
The hardness of decision tree complexity

Bruno Loff and Alexey Milovanov

LASIGE, Faculdade de Ciências, Universidade de Lisboa

November 2023

Abstract

Let f be a Boolean function given as either a truth table or a circuit.
How difficult is it to find the decision tree complexity, also known as
deterministic query complexity, of f in both cases? We prove that this
problem is NC1-hard and PSPACE-hard, respectively. The second
bound is tight, and the first bound is close to being tight.

Contents

1 Introduction 2

2 Definitions and upper bounds 3

3 Lower bounds 7
3.1 TQBF . 7
3.2 TQBF vs DT . 9
3.3 First auxiliary function . 10
3.4 Second auxiliary function . 11
3.5 The reduction . 13

4 Open questions 17

Acknowledgments 17

References 17

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 34 (2024)

1 Introduction

The decision tree is one of the most important computational models in
theoretical computer science. Decision trees were invented in the 50s with
the purpose of analyzing data. In this context, at each node in the tree we
query some feature of the data, which partitions the data points depending
on the value of this chosen feature. The resulting partition at the leaves
should allow us to better understand the data. Starting in the 1980s, several
learning algorithms were developed that would process data and produce a
classifier. Meaning, we assume the existence of some function f of which
we know some sampled pairs (x, f(x)) (the data), and we wish to produce a
decision tree that would be able to predict f(x), even on a previously-unseen
input x (some famous algorithms are CHAID, CART, ID3, and C4.5, see
([Kas80, BFOS84, Qui86, Qui93])). The goal here is to produce the smallest
possible decision tree, while making the fewest possible mistakes. This task,
of learning a decision tree for f from a collection examples (x, f(x)), is used
in real-life applications, and we could call it the learning problem for decision
trees.

But one can also consider a more algorithmic problem. Here, the func-
tion f is completely known (i.e., we know (x, f(x)) for all x), and we wish
to produce a decision tree which computes f (e.g., without any mistakes).
As far as we are aware it was in the 1970s (e.g. [Yao75]) when people first
studied, for specific functions f , and for specific ways of querying the input
x, how small can be the depth of a decision tree that computes f(x) when
given x as input. In the meantime, decision trees have become a ubiqui-
tous computational model, useful in the study of various kinds of compu-
tation. To give a few examples, decision trees are relevant to the study of
data structures (the cell-probe model [Pǎ08, Lar13]), cryptographic reduc-
tions (in black-box reductions [RTV04]), quantum algorithms (in separations
CITE), communication complexity and proof complexity (in lifting theorems
[Göö15, GJPW18, GPW15]).

There is a meta-complexity problem underlying this algorithmic prob-
lem: how does one determine the decision-tree complexity of a given func-
tion f? This question has been studied before, usually for the learning
problem [KST23], but also for the algorithmic problem [Aar03].

Let us restrict our attention to the simplest of all decision-tree models,
where the known function f : {0, 1}n → {0, 1} is a Boolean function, and
the computational model is deterministic decision tree that must compute
f(x) by querying the bits of x. Here, we can consider two scenarios, with
respect to how f is given:

2

(tt-DT) We are given f as a truth table, meaning a binary string of length
N = 2n so that f(x) appears at the x-th position.

(circuit-DT) We are given f as a Boolean circuit, which potentially allows
for a more succinct encoding of f .

The meta-complexity problem is: We are given f as input, either as a truth-
table (tt-DT) or as a circuit (circuit-DT) and we wish to find the deter-
ministic query complexity complexity of f , namely, the smallest depth of a
deterministic decision tree that computes f(x) by querying the bits of x.
How hard is this problem? In this paper, we give a satisfactory answer for
both scenarios, essentially via the same technique.

It is not difficult to see that circuit-DT belongs to PSPACE: see Propo-
sition 2.7 below. One could immediately conjecture that the problem is
PSPACE-hard, but one soon comes across various difficulties in proving
such a statement. (After the required definitions are in place, in Section 3.2,
we discuss precisely where the difficulty lies.) Our first main result, Theo-
rem 3.1, is showing that this problem is indeed PSPACE-hard.

It is also well-known, and appears as Proposition 2.6 below, that tt-DT
belongs to P. Meaning, denoting the input length for tt-DT as N = 2n,
which is the length of the truth-table of a Boolean function f : {0, 1}n →
{0, 1}, Proposition 2.6 states that tt-DT can be solved in poly(N) time. In
Proposition 2.9, we observe that tt-DT can also be computed in parallel,
namely, by a Boolean circuit of depth O(logN log logN) and size poly(N).
This result is simple enough that it should be considered folklore: easy
to prove for anyone who would care to do so. However, despite being a
natural and fundamental problem, no matching lower-bound was known.
Our second main result, Theorem 3.2, shows that the above bound is close
to tight: tt-DT is NC1-hard (under uniform NC0 reductions).

