of codimension r subspaces
inside V contains a large set of subspaces that are t-generic with respect to V ′ for some V ′ ⊆ V . Below is
a formal statement.

Lemma 5.8. Let t, r ∈ N be integers and let S = {W1, . . . ,WN} be a set of N subspaces of co-dimension
r inside of V . Then there exists a subspace V ′ ⊆ V and a set of subspaces S ′ ⊆ S such that:

• |S ′| ⩾ N
1

(r+1)·(t−1)!

qr .

• Each Wi ∈ S ′ is contained in V ′ and has co-dimension s with respect to V ′, where s ⩽ r.

• S ′ is t-generic with respect to V ′.

In order to show Lemma 5.8, we introduce two necessary lemmas. The first, Lemma 5.9, states that
for j ⩾ 2, any j-generic set of subspaces contains a large (j + 1)-generic set of subspaces. The second,
Lemma 5.10,states that either a set of subspaces is already 2-generic, or there are many subspaces in the set
that are contained in the same hyperplane. Using this lemma, we can start from a large set of subspaces S
inside of an ambient space V and iteratively reduce to the dimension of the ambient space until we find a 2-
generic set of subspaces relative to the ambient space. Indeed, either the set S is already 2-generic, or there
is a hyperplane V ′ ⊆ V such that the set of subspaces in S contained in V ′ is large. Taking this set to be
the new S and V ′ to be the new ambient space, we obtain a, still, large set of subspaces, whose codimension
is now one less. We may repeat this process until S is a set of hyperplanes in the ambient space, at which
point it will be 2-generic.

Lemma 5.9. Let S = {W1, . . . ,WN} be a set ofN -subspaces of codimension r inside of V that is j-generic
with respect to V , then there is a subset {W1, . . . ,WN ′} ⊆ S of size N ′ ⩾ N1/j

qr that is (j+1)-generic with
respect to V .

Proof. Fix any j distinct subspaces in S, sayW1, . . . ,Wj and letW =W1∩· · ·∩Wj . Since S is j-generic,
codim(W ) = j · r. We claim that there are at most qj·r subspaces Wi′ ∈ S \ {W1, . . . ,Wj} such that
codim(W ∩Wi′) ⩽ (j + 1)r − 1. Call such subspaces bad and suppose for the sake of contradiction that
there are greater than qjr bad subspaces Wi′ . Then for each bad Wi′ we have,

dim(Wi′ ⊕W ) = dim(Wi′) + dim(W )− dim(Wi′ ∩W )

⩽ (dim(V )− r) + (dim(V )− jr)− (dim(V )− (j + 1)r − 1)

= dim(V )− 1.

Therefore, for each Wi′ , the space W ⊕Wi′ is contained in a hyperplane H such that H ⊇ W . There are
at most qcodim(W ) − 1 = qj·r − 1 hyperplanes H containing W , and by the pigenhole principle it follows
that there are two bad subspaces say Wi′1

,Wi′2
that are both contained in the same hyperplane H . This is a

contradiction however, as by the j-genericness of S, we must have

dim(Wi′1
⊕Wi′2

) = dim(Wi′1
) + dim(Wi′2

)− dim(Wi′1
∩Wi′2

)

= 2(dim(V )− r)− (dim(V )− 2r)

= dim(V ),
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and hence Wi′1
and Wi′2

cannot both be contained in the hyperplane H .
The lemma now follows from the claim we have just shown. Construct a subset S ′ greedily as follows:

1. Initialize S ′ by picking j arbitrary subspaces from S and inserting them to S ′.

2. For any j subspaces in S ′, say W1, . . . ,Wj , remove any W ′ ∈ S which is bad for them.

3. If S is not empty, pick some W ∈ S, insert it to S ′ and iterate.

Note that trivially, the collection S ′ will be (j + 1)-generic in the end of the process. To lower bound
the size of S ′, note that when |S ′| = s, the number of elements from S that have been deleted is at most
sjqjr, and hence so long as this value is at most N , we may do another iteration. Thus, we must have that

s ⩾
(

N
qjr

)1/j
= N1/j

qr when the process terminates.

Lemma 5.10. Let {W1, . . . ,WN} be a set of subspaces of V of codimension r. Then for any integerm ⩾ 1,
at least one of the following holds.

• There are m subspaces, way W1, . . . ,Wm such that for every pair 1 ⩽ i ̸= j ⩽ m, codim(Wi ∩
Wj) = 2r.

• There is a subspace V ′ ⊆ V of co-dimension 1 that contains N ′ = N
mqr of these subspaces, say

W1, . . . ,WN ′ .

Proof. Note that for any 1 ⩽ i ̸= j ⩽ N , we have codim(Wi ∩Wj) ⩽ 2r. Consider the graph with vertices
W1, . . . ,WN with (Wi,Wj) an edge if and only if i ̸= j and codim(Wi ∩Wj) ⩽ 2r − 1. If every vertex
in this graph has degree at most N

m , then we are done as there is an independent set of size m and these
subspaces satisfy the first condition. Suppose this is not the case. Then there is a vertex, say WN , that has
N
m neighbors, say W1, . . . ,WN

m
. For 1 ⩽ i ⩽ N

m , we have codim(WN ∩Wi) ⩽ 2r − 1, so

dim(Wi ⊕WN ) = dim(Wi) + dim(WN )− dim(Wi ∩WN ) ⩽ dim(V )− 1.

Thus Wi⊕WN is always contained in a codimension 1 subspace of V that contains WN . Since the number
of such subspaces is qr−1, there must exist one subspace, say V ′, that contains at least N

mqr of the subspaces
in the list W1, . . . ,WN

m
.

Repeatedly applying Lemma 5.10 yields the following corollary.

Corollary 5.11. Let {W1, . . . ,WN} be a set of subspaces of V of codimension r with respect to V . There

exists a subspace V ′ ⊂ V , an integer 1 ⩽ s ⩽ r, and a subset of m ⩾ N
1

r+1

qr , say {W1, . . . ,Wm}, all
contained in V ′ such that,

• Each Wi, 1 ⩽ i ⩽ m, has codimension s with respect to V ′.

• Each Wi ∩Wj , 1 ⩽ i ̸= j ⩽ m, has codimension 2s.

Proof. To start set V ′ = V . If the Wi’s have codimension 1 in V ′ then the result holds.

Otherwise, if the conclusion does not hold, then apply Lemma 5.10 with m = N
1

r+1

qr . Either the first
condition of Lemma 5.10 holds and we are done, or we can find a new subspace, V ′′, of codimension 1 inside
the current V ′ containing at least N

mqr of the Wi’s. Set V ′ = V ′′ and repeat. Note that the codimension of
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theWi’s with respect to V ′ drops by 1 after every iteration, so we will repeat at most r times before reaching
the desired conclusion. This yields a list of Wi’s that satisfy the conditions of size at least

N

(mqr)r
= N

1
r+1 ⩾ m.

With Corollary 5.11 and Lemma 5.9, we can prove Lemma 5.8

Proof of Lemma 5.8. By Corollary 5.11, there is a set S ′ of size |S ′| ⩾ N
1

r+1

qr and V ′ ⊆ V such that S ′ is
2-generic with respect to V ′, and each Wi has (the same) codimension s ⩽ r with respect to V ′. Applying
Lemma 5.9 t− 2 times, there is a set of t-generic subspaces relative to V ′, S ′′ ⊆ S ′, of size

∣∣S ′′∣∣ ⩾
(( |S ′|

qr

) 1
2

· 1
qr

) 1
3

· · ·

 · 1
qr


1

t−1

⩾
|S ′|

1
(t−1)!

qr
⩾
N

1
(r+1)·(t−1)!

qr
.

In addition to Lemma 5.8, we state another useful feature of generic sets of subspaces, formalized in
Lemma 5.12 below. The lemma asserts that if a collection {W1, . . . ,WN} is generic, and one zooms-outs
from the ambient space V into a hyperplaneH , then one gets an induced collection {W1∩H, . . . ,WN ∩H}
which is almost as generic.

Lemma 5.12. Let S = {W1, . . . ,WN} be a set of subspaces of codimension r that is t-generic with respect
to some space V for an even integer t, and let H be a hyperplane in V . Then the set of subspaces S ′ =
{W1 ∩H, . . . ,WN ∩H} can be made a t

2 -generic set of subspaces with respect to H with codimension r
inside of H by removing at most t

2 subspaces Wi ∩H from it.

Proof. Suppose that S ′ is not t
2 -generic with respect to H with codimension r inside of H , as otherwise we

are done. In this case, there must exist t
2 distinct subspaces, say W1 ∩H, . . . ,W t

2
∩H ∈ S ′ such that

codim
(
W1 ∩ · · · ∩W t

2
∩H

)
<
t

2
· r + 1,

where the codimension is with respect to V . However, since S is t-generic (and thus t
2 -generic as well) with

respect to V , this implies that
W1 ∩ · · · ∩W t

2
⊆ H.

Now delete W1 ∩H, . . . ,W t
2
∩H from S ′. We claim that the resulting set is t

2 -generic with respect to H .

Suppose for the sake of contradiction that it is not. Then there must be another t
2 distinct subspaces, say

W t
2
+1 ∩H, . . . ,Wt ∩H ∈ S ′ such that

W t
2
+1 ∩ · · · ∩Wt ⊆ H.

This would imply (
W1 ∩ · · · ∩W t

2

)
⊕
(
W t

2
+1 ∩ · · · ∩Wt

)
⊆ H.

This is a contradiction however, as S is t-generic with respect to V , so codim(W1 ∩ · · · ∩Wt) = tr, and

dim
(
W1 ∩ · · · ∩W t

2
⊕W t

2
+1 ∩ · · · ∩Wt

)
= dim

(
W1 ∩ · · · ∩W t

2

)
+ dim

(
W t

2
⊕W t

2
+1 ∩ · · · ∩Wt

)
− dim (W1 ⊕W2 ∩ · · · ∩Wt)

= 2

(
dim(V )− t

2
r

)
− dim(V ) + tr = dim(V ) > dim(H),
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and contradiction.

Lemma 5.13. LetW be a set of subspaces that is 2K generic with respect to V and let B be a subspace of
codimension j. Then, the set of subspaces,

WB = {Wi ∩B |Wi ∈ W},

can be made 2K−j generic with respect to B by removing at most j2K−1 subspaces.

Proof. There is a sequence of subspaces V = B0 ⊇ B1 ⊇ · · · ⊇ Bj = B, such that Bi+1 is a hyperplane
inside of Bi. Do the following,

1. InitializeW0 =W and set i = 1.

2. SetWi = {Wk ∩ Bi | Wk ∈ Wi−1}, and then remove the minimal number of subspaces to turnWi

into a 2K−i-generic collection with respect to Bi.

3. Stop if i = j, otherwise, increase i by 1 and return to step 2.

It is clear that the output is a set of subspacesWj ⊆ WB that is 2K−j-generic with respect to B. Further-
more, during each iteration, at most 2K−i−1 ⩽ 2K−1 subspaces are removed by Lemma 5.12, and the result
follows.

5.3.2 The Sampling Lemma

As explained earlier, the notion of genericness is useful probabilistically, and in this section we state and
prove a sampling lemma about generic collections which is necessary for our analysis. Fix an arbitrary
zoom-in Q ⊆ V of dimension a, and let S = {W1, . . . ,Wm} be a 2-generic collection of subspaces of V
of codimension r all containing Q. Also let A be a set of j-dimensional subspaces containing Q. For the
remainder of this subsection, use Zoom[Q,V ] to denote the set of j-dimensional subspaces in V containing
Q. Consider the following two probability measures over Zoom[Q,V ]:

1. The distribution µ which is uniform over Zoom[Q,V ].

2. The distribution ν, wherein a subspace is sampled by first picking i ∈ {1, . . . ,m} uniformly and then
sampling a subspace from Zoom[Q,Wi] uniformly.

The main content of this section is the following lemma, asserting that the measures µ and ν are close in
statistical distance provided that m is large. More precisely:

Lemma 5.14. For any L ⊂ Zoom[Q,V ] we have

|ν(L)− µ(L)| ⩽ 3q
r
2
(j−a)

√
m

.

We now set up some notations for the proof of Lemma 5.14. For L ∈ Zoom[Q,V ] let

N(L) = |{Wi ∈ S | L ⊆Wi}|,
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and for an arbitrary pair of distinct Wi,Wi′ ∈ S define the following quantities:

D = |{L ∈ Zoom[Q,V ] | L ⊆Wi} =
[
n− a− r
j − a

]
q

, p1 = Pr
L∈Zoom[Q,V ]

[L ⊆Wi]

p2 = Pr
L∈Zoom[Q,V ]

[L ⊆Wi ∩Wi′ ] =

[
n− a− 2r
j − a

]
q[

n− a
j − a

]
q

. (6)

We note that all of these quantities are well defined as they do not depend on the identity of Wi and Wi′ .
The first two equations are clear and the third uses the fact that S is 2-generic. Thus,

µ(L) =
1

|Zoom[Q,V ]|
=
p1
D
, ν(L) =

N(L)

m
· 1
D

=
N(L)

mD
. (7)

For the first equation, we are using the fact that |Zoom[Q,V ]|·p1 = D, while the second equation is evident.
In the following claim we analyze the expectation and variance of N(L) when L is chosen uniformly form
Zoom[Q,V ]:

Claim 5.15. EL∈Zoom[Q,V ][N(L)] = p1m and var(N(L)) ⩽ p1m. where the variance is over uniform
L ∈ Zoom[Q,V ].

Proof. By linearity of expectation

E
L∈Zoom[Q,V ]

[N(L)] =
m∑
i=1

Pr
L∈Zoom[Q,V ]

[L ⊆Wi] = p1m,

and we move on to the variance analysis. To bound EL∈Zoom[Q,V ][N(L)2], write

E
L∈Zoom[Q,V ]

[N(L)2] = E
L∈Zoom[Q,V ]

( m∑
i=1

1L⊆Wi

)2


⩽ m · Pr
L∈Zoom[Q,V ]

[L ⊆Wi] +m2 · Pr
L∈Zoom[Q,V ]

[L ⊆Wi ∩Wi′ ]

= p1m+ p2m
2.

It follows that,
var(N(L)) ⩽ p1m+ p2m

2 − p21m2.

Finally note that p2 and p21 are nearly the same value, and it can be checked using Equation (6) that p2 ⩽ p21
and so var(N(U)) ⩽ p1m.

Combining Chebyshev’s inequality with Claim 5.15, we conclude the following lemma which will be
useful for us later on.

Lemma 5.16. For any c > 0 it holds that

Pr
L∈Zoom[Q,V ]

[
|N(L)− p1m| ⩾ c · p1m

]
⩽

1

c2p1m
⩽
qr(j−a)

c2m
.
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Proof. This is an immediate result of Chebyshev’s inequality with the bounds from Claim 5.15.

Lastly, we use Claim 5.15 to prove Lemma 5.14.

Proof of Lemma 5.14. We have,

|µ(L)− ν(L)| = 1

mD
|
∑
L∈L

N(L)− p1m| ⩽
1

mD

∑
L∈L
|N(L)− p1m| ⩽

|Zoom[Q,V ]|
mD

E
L
[|N(L)− p1m|],

and by Cauchy-Schwartz we get that

|µ(L)− ν(L)| ⩽ |Zoom[Q,V ]|
mD

√
var(N(L)).

Plugging in Claim 5.15 and using |Zoom[Q,V ]| = D/p1 we get that

|µ(L)− ν(L)| ⩽ 1
√
p1m

⩽
3q

r
2
(j−a)

√
m

.

5.3.3 Bound on Maximal Zoom-outs

For this subsection, we work in the second prover’s space, FV
q , and make the assumption that |V | ≫ ℓ, say

|V | ⩾ 2100qℓ to be concrete. We first establish several results in the simplified setting where there is no
zoom-in. After that we show how to deduce an analogous result with a zoom-in. Throughout this section,
we fix T to be a table that assigns to each L ∈ Grassq(FV

q , 2ℓ) a linear function on L.

Definition 5.17. Given a table T on Grassq(FV
q , 2ℓ) and a subspace Q ⊆ FV

q , we call a zoom-out, function
pair, (W, gW ), where W ⊆ FV

q and f :W −→ Fq, (C, s)-maximal with respect to T on Q if

Pr
L∈Grassq(FV

q ,2ℓ)
[gW |L ≡ T [L] | Q ⊆ L ⊆W ] ⩾ C,

and there does not exist another zoom-out function pair, (W ′, gW ′) such that FV
q ⊇W ′ ⊋W , gW ′ : F′

W −→
Fq, gW ′ |W ≡ g|W and

Pr
L∈Grassq(FV

q ,2ℓ)
[gW ′ |L ≡ T [L] | Q ⊆ L ⊆W ′] ⩾ sC.

In the case that Q = {0}, we say that (W, gW ) is (C, s)-maximal with respect to T .

In the above statement, C should be thought of as small and s should be thought of as an absolute
constant. With this in mind, a zoom-out W and a linear function on it gW is called maximal if there is no
zoom-out W ′ that strictly contains W , and an extension of gW to gW ′ , that has the same agreement with T
as gW (up to constant factors). As an immediate consequence of the definition of (C, s)-maximal, we have
the following lemma, which roughly states that every zoom-out for which there that has a linear function
with good agreement inside the zoom-out is contained in a maximal zoom-out (with only slightly worse
agreement).
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Lemma 5.18. Let T be a table on Grassq(FV
q , 2ℓ), Q ⊆ FV

q , and W ⊆ FV
q be a subspace of codimension r

containing Q. Suppose that there exists a linear function gW :W −→ Fq such that

Pr
L∈Grassq(FV

q ,2ℓ)
[gW |L ≡ T [L] | Q ⊆ L ⊆W ] ⩾ C.

Then there exists a subspace W ′ ⊇ W and a linear function gW ′ : W ′ −→ Fq such that gW ′ |W ≡ gW and
(gW ′ ,W ′) is (Cs−r, s)-maximal and a linear function gW ′ :W ′ −→ Fq such that

Pr
L∈Grassq(FV

q ,2ℓ)
[gW ′ |L ≡ T [L] | Q ⊆ L ⊆W ] ⩾ C.

Proof. This is an immediate consequence of Definition 5.17. If (W, gW ) is (C, s)-maximal then we are
done. Otherwise, there must exist W1, gW1 such that W1 ⊋W , gW1 |W ≡ gW and

Pr
L∈Grassq(FV

q ,2ℓ)
[gW1 |L ≡ T [L] | Q ⊆ L ⊆W1] ⩾ sC.

We can repeat this argument at most r times before obtaining some (gW ′ ,W ′) that is (Cs−r, s) maximal
and satisfies W ′ ⊇W and gW ′ |W ≡ gW .

The following result, which is key to our analysis gives an upper bound on the number of maximal
zoom-outs. This lemma is in fact equivalent to Lemma 1.7, and its proof is deferred to Section 8. In order
to present the lemma cleanly, we set the following parameters for the remainder of the section, which can
all be considered constant

ξ = δ5, δ2 =
ξ

100
, t =

(
22+10/δ2

)
! .

Lemma 5.19. Let T be a table on Grassq(FV
q , 2ℓ) with |V | ⩾ 2100qℓ and set r ⩽ 10

δ , C ⩾ q−2(1−δ5)ℓ, and

N ⩾ q100(t−1)!r2ℓξ−1
.

Suppose that (W1, f1), . . . , (WN , fN ) are zoom-out, function pairs such that the Wi’s are all distinct and
for each 1 ⩽ i ⩽ m, codim(Wi) = r, and

Pr
L∈Grassq(FV

q ,2ℓ)
[fi|L ≡ T [L] | L ⊆Wi] ⩾ C.

Then there is a a subspace V ′, a linear function h′ : V ′ −→ Fq, and a set of subspacesW ′ ⊆ {W1, . . . ,WN}
of size N ⩾ q50rℓξ

−1

• Each Wi ∈ W ′ is strictly contained in V ′ and has codimension r′ < r with respect to V ′.

• W ′ is 2-generic with respect to V ′.

• For any Wi ∈ W ′, h′|Wi ≡ fi.

Proof. The proof is deferred to Section 8.

To bound the number of maximal zoom-outs, we will also need the following list decoding property.
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Lemma 5.20. Let T be a table on Grassq(FV
q , 2ℓ), let Q be an r1-dimensional subspace, and let W ⊇ Q be

a subspace of codimension r2. Suppose that 2ℓ is sufficiently large and dim(W ) ⩾ 20ℓ. Let f1, . . . , fm be a
list of distinct linear functions such that fi|L ≡ T [L] for at least β-fraction of the 2ℓ-dimensional subspaces
L such that Q ⊆ L ⊆W , for β ⩾ 2q−2ℓ+r1 + c, and c > 0. Then,

m ⩽
4

c2
⩽

4

β2
.

Proof. The proof is deferred to Appendix D

Combining Lemma 5.19 with Lemma 5.20, yields a bound on the number of (C, s) maximal zoom-out
function pairs with respect to a table T on Q.

Theorem 5.21. For any table T on Grassq(FV
q , 2ℓ) such that |V | ⩾ qℓ, any subspace Q ⊆ FV

q of dimension
r1 ⩽ 10

δ and any C ⩾ q−2(1−δ3)ℓ, the number of (C, 15)-maximal zoom-out, function pairs with respect to T
on Q is at most 40

δ · C
−2 · q100(t−1)!r2ℓξ−1

.

Proof. Suppose for the sake of contradiction that (W1, f1), . . . , (WM , fM ) are M > 40
δ C

−2q100(t−1)!r2ℓξ−1

distinct pairs that are (C, 15) maximal with respect to T on Q. By Lemma 5.20, for each Wi, there are at
most 4C−2 functions f : W −→ Fq such that f |L ≡ T [L] for at least C-fraction of the L ∈ Zoom[Q,W ].
Thus, there are C2M/4 distinct Wi’s appearing in the pairs, and there is a codimension r2 ⩽ 10

δ such there
are M

40
δ
C−2 = N ⩾ q100(t−1)!r2ℓξ−1

pairs, say, (W1, f1), . . . , (WN , fN ) zoom-out function pairs that are

(C, 15) maximal with respect to T on Q such that the Wi’s are all distinct and of codimension r2 in FV
q .

Write FV
q = Q ⊕ A. For each L ⊆ FV

q of dimension 2ℓ containing Q, there is a unique L′ ⊆ A such
that L = Q⊕ L′. Define the table T ′ that assigns linear functions to each L′ ∈ Grassq(A, 2ℓ− dim(Q)) by

T ′[L′] ≡ T [L′ ⊕Q]|L′ (8)

For each 1 ⩽ i ⩽ N , let W ′
i ⊆ A be the unique subspace such that Wi = W ′

i ⊕ Q. We have that
fi|L′ = T ′[L′] for at least C-fraction of L′ ∈ Grassq(W

′
i , 2ℓ− dim(Q)).

By Lemma 5.19 there exists a subspace V ′, a linear function h′ : V ′ −→ Fq, and a subcollectionW ′ ⊆
{W ′

1, . . . ,W
′
m} of size at least m ⩾ q50rℓξ

−1
such that

• Each W ′
i ∈ W ′ is has codimension 1 ⩽ r′ ⩽ r2 with respect to V ′.

• W ′ is 2-generic with respect to V ′.

• For any W ′
i ∈ W , h′|W ′

i
= fi.

Let W = {Wi | W ′
i ∈ W ′} and extend h′ to the function h⋆ on V ⋆ = V ′ ⊕ Q so that, h⋆|Wi ≡ fi

for at least q−r1 of the Wi in W . It follows that there is a set V = {Wi ∈ W | h⋆|Wi ≡ fi} of size
|V| ⩾ mq−r2 ⩾ mq−

10
δ .

Furthermore, becauseW ′ is 2-generic inside of V ′,W is 2-generic inside of V ⋆. We will now finish the
proof by applying Lemma 5.14 on V . Specifically, let ν denote the measure over Zoom[Q,W ⋆] generated
by choosingWi ∈ V and then L ∈ Zoom[Q,W ⋆] conditioned on L ⊆Wi, let µ denote the uniform measure
over Zoom[Q,W ⋆], and let

L = {L ⊆ Zoom[Q,V ⋆] | h⋆|L ≡ T [L]}.
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Since h⋆|Wi ≡ fi for every Wi ∈ V , we have

ν(L) ⩾ E
Wi∈V

[
Pr

L∈Zoom[Q,Wi]
[fi|L ≡ T [L]]

]
⩾ C.