2 Definitions and upper bounds

Definition 2.1. We let {0, 1}n denote the set of all binary strings of length
n, sometimes called the Boolean cube. We let {0, 1, ∗}n denote the set of
(n-bit) partial assignments. The elements ρ ∈ {0, 1, ∗}n are in bijection with
the Boolean subcubes:

{x ∈ {0, 1}n | ∀i ∈ [n] ρi ̸= ∗ =⇒ xi = ρi}.

We will denote this set also by ρ, by abuse of notation.

3

We let [i← b] = ∗i−1b∗n−i−1 assign b to the i-th coordinate. Two partial
assignment ρ and ρ′ are called compatible if ρi ̸= ∗ or ρ′i ̸= ∗ implies ρi = ρ′i.

If ρ, ρ′ ∈ {0, 1, ∗}n are compatible, then ρ · ρ′ is the partial assignment
such that (ρ · ρ′)i equals to ρi if ρi ̸= ∗, equals ρ′i if ρ

′
i ̸= ∗, and equals ∗ if

ρi = ρ′i = ∗.
If |ρ−1(∗)| = ℓ and y ∈ {0, 1}ℓ, we let ρ(y) ∈ {0, 1}n be the binary string

which equals ρ where ρi ̸= ∗, and equals y in the remaining coordinates
(which are filled in order).

Given a Boolean function f : {0, 1}n → {0, 1} and a partial assignment
ρ ∈ {0, 1, ∗}n with ℓ = |ρ−1(∗)| the number of ∗, we let f |ρ : {0, 1}ℓ → {0, 1}
be given by

f |ρ(y) = f(ρ(y)).

I.e. it is the restriction of f to the Boolean subcube ρ.

Definition 2.2. A deterministic decision tree over {0, 1}n is a rooted, la-
belled, ordered binary tree T :

• Each non-leaf node v is labelled by an index iv ∈ [n].

• Each non-leaf node v has two children v0 and v1.

Associated with each node v of T is a partial assignment ρv

• The root is associated with ∗n.

• For a non-leaf node v, and for both b ∈ {0, 1}, ρvb = ρv · [xiv = b].

Definition 2.3. The computation of T on input x ∈ {0, 1}n is a path in T ,
which begins at the root, and proceeds at each node v by going to the child
vxiv

, until it reaches a leaf.

It is easy to see that ρv is the set of inputs whose computation goes
through v. We have (ρv)i = ∗ if and only if the coordinate xi has not yet
been queried in the computation between the root and node v, i.e., at or
before v. If xi has been queried at or before v, then (ρv)i = xi for every x
whose computation goes through v.

Definition 2.4. We say that T computes a function f : {0, 1}n → {0, 1}
if, for every leaf v of T , f is constant on ρv. The deterministic query
complexity of a function f : {0, 1}n → {0, 1}, which will be denoted D(f),
is the smallest depth of any decision tree that computes f .

4

Definition 2.5. We let tt-DT be the computational problem where we are
given the truth-table of a function f : {0, 1}n → {0, 1}, and wish to compute
D(f). We let circuit-DT be the computational problem where we are given
a Boolean circuit C computing a function f : {0, 1}n → {0, 1}, and we wish
to compute D(f).

The simplest observation that one can make is that tt-DT has a polynomial-
time algorithm.

Proposition 2.6. tt-DT belongs to P. More precisely, there is an algorithm
that computes the DT-complexity of an n-ary Boolean function in time O(3n·
n) = O(N1.585... logN), where N = 2n.

This algorithm should be considered folklore, but we include it here
because it is simple and insightful. Variants of it appear, e.g., in[GLR99,
Aar03].

Proof. The main, crucial observation is that the best decision tree for f must
first choose a coordinate i, query xi, and then run the best decision tree for
f |[i←xi]. In general, for any partial assignment ρ ∈ {0, 1, ∗}n, D(f |ρ) = 0 if
f is constant on ρ, and otherwise

D(f |ρ) = min
i∈ρ−1(∗)

1 + max
b∈{0,1}

D(f |ρ·[i←b]). (∗)

This gives us a dynamic programming algorithm: knowing D(f |ρ) for all
partial assignments ρ ∈ {0, 1, ∗}n with |ρ−1(∗)| = ℓ free variables, we can
use the above formula to compute D(f |ρ) for all ρ ∈ {0, 1, ∗}n with |ρ−1(∗)| =
ℓ + 1 free variables. Finally f = f |∗n , so we learned D(f). There are 3n

partial assignments in total, and each computation D(f |ρ) takes time O(n)
in a random-access machine.