By Lemma 5.14 with a = r1, r = r2, and j = 2ℓ, it follows that

µ(L) ⩾ 1

2
·
(
C − 3qr2(2ℓ− r1)√

mq−r1

)
⩾
C

5
.

Summing everything up, this shows that there is a zoom-out function pair (V ⋆, h⋆) such that V ⋆ ⊋ Wi and
h⋆|Wi ≡ fi for at least one i, and PrL⊆Grassq(FV

q ,2ℓ)[h
⋆|L ≡ T [L] | Q ⊆ L ⊆ V ⋆] ⩾ C

5 . This contradicts the
assumption that (Wi, fi) is (C, 15)-maximal with respect to T on Q.

5.4 An Auxiliary Lemma

We conclude this section with an auxiliary lemma that will be used in the analysis.

Lemma 5.22. Let U be a fixed question to the first prover in the Outer PCP consisting of 3k-variables in
some set of k equations. Let V ⊆ U be a random question to the second prover chosen according to the
Outer PCP. Let W ⊆ FU

q be a subspace of co-dimension s. Then, with probability at least 1− 2sβ over the
choice of the question V , we have

dim(W ∩ FV
q ) = |V | − s.

Proof. Say that W is given by the constraints ⟨h1, x⟩ = 0, . . . , ⟨hs, x⟩ = 0 for h1, . . . , hs linearly in-
dependent. We can view FV

q ⊆ FU
q as being defined by the constraints ⟨vi1 , x⟩ = 0, . . . , ⟨vit , x⟩ = 0,

where i1, . . . , it correspond to the variables xi1 , . . . , xit in U \ V . The event dim(W ∩ FV
q ) = |V | − s is

equivalent to the event that h1, . . . , hb, vi1 , . . . , vit are linearly independent. Since h1, . . . , hs are linearly in-
dependent, there are s-coordinates such that the restrictions of h1, . . . , hs to these s-coordinates are linearly
independent. If none of i1, . . . , it are in this set of s coordinates, then h1, . . . , hb, xi1 , . . . , xit are linearly
independent. Conditioned on the size of U \V being t, this event happens with probability at least 1− ts/k,
and as the expectation of t is 2βk it follows that the probability in question is at least 1− 2sβ.

6 Analysis of the PCP

In this section we show completeness and soundness analysis of the composed PCP construction Ψ from
Section 4. As usual, the completeness analysis is straightforward and the soundness analysis will consist the
bulk of our effort.

6.1 Completeness

Suppose that the 3Lin instance (X,Eq) has an assignment σ : X −→ Fq that satisfies at least 1 − ε1 of
the equations in Eq. Let Usat ⊆ U be the set of all U = (e1, . . . , ek) where all k equations e1, . . . , ek are
satisfied. Then, |Usat| ⩾ (1 − kε1)U . We identify σ with the linear function from FX

q → Fq, assigning the
value σ(i) to the ith elementary basis element ei. Abusing notation, we denote this linear map by σ as well.

For eachU ∈ Usat and vertexL⊕HU , we set T1[L⊕HU ] ≡ σ|L⊕HU
. SinceU ∈ Usat, these assignments

satisfy the side conditions. For all other U ’s, set T1[L⊕HU ] so that the side conditions of HU are satisfied
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and T1[L ⊕HU ]|L ≡ σ|L. Such an assignment is possible because L ∩HU = {0}. Similarly, the table T2
is defined as T2[R] ≡ σ|R.

Sampling a constraint, note that the constraint is satisfied whenever the L′⊕HU ′ chosen in step 3 of the
test satisfies that U ′ ∈ Usat. As the marginal distribution of L′ ⊕ HU ′ is uniform, 8 the distribution of U ′

is uniform. It follows that the constraint is satisfied whenever U ′ ∈ Usat, which happens with probability at
least 1− kε1. Thus, val(Ψ) ⩾ 1− kε1.

6.2 Soundness

In this section we relate the soundness of the composed PCP to that of the outer PCP and prove Lemma 6.1.
More precisely, we show:

Lemma 6.1. For all δ > 0 there are r ∈ N and c(δ) > 0 such that the following holds. Let G⊗k
β,r parallel

repetition of the Smooth Variable versus Equation Game with advice described in Section 3.1.4, and let Ψ
be composed PCP described in Section 4. If val(G⊗k

β,r) < q−c(δ)·O(ℓ2), then val(Ψ) ⩽ q−2(1−1000δ)ℓ.

The rest of Section 6 is devoted to the proof of Lemma 6.1. The proof heavily relies on the tools from
Section 5. Assume, as in lemma Lemma 6.1, that the val(G⊗k

β,r) < q−c(δ)·O(ℓ)2 , and suppose for the sake
of contradiction that there are tables T1 and T2 that are ε-consistent for ε ⩾ q−2ℓ(1−1000δ). To arrive at a
contradiction, we show that this implies strategies for the two provers that with success probability greater
than val(G⊗k

β,r).

6.2.1 Clique Consistency

To start, we will reduce to the case where T1 satisfies a condition called clique-consistency.

Definition 6.2. We say an assignment T toA is clique consistent if for every vertex L1⊕HU1 and for every
L2 ⊕ HU2 , L3 ⊕ HU3 ∈ [L1 ⊕ HU1 ], the assignments T [L2 ⊕ HU2 ] and T [L3 ⊕ HU3 ] satisfy the 1-to-1
constraint between L2 ⊕HU2 and L3 ⊕HU3 as specified in Lemma 4.2.

The following lemma shows that if T1 and T2 are ε-consistent assignments to Ψ, then there are clique-
consistent assignments T̃1 and T̃2 that are also ε-consistent.

Lemma 6.3. Suppose that the assignments T1 and T2 are ε-consistent, then there is a clique-consistent
assignment T̃1 such that T̃1 and T2 are ε-consistent.

Proof. Partition A into cliques, A = Clique1 ⊔ · · · ⊔ Cliquem. For each i, choose a random L ⊕ HU ∈
Cliquei uniformly, and for every L′ ⊕ HU ′ ∈ Cliquei assign T̃1[L

′ ⊕ HU ′ ] in the unique way that is
consistent with T1[L ⊕HU ] and the side conditions of U ′ as described in Lemma 4.2. It is clear that T̃1 is
clique consistent, and we next analyze the expected fraction of constraints that T̃1 and T2 satisfy.

Note that an alternative description of sampling a constraint in Ψ proceeds as follows. First choose a
clique Cliquei with probability that is proportional to by its size, and then choose L⊕HU ∈ Cliquei in the
first step. The rest of the sampling procedure is the same. Let P (L ⊕ HU ) be the probability that the test
passes conditioned on L⊕HU being chosen in the second step. It is clear that every vertex in the clique has
equal probability of being chosen, therefore the probability of passing if Cliquei chosen is

1

|Cliquei|
∑

L⊕HU∈Cliquei

P (L⊕HU ).

8This is true because first a clique is chosen with probability that is proportional to its size and then a vertex is sampled uniformly
from the clique.
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On the other hand, the expected fraction of constraints satisfied by T̃1 and T2 (over the randomness of
choosing T̃1) is ∑

L⊕HU

1

|Cliquei|
· P (L⊕HU ) =

1

|Cliquei|
∑

L⊕HU∈Cliquei

P (L⊕HU ).

To see this, note that for any L ⊕ HU , 1
|Cliquei|

is the probability that T1[L ⊕ HU ] is used to define T̃1 on

Cliquei. If this is the case, then the probability the test passes on T̃1 within Cliquei is P (L⊕HU ).
Since this holds over every clique, it follows that the expected fraction of constraints satisfied by T̃1

equals the fraction of constraints satisfied by T1 and T2. In particular, there is a choice of T̃1 such that
together with T2 it satisfies at least ε fraction of the constraints.

Applying Lemma 6.3 we conclude that there are clique-consistent assignments to Ψ that are ε-consistent,
and henceforth we assume that T1 are clique-consistent to begin with. We remark that, in the notation of
Section 4.1.4, the benefit of having a clique-consistent assignment is that the constraint that the verifier
checks is equivalent to checking that T1[L⊕HU ]|R ≡ T2[R]. The latter check is a test which in performed
within the space FU

q of the first prover. We will use this fact in the next section.

6.2.2 A Strategy for the First Prover

Let p(U) be the consistency of T1 and T2 conditioned on U being the question to the first prover. As we
are assuming that the overall success probability is at least ε, EU [p(U)] ⩾ ε. By an averaging argument,
p(U) ⩾ ε

2 for at least ε
2 -fraction of the U ’s. Call such U ’s good and let Ugood be the set of good U ’s.

Let U ∈ U be the question to the first prover and let Q be the advice. If U /∈ Ugood, then the first prover
gives up, so henceforth assume that U ∈ Ugood. For such U , the test of the inner PCP passes with probability
at least ε

2 . More concretely, we have

Pr
L∈Grassq(FU

q ,2ℓ),L∩HU={0}
dim(R)=2(1−δ)ℓ

[T1[L]|R ≡ T2[R] | R ⊆ L] ⩾
ε

2
.

Next, the first prover chooses an integer 0 ⩽ r ⩽ 10
δ uniformly, and takes Q to be the span of the first

r-advice vectors. By Theorem 5.3, there are r1, r2 satisfying r1 + r2 ⩽ 10
δ such that for at least q−6ℓ2 of the

Q ⊆ FU
q of dimension r1, there exists WQ ⊆ FU

q containing Q⊕HU of codimension r2 ⩽ 10
δ and a linear

function gQ,WQ
:WQ −→ Fq that satisfies

Pr
L∈Grassq(FU

q ,2ℓ),L∩HU={0}
[gQ,WQ

|L⊕HU
≡ T1[L⊕HU ] | Q ⊆ L ⊆WQ] ⩾

q−2(1−1000δ2)ℓ

5
. (9)

For simplicity, set C = q−2(1−1000δ2)ℓ

5 . With probability at least δ/10, they choose r = r1, where r1 is the
parameter from Theorem 5.3. Call these dimension r1 subspaces Q lucky and let Qlucky be the set of all
lucky Q ⊆ FU

q . For our analysis, we only analyze the case where the first prover chooses chooses r = r1,
which occurs with probability at least δ

20
For each Q such that Q ∈ Qlucky and Q ∩HU = {0}, the first prover chooses a WQ of codimension at

most 10
δ and linear function gQ,WQ

: WQ −→ Fq that satisfies the side conditions on HU and Equation (9).
For such Q that are in Qlucky and satisfy Q ∩HU = {0}, define

LQ = {L ∈ Zoom[Q,WQ] | gQ,WQ
|L ≡ T1[L⊕HU ]|L}.
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For Q such that Q /∈ Qlucky or Q ∩HU ̸= {0} define LQ = ∅. Finally, define

L = {(x1, . . . , x2ℓ) ∈
(
FU
q

)2ℓ | span(x1, . . . , xr1) ∈ Qlucky, span(x1, . . . , x2ℓ) ∈ Lspan(x1,...,xr1 )
},

and let Qsmooth denote set of r1-dimensional subspaces Q such that

D′
Q(L) ⩾ 0.8DQ(L)− η20, (10)

where η = q−ℓ100 . By definition of DQ and L, if Q ∈ Qlucky, we have

DQ(L) = Pr
x=(x1,...,x2ℓ)∈FU×2ℓ

q

[gQ,WQ
|span(x) ≡ T1[span(x)⊕HU ]|span(x) | spanr1(x) = Q]

= Pr
x=(x1,...,x2ℓ)∈FU×2ℓ

q

[gQ,WQ
|span(x) ≡ T1[span(x⊕HU )|span(x)] ∧ span(x) ⊆WQ | spanr1(x) = Q]

= Pr
L∈Grassq(FU

q ,2ℓ),L∩HU={0}
[gQ,WQ

|L⊕HU
≡ T1[L⊕HU ] ∧ L ⊆WQ | Q ⊆ L]

where the second transition is because, by definition, every L ∈ LQ is contained in WQ. For the third
transition, we are ignoring the probability that the xi’s are linearly dependent and span(x) ∩ HU ̸= {0}.
Indeed, the probability that either of these events occur is at most q2ℓ−3k+q2ℓ−2k, and is negligible anyways.

Continuing, for Q ∈ Qlucky, we have

DQ(L) = Pr
L∈Grassq(FU

q ,2ℓ),L∩HU={0}
[gQ,WQ

|L⊕HU
≡ T1[L⊕HU ] ∧ L ⊆WQ | Q ⊆ L]

= Pr
L∈Grassq(FU

q ,2ℓ),L∩HU={0}
[gQ,WQ

|L⊕HU
≡ T1[L⊕HU ] | Q ⊆ L ⊆WQ]

· Pr
L∈Grassq(FU

q ,2ℓ),L∩HU={0}
[L ⊆WQ | Q ⊆ L]

⩾ q−r2(2ℓ−r1) · C, (11)

where in the third transition uses Equation (9) to lower bound the first term by C.
If either Q /∈ Qlucky, Q ∩ HU ̸= {0}, or Q /∈ Qsmooth, then the first prover gives up. Otherwise the

prover extends the function gQ to a linear function on the entire space FU
q randomly, and we denote this

extension by g : FU
q −→ Fq. The prover outputs the string sQ,U as their answer where sQ,U ∈ FU

q is the
unique string such that g(x) = ⟨sQ,U , x⟩ for all x ∈ FU

q . As gQ,WQ
, and by extension g, respects the side

conditions, it follows that sQ,U satisfies the k-linear equations of U .

6.2.3 A Strategy for the Second Prover

Let V be the question to the second prover. The second prover will use a table T̃1 to derive their strategy.
The table T̃1 is obtained from T1 as follows. For a question V to the second prover, let U ⊇ V be an
arbitrary question to the first prover. For all 2ℓ-dimensional subspaces L ⊆ FV

q , define

T̃1[L] ≡ T1[L⊕HU ]|L.

In order to make sure that T̃1 is well defined, we note two things. First, the subspace L⊕HU can be viewed
as a subspace of FU

q because each L ⊆ FV
q can be “lifted” to a subspace of FU

q by inserting 0’s into the
coordinates corresponding to V \ U . Second, note that the choice of U ⊇ V does not matter when defining
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T̃1[L]. Indeed, for a fixed L, the vertices L ⊕ HU over all U ⊇ V are in the same clique. Since T1 is
clique consistent, it does not matter which U is chosen when defining T̃1[L], as all choices lead to the same
function T1[L⊕HU ]|L. Therefore the second prover can construct the table T̃1.

After constructing T̃1, the second prover then chooses a dimension 0 ⩽ r ⩽ 10
δ uniformly for the advice

Q. Note that with probability at least δ
20 the second prover also chooses r = r1. The second prover then

chooses a zoom-out function pair (Wsecond, gQ,Wsecond
) that is(

C

4 · 5r2
,
1

5

)
-maximal with respect to T̃1 on Q if one exists (and gives up otherwise).

Finally, the second prover extends the function gQ,Wsecond
randomly to a linear function on FV

q to arrive
at their answer. The resulting function is linear and it is equal to the inner product function y −→ ⟨sQ,V , y⟩
for some unique string sQ,V ∈ FV

q . The second prover outputs sQ,V as their answer.

6.2.4 The Success Probability of the Provers

In order to be successful, a series of events must occur. We go through each one and state the probability
that each occurs. At the end this yields a lower bound on the provers’ success probability. We remark
that the analysis of this sections requires Lemmas 5.4 and 5.6, so recall that k and β are set according to
Equation (4) in Section 1.2.6 so that these lemmas hold.

First, the provers need U ∈ Ugood, which occurs with probability at least ε
2 . Assuming that this occurs,

the provers then both need to choose r = r1 for the dimension of their zoom-in, which happens with
probability at least δ2

101 . If both provers choose r = r1, they both receive advice Q as the span of r1 random
vectors.

The provers then need Q ∈ Qlucky, Q ∩HU = {0}, and Q ∈ Qsmooth. When analyzing the probability
that these three events occur, we need to recall that the advice vectors are actually drawn according to
distribution D′

r1 , the distribution described in Section 5.2.3. We will analyze the probability that the three
events occur under Dr1 and then appeal to the covering property of Lemma 5.6. By Theorem 5.2, the first
item occurs with probability at least q−6ℓ2 . On the other hand the probability that the second item does not
occur is at most

∑r1
i=0

qiqk

q3k
⩽ qr1+1−2k, while the probability that the third item does not occur is at most

η20 by Lemma 5.5. Altogether we get that with probability at least

q−6ℓ2 − qr∗+1−2k − η20q−7ℓ2

underDr1 , we haveQ ∈ Qlucky,Q∩HU = {0}, andQ ∈ Qsmooth. By Lemma 5.6, we have thatQ ∈ Qlucky,
Q ∩HU = {0}, and Q ∈ Qsmooth with probability at least q−8ℓ2 under D′

r1 - the distribution which the Q
is actually drawn from.

Now let us assume that U ∈ Ugood, and both provers receive an r1-dimensional advice Q such that
Q ∈ Qlucky, Q∩HU = {0}, and Q ∈ Qsmooth. The first prover chooses the function gQ :WQ −→ Fq. Write
codim(WQ) = r2. Since Q ∈ Qlucky, by Equation (11) we have

DQ(L) ⩾ q−r2(2ℓ−r1) · C,

since by definition L contains at least C-fraction of L ∈ Zoom[Q,W ], which is in turn at least q−r2(2ℓ−r1)

fraction of L ∈ Zoom[Q,FU
q ]. Next because Q ∈ Qsmooth, we have

D′
Q(L) ⩾ 0.8 · DQ(L)− η60 ⩾ q−r2(2ℓ−r1) · C

2
, (12)
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by Equation (10).
Now let WQ[V ] = WQ ∩ FV

q . By Lemma 5.22, with probability at least 1 − 2βr2 we have that
codim(WQ[V ]) = r1 inside of FV

q . Combining this with an averaging argument on Equation (12), we
have that with probability at least C

5 − 2βr2 ⩾ C
6 over V ,

Pr
xi∈FV

q ,wi∈HU

[span(x1 + w1, . . . , x2ℓ + w2ℓ) ∈ L | spanr1(x) = Q] = D′
Q(L)

⩾ q−r2(2ℓ−r1) · C
4
,

(13)

and codim(WQ[V ]) = r1. We call such V consistent. In the probability above, and henceforth, we view
vectors xi ∈ FV

q as vectors in FU
q with 0’s appended in the missing coordinates. At this point there is the

slight issue that span(x1+w1, . . . , x2ℓ+w2ℓ) does not actually correspond to a random entry of the second
prover’s table, T̃1. Indeed, the second prover can only choose (x1, . . . , x2ℓ) ∈ FV

q , choose some question U
to the first prover that contains V , lift these to FU

q by inserting zeros in the missing coordinates, and look at
the entry L⊕HU where L = span(x1, . . . , x2ℓ). They do not know the question U and the side conditions
HU , and hence could not sample the wi ∈ HU . However, notice that for any w1, . . . , w2ℓ ∈ HU , we have
that,

span(x1, . . . , x2ℓ)⊕HU = span(x1 + w1, . . . , x2ℓ + w2ℓ)⊕HU .

We can thus view the w1, . . . , w2ℓ ∈ HU being sampled and added to x1, . . . , x2ℓ as a virtual step. In the
next two equations, we ignore the probability that (x1, . . . , x2ℓ) or (x1+w1, . . . , x2ℓ+w2ℓ) are not linearly
independent or have spans intersecting HU to make the expressions above simpler. This probability is at
most q2ℓ+qk+2ℓ

q3k
and is negligible anyways. We have,

Pr
L∈Grassq(FV

q ,2ℓ)
[T̃1[L] = gQ|L | Q ⊆ L ⊆WQ[V ]]

= Pr
L=span(x1,...,x2ℓ)

[T̃1[L] = gQ|L | Q ⊆ L ⊆WQ[V ]]

= Pr
L=span(x1,...,x2ℓ)

[T1[L⊕HU ] = gQ|L | Q ⊆ L ⊆WQ[V ]]

= Pr
L=span(x1+w1,...,x2ℓ+w2ℓ)

[T1[L⊕HU ] = gQ|L | Q ⊆ L ⊆WQ[V ]]

= Pr
L=span(x1+w1,...,x2ℓ+w2ℓ)

[T̃1[L] = gQ|L | Q ⊆ L ⊆WQ[V ]].

This last probability can be related to D′
Q(L)

Pr
L=span(x1+w1,...,x2ℓ+w2ℓ)

[T̃1[L] = gQ|L | Q ⊆ L ⊆WQ[V ]]

⩾ qr2(2ℓ−r1) · Pr
xi∈FV

q ,wi∈HU

[(x1 + w1, . . . , x2ℓ + w2ℓ) ∈ L | spanr1((xi + wi)) = Q]

= qr2(2ℓ−r1) · D′
Q(L)

⩾
C

4
.

By Lemma 5.18, there exists some (W ′
Q[V ], gQ,W ′

Q[V ]) that is
(

C
4·5r2 ,

1
5

)
-maximal and satisfiesW ′

Q[V ] ⊇
WQ[V ], gQ,W ′

Q[V ] :W
′
Q[V ] −→ Fq is linear, and gQ,W ′

Q[V ]|W [V ] = gQ|WQ[V ]. By Theorem 5.21, the number
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of
(

C
4·5r2 ,

1
5

)
is at most

M =
40

δ
· 52r2+2C−2 · q100(t−1)!r2ℓξ−1

⩽ qc(δ)ℓ,

where c(δ) is some function depending only on δ. Thus, the second prover chooses (W ′
Q[V ], gQ,W ′

Q[V ]) with

probability at least 1
M . Finally, if the second prover chooses (W ′

Q[V ], gQ,W ′
Q[V ]), then the provers succeed if

both provers extend their functions, gQ|W [V ] and gQ,W ′
Q[V ] in the same manner. This occurs with probability

at least q− codim(W [V ]) ⩾ q−10/δ.
Putting everything together, we get that the provers succeed with probability at least

ε

2
· δ

2

101
· q−8ℓ2 · C

5
· 1

M
· q−10/δ = q−c(δ)·O(ℓ2),

where the first term is the probability that U ∈ Ugood, the second term is the probability that both provers
choose the same zoom-in dimension, the third term is the probability that Q ∈ Qlucky, Q ∩ HU = {0},
Q ∈ Qsmooth, the fourth term is the probability that V is consistent, the fifth term is the probability that
the second prover chooses the a function that extends the first prover’s answer, and the final term is the
probability that both provers extend their functions in the same manner.

This proves Lemma 6.1.

7 Proofs of the Main Theorems

7.1 Proof of Theorem 1.3

Theorem 1.3 follows by applying out PCP construction from Section 4 starting with an instance of 3-Lin
from Theorem 2.1. We may take q = 2, fix δ > 0 to be a small constant and then take ℓ sufficiently large
compared to δ−1, then k and β according to Equation (4), and finally take the completeness of the 3-Lin
instance, 1−η, so that η < 1/k. It follows that if the original 3-Lin instance is at least 1−η satisfiable, then
val(Ψ) ⩾ 1− kη. On the other hand, if the if the original instance is at most s satisfiable for some constant
s > 0, then by Claim 3.2, the value of the outer PCP is at most

val(G⊗k
β,r) ⩽ 2

−Ω
(
(1−s)2q−r+2c

3 ℓ
)
< q−c(δ)O(ℓ)2 ,

since we take ℓ sufficiently large compared to δ−1. By Lemma 6.1, it follows that if the original instance
is at most s satisfiable, then val(Ψ) ⩽ q−2(1−1000δ)ℓ. The proof is concluded as the alphabet size of Ψ is
O(q2ℓ).

7.2 Proof of Theorem 1.4

To show quasi-NP-hardness for approximate Quadratic Programming, we rely on the following result due
to [ABH+05], who show a reduction from 2-Prover-1-Round Games to Quadratic Programming.

Theorem 7.1. There is a reduction from a 2-Prover-1-Round Games, Ψ with graph G = (L ∪ R,E) and
alphabets ΣL,ΣR to a Quadratic Programming instance A such that:

• The running time of the reduction and the number of variables in A is polynomial in |L| + |R| and
2|ΣL|.
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• If val(Ψ) ⩾ 1− η, then OPT(A) ⩾ 1− η − 1
|L|+|R| .

• If val(Ψ) ⩽ ε, then OPT(A) ⩽ O(ε).