Some more insight will come from the following game reformulation of the
statement “D(f) ≤ k”. Consider the following game between two players,
Alice and Bob. The game lasts for k steps. At every step, Alice chooses
a variable xi, and Bob sets a Boolean value to the corresponding variable,
either xi = 0 or xi = 1. After k steps, Alice wins f |ρ is constant on the
partial assignment ρ corresponding to Alice and Bob’s moves; otherwise,
Bob wins. It follows that Alice has a winning strategy in this game if and
only if D(f) ≤ k. Indeed, if D(f) ≤ k, then Alice can make moves according
to the corresponding tree, and if D(f) > k, then Bob wins because this

5

inequality means that for every i, the decision tree complexity of f |[i←1] or
f |[i←0] is at least k. Bob’s strategy is then to repeatedly choose the value
b ∈ {0, 1} that maximizes D(f |[i←b]).

One can algorithmically find the winner in this game by a simple recur-
sive algorithm. It is easy to see that, if a Boolean function f : {0, 1}n →
{0, 1} is given as a Boolean circuit C, an algorithm can decide which of the
two players has a winning strategy, using poly(n, |C|) memory. So, we get
the following:

Proposition 2.7. circuit-DT belongs to PSPACE.

One may now ask whether Proposition 2.6 can be at all improved. Indeed,
the algorithm can be parallelized. First, a definition:

Definition 2.8. For i ∈ N, we let NCi denote the class of functions f :
{0, 1}n → {0, 1}m computable by Boolean circuits with binary AND and OR
gates, and unary NOT gates, in depth O((log n)i) and size poly(n,m). We

let ÑC1 denote the class of functions f : {0, 1}n → {0, 1}m computable by
such circuits in depth O(log n · log log n) and size poly(n,m).

We now claim the following.

Proposition 2.9. tt-DT can be computed by a Boolean circuit of size O(3n ·
poly(n)) = O(N1.583... polylogN) and depth O(n log n) = O(logN log logN).

Hence, tt-DT is in ÑC1.

Proof. There’s two different ways of seeing this. Using the fundamental
equation (∗), and using the game definition above.

The equation (∗) directly gives us a circuit that uses O(3n) min, max,
increment, and all-equal gates: for each partial assignment ρ we check if
f |ρ is constant using an all-equal gate, otherwise we compute the formula
given by (∗). This circuit has depth O(n) using such gates. Implementing
such gates using binary fan-in Boolean gates will result in a circuit of depth
O(n log n).

Or instead, we see “D(f) ≤ k” as the existence of a winning strategy
for Alice in the above game. The tree of this game can be transformed
into a Boolean circuit. The possible moves of Alice correspond to an n-ary
disjunction, and Bob’s moves correspond to a 2-ary conjunction. After k
steps in the game, the winner is given by whether f |ρ is constant, which is
computed by an all-equals gate. This gives us a formula of depth O(k log n)
and size O(nk). By being careful to merge nodes where the previous moves
of Alice and Bob give the same partial assignment, we get a circuit whose
size will never exceed O(3npoly(n)).

6

3 Lower bounds

Our two main theorems are the following.

Theorem 3.1. circuit-DT is PSPACE-hard under polynomial-time reduc-
tions.

Theorem 3.2. tt-DT is NC1-hard under NC0-reduction.

The first theorem is well understood, but the second requires some
clarification regarding reductions and uniformity. Recall the definition of
DLOGTIME-uniform NC1-cicuits from [BIS90].

Definition 3.3. Let C = {Cn | n ∈ N} be a family of Boolean circuits, so
that Cn computes a function f : {0, 1}n → {0, 1}m(n).

• The “direct connection language” of C is the set of tuples ⟨0n, t, a, b⟩,
where a ∈ [|Cn|] and b ∈ {0} ∪ [|Cn|] are gate numbers in Cn, t is the
type of gate a (AND, OR, NOT, or input gate xi), and gate b is a
child of gate a (and equals 0 if a is a leaf).

• The circuit family C is DLOGTIME-uniform if its direct connection
language can be recognized in O(log(n)) time by a deterministic multi-
tape Turing machine (with an index tape for random access to the
input).

We say that language A ⊆ {0, 1}∗ is NC0-reduced to language B ⊆ {0, 1}∗,
which we write A ≤NC0 B, if there is a DLOGTIME-uniform family of NC0-
circuits C = {Cn} such that, for every x ∈ {0, 1}n, x ∈ A iff Cn(x) ∈ B.

It is not difficult to see that this type of reduction satisfies the natural
properties:

• (transitivity) If A ≤NC0 B and B ≤NC0 C then A ≤NC0 C.

• (closure) If A ≤NC0 B and B ∈ NC1 then A ∈ NC1 (this holds for
both uniform and non-uniform variants of NC1).