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Starting with a SAT instance of size n, which may be arbitrarily large, we take the
instance of Gap3Lin from Theorem 2.2 of size N ⩽ 2O(log2 n) and field size q = Θ(log n) which is a power
of 2 as the starting point of our reduction. Take δ > 0 to be a small constant, and ℓ to be a sufficiently
large constant relative to δ−1 in our composed PCP. Finally, we pick k and β by Equation (4). This yields a
2O(k log2 n)-time reduction from SAT to a 2-Prover-1-Game on G = (L∪R,E), with alphabets ΣL,ΣR and
the following properties:

• |R|+ |L| = O(Nk · q3k+2ℓ).

• |ΣR| ⩽ |ΣL| = q2ℓ.

• The completeness is at least 1− kη, where η = 2−Θ(
√
logn).

• The soundness is at most q−2(1−1000δ)ℓ.

Indeed, the first 3 properties are clear. For the soundness, as the original 3-Lin instance is at most 1 − ε
satisfiable for ε = 1/ log3N , we get from Claim 3.2 that

val(G⊗k
β,r) ⩽ 2−Ω(ε−2q−r+2cℓ

3 ) ⩽ q−c(δ)O(ℓ)2 ,

as ℓ is sufficiently large relative to δ−1, so the soundness of the composed PCP follows by Lemma 6.1.
Applying the reduction of Theorem 7.1, we get a reduction to a Quadratic Programming instance A such
that,

• The running time of the reduction and number of variables in A are both

M = poly(2O(log2 n)q2(1+c)ℓ
(log n)O(q2(1+c)ℓ)2q

2ℓ
).

• If the original SAT instance is satisfiable, then

OPT ⩾ 1− 2−Ω(
√
logn).

• If the original SAT instance is not satisfiable, then

OPT ⩽ O(q−2(1−1000δ)ℓ).

Note that
log(M) = q2(1+c)ℓO(log2 n),

whereas the gap between the satisfiable and unsatisfiable cases is Ω
(
q−2(1−1000δ)ℓ

)
= 1

log(M)1−O(δ) . Alto-

gether, this shows that for all ε > 0 there is C > 0 such that unless NP ⊆ DTIME
(
2log(n)

C
)

, there is no

log(M)1−ε-approximation algorithm for Quadratic Programming on M variables.
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7.3 Proof of Theorem 1.5

In this section we prove Theorem 1.5, and for that we must first establish a version of Theorem 1.3 for
bi-regular graphs of bounded degree. The proof of this requites minor modifications of our construction, as
well as the right degree reduction technique of Moshkovitz and Raz [MR10].

7.3.1 Obtaining a Hard Instance of Bipartite Biregular 2-CSP

In this section first we show that the 2-Prover-1-Round game from Theorem 1.3 can be transformed into
a hard instance of biregular, bipartite 2-CSP with bounded degrees. This version may be useful for future
applications, and is formally stated below. Call a bipartite 2-CSP (d1, d2)-regular if the left degrees of its
underlying graph are all d1, and the right degrees of its underlying graph are all d2.

Theorem 7.1. For every φ, ε > 0, and sufficiently large R ∈ N, there exist d1, d2 ∈ N such that given
a bipartite (d1, d2)-regular 2-CSP, Ψ, with alphabet size R, it is NP-hard to distinguish the following two
cases:

• Completeness: val(Ψ) ⩾ 1− φ,

• Soundness: val(Ψ) ⩽ 1
R1−ε .

To prove Theorem 7.1, we start with an instance Ψ from Theorem 1.3, and first argue that Ψ can be
made left regular while almost preserving soundness and completeness by deleting a small fraction of left
vertices. We then use the right degree reduction technique of Moshkovitz and Raz [MR10], to obtain a
bounded degree bi-regular bipartite 2-CSP.

Fix φ, ε > 0, and let Ψ to be the 2-Prover-1-Round game constructed for Theorem 1.3. Recall that
this requires us to choose some large enough ℓ relative to φ−1, ε−1, some large enough q relative to ℓ, and
set R = q2ℓ. We also set δ = ε

1000 , 0 < c arbitrarily small relative to δ, and k = q2(1+c)ℓ. Finally, we
construct our 2-Prover-1-Round game from a hard instance of Gap3Lin with the appropriate completeness
and soundness, so that it is NP-hard to distinguish between,

val(Ψ) ⩾ 1− φ and val(Ψ) ⩽
1

q2(1−1000δ)ℓ
=

1

R1−ε
.

It is clear that our 2-Prover-1-Round game can equivalently be viewed as an instance of bipartite 2-CSP, so
let us analyze the underlying graph. Let U denote the set of possible questions to the first prover. Recall that
the set of left vertices is,

Left = {L⊕HU | ∀U ∈ U ,∀L ∈ Grassq(FU
q , 2ℓ), L ∩HU = {0}},

while the set of right vertices is

Right = {R ∈ Grassq(FU
q , 2(1− δ)ℓ) | U ∈ U}.

The edges and constraints of this graph are generated by a randomized process. Equivalently, there is a
weight function w(·) over edges (L ⊕ HU , R). Recall that the weighting is defined by first choosing a
uniform L ⊕ HU ∈ Left, and then R ∈ Right according to the process descrbied in Section 4.1.4. For a
fixed L⊕HU , define

wL⊕HU
(R) =

|{L′ ⊕HU ′ ∈ [L⊕HU ] | R ⊆ L′}|
|[L⊕HU ]|

· 1[
2ℓ

2(1− δ)ℓ

]
q

.
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This is the probability of choosing the (L ⊕ HU , R) conditioned on first choosing L ⊕ HU . Since we
choose L⊕HU ∈ Left uniformly, it follows that

w(L⊕HU , R) =
wL⊕HU

(R)

|Left|
.

Define the neighborhood of a vertex as,

nb(L⊕HU ) = {R ∈ Right | wL⊕HU
(R) > 0}.

We will now attempt to remove some left vertices and obtain a bipartite, left-regular 2-CSP. To this end,
we call L⊕HU trivial if there is an equation e ∈ U such that for every basis of x1, . . . , x2ℓ ∈ FUi

q of L, the
points xi restricted to the variables in e are of the form (α, α, α) for some α ∈ Fq.

Claim 7.2. The fraction of L⊕HU ∈ Left that are trivial is at most 2q−(2−2c)ℓ.

Proof. Fix a U ∈ U . Note that it suffices to show that at most 2q−(2−2c)ℓ vertices of the form L ⊕HU are
trivial, as for each U ∈ U , there are an equal number of vertices L⊕HU .

Write U = (x1, . . . , x3k), where the ith equation in U contains the variables x3i−2, x3i−1, x3i. Call
these three coordinates a block, so that each x ∈ F3k

q consists of k blocks of consecutive coordinates. Let us
bound the fraction of L such that L⊕HU is trivial. For y1, . . . , y2ℓ ∈ F3k

q , let s(y1, . . . , y2ℓ) be the number
of blocks where y1, . . . , y2ℓ are all of the form (α, α, α) for some α ∈ Fq. Then

Pr
L
[L⊕HU is trivial] ⩽ 2 Pr

y1,...,y2ℓ
[s(y1, . . . , y2ℓ) = 0],

where the factor of 2 accounts for the probability that either y1, . . . , y2ℓ are not linearly dependent, or
span(y1, . . . , y2ℓ) ∩ HU ̸= {0}. Note that the probability that a specific block is trivial is q−4ℓ, hence by
linearity of expectation we get that

E
y1,...,y2ℓ

[s(y1, . . . , y2ℓ)] = kq−4ℓ = q−(2−2c)ℓ,

and therefore
Pr

x1,...,x2ℓ

[s(x1, . . . , x2ℓ) ⩾ 1] ⩽ q−(2−2c)ℓ.

Let Ψ′ be the instance obtained from Ψ after removing all trivial L ⊕ HU from Ψ, so that the new
instance Ψ′ does not contain any trivial vertices. Let Left′ denote the set of left vertices in Ψ′ and let w′(·)
denote the weight function over edges in Ψ′, which is given by choosing L ⊕ HU ∈ Left′ uniformly, and
then choosing R ∈ nb(L⊕HU ) with probability proportional to wL⊕HU

(R). It follows that,

w′(L⊕HU , R) =
wL⊕HU

(R)

|Left′|
.

Let E′ be a set of edges in Ψ and for notational purposes let us write w′(L ⊕ HU , R) = 0 if L ⊕ HU is
trivial and not in Ψ′. We have

w(E)− 4q−2+2cℓ ⩽ w′(E′) ⩽
w(E′)

1− 2q−2+2cℓ
. (14)

The upper bound is clear from Claim 7.2. For the lower bound, we have w(E′) ⩾ w(E′)−2q−2+2cℓ

1−2q−2+2cℓ ⩾

w(E)− 4q−2+2cℓ.
It follows that Ψ′ has completeness at least 1− ψ − 4q−(2−2c)ℓ and soundness at most 2

q−2(1−1000δ)ℓ . We
now bound the size of the neighborhoods in Ψ′.
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Claim 7.3. For each L⊕HU , we have

|nb(L⊕HU )| ⩽ 10kq6kℓ.

Proof. LetU = (x1, . . . , x3k) = (e1, . . . , ek) and suppose equation ei contains variables (x3i−2, x3i−1, x3i).
Since L is not trivial, for each i, there must be a point v ∈ L ⊆ FU

q such that the values of v restricted to the
coordinates of variables (x3i−2, x3i−1, x3i) are not all equal. Without loss of generality, say that it is x3i for
each 1 ⩽ i ⩽ k. It follows that in order to have

L⊕HU ⊕HU ′ = L′ ⊕HU ⊕HU ′ ,

U ′ must contain an equation with the variable x3i for each 1 ⩽ i ⩽ k. Let Ei denote this set of equations
for each i. By the regularity assumptions on our 3Lin instance, |Ei| ⩽ 10 and Ei ∩ Ej = ∅ for i ̸= j. It
follows that U ′ must contain exactly one equation from each Ei, and that these form all k equations of U ′,
so there are at most 10k possible U ′ for which there can exist L′ ⊆ U ′, such that L′⊕HU ′ ∈ [L⊕HU ]. The
lemma follows from the observation that |Grassq(3k, 2(1− δ)ℓ)| ⩽ q6kℓ.

Performing the same procedure as in [KR03, Lemma 3.4], we can turn Ψ′′ into a bipartite, left-regular
2-CSP instance without losing too much in completeness or soundness. Let Q = 10kq6kℓ be the upper
bound on neighborhood sizes in Claim 7.3.

Claim 7.4. For any C ∈ N, there is a polynomial time algorithm that takes Ψ′ as input and outputs a
bipartite 2-CSP Ψ′′ that is left regular with degree C ·Q, and has

• Completeness 1− φ− 4q−(2−2c)ℓ − 1
C .

• Soundness 2
q−2(1−1000)δℓ +

1
C .

Proof. We define Ψ′′ as follows. For each vertex L⊕HU ∈ Left′, do the following. Let R1, . . . , Rm be the
vertices in nb(L ⊕ HU ). For each 2 ⩽ i ⩽ m, add ⌊wL⊕HU

(Ri)C · Q⌋ edges from L ⊕ HU to Ri. Also
add C · Q −

∑m
i=2⌊wL⊕HU

(Ri)C · Q⌋ edges from L ⊕ HU to R1. It is clear that Ψ′′ is left regular with
degree C ·Q, and that for each Ri, there are at most wL⊕HU

(Ri)C ·Q edges between L ⊕HU and Ri for
2 ⩽ i ⩽ m, and at most

(
wL⊕HU

(Ri) +
1
C

)
C ·Q edges between L⊕HU and R1.

For the completeness and soundness, consider a left vertex L ⊕HU . Then it is clear by the above that
if a labelling satisfies 1 − c fraction of constraints involving L ⊕ HU in Ψ′, then in Ψ′′ the same labelling
satisfies at least

(
1− c− 1

C

)
C ·Q of the edges incident to L⊕HU . Similarly, if a labelling satisfies at most

s fraction of constraints involving L⊕HU in Ψ′, then it satisfies at most
(
1− c+ 1

C

)
C ·Q edges involving

L⊕HU .

Applying Claim 7.4 with C = q10ℓ, we obtain a bipartite 2-CSP, Ψ′′, that is left regular with degree
q10ℓQ, that still has nearly the same completeness and soundness as our original instance Ψ. We will now
create a 2-regular bipartite CSP from Ψ′′, by using the degree reduction technique of Moshkovitz and Raz
[MR10].

Lemma 7.5. [MR10] For any parameter d, there is a polynomial time algorithm that takes a bipartite,
left regular 2-CSP with left degree, dleft, completeness 1 − φ′ and soundness s, and outputs a bipartite,
(dleft, ddleft)-regular 2-CSP completeness 1− φ′ and soundness s+O

(
d−1/2

)
.

We are now ready to complete the proof of Theorem 7.1.
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Proof of Theorem 7.1. Applying, Lemma 7.5 to Ψ′′ with d = q10ℓ, we obtain a bipartite (q10ℓQ, q20ℓQ)-
regular 2-CSP, Ψ0, with completeness at least 1 − φ − 5q−(2−2c)ℓ and soundness at most 3

q−2(1−1000δ)ℓ . By

setting q and ℓ large enough relative to φ, Ψ′′ has completeness 1−1.1φ. The soundness is at most, 1
R1−0.9ε .

As the original φ and ε can be arbitrarily small positive constants, Theorem 7.1 follows.

7.3.2 Sparsification

In [LM23], Lee and Manurangsi show how to conclude Theorem 1.5 from Theorem 7.1 via a sparsification
procedure. We summarize the steps here. Fix the η > 0 for Theorem 1.5. Set φ = ε = 0.01η in Theorem 7.1
and let Ψ be the resulting hard bipartite (d1, d2)-regular 2-CSP, and it is NP-hard to distinguish between.

val(Ψ) ⩾ 1− φ and val(Ψ) ⩽
1

R1−ε
.

Now, observe that the degrees of Ψ can be multiplied by arbitrary constants by copying vertices.

Lemma 7.6. [LM23, Lemma 10] For any integers d1, d2, c1, c2, there is a polynomial time reduction from
a bipartite (d1, d2)-biregular CSP, Ψ, to a bipartite (c2d1d2, c1d1d2)-biregular CSP Ψ′, such that val(Ψ) =
val(Ψ′), and such that the left and right alphabet sizes are preserved.

It is then shown in [LM23] that one can perform a subsampling procedure to Ψ′, that significantly lowers
the degree, while not increasing the soundness or alphabet size too much.

Theorem 7.7. [LM23, Theorem 11] For any 0 < ν1 < ν2 ⩽ 1, such that any positive integer C, and any
sufficiently large positive integers dA, dB ⩾ d0(φ, ν), and R ⩾ R0(δ, ν, dA, dB), the following holds: there
is a randomized polynomial-time reduction from a bipartite (dAC, dBC)-biregular 2-CSP, Ψ′, with alphabet
size at most R, (dA, dB)-bounded degree 2-CSP, Ψ′′, such that, with probability at least 2/3,

• Completeness: val(Ψ′′) ⩾ val(Ψ′)− ν1,

• Soundness: If val(Ψ′′) ⩽ 1
Rν2 , then val(Ψ′′) ⩽ 1

ν2−ν1

(
1
dA

+ 1
dB

)
Putting everything together, we can prove Theorem 1.5.

Proof of Theorem 1.5. Recall the values η and d from Theorem 1.5. Start with an instance Ψ of 2-CSP from
Theorem 7.1 with φ = ε = 0.01η and sufficiently large alphabet size R. Then Ψ is (d1, d2)-biregular, with
sufficiently large alphabet size R relative to φ−1, ε−1, and d. For such a Ψ, it is NP-hard to distinguish
whether val(Ψ) = 1− 0.01η, or val(Ψ) ⩽ 1

R1−0.01η .
Applying Lemma 7.6 with c1 = c2 = d yields, in polynomial time, a (dd1d2, dd1d2)-biregular 2-CSP,

Ψ′, with alphabet size R and satisfying val(Ψ′) = val(Ψ). Next, applying Theorem 7.7, with dA = d, dB =
d,C = d1d2, ν1 = 0.01η, ν2 = 1 − ε to obtain, in randomized polynomial time, a 2-CSP, Ψ′′, with degree
at most d such that:

• If val(Ψ) ⩾ 1− φ, then val(Ψ′′) ⩾ 1− φ− ν1 = 1− 0.02η.

• If val(Ψ) ⩽ 1
R1−ε , then val(Ψ′′) ⩽ 1

1−ε−ν1

(
1
d + 1

d

)
= 1

1−0.02η ·
2
d .

Finally note that,
1− 0.02ε

1
1−0.02ε ·

2
d

⩾ d

(
1

2
− ε
)
.

Thus, by Theorem 7.1 and the randomized polynomial time reduction above, it follows that unless NP =
BPP, there is no polynomial time d

(
1
2 − η

)
approximation algorithm for 2-CSP with degree at most d.
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7.4 Proof of Theorem 1.6

Combining our 2-Prover-1-Round Game in Theorem 1.3 with [Lae14, Lemma 4] and [Man19, Theorem 1],
we obtain improved hardness of approximation results for Rooted k-connectivity on undirected graphs, the
vertex-connectivity survivable network design problem, and the vertex-connectivity k-route cut problem on
undirected graphs. The reduction is exactly the same as the reduction therein and we therefore omit the
details.

8 Bounding the Number of Successful Zoom-outs of a Fixed Codimension

The goal of this section is to prove Lemma 5.19. Let Fn
q = FV

q be the space that we are working in and
suppose T is a table assigning linear functions to Grassq(n, 2ℓ). We assume n ⩾ 2100qℓ. Let us review the
set up of Lemma 5.19. Recall that we set

ξ = δ5, δ2 = ξ/100, t = 22+10/δ2 .

Let S = {W1, . . . ,WN} be a set of codimension r-subspaces in Fn
q of size

N ⩾ q100(t−1)!r2ℓξ−1
.

For each Wi, let fi : Wi −→ Fq be a linear function such that fi|L = T [L] for at least C-fraction of the
2ℓ-subspaces L ∈Wi, where C ⩾ q−2(1−ξ)ℓ, and ξ > 0.

8.1 Step 1: Reducing to a Generic Set of Subspaces

Applying Lemma 5.8, with parameter t as defined, we get that there exists a subspace V ′ ⊆ Fn
q and a set of

m1 ⩾
N

1
(r+1)·(t−1)!

qr
⩾ q75rℓξ

−1

subspacesW = {W1, . . . ,Wm1} ⊆ S, such that

• Each Wi ∈ W is contained in V ′ and has co-dimension s with respect to V ′, where s ⩽ r.

• W is t-generic with respect to V ′.

We remark that this subspace V ′ will ultimately be the one used for Lemma 5.19. The remainder of the
proof is devoted to finding the linear function h′ : V ′ −→ Fq, and the setW ′, which will be a subset ofW
above.

8.2 Step 2: Finding Local Agreement

For a subspace X and linear assignment to X , σ ∈ FX
q , let

LX = {L ∈ L | X ⊆ L} and LX,σ = {L ∈ LX | T [L]|X = σ}.

Likewise, define

WX = {Wi ∈ W | X ⊆Wi} and WX,σ = {Wi ∈ WX | fi|X = σ}.
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The first step of our proof is to find setsWX,σ and LX,σ that have strong agreement between them, in the
sense of the following lemma. The approach of this first step is similar to that of [IKW12, BDN17, MZ23].
Fix γ > 0 to be a small constant, say γ = 10−6.

Lemma 8.1. There exists a 2
(
1− ξ

2

)
ℓ-dimensional subspace X , a linear assignment, σ, to X , and sets

LX,σ andWX,σ such that the following hold:

• µX(LX,σ) ⩾ C
6 .

• |WX,σ| ⩾ m1

q10rℓ
.

• Choosing L ∈ LX,σ uniformly, and Wi ∈ WX,σ uniformly such that Wi ⊇ L, we have

Pr
L⊆Wi

[fi|L ̸= T [L]] ⩽ 5γ.

Proof. Deferred to Appendix E

As an immediate corollary, we have the following statement. The difference between Corollary 8.2 and
Lemma 8.1 is that the former we require the third condition to hold every every L ∈ LX,σ, instead of a
random L, and we also require every L ∈ LX,σ to be contained in roughly the same number of Wi ∈ WX,σ.

Corollary 8.2. Taking LX,σ and WX,σ from Lemma 8.1, there is a subset L′X,σ ⊆ LX,σ such that the
following hold.

• µX(L′X,σ) ⩾
C
12

• m2 = |WX,σ| ⩾ m1

q10rℓ
.

• For every L ∈ L′X,σ, choosing Wi ∈ WX,σ uniformly such that Wi ⊇ L, we have

Pr
Wi⊇L,Wi∈WX,σ

[fi|L ̸= T [L]] ⩽ 12γ.

• For every L ∈ L′X,σ,

0.95 · |WX,σ| · q−ξℓ·s ⩽ NWX,σ
(L) ⩽ 1.05 · |WX,σ| · q−ξℓ·s,

where NWX,σ
(L) = |{Wi ⊇ L |Wi ∈ WX,σ}|.

Proof. Take X,σ,LX,σ, andWX,σ as guaranteed by Lemma 8.1, so that µX(LX,σ) ⩾ C
6 . We will keep the

same X,σ,, but we remove some L’s from LX,σ to make the third and fourth items hold.
By Markov’s inequality, at most 5

12 -fraction of L ∈ LX,σ violate the third item. By Lemma 5.16 applied

toWX,σ with parameters Q = X , j = 2ℓ, a = 2
(
1− ξ

2

)
ℓ, r = s, and c = 0.05, we have that

Pr
L∈Zoom[Q,V ]

[∣∣∣NX,σ(L)− q−ξℓ·sm2

∣∣∣ ⩾ 0.1q−ξℓm2

]
⩽

400q−ξℓ·s

m2
⩽

C

100
,

where NX,σ(L) = |{Wi ⊇ L | Wi ∈ WX,σ}|. It follows that after removing the L ∈ LX,σ that do not
satisfy the third or fourth condition, we arrive at the desired L′X,σ, which still has measure at least

7

12
· C
6
− C

100
⩾
C

12
.

We fix X,σ as well as WX,σ and L′X,σ as in Corollary 8.2 throughout the rest of the argument.
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8.3 Step 3: A Global Set with Local Agreement

The next step is to further refine the set L′X,σ so that the remaining subspaces “evenly cover” a subspace of
V ⋆ ⊆ V ′ with codimension dim(X) +Oδ2(1). To do this, we will reduce to the case where L′X,σ is global
within some zoom-in A and zoom-out B such that X ⊆ A ⊆ B. This is done via the following argument,
which we outline below:

1. While L′X,σ is not global, there must be some zoom-in or zoom-out on which it is dense, so consider
the restriction to this zoom-in or zoom-out.

2. This increases the measure of L′X,σ, and we may repeat until we have a global set (within some
zoom-in, zoom-out combination).

3. By choosing the globalness parameter suitably, we are able to perform the above process in relatively
few times until the restriction of L′X,σ that we arrive at is global.

4. As a result, when restricting to the zoom-in, zoom-out combination, the resulting set of subspaces
evenly covers a space that is still relatively large in the sense that it contains q−O(ξ−1)-fraction of V0.

For a zoom-in A and zoom-out B such that X ⊆ A ⊆ B ⊆ V ′, write V ′ = A⊕ V0 and B = A⊕ V ⋆,
where V ⋆ ⊆ V0. Also define

W⋆
[A,B] = {W

⋆
i | ∃Wi ∈ WX,σ s.t A⊕W ⋆

i =Wi ∩B}.

It is clear that each W ⋆
i ∈ W⋆

[A,B] is contained inside of some Wi ∈ WX,σ, so for each W ⋆
i we may define

the restriction of fi to W ⋆
i as f⋆i = fi|W ⋆

i
.

Lemma 8.3. There is a zoom-in A and a zoom-out B such that the following holds with the notation above.
There exists a collection of subspacesW⋆ = {W ⋆

1 , . . . ,W
⋆
m3
} ⊆ W⋆

[A,B] of codimension s with respect to
V ⋆ such that:

1. For some ℓ′ ⩾ ξ
3ℓ there exists L⋆ ⊆ Grassq(V

⋆, ℓ′) such that µ(L⋆) = η ⩾ C
12 .

2. The set L⋆ is (1, qδ2ℓη)-pseudo-random.

3. Each W ⋆
i has codimension s ⩽ r inside of V ⋆ andW⋆ is 4-generic, with respect to V ⋆.

4. m3 ⩾
q−10s/δ2

2 ·m2.