3.1 TQBF

The proof of theorems 3.1 and 3.2 are similar: we prove that TQBF reduces
to DT. Recall that TQBF (True Quantified Boolean Formula) is the problem
of determining the truth of a formula

∃y1∀x1 . . . ∀xnh(y1, x1, . . . yn, xn), (†)

7

where h is some Boolean function. As we did for decision-tree complexity,
let us consider two variants of the TQBF problem:

tt-TQBF We are given as input a Boolean function h : {0, 1}2n → {0, 1}
as a truth table, and wish to know whether (†) holds.

circuit-TQBF We are given h as a circuit, and wish to know whether (†)
holds.

It is well-known that circuit-TQBF is PSPACE-complete. It turns out
that tt-TQBF is NC1-complete:

Theorem 3.4. tt-TQBF is NC1-complete under ≤NC0 reductions.

To prove Theorem 3.4 we use the following result of Barrington.

Theorem 3.5 ([Bar86, BIS90]). The S5 identity problem, S5IP, is the prob-
lem of deciding if the product of given permutations from S5 is equal to the
identity. Then S5IP is NC1-complete under ≤NC0 reductions.

This theorem was proved in [Bar86], and in [BIS90] the authors verified
that the reasoning proves the desired statement with DLOGTIME-uniform
NC0 reductions.

Proof of Theorem 3.4. It is easy to see that tt-TQBF is in NC1: the formula
(†) is a Boolean formula of depth n whose leaves are entries in the truth-
table of h. To prove that tt-TQBF is NC1-hard, the idea is to consider S5IP
as a game that can be interpreted as a TQBF formula.

Consider the input of S5IP: permutations π1, . . . , πN , with N = 2n.
Imagine two players Alice and Bob; Alice wants to prove that the product
is equal to the identity permutation and Bob does not trust her.

They play in the following game. Bob asks: what is the product of the
first half of the permutations, i.e. π1 ·. . .·π⌊N

2
⌋. Alice states that this product

is some permutation σ1. Additionally, since Alice is trying to prove to Bob
that all the product of all permutations is equal to the identity, she is also
implicitly stating that the product π⌊N

2
⌋+1 · . . . · πN is equal to σ−11 . Bob

does not trust Alice, and so he chooses b1 ∈ {0, 1} to mean that he believes
one of Alice’s statements to be false. I.e. he chooses b1 = 0 if he believes
that the first part is actually not σ1, and he sets b1 = 1 if he believes that
the second part is not σ−11 . After this, a similar procedure repeats: Alice
states that the value of the product of the first half of Bob’s chosen part is
σ2 (this is one quarter of all permutations), which implies that the second

8

half of Bob’s chosen part is σ−12 σ
(−1)b1
1 . Then Bob chooses one of these two

quarters b2 ∈ {0, 1} where he believes Alice’s statement is false, and so on.
This game produces a sequence σ1, b1, . . . , σn, bn. At the end of the

game, the winner is identified by whether α = πi or not, where α and i are
inferred from the sequence. This game can be interpreted as a TQBF: each
statement σi of Alice can be encoded as 7 bits (since 5! < 27), and each
choice bi of Bob can be encoded as 1 bit. Every value of the truth table
of h for tt-TQBF can be constructed from Alice and Bob’s moves and the
corresponding value of some πi.

Indeed, h(σ1, b1, . . . , σn, bn) = 1 if and only if α = πi for the appropriate
α ∈ S5 and i ∈ [n]. Hence, this reduction is in NC0, since every value in
the truth-table of h (i.e. the winner in the corresponding game) depends
only on one permutation πi of the input, which is encoded using a constant
number of bits.

We further claim that the corresponding NC0 reduction can be made
DLOGTIME uniform. By logarithmic time we mean O(logN) = O(n). We
first describe an algorithm which, when given σ1, b1, . . . σn, bn (i.e. the moves
in Alice-Bob game), outputs the index i and the permutation α required to
compute the bit h(σ1, b1, . . . σn, bn) = [α = πi?] of h’s truth table.

The algorithm looks at every pair of moves (σ1, b1), . . . (σn, bn) one time
and maintains in memory a permutation α, an index k ∈ [n], and two indexes
1 ≤ s ≤ t ≤ N . These values in memory have the following meaning: after
round k, Alice has stated that πs . . . πt = α. Initially α is the identity, k = 0,
i = 1, and j = N .

The move of Alice in the k-th round is some permutation σk ∈ S5, and
Alice states that πs . . . πm = σk, where m = s+t

2 . The move of Bob (some
bit bk) is a choice “left” or “right”. If Bob’s answer is “left”, then we set
s := s, t := m, α := σ and if Bob’s choice is “right” then we set s := m+ 1,
t := t, and α := σ−1k ·α. Each such calculation can be done in constant time,
so the entire computation can be done in linear time.

The above circuit is very simple, and the above algorithm shows how to
compute the connections between the various gates. Since this algorithms
runs in O(logN) time, this circuit is DLOGTIME-uniform.

3.2 TQBF vs DT

We have now laid out enough definitions that we can discuss the crucial
difficulty in proving our main result (Theorems 3.1 and 3.2). We would like
to prove that circuit-DT is PSPACE-hard, and we know that circuit-TQBF
is PSPACE-hard. We would like to prove that tt-DT is NC1-hard, and we

9

know that tt-TQBF is NC1-hard. The fundamental difference between the
two problems can be understood by looking them as a game.

In TQBF, we have two disjoint sets of variables: Alice sets the yi vari-
ables and Bob sets the xi variables. In DT, we have a single set of variables:
Alice chooses a variable, and Bob sets the variable. Now, what we would
like to do, is to simulate the TQBF game using the DT game. The difficulty
is that it is not at all obvious how such a simulation should proceed.

To simulate a TQBF game over variables y1, x1, . . . , yn, xn, we use a DT
game over variables y1, y

′
1, x1, x

′
1, . . . , yn, y

′
n, xn, x

′
n, and some other auxiliary

variables. The hope is that the DT instance works in such a way that Alice
must play by choosing first yi and then y′i, or first y

′
i and then yi. Whichever

order she chooses, Bob must play by setting the first chosen yi or y
′
i variable

to 1, and by setting the second chosen to 0. Then Alice must play by
choosing one of the two xi or x′i variables, and Bob can set it anyway he
wants. This way we simulate the TQBF game using the DT game. The
difficulty is now in ensuring that Alice and Bob are indeed forced to play by
the above “standard” strategies. For this, some additional gadgets will be
put in place, so that any deviation from the above standard strategies will
cause the deviating player to loose the DT game. So let us begin.

3.3 First auxiliary function

In the reduction we will need an example of a Boolean function W such
that for some variable it holds that D(W) = D(W |p=1) ≫ D(W |p=0). This
function will be some kind of product of the following function w : {0, 1}4 →
{0, 1}:

w(p, a0, a1, r) =

{
0 if p = 1, and a0 = a1,

ar if p = 0, or a0 ̸= a1.

Lemma 3.6 ([Zha]). The function w has the following properties:

1. D(w) = 3;

2. D(w|p=1) = 3;

3. D(w|p=0) = 2.

Proof. (1) To determine w one can ask the values of a0 and a1. If a0 ̸= a1
then it is enough to know r to determine the value of the function. If a0 = a1
then it is enough to know p (if p = 0 then w = a0 = a1, if p = 1 then w = 0).
The proof of the lower bound follows from the second item.

10

(2) The upper-bound follows from (1). The lower-bound is proven by brute
force. We have

w(1, a0, a1, r) =

{
0 if a0 = a1,

ar if a0 ̸= a1.

If we choose to query a0 and a1 first, and they differ, we still need to query
r. If we choose to query ai and r first, and r = 1− i, we still need to query
a1−i.
(3) To determine w(0, a0, a1, r) we may ask r then ar. It is easy to see that
one question is not enough.

Denote by Wk : {0, 1}1+3k the Boolean function given by:

Wk(p, a
1
0, a

1
1, r

1, . . . , ak0, a
k
1, r

k) = w(p, a10, a
1
1, r

1)⊕ . . .⊕ w(p, ak0, a
k
1, r

k).

Lemma 3.7. The function Wk has the following properties:

1. D(Wk) = 3k; Moreover, there is a strategy for the second player (who
sets the values) such that if the first player (Alice) chooses variable p
then she looses.

2. D(Wk|p=1) = 3k;

3. D(Wk|p=0) = 2k.

Proof of Lemma 3.7. It is easy to see that if functions f and g have disjoint
variables then D(f ⊕g) = D(f)+D(g). By these reasons the second and the
third items are direct corollaries of the same items in Lemma 3.6. To prove
the first item just consider the following obvious inequalities:

3k = D(Wk|p=1) ≤ D(Wk) ≤ k · D(w) = 3k.

3.4 Second auxiliary function

Another tool in the reduction is the following function:

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn, where:

• every fi is defined as fi(yi, y
′
i) = yi ∧ y′i;

• every gi is defined as

gi(y1, y
′
1, x1, x

′
1, . . . yi, y

′
i, xi, x

′
i) =

{
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x′i otherwise.

11

We claim that D(Fn) = 3n. Moreover, we want to claim some properties
of the corresponded game between Alice (who chooses variables) and Bob
(who sets values). We would like to say that Alice and Bob must follow
certain standard strategies, or else they will loose the DT game.

• Standard strategies for Alice. In a standard strategy for Alice,
she spends 2n questions to ask about the variables yi and y′i for all i.
She can ask these questions in an arbitrary order.