5. For every L ∈ L⋆, choosing W ⋆
i ∈ W⋆ uniformly such that W ⋆

i ⊇ L, we have

Pr
W ⋆

i ⊇L,W ⋆
i ∈W⋆

[fi|L ̸= T [L]] ⩽ 14γ.

6. For every L ∈ L⋆,
0.8 ·m3 · q−s·ℓ′ ⩽ NW⋆(L) ⩽ 1.2 ·m3 · q−s·ℓ′ ,

where NW⋆(L) = |{W ⋆
i ∈ W⋆ |W ⋆

i ⊇ L}|

Here the table T is assigns linear functions to L ∈ Grassq(V
⋆, ℓ), and is essentially the original table, i.e

T [L] ≡ T [A⊕ L]|L.
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Proof. Deferred to Appendix E.2.

Finally, as a consequence of pseudo-randomness, we may apply Lemma 2.4, to get that L⋆ evenly covers
V ⋆.

Lemma 8.4. Setting Z = {z ∈ V ⋆ | |µz(L⋆)− η| ⩽ η
10}, we have that,

|Z|
|V ⋆|

⩾ 1− q
ℓ′
2 .

Proof. This is immediate by the pseudo-randomness of L⋆ and Lemma 2.4.

8.4 Step 4: Local to Global Agreement

Lemma 8.5. We have
Pr

W ⋆
i ,W

⋆
j ∈W⋆

z∈W ⋆
i ∩W ⋆

j ∩Z

[f⋆i (z) ̸= f⋆j (z)] ⩽ 500γ,

and for every W ⋆
i ,W

⋆
j ∈ W⋆,

|W ⋆
i ∩W ⋆

j ∩ Z| ⩾ 0.81 · |W ⋆
i ∩W ⋆

j |.

Proof. Deferred to Section E.3.

Using Lemma 8.5, we conclude the proof of Lemma 5.19 by using ideas from the Raz-Safra analysis of
the Plane versus Plane test [RS97]. Define the following graph, G, with vertex setW⋆ and an edge between
W ⋆

i ,W
⋆
j if and only if f⋆i |W ⋆

i ∩W ⋆
j
= f⋆j |W ⋆

i ∩W ⋆
j

. We claim that this graph contains a large clique. To do so,
we show that the graph is nearly transitive. For a graph H = (V,E), define

β(H) = max
(u,w)/∈E

Pr
v
[(v, u), (v, w) ∈ E].

A graph H is transitive β(H) = 0. It is easy to see that transitive graphs are (edge) disjoint unions of
cliques. The following lemma, proved in [RS97], asserts that if H is relatively dense and β(H) is small,
then one could remove only a small fraction of the edges and get a fully transitive graph.

Lemma 8.6. [RS97, Lemma 2] Any graphH = (V,E) can be made transitive by deleting at most 3
√
β(H)|V |2

edges.

To use lemma 8.6 we first show that the graph G we defined is highly transitive.

Claim 8.7. We have β(G) ⩽ 1
m3

.

Proof. Fix a W ⋆
i ,W

⋆
j that are not adjacent. We claim that they can have at most 1 common neighbor.

Suppose for the sake of contradiction that W ⋆
a ,W

⋆
b are distinct common neighbors. Then,

f⋆i |W ⋆
i ∩W ⋆

j ∩W ⋆
a
= f⋆j |W ⋆

i ∩W ⋆
j ∩W ⋆

a
,

and
f⋆i |W ⋆

i ∩W ⋆
j ∩W ⋆

b
= f⋆j |W ⋆

i ∩W ⋆
j ∩W ⋆

b
.
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It follows that f⋆i and f⋆j agree on W ⋆
i ∩W ⋆

j ∩W ⋆
a ⊕W ⋆

i ∩W ⋆
j ∩W ⋆

b . However, sinceW⋆ is 4-generic, we
have

codim(W ⋆
i ∩W ⋆

j ∩W ⋆
a ⊕W ⋆

i ∩W ⋆
j ∩W ⋆

b ) ⩽ 3s+ 3s− 4s = 2s

and
W ⋆

i ∩W ⋆
j ∩W ⋆

a ⊕W ⋆
i ∩W ⋆

j ∩W ⋆
b ⊆W ⋆

i ∩W ⋆
j ,

so it must be the case that W ⋆
i ∩W ⋆

j ∩W ⋆
a ⊕W ⋆

i ∩W ⋆
j ∩W ⋆

b =W ⋆
i ∩W ⋆

j . This contradicts the assumption
thatW ⋆

i andW ⋆
j are not adjacent. Thus, any two non-adjacent vertices can have at most 1 common neighbor,

and the result follows.

Claim 8.8. The graph G contains a clique of size of size m3
2

Proof. Applying Markov’s inequality and a union bound to Lemma 8.5, we have that with probability at least
9/10 over W ⋆

i and W ⋆
j , we have both Prz∈W ⋆

i ∩W ⋆
j ∩Z [f

⋆
i (z) ̸= f⋆j (z)] ⩽ 10001γ and |W ⋆

i ∩W ⋆
j ∩ Z| ⩾

0.81·|W ⋆
i ∩W ⋆

j |. In this case, f⋆i and f⋆j agree on at least (1−10001γ)-fraction of the points inW ⋆
i ∩W ⋆

j ∩Z,
which is in turn at least (1 − 10001γ) · 0.8 > 1/q-fraction of the points in W ⋆

i ∩W ⋆
j . As f⋆i and f⋆j are

linear functions, the Schwartz-Zippel lemma implies that such W ⋆
i ,W

⋆
j are adjacent in G and that G has at

least 81m2
3/100 edges.

By Claim 8.7 and Lemma 8.6, we can delete 2m3/2
3 edges to makeG a union of cliques. Doing so yields

a graph on m3 vertices with at least m2
3/2-edges that is a union of cliques. Let C1, . . . , CN be the cliques,

with C1 being the largest one. We have,

|C1| ·m ⩾ |C1| ·
N∑
i=1

|Ci| ⩾
N∑
i=1

|Ci|2 ⩾
m2

3

2
.

It follows that |C1| ⩾ m3
2 , and that G contains a clique of size at least m3

2 .

Let C be the clique guaranteed by Claim 8.8 and write C = {W ⋆
1 , . . . ,W

⋆
m3
2

}. To complete the proof

of Lemma 5.19, we will find a linear h, such that for all 1 ⩽ i ⩽ m3
2 , f⋆i |V ⋆ ≡ h|V ⋆ , and then show that

this h can be extended to X ⊕ A ⊕ V ⋆ in a manner that is consistent with many of the original fi’s for
1 ⩽ i ⩽ m3/2. To this end, first define g : V ⋆ −→ Fq as follows:

g(x) =

{
f⋆i (x), if ∃W ⋆

i ∈ C, x ∈W ⋆
i

0, otherwise.
(15)

Since f⋆i (x) = f⋆j (x) whenever x ∈ W ⋆
i ∩W ⋆

j , it does not matter which i is chosen if there are multiple
W ⋆

i ∈ C containing x. Thus, g is well defined and g|W ⋆
i
= f⋆i for all 1 ⩽ i ⩽ m3

2 .
We next show that g is close to a linear function and that this linear function agrees with most of

the functions f⋆i |W ⋆
i

for W ⋆
i ∈ C. To begin, we show that g passes the standard linearity test with high

probability.

Lemma 8.9. We have,

Pr
z1,z2∈Fn

q

[g(z1 + z2) = g(z1) + g(z2)] ⩾ 1− 3q2s

m3
.
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Proof. Note that we have

Pr
z1,z2∈Fn

q

[g(z1 + z2) = g(z1) + g(z2)] ⩾ Pr
z1,z2∈Fn

q

[∃W ⋆
i ∈ C, s.t. , z1, z2 ∈W ⋆

i ].

For every z1, z2 ∈ Fn
q linearly independent, we can let N(z1, z2) denote the number of W ⋆

i ∈ C containing
span(z1, z2). The result them follows from Lemma 5.16 with a = 0, j = 2, r = s, and c = 0.99. We have,

Prz1,z2∈Fn
q
[∃W ⋆

i ∈ C, s.t. , z1, z2 ∈W ⋆
i ] ⩾ Pr

z1,z2∈Fn
q

[N(z1, z2) > 0 | dim(span(z1, z2)) = 2]− q

qn

⩾ 1− 3q3s

m3
,

where q
qn is an upper bound on the probability that dim(span(z1, z2)) ̸= 2.

Applying the linearity testing result of Blum, Luby, and Rubinfeld [BLR93, Theorem 4.1] we get that g
is 12q2s

m3
-close to a linear function, say h : V ⋆ −→ Fq. We will conclude by showing that this h is the desired

function which agrees with many of the original fi’s. To this end, we first show that agrees with many of
the f⋆i ’s that we have (which are restrictions of the original fi’s), and then show that h can be extended to
V ′ in a manner that retains agreement with many of the fi’s.

Towards the first step, set S = {x ∈ V ⋆ | g(x) ̸= h(x)}. We show that choosingW ⋆
i ∈ C randomly, and

then a point x ∈W ⋆
i , it is unlikely that x ∈ S. Define the measure ν over nonzero points in Fn

q obtained by
choosingWi ∈ C uniformly at random and then x ∈Wi nonzero uniformly at random. Let µ be the uniform
measure, so µ(S) ⩽ 3q2s

m3
. Then ν(S) is precisely the probability of interest and can be upper bounded using

Lemma 5.14, with parameters a = 0, j = 1, codimension s,

ν(S) ⩽ µ(S) +
6q

s
2

√
m3

⩽
7q

s
2

√
m3

. (16)

Lemma 8.10. We have h|W ⋆
i
≡ f⋆i for at least half of the W ⋆

i ∈ C.

Proof. By Markov’s inequality and Equation (16) with probability at least 1/2, over W ⋆
i ∈ C, we have

|W ⋆
i ∩ S|
|W ⋆

i |
⩽

14q
s
2

√
m3

< 1− 1

q
,

and f⋆i and h|W ⋆
i

agree on more than 1/q of the points in W ⋆
i . Since f⋆i and h|W ⋆

i
are both linear, by the

Schwartz-Zippel Lemma that h|W ⋆
i
≡ f⋆i , and the result follows.

We are now ready to finish the proof of Lemma 5.19.

Proof of Lemma 5.19. Summarizing, we now have linear functions f⋆i : W ⋆
i −→ Fq for 1 ⩽ i ⩽ m3

4 and a
linear function h : V ⋆ −→ Fq such that h|W ⋆

i
= f⋆i . Furthermore, for each f⋆i ,W

⋆
i , there is a fi,Wi from

Lemma 5.19such that Wi ∩ V ⋆ =W ⋆
i , Wi ⊆ V ′, fi|W ⋆

i
= f⋆i , and fi|X = σ.

Finally, we will extend h in a manner so that it agrees with many of these original functions fi. To this
end, recall that V ⋆ satisfies,

A⊕ V ⋆ = B ⊆ V ′.
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and dim(A)+codim(B)−dim(X) ⩽ 10
δ2

. Therefore, we may choose a random linear function h′ : V ′ −→ Fq

conditioned on h|V ⋆ ≡ h and h′|X ≡ σ. For any fi, we have that

Pr
h′
[h′|Wi ≡ fi] ⩽ q−(dim(A)+codim(B)−dim(X)) ⩽ q

− 10
δ2 .

Indeed there is a q−(dim(A)−dim(X)) probability that h|A ≡ fi|A, as we condition on h′|X ≡ σ ≡ fi|X .
Then, extending h′ from B to V ′, there is at least a q− codim(B) probability that h′ is equal to fi on these
extra dimensions. It follows that there is a linear h′ : V ′ −→ Fq such that h′|Wi ≡ fi for at least

m3q
− 10

δ2

4
⩾ q50rℓξ

−1

of the pairs fi,Wi from Lemma 5.19. Take these Wi to be the setW ′ for Lemma 5.19. As theseW ′ ⊆ W ,
they are 2-generic with respect to V ′ and have codimension s ⩽ r in V ′.
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inapproximability of independent set in h-free graphs. Algorithmica, 85(4):902–928, 2023.

[DKK+18] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the
2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 376–389, 2018.

[DKK+21] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally expand-
ing sets in grassmann graphs. Israel Journal of Mathematics, 243(1):377–420, 2021.

[EKL23a] David Ellis, Guy Kindler, and Noam Lifshitz. An analogue of bonami’s lemma for functions
on spaces of linear maps, and 2-2 games. In Barna Saha and Rocco A. Servedio, editors, Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando,
FL, USA, June 20-23, 2023, pages 656–660. ACM, 2023.

[EKL23b] Shai Evra, Guy Kindler, and Noam Lifshitz. Hypercontractivity for global functions on the
general linear group over a finite field. 2023+.

[Fei98] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.
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A Proofs of Lemmas 2.3 and 2.4

In this section we prove Lemmas 2.3 and 8.4. The proofs of these lemmas requires tools from [EKL23a,
EKL23b] regarding Fourier analysis over the Bilinear Scheme.

A.1 Fourier Analysis over the Bilinear Scheme

The key to proving Lemma 2.3 is a level-d inequality for indicator functions on the Bilinear Scheme due
to Evra, Kindler, and Lifshitz [EKL23b]. In order to use the result of [EKL23b], however, we first give
some necessary background for Fourier analysis over the Bilinear Scheme, and describe the analogues of
zoom-ins, zoom-outs, and pseudorandomness. The latter is done in [EKL23a, EKL23b]. After doing so,
we must then find a suitable map from the Grassmann graph to the Bilinear Scheme that (1) preserves the
edges of our original bipartite inclusion graph between 2ℓ-dimensional and 2(1 − δ)ℓ subspaces, and (2)
maps zoom-ins and zoom-outs in the Grassmann graph to their analogues over the Bilinear Scheme.

The Bilinear Scheme: Let Fn×2ℓ
q be the set of n×2ℓmatrices over Fq. One can define a graph over Fn×2ℓ

q

that is similar to the Grassmann graphs by calling M1,M2 ∈ Fn×2ℓ
q adjacent if dim(ker(M1 −M2)) ⩽ s

for some s ⩽ 2ℓ. A graph of this form are often referred to as the Bilinear Scheme. For our purposes, we
will need to work with a bipartite version of this graph between F(n−2ℓ)×2ℓ

q and F(n−2(1−δ)ℓ)×2(1−δ)ℓ
q .

We equip the space L2(Fn×2ℓ
q ) with the following inner product:

⟨F,G⟩ = E
M∈Fn×2ℓ

q

[F (M)G(M)],

where the distribution taken over M is uniform. Let ω be a primitive pth root of unity, where recall p is the
characteristic of Fq. For s ∈ Fn

q and x ∈ Fn
q , let χs(x) = ωTr(s·x) where Tr: Fq → Fp is the trace map.
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Then, the characters, χS : Fn×2ℓ
q −→ C over all S = (s1, . . . , s2ℓ) ∈ Fn×2ℓ

q , given by

χS(x1, . . . , x2ℓ) =
2ℓ∏
i=1

χsi(xi) = ω
∑2ℓ

i=1 Tr(si·xi)

form an orthonormal basis of L2(Fn×2ℓ
q ). As a result, any F ∈ L2(Fn×2ℓ

q ) can be expressed as,

F =
∑

S∈Fn×2ℓ
q

F̂ (S)χS ,

where F̂ (S) = ⟨F, χS⟩. The level d component of F is given by

F=d =
∑

S: rank(S)=d

F̂ (S)χS .

If a function F only consists of components up to level d, i.e. F̂ (S) = 0 for all rank(S) > d, then we say
F is of degree d.

We now describe the analogues of zoom-ins and zoom-outs on Fn×2ℓ
q . We also define the analogous

notion of (r, ε)-pseudo-randomness for Boolean functions over Fn×2ℓ
q , and we begin by defining the analog

of zoom-ins.

Definition A.1. A zoom-in of dimension d over Fn×2ℓ
q is given by d-pairs of vectors (u1, v1), . . . , (ur, vr)

where each ui ∈ F2ℓ
q and each vi ∈ Fn

q . Let U ∈ F2ℓ×d
q and V ∈ Fn×d

q denote the matrices whose
ith columns are ui and vi respectively. Then the zoom-in on (U, V ) is the set of M ∈ Fn×2ℓ

q such that
MU = V , or equivalently, Mui = vi for 1 ⩽ i ⩽ d.

Next, we define the analog of zoom-outs.

Definition A.2. A zoom-out of dimension d is defined similarly, except by multiplication on the left. Given
X ∈ Fd×n

q and Y ∈ Fd×2ℓ
q , whose rows are given by xi and yi respectively, the zoom-out (X,Y ) is the

M ∈ Fn×2ℓ
q such that XM = Y , or equivalently, xiM = yi for 1 ⩽ i ⩽ d.

Let Zoom[(U, V ), (X,Y )] denote the intersections of the zoom-in on (U, V ) and the zoom-out on
(X,Y ). The codimension of Zoom[(U, V ), (X,Y )] is the sum of the number of columns of U and the
number of rows of X , which we will denote by dim(U) and codim(X). For a zoom-in and zoom-out pair
and a Boolean function F , we define F(U,V ),(X,Y ) : Zoom[(U, V ), (X,Y )] −→ {0, 1} to be the restriction of
F which is given as

F(U,V ),(X,Y )(M) = F (M) for M ∈ Zoom[(U, V ), (X,Y )].

When dim(U)+codim(X) = d, we say that the restriction is of size d. We define (d, ε)-pseudo-randomness
in terms of the L2-norms of restrictions of F of size d. Here and throughout, when we consider restricted
functions, the underlying measure is the uniform measure over the corresponding zoom-in and zoom-out set
Zoom[(U, V ), (X,Y )].

Definition A.3. We say that an indicator function F ∈ L2(Fn×2ℓ
q ) is (d, ε)-pseudorandom if for all zoom-in

zoom-out combinations Zoom[(U, V ), (X,Y )] such that dim(U) + codim(X) = d, we have∥∥F(U,V ),(X,Y )

∥∥2
2
⩽ ε.
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We note that for Boolean functions F ,
∥∥F(U,V ),(X,Y )

∥∥2
2
= EM∈Zoom[(U,V ),(X,Y )][F (M)], and hence the

definition above generalizes the definition we have for Boolean functions.

Definition A.4. We say that an indicator function F ∈ L2(Fn×2ℓ
q ) is (d, ε, t)-pseudo-random if for all

Zoom[(U, V ), (X,Y )] such that dim(U) + codim(X) = d, we have,

∥∥F(U,V ),(X,Y )

∥∥
t/(t−1)

=

(
E

M∈Zoom[(U,V ),(X,Y )]

[
|F (M)|

t
t−1

]) t−1
t

⩽ ε.

The following result is a combination of two results form [EKL23b]. Roughly speaking, it states that
if a Boolean function F is (r, ε) pseudo-random, then its degree d parts are (r, Cq,dε

2) pseudo-random for
d ⩽ r.

Lemma A.5. [EKL23b, Theorem 5.5 + Lemma 3.6] Let t ⩾ 4 be a power of 2 and let F : Fn×2ℓ
q → {0, 1}

be a function that is (d, ε, t)-pseudo-random. Then F=d is (r, q10dr+500d2tε2)-pseudo-random for all r ⩾ d.

Proof. This lemma does not actually appear in [EKL23b], but it is easy to derive by combining Theorem 5.5
with Lemma 3.6 therein. In [EKL23a, EKL23b], the authors introduce an additional notion of generalized
influences and having small generalized influences. We refrain from defining these notions explicitly as it is
slightly cumbersome, but roughly speaking, one defines a Laplacian for each zoom-in zoom-out combina-
tion, and having (d, ε) small generalized influences means that applying these Laplacians on F , the 2-norm
squared of the resulting function never exceeds ε.

With this notion in hand, if a function F is (d, ε, t)-pseudo-random, then by [EKL23b, Theorem 5.5] we
get that F=d has (d, q500d

2tε2)-small generalized influences. Applying [EKL23b, Lemma 3.6] then implies
that F=d is (r, q10dr · q500d2tε2)-pseudo-random for any r ⩾ d, which is the desired result

Lastly, we need the following global hypercontrativity result also due to [EKL23b].9

Theorem A.6. [EKL23b, Theorem 1.11] Let t ⩾ 4 be a power of 2 and let F : Fn×2ℓ
q −→ be a function of

degree d that is (d, ε)-pseudo-random. Then,

∥F∥tt ⩽ q200d
2t2εt/2.

Combining Lemma A.5 and Theorem A.6, we arrive at the following result which bounds the t-norm
of the level d component of pseudo-random indicator functions. This result will be the key to showing an
analogue of Lemma 2.3 over the Bilinear Scheme.

Theorem A.7. Let t ⩾ 4 be a power of 2. Then if F : Fn×2ℓ
q −→ {0, 1} is (r, ε)-pseudo-random, we have∥∥∥F=d

∥∥∥
t
⩽ q500d

2tε
t−1
t

for all d ⩽ r.
9We remark that earlier results [EKL23a] showed similar statement for 4-norms, i.e. the case that t = 4, and the result below

follows by a form of induction on t. That is, one starts with F and concludes via applying the case t = 4 that the function and it F 2

is (d,Cq,dε) pseudo-random. Then one apply the case t = 4 on F 2 to conclude that F 4 is (d,C′
q,dε) pseudo-random and so on.
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Proof. Suppose F is (r, ε)-pseudo-random, let t ⩾ 4 be a power of 2, and fix a d ⩽ r. Since d ⩽ r, we also
have that F is (d, ε)-peudorandom. Therefore for any size d restriction of F , F(U,V ),(X,Y ) ,we have,

∥∥F(U,V ),(X,Y )

∥∥
t/(t−1)

=
(∥∥F(U,V ),(X,Y )

∥∥2
2

) t−1
t

⩽ ε
t−1
t .

Thus, F is (d, ε
t−1
t , t)-pseudo-random, and by Lemma A.5 it follows that F=d is (d, q10d

2+500d2tε
2t−2

t )-
pseudo-random. Clearly, F=d is degree d, so applying Theorem A.6 we get that,∥∥∥F=d

∥∥∥t
t
⩽ q200d

2t2
(
q10d

2+500d2tε
2t−2

t

)t/2
⩽ q500d

2t2εt−1,

and taking t-th root finished the proof.

A.2 An Analog of Lemmas 2.3 for the Bilinear Scheme

With Theorem A.7 in hand we can show an analogue of Lemma 2.3 for basis invariant functions over the
Bilinear Scheme. To do so, we first define what we mean by basis invariant functions, then present an
analogue of the adjacency operator T (which is originally defined for functions over subspaces) over the
Bilinear Scheme, which we denote by T ′, and finally show that the previously described characters are
eigenoperators of T ′∗ ◦ T ′, where T ′∗ is the adjoint of T .

For a function F ∈ L2

(
Fn×2ℓ
q

)
, say that F is basis invariant if F (M) = F (MA) for any full rank

A ∈ F2ℓ×2ℓ
q . We first show that the level d component of a basis invariant function is also basis invariant.

The following identity regarding the characters will be useful.

Lemma A.8. For any S = (s1, . . . , sℓ′) ∈ Fn×ℓ′
q , any M ∈ Fn×2ℓ

q , and any matrix A ∈ F2ℓ×ℓ′
q we have,

χS(MA) = χSAT (M).

Proof. Letting v1, . . . , v2ℓ denote the columns of M and ai,j denote the entries of A, we have,

χS(MA) = ωTr
∑ℓ′

i=1 si·(
∑2ℓ

j=1 vjaj,i) = ω
∑ℓ′

i=1 Tr(vi·(
∑2ℓ

j=1 sjai,j)) = χSAT (M).

Lemma A.9. Let S = [s1, . . . , s2ℓ] ∈ Fn×2ℓ
q and let F ∈ L2

(
Fn×2ℓ
q

)
be basis invariant. Then for any

A ∈ F2ℓ×2ℓ
q that is full rank, we have F̂ (SA) = F̂ (S).

Proof. For any matrix full rank B ∈ F2ℓ×2ℓ
q we have

F̂ (S) = E
M∈Fn×2ℓ

q

[χS(M)F (M)]

= E
M∈Fn×2ℓ

q

[
χS(M)F (MB−1)

]
= E

M∈Fn×2ℓ
q

[χS(MB)F (M)]

= EM∈Fn×2ℓ
q

[χSBT (M)F (M)]

= F̂ (SBT ),

where we use that F is basis invariant in the third transition and Lemma A.8 in the fourth transition. Setting
B = AT gives the result.
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Using Lemma A.9, we can show that the level d component of a basis invariant function is also basis
invariant.

Lemma A.10. If F ∈ L2

(
Fn×2ℓ
q

)
is basis invariant, then F=d is basis invariant as well for any d.

Proof. Fix any M ∈ Fn×2ℓ
q and A ∈ F2ℓ×2ℓ

q full rank. We have

F=d(MA) =
∑

S∈Fn×2ℓ
q ,rank(S)=d

F̂ (S)χS(MA)

=
∑

S∈Fn×2ℓ
q ,rank(S)=d

F̂ (S)χSAT (M)

=
∑

S∈Fn×2ℓ
q ,rank(S)=d

F̂ (S(AT )−1)χS(M)

=
∑

S∈Fn×2ℓ
q ,rank(S)=d

F̂ (S)χS(M)

= F=d(M),

where we use Lemma A.8 in the second transition, and Lemma A.9 in the fourth transition.

We now define the following two operators which will be the analogues of T and T ∗ over the bilinear
scheme. The first is T ′ : L2

(
Fn×2ℓ
q

)
−→ L2

(
Fn×2(1−δ)ℓ
q

)
, given by:

T ′F (M ′) = E
v1,...,vδℓ

[F
(
[M ′, v1, . . . , v2δℓ

)
].

In words, the operator T ′ averages over extensions of the matrix M to an n× 2ℓ matrix by adding to it 2δℓ
random columns. The next is T ′∗ : L2

(
Fn×2(1−δ)ℓ
q

)
−→ L2

(
Fn×2ℓ
q

)
given by:

T ′∗G(M) = E
A∈F2ℓ×2(1−δ)ℓ

q

[G(MA) | rank(A) = 2(1− δ)ℓ].

Strictly speaking, T ′∗ is not the adjoint of T ′; however, for the case where F is basis invariant, T ′∗ acts as
the adjoint of T ′ in the following sense.

Lemma A.11. For F ∈ L2

(
Fn×2ℓ
q

)
that is basis invariant and G ∈ L2

(
Fn×2(1−δ)ℓ
q

)
, we have

⟨T ′F,G⟩ = ⟨F, T ′∗G⟩.

Proof. Let J ∈ F2ℓ×2(1−δ)ℓ
q be the matrix whose restriction to the first 2(1− δ)ℓ rows is the identity matrix

I2(1−δ)ℓ×2(1−δ)ℓ and whose remaining rows are all 0. We have

⟨T ′F,G⟩ = E
M ′∈Fn×2(1−δ)ℓ

q ,v1,...,v2δℓ∈Fn
q

[
F ′ ([M ′, v1, . . . , v2δℓ]

)
·G(M ′)

]
= E

M ′∈Fn×2(1−δ)ℓ
q ,vi∈Fn

q ,A∈F2ℓ×2ℓ
q

[
F ′ ([M ′, v1, . . . , v2δℓ]A

)
·G(M ′) | rank(A) = 2ℓ

]
= E

M∈Fn×2ℓ
q ,A∈F2ℓ×2ℓ

q

[F (M) ·G(MA−1J) | rank(A) = 2ℓ],
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where in the second transition we used the fact that F ′ is basis invariant, and in the third one we made a
change of variables M = [M ′, v1, . . . , v2δℓ]A. Now note that A−1J is the matrix A−1 restricted to its first
2(1 − δ)ℓ columns and hence in the final distribution, A−1J is a uniformly random matrix in Fn×2(1−δ)ℓ

q

with rank 2(1− δ)ℓ. It follows that,

⟨T ′F,G⟩ = E
M∈Fn×2ℓ

q ,A∈F2ℓ×2(1−δ)ℓ
q

[F (M) ·G(MA) | rank(A) = 2(1− δ)ℓ] = ⟨F, T ′∗G⟩.

We will want to understand the operator T ∗T ′, and towards this end we define the operator

ΦF (M) = E
B∈Fn×2δℓ

q

C∈F2δℓ×2ℓ
q

rank(C)=2δℓ

[F (M +BC)] .

The reason for introducing Φ is that, as the following lemma shows, it acts the same as T ′∗T ′ on basis
invariant functions, but is easier to work with. This is due to the reason it is an averaging operator with
respect to some Cayley graph over Fn×2ℓ

q , and therefore each character χS is an eigenvector of Φ and the
eigenvalues have an explicit formula. These facts are shown in the next two lemmas respectively.

Lemma A.12. If F ∈ L2

(
Fn×2ℓ
q

)
is basis invariant, then T ′∗T ′F = ΦF .

Proof. By definitions

T ′∗T ′F (M) = E
R′∈F2ℓ×2(1−δ)ℓ

q ,
v1,...,v2δℓ∈Fn

q

[F ′ ([MR′, v1, . . . , v2δℓ] | rank(R′) = 2(1− δ)ℓ
)
].

We can also view M ′ = [MR′, v1, . . . , v2δℓ] as being sampled as follows. Choose R′ ∈ F2ℓ×2(1−δ)ℓ
q

with linearly independent columns, extend R′ to a matrix R ∈ F2ℓ×2ℓ
q with linearly independent columns

randomly by adding 2δℓ columns on the right, sample a random matrix [0, . . . , 0, w1, . . . , w2δℓ] ∈ Fn×2ℓ
q ,

and output,
M ′ =MR+ [0, . . . , 0, w1, . . . , w2δℓ].

Furthermore, under this distribution, it is clear that R ∈ F2ℓ×2ℓ
q is a uniformly random matrix with linearly

independent columns. Therefore,

T ′∗T ′F (M) = E
R∈F2ℓ×2ℓ

q ,
w1,...,w2δℓ∈Fn

q

[F (MR+ [0, . . . , 0, w1, . . . , w2δℓ]]

= E
R∈F2ℓ×2ℓ

q ,
w1,...,w2δℓ∈Fn

q

[F (M + [0, . . . , 0, w1, . . . , w2δℓ]R
−1)],

where we are using the fact that F is basis invariant and R is invertible. In the last expectation, note that the
distribution over [0, . . . , 0, w1, . . . , w2δℓ]R

−1 is the same as that over BC where B ∈ Fn×2δℓ
q is uniformly

random, and C ∈ F2δℓ×2ℓ
q is uniformly random conditioned on having linearly independent rows. More

precisely, it is equal to BC where B = [w1, . . . , w2δℓ], and C is the last 2δℓ rows of R−1. It follows that

T ′∗T ′F (M) = E
B∈Fn×2δℓ

q ,C∈F2δℓ×2ℓ
q

[F (M +BC) | rank(C) = 2δℓ] .
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The following lemma gives upper bound on the eigenvalues of Φ.

Lemma A.13. Suppose that rank(S) = t. If t = 0, then χS is an eigenvector of Φ of eigenvalue 1.
Otherwise, if t > 0, χS is an eigenvector of Φ of eigenvalue which is at most 3qt−n + q−t(2δℓ−1) in absolute
value.

Proof. Fix S. We argued earlier that χS is an eigenvector of Φ, and we denote the corresponding eigevalue
by λ = ΦχS(0). If t = 0 the statement is clear, so we assume that t > 0 henceforth.

Find A ∈ F2ℓ×2ℓ
q of full rank so that SAT = (v1, . . . , vt, 0, 0, . . . , 0) where v1, . . . , vt are linearly

independent. Thus, as the distribution of C is invariant under multiplying by AT from the right, we get that

λ = ΦχS(0) = E
B,C

[χS(BCA
t) | rank(C) = 2δℓ] = E

B,C
[χSA(BC) | rank(C) = 2δℓ],

and we may assume that S = (v1, . . . , vt, 0, . . . , 0) for linearly independent v1, . . . , vt to begin with. Ap-
plying symmetry again, we conclude that

λ = E
v1,...,vt

linearly independent

[
Φχ(v1,...,vt ,⃗0)

(0)
]
= E

v1,...,vt
linearly independent

 E
B,C

ω

t∑
i=1

Tr(vi·coli(BC))

 ,
and interchanging the order of expectations we get that

λ = E
B,C

 E
v1,...,vt

linearly independent

ω

t∑
i=1

Tr(vi·coli(BC))

 ,
Denote wi = coli(BC), and inspect these vectors.

Claim A.14. If wi ̸= 0 for some i, then∣∣∣∣∣∣ E
v1,...,vt

linearly independent

ω t∑
i=1

Tr(vi·coli(BC))

∣∣∣∣∣∣ ⩽ 2qt−n.

Proof. We first claim that if v1, . . . , vt are chosen uniformly, then the left hand side is 0, or equivalently

E
v1,...,vt
uniform

ωTr

(
t∑

i=1
vi·wi

) = 0.

To see this, it suffices to show that
∑t

i=1 vi ·wi takes every value in Fq with equal probability, and we focus
on showing this. Fix i such that wi ̸= 0 and suppose the jth entry, wi,j is nonzero. We can fix all entries
of the v1, . . . , vt uniformly except for vi,j , and then for each α ∈ Fq, there is exactly one choice of vi,j that
will result in

∑t
i=1 vi · wi = α.

Thus, if we took the distribution over v1, . . . , vt to be uniformly and independently chosen, then the
magnitude of the above expectation would be 0. Hence, we conclude that the above expectation is at most
twice the probability randomly chosen v1, . . . , vt are not linearly independent, which is at most qt−n.
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By Claim A.14 we conclude that λ ⩽ 2qt−n + PrB,C [wi = 0 ∀i = 1, . . . , t], and we next bound this
probability. Recalling the definition of wi, we have that

wi =
2δℓ∑
j=1

C(j, i)colj(B).

Consider the 2δℓ × t minor of C and call it C ′. First we upper bound the probability that rank(C ′) = 0.
Note that the distribution of C is the same as of A|2δℓ×2ℓ where A ∈ F2ℓ×2ℓ

q is a random invertible matrix.
Thus, C ′ has the same distribution as of A|2δℓ×t, and the probability that C ′ = 0 is at most

q2ℓ−2δℓ

q2ℓ − 1
· q

2ℓ−2δℓ

q2ℓ − q
· · · q2ℓ−2δℓ

q2ℓ − qt−1
⩽ q−t(2δℓ−1).

It remains to bound the probability that wi are all 0 in the case that rank(C ′) ⩾ 1. In this case, assume
without loss of generality that the first column of C ′ is non-zero. Thus, it follows that over the randomness
of B, the vector w1 is uniformly chosen from Fn

q , and so the probability it is the all 0 vector is at most q−n.
Combining, we get that λ ⩽ 3qt−n + q−t(2δℓ−1).

Finally, using Lemma A.8 again, we can show that T ′∗ does not increase the level of a function,

T ′∗χS(M) = E
A∈F2ℓ×2(1−δ)ℓ

q

[χS(MA)] = E
A
[χSAT (M)], (17)

and obtain a useful identity for decomposing inner products.

Lemma A.15. Let F ∈ L2

(
Fn×2ℓ
q

)
and G ∈ L2

(
Fn×2(1−δ)ℓ
q

)
. Then,

⟨T ′F=d, G⟩ = ⟨T ′F=d, G=d⟩.

As a consequence we also have

⟨F=d, T ′∗G⟩ = ⟨T ′F=d, T ′∗G=d⟩.

Proof. Using Equation (17), we have,

T ′∗G=j(M) =
∑

S∈Fn×2(1−δ)ℓ
q ,rank(S)=j

Ĝ(S)E
A
[χSAT (M) | rank(A) = 2(1− δ)ℓ] .

Since rank(S) = j, it follows that the rank(SAT ) is at most j, so it follows that for j < d, we have
⟨F=d, T ∗G=j⟩ = 0. As a result,

⟨T ′F=d, G⟩ = ⟨F=d, T ′∗G⟩ =
2(1−δ)ℓ∑
j=d

⟨F=d, T ′∗G⟩. (18)

Next we have,

T ′F=d(M) =
∑

S∈Fn×2ℓ
q ,rank(S)=d

F̂ (S)χS(M
′) =

∑
S∈Fn×2ℓ

q ,rank(S)=d

F̂ (S)χS′(M ′),
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where both M ′ and S′ are obtained from M by removing the last 2δℓ columns. It follows that T ′F=d has
level at most d, so using (18) we get

⟨T ′F=d, G⟩ =
2(1−δ)ℓ∑
j=d

⟨F=d, T ′∗G=j⟩ =
2(1−δ)ℓ∑
j=d

⟨T ′F=d, G=j⟩ = ⟨T F=d, G=d⟩.

We are now ready to state and prove an analog of Lemma 2.3 for basis invariant functions on the Bilinear
scheme.

Lemma A.16. Let F ∈ L2(Fn×2ℓ
q ) and G ∈ L2(F

n×2(1−δ)ℓ
q ) be basis invariant indicator functions with

E[F ] = α,E[G] = β. If F is (r, ε) pseudo-random and basis invariant, then for all t ⩾ 4 that are powers
of 2, we have

⟨T ′F,G⟩ ⩽ qOt,r(1)β(t−1)/tε2t/(2t−1) + q−rδℓ
√
αβ.

Proof. Using the degree decomposition of F and Lemma A.15, we can write

⟨T ′F ,G⟩ =
2ℓ∑
d=0

⟨T ′F=d, G=d⟩.

We first bound the contribution from terms in the summation with d > r using Cauchy-Schwarz. For d > r,

|⟨T ′F=d, G=d⟩|2 ⩽
∥∥∥T ′F=d

∥∥∥2
2

∥∥∥G=d
∥∥∥2
2

=
∥∥∥G=d

∥∥∥2
2
⟨F=d, T ′∗T ′F=d⟩

=
∥∥∥G=d

∥∥∥2
2
⟨F=d,ΦF=d⟩

⩽
(
q−2dδℓ + 3qd−n

)∥∥∥F=d
∥∥∥2
2

∥∥∥G=d
∥∥∥2
2

⩽
(
q−2dδℓ + 3qd−n

)
αβ,

where the third transition uses Lemma A.12 and the fact that F=d is basis invariant by Lemma A.10, and
finally the fourth transition uses Lemma A.13. Thus, the total contribution from the d > r terms is

2ℓ∑
d=r+1

∣∣∣⟨T ′F=d, G=d⟩
∣∣∣ ⩽ 2ℓ∑

d=r+1

2q−dδℓ
√
αβ ⩽ q−rδℓ

√
αβ.

Next, we bound the contribution from d ⩽ r by bounding each term separately. Fix a d ⩽ r. By
Lemma A.15 and Holder’s inequality we have∣∣∣⟨T ′F=d, G=d⟩

∣∣∣ = ∣∣∣⟨T ′F=d, G⟩
∣∣∣ ⩽ ∥∥∥T ′F=d

∥∥∥
t
∥G∥t/(t−1) ⩽ β(t−1)/t

∥∥∥F=d
∥∥∥
t
⩽ q500d

2tβ
t−1
t ε

t−1
t ,

where in the last inequality we are using the fact that ε ⩾ α and F is (r, ε)-pseudo-random, so by Theo-
rem A.7 ∥∥∥F=d

∥∥∥
t
⩽ q500d

2tε
t−1
t .

Altogether, this shows
⟨T ′F ,G⟩ ⩽ qOt,r(1)β

t−1
t ε

t−1
t + q−rδℓ

√
αβ.
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A.3 Reduction to the Bilinear Scheme

We are now ready to prove Lemma 2.3. As in the statement of Lemma 2.3, let F ∈ L2(Grassq(n, 2ℓ)) and
G ∈ L2(Grassq(n, 2(1 − δ)ℓ)) be Boolean functions, and suppose that F is (r, ε)-pseudo-random. Define
the Boolean functions F ′ ∈ L2

(
Fn×2ℓ
q

)
, G′ ∈

(
L2(Fn×2ℓ

q )
)

by

F ′(x1, . . . , x2ℓ) =

{
F (span(x1, . . . , x2ℓ)) if dim(span(x1, . . . , x2ℓ) = 2ℓ,

0, otherwise,

and

G′(x1, . . . , x2(1−δ)ℓ) =

{
G(span(x1, . . . , x2(1−δ)ℓ)) if dim(span(x1, . . . , x2(1−δ)ℓ) = 2(1− δ)ℓ,
0, otherwise.

We note that F ′ and G′ are basis invariant functions. Next, we will prove that F ′ is (r, 2ε) pseudo-random,
and towards this end we begin with the following lemma that simplifies the type of zoom-ins and zoom-out
combinations we have to consider for F ′.

Lemma A.17. For any (U, V ), (X,Y ) such that dim(U) + codim(X) < 2ℓ and Zoom[(U, V ), (X,Y )] is
nonempty, there are r′ linearly independent columns of V , say v1, . . . , vr′ ∈ Fn

q and a subset of linearly
independent rows of X , say X ′ ∈ Fs′×n

q , such that r′ ⩽ dim(U), s′ ⩽ codim(X) and∥∥∥F ′
(U,V ),(X,Y )

∥∥∥2
2
⩽ 2 · E

M ′∈Fn×(2ℓ−r′)
q

[F ′ ([v1, . . . , vr′ ,M ′]
)
| X ′M ′ = 0],

where [v1, . . . , vr′ ,M
′] ∈ Fn×2ℓ

q is the matrix whose first r columns are v1, . . . , vr, and remaining columns
are M ′.

Proof. Let r = dim(U) and s = codim(X). First note that we can assume that the columns of U and V
respectively are both nonzero and linearly independent. Indeed, otherwise say ui = 0, then either vi = 0, in
which case the ith columns of U and V can be removed, or vi ̸= 0 and Zoom[(U, V ), (X,Y )] is an empty
set. Otherwise, if, say, vi = 0, then either ui = 0 and again we can ignored the ith columns, or ui ̸= 0
and Zoom[(U, V ), (X,Y )] consists of matrices whose columns are not linearly independent. In this case
F ′
(U,V ),(X,Y ) is identically 0 and the statement is trivially true. Similarly, if the columns of V are not linearly

independent, then Zoom[(U, V ), (X,Y )] consists of matrices whose columns are not linearly independent,
and again F ′

(U,V ),(X,Y ) is identically 0. Finally, if the columns of U are not linearly independent, then either
Zoom[(U, V ), (X,Y )] is empty or there must be some i such that both ui and vi are linear combinations of
the other columns in U and V respectively, with the same coefficients. In this case, we can remove the ith
columns of U and V without changing Zoom[(U, V ), (X,Y )].

Now suppose that the columns of U and V are nonzero and linearly independent, and let A ∈ F2ℓ×2ℓ
q be

a full rank matrix such that AUi = ei for 1 ⩽ i ⩽ r. Let Y ′ ∈ Fn×(2ℓ−r)
q denote the last 2ℓ − r columns

of Y A−1, and let Y ′′ denote the first r columns of Y A−1. Since we assumed Zoom[(U, V ), (X,Y )] is
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nonempty, we must have X[v1, . . . , vr] = Y ′′. Then by the fact that F ′ is basis invariant we get that∥∥∥F ′
(U,V ),(X,Y )

∥∥∥2
2
= E

M∈Fn×2ℓ
q

[F ′(M) |MU = V,XM = Y ]

= E
M∈Fn×2ℓ

q

[F ′(MA−1) |MU = V,XM = Y ]

= E
M∈Fn×2ℓ

q

[F ′(M) |MAU = V,XM = Y ′]

= E
M ′∈Fn×(2ℓ−r′)

q

[F ′([v1, . . . , vr,M
′]) | XM ′ = Y ′].

To complete the proof, we show to reduce to the case that Y ′ is the zero matrix. First note that, using the
same reasoning as we did for U and V , we can assume that the nonzero rows Y ′ are linearly independent
and the rows of X are linearly independent

Suppose that y′1, . . . , y
′
a ∈ F2ℓ−r

q are the nonzero (and linearly independent) rows of Y ′, while the

remaining rows are y′a+1, . . . , y
′
s = 0. Let Y ′′ ∈ Fa×(2ℓ−r)

q be the first a rows of Y ′, which are nonzero, let

X ′ ∈ Fa×n
q denote the first a rows of X , and let X ′′ ∈ F(2ℓ−a)×n

q denote rows a + 1 through s of X . For

any Z = (z1, . . . , za) ∈ Fa×(2ℓ−r)
q with a linearly independent rows let AZ ∈ F(2ℓ−r)×(2ℓ−r)

q be the full
rank matrix such that Y ′′AZ = Z. Then, for any linearly independent z1, . . . , za ∈ F2ℓ−r

q ,

E
M ′∈Fn×(2ℓ−r′)

q

[F ′([v1, . . . , vr,M
′]) | XM ′ = Y ′]

= E
M ′

[F ′([v1, . . . , vr,M
′]) | X ′M ′ = Y ′′, X ′′M ′ = 0]

= E
M ′

[F ′([v1, . . . , vr,M
′A−1

Z ]) | X ′M ′ = Y ′′, X ′′M ′ = 0]

= E
M ′

[F ′([v1, . . . , vr,M
′]) | X ′M ′ = Z,X ′′M ′ = 0].

In the second transition, we used the fact that F ′ is basis invariant and multiplied its input by the matrix
whose top left r × r minor is the identity, its bottom right (2ℓ − r) × (2ℓ − r) is A−1

Z , and the rest of the
entries are 0. Since the above holds for any Z with a-linearly independent rows, letting E denote the event
that X ′M ′ has a linearly independent rows, it follows that

E
M ′∈Fn×(2ℓ−r′)

q

[F ′([v1, . . . , vr,M
′]) | XM ′ = Y ′] = E

M ′
[F ′([v1, . . . , vr,M

′]) | E ∧X ′′M ′ = 0],

and

E
M ′∈Fn×(2ℓ−r′)

q

[F ′([v1, . . . , vr,M
′]) | X ′′M ′ = 0] ⩾ Pr

M ′∈Fn×(2ℓ−r′)
q

[E | X ′′M ′ = 0]

· E
M ′

[F ′([v1, . . . , vr,M
′]) | E ∧XM ′ = Y ′].

Finally since Pr[E | X ′′M ′ = 0] ⩾ 1
2 (as it is the probability of choosing a < 2ℓ− r linearly independent

vectors in F2ℓ−r
q ), we have,∥∥∥F ′

(U,V ),(X,Y )

∥∥∥2
2
= E

M ′∈Fn×(2ℓ−r′)
q

[F ′([v1, . . . , vr,M
′]) | E ∧XM ′ = Y ′]

⩽ 2 E
M ′

[F ′([v1, . . . , vr,M
′]) | X ′′M ′ = 0],
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and the proof is concluded.

As an immediate consequence of Lemma A.17

Lemma A.18. If F is (r, ε)-pseudo-random then F ′ is (r, 2ε)-pseudo-random.

Proof. Fix any (U, V ) and (X,Y ) such that dim(U) + codim(X) = r. Using Lemma A.17, there are
linearly independent v1, . . . , vr′ ∈ Fn

q and X ′ ∈ Fs′×n
q with linearly independent rows such that∥∥∥F ′

(U,V ),(X,Y )

∥∥∥2
2

⩽ 2 · E
M ′∈Fn×(2ℓ−r′)

q

[F ′ ([v1, . . . , vr′ ,M ′]
)
| X ′M ′ = 0]

⩽ 2 · E
M ′∈Fn×(2ℓ−r′)

q

[F ′ ([v1, . . . , vr′ ,M ′]
)
| X ′M ′ = 0, dim(im([v1, . . . , vr,M

′])) = 2ℓ]

= 2 · E
M ′∈Fn×(2ℓ−r′)

q

[F
(
im([v1, . . . , vr′ ,M

′])
)
| X ′M ′ = 0,dim(im([v1, . . . , vr,M

′])) = 2ℓ],

where in the second transition we are using the fact that F ′(M) = 0 for all M such that dim(im(M)) < 2ℓ,
and in the third transition we are using the definition of F ′. We will bound the final term by using the
pseudo-randomness of F .