She also spends n questions to ask about exactly one of the two vari-
ables xi and x′i, for each i. Here the order is crucial. The correct
variable to choose depends on the value of f1 ⊕ g1 ⊕ · · · ⊕ gi−1 ⊕ fi:
she chooses xi if this is 1, and x′i if this is 0, as in the definition of
gi above. So, before asking about xi or x

′
i, Alice must first ask about

y1, y
′
1, . . . , yi−1, y

′
i−1 and about the appropriate variable in every cou-

ple (xj , x
′
j) for all j < i. This defines fj , for all j ≤ i, and gj , for all

j < i.

• Standard strategies for Bob. A standard strategy for Bob is any
strategy such that, the first time Alice asks about one of the two
variables yi or y

′
i, Bob answers 1.

Lemma 3.8. It holds that D(Fn) = 3n and, furthermore,

1. If Alice plays according to a standard strategy, she wins the DT game
within 3n rounds.

2. If Alice does not play according to a standard strategy then Bob can
play in such a way that Alice does not win within 3n rounds.

3. If, while Alice is playing according to a standard strategy, Bob does
not answer according to one of his standard strategies, then Alice can
win the DT game in strictly fewer than 3n rounds.

Proof. The first observation follows from items 1 and 2. Item 1 follows
because, in a standard strategy, Alice has asked about all variables in the
functions fi, and because she asked about the relevant variable among xi
and x′i, she also learned all the gi.

Now we prove item 2. Assume that Alice does not play according to a
standard strategy. It means that either (a) Alice does not ask about some
yi or y′i, or (b) she did not ask about one of the xi or x′i, or (c.i) she asks
about xi or x

′
i before seeing all the variables of f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi, or

12

(d) for some i, she saw all the variables of f1⊕g1⊕ . . .⊕gi−1⊕fi, but asked
about the wrong xi or x

′
i.

In case (a), Alice did not ask about some yi or y
′
i, so that the value of fi

is not defined and independent of the remaining values, and hence the value
of Fn is also not defined, so if Bob plays according to any standard strategy,
they end in a non-monochromatic subcube, and Alice looses. Likewise, in
cases (b) and (d), gi is undefined and independent of the remaining values,
and hence Fn is also undefined, and Alice also looses.

Now suppose we are in case (c.i), but not (a), (b), or (d), or (c.j), for
any j < i. Then, Alice has asked about one of the variables xi or x

′
i, but she

did so before asking every variable of f1⊕g1⊕ . . .⊕gi−1⊕fi. We then claim
that Bob can answer Alice’s questions in such a way that Alice will need to
ask at least 3n+ 1 questions in total to know the value of F . Indeed, Alice
has asked about xi or x′i before f1 ⊕ g1 ⊕ . . . ⊕ gi−1 ⊕ fi became defined.
So after choosing some value for the variable xi or x

′
i, Bob can still answer

Alice’s questions by a standard strategy such that gi equals the variable x′i
or xi which Alice did not choose. The remaining questions Bob answers
according to an arbitrary standard strategy. Since Alice wasted (at least)
one question by asking an irrelevant variable, it follows that she needs 3n
other questions to fix the value of Fn.

Finally, to prove item 3, suppose that the first time Alice asks one of
the two variables yi or y′i, Bob answers 0. Then the function fi = yi ∧ y′i
becomes fixed and equal to 0, so Alice can fix the value of F without ever
asking about the other variable. And so Alice wins within 3n−1 moves.

3.5 The reduction

Proof of theorems 3.1 and 3.2. We reduce the TQBF instance

∃y1∀x1 . . . ∀xnh(y1, x1, . . . yn, xn) (1)

to computing the query complexity D(D) of the function:

D =

{
q, if Gn ∨ p = 0
W10n ⊕ Fn, otherwise.

where

D = D(x1, x
′
1, y1, y

′
1, . . . , xn, x

′
n, yn, y

′
n, p, q, a

1
0, a

1
1, r

1, . . . , a10n0 , a10n1 , r10n)

is a Boolean function on 2n+ 2 + 30n variables.

W10n = W10n(p, a
1
0, a

1
1, r

1, . . . , a10n0 , a10n1 , r10n)

13

was defined in Section 3.3.

Fn = Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n)

was defined in Section 3.4. And

Gn = Gn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n)

is a (previously undefined) Boolean function on 2n variables, given by:

Gn = h(y1, x1, . . . , yn, xn) ∨
n∨

i=1

(yi ∧ y′i) ∨
n∨

i=1

xi ⊕ x′i

First we note that this reduction can be computed in polynomial time if h is
given as a circuit and by a NC0-circuit if h is given a truth-table: every value
of D depends only on one value of h. To see DLOGTIME-uniformity one
can check that, given values for the input variables of D, one can calculate
the ouput, as a function of h, in time O(n). We simply calculate every value
in the above expression for D in time O(n), and as a result, the output will
be either 1, 0, hn(. . .) or ¬hn(. . .). So the truth table of D can be computed
from the truth table of h by a DLOGTIME-uniform NC0-reduction.

We now claim that (1) is true if and only if D(D) ≤ 33n.

When (1) holds

First we prove if (1) is true, i.e., Alice has a winning strategy in the TQBF-
game, then D(D) ≤ 33n, i.e. Alice has a winning strategy in the DT-game,
which allows her to win within 33n steps.

In the TQBF-game Alice first chooses y1, then y2 as a function of y1 and
(Bob’s choice for) x1 then y3 as a function from y1, x1, y2, x2, and so on. We
wish to translate such a strategy for the TQBF-game, into a strategy for
the DT-game. The translation is the following.

Alice begins by fixing the value of Fn to a constant. She will do so,
by using the following standard DT-strategy (standard as in the proof of
Lemma 3.8). If the TQBF-strategy of Alice sets y1 = 1, then the standard
DT-strategy of Alice first asks about the variable y1, and then asks about
the variable y′1. If the TQBF-strategy of Alice sets y1 = 0, the standard DT-
strategy of Alice swaps the order: first asking about y′1 and then about y1.
The standard DT-strategy of Alice then asks about the appropriate relevant

14

variable x1 or x′1 (according to her standard strategy). She considers the
value of the chosen variable (x1 or x′1) to be the value Bob has chosen for
x1 in TQBF-game. Then, the DT-strategy of Alice asks about y2 and y′2
in some order, that again depends on the corresponding value for y2 in the
TQBF-strategy, and so on.

Now, either Bob follows a standard strategy (as in Lemma 3.8), or not.
If he does, then (because the TQBF-strategy is a winning strategy for Alice)
the value of h is equal to 1 and hence Gn is also equal to 1 and therefore
D is equal to Fn ⊕W10n. Note, that the value of Fn is already defined. By
Lemma 3.7 Alice can define the value of W10n in remaining 30n moves, so
she wins.

If Bob does not use a standard strategy, Alice can define the value of
Fn in fewer than 3n moves. She can do it by Lemma 3.8. Then Alice asks
about p. Then, either:

• Bob answers p = 1. In this case, D is equal to Fn⊕W10n, Fn is already
defined and Alice can ask at least 30n questions, which is enough to
determine the value of W10n.

• Bob answers p = 0. In this case by Lemma 3.7 Alice can define
the value of W10n|p=0 in 20n questions, so she has at least 10n ques-
tions left. She uses these questions to ask about all the variables
q, x1, x

′
1, y1, y

′
1, . . . , xn, x

′
n, yn and y′n. Therefore, now Alice knows the

values of W10n, q, p, Gn, and Fn, so Alice knows the value of D.

When (1) is false

Now we prove that if (1) is false then Alice cannot win in 33n moves. First
we prove the following

Lemma 3.9. Assume that (1) is false. Then, Bob can answer the questions
of Alice about the variables of Fn in such a way that

• Fn will not be defined as long as Alice has asked fewer than 3n ques-
tions.

• If Alice has asked exactly 3n questions, then either (i) the value of Fn

is not defined, or (ii) the value of Fn is defined, but there exists an
assignment of variables not asked by Alice such that Gn = 0.

Proof of Lemma 3.9. From Lemma 3.8 we know that, if Alice does not play
according to a standard strategy, she will need more than 3n questions

15

to define Fn. So we can assume that Alice plays according to a standard
strategy. Bob will also play according to a standard strategy, with the
following additional constraint: for every pair {yi, y′i} Bob will answer 0 to
the second requested variable. (Recall that, a standard strategy for Bob is
one where he answers 1 for the first requested variable in the pair.)

We claim that if (1) is false, and Alice uses a standard strategy, then
Bob can make xi = x′i for every i, and h = 0, thus forcing Gn = 0. Indeed,
in a standard strategy Alice asks variables in the right order, so that Bob
can set xi and x′i to the same value, according to his winning strategy in the
TQBF-game. This makes the value of h equal to 0.

Now we are ready to describe the strategy for Bob. To recall: we are
assuming that (1) is false, and we will devise a strategy for Bob that will
leave D undefined unless Alice asks more than 33n queries.

Bob’s strategy.

• For the variables that define Fn, Bob uses the strategy from Lemma 3.9.

• If Alice asks about p then Bob answers 1.

• For the variables that define W10n, Bob uses some best strategy for
W10n|p=1.

• For q the answer is arbitrary.

We argue that if Bob uses this strategy then Alice cannot define the value
of D in 33n questions. Indeed, assume that Alice asks about p. Then p = 1
and the value of D is equal to the value of Fn ⊕W10n. Now either Alice
asked < 3n questions about Fn or < 30n questions about W10n|p=1. Either
way, one of these functions is not defined and hence D is also not defined.