Choosing M ′ ∈ Fn×(2ℓ−r′)
q uniformly conditioned on X ′M ′ = 0, and dim(im([v1, . . . , vr,M

′])), we
claim that im([v1, . . . , vr,M

′]) is a uniformly random 2ℓ-dimensional subspace in Zoom[Q,Q⊕H], where
H is the codimension s subspace that is dual to the rows of X ′. To see why, first note that it is clear
im([v1, . . . , vr,M

′]) ∈ Zoom[Q,Q ⊕H]. Additionally, each L ∈ Zoom[Q,Q ⊕H] has an equal number
of M ′ ∈ Fn×(2ℓ−r′)

q such that
L = im([v1, . . . , vr,M

′]),

and therefore has an equal chance of being selected. It follows that choosing M ′ ∈ Fn×(2ℓ−r′)
q uniformly

conditioned on X ′M ′ = 0, and dim(im([v1, . . . , vr,M
′])), im([v1, . . . , vr,M

′]) is a uniformly random
2ℓ-dimensional subspace in Zoom[Q,Q⊕H]. As a result,∥∥∥F ′

(U,V ),(X,Y )

∥∥∥2
2

⩽ 2 · E
M ′∈Fn×(2ℓ−r′)

q

[F
(
im([v1, . . . , vr′ ,M

′])
)
| X ′M ′ = 0,dim(im([v1, . . . , vr,M

′])) = 2ℓ]

= 2 · E
L∈Zoom[Q,Q⊕H]

[F (L)]

⩽ 2ε,

where in the last transition we use the fact that F is (r, ε)-pseudo-random and dim(Q) + codim(Q⊕H) ⩽
r′ + s ⩽ r.

Next, we note that the values of ⟨T F,G⟩ and ⟨T ′F,G⟩ are similar.

Lemma A.19. We have
⟨T F,G⟩ ⩽ 2⟨T ′F ′, G′⟩.
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Proof. We have,

⟨T ′F ′, G′⟩ = E
M∈Fn×2ℓ

q ,A∈F2ℓ×2(1−δ)ℓ
q

[F ′(M) ·G′(MA) | rank(A) = 2(1− δ)ℓ]

⩾ Pr
M,A

[rank(M) = 2ℓ, rank(MA) = 2(1− δ)ℓ | rank(A) = 2(1− δ)ℓ]

· E
M,A

[F ′(M) ·G′(MA) | rank(M) = 2ℓ, rank(MA) = 2(1− δ)ℓ, rank(A) = 2(1− δ)ℓ]

=
1

2
E

M,A
[F ′(M) ·G′(MA) | rank(M) = 2ℓ, rank(MA) = 2(1− δ)ℓ, rank(A) = 2(1− δ)ℓ]

=
1

2
E

M,A
[F (im(M)) ·G(im(MA)) | rank(M) = 2ℓ, rank(MA) = 2(1− δ)ℓ, rank(A) = 2(1− δ)ℓ].

To finish the proof, notice that in the conditional distribution (im(M), im(MA)) in the last term, im(M)
is a uniform L ∈ Grassq(n, 2ℓ) and im(MA) is a uniform L′ ∈ Grassq(n, 2(1 − δ)ℓ) such that L′ ⊆ L.
Therefore,

⟨T ′F ′, G′⟩ ⩾ 1

2
E

L,L′
[F (L) ·G(L′) | L ⊇ L′] =

1

2
⟨T F,G⟩.

Lemma 2.3 follows by combining Lemma A.18 and Lemma A.19.

Proof of Lemma 2.3. Suppose F ∈ L2(Grassq(n, 2ℓ)), G ∈ L2(Grassq(n, 2(1 − δ)ℓ)) have expectations
α, β respectively, and suppose that F is (r, ε) pseudo-random. Define the associated functions F ′ ∈
L2

(
Fn×2ℓ
q

)
and G′ ∈ L2

(
Fn×2(1−δ)ℓ
q

)
as above. It is clear that,∥∥F ′∥∥2

2
⩽ ∥F∥22 = α,

∥∥G′∥∥2
2
⩽ ∥G∥22 = β.

Furthermore, by Lemma A.19, we have that

⟨T F,G⟩ ⩽ 2⟨T F ′, G′⟩.

By Lemma A.18 F ′ is (r, 2ε)-pseudo-random, and applying Lemma A.16 we get that

⟨T F,G⟩ ⩽ 2⟨T ′F ′, G′⟩ ⩽ qOt,r(1)β(t−1)/tε2t/(2t−1) + q−rδℓ
√
αβ.

A.4 Proof of Lemma 2.4

We will show that if a set of ℓ′-dimensional subspaces L⋆ ⊆ Grassq(V
⋆, ℓ′) is pseudo-random, then it must

“evenly cover” the space V in the sense that there are very few points z ∈ V such that µz(L⋆) significantly
deviates from µ(L⋆). We will require the following result from [EKL23b].

Theorem A.20. [EKL23b, Theorem 1.12] If F ′ ∈ L2

(
Fn×ℓ′
q

)
is a Boolean function which is (1, ε)-global,

then for all powers of t ⩾ 4 that are powers of 2 it holds that∥∥F ′=1
∥∥2
2
⩽ q460t ∥F∥2−

2
t

2 ε.

Lemma A.21. Let L⋆ ⊆ Grassq(V
⋆, ℓ′) have µ(L⋆) = η ⩾ q−Cℓ′ for some large constant C, and set

Z = {z ∈ V ⋆ | |µz(L⋆)− η| ⩽ η
10}. If L⋆ is (1, qcℓ

′
η)-pseudo-random for some 0 < c < 1, then

|Z| ⩾
(
1− q

ℓ′
2

)
|V ⋆|.
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Proof. Let dim(V ⋆) = n, let F ∈ L2(Grassq(V
⋆, ℓ′)) be the indicator function for L⋆, and let F ′ ∈

L2

(
Fn×ℓ′
q

)
be the associated function given by

F ′(x1, . . . , xℓ′) =

{
F (span(x1, . . . , xℓ′)) if dim(span(x1, . . . , x2ℓ)) = ℓ′,

0 otherwise.

By Lemma A.18, F ′ is (1, 2qcℓ
′
η)-pseudo-random. For any point x ∈ V ⋆, we have

µz(L⋆) = E
x1,...,xℓ′−1∈V ⋆

[
F ′(x1, . . . , xℓ′−1, z) | dim(span(x1, . . . , xℓ′−1, z)) = ℓ′

]
,

so it follows that∣∣∣∣µz(L⋆)− E
x1,...,xℓ′−1

[
F ′(x1, . . . , xℓ′−1, z)

]∣∣∣∣ ⩽ qℓ
′

qn
and

∣∣∣µ(L⋆)− ∥∥F ′∥∥2
2

∣∣∣ ⩽ qℓ
′

qn
.

Thus ∣∣∣∣ E
x1,...,xℓ′−1

[
F ′(x1, . . . , xℓ′−1, z)

]
−
∥∥F ′∥∥2

2

∣∣∣∣ ⩾ |µz(L⋆)− µ(L⋆)| − qℓ
′

qn
. (19)

We will now relate this quantity to the level one weight of F ′ and apply Lemma A.7 to bound the level one
weight of F ′. Note that

E
x1,...,xℓ′−1

[
F ′(x1, . . . , xℓ′−1, z)

]
=

∑
S=(s1,...,sℓ′ )∈V ⋆

F̂ ′(S) E
x1,...,xℓ′−1

[χS(x1, . . . , xℓ′−1, z)]

=
∑

S=(s1,...,sℓ′ )∈V ⋆

F̂ ′(S)χsℓ′ (z)
ℓ′−1∏
i=1

E
xi

[χsi(xi)] .

Now note that Exi [χsi(xi)] = 0 if si is not the zero vector, and Exi [χsi(xi)] = 1 if si is the zero vector.
Thus,

E
x1,...,xℓ′−1

[
F ′(x1, . . . , xℓ′−1, z)

]
= F̂ ′(0, . . . , 0) +

∑
a∈V ⋆,a ̸=0

F̂ (0, . . . , 0, a)χa(z),

and using the fact that F̂ ′(0, . . . , 0) = E[F ′] = ∥F ′∥22,

(
E

x1,...,xℓ′−1

[
F ′(x1, . . . , xℓ′−1, z)

]
−
∥∥F ′∥∥2

2

)2

=

 ∑
a∈V ⋆,a ̸=0

F̂ (0, . . . , 0, a)χa(z)

2

.

Therefore, we get by (19) that

E
z∈V ⋆

[(µz(L⋆)− η)2] ⩽ E
z∈V ⋆

[∣∣∣∣ E
x1,...,xℓ′−1

[
F ′(x1, . . . , xℓ′−1, z)

]
−
∥∥F ′∥∥2

2

∣∣∣∣2
]
+ 5

qℓ
′

qn

⩽ E
z

∣∣∣∣∣∣
∑

a∈V ⋆,a̸=0

F̂ (0, . . . , 0, a)χa(z)

∣∣∣∣∣∣
2+ 5

qℓ
′

qn

=
∑

a∈V ⋆,a̸=0

|F̂ (0, . . . , 0, a)|2 + 5
qℓ

′

qn
.
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Next since F ′ is basis invariant, using Lemma A.8, we have that for all α1, . . . , αℓ′ ∈ Fq that are not all
zero,

F̂ ′ (α1a, . . . , αℓ′a) = F̂ ′ (0, . . . , 0, a) .

It follows that

∑
a∈V ⋆,a ̸=0

|F̂ ′(0, . . . , 0, a)|2 = 1

qℓ′ − 1

∑
rank(S)=1

|F̂ ′(S)|2 =
∥∥F ′=1

∥∥2
2

qℓ′ − 1
.

Using Theorem A.20 with d = 1, along the fact that F ′ is (1, qcℓ
′
η)-pseudo-random, we get

E
z∈V ⋆

[(µz(L⋆)− η)2] ⩽
∥∥F ′=1

∥∥2
2

qℓ′ − 1
+ 5

qℓ
′

qn
⩽
q460tqcℓ

′
η2−

2
t

qℓ′ − 1
,

for any t ⩾ 4 that is a power of 2. By Markov’s inequality it follows that

|Z|
qn
· η

2

100
⩽

100q460tqcℓ
′

η
2
t qℓ′

η2 ⩽
100q460tqcℓ

′

q(1−c− 2C
t )ℓ′

η2 ⩽
q−

ℓ′
2

100
η2,

where we take t to be a power of 2 large enough so that 1 − c + 2C
t ⩾ 1

2 . Dividing by η2 finishes the
proof.

B Proof of Theorem 5.2

In order to prove Theorem 5.2 we will find the subspaces, Q, one at at time by using Theorem 5.1. We let
Q denote the set of all Q’s collected thus far. Each time a new subspace Q is added to Q, we randomize
the assignment T1[L] for all 2ℓ-dimensional L ⊃ Q. At a high level, the effect of this randomization is that
there is only a little agreement between any linear function and the assignments on subspaces containing Q,
thus these entries are essentially “deleted”.

More formally, we construct the set Q of subspaces as follows. Initially set T̃1 = T1, Q = ∅, and
X = ∅. Recall that initially T̃1 and T2 are ε-consistent for ε ⩾ 2q−2ℓ(1−1000δ). While T̃1 and T2 are at least
ε/2-consistent, do the following.

1. LetQ ⊂W be subspaces guaranteed by Theorem 5.1. That is,Q andW satisfy dim(Q)+codim(W ) =
r and there exists linear gQ,W :−→W −→ Fq such that

Pr
L∈Grass(n,2ℓ)

[gQ,W |L = T̃1[L] | Q ⊆ L ⊆W ] ⩾ ε′.

2. Set Q ←− Q∪ {Q}.

3. Set X ←− X ∪ {L | Q ⊆ L ⊆W}.

4. For each L ∈ X independently, choose T̃1[L] uniformly among all linear functions on L.

We have the following claim regarding the re-assignment phase.
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Claim B.1. With probability 1 − e−Ω(qℓn) over the random assignment on X , for every Q,W such that
Q ⊂W and dim(Q) + codim(W ) = r at least one of the following holds:

1. Less than q−2ℓ-fraction of L ∈ Zoom[Q,W ] are in X ,

2. For every linear function gQ,W :W −→ Fq,

Pr
L∈X,L∈Zoom[Q,W ]

[gQ,W ≡ T̃1[L]] ⩽ q1−2ℓ

Proof. Note that the first item has nothing to do with the random assignment over X , so we need only show
that if the first item is false then the second item must be true. Suppose that the first item does not hold and
that X contains at least q−2ℓ-fraction of L ∈ Zoom[Q,W ].

Fix Q,W, gQ,W with the parameters above and let A = Zoom[Q,W ] ∩ X , and suppose that the first
item does not hold. We will show that in this case, the second item holds.

For each L ∈ A, let ZL denote the indicator variable that takes value 1 if gQ,W |L = T̃1[L] and 0
otherwise. The expectation of ZL is q−2ℓ, and by a Chernoff bound, the desired probability is bounded by

Pr
L∈A

[
1

|A|
∑
L∈A

ZL ⩾ q1−2ℓ

]
⩽ e−q−2ℓ+2|A|/6.

By assumption, |A| ⩾ q−2ℓ |{L ∈ Zoom[Q,W ], dim(L) = 2ℓ}| ⩾ q−2ℓq(2ℓ−r)(n−r−2ℓ). Thus, using a
union bound over all Q,W, gQ,W , the probability that there exist a bad triple is at most,

(r + 1)qnrqne−q−4ℓ+2q(2ℓ−r)(n−r−2ℓ)/6 ⩽ e−Ω(qℓn).

We now analyze the process. Note that using Chernoff’s bound, with probability 1 − e−Ω(qℓn) over the
randomization step, the probability PrL∈Grass(n,2ℓ)[gQ,W |L = T̃1[L] | Q ⊆ L ⊆ W ] drops from at least ε′

to at most q1−2ℓ. In that case, the measure of X increases by at least

(ε′ − q1−2ℓ)q−rn ⩾ q−O(rn).

Doing a union bound over the steps, it follows that with probability 1 − e−Ω(qℓn)qO(rn) = 1 − o(1) the
process terminates within qO(rn) steps.

Note that it is possible that the same subspace Q is added multiple times (with different zoom-outs) in
the process above, so we clarify thatQ is considered as a set without repeats. Also note that with probability
1− o(1), for each Q ∈ Q, W and gQ,W found in the process it holds that

Pr
L∈Grass(n,2ℓ)

[gQ,W |L = T1[L] | Q ⊆ L ⊆W ] ⩾
1

2
ε′ (20)

(the point being is that the agreement now is compared to the original T1 and not to T̃1). Indeed, considering
the step Q,W and gQ,W were found, gQ,W had agreement at least ε′ with T̃1 on Zoom[Q,W ] at that point,
and by Claim B.1 with probability 1− e−Ω(qℓn) at most q1−2ℓ ⩽ ε′/2 of that agreement came from L ∈ X .
Thus, by union bound over all of the steps, with probability 1−qO(rn)q−Ω(ℓn) = 1−o(1) it follows that (20)
holds for every Q,W and gQ,W found throughout the process.

The following claim shows that at the end of the process the number ofQ’s found in the process is large,
thereby finishing the proof of Theorem 5.2.
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Claim B.2. There exists some 0 ⩽ r1 ⩽ r such that Q contains at least a q−5ℓ2-fraction of all r1-
dimensional subspaces.

Proof. At the end of the process, the consistency has dropped by at least ε′/2, so the probability over edges
(L,R) that L was reassigned must be at least ε′/2. For each 0 ⩽ r1 ⩽ r, let Nr1 be the number of Q of
dimension r1 in Q.

For eachQ of dimension r1, the fraction of 2ℓ-dimensional L’s that are reassigned due toQ being added
to Q is at most the fraction of 2ℓ-dimensional subspaces that contain Q. This is,[

n
2ℓ− r1

]
q[

n
2ℓ

]
q

⩽
qn(2ℓ−r1)

q2ℓ(n−2ℓ)
= q4ℓ

2−r1n.

It follows that there must be some r1 such that

Nr1q
4ℓ2−r1n ⩾

ε

r + 1
.

Rearranging this inequality, we get that

Nr1 ⩾
ε

(r + 1)q4ℓ2
qr1n ⩾ q−5ℓ2

[
n
r1

]
q

.

Thus there exists an r1 such that Q contains at least a q−5ℓ2-fraction of all r1-dimensional subspaces.

C The Covering Property

Fix a question U to the first prover. Recall that we set

k = q2(1+c)ℓ and β = q−2(1+2c/3)ℓ,

where 0 < c < 1 is some small constant close to 0 and set η = q−100ℓ100 , and recall that the distributions D
and D′ are defined as follows.
D :

• Choose x1, . . . , x2ℓ ∈ FU
q uniformly.

• Output the list (x1, . . . , x2ℓ).

D′ :

• Choose V ⊆ U according to the Outer PCP.

• Choose x′1, . . . , x
′
2ℓ ∈ FV

q uniformly, and lift these vectors to FU
q by inserting 0’s into the missing

coordinates.

• Choose w1, . . . , w2ℓ ∈ HU uniformly, and set xi = x′i + wi for 1 ⩽ i ⩽ 2ℓ.

• Output the list (x1, . . . , x2ℓ).
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We also restate Lemma 5.4 below as a reminder.

Lemma 5.4. Let η be a parameter such that q−100ℓ100 ⩽ η ⩽ 1/2. There exists a small set E ⊆
(
FU
q

)2ℓ
such that both D(E) and D′(E) are at most η40, and for all (x1, . . . , x2ℓ) /∈ E we have

0.9 ⩽
D(x1, . . . , x2ℓ)

D′(x1, . . . , x2ℓ)
⩽ 1.1.

C.1 Proof of Lemma 5.4

For x1, . . . , x2ℓ ∈ F|U |
q , let us view x1, . . . , x2ℓ as the rows of a 2ℓ × 3k matrix, and split the columns

of this matrix into k blocks - each consisting of 3 consecutive columns. Then let s(x1, . . . , x2ℓ) be the
number of blocks where at least two of the columns are equal, and set p = 3q−2ℓ − 2q−4ℓ. The idea is
that s(x1, . . . , x2ℓ) should correspond to the number of equations where we drop variables in the Outer
PCP, while p is the probability that a fixed block has at least two columns equal to each other. Also let
s′(x1, . . . , x2ℓ) be the number of blocks where all 3 columns are equal, and let p′ = q−4ℓ, be the probability
that a fixed block has all three columns equal.

We define the set E as follows. Set

E1 =
{
(x1, . . . , x2ℓ) ∈

(
FU
q

)2ℓ | |s(x1, . . . , x2ℓ)− pk| > 50
√
pk log(1/η)

}
, (21)

E2 =
{
(x1, . . . , x2ℓ) ∈

(
FU
q

)2ℓ | s′(x1, . . . , x2ℓ) > ℓ100
}
, (22)

and E = E1 ∪ E2. By a Chernoff bound,

D(E1) = Pr
D

[
|s(x1, . . . , x2ℓ)− pk| > 50

√
pk log(1/η)

]
⩽ η50,

where recall that η = q−100ℓ100 . Also, by our setting of βk, we have βk = q2cℓ/3, while pk = O(q2cℓ), so
the same Chernoff bound holds for D′,

D′(E1) = Pr
D′

[
|s(x1, . . . , x2ℓ)− pk| > 50

√
pk log(1/η)

]
⩽ η50,

so D′(E1) ⩽ η45. Indeed, the actual expectation of s(x1, . . . , x2ℓ) under D′ is (1 − β)pk + βk and this
differs from pk by only O(βk) = O(pk).

For the measure of E2 we have,

D(E2) = Pr
D
[s′(x1, . . . , x2ℓ) > ℓ100] ⩽

(
k

ℓ100

)
p′ℓ

100
⩽ (kp′)ℓ

100
⩽ η100,

where in the middle term, the first factor is the number of ways to choose ℓ100 blocks and the second factor
is the probability that all of these blocks have all three columns equal. Similarly,

D′(E2) = Pr
D′
[s′(x1, . . . , x2ℓ) > ℓ100] ⩽

(
k

ℓ100

)(
(1− β)p′ + β

1

q2ℓ

)ℓ100

⩽ kℓ
100
(
q−4ℓ

)ℓ100
⩽ η100.

Putting everything together, we get that

D(E) ⩽ D(E1) +D(E2) ⩽ η40 and D′(E) ⩽ D′(E1) +D′(E2) ⩽ η40. (23)
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We next show that the probability measures D and D′ assign roughly the same measure to each x ̸∈ E.
Fix (x1, . . . , x2ℓ) /∈ E. It is clear that D(x1, . . . , x2ℓ) = q−(2ℓ)3k, where we use |U | = 3k. Let s =
s(x1, . . . , x2ℓ) and s′ = s′(x1, . . . , x2ℓ). Then,

D′(x1, . . . , x2ℓ) = ((1− β)q−3·2ℓ)k−s−s′
(
(1− β)q−3·2ℓ +

β

3
q−2·ℓ

)s (
(1− β)q−3·2ℓ + βq−2·2ℓ

)s′
= q−2ℓ·3k(1− β)k−s−s′

(
1− β +

β

3
q2ℓ
)s

(1− β + βq2ℓ)s
′

(24)

In the first equality, the first term is the probability of choosing the blocks that have three all distinct
columns. Then, (1 − β) is the probability that no variables are dropped, and q−3(2ℓ) is the probability of
choosing those three particular xi’s in that block. The second term is the probability of choosing the blocks
that have exactly two equal columns. Then, (1−β)q−3(2ℓ) is the probability of having no variables dropped
and choosing the three xi’s, and β

3 q
−2(2ℓ) is the probability of first having the variable dropped in the column

that is not equal to the other two, and then choosing the correct values for the remaining two column values.
We will first show

D′(x1, . . . , x2ℓ)

D(x1, . . . , x2ℓ)
⩾

1

1.1
.

Using Equation (24),

D′(x1, . . . , x2ℓ)

D(x1, . . . , x2ℓ)
= (1− β)k−s−s′

(
1− β +

β

3
q2ℓ
)s

(1− β + βq2ℓ)s
′

⩾ (1− β)k−s

(
1− β +

β

3
q2ℓ
)s

= (1− β)k−s

(
1 + β

(
q2ℓ

3
− 1

))s

⩾ exp

(
−β(k − s)− β2(k − s) +

(
q2ℓ

3
− 1

)
βs−

(
q2ℓ

3
− 1

)2

β2s

)

= exp

(
−βk − β2(k − s) + q2ℓ

3
βs−

(
q2ℓ

3
− 1

)2

β2s

)

⩾ exp

(
−βk + q2ℓ

3
βs−

(
q2ℓ

3
− 1

)2

β2s− q−2ℓ

)
,

where in the fourth transition we use the bound 1 + z ⩾ ez−z2 , which holds for all real numbers z such that
|z| is sufficiently small. For our uses, z = β and z = β

(
q2ℓ

3 − 1
)

are q−2(1+2c/3)ℓ and O(q−2cℓ/3), and

both are sufficiently small. In the last transition we use the fact that −β2(k − s) ⩾ −β2k ⩾ −q−2ℓ.
Now write s = pk − v and let us analyze the first two terms in the last line. Plugging this in and using

the definition of p we get that

−βk + q2ℓ

3
βs = −βk + q2ℓ

3
β(pk − v) = −βk

(
1− q2ℓ

3
p

)
− q2ℓ

3
βv = −2

3
βkq−2ℓ − q2ℓ

3
βv. (25)
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Plugging this back into the above,

D′(x1, . . . , x2ℓ)

D(x1, . . . , x2ℓ)
⩾ exp

(
−
(
q2ℓ

3
− 1

)2

β2pk

)

· exp

(
−q

2ℓ

3
βv +

(
q2ℓ

3
− 1

)2

β2v

)
· exp

(
−2

3
βkq−2ℓ

)
.

Plugging in our values for β, k and p, the first term on the right hand side above is exp
(
−Θ(q−2cℓ/3)

)
. Using

v ⩽ 50
√
pk log(1/η) ⩽ q(c+o(1))ℓ, the second term on the right hand side is at least exp

(
−Ω(q(−c/3+o(1))ℓ)

)
.

Finally, the last term is at least exp(q−2ℓ). Overall, we get that for large enough ℓ

D′(x1, . . . , x2ℓ)

D(x1, . . . , x2ℓ)
⩾ exp

(
−O(q−(c/3−o(1))ℓ)

)
⩾

1

1.1
.

For the other direction, we show
D′(x1, . . . , x2ℓ)

D(x1, . . . , x2ℓ)
⩽

1

0.9
,

in nearly the same fashion. First note that(
1− β + βq2ℓ

1− β

)s′

⩽

(
1− β + βq2ℓ

1− β

)ℓ100

=

(
1 +

β

1− β
q2ℓ
)ℓ100

⩽ 1 + o(1). (26)

By Equation (24), we have

D′(x1, . . . , x2ℓ)

D(x1, . . . , x2ℓ)
= (1− β)k−s−s′

(
1− β +

β

3
q2ℓ
)s

(1− β + βq2ℓ)s
′

⩽ (1 + o(1)) · (1− β)k−s

(
1− β +

β

3
q2(2ℓ)

)s

= (1 + o(1)) · (1− β)k−s

(
1 + β

(
q2ℓ

3
− 1

))s

⩽ (1 + o(1)) · exp
(
−β(k − s) +

(
q2ℓ

3
− 1

)
βs

)
= (1 + o(1)) · exp

(
−βk + q2ℓ

3
βs

)
.

where in the first transition we use Equation (26), and in the fourth transition we use the fact that 1+z ⩽ ez .
Writing s = pk + v and using Equation (25) again and using v ⩽ O

(
q(c/2+o(1))ℓ

)
we have,

D′(x1, . . . , x2ℓ)

D(x1, . . . , x2ℓ)
⩽ (1 + o(1)) exp

(
−2

3
βkq−2ℓ +

q2ℓ

3
βv

)
⩽ (1 + o(1)) exp

(
O(q−cℓ/3−o(1))

)
⩽

1

0.9
.

D List Decoding Bound

In this section we prove Lemma 5.20, restated below.
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Lemma 5.20. Let T be a table on Grassq(FV
q , 2ℓ), let Q be an r1-dimensional subspace, and let W ⊇ Q be

a subspace of codimension r2. Suppose that 2ℓ is sufficiently large and dim(W ) ⩾ 20ℓ. Let f1, . . . , fm be a
list of distinct linear functions such that fi|L ≡ T [L] for at least β-fraction of the 2ℓ-dimensional subspaces
L such that Q ⊆ L ⊆W , for β ⩾ 2q−2ℓ+r1 + c, and c > 0. Then,

m ⩽
4

c2
⩽

4

β2
.

Lemma 5.20 follows directly from a generic list decoding bound of [GRS00, Theorem 15], which we
state below for convenience.

Theorem D.1. [[GRS00, Theorem 15]] Let C ⊆ [Q]N be a code with alphabet size Q, blocklength N , and
relative distance 1 − γ. Let δ > 0 and R ∈ ΣN , where Q = |Σ|. Suppose that C1, . . . , Cm ∈ ΣN are
distinct codewords from C that satisfy δ(R,Ci) ⩽ 1− δ for all 1 ⩽ i ⩽ m. If,

δ >
1

Q
+

√(
γ − 1

Q

)(
1− 1

q

)
,

then
m ⩽

1

(δ − 1/Q)2 − (1− 1/Q)(γ − 1/Q)
.

Proving Lemma 5.20 is simply a matter of translating to the notation of Theorem D.1.

Proof of Lemma 5.20. Let Σ = F2ℓ−r1
q , let Q = span(z1, . . . , zr1), and define a code C with alphabet Σ by:

C = {(v · x1, . . . , v · x2ℓ−r1)(x1,...,x2ℓ−r1
)∈W | v ∈W}.

Note that for distinct v, w ∈ W we have that v · x = w · x for at most 1/q-fraction of x ∈ W . Thus,
the relative distance of C is 1 − q−2ℓ+r1 . We would like the table T corresponds to a word, say, R, and
f1, . . . , fm correspond to m codewords in C, say C1, . . . , Cm. A slight issue is that T is only defined over
2ℓ-dimensional subspaces of L ∈ Zoom[Q,W ], while R has an entry for every 2ℓ − r1-tuple of points
in V . To resolve this, note that nearly every 2ℓ − r1-tuple of points combined with z1, . . . , zr1 span an
L ∈ Zoom[Q,W ]. Thus, define R as follows. If (z1, . . . , zr1 , x1, . . . , x2ℓ−r1) are linearly independent, then
let L be the span of (z1, . . . , zr1 , x1, . . . , x2ℓ−r1) and define

R(x1,...,x2ℓ−r1
) = (T [L](x1), . . . , T [L](x2ℓ−r1)) .

Otherwise, define R(x1,...,x2ℓ−r1
) arbitrarily. Note that the fraction of tuples (x1, . . . , x2ℓ−r1) such that

(z1, . . . , zr1 , x1, . . . , x2ℓ−r1) are not linearly independent is at most,

2ℓ∑
i=r1+1

qi−1

qn
⩽ q2ℓ−n,

so nearly all of the entries in R correspond to table entries in T . For the functions f1, . . . , fm we define Ci

corresponding to fi by
Ci(x1,...,x2ℓ−r1

)
= (fi(x1), . . . , fi(x2ℓ−r1)).
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As each fi agrees with T on at least β-fraction of the entries, we have that R and Ci agree on at least
β-fraction of the entries (x1, . . . , x2ℓ−r1) such that (z1, . . . , zr1 , x1, . . . , x2ℓ−r1) are linearly independent,
so

δ(R,Ci) ⩽ 1− β · (1− q2ℓ−n) ⩽ 1− β

2

for each 1 ⩽ i ⩽ m. Finally, note that the alphabet size of C is
∣∣F2ℓ−r1

q

∣∣ = q2ℓ−r1 . To bound m, we can
apply Theorem D.1 with δ = β

2 ⩾ q−2ℓ + c
2 , Q = q2ℓ−r1 , and γ = q−2ℓ+r1 . We first note that the condition

of Theorem D.1 is indeed satisfied,

δ ⩾ q−2ℓ+r1 +
c

2
> q−2ℓ+r1 + 0.

Thus Theorem D.1 implies that m ⩽ 4
c2

.

E Missing Proofs from Section 8

This section contains the missing proofs from Section 8, and we begin by recalling some notation. We
denote by µ(A) the measure of a collcetion of subspaces A ⊆ Grassq(n, i), where n and i will always be
clear from context. Furthermore, we use µX(A) to denote the measure of A restricted to the subspaces
containing X for some subspace low-dimensional subspace X , i.e.

µX(A) = |{L ∈ A | X ⊆ L}|
|{L ∈ Grassq(n, i) | X ⊆ L}|

.

Likewise, when W is a constant co-dimension subspace, we define

µW (A) = |{L ∈ A | L ⊆W}|
|{L ∈ Grassq(n, i) | L ⊆W}|

.

It will always be clear from the size of X or W in context which of the above definitions we are referring
to. We also use

µ[X,W ](A) =
|{L ∈ A | X ⊆ L ⊆W}|

|{L ∈ Grassq(n, i) | X ⊆ L ⊆W}|
,

to denote the measure of A restricted to the zoom-in of X and the zoom-out of W . Finally, throughout
this section, for some subspace L, and a set of constant codimension subspacesW , we will let NW(L) =
|{W ∈ W | L ⊆W}|.

E.1 Proof of Lemma 8.1

Recall thatW is a set of m1 subspaces of codimension s inside of V that is t-generic with respect to V . For
each 2

(
1− ξ

2

)
ℓ-dimensional subspace X and linear assignment, σ, to X , define

pX,σ = Pr
Wi∈WX,σ

X⊆L⊆Wi

[L ∈ LX,σ ∧ fi|L ̸= T [L]], qX,σ = Pr
Wi∈WX,σ

X⊆L⊂Wi

[L ∈ LX,σ],

where in both probabilities X and σ are fixed, and Wi ∈ WX,σ is chosen uniformly and L ∈ Zoom[X,Wi]
is chosen uniformly. The intention behind these values is that for a fixed (X,σ), the quantity pX,σ should
reflect how much disagreement there is between the table T and the functions fi for Wi ∈ WX,σ, on
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subspaces L ∈ LX,σ, while qX,σ should reflect the size of LX,σ. Note that if L ∈ LX,σ and Wi ∈ WX,σ,
then by definition we already have fi|X ≡ T [L]|X ≡ σ. Therefore we would expect that in fact fi and
T [L] also agree on L - which is only larger than X by ξℓ dimensions - and for most X,σ, the value pX,σ

is small. On the other hand, for each Wi, there are at least a C-fraction of L ∈ Grassq(Wi, 2ℓ) for which
fi|L ≡ T [L], so we should also expect qX,σ to be Ω(C) for a non-trivial fraction of (X,σ). In the following
claim, we formalize this intuition and show that there indeed exists an (X,σ) for which pX,σ is small, qX,σ

is large, and additionally the setWX,σ is large.
This idea of looking for such (X,σ) was first introduced in [IKW12] where they call these (X,σ)-

excellent and was then used again in [BDN17, MZ23] to analyze lower dimensional subspace versus sub-
space tests, which is similar in spirit to what we are ultimately trying to show in Lemma 5.19.

Claim E.1. There exists (X,σ) and τ ⩾ C
2 such that:

• m2 = |WX,σ| ⩾ m1

q10rℓ
.

• qX,σ ⩾ τ .

• pX,σ < γ · τ .

Proof. Consider the following process which outputs Wi, L,X, σ such that Wi is uniform in W , L ∈
Grassq(Wi, 2ℓ) is uniform, X ∈ Grassq

(
L, 2

(
1− ξ

2

)
ℓ
)

is uniform, and σ is the assignment of fi to
X , i.e σ :≡ fi|X .

1. Choose (X,σ) with probability proportional to |WX,σ|.

2. Choose Wi ∈ WX,σ uniformly.

3. Choose a 2ℓ-dimensional subspace L uniformly conditioned on X ⊆ L ⊆W .

Notice that the distribution of (Wi, L) above is equivalent to that of choosing Wi ∈ W uniformly and
L ⊂Wi uniformly. Moreover, fi|L ≡ T [L] only if L ∈ LX,σ, as fi and T [L] must agree on X ⊆ L in order
to agree on L. Therefore,

E
X,σ

[qX,σ] ⩾ Pr
Wi∈W,L⊆Wi

[fi|L ≡ T [L]] ⩾ C ⩾
1

q2(1−ξ)ℓ
. (27)

On the other hand,

E
X,σ

[pX,σ] ⩽ Pr
X⊆L

[fi|X ≡ T [L]|X | fi|L ̸= T [L]] ⩽
1

q2(1−ξ/2)ℓ
. (28)

Here the distribution of (X,σ) is proportional to the sizes |WX,σ| and the second inequality is by the
Schwartz-Zippel lemma. Indeed, by the Schwartz-Zippel lemma, fi|L and T [L] can agree on at most 1/q-
fraction of points z inL. Therefore, the middle term is bounded by the probability that 2(1−ξ/2)ℓ uniformly
random, linearly independent points are all chosen in this 1/q-fraction.

From a dyadic-partitioning of Equation (27), it follows that there exists a τ ⩾ C/2 such that

Pr
X,σ

[qX,σ ∈ [τ, 2τ)] ⩾
C

4τ log(1/C)
. (29)
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By Markov’s inequality on Equation (28)

Pr
X,σ

[pX,σ ⩾ γτ ] ⩽
1

γτq2(1−ξ/2)ℓ
⩽

C

8τ log(1/C)
, (30)

It follows that for at least C
8t log(1/C) -fraction of (X,σ)’s (under the measure induced by step 1 of the sam-

pling procedure above), we have both qX,σ ⩾ τ and pX,σ ⩽ γτ .
Next we wish to argue that for most of these (X,σ)’s, |WX,σ| is large. First note that the total number

of (X,σ)’s is at most
[

dim(V ′)
2(1− ξ/2)ℓ

]
q

q2ℓ. For a fixed (X,σ), the probability that it is chosen is precisely,

|WX,σ|
m

· 1[
dim(V )− r
2(1− ξ/2)ℓ

]
q

.

Thus, by a union bound,

Pr
X,σ

[
|WX,σ| ⩽

m

q10rℓ

]
⩽

1

q10rℓ
·

[
n

2(1− ξ/2)ℓ

]
q

q2ℓ[
n− r

2(1− ξ/2)ℓ

]
q

⩽
1

q10rℓ
· q4rℓ · q2ℓ ⩽ 1

q5rℓ
. (31)

Putting Equations (29), (30), and (31), together, it follows that with probability at least

C

4τ log(1/C)
− 1

γτq2(1−ξ/2)ℓ
− 1

q5rℓ
> 0,

over (X,σ), we have, qX,σ ⩾ τ , pX,σ ⩽ γτ , and |WX,σ| ⩾ m1

q10rℓ
, which establishes the claim.

Taking the (X,σ) given by Claim E.1, it almost looks like Lemma 8.1 is satisfied. However, notice that
while the probability of interest for the third item there looks similar to pX,σ, it has a different distribution
over L and Wi. Indeed, there, the distribution first chooses L ∈ LX,σ, then Wi ∈ WX,σ, whereas for pX,σ,
we are first choosing Wi ∈ WX,σ, and not conditioning L ⊆ Wi being in the set LX,σ. Intuitively, we
expect something like the following to hold,

Pr
L∈LX,σ ,Wi∈WX,σ

[fi|L ̸= T [L] |Wi ⊇ L] = Pr
Wi∈WX,σ ,L⊆Wi

[fi|L ̸= T [L] | L ∈ LX,σ] =
pX,σ

qX,σ
⩽
γ · τ
τ

,

and be done. These equalities are not actually true however, so the bulk of the transition from Claim E.1
to Lemma 8.1 is in formalizing this chain of equalities and converting from the distribution of pX,σ to that
required by the third item of Lemma 8.1 without losing too much.

Proof of Lemma 8.1. Fix an (X,σ) such that Claim E.1 holds and defineWX,σ and LX,σ accordingly. Let
m2 = |WX,σ| ⩾ m1

q10rℓ
. In order to lower bound the measure µX(LX,σ), we will apply Lemma 5.14

on the collection of subspaces WX,σ with parameters j = 2ℓ, a = 2
(
1− ξ

2

)
ℓ. Then the measure ν

over Zoom[X,V ] in Lemma 5.14 is precisely that obtained by choosing Wi ∈ WX,σ uniformly, and then
L ∈ Zoom[X,Wi] uniformly. Thus ν is precisely the distribution used to define qX,σ, so by Lemma 5.14

µX(L) ⩾ ν(L)− 3q
s
2
ξℓ

√
m2

= qX,σ −
3q

s
2
ξℓ

√
m2

⩾
τ

3
⩾
C

6
,
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and the first two conditions of Lemma 8.1 are satisfied.
To show the third condition, it will be helpful to have in mind the bipartite graph with partsWX,σ and

LX,σ and edges (Wi, L) if L ⊆ Wi. For each L ∈ LX,σ and Wi ∈ WX,σ define the following degree-like
quantities:

• dL = |{Wi ∈ WX,σ |Wi ⊇ L}|,

• eL = |{Wi ∈ WX,σ |Wi ⊇ L, fi|L ̸= T1[L]}|,

• di = |{L ∈ LX,σ | L ⊆Wi}|,

• ei = |{L ∈ LX,σ | L ⊆Wi, fi|L ̸= T1[L]}|.

Also let D = |{L | X ⊆ L ⊆Wi,dim(L) = 2ℓ}|, where the Wi ∈ WX,σ is arbitrary (the value is the same
regardless which we pick). Then EL∈LX

[dL] =
m2D
|LX | and the probability that we are interested in bounding

can be expressed as:

Pr
L∈LX,σ ,Wi∈WX,σ

[fi|L ̸= T1[L] | L ⊆Wi] = E
L∈LX,σ

[
eL
dL

]
.

Since qX,σ ⩾ t and pX,σ ⩽ γt, we have

qX,σ ·m2 ·D =
∑

L∈LX,σ

dL =
∑

Wi∈WX,σ

di ⩾ m2 ·Dτ, (32)

and
pX,σ ·m2 ·D =

∑
L∈LX,σ

eL =
∑

Wi∈WX,σ

ei ⩽ m2 · γτD. (33)

By Lemma 5.16 and the very loose bound D
|LX | ≈

1
qξℓ/2

⩾ 1
qℓ

, we have

Pr
L∈LX

[
dL ⩽ 0.9E

L
[dL]

]
⩽

qℓ

m2
. (34)

Using EL∈LX
[dL] =

m2D
|LX | , we have

E
L∈LX,σ

[
eL
dL

]
⩽ Pr

L∈LX,σ

[
dL ⩽ 0.9

m2D

|LX |

]
+ E

L∈LX,σ

[
eL

0.9m2D/|LX |

]
⩽

qℓ/m2

PrL∈LX
[L ∈ LX,σ]

+ E
L∈LX,σ

[
eL

0.9m2D/|LX |

]
⩽
qℓ/m2

τ/3
+ E

L∈LX,σ

[
eL|LX |
0.9m2D

]
⩽

3qℓ

m2τ
+
m2 · γτD
0.9m2D

· |LX |
|LX,σ|

⩽
3qℓ

m2τ
+
γτ

0.9
· 3
τ

⩽ 5γ,

where in the second transition we use Equation (34) and in the fourth transition we use Equation (33).
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E.2 Proof of Lemma 8.3

Take theX,σ,L′X,σ, andWX,σ guaranteed by Corollary 8.2, and recall V ′ is the ambient space and δ2 = ξ
100 .

As this section is more involved, we restate Lemma 8.3 as well as its setting. Recall that for a zoom-in A
and zoom-out B such that X ⊆ A ⊆ B ⊆ V ′, we write V ′ = A ⊕ V0 and B = A ⊕ V ⋆, where V ⋆ ⊆ V0.
Now let W⋆

[A,B] = {W
⋆
i | ∃Wi ∈ WX,σ s.t A ⊕W ⋆

i = Wi ∩ B}. It is clear that each W ⋆
i ∈ W⋆

[A,B] is
contained inside of some Wi ∈ WX,σ, so for each W ⋆

i , we may define f⋆i ≡ fi|W ⋆
i

.

Lemma 8.3. There is a zoom-in A and a zoom-out B such that the following holds with the notation above.
There exists a collection of subspacesW⋆ = {W ⋆

1 , . . . ,W
⋆
m3
} ⊆ W⋆

[A,B] of codimension s with respect to
V ⋆ such that:

1. For some ℓ′ ⩾ ξ
3ℓ there exists L⋆ ⊆ Grassq(V

⋆, ℓ′) such that µ(L⋆) = η ⩾ C
12 .

2. The set L⋆ is (1, qδ2ℓη)-pseudo-random.

3. Each W ⋆
i has codimension s ⩽ r inside of V ⋆ andW⋆ is 4-generic, with respect to V ⋆.

4. m3 ⩾
q−10s/δ2

2 ·m2.

5. For every L ∈ L⋆, choosing W ⋆
i ∈ W⋆ uniformly such that W ⋆

i ⊇ L, we have

Pr
W ⋆

i ⊇L,W ⋆
i ∈W⋆

[fi|L ̸= T [L]] ⩽ 14γ.

6. For every L ∈ L⋆,
0.8 ·m3 · q−s·ℓ′ ⩽ NW⋆(L) ⩽ 1.2 ·m3 · q−s·ℓ′ ,

where NW⋆(L) = |{W ⋆
i ∈ W⋆ |W ⋆

i ⊇ L}|

Here the table T is assigns linear functions to L ∈ Grassq(V
⋆, ℓ), and is essentially the original table, i.e

T [L] ≡ T [A⊕ L]|L.

As a step towards Lemma 8.3, we first show Lemma E.2, which finds the basic items required for
Lemma 8.3, modulo a few minor alterations.

Lemma E.2. We can find a zoom-in A and a zoom-out B such that X ⊆ A ⊆ B ⊆ V ′, such that the
following hold.

• dim(A) + codim(B) ⩽ dim(X) + 10
δ2

.

• Letting L′ = {L ∈ L′X,σ | L ∈ Zoom[A,B]}, we have η = µ[A,B](L′) ⩾ C
12 in Zoom[A,B] and is

(1, qδ2ℓη)-global in Zoom[A,B].10

Proof. Set A0 = X , L0 = LX,σ, B0 = V , and η0 = µX(LX,σ) ⩾ C
12 . Now do the following.

1. Set i = 0, and initialize A0,L0, B0, η0,WL,0,W0 as above.

10By (1, qδ2ℓη)-pseudo-random in Zoom[A,B] we mean that L′ does not increase its fractional size to qδ2ℓη when restricted to
any zoom-in containing A or any zoom-out contained in B.
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2. If Li is (1, qδ2ℓηi)-global inside of Zoom[Ai, Bi], then stop.

3. Otherwise, there exist A ⊆ B such that, Ai ⊆ A ⊆ B ⊆ Bi, dim(A) + codim(B) = dim(Ai) +
codim(Bi) + 1, and µ[A,B](Li) ⩾ qδ2ℓηi.

4. Set Ai+1 = A, Bi+1 = B, and Li+1 = {L ∈ Li+1 | Ai+1 ⊆ L ⊆ Bi+1}.

5. Set ηi+1 = µ[Ai+1,Bi+1](Li+1).

6. Increment i by 1 and return to step 2.

Suppose this process terminates on iteration j. We claim that taking L′ = Lj , A = Aj , B = Bj , WL =
WL,j for each L ∈ Lj , andW ′ =Wj satisfies the requirements of the lemma.

Next notice that by construction ηi+1 ⩾ qδ2ℓηi. Therefore, we perform at most log(12/C)

log(qδ2ℓ)
⩽ 10

δ2
iterations

before stopping, so j ⩽ 10
δ2

. By construction Lj is (1, qδ2ℓηj)-global in Zoom[Aj , Bj ] and has fractional
size ηj ⩾ µX,σ ⩾ C

12 in Zoom[Aj , Bj ]. Moreover, dim(Aj) + codim(Bj) = dim(X) + j ⩽ dim(X) + 10
δ2

,
so the conditions of the lemma are satisfied.

Take A,B and L′ given by Lemma E.2. Before moving on the the straightforward derivation of
Lemma 8.3, define

WX,σ,L′ = {Wi ∈ WX,σ | L′ ⊆Wi} and WL′ =
⋃

L′∈L′

WX,σ,L′ .

Proof of Lemma 8.3. We now construct the L⋆,W⋆, and V ⋆ that satisfy Lemma 8.3. Let V ⋆ be a subspace
such that A⊕ V ⋆ = B, set ℓ′ = 2ℓ− dim(A), and let

L⋆ = {L⋆ ∈ Grassq(V
⋆, ℓ′) | L⋆ ⊕A ∈ L′}.

For each L⋆ ∈ L⋆, we will use L′ to denote the corresponding subspace such that A⊕L = L′ ∈ L′, and the
fact that the correspondence,

L⋆ ∈ L⋆ ←→ L′ = A⊕ L⋆ ∈ L′,

is a bijection between L⋆ and L′. Recall that we abuse notation and let T to denote both the original table
on 2ℓ-dimensional subspaces, as well as the new table on Grassq(V

⋆, ℓ′), given by T [L] = T [L′]|L. It will
always be clear, based on the argument in T [·], which we are referring to. We obtainW⋆ in a similar way as
L⋆, however, some care will be needed to ensure that it is 4-generic. First, set W̃X,σ,L′ = {Wi ∩ B | Wi ∈
WX,σ,L′}, then take W̃⋆ to be the maximal subset of W̃X,σ,L′ that is 4-generic with codimension s with
respect to B. Finally, set

W⋆ = {W ⋆
i ⊆ V ⋆ | A⊕W ⋆

i ∈ W̃⋆},

and set m3 = |W⋆|. Summarizing, we have the following chain of relations,

WX,σ −→
Wi⊇L′∈L′

WX,σ,L′ ←→
∩B

W̃X,σ,L′ −→
Make 4-generic

W̃⋆ ←→
Subtract subspace A

W⋆ (35)

Wi −→
Wi⊇L′∈L′

Wi −→
∩B

Wi ∩B −→ Wi ∩B −→ W ⋆
i s.t W ⋆

i ⊕A =Wi ∩B (36)

which will be helpful to refer back to. The double arrow transitions are bijections, while in the single arrow
transitions subspaces are being removed. The second line shows what a generic member of each set looks
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like, where Wi are the original subspaces inWX,σ. We remark that we allow W̃X,σ,L′ to be a multiset. For
each L⋆ ∈ L⋆, we define

W⋆
L⋆ = {W ⋆

i ∈ W⋆ | L⋆ ⊆W ⋆
i }.

It is clear from Equation (35) thatW⋆ ⊆ W[A,B]. We now verify that the six properties of Lemma 8.3 hold.

Property 1. The subspaces of L⋆ are of dimension ℓ′ inside V ⋆, and

ℓ′ ⩾ 2ℓ− dim(A) ⩾ 2ℓ− dim(X)− 10

δ2
⩾
ξ

3
ℓ.