Now assume that Alice does not ask about p. Then by setting p = 1,
we can always force the value of D to be equal to Fn ⊕W10n, so this value
must be defined. But to define Fn and W10n, Alice must spend all her 33n
questions, and so she cannot ask about q. Moreover, to learn the value of Fn,
she must spend exactly 3n questions about Fn, but she cannot spend any
more. From Lemma 3.9, there must then exist some setting of the variables
Alice didn’t ask, such thatGn = 0. Then, by way of this assignment together
with p = 0, D becomes equal to q, which Alice did not ask and hence is not
defined.

16

4 Open questions

1. What is the exact time-complexity of tt-DT? Is it possible to improve
O(3nn)-algorithm of Proposition 2.6? Is it possible to prove any non-
trivial bounds (for example, under the Exponential Time Hypothesis)?

2. Is it possible to improve the O(logN log logN)-depth bound of Propo-
sition 2.9?

3. What is the exact time, space, and circuit complexity of the problem
of finding the minimum size of a decision tree that computes a given
Boolean function? It is known that this problem belongs to P[Aar03],
but the best depth upper-bound we know is O((logN)2). It seemed
to us that our reduction cannot be adapted to this case without a
significantly new idea.

4. What can we say about the problem of approximating decision-tree
complexity? One can consider, in the reduction above, the function
D1

n⊕·Dk
n instead ofDn for some k, where allDi

n are the same functions
as Dn with fresh variables. It allows to prove that the problem of the
approximation of DT with constant term has the same complexity as
exact calculation of DT. Is it possible to improve on this result?

Acknowledgments

The authors would like to thank Wei Zhan for his answer at StackOverflow.
This work was funded by the European Union (ERC, HOFGA, 101041696).
Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority
can be held responsible for them. It was also supported by FCT through the
LASIGE Research Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020,
and by CMAFcIO, FCT Project UIDB/04561/2020, https://doi.org/10.
54499/UIDB/04561/2020.

References

[Aar03] Scott Aaronson. Algorithms for boolean function query proper-
ties. SIAM Journal on Computing, 32(5):1140–1157, 2003.

17

https://doi.org/10.54499/UIDB/04561/2020
https://doi.org/10.54499/UIDB/04561/2020

[Bar86] David A Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in nc. In Proceedings
of the eighteenth annual ACM symposium on Theory of comput-
ing, pages 1–5, 1986.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Chapman and Hall/CRC,
1984.

[BIS90] David A Mix Barrington, Neil Immerman, and Howard Straub-
ing. On uniformity within nc1. Journal of Computer and System
Sciences, 41(3):274–306, 1990.

[GJPW18] Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Wat-
son. Randomized communication versus partition number. ACM
Trans. Comput. Theory, 10(1):4:1–4:20, 2018.

[GLR99] David Guijarro, Vıctor Lavın, and Vijay Raghavan. Exact learn-
ing when irrelevant variables abound. Information Processing
Letters, 70(5):233–239, 1999.

[Göö15] Mika Göös. Lower bounds for clique vs. independent set. Elec-
tron. Colloquium Comput. Complex., TR15-012, 2015.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic
communication vs. partition number. In Venkatesan Guruswami,
editor, IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 1077–1088. IEEE Computer Society, 2015.

[Kas80] G. V. Kass. An exploratory technique for investigating large
quantities of categorical data. Applied Statistics, 29(2):119–127,
1980.

[KST23] C. Koch, C. Strassle, and L. Tan. Properly learning decision
trees with queries is np-hard. pages 2383–2407, nov 2023.

[Lar13] Kasper Green Larsen. Models and techniques for proving data
structure lower bounds. PhD thesis, Aarhus University, 2013.

[Pǎ08] Mihai Pǎtraşcu. Lower bound techniques for data structures.
PhD thesis, Massachusetts Institute of Technology, 2008.

18

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning,
1(1):81–106, 1986.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of re-
ducibility between cryptographic primitives. In Theory of Cryp-
tography Conference, pages 1–20. Springer, 2004.

[Yao75] Andrew Chi-Chih Yao. On the complexity of comparison prob-
lems using linear functions. In 16th Annual Symposium on Foun-
dations of Computer Science (sfcs 1975), pages 85–89. IEEE
Computer Society, 1975.

[Zha] Wei Zhan. https://cstheory.

stackexchange.com/questions/52546/

a-question-about-decision-tree-complexity.

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://cstheory.stackexchange.com/questions/52546/a-question-about-decision-tree-complexity
https://cstheory.stackexchange.com/questions/52546/a-question-about-decision-tree-complexity
https://cstheory.stackexchange.com/questions/52546/a-question-about-decision-tree-complexity