Also, µ(L⋆) = η is the same as the measure of L′ inside Zoom[A,B] due to the bijection between L⋆ and
L′. Therefore which is at least η ⩾ C

12 by the second part of Lemma E.2.

Property 2. Since L′ does not increase its measure to qδ2ℓη on any zoom-in containing A or zoom-out
inside B, it follows that L⋆ is (1, qδ2ℓη)-pseudo-random.

Property 3. By construction, W̃ ⋆ is 4-generic inside of B. Since B = A ⊕ V ⋆, and all Wi ∈ W̃ ⋆ contain
A, it follows thatW⋆ is 4-generic inside of V ⋆.

We verify property 4 using properties 5 and 6, so we save it for last.

Property 6. Fix anL⋆ ∈ L⋆ with correspondingL′ ∈ L′ ⊆ LX,σ. We will first show that for allL⋆ ∈ L′, the
value NW⋆(L⋆) is nearly the same, and in particular is nearly equal to NWX,σ

(L′). This has the secondary
consequence that m3 ⩾ NW⋆(L⋆) is large. By Lemma 5.16 applied to the 4-generic set of subspacesW⋆

and we can conclude that Property 5 holds for most (and in particular at least one) subspaces of L⋆. We can
then conclude that the same holds for all L⋆ ∈ L⋆.

Towards showing that all NW⋆(L⋆) are nearly the same, note that

NW⋆(L⋆) = NW̃⋆(L
′) = NW̃L′

(L′)−
∣∣∣W̃L′ \ W̃⋆

∣∣∣ ,
and additionally

NW̃L′
(L′) = NWX,σ,L′ (L

′) = NWX,σ
(L′), (37)

so
NW⋆(L⋆) = NWX,σ

(L′)−
∣∣∣W̃L′ \ W̃⋆

∣∣∣ .
Since we already have bounds on NWX,σ

(L′) from the fourth part of Corollary 8.2, it is sufficient to upper

bound
∣∣∣W̃L′ \ W̃⋆

∣∣∣. SinceWX,σ,L′ is 22+
10
δ2 -generic, by Lemma 5.13, the set W̃L′ can be made 4-generic

by removing at most codim(B) · (22+
10
δ2 ) ⩽ 10

δ2
· 22+

10
δ2 of the subspaces Wi ∩B in W̃X,σ,L′ , so

∣∣NW⋆(L⋆)−NWX,σ
(L′)

∣∣ ⩽ ∣∣∣W̃L′ \ W̃⋆
∣∣∣ ⩽ 10

δ2
· 22+

10
δ2 , ∀L⋆ ∈ W⋆. (38)

Using the fourth part of Corollary 8.2, we get the secondary consequence that

m3 ⩾ 0.95 ·m2 · qξℓ·s −
10

δ2
· 22+

10
δ2 .

Using Lemma 5.16, we can show that for at least one L⋆,

0.9 ·m3 · q−s·ℓ′ ⩽ NW ⋆(L⋆) ⩽ 1.1 ·m3 · q−s·ℓ′ , (39)
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and combining this with Equation (38) shows that Property 6 holds for all L⋆ ∈ L⋆.
Property 5. We encourage the reader to refer back to the chain of relations in Equation (35) for this part. At
a high level, we will start with a probability regarding W ⋆

i ∈ W⋆ at the right end of the chain, and gradually
move leftwards and relate this to a probability regarding Wi ∈ WX,σ - which we have a bound on from the
fourth item of Corollary 8.2. To start, note that

Pr
W ⋆

i ∈W⋆
[f⋆i |L⋆ ̸= T [L⋆] | L⋆ ⊆W ⋆

i ] = Pr
W ⋆

i ∈W⋆
[fi|L⋆ ̸= T [L⋆] | L⋆ ⊆W ⋆

i ]

⩽ Pr
Wi∩B∈W̃ ⋆

[fi|L′ ̸= T [L′] | L′ ⊆Wi ∩B].

The first transition is simply due to the fact that f⋆i = fi|W ⋆
i

. For the second transition we use the fact that
there is a one-to-one correspondence between W ⋆

i ∈ W⋆ and Wi = A⊕W ⋆
i ∈ W̃⋆. For this pair W ⋆

i , Wi,
we have f⋆i = fi|W ⋆

i
. Therefore the Wi from the second probability can be sampled by first choosing W ⋆

i

according to the first distribution of the first probability, and then outputting A⊕W ⋆
i . The second transition

then follows.
Next we have,

Pr
Wi∩B∈W̃ ⋆

[fi|L′ ̸= T [L′] | L′ ⊆Wi ∩B]

= Pr
Wi∩B∈W̃X,σ,L′

[fi|L′ ̸= T [L′] | L′ ⊆Wi ∩B,Wi ∩B ∈ W̃⋆]

=
PrWi∩B∈W̃X,σ,L′

[fi|L′ ̸= T [L′],Wi ∩B ∈ W̃⋆ | L′ ⊆Wi ∩B]

PrWi∩B∈W̃X,σ,L′
[Wi ∩B ∈ W̃⋆ | L′ ⊆Wi ∩B]

⩽ Pr
Wi∩B∈W̃X,σ,L′

[fi|L′ ̸= T [L′] | L′ ⊆Wi ∩B] + 2 Pr
Wi∩B∈W̃X,σ,L′

[Wi ∩B ∈ W̃X,σ,L′ \ W̃⋆ | L′ ⊆Wi ∩B],

where both transitions rely on the fact that W̃ ⋆ ⊆ W̃X,σ,L′ . In the last transition, we used the fact that
1/(1 − δ) ⩽ 1 + 2δ if δ ⩽ 1/2, thus if PrWi∩B∈W̃X,σ,L′

[Wi ∩ B ∈ W̃X,σ,L′ \ W̃⋆ | L′ ⊆ Wi ∩ B] ⩽ 1/2

then the inequality holds. Else, 2PrWi∩B∈W̃X,σ,L′
[Wi ∩ B ∈ W̃X,σ,L′ \ W̃⋆ | L′ ⊆ Wi ∩ B] ⩾ 1 and the

expression on the third line is at most 1 so the inequality on the last transition holds trivially. We will now
analyze the last two terms separately. The second term can be bounded as follows,

Pr
Wi∩B∈W̃X,σ,L′

[Wi ∩B ∈ W̃X,σ,L′ \ W̃⋆ | L′ ⊆Wi ∩B] =

∣∣∣{Wi ∩B ∈ W̃L′ \ W̃⋆ | L′ ⊆Wi ∩B}
∣∣∣

|{Wi ∩B ∈ W̃L′ | L′ ⊆Wi ∩B}|

⩽

∣∣∣W̃L′ \ W̃⋆
∣∣∣

NWX,σ
(L′)

⩽ γ.

The first transition is evident, for the second transition note that the numerator does not decrease, while
the denominator is the same (it follows from NW̃X,σ,L′

= NWX,σ
(L′) in Equation (37)), finally the third

transition uses Equation (38) and the fact that NWX,σ
(L′) is large from the fourth item of Corollary 8.2.

For the first term, note that,

Pr
Wi∩B∈W̃X,σ,L′

[fi|L′ ̸= T [L′] | L′ ⊆Wi ∩B] = Pr
Wi∈WX,σ,L′

[fi|L′ ̸= T [L′] | L′ ⊆Wi],
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where we use the fact that there is a one-to-one correspondence between Wi ∩ B ∈ W̃X,σ,L′ , and Wi ∈
WX,σ,L′ . Also, recalling the definition of L′, we have L′ ⊆ B, so the conditioning in both probabilities is
the same, and therefore the two probabilities are equivalent. Next, it is clear that {Wi ∈ WX,σ,L′ | L′ ⊆
W ′} =WX,σ,L′ , so using Corollary 8.2, we have,

Pr
Wi∈WX,σ,L′

[fi|L′ ̸= T [L′] | L′ ⊆Wi] ⩽ Pr
Wi∈WX,σ,L′

[fi|L′ ̸= T [L′]] ⩽ 12γ.

Putting everything together, we get that

Pr
W ⋆

i ∈W⋆
[f⋆i |L⋆ ̸= T [L⋆] | L⋆ ⊆W ⋆

i ] ⩽ 12γ + 2γ = 14γ,

establishing property 6.

Property 4. Take an arbitrary L⋆ ∈ L⋆ with corresponding L′ ∈ L′ such that Equation (39) holds. We have

m3 ⩾
q−s·ℓ′

1.1
NW⋆(L⋆)

⩾
q−s·ℓ′

1.2

(
NWX,σ

(L′)− 10

δ2
· 21+

10
δ2

)
⩾
q−s·ℓ′

1.2

(
0.95 ·m2 · q−ξℓ·s − 10

δ2
· 21+

10
δ2

)
⩾
m2 · qs·(ℓ

′−ξℓ)

2

⩾
m2 · q−s·(dim(A)−dim(X))

2

⩾
m2 · q−10s/δ2

2
.

The first transition is by Equation (39), the second transition is by Equation (37), the third transition is by
the fourth item of Corollary 8.2, the fifth transition uses the fact that ℓ′ = 2ℓ − dim(A) and dim(X) =

2
(
1− ξ

2

)
ℓ, and the last transition uses the fact that dim(A)− dim(X) ⩽ 10

δ2
.

E.3 Proof of Lemma 8.5

Take L⋆,W⋆, V ⋆ given by Lemma 8.3, and recall Z = {z ∈ V ⋆ | |µz(L⋆)− η| ⩽ η
10}. We have η = µ(L⋆)

and m3 = |W⋆|. Let us recall Lemma 8.5 below.

Lemma 8.5. We have
Pr

W ⋆
i ,W

⋆
j ∈W⋆

z∈W ⋆
i ∩W ⋆

j ∩Z

[f⋆i (z) ̸= f⋆j (z)] ⩽ 500γ,

and for every W ⋆
i ,W

⋆
j ∈ W⋆,

|W ⋆
i ∩W ⋆

j ∩ Z| ⩾ 0.81 · |W ⋆
i ∩W ⋆

j |.
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E.3.1 A Necessary Fourier Analytic Fact

We first show a Fourier Analytic fact that will be needed for the proof of Lemma 8.5. LetA ⊆ Grassq(n, j),

for some n > qj , and let η = µ(A). We define F ∈ L2

(
Fn×j
q

)
as follows:

F (x1, . . . , xj) =

{
1, if span(x1, . . . , xj) ∈ A,
0, otherwise.

Lemma E.3. Fix a subspace W ⊆ Fn
q , then for any S = (s1, . . . , sj) ∈ Fn×j

q we have,

E
x1,...,xj∈W

[χS(x1, . . . , xj)] =

{
1, if S ⊆W⊥,

0, if S ⊊W⊥.

Proof. If S ⊆W⊥, then for any x ∈W , we have si · x = 0 for all 1 ⩽ i ⩽ j, so the first case follows.
Now suppose S ⊊W⊥, and without loss of generality say that s1 /∈W⊥. We can write,

E
x⊆W

[χS(x)] = E
x1∈W

[
ωTr(x1·s1)

]
E

x2,...,xj∈W

[
ω
∑j

i=2 Tr(xi·si)
]
.

We will show that Ex1∈W
[
ωTr(x1·s1)

]
= 0. Notice that it is sufficient to show that x1 ·s1 takes each value in

Fq with equal probability over uniformly random x1 ∈ W . First, since s1 /∈ W , Prx1∈W [x1 · s1 = 0] = 1
q .

Next note for any α ̸= 0,

Pr
x1∈W

[x1 · s1 = 1] = Pr
x1∈W

[(αx1) · s1 = α] = Pr
x1∈W

[x1 · s1 = α].

Therefore, x1 · s1 takes each of the q−1 nonzero values in Fq with probability 1
q over uniform x1 ∈W , and

this concludes the proof.

Lemma E.4. If W ⊆ Fn
q has codimension s and satisfies,

|µW (A)− η| ⩾ 0.01η,

then there is a nonzero S ∈ Fn×j
q such that S ⊆W⊥ and∣∣∣F̂ (S)∣∣∣ ⩾ η

20qsj
.

Proof. Note that, µW (A) = Prx1,...,xj [span(x1, . . . , xj) ∈ A | dim(span(x)) = j], so∣∣∣∣µW (A)− E
x⊆W

[F (x)]

∣∣∣∣ ⩽ j · qj−k.

Using the Fourier decomposition of F , we can write,

E
x⊆W

[F (x)] = F̂ (0) +
∑

0̸=S⊆W⊥

F̂ (S) E
x∈W

[χS(x)] +
∑

∅≠S⊊W⊥

F̂ (S) E
x∈W

[χS(x)].
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Using the previous inequality, and the fact that F̂ (0) = η, and Lemma E.3, we have∣∣∣∣∣∣µW (A)− η −
∑

0̸=S⊆W⊥

F̂ (S)

∣∣∣∣∣∣ ⩽ j · qj−n.

By the triangle inequality we have,

|µW (A)− η| ⩽

∣∣∣∣∣∣
∑

0 ̸=S⊆W⊥

F̂ (S)

∣∣∣∣∣∣+ j · qj−k,

and finally by the assumption in the lemma statement we have,∣∣∣∣∣∣
∑

0̸=S⊆W⊥

F̂ (S)

∣∣∣∣∣∣ ⩾ 0.1 · η − j · qj−k.

Since j · qj−k ⩽ 0.01 · η and there are at most qsj tuples S = (s1, . . . , sj) ⊆W⊥, the result follows.

E.3.2 The Proof of Lemma 8.5

For an arbitrary fixed point z ∈ V ⋆, letD denote the number of ℓ′-dimensional subspacesL ⊆ V ⋆ containing
z. We note that D does not depend on which point z is fixed. Also let,

L⋆z = {L ∈ L⋆ | z ∈ L},
W⋆

z = {W ⋆
i ∈ W⋆ | z ∈W ⋆

i },
mz = |W⋆

z | ,
N2,W⋆

z
(L) = |{(i, j) |W ⋆

i ∩W ⋆
j ⊇ L, W ⋆

i ,W
⋆
j ∈ W⋆

z }|,
N2,W⋆(L) = |{(i, j) |W ⋆

i ∩W ⋆
j ⊇ L,W ⋆

i ,W
⋆
j ∈ W⋆}|.

(40)

Also for an arbitrary W ⋆
i and W ⋆

j , define

p1 = Pr
L∈Grassq(V ⋆,ℓ′)

[L ⊆W ⋆
i ] and p2 = Pr

L∈Grassq(V ⋆,ℓ′)
[L ∈W ⋆

i ∩W ⋆
j | z ∈ L]. (41)

A straightforward computation shows that p2/p21 ⩾ q2s/2, where recall s = codim(W ⋆
i ) in V ⋆. We start by

removing all z ∈ Z that do not satisfy,

1.1 · q−sm3 ⩾ mz ⩾ 0.9 · q−sm3. (42)

By Lemma 5.16, the number of z removed is at most 2qs

m3
and is negligible, so for the remainder of the

section we assume that all z ∈ Z satisfy the above inequalities.
We now define two distributions that we will later show are close to each other. The first isD1, generated

by choosing z ∈ Z uniformly and W ⋆
i ,W

⋆
j ∈ W⋆ uniformly conditioned on z ∈ W ⋆

i ∩W ⋆
j . The second

is D′
1, generated by choosing z ∈ Z uniformly, L ∈ L⋆z uniformly, and then W ⋆

i ,W
⋆
j ∈ W⋆ uniformly

conditioned on L ⊆W ⋆
i ∩W ⋆

j . We have

D1(z,W
⋆
i ,W

⋆
j ) =

1

|Z|
· 1

|{i, j |W ⋆
i ,W

⋆
j ∈ W⋆, z ∈W ⋆

i ∩W ⋆
j }|

,

D′
1(z,W

⋆
i ,W

⋆
j ) =

1

|Z|
·
|{L ∈ L⋆z | L ⊆W ⋆

i ∩W ⋆
j }|

|L⋆z|
· E
L∈L⋆

z ,L⊆W ⋆
i ∩W ⋆

j

[
1

N2,W⋆(L)

]
.

(43)
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By construction of Z in Lemma 8.4, we have |L⋆z| ⩽ 1.1η ·D for all z ∈ Z. Also, since N2,W⋆(L) =
NW⋆(L)2, the fifth property of Lemma 8.3 yields 1.21 ·m2

3p
2
1 ⩾ N2,W⋆(L) ⩾ 0.81 ·m2

3p
2
1, for all L ∈ L⋆.

Now, noting that p1 ⩾ q−2s, we have:

1

|Z|
· 1

1.21m2
3q

−2s
⩽ D1(z,W

⋆
i ,W

⋆
j ) =

1

|Z|
· 1

|{i, j |W ⋆
i ,W

⋆
j ∈ W⋆, z ∈W ⋆

i ∩W ⋆
j }|

⩽
1

|Z|
· 1

0.81 ·m2
3q

−2s
, (44)

and

D′
1(z,W

⋆
i ,W

⋆
j ) ⩾

1

|Z|
·
µ[z,W ⋆

i ∩W ⋆
j ]
(L⋆) ·Du · p2

1.1 · η ·Du
· 1

1.21 ·m2
3p

2
1

⩾
1

|Z|
·
µ[z,W ⋆

i ∩W ⋆
j ]
(L⋆)

5 · η ·m2
3q

−2s
. (45)

By construction, |µz(L⋆z)− η| ⩽
η
10 for every z ∈ Z. Call a triplet (z,W ⋆

i ,W
⋆
j ) bad if

µ[z,W ⋆
i ∩W ⋆

j ]
(L⋆) ⩽ 4

5
η.

If the triplet (z,W ⋆
i ,W

⋆
j ) is not bad, then by the above inequalities

D1(z,W
⋆
i ,W

⋆
j ) ⩽

1

|Z|
· 1

0.81 ·m2q−2s
⩽

1

|Z|
· 24η

25 · η ·m2q−2s
⩽ 6D′

1(z,W
⋆
i ,W

⋆
j ). (46)

We start by showing that there are very few bad triplets.

Claim E.5. For each z, the number of i, j such that

µ[z,W ⋆
i ∩W ⋆

j ]
(L⋆) ⩽ 4

5
η,

is at most 106q4sℓ

η2
m3. Additionally, for every W ⋆

i ,W
⋆
j ∈ W⋆, we have

µW ⋆
i ∩W ⋆

j
(Z) ⩾ 0.9µ(Z).

Proof. Fix a point z, let Fz be the restriction of F to the zoom-in of z, where F (x1, . . . , xℓ′) = 1 if
span(x1, . . . , xℓ′) ∈ L⋆ and 0 otherwise. Let η′ = µz(L⋆). For any i, j satisfying the inequality of the
lemma, ∣∣∣µ[z,W ⋆

i ∩W ⋆
j ]
(L⋆)− η′

∣∣∣ ⩾ η′

20
.

We can then apply Lemma E.4 to the zoom-in on z. By Lemma E.4, if (z,W ⋆
i ,W

⋆
j ) is bad then there must

be S = (s1, . . . , sℓ′−1) such that span(s1, . . . , sℓ′−1) ⊆
(
W ⋆

i ∩W ⋆
j

)⊥
and,

|F̂z(S)| ⩾
η′

400q2s(ℓ′−1)
. (47)

Since by Parseval’s inequality the sum of
∣∣∣F̂z(S)

∣∣∣2 is at most ∥Fz∥22 ⩽ 1, there are at most 160000q4sℓ
′

η′2

tuples S satisfying (47). Now consider a bipartite graph where the left side consists of these tuples S =
(s1, . . . , sℓ′−1), the right side consists of W ⋆

i ∩W ⋆
j , and the edges are between pairs that satisfy

span(s1, . . . , sℓ′−1) ⊆
(
W ⋆

i ∩W ⋆
j

)⊥
.
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It follows that the number of edges in this graph is an upper bound on the number of bad triples containing
z. SinceW⋆ is 4-generic, we have

(W ⋆
i ∩W ⋆

j )
⊥ ∩ (W ⋆

i′ ∩W ⋆
j′)

⊥ = {0}

for all i, j, i′, j′ distinct. Therefore, any two neighbours of a vertex on the left must either have their i or j
be equal, and hence the maximum degree of a vertex on the left side is at most 2m3. As a result, the graph
has at most 2m3 · 160000q

4sℓ

η2
⩽ 106q4sℓ

η′2 m3 edges, where we also use that η′ ⩾ 0.9η. This completes the proof
of the first assertion of the claim.

For the second part of the lemma, note that µ(Z) ⩽ q−ℓ′

2 by Lemma 8.4. Therefore, for any W ⋆
i ∩W ⋆

j ,
we have,

µW ⋆
i ∩W ⋆

j
(Z) ⩽ q2s · q

−ℓ′

2
.

It follows that,

µW ⋆
i ∩W ⋆

j
(Z) ⩾ 1− q2s · q

−ℓ′

2
⩾ 0.9µ(Z).

Lemma E.6. Let E be any event defined with respect to (z,W ⋆
i ,W

⋆
j ). Then,

D1(E) ⩽ 6D′
1(E) + γ.

Proof. If the triple (z,W ⋆
i ,W

⋆
j ) is not bad, then D1(z,W

⋆
i ,W

⋆
j ) ⩽ 6D′

1(z,W
⋆
i ,W

⋆
j ). Otherwise, we can

use the generic bound D1(z,W
⋆
i ,W

⋆
j ) ⩽ 1

0.81·m2
3q

−2s , which can be obtained from Equation (44). By the
bound on the number of bad triples per z in Claim E.5, it follows that

D1(E) ⩽ 6D′
1(E) + |Z| · 10

6q4sℓ

η2
m3

1

|Z| · 0.81 ·m2
3q

−2s

= 6D′
1(E) +

107q4sℓ+2s

η2 ·m3

⩽ 6D′
1(E) + γ.

Note that in the last transition we are using the fact thatm3 is large by the fourth property in Lemma 8.3.

Now let D2 be the distribution obtained by choosing W ⋆
i ,W

⋆
j ∈ W uniformly, and then choosing

z ∈W ⋆
i ∩W ⋆

j ∩ Z uniformly. We have

D2(z,W
⋆
i ,W

⋆
j ) =

1

m2
3

· 1

|W ⋆
i ∩W ⋆

j ∩ Z|
.

Using essentially the same proof, we get the following lemma.

Lemma E.7. Let E be any event defined with respect to (z,W ⋆
i ,W

⋆
j ). Then,

D2(E) ⩽ 2D1(E).
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Proof. We apply Claim E.4 where V = V ⋆ and L = Z. By Claim E.5, we have µW ⋆
i ∩W ⋆

j
(Z) > 0.9µ(Z)

for all i, j, or equivalently
|W ⋆

i ∩W ⋆
j ∩ Z| ⩾ 0.9 · |Z|q−2s.

Thus, for all i, j and all z,

D2(z,W
⋆
i ,W

⋆
j ) ⩽

1

0.9|Z| · q−2s
· 1

m2
3

⩽
2

1.21|Z|
· 1

m2
3q

−2s
⩽ 2D1(z,W

⋆
i ,W

⋆
j ),

where we use Equation (44) for the third transition. It follows that

D2(E) ⩽ 2D1(E).

We are now ready to prove Lemma 8.5.

Proof of Lemma 8.5. By the sixth property in Lemma 8.3, for every L ∈ L⋆, we have

Pr
W ⋆

i ⊇L,W ⋆
i ∈W⋆

[fi|L ̸= T1[L]] ⩽ 14γ.

Let E denote the event over (z,W ⋆
i ,W

⋆
j ) that fi(z) ̸= fj(z). It follows that,

D1(E) ⩽ Pr
W ⋆

i ,W
⋆
j ⊇L

W ⋆
i ,W

⋆
j ∈W⋆

[fi|L ̸= T1[L] ∨ fj |L ̸= T1[L]] ⩽ 2 · Pr
W ⋆

i ⊇L,W ⋆
i ∈W⋆

[fi|L ̸= T1[L]] ⩽ 28γ.

Putting Lemmas E.6 and E.7 together,

D2(E) ⩽ 2(6D1(E) + γ) = 338γ,

proving the first part of Lemma 8.5.
For the second part, recall from the second part of Claim E.5 that for every pair i, j, we have∣∣W ⋆

i ∩W ⋆
j ∩ Z

∣∣ ⩾ 0.9 · |Z| q−2s ⩾ 0.81 |V ⋆| q−2s = 0.81 ·
∣∣W ⋆

i ∩W ⋆
j

∣∣ .
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